
Bachelor Thesis
November 4, 2021

Comand Line
Interfaces – Loved or

Loathed ?

Liburn Gjonbalaj
of Waiblingen, Stuttgart, Germany (17-712-480)

supervised by
Prof. Dr. Harald C. Gall

Dr. Carol Alexandru

software evolution & architecture lab

Bachelor Thesis

Comand Line
Interfaces – Loved or

Loathed ?

Liburn Gjonbalaj

software evolution & architecture lab

Bachelor Thesis

Author: Liburn Gjonbalaj, liburn.gjonbalaj@uzh.ch

Project period: 20.05.2021 - 20.11.2021

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Abstract

Graphical user interfaces (GUI) have surpassed command line interfaces (CLI) as the most widely
used interface by software developers and are also recommended by the scientific literature as a
less error prone, easier to use alternative to the CLI. However, studies show a certain percentage
of software developers still choose to use the CLI on daily basis. The goal of our work is to investi-
gate the reasons which lead these developers to choose the CLI over GUI, what are the difficulties
developers are facing when learning the CLI and how to overcome these difficulties. We collected
responses and opinions from 165 software developers with the help of an online survey and the
experiences and thoughts of software developers from 11 one-to-one interviews. Most of our re-
spondents are CLI users with over 10 years of experience using the CLI. Our results show that CLI
aspects like automation, scripting, flexibility, parallelizing work are all areas in which CLI is su-
perior to GUI. With man pages/documentation, discoverability, remembering commands being
the biggest difficulties learning programmers face, we also give recommandations such as online
courses, cheatsheets, newer help pages called tldr and alternative shells such as the fish shell to
overcome these hurdles and shorten the longer learning curve that comes with using the CLI.

Zusammenfassung

Grafische Benutzeroberflächen (englisch: Graphical User Interface, kurz GUI) haben Komman-
dozeilen (englisch: Command Line Interface, kurz CLI) als das von Softwareentwickler:innen
meistgenutzte Interface übertroffen und werden auch von der wissenschaftlichen Literatur als
eine weniger fehleranfällige und einfacher zu bedienende Alternative zum CLI empfohlen. Stu-
dien jedoch zeigen, dass sich ein Prozentsatz von Softwareentwickler:innen immer noch dafür
entscheidet, das CLI täglich zu verwenden. Das Ziel unserer Arbeit ist es, die Gründe zu un-
tersuchen, warum diese Entwickler:innen das CLI dem GUI vorziehen, welche Schwierigkeiten
Entwickler:innen beim Erlernen des CLI haben und wie diese Schwierigkeiten überwunden wer-
den können. Wir haben mithilfe einer Online-Umfrage die Antworten und Meinungen von 165
Softwareentwickler:innen und durch 11 Einzelinterviews die Erfahrungen und Gedanken von
Softwareentwickler:innen gesammelt. Die meisten unserer Befragten sind CLI-Benutzer mit über
10 Jahren Erfahrung in der Nutzung des CLI. Unsere Ergebnisse zeigen, dass CLI-Aspekte wie
Automatisierung, Skripting, Flexibilität, Parallelisierung der Arbeit Bereiche sind, in denen das
CLI dem GUI überlegen ist. Manpages / Dokumentationen, Auffindbarkeit und das Merken von
Befehlen werden von lernenden Programmierer:innen als grösste Schwierigkei-ten empfunden,
wir empfehlen daher auch Online-Kurse, Spickzettel (Cheatsheets), neuere Hilfeseiten namens
tldr und alternative Shells wie die Fish-Shell, um diese Hürden zu überwinden und die längere
Lernkurve zu verkürzen, die mit der Verwendung des CLI kommt.

Contents

1 Introduction 1

2 Related work 3
2.1 Method of related work research . 3
2.2 Early research and views on the correlation between interface style and its percep-

tion to the user . 3
2.3 Research favoring GUI use . 4
2.4 Research analysing the strengths and weaknesses of both CLI and GUI 5
2.5 Research highlighting CLI advantages . 6
2.6 Alternative Solutions . 6

2.6.1 Overview . 6
2.6.2 Shells . 7

3 Survey 11
3.1 Introduction . 11
3.2 Method . 11

3.2.1 Overview . 11
3.2.2 Survey questions . 12
3.2.3 Analysis . 14

3.3 Results . 15
3.3.1 Introductory questions . 15
3.3.2 Substantive questions . 17

3.4 Summary . 20

4 Interviews 23
4.1 Introduction . 23
4.2 Method . 23
4.3 Analysis . 24
4.4 Results . 25
4.5 Summary . 27

5 Discussion 29
5.1 Summary of Results . 29
5.2 Recommendations . 31

5.2.1 Learning methods . 31
5.2.2 Online courses . 31
5.2.3 Cheatsheets . 31

vi Contents

5.2.4 tldr . 32
5.2.5 fish shell . 32

5.3 Threats and Limitations . 32
5.4 Future work . 33
5.5 Conclusion . 33

A Survey Questions 35

Contents vii

List of Figures
2.1 tldr example . 9
2.2 man page example . 10

3.1 Analysis example . 15
3.2 Respondent experience with the CLI . 16
3.3 Question 5 . 17
3.4 Question 7 . 18

4.1 Initial table . 24
4.2 Topics tables . 25

List of Tables
3.1 Survey completion . 12
3.2 Q7, option "Other" most mentioned keywords . 16
3.3 Q15, most mentioned keywords . 19
3.4 Q15, keywords (on the left) and respective comments made from respondents about

them (on the right) . 19
3.5 Q19, most mentioned keywords . 20
3.6 Q19, keywords (on the left) and respective comments made from respondents about

them (on the right) . 21

viii Contents

Chapter 1

Introduction

The first Unix shell, the V6 shell was developed by Ken Thompson in 1971 at Bell Labs and
was modeled after Schroeder’s Multics shell. The Bourne shell was introduced in 1977 as a re-
placement for the V6 shell. Although it is used as an interactive command interpreter, it was also
intended as a scripting language and contains most of the features that are commonly consid-
ered to produce structured programs. The Bourne shell led to the development of the Korn shell
(ksh), Almquist shell (ash) and the popular Bourne-again shell (or Bash). Early microcomputers
themselves were based on a command-line interface such as CP/M, DOS or AppleSoft BASIC.
During the 1980s and 1990s, the introduction of the Apple Macintosh and of Microsoft Windows
on PCs saw the command line interface as the primary user interface replaced by the Graphi-
cal User Interface. The command line remained available as an alternative user interface, often
used by system administrators and other advanced users for system administration, computer
programming and batch processing. [1]

Since then little research has been done on the perception of the Command Line Interface in
comparison to other interfaces. The research that has been done generally favors the use of Graph-
ical User Interfaces over CLIs in terms of usability and also preference among engineers. In 1991,
a study was conducted comparing WIMP (Windows Icons Mice and Pull down menus) with com-
mand line interfaces, where WIMP was shown to be superior to command line interface. [2] More
recently, in [3] when comparing the use of CLIs and GUIs over the years, the authors say that
GUIs largely supplanted CLIs in the past in terms of user preference and now a significant minor-
ity of developers prefer to use CLIs. Their results also show significant advantage to using GUIs
in terms of effectiveness. In [4] the authors showed similar tendencies in terms of user preference
but also gave some reasons why CLI gets chosen for use from developers. Finally, in [5] software
developers are advocated to take advantages of GUI to the most possible extent as an alternative
to CLI.

On the other hand, some research has also been done that encourages the use of CLIs. In [4]
about thirty percent of participants who used CLIs report that CLIs are flexible, efficient, transpar-
ent, reliable, and achieve ultimate functionality and a good performance. In [6] the authors found
that the command line interface allows network security engineers in the intrusion detection task
to better control the analysis of details of the data through the use of rich, powerful, and flexible
commands. Also in [7] the author has given 5 reasons why people should use CLIs, those be-
ing: Wrangle files, Handle big data, Manipulate spreadsheets, Parallelize your work, Automate.
Throughout the cited articles it can be found that one of the main drawbacks of CLIs is the long
learning curve and that once you get to expert level, you start appreciating and using CLIs more.

2 Chapter 1. Introduction

Seeing how GUIs is much more advocated to be used, is generally more preferred and used
than CLIs, we ask ourselves what is the reason that software developers today still use it and how
could CLI education and integration into workflow be improved ?

With these goals in mind we will try to answer the research questions:

• RQ 1a: What causes Software Developers to stick to CLI even if GUI applications are avail-
able for the same task?

• RQ 1b: Are there tasks for CLI which cannot reasonably be replaced by GUI?

• RQ 2: What problems are software developers facing when learning CLI?

• RQ 3: Which tools and/or techniques could alleviate problems faced when learning CLI?

Our approach to answering these research questions is to conduct a survey followed by in-
terviews. In order to get maximal information from the survey questions, each question will
inspired by some previous result that can be found in the related work section and will be aimed
at answering one or multiple of the research questions. After the survey will be closed, the an-
swers for each question will be carefully analyzed, particular emphasis will be put into how the
answers contributed to the research questions and what needs to be further looked into during
the interviews. The analysis is done through tagging and finding similar patterns and themes in
the answers and by relating the results of the likert scale questions to our research questions.

After the survey, our purpose with the interviews is to expand and gain more insight on the
answers that we had found from the survey. The analysis is done by separating the questions
of the interviews into separate topics and afterwards finding similar patterns and themes in the
answers.

The remainder of this paper presents the related work to our study in chapter 2, describes
the methodology, analysis and results of our survey in chapter 3 and describes the methodology,
analysis and results of our interviews in chapter 4. Finally, a discussion of the recommanda-
tions, threats and limitations, future work and conclusions is presented in chapter 5. A complete
overview of the survey questions can be found on Appendix A - Survey Questions.

Chapter 2

Related work

2.1 Method of related work research
The research on the perception of the command line interface is very scarce. To my knowledge
there is no work which is considered as most famous, central work or similarly. The textbook
"Linux® Command Line and Shell Scripting Bible" from Richard Blum had been used to bet-
ter understand the Linux Command Line Interface. The digital libraries ACM, IEEE Computer
Society, INFORMS, JSTOR, CiteCeer and Hauptbibliothek Zürich have been thoroughly searched
using the keywords "Command line", "Command Line Interface", "CLI", "GUI", "perception", "hu-
man computer interaction", "learning experience", "learning", "advantages" and almost all combi-
nations of these keywords. What resulted was a collection of 12 articles, which i thought repre-
sented and gave insight into the purpose of the thesis and another two articles "S.J. Westerman
(1997) Individual Differences in the Use of Command Line and Menu Computer Interfaces, Inter-
national Journal of Human-Computer Interaction, 9:2, 183-198" [8] and "Learning and Retention
with a Menu and a Command Line Interface" by Ashley G. Durham and Henry H. Emurian [9]
that are not included in the related work chapter, since we thought they do not contribute to the
discussion that we are going to have.

2.2 Early research and views on the correlation be-
tween interface style and its perception to the
user

Research into how the command line interface is perceived from the users and how the users
perform in comparison to other interfaces has been conducted since the early 80s. [10] Here a
comparison between a form-filling interface and an identical command line found the form
filling interface to be faster, and noted that 11 of the 12 subjects tested preferred the form filling
method.

Effects of interface style on user perceptions and behavioral intention to use computer sys-
tem. [11] In this paper, the authors examine two types of interfaces: menu- and command-based
interfaces and compare the effects of a menu-based with a command-based interface style on user
perceptions of a new system. In this study the system interface style is treated as an external fac-
tor in the technology acceptance model to examine its direct and indirect effects on behavioral
intention to accept and use a system. The results demonstrated that interface style had a sig-

4 Chapter 2. Related work

nificant direct effect on perceptions of ease of use, with menu based interface style perceived as
being easier to use than a command-based interface style. Perceived usefulness was found to be
significantly influenced by interface style, with menu-based interface perceived as being more
useful than command-based interface. Contrary to expectations, the results showed that interface
style had a nonsignificant direct effect on behavioral intention. However, given that the results
demonstrated that interface style had a significant effect on perceptions of ease of use and useful-
ness, it appears that interface affects behavioral intention indirectly through its direct effects on
perceptions of ease of use and usefulness.

The results also showed that the impact of perceived ease of use on behavioral intention was
slightly stronger than that of perceived usefulness. The authors suggest that when users do not
have prior experience with a system, they are more concerned about their ability to use the sys-
tem; once they learn the new system and are able to use it, they start to become more concerned
about its usefulness.

2.3 Research favoring GUI use
In the 90s research was made that compared the perception of more modern interfaces, called
WIMP (Windows Icons Mice and Pull down menus), with the perception of command line inter-
face. This study involved students using a database program specially designed and developed
to include the two interfaces, where the two interfaces were matched for functionality and as far
as possible error opportunity. What was seen from the experiments was that the WIMP interface
is faster, easier, less error prone and more stimulating for naive touch typists than a functionally
identical command line interface. [2]

In the famous work of Human-Computer interaction “Designing the user interface” in the
section “Command-line versus display editor versus word processors”, the authors argue that
the performance was improved and training times were reduced with display editors and they
quote display editor enthusiasts saying “Once you have used a display editor, you will never go
back to a line editor-you’ll be spoiled.”. But in this case they also enumerate some advantages
of com-mand line approaches such as: easier history keeping, more flexible markup languages,
macros tend to be more powerful, and some tasks are simpler to express (such as, changing all
italics to bold). [12]

Since then research has focused on studying the performance and perception of command line
interfaces in comparison with other environments with the purpose of studying them in different
systems and in different professions.

A few of these studies are:
A command line interface versus a graphical user interface in coding VR systems [3]. In this

study five programmers were asked to generate a scene, which contains a virtual 3D environment.
The time spent for task completion with the GUI was shorter than the one with the CLI, the
percentage of the task completed was also higher with GUI, time spent with errors was much
higher with the CLI, the number of repetitions or failed commands was also higher with the
CLI, as well as the time spent with consulting support personnel, and also the time spent with
consulting documentation. The paper concludes by saying that the experiments of comparisons
between the CLI and GUI have demonstrated significant advantages in using a GUI. Through
the self-explanatory structure and layout of a GUI it is possible to support the performance of
a novice programmer. Coding with the CLI requires background knowledge and practice. The
GUI may provide a number of initial settings and ease the visualization of complex concepts
giving some hints about the settings. Thus a programmer can focus on the task without thinking
about the steps to follow. An expert programmer has the specific programming/scripting skills

2.4 Research analysing the strengths and weaknesses of both CLI and GUI 5

for the graphic libraries and may not need a GUI as much as a novice. On the contrary, a novice
programmer may require a GUI to cope with the demands of the task.

Usability of User Interface Styles for Learning Graphical Software Applications [5]. The
goal of this paper, among other priorities, was to examine usability of different user interface
styles (i.e. GUI and CLI) for learning a graphical software application. In this study a usability
testing was conducted to evaluate the usability attributes of comparing different user interface
design (i.e. GUI and CLI) of learning graphical software applications using Adobe Flash CS4 and
Microsoft Expression Blend 4. CLIs were found to be more difficult to learn and less easy to use,
even for software developers as well as designers. GUI was perceived to be simpler to learn for
both groups. The authors conclude that software developers are advocated to take advantages of
GUI to the most possible extent as an alternative to CLI. In a situation that CLI cannot be evaded;
employing CLI with suggestions is far more usable rather than CLI per se.

2.4 Research analysing the strengths and weak-
nesses of both CLI and GUI

System Administrators Prefer Command Line Interfaces, Don’t They? An Exploratory Study
of Firewall Interfaces [4], in this paper an online study was made on the preferences of system
administrators regarding firewall interfaces, with 300 volunteer participants. The results show
that only 32 percent of the respondents prefer CLIs for managing firewalls, while the correspond-
ing figure is 60 percent for GUIs. In this paper, the authors suggest that there may be a connection
between a system administrator’s proficiency with firewalls and the interface that they prefer to
utilize. Results show that the stronger the firewall expertise of respondents, the lower the likeli-
hood of utilizing GUIs. Seventy percent of the system administrators with a basic knowledge of
firewalls prefer GUIs to any other interface, while this holds true for only 54 percent of firewall
experts. The authors classify strengths and limitations of firewall CLIs and GUIs. The participants
reported that CLIs are flexible, efficient, transparent, reliable, and achieve ultimate functionality
and a good performance. However, CLIs are inconvenient for representing data, do not help
users by preventing errors, and have a long learning curve. On the other hand, GUIs help users
to perceive firewall configuration information more effectively and have a shorter learning curve
compared to CLIs. They are also easy to use, easy to create and modify rules with and good for
occasional use. The authors also finally give some design recommandations that should be taken
into account by designers aiming to develop better CLIs and GUIs.

Command Line or Pretty Lines? Comparing Textual and Visual Interfaces for Intrusion De-
tection. [6] The authors conducted a controlled experiment comparing a representative textual
and visual interface for ID to develop a deeper understanding about the relative strengths and
weaknesses of each. With this understanding, the authors recommended designing a hybrid in-
terface that combines the strengths of textual and visual interfaces for the next generation of tools
used for intrusion detection. Some of the strengths of the textual interface found were: allowing
direct access to fine-grain details which is critical to the task of ID, giving users the ability to con-
trol and costumizing the view of the data through use of powerful filtering commands, among
the weaknesses were: identifying patterns can be difficult which can hinder the success of the task
of ID, regarding this one user stated: “if all values change a lot, [it is] difficult to see [a] pattern”
and another weakness was the burdening of the user with recalling the syntax of the command.
The authors suggest that a combined interface of a visual and text interface could create an en-
vironment that is suitable for a variety of user expertise. Specifically, novices could be trained to
use the textual interface by seeing the underlying text-based commands used to filter anomalous
patterns in the visual interface. At the same time the users benefit from seeing the detailed data,

6 Chapter 2. Related work

thereby gaining knowledge and expertise.

2.5 Research highlighting CLI advantages
A study was conducted more recently that compared the mental models that novice program-
mers created when using visual and when using command line environments. The authors
found that the difference in feature sets between these environments can influence the learn-
ing curve. Visual environments like IDLE may impose a lower learning curve because of their
features. On the other hand, command line environments like VIM may require more time for
novices to learn. Despite the possibility of a lower learning curve, certain features in visual en-
vironments can potentially prevent novices from developing an appropriate mental model for
programming. As seen in this study, some of the subjects who struggled with VIM were attempt-
ing to find features that they were accustomed to in IDLE. When failing to find such features, they
would show confusion or frustration, which would eventually prevent them from completing the
assignment. In contrast, subjects who originally used VIM were not faced with this problem. [13]

On the other side an op-ed piece which supports the use of the command line is “Five reasons
to love the command line.” [7] Here the author suggests five different ways that the command
line can ease computational research, those being: wrangling files, handling big data, manipulate
spreadsheets, parallelize your work, automation. Although he also writes a downside of the
command line, that there is no undo in it.

2.6 Alternative Solutions

2.6.1 Overview
The first Unix shell, the V6 shell, was developed by Ken Thompson in 1971 at Bell Labs and was
modeled after Schroeder’s Multics shell. The Bourne shell 1 was introduced in 1977 as a replace-
ment for the V6 shell. Although it is used as an interactive command interpreter, it was also
intended as a scripting language and contains most of the features that are commonly considered
to produce structured programs. The Bourne shell led to the development of the Korn shell (ksh)2,
Almquist shell (ash)3, and the popular Bourne-again shell (or Bash) 4.

Early microcomputers themselves were based on a command-line interface such as CP/M 5,
DOS 6 or AppleSoft BASIC 7. During the 1980s and 1990s, the introduction of the Apple Macintosh
and of Microsoft Windows on PCs saw the command line interface as the primary user interface
replaced by the Graphical User Interface. The command line remained available as an alternative
user interface, often used by system administrators and other advanced users for system admin-
istration, computer programming and batch processing.

In November 2006, Microsoft released version 1.0 of Windows PowerShell (formerly code-
named Monad), which combined features of traditional Unix shells with their proprietary object-
oriented .NET Framework. MinGW and Cygwin are open-source packages for Windows that
offer a Unix-like CLI. Microsoft provides MKS Inc.’s ksh implementation MKS Korn shell for
Windows through their Services for UNIX add-on.

1https://en.wikipedia.org/wiki/Bourne_shell
2http://www.kornshell.org/
3https://www.in-ulm.de/~mascheck/various/ash/
4https://www.gnu.org/software/bash/
5http://www.digitalresearch.biz/CPM.HTM
6https://en.wikipedia.org/wiki/DOS
7https://en.wikipedia.org/wiki/Applesoft_BASIC

https://en.wikipedia.org/wiki/Bourne_shell
http://www.kornshell.org/
https://www.in-ulm.de/~mascheck/various/ash/
https://www.gnu.org/software/bash/
http://www.digitalresearch.biz/CPM.HTM
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Applesoft_BASIC

2.6 Alternative Solutions 7

Since 2001, the Macintosh operating system macOS has been based on a Unix-like operating
system called Darwin 8. On these computers, users can access a Unix-like command-line interface
by running the terminal emulator program called Terminal, which is found in the Utilities sub-
folder of the Applications folder, or by remotely logging into the machine using ssh. Z shell 9

is the default shell for macOS; bash, tcsh10, and the Korn shell are also provided. Before macOS
Catalina, bash was the default. [1]

2.6.2 Shells
The shell. The GNU/Linux shell is a special interactive utility. It provides a way for users to
start programs, manage files on the filesystem, and manage processes running on the Linux sys-
tem. The core of the shell is the command prompt. The command prompt is the interactive part of
the shell. It allows you to enter text commands, interprets the commands, then executes the com-
mands in the kernel. The shell contains a set of internal commands that you use to control things
such as copying files, moving files, renaming files, displaying the programs currently running on
the system, and stopping programs running on the system. Besides the internal commands, the
shell also allows you to enter the name of a program at the command prompt. The shell passes
the program name off to the kernel to start it. There are quite a few Linux shells available to
use on a Linux system. Different shells have different characteristics, some being more useful for
creating scripts and some being more useful for managing processes. The default shell used in
all Linux distributions is the bash shell. The bash shell was developed by the GNU project as a
replacement for the standard Unix shell, called the Bourne shell (after its creator). The bash shell
name is a play on this wording, referred to as the “Bourne again shell”. [14]

Linux Shells

• ash - A simple, lightweight shell that runs in low-memory environments but has full com-
patibility with the bash shell.

• korn - A programming shell compatible with the Bourne shell but supporting advanced
programming features like associative arrays and floating-point arithmetic.

• tcsh - A shell that incorporates elements from the C programming language into shell scripts

• zsh - An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history files, and themed prompts.

Bash the Bourne-Again Shell, refers both to a particular Unix shell program and its associated
scripting language. It is the default shell of the GNU Operating System (Linux) and Apple’s OS
X and is POSIX 1003.2 compliant.

It is a powerful shell, and features, among other things: command line editing, command
history, a directory stack (pushd, popd), command substitution, special variables like PPID, au-
tocompletion, in-process integer arithmetic: ((...)), in-process regexes, aliases, functions, arrays,
expansions: tilde, brace, variable, substring awesomeness, conditional expressions, security (re-
stricted shell mode), job control, timing, prompt customization. [15]

8https://en.wikipedia.org/wiki/Darwin_(operating_system)
9https://www.zsh.org/

10https://www.tcsh.org/

https://en.wikipedia.org/wiki/Darwin_(operating_system)
https://www.zsh.org/
https://www.tcsh.org/

8 Chapter 2. Related work

The Z shell (called zsh) is an open source Unix shell developed by Paul Falstad. It takes ideas
from the Bourne, bash, ash, and tcsh shells and adds many unique features to create a full-blown
advanced shell designed for programmers. Some of the features that make the zsh shell unique
are: improved shell option handling, shell compatibility modes, loadable modules etc.

The zsh shell provides a core set of built-in commands, plus the ability to add additional
command modules. Each command module provides a set of additional built-in commands for
specific circumstances, such as network support and advanced math functions. You can add only
the modules you think you need for your specific situation.

Most shells use command line parameters to define the behavior of the shell. The zsh shell uses
a few command line parameters to define the operation of the shell, but mostly it uses options to
customize the behavior of the shell. You can set shell options either on the command line, or
within the shell itself using the set command. [14]

PowerShell is a cross-platform task automation solution made up of a command-line shell, a
scripting language, and a configuration management framework. PowerShell runs on Windows,
Linux, and macOS. PowerShell is a modern command shell that includes the best features of
other popular shells. Unlike most shells that only accept and return text, PowerShell accepts and
returns .NET objects. The shell includes the following features: robust command-line history,
tab completion and command prediction, supports command and parameter aliases, pipeline for
chaining commands, in-console help system similar to Unix man pages.

As a scripting language, PowerShell is commonly used for automating the management of
systems. It is also used to build, test, and deploy solutions, often in CI/CD environments. Pow-
erShell is built on the .NET Common Language Runtime (CLR). All inputs and outputs are .NET
objects. No need to parse text output to extract information from output.

The PowerShell scripting language includes the following features: extensible through func-
tions, classes, scripts, and modules; extensible formatting system for easy output, extensible type
system for creating dynamic types, built-in support for common data formats like CSV, JSON and
XML. [16]

Fish, the friendly interactive shell offers a command-line interface focused on usability and
interactive use. Unlike other shells, fish does not follow the POSIX standard, but still uses roughly
the same model. Some of the special features of fish are:

• No configuration needed: fish is designed to be ready to use immediately, without requiring
extensive configuration.

• Easy scripting: New functions can be added on the fly. The syntax is easy to learn and use.

• Fish has an extensive help system. Use the help command to obtain help on a specific
subject or command. For instance, writing help syntax displays the syntax section of this
documentation. Fish also has man pages for its commands, and translates the help pages to
man pages. For example, man set will show the documentation for set as a man page.

• Extensive UI (see bulletpoints below)

• Autosuggestions. fish suggests commands as you type, based on command history, com-
pletions, and valid file paths. Autosuggestions are a powerful way to quickly summon
frequently entered commands,by typing the first few characters. They are also an efficient
technique for navigating through directory hierarchies.

• Syntax highlighting - Fish interprets the command line as it is typed and uses syntax high-
lighting to provide feedback. The most important feedback is the detection of potential

2.6 Alternative Solutions 9

errors. By default, errors are marked red. Detected errors include: non existing commands,
reading from or appending to a non existing file, incorrect use of output redirects, mis-
matched parenthesis.

• Tab completion is a time saving feature of any modern shell. When you type Tab, fish tries
to guess the rest of the word under the cursor. If it finds just one possibility, it inserts it. If
it finds more, it inserts the longest unambiguous part and then opens a menu (the "pager")
that you can navigate to find what you are looking for.

• The fish editor features copy and paste, a searchable history and many editor functions that
can be bound to special keyboard shortcuts.

[17]

tldr pages are a community effort to simplify the man pages with practical examples. An ex-
ample of the tldr can be seen in figure 2.1, while an example of the man page can be seen in figure
2.2. [18]

Figure 2.1: tldr example

10 Chapter 2. Related work

Figure 2.2: man page example

Chapter 3

Survey

3.1 Introduction
After doing research in the use and perception of the command line and identifying the research
questions, we chose to conduct a survey followed by interviews to give answers to them. In
order to get maximal information from the survey questions, each question was inspired by some
previous result that can be found in the related research section and was aimed at answering
one or multiple of the research questions. Our survey was a success as it had reached over 100
responses in 2 days and 165 total responses for the total of less than six days before it was expired.
After the survey was closed for access, the answers for each question were carefully analyzed,
how they contributed to the research questions and what needed to be further looked into during
the interviews was particularly emphasized in the analysis. A complete overview of the survey
questions can be found on Appendix A - Survey Questions.

3.2 Method

3.2.1 Overview
A web-based questionnaire was created on 28.07.2021 with 22 questions and shared over to mul-
tiple pages in Reddit in particular in the reddit communities: r/commandline, r/bash, r/hci and
r/zsh, it was also shared in LinkedIn and also personally sent to multiple acquainted software
engineers, as well as also sent out to a company in Zurich, Polygon Software, that develops code
for the digitalization of companies, in order for the employees to fill it out if they want. People
had access to fill the survey out until 02.08.2021. The responses to the survey were anonymized
and the survey was presented question by question. The web-based questionnaire app LimeSur-
vey was used, thus also the data collection was made easier since it was done automatically from
the app. A total of 165 respondents filled out the survey, among which, 113 filled the survey out
completely and 52 partially, as can be seen from table 3.1.

The sequence of questions in the survey was such that in the beginning there are descriptive
questions that gave us information about the respondents level of acquaintance with the com-
mand line, her/his overall perception of the CLI and how they learned the command line as a
programmer. The questions 1 to 7 and 22 are such questions, the following questions, i.e after
question 7, are all substantive questions which address the research questions. A mix of hybrid
questions, closed-ended and open-ended questions was used.

12 Chapter 3. Survey

Surveys filled
Partial Full Total
52 113 165

Table 3.1: Survey completion

3.2.2 Survey questions
Introductory Questions

Q01 - “How many years of experience do you have in programming ?”
Q02 - “Which is your primary operating system?”
Q03 - “How would you rate your familiarity with CLI?”
Q04 - “Which kinds of CLI are you comfortable with?”
Q05 - “Which of the following best describes your CLI learning experience?”
Q06 - “Did you switch from GUI to CLI or vice-versa during your programming career ?”
Q07 - “I started learning CLI from...”
Q22 - “How did you find this survey ?”

Hybrid questions were mainly used for descriptive questions that informed us about the back-
ground that the respondent has with the command line but also her/his experience with the
command line. These questions were multiple choice with an “Other” option to add more to the
answer. Questions about the background were those that asked the respondents years of expe-
rience in programming, which operating system and which shell she/he uses, her/his level of
familiarity with the command line, more important for our survey were questions that informed
us about the respondents experience with the CLI, which were whether the respondent had ini-
tially spent a lot of effort learning the CLI or did she/he quickly become comfortable with it, did
they switch from GUI to CLI or vice-versa or did they always use the same interface and from
what resource they learned the CLI.

The question whether the developers initially spent a lot of effort or they quickly became
comfortable with it or it was overall an enjoyable or frustrating experience was inspired from
research ([13], [4]) which suggested that using the command line requires a long learning curve
prior to being able to using it effectively whereas the GUI’s learning curve is relatively short in
comparison to that of the CLI’s. We could thus see from this questions whether this learning curve
was really so for our respondents and dependent on the responses from the other questions we
could see what lead to the curve being short or long. The question of whether the respondents had
switched from GUI to the CLI or vice-versa during their career was also inspired from research [3]
which said that for beginning developers using GUI is more suitable as the CLI requires more
expertise and it would also let young developers focus more on the task at hand rather then
focusing on the CLI. We wanted to see if this was also the case for the respondents but also try to
draw relationships from this questions responses and responses from other questions, such as: if
there was a switch from GUI to CLI or vice-versa, what caused the switch ?

Q07 - “I started learning CLI from...”
Question 7 was one of the key questions of the survey as we wanted to find out what are

the main sources that developers are learning/learned the CLI from and also what would follow
from relating this with other questions was whether these methods are effective and if yes what
makes them so and if not, what could have been done to improve the learning curved.

3.2 Method 13

Substantive Questions
Recent experiments have tested the performance of CLIs against that of GUIs in different set-

tings and for different purposes such as in firewall security tasks [4] or in cli vs gui in coding
vr systems [3] where the results of the experiments have largely favored GUI, especially in [3]
where GUI topped CLI in terms of performance in every category. Also [7] lists advantages that
CLI has over GUI in computational research. The purpose of the closed-ended questions was to
answer the research questions. Each closed-ended question was taken as a result from an already
published article and tested whether it was valid for our case and for our research purposes, i.e
why developers do not select GUI applications instead of CLI, are there tasks for the CLI which
cannot reasonably replaced by GUI, what problems developers face when learning GUI and how
to alleviate these problems.

Q08 - “While learning CLI, i felt that CLI more closely resembled my mental programming
model than GUI, so I felt more inclined to use it”

Question 8 was inspired from the paper [13] which compared the different mental models that
novices can acquire from learning visual and command line environments. A study which con-
cluded that command line environments can potentially allow novices to develop a more helpful
mental model for programming than visual environments. What we wanted to test through this
question was whether the command line felt more like programming for developers and whether
that is a reason that they use it. This question would prove helpful in the interviews where more
information about the command line was extracted based on this information.

Q09 - “While learning CLI, i felt that I can achieve more in less time using the CLI”
Question 9 was inspired from the paper [3] where a group of five programmers was asked to

first generate a 3D environment with the command line and then the participants were expected
to generate a similar 3d environment with the help of a GUI and what resulted was that the
average for task completion with the GUI was 13.9 minutes versus 62 minutes with the CLI. We
wanted to see if programmers that use the CLI believe they can finish tasks quicker using it rather
than using GUI.

Q10 - “While learning CLI, i felt that the CLI offers me freedom to express anything that I
want, while I felt GUI limited me in this aspect.”

Question 10 was inspired from the paper [4] where the number 1 strength of CLI was flexibility
according to the respondents.

Q11 - “While learning CLI, i felt that GUI’s speed of operation was much slower than CLI’s,
and it bothered me.”

Question 11 has been also inspired from paper [4] where the qualitative data showed that
GUI’s are not very useful for experts one of the reasons being the low operation speed.

Q12 - “While learning CLI, i felt that the number of times I made mistakes in CLI bothered
me.”

Q13 - “While learning CLI, i felt that the number of times I had to consult documentation
while using CLI bothered me.”

Q14 - “While learning CLI, i felt that having to remember CLI commands by heart bothered
me.”

Questions 12, 13 and 14 have all been inspired from the paper [3] where all of these are aspects
where developers in the study performed better with the GUI than the CLI. Other than this study,
being error prone and relying on remembering commands are also weaknesses of the CLI that
have been reported by respondents in the paper [4] and also in [5] with the context switched in
our case to that when developers were still learning the command line in order to be in alignment
with our research goals.

Q16 - “In data handling tasks such as handling big data, manipulate spreadsheets, paral-

14 Chapter 3. Survey

lelize your work, automation, what do you prefer to use more ?”
Question 16 had directly been taken from the opinion that Jeffrey M. Perkel expressed in [7]

over the reasons CLI is better than GUI for computational research, we wanted to test this opinion
in a more general context.

Q17 - “In solving repeated tasks, which do you prefer to use more ?”
Question 17 was taken from [3] where it is said that repetitive tasks can be easily achieved

with loops, which would take hours in a GUI environment.

Q18 - “To build small case-specific tools for later re-use I prefer...”
Question 18 was taken from [4] where one of the respondents said that on of the strengths of

the CLI is bash scripting. In an attempt to answer the research question 1b, we included it in this
survey.

Open-ended questions were used with the same purpose that closed-ended questions were
used but here the respondents had the possibility to give further and more detailed insight into
the CLI working and learning experience.

Q15 - “Other aspects where i had difficulties while learning CLI are...”
On Question 15 the respondents could also cover what was not mentioned in the previous

questions about the difficulties of learning the CLI or they could even add specifics that had to do
with one of the already mentioned suggestions.

Q19 - “I don’t think GUI can replace CLI in...”
Also question 19 was very similar to question 15 in that also here the respondents could add

something that was not already mentioned in the previous questions regarding the aspects of
the CLI which could not reasonably be replaced by GUI or confirm one of the already proposed
suggestions.

Q20 - “Would you like that the CLI had an integrated GUI like assistant while you were
learning or using it ? Examples: Command suggestion, faulty command correction, pop-ups
with documentation or running examples, etc.”

Question 20 is a hybrid question where we tried to find out whether graphical tools would
have an effect on learning the command line. If the responses for this question would be positive,
we would then be able to further investigate on this question.

Q21 - “If you were to learn CLI again for the first time today, what would you do different
?”

Question 21 is also one of the key questions of the survey as it tries to identify the mistakes
while learning the CLI but also what are the best methods for learning it.

3.2.3 Analysis
Closed-ended questions were all Likert scale, strongly disagree/mildly disagree/neutral/mildly
agree/strongly disagree. In these questions the distribution of the answers was analyzed relative
to prior assumptions we had, which were based on existing research and the research goals. If
a large majority strongly agreed upon in a question, then we took that as a true statement. Yet,
as the questions were Likert scale, there remained additional insight to be found into why the re-
spondents think how they do. If, in other cases, in the answers there were divergences from prior
assumptions we had from research, we prepared to further investigate about these divergences
in the interviews phase, which would follow the survey analysis one. The open-ended questions,
question 20 (“Yes”, “No” and “Other” hybrid question) and question 7 were all analyzed in the
same manner. First, all comments were carefully read and a list of keywords (or most commonly
used terms) was made. Each keyword was associated to a color and near each comment where

3.3 Results 15

that keyword appeared a mark with that color was made so that we could enumerate all appear-
ances of that keyword in the answers. Similarly to figure 3.1.

Figure 3.1: Analysis example

The purpose was to notice patterns and themes in the answers as much as possible. There
were cases where a particular keyword was implicitly stated, we also took those appearances
into account. We carefully read each instance of each keyword and looked for why and how a
particular keyword was used in the answers in order to answer our research questions.

3.3 Results

3.3.1 Introductory questions
Reddit was the platform where we got the most responses from, over 150 people entered and filled
our the survey through it. Luckily for us, a majority of the respondents of the survey had more
than 10 years of experience in programming and considered themselves expert CLI power-users
as can be seen from figure 3.2.

A large majority of them also had Linux as their primary operating system and used the linux
shells (bash, sh, zsh etc.) when interacting with the command line. Another interesting infor-
mation that we found out was that the respondents did not struggle learning the command line.
Most of them found it an enjoyable experience and they said that they quickly became comfort-
able with it. Another interesting fact is that a lot of them also responded that even though they
still use it regularly they still have to look up commands and syntax on a regular basis. As can be
seen from figure 3.3.

It is interesting since literature reports that there is a steep learning curve to the CLI ([13], [4]),
which was not the case for our respondents and the immediate question from this result was,

16 Chapter 3. Survey

Figure 3.2: Respondent experience with the CLI

what were the reasons that these software engineers did not have a steep learning curve with the
command line. What resulted from these introductory questions was also that we knew we could
get concrete answers to our research questions based on the long experience and expertise of the
respondents with the command line.

In question 7, “I started learning CLI from...”, as can be seen from figure 3.4, a majority, 97 out
of 267 given answers (the question was multiple choice with an “Other” option) answered that
they had learned the CLI from written tutorials in the internet, Youtube tutorials and cheat sheets
were selected 32 and 49 times respectively, the answers in the "other" option were as seen in table
3.2.

Keyword # of times mentioned
man pages 29
books 15
colleagues/friends/mentor 11
learn by
doing/experimenting/figuring
out on my own

10

university/college/school 6
documentation 3

Table 3.2: Q7, option "Other" most mentioned keywords

3.3 Results 17

Figure 3.3: Question 5

This would also give us the main resources where could the long learning curve of the CLI be
shortened from and it motivated us to further look into how do they improve the CLI learning
process and how can even they be improved.

3.3.2 Substantive questions
With question 8 began the Likert scale questions(strongly disagree/mildly disagree/neutral/
mildly agree/strongly agree). In question 8, the respondents did not confidently select one side,
92 of the 165 responses were either neutral or mildly agree. We believe this has more to do with
the respondents not properly understanding the question, however, with this question reiterated
in the interviews, we delved deeper into similarities of learning programming languages and
learning the CLI. Besides this, the remaining 44 people strongly agreed that the CLI more closely
resembled a mental model similar to programming than GUI.

18 Chapter 3. Survey

Figure 3.4: Question 7

In question 9, more than half (83) of the respondents strongly agreed that they thought they
could achieve more in less time using the CLI, 36 mildly agreed with this, also there was a number
of people which complete this question, 26, 14 were neutral, 5 mildly disagreed and one strongly
disagreed.

In question 10, the results were very similar to that of question 9 with 84 out of 165 strongly
agreeing, 30 mildly agreeing, 15 being neutral, 29 not completing this question and 6 either
strongly or mildly disagreeing.

In question 11, as 25 people answered that they are neutral to GUI’s speed of operation being
slower than that of the CLI’s, 39 people mildly agreed and 29 people did not complete this answer
and 10 people mildly or strongly disagreed with this statement, we understood that programmers
do not feel as strongly about this particular advantage of CLI’s over GUI’s.

The question 12 resulted as an even more balanced answer with mildly disagree being the
most selected option, 32.12 percent or 53 votes, strongly disagree 19 votes, neutral and not com-
pleted 32 votes each, mildly agree 26 votes and strongly 3. Seeing as it has been reported in
literature that the CLI is more error prone than GUI [3], [4], we expected this would be a reason
people would choose to shy away from using the command line. The results did not prove this
to be true. This made us also question how is the fact that the CLI is more error prone than GUI
interpreted from programmers ?

Although we expected that question 13 and 14 would give us more reasons that developers
avoid the CLI, the results of the survey showed otherwise as in both of these questions the ma-
jority of the answers tended from Neutral to Strongly Disagree. In particular for the thirteenth
question, 33 strongly disagreed, 52 answered that they mildly disagreed, 21 were neutral, 18
mildly agreed, 7 strongly agreed and 32 did not complete the question. And in the fourteenth
question 53 strongly disagreed, 45 mildly disagreed, 15 were neutral, 17 mildly agreed, 3 strongly

3.3 Results 19

agreed and 32 did not complete the answer. Remembering commands was a problem noted by
respondents also in other questions.

Question 15 was an open-ended question. Among the most mentioned keywords, as can be
seen from table 3.3, the most mentioned was saynone, 48 times, the second most mentioned was
“man page”/“documentation”, 19 times, the third most mentioned was “searching”/“googling”/
“remembering”, 13 times, and the fourth most mentioned was “discoverability”, 6 times. Some
of the comments that were made about each of these keywords can be seen in table 3.4.

Keyword # of times mentioned
none 48
man page/documentation 19
searching/googling/remembering 13
discoverability 6

Table 3.3: Q15, most mentioned keywords

Keyword Selected comments

man
pages/documentation

“hard to filter the man pages looking
for the parameter you want”
“poor man pages for programs”
“some/many man pages OS manuals
are obtuse and require foundational
experiences to fully grok what is being
documented.”
“Documentation is often extremely
verbose/complex/dense”

searching/googling/remembering

“I have to google most of the time”
“Spending time to research what com-
mands do”
“memorize all possibilities”
“Not able to find a tool and need to
write one for work.”

discoverability

“Again discoverability, otherwise it
was a pleasing experience”
“Discoverability. Knowing what com-
mands exist in Bash can be tricky,
whereas a GUI can be much more dis-
coverable”
“difficult shell script syntax, lack
of discoverability(as one gets from
menus)”

Table 3.4: Q15, keywords (on the left) and respective comments made from respondents about them (on
the right)

20 Chapter 3. Survey

Question 16 only confirmed what was written by Jeffrey M. Perkel, where in total 8 people
answered that they either use GUI with a little CLI or Only GUI for tasks such as handling big
data, manipulate spreadsheets, parallelize your work and automation, 104 people answered that
they either use Only CLI or CLI with a little GUI (47 Only CLI, 57 CLI with a little GUI), 12
people said It does not matter and 41 did not complete the question, this could be attributed to
the developers not having to do such tasks in their professional life.

Question 17 and 18 results were very lobsided in favor of the CLI with 100 respondents an-
swering Only CLI in the case of question 17, 19 CLI with a little GUI, 3 it does not matter, 1 GUI
with a little CLI, 0 Only GUI and 42 did not complete this answer. While in question 18 102 re-
sponded Only CLI, 17 CLI with a little GUI, 3 It does not matter, 1 GUI with a little CLI, 0 Only
GUI and 42 did not complete this question.

Question 19 was an open-ended question. The keyword “automation” was the most men-
tioned with 18 appearances, “repeated tasks” with 9 appearances, “scripting” with 9,“flexibil-
ity”/“versatility”, 8 appearances and “video”/
“image editing for GUI” with 15 appearances. Answers where these keywords did not appear
were analyzed individually. Some of the comments that were made for each of these keywords
can be seen in table 3.6.

Keyword # of times mentioned
automation 18
repeated tasks 9
scripting 9
flexibility/versatility 8

Table 3.5: Q19, most mentioned keywords

Question 20 was a hybrid question with a “Yes”, “No” and “Other” option. 39 respondents
answered “Yes”, 54 answered “No”, 24 clicked on the button “Other”, 33 left a comment and 48
did not complete the question. Among the 33 comments, the general trend of the answers was
that improvements in the documentation could be made and that tab completion/autosugges-
tion/syntax highlighting that shells like the fish shell offer already do a great job at that and that
such an application could also not be as useful as it is thought. “Man Pages”/“Docs” were men-
tioned 9 times, “tab completion”/“autosuggestion”/“auto completion” were mentioned 7 times.

Question 21 was an open-ended question. The most commonly used keyword in this question
was “nothing”, 42 times, the second most used were “man pages”/“docs” and “learning alterna-
tive shells”, both 13 times, “books”, 4 times, “tldr”, 2 times. Remaining comments that did not
include any of these keywords were individually treated and analyzed.

3.4 Summary
A web-based questionnaire was created with 22 questions and distributed over to multiple dif-
ferent channels. The survey was a success as it reached 165 total responses in less than six days.
The questions 1 to 7 and 22 are questions about the respondent’s prior experience with the CLI,
the following questions, i.e after question 7, are all substantive questions which address the re-
search questions with prior assumptions based on existing research. The analysis of the results
was made by testing if those assumptions were met or not.

3.4 Summary 21

Keyword Selected comments

automation

“Automation and scripting, CLI is way
better than any GUI offered in this
term. Want to convert hundreds of
PPTX file to PDF in short amount of
times. Yeah, just try that using GUI
and see how long it will take to do it.
CLI is just superior.”
“Automation on repeated tasks, pro-
cessing huge amount of structured
data”
“anything that involves immense
amount of user configuration, user
created input, and the chaining of
arbitrary programs together into a
powerful computational pipeline”

repeated tasks/ scripting

“Custom scripts to solve infrequent
problems. The cost, in time spent,
of building a GUI to handle a once-
in-awhile task is huge compared to
the cost of duct taping together a half
dozen CLI programs to accomplish the
same goal”
“piping data through multiple com-
mands(easily), data cleaning and ex-
ploration (eg find/grep/jqet. for look-
ing through data to find structured or
semistructured information)”

flexibility/versatility

“Flexibility. Also robustness. If a com-
mand fails on the cli, there are obvi-
ous steps to debug it. If a gui fails, it
is often more difficult to find the root
cause.”
“Versatility and portability for small
case-specific tasks. Sometimes it’s
necessary to create something really
quickly, and it doesn’t make sense to
instantiate a new application and write
dedicated code in a container. That’s
when I choose a CLI over an IDE or
hybrid-IDE-editor.”

Table 3.6: Q19, keywords (on the left) and respective comments made from respondents about them (on
the right)

In open-ended questions we could get a more detailed insight and answers on our research
questions. What we found out from the respondents was that they were mostly very experienced
developers with more than 10 years of experience and that they found learning the CLI an en-

22 Chapter 3. Survey

joyable experience. Most of the respondents had learned the CLI from written tutorials in the
internet (referring to man page like documents), cheat sheets, and man pages, Youtube tutorials
was also selected. A result from the survey was that the areas where the CLI performs worse
than GUI (questions 12-14) did not prove to be a difficulty for a majority of the respondents,
however, as it was noted as a problem by over 10 percent of the respondents in all three cases,
they were difficulties that needed further investigation. In addition other difficulties were iden-
tified from following questions, man pages/documentation, searching/googling/remembering
and discoverability were among the problems that programmers faced while learning the CLI,
not necessarily the number of times that you make errors or the number of times you have to
consult documentation. Areas where the respondents do not think CLI can be replaced from
GUI were also identified. Terms like: “automation”, “manipulating spreadsheets”, “scripting”,
“repeated tasks”, “flexibility” were dominant and respondents felt strongly that these are terms
where CLI cannot be replaced by GUI. As of what is the best way to alleviate the difficulties de-
velopers face, we found results upon which we could further investigate and expand on during
the interviews phase. Among the recommandations were improved man pages/ documentation,
learning newer more user friendly shells, reading quality textbooks etc.

Chapter 4

Interviews

4.1 Introduction
As the survey analysis were over, our purpose with the interviews was to expand and gain more
insight on the answers that we had found from the survey. Especially of interest were:

• What makes the CLI necessary to use in the workplace and why do programmers start using
it ?

• Give further insight into the everyday difficulties that software developers have while learn-
ing and using the CLI ?

• How to improve and better learn from the man pages/documentation ?

• To explore other forms of learning, besides man pages, that need further investigation.

These were still questions that needed answering and a more detailed discussion to get to
those answers. As a result of the findings of our survey and the questions that still remained
open, we decided to employ semi-structured interviews where a combination of specific (ques-
tions about the background) and open-ended questions were used.

4.2 Method
Acquainted experienced professional software developers were contacted, other experienced pro-
fessional software developers were reached out through LinkedIn. We received 11 confirmations
in total. We conducted 11 face-to-face online interviews. The interviews were conducted through
the Zoom platform and except the first interview, which was documented through notetaking by
hand, all interviews were recorded and transcribed afterwards. All interviews were conducted
for a time-span of 12 to 30 minutes, where the majority of the interviews lasted between 20 and 30
minutes. The subjects included bachelors, masters and doctoral students and professionals with
multiple years of experience.

A core concept of the interviews was developed in order for us to ensure that our goals with
the interviews were met. We asked the interviewees roughly all survey questions, but we also
asked the interviewees what their take on the results of the open questions from the survey is as
we believed through this we could get more detailed insight into a software developers thinking
on our research questions.

24 Chapter 4. Interviews

4.3 Analysis
We did a thematic analysis of user interviews. [19] [20] Which includes familiarizing yourself
with the data, assigning preliminary codes to the data in order to describe content, searching for
pattern or themes in the code across the different interviews, reviewing themes and defining and
naming themes.

In the first phase, we had audio recordings. Although we knew what we were looking for,
we transcribed all of the interviews in separate excel sheets, as we did not want to miss out any
information and to be able to review everything that was said during the interviews. During this
transcription phase we got our first ideas of what the content and the themes of the answers are.

In the second phase we had to develop a new excel sheet, where we created a table with all
the information from all the interviews (initial table). As can be seen from figure 4.1.

Figure 4.1: Initial table

The rows represented the answers of each interviewee, while the columns represented all the
answers to a particular question.

After this, in order to study the questions more effectively by the topic that they treated, dif-
ferent columns were joined with one another based on the topic of the questions.

Such as in figure 4.2.
The following topics could be recognized:

• Prior experience

• How did you start

• Efficiency and flexibility

• GUI vs CLI

• Cheatsheets and tldr

4.4 Results 25

Figure 4.2: Topics tables

• Difficulties

• Indispensable to CLI

• Discoverability

• If you were to learn the CLI

Each of the topics contained multiple of the columns of the initial table but a column of the
initial table did not appear twice or more on the new tables that were formed according to the
topics they represented. Each topic was analysed separately.

In each topic, next to each answer of each question codes were developed. Thus the second
phase of our thematic analysis was finished.

In the third phase, in order for general patterns and themes to be recognized, we, very care-
fully, analysed the codes that we had written and searched for similarities and differences be-
tween them. Additional notes were taken noting down these patterns and tendencies. These
comprised our results and were taken as base for our recommandations.

4.4 Results
In the Prior Experience and How did you start questions, most of the interviewees (7 out of
11) answered that they had 4 years of programming experience the other having 7, 5, 5 and 9.
They also almost all used MacOS and windows and their corresponding shells. Asked how did
they start learning, most of the interviewees said they started from university courses much more
as a help tool rather than something that they focused exclusively on. Most of the interviewees
expressed that they had learned CLI from university first, which in most cases was only an in-
troduction, and after that they searched for commands as they needed them. One interviewee
said “yes[i started learning it as a help tool] because you needed it for a project or something”,“i
would just google[when i needed to look something up] and see what the answers are, i don’t
think i’ve ever seen a video on the command line”.

Asked how would they describe their CLI learning experience, most of the interviewees
answered they still have to regularly look up commands and that it was a frustrating learning
experience for them. During the interviews there was a strong sense that the interviewees never

26 Chapter 4. Interviews

needed to have a good big picture of the CLI, that they learned it out of necessity and only learned
it as much as they needed it for practical purposes and that is what caused the slow learning
curve. Different interviewees said: “for sure i have to look up commands, i did not invest a lot of
time learning it, so that’s why i know the basic stuff”, “i would say at first it was pretty much a
black box, like i didn’t know what to do, what to type, i just copied command that i found on the
internet and pasted it”, “i wasn’t that comfortable in the beginning, maybe not too confident and
i was a bit scared of what it does”.

In terms of efficiency and flexibility most interviewees believe you can achieve more in less
time using the CLI and that the CLI is more flexible than GUI, as they did in the survey, but they
also note that you need a bit of experience for that, some interviewees said: “absolutely, if you
have some experience with the command line, you can get those commands faster and do every-
thing more effectively” and for flexibility the same interviewee said “in my current internship, i
have to start docker and everything else in my CLI and to be honest, i can’t imagine how i would
have to do it with a GUI”.

When it came to whether the interviewees use more the GUI or the CLI in their daily pro-
fessional life or whether they use GUI applications for tasks they could do with the CLI, there
was a noticeable pattern that less experienced programmers said they use GUI only or Only GUI
and CLI only for certain tasks with one developer even saying, “i never felt the need to dig deep
into the CLI”, and for more experienced programmers they use either only the CLI or Only the
CLI and GUI to execute files/trigger processes. One programmer who had 7 years of professional
experience said, “ if you take Git there i like the CLI more, i don’t like using GUI that much since
i feel like it hides the details from me, it hides what it is doing, but there are cases for example
when i have to release some branch or deploy it on a server somewhere, i don’t always execute
the scripts by hand on the command line but i have a button that triggers it and then runs the
whole process, for those kinds of things like deploying and releasing, i like to have a GUI, but as
soon as i have to do more detailed stuff i prefer the CLI”.

The Difficulties topic was the most discussed topic. The difficulties that the interviewees ex-
pressed varied from one another, one answer that appeared multiple times was knowing a lot of
commands from the beginning, and “The CLI has very little visual feedback after executing a com-
mand right”. Another interviewee said “the problem with man pages is missing examples and
overflowing information, if you don’t know shell scripting, you won’t understand anything.”.
Other comments were, “don’t know the proper commands and typing errors”, “man pages too
complicated/too much information”. Asked how they overcame such difficulties some of the
comments were: “at some point i could remember the commands...just by repetition and learning
by doing”, another interviewee noted “i would create a notes file where i copied and paste all the
commands that i wanted to use so that i could remember it like the entire workflow”. A few of
the interviewees also noted that man pages can be considered as a help tool, but they would not
consider man pages a good learning resource.

After making these questions about the difficulties the programmers had, they were asked
about their take on the results of the same question in the survey, namely question 15. One
pattern was noticeable: discoverability. Comments such as: “hard to discover where to start”, “i
can definitely relate to the third point[discoverability] especially in the beginning you don’t even
really know what commands even exist and what could be done at all in the command line”, “i
don’t get any stuff around what’s happening around CLI, i don’t have the mental model i have
for pandas or numpy”.

In searching for possible solutions to overcome the discoverability problem, we started to pro-
pose to the interviewees two possible solutions: cheat sheets and tldr. Cheat sheets meaning a
page with separate sections, where each section treated a certain topic and in that section the com-

4.5 Summary 27

mands that would be related to that topic would be written, along with that a short description
of the command would be given. We found websites on the internet that contained such cheat
sheets like [21]. Tldr description can be found on the Alternative solutions chapter. These two
solutions were particularly praised by the interviewees. Among the given comments were: “i
definitely need something like this cheat sheet, that’s good”, “man, this looks amazing", "this is
awesome, i would also do my own cheat sheet”.

In terms of what is indispensable to GUI all of the interviewees agreed with the survey results
with one of them responding: “flexibility, GUI will never include all the functionality you can
have in something, it can only some, but all no, of course not, if i add a new feature to my program,
i can use it directly in CLI, in GUI i have to create a button”. Another one said: “I agree with the
statements that you just made with all of those statements, and i would add to those the amount
of control that you have, GUI feels like it hides the details from you, but for certain tasks you need
tight control of what youre doing, you need to really know what you’re doing and then i prefer
to do it in the command line”.

In the question If you were to learn the CLI again some of the dominating thoughts were to
understand how CLI works first, then to do examples and exercises. Online courses were also
mentioned. One interviewee noted, “I would when it comes to bash scripting, i would do a more
systematic approach, like not ad hoc and on demand when i need it look stuff up but maybe do
a proper course or learning resource on bash scripting” others said “i’d probably watch some
videos, during the bachelor’s i learned that youtube can be so great, you can see everything in
very short amount of time”, “maybe i would learn it a bit more, watch a video or something, so
that i have an understanding of how it works and not just go straight into the commands”, “i
would look up proper docs or tutorials... codeacademy or coursera and they guide you through
exercises and they show you commands that you can type and explore, something like that would
be helpful instead of just typing and waiting for what happens”.

As a final thought about the process of learning CLI and it’s learning curve, we will leave
one of the comments that one of our interviewees said: “My personal experience is whenever
you get into programming you get into it not because of CLI, so your primary task is not the
CLI, so while it’s probably best to read docs or read books, this approach is much more likely for
a programming language like for C#, Java, Javascript, CLI is something like git for me because
you just need it to get the job done you’re less likely to read the entire docs before you start
programming, so theoretically i agree but practically i think it’s always gonna be a bit of learning
by doing when it comes to the CLI”.

4.5 Summary
As the survey was over we needed a more detailed perspective about the results of the survey.
Of interest was to have more perspective from experienced software developers on our research
questions. Acquainted experienced professional software developers were contacted, other expe-
rienced professional software developers were reached out through LinkedIn.

We conducted 11 face-to-face online interviews which, for the majority of the cases, lasted be-
tween 20 and 30 minutes. A core concept of the interviews was developed to ensure our research
goals were met. A thematic analysis of user interviews was done. Which included familiarizing
with the data, assigning preliminary codes to the data in order to describe content, searching for
pattern or themes in the code across the different interviews, reviewing themes and defining and
naming themes.

Most of our interviewees turned out to have 4 years of programming experience, we also had

28 Chapter 4. Interviews

interviewees that had 5 to 9 years of experience in programming. Most of them had learned the
CLI from university as a help tool and said that they struggled with it. The interviewees believed
that CLIs overpowers GUIs when it comes to efficiency and flexibility, but they also noted the
learning curve needed for that. Experienced programmers endorsed CLI use, noting that they
would use GUI only for easy tasks. Among the difficulties expressed by the programmers was
knowing so many commands from the beginning and the little visual feedback that CLI has.
Discoverability proved to be the biggest problem for the programmers with knowing too many
commands from the beginning posing a problem for the programmers. Cheatsheets and tldr
were liked as learning tools from the interviewees. The results from the survey about what is
indispensable to GUI were strongly agreed to by the interviewees and if they would learn the CLI
again most of the programmers said that they would spend more time to understand how CLI
works first, and not start just by copying and pasting commands found through googling.

Chapter 5

Discussion

5.1 Summary of Results
A majority of the respondents of the survey had more than 10 years of experience in programming
and considered themselves expert CLI power-users. While in the interviews, most of the intervie-
wees (7 out of 11) answered that they had 4 years of programming experience the others having
7,5,5 and 9. They also almost all used MacOS and windows and their corresponding shells, in
contrast to the survey where a large majority had Linux as their primary operating system and
used the linux shells (bash, sh, zsh etc.) when interacting with the command line.
Asked how would they describe their CLI learning experience, most of the interviewees answered
they still have to regularly look up commands and that it was a frustrating learning experience
for them. During the interviews there was a strong sense that the interviewees never needed to
have a good big picture of the CLI, that they learned it out of necessity and only learned it as
much as they needed it for practical purposes and that is what caused the slow learning curve.
While in the survey we found out that the respondents did not struggle learning the command
line. Most of them found it an enjoyable experience and they said that they quickly became com-
fortable with it.
In the question how did they start learning, most of the interviewees said they started from uni-
versity courses much more as a help tool rather than something that they focused exclusively on.
Most of the interviewees expressed that they had learned CLI from university first, which in most
cases was only an introduction with basic commands, and after that they searched for commands
as they needed them. While in the survey, the methods to learning the CLI varied from one re-
spondent to another, written tutorials in the internet, cheat sheets, man pages, Youtube tutorials,
books, mentors etc were all represented.
In question 9, more than half (83) of the respondents strongly agreed that they thought they could
achieve more in less time using the CLI, 36 mildly agreed with this, also there was a number of
people which did not complete this question, 26, 14 were neutral, 5 mildly disagreed and one
strongly disagreed. In question 10, the results were very similar to that of question 9 with 84 out
of 165 strongly agreeing, 30 mildly agreeing, 15 being neutral, 29 not completing this question
and 6 either strongly or mildly disagreeing. In the interviews this evidence, more than half agree-
ing that the CLI is more efficient and flexible than GUI, was also supported but the interviewees
noted that there is a certain level of experience needed to get to that level.
The question 12 was not one-sided and tended towards the respondents disagreeing to the state-
ment. Seeing as it has been reported in literature that the cli is more error prone than gui [3] [4],
we expected this would be a reason people would choose to shy away from using the command
line. The results did not prove this to be true. This made us also question how is the fact that

30 Chapter 5. Discussion

the CLI is more error prone than GUI interpreted from programmers ? One of our interviewees
responded that making errors in the CLI is just one of the ways to better learn it and makes learn-
ing CLI fun and generally the statement of the question was not supported from interviewees
also. Although we expected that question 13 and 14 would give us more reasons that developers
avoid the CLI, the results of the survey did not prove this claim as in both of these questions the
majority of the answers tended from Neutral to Strongly Disagree.
The Difficulties topic was the most discussed topic in the interviwes. The difficulties that the
interviewees expressed varied from one another, one answer that appeared multiple times was
knowing a lot of commands from the beginning, and “The CLI has very little visual feedback after
executing a command right”. Another interviewee said “the problem with man pages is missing
examples and overflowing information, if you don’t know shell scripting, you won’t understand
anything.”. Other comments were, “don’t know the proper commands and typing errors”, “man
pages too complicated/too much information”. A few of the interviewees also noted that man
pages can be considered as a help tool, but they wouldn’t consider man pages a good learning
resource.
Much more information on this topic we received from question 15, where the most mentioned
difficulty was man pages/documentation, after that was searching/googling/remembering and
discoverability. Among the things that were said about the man pages/documentation were:
“hard to filter the man pages looking for the parameter you want”, “poor man pages for pro-
grams”, “some/many man pages OS manuals are obtuse and require foundational experiences to
fully grok what is being documented.”, “Documentation is often extremely verbose/complex/-
dense” etc. In the interviews, the were the programmers were asked about their take on the results
of the same question in the survey. One pattern was noticeable: discoverability. Comments such
as: “hard to discover where to start”, “i can definitely relate to the third point[discoverability] es-
pecially in the beginning you don’t even really know what commands even exist and what could
be done at all in the command line”, “i don’t get any stuff around what’s happening around CLI,
i don’t have the mental model i have for pandas or numpy” were made.
Question 16 only confirmed what was written by Jeffrey M. Perkel, where 104 people answered
that they either use Only CLI or CLI with a little GUI (47 Only CLI, 57 CLI with a little GUI).
Question 17 and 18 results were very lobsided in favor of the CLI.
Question 19 was an open-ended question. The keyword “automation” was the most mentioned
with 18 appearances, “repeated tasks” with 9 appearances, “scripting” with 9, “flexibility”/ “ver-
satility” 8 appearances and “video”/“image editing for GUI” with 15 appearances. For the same
question in the interviews, all of the interviewees agreed with the survey results with one of them
responding: “flexibility, GUI will never include all the functionality you can have in something, it
can only some, but all no, of course not, if i add a new feature to my program, i can use it directly
in CLI, in GUI i have to create a button”. Another one said: “I agree with the statements that you
just made with all of those statements, and i would add to those the amount of control that you
have, GUI feels like it hides the details from you, but for certain tasks you need tight control of
what you’re doing, you need to really know what you’re doing and then i prefer to do it in the
command line”.
Question 20 was a hybrid question with a “Yes”, “No” and “Other” option. 39 respondents an-
swered “Yes”, 54 answered “No”, 24 clicked on the button “Other”, 33 left a comment and 48
did not complete the question. Among the 33 comments, the general trend of the answers was
that improvements in the documentation could be made and that tab completion/autosugges-
tion/syntax highlighting that shells like the fish shell offer already do a great job at that and
that such an application could also not be as useful as it is thought. “Man Pages”/“Docs” were
mentioned 9 times, “tab completion”/“autosuggestion”/“auto completion” were mentioned 7
times. Question 21 was an open-ended question. The most commonly used keywords, not in-
cluding “nothing”, in this question were “man pages”/“docs” and “learning alternative shells”,

5.2 Recommendations 31

then “books” and “tldr”.

5.2 Recommendations

5.2.1 Learning methods
In the survey, most of the respondents were programmers that had learned programming a long
time ago, with some even mentioning that there was not internet when they learned the CLI,
also the methods that they used to learn the command line were methods that generally take
more time, such as written tutorials in the internet, books, man pages, documentation etc. In the
interviews, the interviewees were programmers that had started practicing professional software
development in the recent years and the methods that they used to learn the command line were
all methods that do not take a large amount of time like university slides (which in most cases
taught only the basic commands), youtube videos and searching stack overflow. When it came to
methods that were used from our survey respondents, they were all considered either as too time
consuming, too complicated or similarly by our interviewees.

This difference in this particular result (“How would you describe you CLI learning experi-
ence ?”) may be due to the fact that over time programmers have replaced tasks in CLI with those
in GUI, while earlier the CLI was the only option. As most of our respondents in the survey had
10+ years of experience in programming, learning the CLI was the only option for them, hence
they also devoted more time to it, whereas programmers in our interviews started to program
when there was an abundance of GUI applications from which they could select, causing the CLI
to be less necessary to use, thus also the programmers having less motivation to use it, thus also
the worsened learning experience.

We can look at this question’s answers more closely. While (for the inexperienced) the latter
methods (university slides, youtube videos and searching stack overflow) may be more efficient
at finding commands you need, the former (written tutorials in the internet, books, man pages)
are better at giving the learner a broader overview of the command line and a better understand-
ing of what is possible with the command line, which also was one of the biggest hurdles for
programmers reported during the interviews.

While the learning methods that programmers in the survey used were, most likely, the only
ones they could use, today programmers can use similar but newer methods to tackle the same
hurdles.

5.2.2 Online courses
One suggestion would be to use online courses, which were not mentioned as a learning method
in the interviews nor the survey and one of our interviewees noted: "I would look up codea-
cademy or coursera since they guide you through exercises, show you commands that you can
type and explore, something like that would be helpful, instead of just typing and waiting". This
idea was supported by multiple other interviewees.

5.2.3 Cheatsheets
Another suggestion we have is cheatsheets. Either ready found somewhere or doing your own
cheat sheet. As much as this can sound as a classic helping tool, it was not mentioned in the
survey or interviews as a tool programmers use in their daily life, but after showing them a cheat
sheet where the page was separated into sections separated by topics, where each section had

32 Chapter 5. Discussion

commands belonging to that topic, all of the programmers loved it as an idea with some one
them even saying that they will start to use it right away in their work. We believe this would
help in replacing stack overflow as a tool that programmers have to return to when they have
forgotten a command they used a while ago.

5.2.4 tldr
One of the problems we found from the interviews was man pages. All of our interviewees were
professional software developers and only one of them reported that he used the man pages in
his work. Among other programmers most of them reported that they try to avoid the man pages
as much as they can, only using it very rarely. The reasons being that it is too complicated or too
difficult to find information or similarly.

For novice programmers or even experienced ones we would recommend the tldr-pages,
which are help pages for command line tools, which aim to be a simpler, more approachable com-
plement to traditional man pages. Showing only short explanations for commands along with an
example of that command, we believe, would greatly increase the programmers interaction with
the command line, it would also shorten the time programmers spend searching on google for
particular commands and how to use them. This recommandation was very much liked from the
interviewees and they were amazed by it, as none of them had heard about or used it before.

5.2.5 fish shell
The little visual feedback which was reported from some of the programmers in the interviews,
we believe would be best addressed by using newer more interactive shells like the fish shell,
which they did not report to use or know about, which offer help tools such as: autosuggestion,
syntax highlighting, tab completion etc. As one of the respondents of the survey said about these
helping tools, "auto completion and syntax highlighting already goes a long way".

While these recommandations are more inclined toward novice programmers, we believe
command line designers and developers could also benefit greatly from the results of our sur-
vey and interviews, as a lot of aspects of the user experience with the CLI have been covered
there.

5.3 Threats and Limitations
One of the limitations of this article can be the convenience sampling used for the survey and the
interviews. In the survey’s case, the respondents found the survey on the reddit communities
where the survey was posted, these communities were: r/commandline, r/bash, r/hci, r/zsh.
So these respondents were admirers of the CLI who followed each news that came out about the
CLI, making it unprobable that these respondents had bad experiences with the CLI. Thus also
their answer that they enjoyed their CLI learning experience.

Meanwhile, the interviews participants were selected without regarding their background or
preference of the CLI. Thus also their answer that their CLI learning experience was frustrating.

While our survey respondents were probably the best suited to answer our research questions,
a more random sampling would more accurately represent the distribution of the usage of the CLI
among programmers today. Because of time constraints, this was not possible to do in this project.

Another point from the survey results that is worth mentioning is that one of the most given
answers in the 19th question of the survey, “I don’t think GUI can replace CLI in...”, was “video/im-
age editing for GUI”, it was mentioned 15 times. After also discussing this with the software de-
velopers in the interviews, we believe the question was misunderstood from these respondents

5.4 Future work 33

as most of the developers from the interviews agreed that this keyword does not make a lot of
sense in this question.

5.4 Future work
The possibilities for future research in CLI are ample. From further researching the man pages to
enhancing the user interactivity. One possible project would be separating two groups of novice
developers who do not use the command line, where both of the groups have the same tasks
related to the documentation, but one group has to do the tasks using the man page and the other
using the tldr, that way the effectiveness of the tldr could be measured.

Another one would be to gather two groups of developers who do not use the command line,
where both of these groups have the same tasks related to the command line, but one group uses
the bash shell without the interactive tools and the other uses the fish shell. This way the added
interactivity of the fish shell could really be measured.

5.5 Conclusion
In conclusion, we could give answers to our research questions. Developers learn the CLI out of
necessity for their programming projects, the learning process mostly consists of them searching
stack overflow, and typing commands without having a clear comprehension of the commands
they are typing. They do not spend the time required to acquire easiness of use as they do with
programming languages like C, C++, Java etc. It seems that with time when they deal with more
advanced tasks they start appreciating the command line more and that is when they also put
more effort into understanding it.
Although these terms are related to one another and a future study could more in depth analyse
these aspects of the command line, automation, scripting, repeated tasks, flexibility, handling big
data, manipulating spreadsheets, parallelize your work all are aspects of the command line which
experienced programmers do not believe that GUI can replace the CLI in.
The areas where programmers have the most difficulties with the CLI is the man pages/docu-
mentation, discoverability, rememebering of the commands, little visual feedback and such. The
tools that we proposed to overcome these problems were online tutorials, creating by yourself or
finding cheatsheets, using the tldr instead of man pages and using newer more interactive shells
like the fish shell.

Appendix A

Survey Questions

1. How many years of experience do you have in programming ?

• Less than 2
• 2-5
• 5-10
• 10+

2. Which is your primary operating system?

• Windows
• MacOS
• Linux
• Other

3. How would you rate your familiarity with CLI?

• None or very limited
• I can perform simple tasks using CLI
• I know my way around CLI
• I’m an expert / CLI power-user
• Other

4. Which kinds of CLI are you comfortable with? (multiple choice)

• UNIX-style Shell (Bash, sh, zsh, etc.)
• Windows command prompt (cmd)
• Windows PowerShell
• R / GNU Octave / MATLAB
• Bloomberg Terminal
• Other

5. Which of the following best describes your CLI learning experience? (multiple choice)

• I initially spent a lot of effort without making much progress

36 Chapter A. Survey Questions

• I quickly became comfortable with using the CLI for my intended purposes
• Overall, learning CLI was a frustrating experience
• Overall, learning CLI was an enjoyable experience
• Even though I use CLI regularly, I still have to look up commands and syntax on a

regular basis
• Other

6. Did you switch from GUI to CLI or vice-versa during your programming career?

• Yes, I switched from GUI to CLI
• Yes, I switched from CLI to GUI
• I started with CLI and I started to also use GUI later on.
• I started with GUI and I started to also use CLI later on.
• Other

7. I started learning CLI from...

• Youtube tutorials.
• written tutorials in the internet.
• cheat sheets.
• Other

- While learning CLI, i felt that...

8. CLI more closely resembled my mental programming model than GUI, so I felt more in-
clined to use it

• Strongly Disagree
• Mildly Disagree
• Neutral
• Mildly Agree
• Strongly Agree

9. I can achieve more in less time using the CLI.

• Strongly disagree
• Mildly disagree
• Neutral
• Mildly agree
• Strongly agree

10. The CLI offers me freedom to express anything that I want, while I felt GUI limited me in
this aspect

• Strongly disagree
• Mildly disagree
• Neutral
• Mildly agree

37

• Strongly disagree

11. GUI’s speed of operation was much slower than CLI’s, and it bothered me.

• Strongly disagree
• Mildly disagree
• Neutral
• Mildly agree
• Strongly agree

12. The number of times I made mistakes in CLI bothered me.

• Strongly disagree
• Mildly disagree
• Neutral
• Mildly agree
• Strongly agree

13. The number of times I had to consult documentation while using CLI bothered me.

• Strongly disagree
• Mildly disagree
• Neutral
• Mildly agree
• Strongly agree

14. Having to remember CLI commands by heart bothered me.

• Strongly disagree
• Mildly disagree
• Neutral
• Mildly agree
• Strongly agree

15. Other aspects where i had difficulties while learning CLI are...

• Opinion.

The following statements relate to advantages CLI might have over GUI...

16. In data handling tasks such as handling big data, manipulate spreadsheets, parallelize your
work, automation, what do you prefer to use more ?

• Only CLI
• CLI with a little GUI
• It does not matter
• GUI with a little CLI
• Only GUI

38 Chapter A. Survey Questions

17. In solving repeated tasks, which do you prefer to use more ?

• Only CLI
• CLI with a little GUI
• It does not matter
• GUI with a little CLI
• Only GUI

18. To build small case-specific tools for later re-use I prefer...

• Only CLI
• CLI with a little GUI
• It does not matter
• GUI with a little CLI
• Only GUI

19. I don’t think GUI can replace CLI in...

• Opinion

20. Would you like that the CLI had an integrated GUI like assistant while you were learning
or using it ? Examples: Command suggestion, faulty command correction, pop-ups with
documentation or running examples, etc.

• Yes
• No
• Other

21. If you were to learn CLI again for the first time today, what would you do different?

• Opinion

22. How did you find this survey ?

• Reddit
• YCombinator
• Recommended from someone
• Other

Bibliography

[1] “HistoryOfTheCommandLineInterface,” https://en.wikipedia.org/wiki/Command-line_
interface, 2021, Accessed: 2021-11-03.

[2] K. Morgan, R. Morris, and S. Gibbs, “When does a mouse become a rat? or. . . comparing
performance and preferences in direct manipulation and command line environment,” The
Computer Journal, vol. 34, no. 3, pp. 265–271, 1991.

[3] T. Fellmann, M. Kavakli et al., “A command line interface versus a graphical user interface
in coding vr systems,” in Proceedings of the Second IASTED International Conference on Human
Computer Interaction. ACTA Press, 2007.

[4] A. Voronkov, L. A. Martucci, and S. Lindskog, “System administrators prefer command line
interfaces, don’t they? an exploratory study of firewall interfaces,” in Fifteenth Symposium on
Usable Privacy and Security ({SOUPS} 2019), 2019, pp. 259–271.

[5] A. Feizi and C. Y. Wong, “Usability of user interface styles for learning a graphical software
application,” in 2012 International Conference on Computer & Information Science (ICCIS), vol. 2.
IEEE, 2012, pp. 1089–1094.

[6] R. S. Thompson, E. M. Rantanen, W. Yurcik, and B. P. Bailey, “Command line or pretty lines?
comparing textual and visual interfaces for intrusion detection,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2007, p. 1205.

[7] J. M. Perkel, “Five reasons why researchers should learn to love the command line.” Nature,
vol. 590, no. 7844, pp. 173–174, 2021.

[8] S. J. Westerman, “Individual differences in the use of command line and menu computer
interfaces,” International Journal of Human-Computer Interaction, vol. 9, no. 2, pp. 183–198,
1997.

[9] A. G. Durham and H. H. Emurian, “Learning and retention with a menu and a command
line interface,” Computers in human behavior, vol. 14, no. 4, pp. 597–620, 1998.

[10] W. C. Ogden and J. M. Boyle, “Evaluating human-computer dialog styles: command vs.
form/fill-in for report modification,” in Proceedings of the Human Factors Society Annual Meet-
ing, vol. 26, no. 6. SAGE Publications Sage CA: Los Angeles, CA, 1982, pp. 542–545.

[11] B. Hasan and M. U. Ahmed, “Effects of interface style on user perceptions and behavioral
intention to use computer systems,” Computers in Human Behavior, vol. 23, no. 6, pp. 3025–
3037, 2007.

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface

40 BIBLIOGRAPHY

[12] S. Ben and P. Catherine, “Designing the user interface,” Strategies for, 2005.

[13] E. Dillon, M. Anderson, and M. Brown, “Comparing mental models of novice programmers
when using visual and command line environments,” in Proceedings of the 50th Annual South-
east Regional Conference, 2012, pp. 142–147.

[14] R. Blum, Linux command line and shell scripting bible. John Wiley & Sons, 2008, vol. 481.

[15] “BashIntro,” https://cs.lmu.edu/~ray/notes/bash/, 2021, Accessed: 2021-11-03.

[16] “PowerShellIntro,” https://docs.microsoft.com/en-us/powershell/scripting/overview?
view=powershell-7.1, 2021, Accessed: 2021-11-03.

[17] “fishShellIntro,” https://fishshell.com/docs/current/index.html, 2021, Accessed: 2021-11-
03.

[18] “tldrIntro,” https://tldr.sh/, 2021, Accessed: 2021-11-03.

[19] H. Nekkanti and S. Reddy, “Surveys in software engineering a systematic literature review
and interview study,” Ph.D. dissertation, MSc thesis, Blekinge Institute of Technology, Swe-
den, 2016.

[20] “HowToDoAThematicAnalysis,” https://www.interaction-design.org/literature/article/
how-to-do-a-thematic-analysis-of-user-interviews, 2021, Accessed: 2021-11-03.

[21] “Cheatsheet,” https://www.cheatsheet.wtf/bash/, 2021, Accessed: 2021-11-03.

https://cs.lmu.edu/~ray/notes/bash/
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.1
https://fishshell.com/docs/current/index.html
https://tldr.sh/
https://www.interaction-design.org/literature/article/how-to-do-a-thematic-analysis-of-user-interviews
https://www.interaction-design.org/literature/article/how-to-do-a-thematic-analysis-of-user-interviews
https://www.cheatsheet.wtf/bash/

	Introduction
	Related work
	Method of related work research
	Early research and views on the correlation between interface style and its perception to the user
	Research favoring GUI use
	 Research analysing the strengths and weaknesses of both CLI and GUI
	Research highlighting CLI advantages
	Alternative Solutions
	Overview
	Shells

	Survey
	Introduction
	Method
	Overview
	Survey questions
	Analysis

	Results
	Introductory questions
	Substantive questions

	Summary

	Interviews
	Introduction
	Method
	Analysis
	Results
	Summary

	Discussion
	Summary of Results
	Recommendations
	Learning methods
	Online courses
	Cheatsheets
	tldr
	fish shell

	Threats and Limitations
	Future work
	Conclusion

	Survey Questions

