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Abstract

Searching code is a daily task for every software engineer. With the growing amount of data avail-
able on the internet, software engineers are actively researching new advanced techniques to find
certain publicly available code for reusage. This thesis further contributes to this active research
by developing a new conversational-based approach for software engineers to find publicly avail-
able software. With the development of a conversational agent (chatbot), this thesis describes the
design and implementation of a new approach that is built on the growing demand of conversa-
tional agents to fulfil a specific task. The chatbot is able to return a repository that best matches a
project description provided by a user throughout a natural language conversation. The chatbot
is capable of asking the user questions about the repository to search for and remembers past an-
swers from the user. This chatbot offers an easy-to-use interface for software engineers to retrieve
a repository with certain specifications. The implementation presented in this thesis is further
expandable in future work by increasing the knowledge domain of the chatbot.





Zusammenfassung

Die Suche nach Code ist eine alltägliche Aufgabe für jeden Softwareentwickler. Mit der wach-
senden Menge an Daten, die im Internet verfügbar sind, erforschen Softwareingenieure aktiv an
neuen fortschrittlichen Techniken, um bestimmten, öffentlich verfügbaren Code für die Wiederver-
wendung zu finden. Diese These leistet einen weiteren Beitrag zu dieser aktiven Forschung,
indem ein neuer konversationsbasierter Ansatz entwickelt wird, mit dem Softwareingenieure öf-
fentlich verfügbare Software finden können. Mit der Entwicklung eines konversationellen Agen-
ten (Chatbot) beschreibt diese Arbeit das Design und die Implementierung eines neuen Ansatzes,
der auf der wachsenden Nachfrage nach konversationellen Agenten zur Erfüllung einer bes-
timmten Aufgabe aufbaut. Der Chatbot ist in der Lage, eine Repository zurückzuliefern, welche
am meisten mit einer Projektbeschreibung übereinstimmt, die von einem Benutzer im Rahmen
einer Konversation in natürlicher Sprache eingegeben wurde. Der Chatbot ist in der Lage, dem
Nutzer Fragen zum Repository zu stellen und sich an frühere Antworten des Nutzers zu erin-
nern. Dieser Chatbot bietet eine einfach zu bedienende Schnittstelle für Softwareingenieure, um
ein Repository mit bestimmten Spezifikationen abzurufen. Die in dieser Arbeit vorgestellte Im-
plementierung kann in Zukunft durch die Erweiterung des Wissensbereichs des Chatbots weiter
ausgebaut werden.
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Chapter 1

Introduction

Since the birth of the Software Engineering field and still to this day, software engineers are con-
fronted with the challenge to create software systems in a reliable, cost-effective way [1]. Due to
this prevalent goal of achieving large and reliable software systems in a quicker and cheaper way,
reusing existing software has been of interest in this field for a long time and has been researched
for years [1]. More precisely, a study by Singer et. al. in 1997 has displayed that “the most frequent
developer activity was code search” [2], as cited by Sadowski et al. [3]. Furthermore, the study by
Sadowski et al. [3] indicated that a programmer on average performs 12 queries on Google Code
Search per workday to search for code. It is apparent that software developers have a high interest
in code search tools and are therefore actively researching advanced code search techniques. As a
result, more recent approaches have started integrating machine learning techniques for learning
to retrieve code from a natural language search query [4], [5], [6].

This thesis intends to further contribute to this ongoing research in the field of software reusage
with a new approach. By developing a conversational agent (chatbot) that assists a software en-
gineer in finding reusable software, this thesis presents a new dialog-based approach to find pub-
licly available, reusable software. The approach builds on the growing demand of conversational
agents to carry out tasks [7] and deviates from a usual single-time search query due to the ability
to converse with a user.

Chatbots are known as communication programs that can recognize a user’s input in natu-
ral language and are able to respond intelligently to it, similar to how humans communicate [8].
What makes a chatbot particularly useful in carrying out a task is its continuous form of interac-
tion whereby the user is able to follow up and refine a task by conversing with the chatbot. With
the ease of use and continuity provided by the conversational-based interaction, the chatbot de-
veloped in this thesis is aiming to provide an efficient solution to retrieve software artefacts that
are of interest to the user.

Contribution. This thesis presents the development process of designing and implementig a
new chatbot to solve the problem of finding software artefacts based on the interest of a user.
In particular, this chatbot is able to retrieve a repository from GitHub, the largest development
platform world-wide [9], that best matches a project description provided by the user. The chat-
bot is capable of asking the user a set of questions about the repository in order to narrow down
a single repository that best matches the user’s answers. Furthermore, the chatbot is capable
of understanding natural language answers by the user, thereby providing an easy-to-use inter-
face. Lastly, the chatbot is capable of leading the search conversation and handling nonsensical
responses from the user.
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Thesis organization. To demonstrate the development process of this chatbot, this thesis fo-
cuses on four main contributing parts. In chapter 3, the state-of-the-art techniques used for chat-
bots in recent literature are reviewed. Chapter 4 describes the designing process for the archi-
tecture of the chatbot by establishing certain requirements and fulfilling these requirements with
the appliance of a state-of-the-art chatbot approach. In chapter 5, the chatbot is implemented as
a proof-of-concept with the designed architecture, focusing on the infrastructure and the imple-
mented components used to deploy the chatbot in production. Chapter 6 demonstrates a quick
sample conversation with the deployed chatbot to prove that the chatbot design can successfully
be implemented for this use case. Lastly, the development is concluded and some core challenges
as well as limitations that have come up during the development process are presented. Possible
contributions are raised where future work can further improve and extend the features of this
chatbot.
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Related Work

Relating to chatbots that perform information retrieval tasks, different approaches have been de-
veloped to successfully carry out a specified task.

Bhavika R. Ranoliya et al. [10] have built a chatbot that is able to answer frequently asked
questions by a user. They have used a rule-based approach, where each user input is matched
to a predefined knowledge base that includes patterns (questions) and templates (answers). If
the user input matches a predefined pattern, the chatbot returns the template answer stored for
that pattern. This chatbot uses an Artifical Intelligence Markup Language (AIML) script to store
the questions and answers as a knowledge base which can be matched with the user input. The
AIML-approach used by Bhavika R. Ranoliya et al. is a straightforward approach without the
need of complex developments. The disadvantage to an AIML approach is that each rule has to
be handwritten, a large knowledge base entails a lot of handcrafting.

In the paper by Jhonny Cerezo et al. [11] a chatbot was developed that can recommend experts
of open projects for a certain field or topic, based on what the user is interested in. For the user
input analysis, this chatbot makes use of two NLP techniques, one to categorize the sentence into
predefined categories and one to extract source code artifact names such as method, class or pack-
age names out of the sentence. To create a knowledge base with expert profiles, Jhonny Cerezo
et al. have used an algorithm that makes use of source code mining to define who has expertise
in which category based on the authors of the source code. The expert who has most expertise in
the extracted category and source code artifact is then recommended to the user. The approach
used by Jhonny Cerezo et al., compared to the AIML approach by Ranoliya et al., requires less
handcrafting since the artifact names are extracted by an NLP algorithm and matched to the ex-
pertise of experts. However, this approach is dependent on more complex NLP techniques than
an AIML-based approach.

Ashay Argal et al. [12] have developed an intelligent chatbot that is able to recommend travel-
ing choices based on a conversation with the user. The user provides multiple inputs of informa-
tion about his traveling desires regarding flight, car or hotel and the chatbot returns a recommen-
dation based on the input as well as the user preference, which is either predefined or learned
with the usage of the chatbot. For this chatbot, the communication was speech-based with speech
recognition and the user input was analysed with an NLP approach. The queries were gathered
to create a query to retrieve the best option from the database. They have developed two ap-
proaches for the recommendation part; one where the search query is first matched to the user
preferences and scored based on the best match. Afterwards, the best match from the data set, in-
cluding the user preference score, is found. The best match is then returned as a recommendation
to the user. The second approach makes use of a machine learning model that is based on a neural
network to predict the best recommendation. Regarding the response generation, the questions
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are predefined while the last response with the recommendation is generated. The advantage of
the approach developed by Ashay Argal et al. is that this approach can perform queries with
incorporation of an additional (predicted) scoring factor, such as the predicted user rating in their
developed chatbot. A disadvantage to this approach is its dependency on a large set of data to
train the model for better accuracy.

The approach used by Tsung-Hsien Wen et al. [13] introduced in 2016 was a novelty in task-
oriented chatbots. They implemented an end-to-end trainable dialog system that is able to conver-
sate with the user and recommend restaurants based on the user’s input. The dialog system con-
sists of an intent network, a belief tracker, a policy network, a generation network and a database
operator. The user inputs are converted into "a distributed representation generated by an intent
network and a probability distribution over slot-value pairs called the belief state generated by a
set of belief trackers" [13]. The value with the highest probability is then used for a search query
that is performed on the database. The generation network of this dialog system generates a re-
sponse based on a vector created by the policy network. This vector is a combination based on
the result from the query, the intent representation and the belief state. The generated response,
including the result from the database query, are structured to a response that is return to the user.
The model was trained with 680 dialogs that are specific to the domain of searching restaurants.
The advantage of this end-to-end dialog system is that no information about the underlying task
is needed, with a certain training corpus the dialog system can task-specifically be used. Same as
for the approach by Argal et al., a disadvantage to the approach by Tsung-Hsien is its dependency
on enough training data to train the end-to-end dialog system.



Chapter 3

Background

3.1 Chatbots
A chatbot is known as a communication program that can recognize a user’s input and is able to
respond intelligently to it, similar to how humans communicate [8]. Chatbots use two forms of
conversation types, which can either be speech and text. Chatbots with an integrated text tech-
nology are able to understand user input in form of natural language text and respond back in
natural language text [8]. Chatbots which are able to understand audio inputs from a user and
respond with a speech-based response use the same foundational techniques as text-based chat-
bots. However, a speech-based chatbot additionally uses speech analysis and speech generation
techniques to translate audio to text and the other way around [14].

Knowledge Domain. Chatbots function on a certain knowledge domain. The term knowledge
domain in the context of chatbots is used to describe the set of user inputs that the chatbot is able
to understand. The knowledge domain of chatbot is typically categorized into one of two types.
The first type of knowledge domains are called open-domain. Open-domain chatbots are able to
understand any input from a user about any topic, without a restricting set of knowledge [15].
The second type of domains are closed-domain chatbots or domain-specific chatbots. Chatbots
with closed domains do only understand a specific set of user inputs and can act and response
based on these inputs [16], while user inputs outside of this domain cannot be handled by the
chatbot.

Task-Oriented Chatbots. The technology and concepts for each chatbot may differ with the
use cases it has been built for. Almansor et al. [17] differentiate chatbots by their purpose into a
task-oriented and non-task-oriented category. Task-oriented chatbots, as the name suggests, are
chatbots that serve for a certain task. Typical examples are online booking of a flight ticket, place
an order in an online service or checking the status of an order in an online service. As Hussain et
al. [18] state, task-oriented chatbots operate within a closed domain, meaning that these chatbots
cannot perform small talk, but are rather suited for specific user inputs relating a chatbot specific
task.

Non-task-oriented Chatbots. Hussain et al. [18] describe non-task-oriented chatbots as chat-
bots that are designed with the goal to perform a human-like conversation. Non-task-oriented
chatbots typically have an entertainment value, the focus is on the conversation itself rather than
a task to solve. They operate on an open domain, therefore should be able to respond intelligently
to any user input given. Machine learning based techniques in open domain chatbots generate a
response based on the user input rather than responding with a predefined response [15].
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3.2 Chatbot Approaches
Within the following sections, the best-practice chatbot approaches that have arisen since the
beginning of chatbot development are declared. The state-of-the-art approaches with their un-
derlying techniques are presented and their applicability for certain use cases are investigated.

3.2.1 Rule-Based Conversation
The first ever developed chatbot named ELIZA was built on the rule-based approach [19], thereby
introducing the earliest chatbot approach created. Rule-based chatbots generate a response by a
predefined rule [20]. The rules in chatbots are based on a matching premise where a response is
selected when a user input was matched to an entry in a knowledge base.

Pattern Matching

Pattern Matching is the core technique for rule-based chatbots, with a various number of forms
and complexity developed over the history of chatbots [21]. Pattern Matching is described as
the comparison of two patterns to check whether the patterns are the same, in which case they
match [22]. When used as a chatbot technique to generate a response, this commonly refers to the
matching of a natural language input by the user to a predefined list of patterns in a knowledge
base [23]. Due to the variety of implementations, two well known chatbots called ELIZA and
ALICE that applied the Pattern Matching technique are presented.

ELIZA. The first basic approach of Pattern Matching was introduced by the first chatbot known
as ELIZA [19]. To be more precise, ELIZA uses a parsing technique and applies a Pattern Matching
technique afterwards. Bradesko et al. [21] describe parsing as a technique to define the grammati-
cal structure of an input and convert it into a simplified set of words. Furthermore, the converted
set of words can then for example be matched to a pattern, making it possible to match a pat-
tern to multiple sentences with the same grammatical structure, as stated by Bradesko et al. [21].
ELIZA uses the parsing technique to extract each word of a sentence. If a word is declared as
a keyword, this keyword will then be matched to a pattern in the knowledge base [19], thereby
selecting the response that is linked to the matched pattern.

Artificial Intelligence Markup Language (AIML). Another technique that is based on pattern
matching is the AIML technique. AIML was introduced in 1995 with the widely known ALICE
chatbot [23]. ALICE has won the Loebner prize three times, which is an annual competition to
decide the best performing chatbot of the year [21]. As described by Abushawar et al. [23], AL-
ICE makes use of AIML files to understand natural language and relies on the pattern matching
technique. AIML files consist of categories which are optionally structured in topics. A category
consists of a pattern to match with the user input and a template which is the output response
when this pattern was matched. Furthermore, Abushawar et al. [23] state that the matching of the
user input with the patterns is done by matching each word of the patterns with the input and
selecting the longest pattern match as the best match. The output response of the chatbot is the
template of the category with the best matching pattern.
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3.2.2 Machine Learning-Based Conversation
Machine learning (ML) approaches are a more modern approach for chatbots. ML-approaches are
different to rule-based approaches as they do not rely on handcrafted rules to generate a response,
but rather use ML models that are trained with data sets to understand user inputs and generate
responses [20]. As further described by Adamopoulou and Moussiades [20], ML-based chatbot
approaches use Natural Language Processing (NLP) to extract information of the user input to
understand user input in natural language. To generate or retrieve a response, ML-based chatbot
approaches use a trained ML model based on the extracted information.

Natural Language Processing

The goal of natural language processing (NLP) in chatbots is to convert unstructured user input
into a structure that can be further used by the chatbot to create an appropriate response [24].
NLP techniques are used to extract meaning and information out of natural language, most of
them using machine learning [20].

A popular NLP technique used in chatbots is the intent classification. It makes use of machine
learning models to classify a sentence into predefined intent categories [25]. An intent describes
the purpose of the sentence [20]. For example, an input of “Hello!” can be classified into an intent
“Greeting Intent”. According to Adamopoulou and Moussiades [20], by classifying the input
into an intent, the chatbot can then further handle the response based on this intent. Intents are
domain-specific and have to be defined beforehand for classification. The model that identifies
intents needs to be trained with training phrases that represent this intent.

Apart from the intent of a user input, NLP also uses techniques to extract information out
of the user’s input. For example, a user input “How is the weather at 5 pm?” could have an
intent “weather prognose”, but the information “5 pm” would need to be extracted from the
input so the chatbot can retrieve the weather at that specific time. According to McTear [26], as
cited by Cahn [24], extraction techniques tokenize words, numbers, punctuation marks etc. and
analyse the generated tokens afterwards. Historically, the models used to extract information are
handcrafted, but modern approaches, such as deep learning, can also extract information based
on data-driven and statistical models. A well known type of information extraction is Named
Entity Recognition, where a named key-word is detected in a sentence and classified into a class
of named entities which can be anything defined, such as books, places, dates and so on [27].

Retrieval-Based Response

As Zhao Yan [28], states, the retrieval-based response generation does, similar to the rule-based
approach, select a predefined response, with the difference that this technique uses ML tech-
niques to first analyse the user input. In retrieval-based response generation, the user input is
matched with a training corpus, thereafter the matches are ranked by a score and the highest
scored response is returned to the user. The scoring of the matches is often handled by a neural
network model. There are multiple types of neural networks and algorithms that are appliable
for the match scoring (e.g. sequence-to-sequence model that is shortly described in the next sub-
section) [28]. Yu Wu et al. [29] have defined a three-step process for retrieval-based responses:
Firstly, the user input is pre-processed. Secondly, all response candidates are selected from the
input-response pair index, thereby removing all other response candidates that are not indexed
as a pair with the input. The response candidates and the input are then matched for their simi-
larity and scored based on how similar they are. Lastly, the response candidates are ranked by a
pretrained model and the response with the highest rank is chosen. Yu Wu et al. [29] report that, in
comparison to a state-of-the-art sequence-to-sequence generative-based model, their developed
retrievel-based model has chosen better responses during their experiment.
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Generative-Based Response

Generative Response Models are a relatively modern approach, this technique was first intro-
duced by Ritter et al. in 2011 [30]. Generative based response models allow a chatbot to generate
a response based on the input and does not depend on predefined responses. The model is trained
with training data that consists of real dialogues and makes use of statistical analysis to “trans-
late” an input to a response [30]. A widely used technique is the sequence-to-sequence (seq2seq)
model, a successor from Cho et al. in 2014 [31], to the first generative model by Ritter. As de-
scribed by Cho et al. [31], it makes use of two RNN models, one to encode the user input, and the
second to decode the input and thereby generate a response. More precisely, they state that the
encoder converts the input over multiple steps, so called hidden states, into a vector, the decoder
afterwards predicts the response based on the results of the encoding. The seq2seq model can
generate a response or can also be used as a scoring technique in retrieval-based models. Using
statistical machine translation to generate responses is the popular approach for open domain
chatbots, since it does not depend on specific handcrafted rules or responses.

3.2.3 Dialog Management
After a response has been generated or selected, there are additional techniques that were defined
for chatbots to simulate a human-to-human conversation. This section proposes three common
approaches used to manage a dialog.

Conversation Handling. Many chatbots use communication strategies to reduce errors, which
are situations when no response could be selected or generated, during the conversation with the
user. One simple approach from McTear [26], as cited in Cahn [24], is to make the chatbot partially
lead the conversation within the knowledge domain of the chatbot, as this reduces errors of not
recognizing the user input. Another popular communication strategy approach is to confirm with
the user what the chatbot understood. This can be achieved by repeating back the understanding
of the chatbot, e.g. “Is it correct that you want to...?” [20]. This can be especially useful for chatbots
to learn what user inputs were not understood and to adapt the chatbot with this information.

Language Tricks. Language tricks are a common approach used to make a dialog appear more
human like. A typical use case for a language trick is when no response could be matched with a
high certainty. In this case, Yu et al. [32] as cited in Cahn [24], propose some response strategies
such as switching the topic, telling a joke, asking open ended questions or let the user provide
more information to keep the conversation up. Additionally, some chatbots produce canned re-
sponses, which are hard-coded responses for a certain input [21].

Human-Imitation. One way to make a conversation more human-like, is to give the chatbot an
own personality and give it human-like features. The approach of giving the chatbot a personal
story and identity [21] is used to make the user feel like he is conversating with a human, rather
than a machine. In a smaller concept, a human could also be imitated by purposely including
typos in the response [21]. Human-imitation is more prevalent in non-task-oriented chatbots that
usually focus on the entertainment value of a conversation.
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3.2.4 Backend
Task-oriented chatbots often interact with other systems to perform their task, and therefore have
implemented a connection to a backend or directly to a database. The connection to a backend
allows the chatbot to perform tasks including an external system, which allows the chatbot to
access external information or induce specific logic into the conversation.

For rule-based chatbots, Adamopoulou and Moussiades state that the chatbot is dependent
on a database or data storage that stores a knowledge base. The knowledge base consists of
the handcrafted rules used to match the user input to a pattern and select the response of the
pattern with the best match. [20] Furthermore, for chatbots that keep track of the context of a
conversation, a database is used to store information about previous or the current conversation.
This implementation further improves the conversation handling of a chatbot since the responses
can be selected based on the context, and are thereby contextually more correct and precise [20].





Chapter 4

Chatbot Design

This thesis dissects the development of a chatbot that retrieves a GitHub repository which matches
a user’s description. This entails the design of the architecture for the intended chatbot and there-
after the implementation of said architecture. This chapter focuses on the designing process of
the chatbot architecture by first defining a description of what the chatbot is intended to do, and
create a list of user requirements which the chatbot must fulfil. Afterwards, the components of the
chatbot and the design choices that are applied to meet the listed user requirements are explained
in detail.

4.1 Description
This chatbot can be described as an intelligent agent that is able to create a conversation with a
user, with the goal to collaboratively search for a GitHub repository that best matches a project de-
scription provided by the user throughout the conversation. During the conversation, the chatbot
continuously asks the user for information about a GitHub repository that the user is looking for,
narrowing down the number of repositories that match the description of the user and eventually
return a repository that best matches the answers of the user. What differentiates this chatbot to
an instant single-time search function, which exists as such on the GitHub website already, is the
ability to narrow down the best repository matched with the user’s answers during the conver-
sation and assist the user while doing so. The chatbot assists the user by asking questions about
the repository they are looking for, being able to understand answers in complete sentences and
imposing logic into the conversation to create a better user experience.

Since this task has a specific task to carry out, this chatbot is considered a task-oriented chatbot
with a certain knowledge domain. The knowledge domain of this chatbot is the set of answers to
the questions asked by the chatbot.

4.1.1 Requirements
To define what this chatbot must be able to do in detail, a list of user requirements is defined.
Table 4.1 shows all the requirements for this chatbot to be able to carry out its specified task.

For a recommendation of a GitHub repository, the chatbot needs to know what key-information
is of interest to the user when searching for a repository. In general, the user must to be able to
have a conversation with a chatbot by typing into a text field and receiving a response in a text
field. A software engineer typically wants the repository to be for a specific use case or field.
Furthermore, a software engineer is typically interested in repositories from a certain date range
to exclude old approaches that are outdated. Additionally, the following details are also defined
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ID Requirement Description

1 As a user, I want to be able to communicate to the chatbot by typing into a textfield.
2 As a user, I want to be able to start a conversation with the chatbot where the chatbot

guides me to search for a GitHub repository.
3 As a user, I want the chatbot to ask me about topics (keywords) of the repository I

am looking for.
4 As a user, I want the chatbot to ask me about the programming language of the

repository I am looking for.
5 As a user, I want the chatbot to ask me about a time span of when the repository that

I am looking for was created.
6 As a user, I want the chatbot to ask me about an earliest date of when the repository

I am looking for was last updated.
7 As a user, I want the chatbot to ask me about the number of stars of the repository I

am looking for.
8 As a user, I want the chatbot to ask me whether I am interested in a repository that

is licensed and therefore open-sourced and available for software reusage or not.
9 As a user, I want the chatbot to ask me questions about the repository in an intelligent

matter, thereby narrowing down the results of repositories to a single best match
with my answers.

10 As a user, I want the chatbot to ask me a question again if it did not understand my
response.

11 As a user, I want the chatbot to tell me the amount of repositories that match my
answers so far.

12 As a user, I want the chatbot to return me the repository that best matches all my
answers.

Table 4.1: User Requirements

as key-information when searching a repository: The programming language used is a key in-
formation for a software engineer to exclude repositories in languages that are not familiar to a
software engineer. The number of stars from GitHub repositories define the popularity of a repos-
itory and informs the engineer whether the repository has been of interest for other engineers in
the past. Furthermore, the number of authors informs the engineer whether the repository was
an implementation from a single developer or whether it is a large project from multiple authors.
This is relevant information when looking for software artefacts, as developments from a sin-
gle developer, for example, might not have been reviewed by another developer. The license of
a GitHub repository is relevant for a software engineer to confirm that the repository is open-
sourced and therefore usable for software reusage or not, as unlicensed repositories fall under the
default copyright law and therefore are not reusable [33].

The chatbot must ask the user about their interest considering all these specific attributes of a
repository. The chatbot should also ask a question repeatedly if the answer from the user was not
understood. Lastly, the chatbot should keep the user updated about the number of repositories
that match their answers and eventually return the repository that best matches all the user’s
answers.
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4.2 Design
After the definition of what the chatbot must be able to do, including the requirements one has
as a user, the architecture must be designed with consideration of the state-of-the-art chatbot
approaches that were presented. Each component that this chatbot consists of is defined by the
chosen approach and the chosen underlying techniques.

4.2.1 Dialog Handler
The dialog handler component, as defined for this architecture, handles the interaction with the
user and is the central part of a chatbot. The dialog handler, more generally, is responsible for
understanding the user’s input and selecting or creating an appropriate response.

For this chatbot, it was decided to use one of the big publicly available chatbot platforms to
provide a dialog handler component, due to the time constraint for this thesis. Chatbot plat-
forms typically make use of modern approaches and allow a faster and easier process to build a
dialog handler by using their provided techniques and models, whereas the development of an
own agent and own models would be more time-consuming. The following paragraph describes
which platform was chosen for this chatbot and what approaches are usable with this platform.
Afterwards, the composition of the dialog handler is described in detail and how the used plat-
form fulfils the requirements for the dialog handler.

Google DialogFlow

For this thesis, it was decided to use the chatbot platform provided by Google known as Di-
alogFlow [34] to build the dialog handler. DialogFlow uses an NLP technique to extract informa-
tion of a user input. To be more precise, for each user input, the intent and entity of the user’s
input are recognized and extracted. Afterwards, the extracted intent is matched to the intents that
were predefined for the chatbot. The response is chosen based on the highest scored matching in-
tent. Dialogflow does so by applying two algorithms; a rule-based grammar matching algorithm
and a Machine Learning matching algorithm [34]. Unfortunately, the specific algorithm used is
not disclosed by Google, therefore the algorithms used for the user input analysis themselves are
a blackbox within our chatbot.

Two other platforms were examined for their usability, called Wit.ai [35] and Amazon Lex [36].
Both platforms also use a NLP approach, same as Google Dialogflow, to extract intent and entity
out of a user input. Since there is no core difference in the approach these platforms take, using
Dialogflow for the dialog handler is simply a personal preference and could be interchanged with
the other two platforms.

User Input Analysis. The dialog handler must be able to understand the natural language in-
put by the user in order to create an appropriate response. However, for this chatbot, the key-
information needs to be extracted out of the user input as a text. The reason for this requirement
is that the chatbot needs to perform a search query on a database to retrieve a GitHub reposi-
tory. The key-information must be extracted from the user input to convert it to a query for the
database, since a fulltext search of the whole user input would not return accurate results. See
figure 4.1 for an example where the key-information of the user input is extracted into an intent
and an entity. The user intends to define the programming language of the repository that they
are looking for. When the user types in "I want the programming language to be Python", the
extracted intent could be “to define programming language” and the extracted entity would be
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Figure 4.1: An exemplary information extraction of a user input

“Python”. Eventually, the extracted entity can be transmitted to a backend where it is converted
to a search query that selects all repositories which have defined the programming language as
Python.

For the user input handling, the NLP technique to extract entities from the user input that is
provided by Dialogflow fulfils the requirement. By predefining the entities (e.g. programming
language, numbers, dates), the key-information can be extracted from a user input to perform a
query.

Response Generation. Considering the requirements of this chatbot, it shows that all the chat-
bot responses could be predefined. First, the dialog handler must ask the user all the predefined
questions about the repositories. Second, after each question, the number of results that match the
user’s description so far must be returned. Third, the dialog handler must ask a question again if
it did not understand the response of the user. Lastly, the chatbot must return the best matching
repository. Therefore, this chatbot must only define a few responses that could be predefined and
are to be retrieved depending on the user’s input. To be more precise; one response starts the
conversation, there is one response predefined per user input intent, one response as a fallback
when no intent was recognized and one response when the conversation ends.

Regarding these requirements for the response generation, a generative-based response model
is not a practical approach for this use case as this chatbot is not open domain. Therefore, there are
two approaches possible. The first possible approach is a rule-based model that matches the ex-
tracted intents to patterns, which are predefined intents. The second approach is a retrieval-based
response model that selects a predefined response based on the highest scoring match between
the input intent and a training corpus.

The retrieval-based response generation provided by Dialogflow [34] is capable of scoring in-
tents and performing actions, as well as returning the predefined response set for the highest scor-
ing intent. Furthermore, Dialogflow provides the usage of context-parameters. Depending on the
current state of an interaction, the chance of matching the user’s intent can be increased by setting
a context-parameter. For example, when the chatbot asks "What language do you want the repos-
itory to be in?", the chatbot should already expect an intent "to define programming language”
for the next user input. By setting a context-parameter to the intent "to define programming lan-
guage” after the question has been asked, Dialogflow will more likely recognize this intent for the
next user input. To summarize, Dialogflow provides the necessary NLP techniques to handle the
user input analysis, as well as the response generation within our requirements.
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Figure 4.2: A schematic overview of the chatbot architecture

4.2.2 Backend
The second component, the counterpart to the dialog handler, is the backend of this chatbot appli-
cation. The application’s backend part is responsible for imposing logic and data to our chatbot.
This subsection is divided into two core components, which is the knowledge base for our search
and retrieve functionality, as well as the server to handle the interaction with the knowledge base.

Knowledge Base

Since it is the core functionality of the chatbot to search and retrieve GitHub repositories, perform-
ing queries on a data set with GitHub repositories is a given requirement. To be able to perform
queries on a data set, the data must be stored in a database and available for information retrieval.
Due to the large size of the data available, the database system must be able to efficiently handle
queries on large amounts of data.

ElasticSearch. For our chatbot, it was decided to use a state-of-the-art database management
system (DBMS) available. To store the data set of GitHub repositories and perform queries on this
data set, it was decided to make use of the free and open DBMS called ElasticSearch (ES) [37].
ES “is a distributed, RESTful search and analytics engine capable of addressing a growing number
of use cases“ [37]. It allows very fast searches on a data set by making queries using a REST API
or by installing it on a machine. ES makes use of the Apache Lucene library which is considered
a very advanced search-engine library to perform fulltext search queries. The main reason for
choosing ES as a DBMS is the architecture of ES that provides very good scalability due to its
architecture; ES stores data as documents in indexes, which are comparable to a database table.
Each index can be split into multiple shards that can all retrieve data simultaneously once an
index is too large to perform well [37].



16 Chapter 4. Chatbot Design

Server

As a last component of this chatbot, it was decided to run a server that functions as a backend
for the chatbot. By providing a REST API, the backend must be open for the dialog handler
component to interact with it. One of the core advantages of chatbots is their ability to remember
past user inputs and therefore the context of the interaction. This functionality is handled in
the backend of our chatbot. This is achieved by creating, updating and deleting data about the
conversation in a session storage throughout the conversation. The backend keeps track of the
state of the conversation by storing all the questions the chatbot has asked the user, as well as the
ones it is still going to ask the user, the search queries that were performed due to the past answers
by the user, and the current result of the search query with all the user inputs so far. Apart from
the session storage, a core function of the backend is to provide an interface for the dialog handler
to trigger search queries on the knowledge base with the information it receives from the dialog
handler. Since certain types of knowledge bases expect a certain query structure, the backend
must convert the information that were extracted from the dialog handler into a query that is
understandable by the knowledge base.

All the requirements for the server so far could be handled directly by the dialog handler as
well. The requirement that led to the decision of using a server is that the chatbot is supposed to
ask the user intelligent questions. A server between the dialog handler and the knowledge base
allows more sophisticated handling of the questions that are asked to the user, by, for example,
integrating a trained model that selects a best question. Although this requirement could not be
met for this thesis, the usage of a server is still desired for a complete implementation of this
chatbot and therefore established as a component of the chatbot.

Figure 4.2 displays a schematic overview of the components interacting with each other.
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Implementation

After the architecture for the chatbot has been designed, this chapter describes the implemen-
tation process to deploy the chatbot as a proof of concept in a productive environment. This
chapter is split into the backend implementation, the dialog handler implementation, as well as
the deployment infrastructure used to host the chatbot.

5.1 Backend Implementation
As defined by the architecture, the backend consists of a knowledge base and a server. This
section focuses on the implementation process of providing the data in a knowledge base, as well
as the hosting of a server.

5.1.1 Knowledge Base
The knowledge base consists of the data of interest for the chatbot. The implementation was done
in two steps; the preparation of the data by downloading, editing and restructuring the data files,
and the upload to ElasticSearch afterwards.

Data Preparation

For an information retrieval chatbot, the first step is to define what information is of relevance for
the user. Once the information of relevance is defined, the information data needs to be stored so
that it is available for retrieval queries by the chatbot.

For this chatbot, there is an interest in retrieving information about GitHub repositories. The
interest is mainly on the metadata of GitHub repositories, since the user must be able to search for
a GitHub repository based on the metadata that GitHub stores for a repository, while the events
and actions (such as commits) are not particularly relevant to find a repository.

To prepare a database, three sources of public GitHub data exports were investigated. Firstly,
GitHub has worked together with Google to release a data set of public GitHub repositories on
Google BigQuery [38]. The bigquery table is updated regularly and has 2,4 Terabyte of repository
code stored [39]. Apart from a large amount of code, it only provides little metadata about the
repository such as the size, programming language and the license used for the GitHub reposito-
ries.

The second data set that was investigated is the GitHub data from https://www.gharchive.org.
This data set is an archive of GitHub event recordings. It records over 20 event types from GitHub
repositories and updates the archive hourly [40].
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Finally, the open data from libraries.io was considered, which have tracked data from over 30
million GitHub repositories. They provide a set of repository data with more than 30 attributes
that represent metadata attributes such as the programming language, a repository description,
the number of stars given by users, and a lot more [41]. The drawback to this set is that the last
release was from January 2020, therefore there are no recent GitHub repositories stored in this
data set.

Eventually, it was decided to use the data set from libraries.io, as they provide the most meta-
data in a structured CSV in their export, compared to the other two sources investigated. Al-
though this data is not up-to-date, it is possible to enrich the data set with additional repository
data after 01.01.2020. The two other sources lacked some minimal fields such as the creation date
of the repository or a description field that at least were required. While the amount of code
on Google Bigquery is very useful to analyse code itself, it does only provide little value to our
repository search chatbot. The data set was therefore not used due to the reason that it lacks
structured metadata about repositories. Same goes for the data set from www.gharchive.org, as
there is an interest in metadata of repositories, while actions (events) on GitHub are not of interest.

Before the data set could be loaded into our knowledge base, it was pre-processed to make it
better usable for our search queries. The data export from libraries.io contains repositories that
are not on GitHub, these repositories were removed and only GitHub entries from the data set
were kept. Moreover, all attributes that were not of interest to us considering the requirements, as
well as not maintained columns were removed from the data set. This was done by first defining
which columns to delete and deleting them by their index with the following script 5.1:

def rewriter(f_in, f_out):

inc_f = open(f_in, ’r’, encoding="utf8")

csv_r = csv.reader(inc_f)

out_f = open(f_out, ’w’, encoding="utf8")

csv_w = csv.writer(out_f, delimiter=’,’, lineterminator=’\n’)

for row in csv_r:

new_row = [row[1], row[2], row[3], row[4], row[5], row[7],

row[9], row[10], row[11], row[12], row[13], row[14],

row[15], row[17], row[19], row[20], row[22], row[23],

row[31], row[33], row[38]]

if new_row[0] == ’GitHub’ or new_row[0] == ’Host Type’:

csv_w.writerow(new_row)

inc_f.close()

out_f.close()

Listing 5.1: Data Set Edit

Data Hosting

For our chatbot, it was decided to use a state-of-the-art database management system (DBMS)
available. To store the data set and perform queries on this data set, it was decided to use of the
free and open DBMS called ElasticSearch (ES). The choice for using ES for our chatbot is mainly
the scalability it provides due to the rather large size of our data set. ES also allows a large variety
of search queries with the API it provides, which essentially is helpful for the interaction with the
dialog handler that is described later in this chapter.
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The data set was indexed in an ES index by using a script that reads in the CSV file, converts
it to a dictionary, and performs bulk uploads to a locally created index on the current machine
that ES runs on. To make sure that the data is correctly uploaded to the index without overusing
the RAM of the personal computer where the implementation was developed, the data set was
split into multiple CSV files and uploaded one by one to ElasticSearch. See listing 5.2 for the code.
Essentially, an index with 36’567’566 data entries was created, each representing a repository.

index_name = ’github_repos’

file = "home/ubuntu/GitHub_data/final_new_data_1_edited.csv"

df = pd.read_csv(file, low_memory=False)

df = df.replace({numpy.nan: ""})

documents = [{k: v for k, v in m.items()} for m in df.to_dict(orient=’records’)]

print("Indexing Start fr File: " + file)

helpers.bulk(es, documents, index=index_name, raise_on_error=True,

request_timeout=60 * 100)

print("Index finished:" + index_name)

Listing 5.2: Data Upload to ES

5.1.2 Server
For the backend server, it was decided to use a Python framework called FastAPI to provide the
REST API that interacts with the dialog handler and triggers queries on the ES index. FastAPI is a
modern framework to create REST APIs run on Python. It was decided to use FastAPI mainly due
to its ease of use and fast development process. The framework is intuitive to use and many big
applications such as Netflix or Uber use FastAPI productively to provide their APIs today. [42]
The REST API is hosted on a uvicorn server, as recommended on the FastAPI documentation.
Uvicorn is an Asynchronous Server Gateway Interface (ASGI) server implementation to pass the
requests to the application backend and therefore make the API available for requests [43].

REST API. The REST API provides 4 REST APIs to interact with the application backend:

• POST /sessions: This method creates a new empty session storage with a unique ID

• POST /sessions/id/query: This method sends a query to the backend

• GET /sessions /id/next_question: This method returns the next question

• DELETE /session/token: This method deletes a session storage

Session Storage. For this proof-of-concept implementation, the session storage was not opti-
mized and simply created as a dictionary within our backend. Optimally, a session storage could
be integrated as a database or another ES index. The session storage keeps track of information
and state of the search interaction between user and chatbot. Each user interaction is stored with
a unique session ID. Additionally, the session storage stores the questions that were asked to the
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user and are going to be to ask the user, the queries created out of the user answers and the state
of the interaction.

Question Handling. The predefined questions that are asked to the user are stored in the session
storage at the beginning of the interaction with the user. Each time the dialog handler requests
a new question, the backend returns a question and deletes the question from the list of possible
questions to ask, to make sure the same question is not asked more than once.

In the requirements for this chatbot, it is defined that the chatbot should ask questions intelli-
gently to narrow down the repository that is of most interest for the user. In the implementation
for this thesis, this requirement could not be fulfilled due to a lack of time and skills. More about
this can be read in conclusion and future work.

Query Handling. The backend is able to carry out requests on the ElasticSearch index which are
triggered by the API requests from the dialog handler. The backend is responsible for converting
the information from the user input into a search query that is compliable with ElasticSearch.
Each user input is pre-processed by the dialog manager, as described in the next section, and the
extracted entity is sent to the backend server. The extracted entity, as well as the data field that the
entity refers to, are converted to the structure of an ElasticSearch query and saved to the session
storage. After each question, all queries stored so far are executed as one whole ElasticSearch
query to retrieve the number of results that match the answers of the user given so far.

5.2 Dialog Handler Implementation
For this chatbot, it was decided to use Google Dialogflow as a chatbot platform since it can fulfil
the requirements of this chatbot with the techniques it provides. Chatbot platforms typically
make use of modern approaches and allow a faster and easier process to build a dialog handler
by using their provided techniques and models, rather than to develop an own agent and own
models.

5.2.1 User Input Handling
To extract information out of a user input, each intent needs to be defined and trained with train-
ing phrases. For each training phrase that contains an entity, the entity must be annotated in
the training phrase for the model to be able to extract these in a user input. Each entity must
be defined beforehand as well. After the model has been trained, the model detects intents and
entities in the user input with a certain confidence threshold and selects the response of the in-
tent with the highest confidence score. Since the model is not open source, it is not documented
how DialogFlow exactly trains their model to recognize intents and entities. A total of 12 intents
were defined for our chatbot. The intents are important for the chatbot to understand the mean-
ing of the user input. For each intent, at least 40 training phrases were handcrafted for the Di-
alogFlow training model. Additionally, DialogFlow automatically adds similar training phrases
to the handcrafted ones.

Entities are defined for inputs where a specific text or value must be extracted from the user
input so it can be converted into an ES search query. For each entity, all possible texts/values
must be listed for the chatbot to recognize them in a user input.
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Intent Creator Intent description

Welcome In-
tent Predefined Response to greetings

Fallback In-
tent Predefined Response when no intent was detected

Start Search
Intent Self defined Response when the user wants to start a search in-

teraction

FullText
Query Intent Self defined Response when the user wants to add a fulltext

query to the search (to search for keywords).

Language
Query Intent Self defined Response when the user answers a question about

the programming language.

Date Query
Intent Self defined Response when the user answers a question about

the creation date.

Date Query
Intent Self defined Response when the user answers a question about a

last update.

Stars Count
Query Intent Self defined

Response when the user answers a question with a
number and the context is set to the "Stars Count"
intent.

Contributors
Count
Query Intent

Self defined
Response when the user answers a question with a
number and the context is set to the "Contributors
Count" intent.

Yes Query
Intent Self defined Response when the user answers with a “Yes” to a

question

No Query
Intent Self defined Response when the user answers with a “No” to a

question

Irrelevant
Intent Self defined Response when the user answers with a “don’t mat-

ter” intent to a question.

Table 5.1: Dialog Intents
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Figure 5.1: The sequence of receiving input and generating a response

5.2.2 Dialog Management
The DialogFlow fulfillment is established with a custom code. With this custom code in Node,
a custom DialogFlow agent is provided that handles the actions and responses when an intent
is matched. The DialogFlow agent interacts with the backend by making API requests to the
backend where information and state about the interaction is stored. To be more precise, once an
interaction to search for a repository has begun, the agent requests a question from the backend
and returns it to the user. The answer of the user is then analysed by the dialog handler, and the
agent receives the extracted intent and entity. Depending on the best matching intent, the agent
sends a request to the backend with the extracted entity to create and store the query. The agent
then requests the next question from the backend. This goes on until there is one result left that
matches the user description or until the user wants to stop. Figure 5.1 shows the interaction
flow of how the conversation is handled. For our implementations, due to the fairly low knowl-
edge domain (13 intents), a conversation strategy was used where the dialog agent directs the
conversation, so it can expect the input of the user and handle it properly in the backend.



5.3 Deployment Infrastructure 23

5.3 Deployment Infrastructure

5.3.1 Virtual Machine
The backend, including the ElasticSearch engine and the server, are hosted on a Virtual Machine
(VM) on ScienceCloud, a cloud platform provided by University Of Zurich (UZH). Since these
components do not depend on much computational power, a single VM with the following spec-
ifications was configured:

VM, Image on Ubuntu 20.4, 8vCPUs, 32 GB RAM

ElasticSearch is installed locally on the VM and made available locally only, since only the
server is interacting with the ElasticSearch index directly. For the backend server, the API must
be configured to be publicly available so the DialogFlow agent can interact with the backend. To
do so, the VM is hosted on a private IP address, which is linked to a router that connects it to
the public network. Furthermore, the private IP is associated with a public floating IP. With the
floating IP, one can connect to the VM from external sources. In our application, only a single
port was opened to the public for the API of the backend server, as no other ressources should be
exposed. Additionally, the VM can only be accessed with SSH key authentication to secure the
access to the VM.

5.3.2 Google Cloud
The dialog handler, which was implemented with Google DialogFlow, is deployed on the Google
cloud. It is very easily deployed on their platform with just a single click. The interaction with the
user is achieved by integrating the dialog handler to a chatting platform. DialogFlow provides
a list of chatting platforms that allow a very easy integration into a chatting platform available
for the user. This integration was used to make the chatbot available for a user on TeleGram by
simply creating a Bot on Telegram, and then inserting the bot token on the DialogFlow platform
to allow the exchange of requests and responses between TeleGram and DialogFlow.
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Preliminary Results

To varify the chatbot’s workability, the implemented chatbot was tested with some sample con-
versations. For every few conversations, the same answers are formulated differently to check
if the chatbot consistently understands the user input. The chatbot is not evaluated on its per-
formance due to its incompleteness as a proof-of-concept implementation. If an evaluation was
needed, this thesis suggests that one would focus on the user experience and the error rates for a
task-oriented chatbot like the one present.

Figure 6.1 displays that the conversation with the chatbot was a success and a repository could
be retrieved. The returned result appears to match the description that was given. As long as the
answers are expected from the chatbot, the process works sucessfully. Apart from that, the chatbot
does often not recognize a user input if formulated in an unusual way. This is a matter of training
the chatbot with training phrases, which are all handcrafted and therefore relatively small with
around 40 training phrases per intent.

Regarding the user requirements that were established, the chatbot is able to fulfil the for-
mulated requirements, except for the one requirement which states that the questions have to be
asked in an intelligent matter. In the current state of the implemented chatbot, this is not han-
dled. The questions are asked randomly, due to complexity and time constraint to establish an
intelligent question handling.



26 Chapter 6. Preliminary Results

Figure 6.1: A sample search conversation
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Conclusion and Future Work

In this thesis, we have developed a chatbot that is able to create a conversation with a user, with
the goal to collaboratively search for a GitHub repository that best matches a project description
provided by the user throughout the conversation. The chatbot asks the user predefined questions
about metadata from a GitHub repository such as the programming language, the creation date,
and so on. The user inputs are analysed by the ML algorithms provided by Google DialogFlow
to extract intent and entity of a user input. The entity is sent to a backend API that converts
the entity to a search query and stores it in the session storage. This process continues until
the number of results for the combined search query with all previous user inputs is fairly low.
Finally, some defining questions are asked to the user to retrieve the repository that best matches
the user inputs from the ElasticSearch index.

This chatbot provides an easy-to-use interface for a software engineer to find a GitHub repos-
itory for software reusage. The chatbot provides a more detailed search and more specific queries
on GitHub repositories than currently available. The drawback to this implementation is the lack
of up-to-date data available. Recent repositories are not available for retrieval, therefore projects
with very novel concepts and artefacts cannot be retrieved by this chatbot. Additionally, the small
knowledge domain due to time constraints causes the chatbot to get stuck during a conversation.

Preliminary results have shown that the chatbot is able to conversate with the user in natural
language, and can successfully retrieve a GitHub repository that best matches all the user inputs
given throughout the conversation. One requirement of asking a user intelligent questions could
not be met, since this feature requires a trained model to predict a best question. Developing
such a model was not feasible for this thesis due to its complexity and the time available. As this
implementation is a proof-of-concept, the chatbot was not further evaluated on its performance.
Future work could evaluate the work-ability of the chatbot based on error rates of users using the
chatbot or the probability of the chatbot not recognising a user’s input.

At last, the implemented solution is not a complete application yet and therefore leaves some
room for further work.

Future work. Although the architecture design has shown to be applicable for the implementa-
tion of this chatbot, some steps have shown to be challenging to overcome throughout the devel-
opment and have led to a reduction of the features due to time constraints or high complexity of
the implementation. This chapter describes the challenges that have come up during the design-
ing and the implementation process and where future work can further improve this chatbot.

For the designing process of this chatbot, future work could more thoroughly investigate an
end-to-end solution for task-oriented chatbots and whether such an approach would be appli-
cable for this type of chatbot. Tsung-Hsien Wen et al. [13] have introduced a new approach for
task-oriented chatbots that is end-to-end trainable by integrating the database queries into the



28 Chapter 7. Conclusion and Future Work

dialog system and generating responses including the retrieved data from the database. This ap-
proach might have some advantages compared to our implementation, as less handcrafting is
needed for the training phrases with the possibility of using reinforcement learning. Addition-
ally, the answers generated by such a chatbot with generated responses are less static than in our
implemented approach where predefined responses were used.

For the implementation process, there are some improvements to be made in future work. A
first big challenge that has arisen for the implementation is the data used for the knowledge base.
An information retrieval chatbot is only as capable as the information available. Different sources,
as described in section 4.1.1, provide GitHub data exports, but the number of exports with good
structured data and a large number of repositories is fairly low. Eventually, the libraries.io data set
was chosen as the knowledge base, knowing the drawback that there are no repositories created
or updated after January 2020 in this data set. In future work, this data set can be extended
with more recent GitHub repositories to retrieve more up-to-date projects. One approach to do
this would be to scrape repository data from the GitHub API, obviously within the guidelines of
GitHub. Another approach to extend the data set would be to merge the data set with file contents
stored in the Google BigQuery table provided by GitHub.

The greatest challenge of this chatbot that was not implementable for this thesis is the ability to
ask the user “intelligent” questions. One of the core advantages of using a chatbot is the ability to
ask questions intelligently to retrieve a single last result rather than zero or multiple results by the
end of the conversation with the user. For this thesis, there was not have the time to implement
this feature. A possible approach to implement this feature was to calculate which question would
maximize the entropy, meaning that a question is chosen that maximizes the chance of the answer
filtering out the most repositories.

One general improvement to the chatbot that can be done in future work is to expand the
knowledge domain of the chatbot. Our chatbot currently has a small knowledge domain of asking
about metadata from GitHub repositories and perform a search query with the inputs. This can
possibly be expanded to questions about the code of the repositories as well. This would entail
that, apart from the knowledge base that needs to be extended with code, the chatbot must be
expanded on the intents and the entities that can be extracted in the dialog handler, as well as the
query handling in the backend of the chatbot and the questions to ask the user. Another feature
that might be of interest for a software developer would be to directly ask the chatbot questions
about the returned repository. This feature could be implemented differently than the task that
was implemented so far, since this information is directly retrievable from the GitHub API with
the repository name, therefore it need not necessarily be stored in a knowledge base.
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