
Improved Face
Recognition Through
Image Perturbation

Master’s Thesis

Yun Wang
18-745-232

Submitted on
October 27 2021

Thesis Supervisor
Prof. Dr. Manuel Günther

Ar
tifi

ci
al Intelligence M

A
C

H
IN

E

Learning

Department of
Informatics

1

Master’s Thesis

Author: Yun Wang, yun.wang@uzh.ch

Project period: 28th. April 2021 - 27th. October 2021

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. Dr. Manuel Günther who is the supervisor of my master’s thesis.
He guided me all the way with his professional knowledge and patience during the work of this
thesis. He provided me with clear road map in the thesis project, and each time I came across
with confusions during experiments, he always pointed out the right directions.

Thanks to the spirit of sharing in Computer Science community, I, as a previous student of
chemistry and physics, can quickly grasp the knowledge and programming skills I need. I appre-
ciate the scientists, researchers and engineers who bring Computer Science and Internet technol-
ogy to the world. To extent the appreciation, I thank all scientists, researchers and engineers who
work for the good.

I also would like to appreciate UZH for the resource given to me. Last but not the least, I thank
my family for their support and for the joy they bring to me.

Abstract

Face alignment is considered a crucial process in the pipeline of face recognition. However, to
perform face alignment precisely is not an easy job. Günther et al. (2017) proposed AFFACT
technique to train a network that is robust to facial misalignment, while the original work is for
attribute classification problem. In this thesis, I apply the AFFACT technique to train a target
face recognition model on AFFACT-perturbed images, and a baseline model on aligned images.
The results of the two models are compared to show how AFFACT technique works for face
recognition model. Furthermore, I put the emphasis on studying the image perturbation in the
test stage. Single perturbations are experimented and combination of perturbations are searched
by different optimization algorithms. To combine different perturbations, majority voting for
the final predicted labels and averaging the predictions of probability are often used in different
works. Combining the image similarities is also mentioned in previous research. In this thesis,
I test the combination of perturbations by averaging the (weighted) features extracted from the
perturbed images.

Zusammenfassung

Die Gesichtsausrichtung gilt als ein entscheidender Prozess in der Pipeline der Gesichtserken-
nung. Die genaue Gesichtsausrichtung ist jedoch keine leichte Aufgabe. Günther et al. (2017)
schlugen die AFFACT-Technik vor, um ein Netzwerk zu trainieren, das robust gegenüber Gesichts-
fehlausrichtungen ist, während die ursprüngliche Arbeit für das Attributklassifizierungsproblem
gilt. In dieser Arbeit wende ich die AFFACT-Technik an, um ein Zielgesichtserkennungsmod-
ell auf AFFACT-gestörten Bildern und ein Basismodell auf ausgerichteten Bildern zu trainieren.
Die Ergebnisse der beiden Modelle werden verglichen, um zu zeigen, wie die AFFACT-Technik
für das Gesichtserkennungsmodell funktioniert. Darüber hinaus lege ich den Schwerpunkt auf
die Untersuchung der Bildstörung in der Testphase. Einzelne Störungen werden experimen-
tiert und Kombinationen von Störungen werden durch verschiedene Optimierungsalgorithmen
gesucht. Um verschiedene Störungen zu kombinieren, werden in verschiedenen Arbeiten häufig
Mehrheitsentscheidungen für die endgültigen vorhergesagten Labels und Mittelung der Wahrschein-
lichkeitsvorhersagen verwendet. Das Kombinieren der Bildähnlichkeiten wird auch in früheren
Forschungen erwähnt. In dieser Arbeit teste ich die Kombination von Störungen durch Mittelung
der (gewichteten) Merkmale, die aus den gestörten Bildern extrahiert wurden.

Contents

1 Introduction 1

2 Related Work 3
2.1 Image Perturbation . 3
2.2 Image Perturbation for Face Recognition . 6
2.3 Test Time Image Perturbation . 8
2.4 Optimization Algorithm . 10

3 Dataset 13
3.1 VGGFace2 . 13
3.2 LFW . 13

4 Model Training 15
4.1 Architecture of the Neural Network . 15
4.2 Procedure of AFFACT . 15
4.3 Image Preprocessing . 17

4.3.1 Image Perturbation . 17
4.3.2 Normalization . 18

4.4 Hyperparameters . 18
4.5 Metrics . 22

4.5.1 Metrics in Training . 22
4.5.2 Metrics in validation . 22

5 Perturbation in Test Stage 25
5.1 Single Perturbations . 25

5.1.1 Perturbation Space
. 25

5.1.2 Experiment Process . 25
5.1.3 Results . 27

5.2 Non-weighted Combination of Perturbations . 29
5.2.1 Greedy Algorithm . 29
5.2.2 Results . 29

5.3 Weighted Combination of Perturbations . 31
5.3.1 General SimpleGA . 31
5.3.2 SimpleGA Variant Approach . 32
5.3.3 Results . 37

5.4 Results Comparison and Test on View 2 Dataset . 38

viii Contents

6 Discussion 43

7 Conclusion 49

A Attachements 51

Chapter 1

Introduction

In 2012, Deep Convolutional Neural Network (DCNN) demonstrated an outstanding perfor-
mance in image recognition when Krizhevsky and his colleges won the competition of ImageNet
(Krizhevsky et al., 2012). In 2014, DeepFace (Taigman et al., 2014) manifested the promising fu-
ture of DCNN for face recognition. Since then, the effort to improve the face recognition accuracy
mainly focuses on three aspects:

The first is to design the architecture of DCNN for better feature extraction. Many DCNN
architectures were proposed, such as VGG (Simonyan and Zisserman, 2015), GoogleNet (Szegedy
et al., 2015), ResNet (He et al., 2016), SENet (Hu et al., 2018), etc.

The second is to create better loss function to enlarge the inter-person differences and in the
meantime reduce the intra-person variance. Different loss functions were designed, including
the Euclidean-distance-based loss such as triplet loss (Schroff et al., 2015), center loss (Wen et al.,
2016), range loss (Zhang et al., 2017), etc., and cosine-margin-based loss such as Cosface loss
(Wang et al., 2018), Arcface loss (Deng et al., 2019a), etc.

The third is to collect higher quality and larger amount of annotated data, as research has re-
vealed that the performance of deep learning model strongly relies on the size of training dataset
(Zhou et al., 2015; Hestness et al., 2017). Deepface from Facebook was trained on 4 million images
of 4000 people (Taigman et al., 2014), and FaceNet from Google was trained on an even larger
face database, including 200 million images of 3 million people (Schroff et al., 2015). However,
these large scale databases are not public. Some other databases, such as VGGFace2 and MS-
Celeb, have been available publicly only for some time. Since annotating large scale of face data
is tedious and laborious, data augmentation emerged as another research direction in face recog-
nition. Data augmentation is transformation or perturbation technique applied on training or test
images without changing the labels. Many research show that data augmentation can enlarge
the data and advance the performance of networks (Howard, 2013a; Lv et al., 2016). Most of the
studies use different data transformations or perturbations to conduct data augmentation in the
model training stage, while a few studies were in the test stage.

The general procedure of face recognition consists of (1) face alignment; (2) feature extraction;
and (3) face recognition. Face alignment was considered a crucial procedure for face recognition
in the last few decades. Many face recognition works were based on the face alignment (Huang
et al., 2007; Nguyen and Bai, 2010; Taigman et al., 2014), and some works were on exploring the
approach to achieve high-quality face alignment (Hasan and Pal, 2011; Xiong and De la Torre,
2013; Deng et al., 2019b). Wang et al. (2014) and Jin and Tan (2016) summarized the research
on the methods of face alignment and its difficulties in the unconstrained environment in their
surveys.

Face alignment requires the accurate detection of facial landmarks, while to obtain precise
coordinates of landmarks is a tough job. It is common that the detected landmarks differ from
the ground truth, causing the misalignment of faces. To mitigate the impact of misalignment of

2 Chapter 1. Introduction

faces, Lv et al. (2016) presented a landmark perturbation method to augment training data and
introduce misalignment into the model training. Günther et al. (2017) proposed Alignment-Free-
Facial-Attribute-Classification-Technique (AFFACT). By using the AFFACT technique to prepro-
cess input images during model training, the obtained model can still perform well on misaligned
images.

Face recognition can be categorized into two different scenarios, one is face verification and
the other is face identification. In both scenarios, a face recognition model is trained, then the
obtained model is used to extract the deep features of face images. In the task of face verification,
images pass through the model to obtain the features of the images, then to verify whether two
of the images represent the same person by using the cosine or Euclidean distance of the features.
Whereas, face identification requires to compare the distances between the probe face image and
the other images in the database, then determine the identity of the probe face.

In this thesis, I apply AFFACT technique, which was originally for facial attribute classifica-
tion, to face recognition. A target face recognition model is trained with the AFFACT technique
which is slightly modified to suit the face recognition situation, and a baseline model is trained on
the aligned images. In the test stage, face verification is performed with the two obtained models.
Verification performance of the two models is compared to show how AFFACT technique works
for face recognition. Furthermore, image perturbation in the test stage is studied. Single perturba-
tions are experimented and combination of perturbations are searched by different optimization
algorithms. The experiment results reveal that the face recognition model trained with AFFACT
technique is more robust to facial variation than the baseline model, and the proper combination
of perturbations in the test time can boost the performance of both AFFACT and baseline model.
To combine different perturbations, majority voting for the final predicted labels and averaging
the predictions of probability are often used in different works. Combining the image similarities
is also mentioned in previous research. The contribution of my work is that I test the combination
of perturbations by averaging the (weighted) features extracted from the perturbed images, and
I adopt different image transformations including scaling, rotation and shifting for each single
perturbation.

The main content of this thesis consists of six chapters. In Chapter 2, I will introduce some
related work. I will give an overview about the image transformations I use in this thesis, and
introduce some related work about the image perturbation for face recognition. I will also refer
to some works about image perturbation in the test time. In addition, some works that adopted
optimization algorithms to search different transformations for data augmentation are also intro-
duced. In Chapter 3, I will briefly introduce the datasets I use in my work. Then, I will introduce
how I train the baseline model and face recognition model with AFFACT technique in Chapter
4. In Chapter 5, I will describe the test-time perturbation experiments. Next, I will discuss some
limitations and possible improvements. And In the last chapter, I will summarize the results and
propose some possible directions to improve the work.

Chapter 2

Related Work

2.1 Image Perturbation
The generic image perturbation or transformation can be categorized into geometric transforma-
tion and photometric transformation. Geometric transformation maps pixel values of an image
to new positions to change the geometry of an image. It includes elastic distortion, lens distor-
tion, rotation, shifting, scaling, cropping, flipping, etc. Photometric transformation changes the
RGB channels by altering the pixel colors. This kind of transformation includes grayscaling, color
jittering, noise adding, contrast changing, erasing, sharpending, blurring, etc. For image classifi-
cation, object detection, face recognition and some other object recognition related tasks in which
objects of the same class may have varying appearance, these perturbations can not only enrich
the training data, but also reduce overfitting and improve the performance of models. The ge-
ometric transformation can reduce the model’s dependence on an object’s geometric properties,
such as location, angle, shape, size, etc. The photometric transformation can relieve the model
from relying on color, illumination, sharpness and other photometric properties.

In this thesis, the image perturbation focuses on flipping, cropping, scaling, rotation, shifting,
and Gaussian blurring.

Flipping Flipping generally includes horizontal flipping and vertical flipping (Figure 2.1). Ver-
tical flipping is rarely seen in image classification and face recognition, while horizontal flipping
is commonly adopted to augment the data in image classification (Paulin et al., 2014; Krizhevsky
et al., 2012; Howard, 2013b). Many works show horizontal flipping improves model’s perfor-
mance. However, Yang and Patras (Yang and Patras, 2015) studied horizontal flipping in object
detection tasks and an interesting finding was reported: the state-of-the-art methods predicted
better on original images than their mirrored ones, even though these state-of-the-art methods
are trained on augmented data with mirrored images. Specially in face recognition, horizontally
mirroring faces might not be identity preserving, for instance, a man has a birthmark on his left
face, by using horizontal flipping, a mirrored birthmark appears on the right face. In reality, two
faces with landmarks on different sides can’t be the same person. Besides, faces are not perfectly
symmetric. However, horizontal flipping is a common approach for training face recognition
networks.

Cropping Cropping is to remove the unwanted area of an image. By defining a crop size and a
crop location, the other area are removed from the image. Figure 2.2 illustrates the visual effect of
cropping.

Image cropping can help the models learn to identify the object with the subsets of it. The
commonly used cropping is Center Crop whose location is in the center of the image, and Five

4 Chapter 2. Related Work

Figure 2.1: Illustration of Flipping. (a) is horizontal flipped image, and (b) is the vertical flipped
image.

Figure 2.2: Illustration of Cropping. (a) and (b) show the center crop with different crop size. (d)
is a corner crop.

Crop whose locations are at the four corners and the center, which is only used in validation.
Random Located Crop is also used in research to increase training data. For example, Krizhevsky
et al. (2012) took randomly located crops and their horizontal reflections to enlarge the training
data for combating the overfitting of the neural network. In addition, the five crops and their
horizontal flipped ones are used for the test in their work.

Scaling Scaling is to resize an image. The same object may has different sizes in images because
of different shooting distances. Scaling or rescaling input help the models not to rely on sizes.
Paulin et al. (2014), Sun et al. (2014), and Mash et al. (2016) adopted scaling to augment training
data in their works.

Figure 2.3 illustrates the visual effect of scaling: Figure 2.3(a) is the upscaled image cropped
with the original image size; Figure 2.3(b) is the downscaled images and the black area on the
image shows the pixels are missed. A constant value or values generated by certain interpolation
methods can be filled in the missing pixels. Figure 2.3(c) shows the interpolation effect. The
interpolation is implemented by the function extrapolate_mask provided by bob library (Anjos
et al., 2017).

Rotation Rotation is to rotate an image with a certain angle as it is shown in Figure 2.4. Objects
exhibit different angles in images and faces are often not aligned. Rotation is used as an data
augmentation method to mitigate the misalignment (Mash et al., 2016; Xie and Tu, 2017).

2.1 Image Perturbation 5

Figure 2.3: Illustration of Scaling. (a) is an upscaled image cropped with the original image size.
(b) is an downscaled image. (c) is the downscaled image with interpolation.

Figure 2.4: Illustration of Rotation. (a) is a counter clock-wise rotated image. (b) is a clock-wise
rotated image. (c) is the clock-wise rotated image with interpolation.

Shifting Shifting is to move the image in different directions, so the position of an object in an
image changes (Figure 2.5). By varying the object position with shifting, positional bias can be
reduced. Shifting is similar as cropping, and they basically have the same characteristics.

Gaussian Blurring Gaussian blurring, also known as Gaussian smoothing, is used to blur an
image and remove noise by applying 2D Gaussian function to each pixel. The visual effect of
Gaussian blurring is shown in Figure 2.6. The standard deviation of the Gaussian distribution
is important, when the standard deviation is larger, the Gaussian distribution has a larger peak,
leading to greater blurring in the image. Recognizing a blurred image is challenging, however
blurred images are commonly shot when the object is moving in high speed or the camera is out
of focus. Although image blurring is widely studied (Fiche et al., 2010; Balas et al., 2018), using it
as a data augmentation method is rarely seen in research.

Taylor and Nitschke (2017) evaluated different generic data transformations in image classi-
fication task on Caltech-101 database. They added the transformed images into training data to
train neural networks, then compared the Top-1 and Top-5 classifiation accuracy with the baseline
whose training data did not include the transformed images. The generic image transformations
they evaluated were flipping, rotation, cropping, color jittering, edge enhancement and PCA.
They found that by enlarging the training data with transformed images, model’s peformance
was improved. The geometric image transformations outperformed the photometric transforma-
tions when training on the Caltech-101 dataset. In addition, cropping improved the performance

6 Chapter 2. Related Work

Figure 2.5: Illustration of Shift. (a) is a vertical shifted image. (b) is shifted along both axis. (c) is
the image (b) with interpolation.

Figure 2.6: Illustration of Blurring. (a) and (b) are blurred images with different Gaussian filters.

the most, increasing the top-1 accuracy by 13.82%.

2.2 Image Perturbation for Face Recognition
Generic image perturbation methods mentioned above are also commonly used for data augmen-
tation in face recognition.

Xu et al. (2014) proposed a novel scheme to generate mirror images. After augmenting the
training samples with their mirror versions, they tested the performance of several representation-
based face recognition models on FERET, Yale B and ORL databases. The results informed that
the models trained on augmented data produced lower error rate than models trained on original
images. They further studied the rationales behind the improvement in the paper.

Lv et al. (2016) came to similar conclusion: models trained on augmented data by horizon-
tal flipping can extract features that are more robust to misalignment. Except for transformation
of the horizontal flipping, they explored and experimented 6 more data perturbation methods.
One perturbation method combines contrast adjustment, Gaussian blurring, noise injection and
color casting, which improves the model’s performance as well. In their research, the transforma-
tion that achieves the best verification accuracy is the landmark perturbation. They first detected
the face area by a Viola-Jones face detector (Viola and Jones, 2001), and adopted Supervised De-
scent Method (Xiong and De la Torre, 2013) to detect the facial landmarks including the two eyes’
centers and mouth center. Then, they randomly perturbed the positions of the landmarks with
P ∗i = Pi + γ, where P ∗i is the perturbed position, Pi is the detected position, and the perturbation
parameter is Gaussian distributed γ ∼ N(µ,Σ). Here, they used Gaussian distribution to model

2.2 Image Perturbation for Face Recognition 7

Figure 2.7: Process of Landmark Perturbation (Wang et al., 2019).

the perturbation range for the fact that the alignment error satisfies a Gaussian distribution (Shan
et al., 2004). The process of landmark perturbation for one image is shown in Figure 2.7. A large
number of misaligned training images can be generated by applying sets of landmark perturba-
tion. They reported the landmark perturbation method reduced the face verification error rate on
LFW by 50.6% compared with the baseline of no augmentation.

Günther et al. (2017) presented Alignment-Free-Facial-Attribute-Technique (AFFACT). The
original work is for facial attribute classification, not face recognition. However, good perfor-
mance of the classification indicates good feature extraction of facial attributes, which are also
necessary information for face recognition. In their research, they perturbed training images with
random scaling, rotation, shifting, horizontal flipping and Gaussian blurring. Except for horizon-
tal flipping which is performed with probability of 0.5, the other perturbation ranges are Gaussian
distributed. Figure 2.8 shows the visual effect of AFFACT perturbation. The obtained AFFACT
network is impressively robust to misalignment. It can achieve state-of-the-art results even when
the faces are not aligned.

In addition to generic image transformations, other face specific data transformations such as
makeup transfer, accessory synthesis, pose synthesis and expression synthesis are also explored
in face recognition. Lv et al. (2016) tried glasses synthesis and pose synthesis in their research, and
the face verification accuracy on LFW outperforms the baseline of no data augmentation. Masi
et al. (2016) did ablation study among no augmentation, pose synthesis, 3D shape variations, and
expression synthesis on WebFace database. With the augmented training data, performance of the
face recognition model improves and pose synthesis contributes the most in the improvement.

Figure 2.9 is an overview of different face perturbations summarized by Wang et al. (2019).
These image perturbations are generally performed in the training stage to augment training
data for face recognition models. The effect of perturbations in test time for face recognition are
not often studied. However, many works about image perturbation in the test time for image

8 Chapter 2. Related Work

Figure 2.8: Random Perturbations on CeleA. (a) are the aligned images, (b) are AFFACT-perturbed
images (Günther et al., 2017).

classification were presented.

2.3 Test Time Image Perturbation
Cropping and flipping are commonly used image perturbations in the test phase. Krizhevsky
et al. (2012) generated five crops from the test images and produced the horizontal flipped images
of these five crops. Then they input the 10 transformed images into the neural network, and the
output of the last layer of the network is the predictions of probability. The mean-probability were
obtained by averaging the 10 predictions of probability, and the predicted label was the category
corresponding to the largest mean-probability.

Except for the commonly used test-time image transformations like cropping and flipping, the
same data perturbation method used in the training stage is also directly adopted in the test time
in some research. Qinghe et al. (2020) transformed each test image by the same data augmentation
method used in training phase. Labels were predicted for each transformed image by the neural
network, then the final label was chosen by majority voting. If a balanced vote appeared, the
category with the highest probability was selected as the predicted label.

Masi et al. (2016) exploited pose synthesis in the test time for face recognition. They used
pose synthesis images and in-plane aligned images in the test stage on IJB-A and LFW databases.
The similarity of each image pair was calculated for both pose synthesis images and aligned
images, and they designed a softmax operator to compute the fusion similarities to combine pose
synthesis and aligned images. They found that the best ROC was obtained when combining both
images.

Paulin et al. (2014) presented a conclusion that it is important to apply perturbation at both
training and test time for the best performance. They generated different virtual samples for
the test images, computed an independent score for each perturbed test sample, and tried to
aggregate the scores by averaging, maximum selection and softmax aggregation. They found that
applying perturbations on both training and test stages outperformed applying them on one of
or neither of the two stages, and the softmax aggregation is better than averaging and maximum

2.3 Test Time Image Perturbation 9

Figure 2.9: An Overview of Face Transformations (Wang et al., 2019).

10 Chapter 2. Related Work

score selection in their cases.

2.4 Optimization Algorithm
There are various of image transformation methods, and the selection of an effective set of trans-
formations is crucial. How to explore a satisfactory set of transformations for model training
and testing (e.g. crop+scale)? How to select the set of transformation parameters (e.g. a set of
standard deviation for Gaussian blurring)? Most works depend on domain knowledge and expe-
rience of the researchers. What if there is no prior experience? Then, the optimization algorithm
is a possible solution.

An optimization algorithm is a procedure that iteratively compares various solutions until an
optimal or a satisfactory one is found. There are generally two kinds of optimization algorithms:
the deterministic algorithms and the heuristic algorithms. The former, such as greedy algorithm,
gradient-based algorithms, etc., follows a precise sequence of actions. The latter always involves
randomness, such as random walk, random forest, evolutionary algorithm (EA), etc. In this thesis,
I focus on greedy algorithm and Genetic Algorithm that is a branch of EA.

Greedy Algorithm The greedy algorithm makes the optimal choice at each step in order to solve
the entire problem. This strategy is simple and successful in some problems. However, as it only
makes the decision at each step based on the information of that step, it may not get the optimal
solution for the entire problem.

Some researchers used greedy algorithm to search satisfactory image perturbations for the im-
age classification task. Paulin et al. (2014) proposed Image Transformation Pursuit (ITP) approach
to select a set of transformations from several families of transformations. The families included
cropping, homograph, scaling, colorimetry, JPEG compression and rotation. By assigning differ-
ent transformation parameters, the seven families were extended to 40 transformations in total.
ITP was designed to select transformation or combination of them from the 40 transformations. It
greedily and iteratively choose one perturbation at a time. Molchanov et al. (2020) introduced a
similar method, the Greedy Policy Search (GPS) method, to learn a policy for data augmentation
in the test time. It starts with an empty policy set, then iteratively searches for the sub-policy
that can boost the performance the most when adding it to the current policy set. The pool of
candidate sub-policy has approximately 1000 sub-policies. The max iteration is controlled by the
desired length of the policy set.

Genetic Algorithm Genetic Algorithm (GA) is a metaheuristic optimization algorithm. It is de-
signed to simulate a biological reproduction process. The common components of GA are: (1)
a population of chromosomes; (2) a selection of individuals whose chromosomes will be repro-
duced; (3) a fitness function for optimization; (4) crossover to reproduce the next generation; and
(5) the random mutation of chromosomes in the next generation.

Using GA to augment data is emerging in recent years. Correia et al. (2019) employed GA to
augment training data in the task of face detection. They presented an approach that automati-
cally construct new face instances by GA by recombining facial elementary parts from different
faces. Compared with other standard data augmentation techniques, the GA approach can en-
hance the face detection performance. Terauchi and Mori (2021) proposed Thermodynamic Ge-
netic Algorithm based AutoAugment (TDGA AutoAugment). Their motivation is to extend the
simple genetic algorithm (SimpleGA), as SimpleGA suffers from the problem of premature con-
vergence of population, leading to the lack of population diversity in an early stage. By applying
thermodynamic selection rule to SimpleGA, population diversity can be improved and fitness in
evaluation space is maintained. Their experiment result shows the method selects various data

2.4 Optimization Algorithm 11

augmentation operations and the resulted performance is competitive. In addition, this method
is faster than Fast AutoAugment (Lim et al., 2019).

Chapter 3

Dataset

Several face databases are often used for face recognition, such as CelebA (Liu et al., 2015), CASIA-
Webface (Yi et al., 2014), MS-Celeb-1M (Guo et al., 2016), Megaface (Kemelmacher et al., 2016),
VGGFace (Parkhi et al., 2015), VGGFace2 (Cao et al., 2018), LFW (Huang et al., 2007), IJB-A/B/C
(Klare et al., 2015; Whitelam et al., 2017; Maze et al., 2018), PaSC (Beveridge et al., 2013), etc.
Among these databases, LFW, IJB-A/B/C and PaSC are commonly used for model testing, while
the others are used during model training.

In this thesis, I use VGGFace2 database to train face recognition models and LFW to test the
verification performance of the obtained models.

3.1 VGGFace2
VGGFace2 is a large-scale face database which contains 9131 identities and 3.31 million images
in total. Each identity has about 362 images on average. Images have large variations in age,
ethnicity, profession, pose, resolution and illumination. Each image is labeled with coordinates
of bounding box and landmarks. The dataset contains the name of each images and is split to
a training set and a test set. The test set has 500 identities and 170,000 images, all other images
belonging to the other 8631 identities are in the training set.

In this thesis, I use the VGGFace2 training set to train face recognition models by classifying
the 8631 classes. As I would like to use the obtained model to test the face verification perfor-
mance, I randomly generate 5000 positive pairs and 5000 negative pairs, that is 10k balanced
pairs in total, from the VGGFace2 test set as the validation set. Here, the positive pair refers to the
two images belonging to the same identity, and the negative pair refers to the two images belong-
ing to different identities. All identities in the VGGFace2 test set are included when generating
the positive and negative pairs.

3.2 LFW
In order to test the performance of the obtained face recognition models and to experiment image
perturbations in the test stage, I use another image database, the LFW funneled, in which all
face images are aligned with funneling. The database contains 13233 images that belong to 5749
people. The datasets of LFW have two forms: view 1 and view2. View 1 has a training set
and a test set, which can be used in the development for training and validation. View 2 is a
dataset generated for 10-fold cross validation and it is suggested to be used for the final report of
performance.

14 Chapter 3. Dataset

The training set of view 1 has 2200 pairs with half positive and half negative. The test set of
view 1 has 1000 pairs with half positive and half negative. The view 2 dataset has 6000 pairs,
which are divided into 10 folds, and each fold contains 300 positive pairs and 300 negative pairs.

Since the positive and negative pairs are balanced, I directly use the metric accuracy to check
the model’s performance.

Chapter 4

Model Training

Günther et al. (2017) proposed Alignment-Free Facial Attribute Classification Technique (AF-
FACT) to train the model for facial attribute classification. By using the AFFACT perturbation
technique to preprocess images during model training, the obtained model is impressively robust
to facial misalignment.

In this chapter, I apply the AFFACT techinique to train a target model for face recognition,
mean while I also train a baseline model on aligned face images for comparison.

4.1 Architecture of the Neural Network
The backbone architecture of the convolutional neural network I use is ResNet50, but with the last
fully connected layer removed. So when using the pretrained ResNet50, the pertrained weights
of this layer will not be loaded. In addition, I add 2 fully connected layers as the embedding layer
and the classification layer. The size of last fully connected layer is 8631, equal to the number of
classes in the training set of VGGFace2. The second to last layer is the embedding layer with 512
neuros, which output the features of the input image (Figure 4.1).

As the number of layers of the neural network is 51, the target model trained with AFFACT
technique will be referred as ResNet51, and the baseline model trained on aligned images will be
referred as ResNet51_align later in this Thesis.

4.2 Procedure of AFFACT
AFFACT is a data augmentation technique proposed by Günther et al. (2017), and the approach
can be divided to several steps:

Step 1: get the bounding boxes of faces. The hand-labeled coordinates of landmarks, which
include two eyes and two mouth corners, are used to compute the bounding boxes of faces. The
coordinates of left eye is denoted as ~tel, the right eye ~ter, the left mouth corner ~tml, and the right
mouth corner ~tmr. The center of eyes and mouth can be calculated respectively.

~te =

(
~tel + ~ter

)
2

, ~tm =

(
~tml + ~tmr

)
2

(4.1)

The vectors ~tel, ~ter and ~te can also be noted as (xel, yel), (xer, yer) and (xe, ye), which will be
used in the computation later. Then, the distance of eye center and mouth center d is obtained:

d =
∥∥~te − ~tm∥∥ (4.2)

16 Chapter 4. Model Training

Figure 4.1: Architecture of ResNet51.

4.3 Image Preprocessing 17

Based on the distance d, the width and height of the bounding box are estimated as w = h =
d · 5.5. And finally, the left, right, top and bottom coordinates of the bounding box (xl, xr, yt, yb)
are calculated.

xl = xe − 0.5 · w, xr = xe + 0.5 · w (4.3)

yt = ye − 0.45 · h, yb = ye + 0.55 · h (4.4)

Step 2: calculate the original face angle and scale factor. The original face angle α0 is calculated
from the coordinates of left eye (xel, yel) and right eye (xer, yer).

α0 = arctan(
yer − yel
xer − xel

) (4.5)

Suppose the crop size of the image is with widthW and heightH . Generally, the chosen width
W and height H are equal. In the AFFACT paper, W = H = 224. The scale factor s0 is estimated
from the crop size and size of the bounding box:

s0 =
W

w
=
H

h
(4.6)

Step 3: apply perturbation of scaling, rotation, shifting, horizontal flipping and Gaussian blur-
ring. The scaling parameter γs, the rotation parametr γa and the shifting parameter γx, γy are
randomly drawn from Gaussian distributions with certain means and standard deviations. In the
AFFACT paper, γ̃s ∼ N(1, 0.1), γ̃a ∼ N(0, 20), and γ̃x, γ̃y ∼ N(0, 0.05).

The rotation angle α, the scale s and the coordinates (x̃l, x̃r, ỹt, ỹb) of the perturbed bounding
box are calculated.

α = α0 + γa, s = s0 · γs (4.7)

x̃l = xl + γx · w, x̃r = xr + γx · w (4.8)

ỹt = yt + γy · w, ỹb = yb + γy · w (4.9)

Meanwhile, the probability of horizontally flipping is 0.5, and a Gaussian filter with mean
of zero and random standard deviation σ ∼ N(0, 3) is used to blur the image. By applying the
AFFACT technique with these perturbation parameters, an image is randomly scaled, shifted, ro-
tated, flipped, blurred and cropped with the crop size. In addition, interpolation (eg. Figure 2.4(c))
is applied whenever it is possible.

I’d like to add one more comment on the rotation angle. When the rotation parameter γa = 0
and the rotation angle is equal to the original face angle α = α0, the face is aligned. When the
rotation angle α = 0, the image is not rotated, I denote it as non-aligned.

4.3 Image Preprocessing

4.3.1 Image Perturbation
To train the target model ResNet51 and the baseline model ResNet51_align, different perturba-
tions are applied to preprocess the input images for training and validation. The detailed pertur-
bation parameters are listed in Table 4.1.

To train ResNet51, the AFFACT perturbation is adopted with a slight modification on the train-
ing image data. The original AFFACT draws the scale parameter γs from a normal distribution

18 Chapter 4. Model Training

Model Training Transformer Validation Transformer Best EER

ResNet51 γ̃s ∼ N(1.2, 0.1)
γ̃a ∼ N(0, 20)
γ̃x, γ̃y ∼ N(0, 0.05)
Horizontal F lip P = 0.5
GaussianFilter ∼ N(0, 3)

γs = 1.2
α = 0→ not align
(γx, γy) = (0, 0)

0.0576

ResNet51_align γs = 1.2
γa = 0→ align
(γx, γy) = (0, 0)

γs = 1.2
γa = 0→ align
(γx, γy) = (0, 0)

0.0562

Table 4.1: Training and Validation Transformers for ResNet51_align and ResNet51. Best EER is
the minimal validation EER reached during the training.

with mean = 1.0 and std = 0.1. I modify the mean to 1.2, while the other perturbation param-
eters are the same as those in the AFFACT paper. The samples of training images are shown in
Figure 4.2. The validation images are only scaled with γs = 1.2, and without rotation, shifting,
flipping or blurring. The sample images of validation are shown in Figure 4.3.

To train ResNet51_align, the training and validation images are all aligned and scaled with
γs = 1.2, and without other transformations. The sample images are shown in Figure 4.4.

Following the AFFACT paper, bob library (Anjos et al., 2017) is used to implement the per-
turbations. I adopted the AFFACT transformer1 implemented by Yves Rutishauser and Noah
Chavannes to perform the perturbation. By setting the perturbation parameters, different pertur-
bation listed in the Table 4.1 can be implemented.

4.3.2 Normalization
After the images are perturbed, the three channels of the perturbed RGB images data are normal-
ized with mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225].

Here, the mean and standard deviation are the ones of the ImageNet instead of the ones of
the VGGFace2 training data. Since I load the weights of the pretrained ResNet50 to initialize the
model in the training and the ResNet50 was trained on ImageNet, the training data needs to be
normalized with those means and standard deviations when the pretrained model is fine tuned
on VGGFace2 dataset.

4.4 Hyperparameters
Stochastic Gradient Descent (SGD) optimizer is used to train the models, the starting learning
rate is 0.001, the momentum is 0.9 and the weight decay is 0.001. Batch size of the training and
validation datasets is 64. I also use the early stopping to prevent model from overfitting. When
the validation metrics doesn’t decrease for 8 epochs, the training stops.

1https://github.com/noahch/PyAffact/blob/master/preprocessing/affact_transformer.py

https://github.com/noahch/PyAffact/blob/master/preprocessing/affact_transformer.py
https://github.com/noahch/PyAffact/blob/master/preprocessing/affact_transformer.py

4.4 Hyperparameters 19

Figure 4.2: Original and Modified-AFFACT Perturbed Images. The left-side images are the orig-
inal images from VGGFace2, and the right-side are their AFFACT transformed ones, which are
used to train ResNet51.

20 Chapter 4. Model Training

Figure 4.3: Original and Non-aligned Images. The left-side images are original ones from
VGGFace2, and the right-side images are their non-aligned ones, which are used to validate
ResNet51.

4.4 Hyperparameters 21

Figure 4.4: Original and Aligned Images. The left-side images are original ones from VGGFace2,
and the right-side images are their aligned ones. Compared with the non-aligned images shown
in Figure 4.3, the faces here are aligned. The aligned images are used to train and validate
ResNet51_align.

22 Chapter 4. Model Training

4.5 Metrics

4.5.1 Metrics in Training
Categorical cross-entropy loss is used during the model training, as the face recognition problem
is a multi-classes classification. The categorical cross entropy loss is defined as:

LCE = −
c∑
i=1

ti log(pi)

where ti is the ground truth represented by one-hot vector of the ith class, pi is the probability of
the ith class. Classification accuracy is also calculated and tracked in the training.

4.5.2 Metrics in validation
As the model will be used to verify image pairs, I do not validate the model by classification
accuracy of identities, but by the equal error rate (EER) of the verification of image pairs.

The validation dataset of image pairs are generated from VGGFace2 test set as I described in
the section 3.1.

In the validation phase, the image pairs are firstly perturbed by the validation transformer
shown in Table 4.1, and then normalized with the ImageNet means and standard deviations.
Next, the normalized data are fed into the trained model, and the image features or image em-
bedding vectors, which are the outputs of the embedding layer, are returned. After that, the cosine
similarity of each image pairs is calculated with the features. Finally, the metric EER is computed
based on the similarities and the true labels of the image pairs. The general way to compute EER
is shown in the following pseudo code Function 1.

In stead of implementing the general computation of EER, I use the python API bob.measure.eer2

provided by bob library to calculate EER easily.
In the model training, the reached smallest EER of ResNet51 is 0.0576, and the reached smallest

EER of ResNet51_align is 0.0562.
The models with the smallest validation EER are supposed to be the best models for face ver-

ification. The obtained models will be used as extractors for further face recognition experiments
in the next chapter.

2https://www.idiap.ch/software/bob/docs/bob/bob.measure/v4.2.0/py_api.html#bob.
measure.eer

https://www.idiap.ch/software/bob/docs/bob/bob.measure/v4.2.0/py_api.html#bob.measure.eer
https://www.idiap.ch/software/bob/docs/bob/bob.measure/v4.2.0/py_api.html##bob.measure.eer
https://www.idiap.ch/software/bob/docs/bob/bob.measure/v4.2.0/py_api.html##bob.measure.eer

4.5 Metrics 23

Function 1: Calculate EER
Input: similarities, labels;
FPRs← ∅ ;
FNRs← ∅ ;
for threshold in the range [min(similarities), max(similarities)] do

get the predicted_labels by the threshold;
calculate False Positive Rate FPR← number of false positive / (number of false
positive + number of true negative);

calculate False Negative Rate FNR← number of false negative / (number of false
negative + number of true positive);

add FPR to FPRs;
add FNR to FNRs;

end
get the index i where |FPRs[i] − FNRs[i]| is the minimal ;
EER← (FPRs[i] + FNR[i]) / 2
return EER

Chapter 5

Perturbation in Test Stage

In this chapter, I test verification performance of the obtained ResNet51_align and ResNet51 on
different perturbed images of the LFW.

Firstly, I test different single perturbations for each extractor. Secondly, I use greedy algo-
rithm to search the best combination of perturbations. Finally, I design an approach inspired by
simple genetic algorithm to add weights on single perturbations and search the best weighted
combination of perturbations.

The experiments are performed on the LFW view 1 training and test datasets, then the final
results are compared and reported by testing on the 10-fold cross validation dataset of view 2.

5.1 Single Perturbations
Each single perturbation includes the operation of scaling, rotation , shifting, cropping and inter-
polation, the implementation of the perturbation is the same as the image perturbation in model
training. The crop size is 224× 224. By setting different scale parameter γs, rotation parameter γa
and shift parameters γx, γy , different single perturbation [γs, γa, γx, γy] is applied on the images.

5.1.1 Perturbation Space

The parameters of scale, rotation and shift are selected in the sets:

γs ∈ {1.0, 1.1, 1.2, 1.3, 1.4}
γa ∈ {−10, 0, 10}

γx, γy ∈ {−10, 0, 10}

Therefore, there are 135 single perturbations in total. Here, the scale parameters γs is around 1.2,
for it is used during model validation.

5.1.2 Experiment Process
For each single perturbation, I go through the pipeline of image preprocessing, feature extraction,
feature storage and result calculation.

26 Chapter 5. Perturbation in Test Stage

Image Preprocessing
The image preprocessing is similar as the preprocessing during model training. It consists of

image perturbation and normalization.
The steps of image perturbation is the same as the AFFACT perturbation described in section

4.2:
Step 1: Calculate the bounding box. I use the landmarks detected by MTCNN (Zhang et al.,

2016) to calculate the bounding boxes. There may be several faces on one image, I choose the
landmarks corresponding to the biggest face. The detected landmarks are usually not precise, but
by using the calculated bounding boxes, the effect of imprecision is mitigated.

Step 2: Calculate the original face angle and scale factor. As the images are aligned in LFW
funneled, the original face angle is set to γ0 = 0, scale factor s0 = W

w = H
h , where the crop size W

= H = 224, w and h are the width and height of the bounding box.
Step 3: Image perturbation. Each single perturbation is applied on the images of LFW fun-

neled.
Finally, the data of perturbed images are normalized with mean = [0.485, 0.456, 0.406], std =

[0.229, 0.224, 0.225], which are the mean and standard deviation of ImageNet.

Feature Extraction and Storage
After the images are perturbed and normalized, the data are passed into an extractor, and the

features from the embedding layer of the extractor are outputted.
For each single perturbation, I extract the features of the perturbed LFW images by the ob-

tained baseline model ResNet51_align and the target model ResNet51. All the features are stored
in CPU hard disk for future use.

Result Calculation
Having the features in storage, I use the LFW training set of view 1 to get the best threshold and

the corresponding training accuracy, then test on the test set of view 1 and get the test accuracy
with this best threshold. The detailed calculation process is described in the pseudo code Function
2.

Function 2: Calculate Results
Input: dataset, perturbations, process =′ train′, threshold = None;
similarities, labels← Calculate_Similarities(dataset, perturbations);
if process = ’train’ then

get the threshold and EER;
predicted_labels← compute by the threshold and similarities;
accuracy ← compute by comparing predicted_labels and labels;
results← threshold, accuracy

end
else if process = ’test’ then

predicted_labels← compute by the threshold and similarities;
accuracy ← compute by comparing predicted_labels and labels;
results← accuracy

end
return results

Before calculating the accuracy, cosine similarities of the image pairs are computed. In the
pseudo code Function 3, for a single perturbation, there is only one perturbation in the parameter

5.1 Single Perturbations 27

Function 3: Calculate Similarities
Input: dataset, perturbations ;
similarities← ∅ ;
for each pair (name_1, name_2) in the dataset do

features_1← ∅ ;
features_2← ∅;
for perturbation in perturbations do

add the features of name_1 with the perturbation to features_1;
add the features of name_2 with the perturbation to features_2;

end
/* average the features of the image with the perturbations */
mean_features_1←mean(features_1);
mean_features_2←mean(features_2);
add Cosine_similarity(mean_features_1, mean_features_2) to similarities

end
get labels from dataset;
return similarities, labels

perturbations, which means the average features is still the features itself here.

5.1.3 Results
The results of ResNet51_align on perturbed images with the 135 single perturbations are shown
in the Appendix Table A.1. The results of ResNet51 on perturbed images with the 135 single
perturbations are shown in appendix Table A.3. The accuracy of each single perturbation of
ResNet51_align and ResNet51 are compared, and the result shows that 102 out of 135 single per-
turbations’ train accuracy of ResNet51 are larger than those of ResNet51_align, 122 out of 135 sin-
gle perturbations’ test accuracy of ResNet51 are larger than those of ResNet51_align. The mean
and standard deviation of the difference of train accuracy between ResNet51 and ResNet51_align
are 0.00375 and 0.00462. The mean and standard deviation of the difference of test accuracy be-
tween ResNet51 and ResNet51_align are 0.00894 and 0.00597.

To analyse the results, firstly I plot the histograms of the accuracy of ResNet51_align and
ResNet51, then I make a Mann-Whitney U test to check the statistic difference. In addition, I will
compare the top single perturbation that has the highest test accuracy with a baseline.

Histogram of Accuracy
According to the historgrams of accuracy (Figure 5.1), the accuracy of ResNet51 shift to the

right compared to that of ResNet51_align. The accuracy of ResNet51 lie in an range with greater
values than those of ResNet51_align, especially for the test accuracy.

Mann-Whitney U Test
Mann–Whitney U test is implemented to check whether the difference of the accuracy of the

two models are statistically significant or not. The null hypothesis and the alternative hypothesis
are as follow:

• H0: accuracy of ResNet51 <= accuracy of ResNet51_align.

28 Chapter 5. Perturbation in Test Stage

Figure 5.1: Histograms of Training and Test Accuracy of ResNet51 and ResNet51_align.

• Ha: accuracy of ResNet51 > accuracy of ResNet51_align.

The p_value ofH0 on training accuracy is 1.235e-17, and the p_value ofH0 on the test accuracy
is 1.088e-29. Therefore, the null hypothesis H0 is rejected, while the alternative hypothesis Ha is
accepted, which means the training and the test accuracy of ResNet51 are statistically significantly
greater than those of ResNet51_align.

The histograms and the Mann-Whitney U test indicate that compared to the baseline model
which is trained on the aligned images, the model trained on AFFACT perturbed images can
extract better features for face verification from images with large facial variance in terms of facial
misalignment, image scale and position shift.

Baseline and Top Perturbations
As the obtained models are validated on images with γs = 1.2, the baseline should be the result

of the perturbation with [γs, γa, γx, γy] = [1.2, 0, 0, 0], which produces the scaled and aligned
images. The baseline results and the results of the top single perturbations of the two models are
listed in Table 5.1. The top single perturbation refers to the one that has the highest test accuracy.
The preliminary results show:

• For both ResNet51_align and ResNet51, the top perturbations in the test stage improve the
verification accuracy compared with the baseline aligned input. (0.965 vs. 0.952 and 0.969
vs. 0.956 for ResNet51_align and ResNet51 respectively.)

• When using ResNet51_align and ResNet51 to extract features from the baseline aligned im-
ages, the face verification test accuracy is 0.952 for ResNet51_align and 0.956 for ResNet51.
ResNet51 performs a little better than ResNet51_align.

5.2 Non-weighted Combination of Perturbations 29

However, it’s doubtful whether or not the result is statistically significant. I will further discuss
the statistical conclusion in Section 5.4.

Extractor Type Perturbation
[γs, γa, γx, γy]

Train Accuracy Test Accuracy

ResNet51_align Baseline [1.2, 0, 0, 0] 0.95909 0.952
Top [1.1,−10, 0,−10] 0.96 0.965

ResNet51 Baseline [1.2, 0, 0, 0] 0.95636 0.956
Top [1.1,−10,−10, 10] 0.95727 0.969

Table 5.1: Results of Baseline and Top Perturbation. Detected landmarks are used for perturba-
tion. The accuracy is rounded to 5 decimal places, and zeros at the end are omitted.

5.2 Non-weighted Combination of Perturbations
As it is shown in the last section, the proper image perturbation in the test stage may improve
the face verification accuracy, then how about combination of the perturbations? Can the ac-
curacy increases further? In this section, I use greedy algorithm to search the non-weighted or
equal-weighted combination of the single perturbations. In stead of majority voting or averaging
predictions which are often seen in related literatures, I average the features that are extracted
from the different perturbed images.

combined_features =

∑n
i=1Extractor(Normalization(Perturbationi(original_images)))

n

where n is the number of perturbations in the combination.

5.2.1 Greedy Algorithm
The process of greedy search is described in pseudo code Function 4. I go over the 135 single
perturbations loop by loop, add one perturbation that can improve the accuracy the most in each
loop, stop the iteration when the accuracy decreases by adding one more single perturbation.
The search is conducted on the view 1 training set of LFW funneled, at the end of each loop,
the combination of selected perturbations of this loop is tested on the view 1 test set. When the
iteration stops, the best combination is chosen by the largest test accuracy.

The complete results of all loops in the greedy search listed in Appendix Table A.9 and Ta-
ble A.10.

5.2.2 Results
Based on the test accuracy, the best combination for each extractor is finally selected (Table 5.2).

30 Chapter 5. Perturbation in Test Stage

Function 4: Greedy Search

Input: train_set, test_set;
/* Initialize lists to store the best results of all loops. */
selected_perturbations_record← ∅;
train_accuracies_record← ∅;
test_accuracies_record← ∅;
global_best_threshold← −1;
global_best_accuracy ← 0 ;
loop_best_accuracy ← 0 ;
/* Initialize a list to store selected perturbation in one loop.

*/
selected_perturbations← ∅;
while loop_best_accuracy ≥ global_best_accuracy do

Accs← ∅ ;
Thresholds← ∅ ;
for perturbation_i in the perturbation space do

if perturbation_i in selected_perturbation then
continue;

else
perturbations← selected_perturbations ∪ perturbation_i;

end
threshold, accuracy ← Calculate_Results
(perturbations, train_set, process =′ train′, threshold = None);

add threshold to Thresholds;
add accuracy to Accs;

end
idx← index of max(Accs);
loop_best_accuracy ←max(Accs);
loop_best_threshold← Thresholds[idx];
if loop_best_accuracy ≥ global_best_accuracy then

global_best_accuracy ← loop_best_accuracy;
global_best_threshold← loop_best_threshold;
add perturbation_idx to selected_perturbations;
add loop_best_accuracy to train_accuracies_record ;
add selected_perturbation to selected_perturbation_record ;
/* Validate the selected perturbations on test set. */
test_accuracy ← Calculate_Results (selected_perturbations, test_set, threshold =
global_best_threshold, process =′ test′);
/* Store the validation results. */
add test_accuracy to test_accuracies_record;

else
end
index← index of the max(test_accuracies_record);
best_combination← selected_perturbations_record[index];
return best_combination

5.3 Weighted Combination of Perturbations 31

For ResNet51_align, the best test accuracy of the found perturbation combination is 0.968,
larger than that of the baseline input 0.952 and a bit larger that of the top single perturbation
0.965.

For ResNet51, the test accuracy of the best combination is 0.964, better than the baseline 0.956,
but not as good as that of the top single perturbation result 0.969. Whether the differences are
statistically significant or not will be discussed in Section 5.4.

Extractor Selected Perturbations Train Accuracy Test Accuracy

ResNet51_align [1.3, -10, 0, -10]
[1.1, -10, 0, -10]
[1.0, 10, 10, -10]
[1.2, -10, -10, -10]
[1.0, -10, 0, 0]

0.96818 0.968

ResNet51 [1.0, -10, -10, -10]
[1.0, -10, 0, 0]
[1.0, -10, 10, -10]

0.96818 0.964

Table 5.2: Perturbation Combinations Found by Greedy Algorithm. Detected Landmarks are used
in perturbations. Accuracy is rounded to 5 decimal places, zeros at the end are omitted.

5.3 Weighted Combination of Perturbations
Greedy algorithm can select a satisfactory combination of perturbations, however, perturbations
in the set are without weight difference. Simple Genetic Algorithm (SimpleGA) has the potential
to select perturbations with different weigths due to its mutation process. In this section, I design
an approach which is inspired by SimpleGA to assign different weights to single perturbations,
and search the weighted combinations that may lead to better verification accuracy.

5.3.1 General SimpleGA
The general procedure of SimpleGA consists of population initialization, fitness score calculation,
selection, crossover and mutation (Function 5). Firstly, a set of individual is initialized as the pop-
ulation. Each individual is represented by a set of variables or parameters. The set of parameters
of the individual is called the chromosome of the individual, which is usually a solution to the
problem that need to be solved. Secondly, the fitness score for each individual in the population
is computed by fitness function. The fitness score determines how fit the individual solution is
to the problem. Then, based on the fitness scores, some individuals are selected as parents for re-
production. For each pair in the parents pool, part of the chromosomes are exchanged (crossover)
and mutated to reproduce two children, and then the fitness scores of the children are calculated
to check how fit the children are. The processes of selection, crossover and mutation are repeated
until it does not produce children that are significantly different from the parents.

32 Chapter 5. Perturbation in Test Stage

Function 5: SimpleGA

population initialization;
calculate fitness score for each individual in the population;
REPEAT:

Selection;
Crossover;
Mutation;
Calculate fitness scores for each child;

UNTIL population has converged;
return

5.3.2 SimpleGA Variant Approach
In my work, I do not follow the standard procedure of SimpleGA, while I try a variant approach.
The individual is defined as [w, γs, γa, γx, γy], in which w is the weight parameter, γs, γa, γx, γy
are the perturbation parameters. The population is the 135 single perturbations with weights.
The verification accuracy of each perturbation is already known. What I would like to do is to
use the variation of SimpleGA to search the weighted combination of perturbations and check
the verification accuracy when using the weighted combination of perturbations. My approach is
illustrated by Figure 5.2 and pseudo code Function 6.

Individual and Population
As it is mentioned above, the individual is defined as [w, γs, γa, γx, γy], where γs, γa, γx, γy are

the perturbation parameters, w is the weight assigned to this perturbation. The perturbation
parameters are selected in the sets:

γs ∈ {1.0, 1.1, 1.2, 1.3, 1.4}
γa ∈ {−10, 0, 10}

γx, γy ∈ {−10, 0, 10}

Therefore, the population includes 135 individuals.

Weight Initialization
There are many ways to initialize weights of perturbations. I try to initialize the weights with

three different methods.

• Equal: Initialize equal weights for each perturbation by assigning a number. In implemen-
tation, I set a positive integer to the equal weight.

• Unequal: Initialize unequal weights for perturbations by randomly selecting weights from
a range. In implementation, positive integers that are randomly selected from a range are
assigned to the weights.

• Gaussian: Initialize weights from a Gaussian distribution. In implementation the standard
deviation is 1, by setting the mean, different Gaussian distribution can be generated. The
weights are all rounded to three decimal places, and the negative weights are replaced by 0.

5.3 Weighted Combination of Perturbations 33

Figure 5.2: Illustration of SimpleGA Variant Approach.

34 Chapter 5. Perturbation in Test Stage

Function 6: SimpleGA Variant Approach

Input: population;
population←weight_initialization(population, ...);
parents← Selection(population, ...);
generation← 0;
scores← ∅;
combinations← ∅;
while generation < max_iteration do

generation += 1;
score, selected_individuals← Calculate_Accuracy_of_Combination(parents, ...);
scores.append(score);
combinations.append(selected_individuals);
if number of parents <= 1 then

break;
end
children← ∅;
for each pair (parent1, parent2) in parents do

for child in crossover(parent1, parent2) do
child←mutation(child);
if the weight parameter of child > 0 then

children.append(child);
end

end
if number of parents is odd then

add the parent who doesn’t have partner to children;
end
parents← generation_replacement(parents, children,...);
if parents is ∅ then

break;
end

end
end
return scores, combinations

5.3 Weighted Combination of Perturbations 35

Selection
Different methods can be used to select parents, such as (1) elite selection: select top individuals

that have top fitness scores; (2) tournament selection: randomly select pairs, compare the fitness
score between the two and put the better one of each pair into the parent pool.

Here, I use the elite selection method. Based on the 135 single perturbation results in section
5.1, I select n top individuals as parents for reproduction based on the training accuracy of the
perturbations. I do the selection based on the training accuracy but not the test accuracy for the
reason that the experiment should be conducted on the training dataset. The test dataset is used
to test the found combinations of perturbations.

In the general procedure of SimpleGA, the selection process should be included in the itera-
tion. However, in my approach, I do not repeat selection, but select the parents for one time. It
leads to a limitation that the approach can not search the whole population space.

Accuracy of the Combination
Verification accuracy is calculated in the process shown in Function 2. However, when comput-

ing similarity, the combined features are not calculated by averaging the features from different
perturbations, but by combining them with weights.

combined_features =

∑n
i=1Weighti × Extractor(Normalization(Perturbationi(original_images)))∑n

i=1Weighti

Where n is the number of perturbations in the combination.

In each generation, I select the combination of perturbations by two methods:

• Simple: simply use all weighted perturbations in the parent generation, and calculate the
training and test accuracy. When using this method, all individuals in the parent generation
are selected into the combination.

• Greedy_search: greedy search the weighted combination of perturbations in the parent
generation, calculate the train and test accuracy and return the weighted combination with
the greatest test accuracy. When using the method, part of the individuals in the parent
generation will be selected to form the combination.

Crossover
In the process of crossover, pairs of individuals are selected from the parent generation, chro-

mosomes of each pairs are crossed over to produce two children. Here the chromosomes refer to
the weight and perturbation parameters, which is [w, γs, γa, γx, γy]. Figure 5.3 explains the cross
over procedure. The crossover point is randomly selected from the range [1, 3].

Mutation
The chromosomes of children are randomly mutated by mutation masks [mw,mγs ,mγa ,mγx ,mγy]

which are randomly generated with

mw ∈ {−1, 1}
mγs ∈ {−0.1, 0, 0.1}
mγa ∈ {−10, 0, 10}

mγx ,mγy ∈ {−10, 0, 10}

36 Chapter 5. Perturbation in Test Stage

Figure 5.3: Illustration of Crossover. Weights are in red font, perturbation parameters are in blue
font.

As the purpose is to use the genetic algorithm to get the weighted combination of the per-
turbations, the mutation will not produce new single perturbations that are outside of the 135
perturbations. If the mutated weight of a perturbation is 0, it is excluded from the children gen-
eration.

Pseudo code Function 7 explains the procedure I use to implement such mutation. Figure 5.4
is an example of the mutation.

Function 7: Mutation
Input: weighted perturbation [w, γs, γa, γx, γy] ;
mw ← randomly select from {-1, 1} ;
mγs ← randomly select from {-0.1, 0, 0.1} ;
mγa ,mγx ,mγy ← randomly select from {-10, 0, 10} ;
w ← w +mw ;
if γs +mγs in a certain range then

γs ← γs +mγs

end
if γa ∗mγa ≤ 0 then

γa ← γa +mγa

end
if γx ∗mγx ≤ 0 then

γx ← γx +mγx

end
if γy ∗mγy ≤ 0 then

γy ← γy +mγy

end
return [w, γs, γa, γx, γy]

Generation Replacement
To update the generation, I try two ways:

• Cover: the parent generation are all replaced by the children.

• Merge: merge top percentage of individuals in the current parent generation with the top
percentage of individuals in the children generation to get the next parent generation. The
top individuals are selected based on the training accuracy of the individual perturbations.

5.3 Weighted Combination of Perturbations 37

Figure 5.4: Illustration of Mutation. Conditions control the mutation to limit the mutated pertur-
bation still in the 135 perturbations. The weights are marked in red, the perturbation parameters
are in blue font.

Stop Condition
The iteration stops when (1) max_iteration is reached; (2) number of parents <= 1.

5.3.3 Results
To run this SimpleGA variant approach, there are several hyperparameters that need to be set
besides the hyperparameter "max iteration". I list them in Table 5.3.

Selection Weight Initialization Combination Generation
Replacement

Elite (Top n) · Equal (Weight w)
· unequal (Range of weight)
· Gaussian (Dist. Mean µ)

· simple
· greedy_search

· cover
·merge (rate)

Table 5.3: Hyperparameters of the SimpleGA Variant Approach. The items in the table represent
different methods in each process, and the texts inside the brackets behind the items denote the
hyperparameters that should be set. For example, in the process of Generation Replacement,
when the method is ’merge (0.5)’, it means 50% top parents and 50% top children are merged
together to form the next parent generation.

The SimpleGA variant approach result strongly depends on the hyperparameters. By ex-
perimenting different hyperparameters, the top weighted combinations of perturbations for the
two extractors are returned. I present the top weighted combinations of perturbations and the
hyperparameters to reach them in the Table 5.4. The test accuracy of the top combination for
ResNet51_align is 0.966, larger than the baseline of ResNet51_align; the test accuracy of the top
combination for ResNet51 is 0.968, which is greater than the baseline of ResNet51.

Here, the top one is probably not the optimal one, for this approach can not search the whole

38 Chapter 5. Perturbation in Test Stage

population space and randomness is involved in the procedure. In addition, the search result also
strongly depends on the selection method, however, some potential selection methods are not
experimented.

Extractor Conditions Selected
Perturbations
[γs, γa, γx, γy]

Weights Train
Accuracy

Test
Accuracy

ResNet51_align Max iteration: 50
Elite selection: Top 12
Weight initialization: equal (5)
Combination method: simple
Generation replacement: cover

[1.1, 10, 10, 10]
[1.1, 0, 10, -10]
[1.1, -10, 10, 10]
[1.0, 0, 0, 0]
[1.1, 0, 10, 0]
[1.2, -10, 10, -10]
[1.2, -10, -10, 0]
[1.1, -10, 10, 10]
[1.3, -10, 10, -10]

12.5%
12.5%
12.5%
7.5%
17.5%
12.5%
12.5%
2.5%
10%

0.96182 0.966

ResNet51 Max iteration: 15
Elite selection: Top 5
Weight initialization:
unequal([1, 5])
Combination method: simple
Generation replacement: cover

[1.0, -10, 10, 0]
[1.2, 10, 0, 0]
[1.1, -10, -10, 0]
[1.0, 10, 10, 0]

25%
25%
31.25%
18.75%

0.96 0.968

Table 5.4: Weighted Perturbation Combinations Found by SimpleGA Variant Approach. "Elite
selection: Top 5" means select the 5 single perturbations that have the top 5 greatest accuracy
on the training set. "Weight initialization: unequal([1, 5])" means initializing each weight by
randomly selecting an integer in the range [1,5]. "Combination method: simple" means to choose
the combination of perturbations by the ’simple’ method. "Generation replacement: cover" means
the parent generation is replaced by the children generation totally. All accuracy are rounded to
5 decimal places, zeros at the end are omitted. Detected landmarks are used for perturbation.
Accuracy is rounded to 5 decimal places, zeros at the end are omitted.

5.4 Results Comparison and Test on View 2 Dataset
To refresh the memory of all the results mentioned previously, I hereby put together the results
of baseline, single top perturbation, non-weighted perturbation combination found by greedy
algorithm and top weighted perturbation combination found by SimpleGA variant approach.
Besides, these different situations of perturbation are tested on the LFW view 2 dataset (the 10-
fold cross validation) for a final report. The results of ResNet51_align and ResNet are in Table 5.5.

Based on verification accuracy of the 10 folds cross validation, top single perturbation result,
greedy searched result and the result of SimpleGA variant approach are all greater than the base-
lines for both models. Among them, the greedy search results boost the performance of models
the most.

Compared with the view 2 mean test accuracy of the baselines, greedy searched combinations

5.4 Results Comparison and Test on View 2 Dataset 39

ResNet51_align ResNet51

Selected

Perturbations

Weights View 1 Test

Accuracy

View 2 Test

Mean Acc ± Std.

Selected

Perturbations

Weights View 1 Test

Accuray

View 2 Test

Mean Acc ± Std.

Baseline [1.2, 0, 0, 0] None 0.952 0.96 ± 0.00741

(0%)

[1.2, 0, 0, 0] None 0.956 0.95983 ± 0.00547

(0%)

Single [1.1, -10, 0, -10] None 0.965 0.96033 ± 0.0103

(0.825%)

[1.1, -10, -10, 10] None 0.969 0.96283 ± 0.00733

(7.468%)

Greedy [1.3, -10, 0, -10]

[1.1, -10, 0, -10]

[1.0, 10, 10, -10]

[1.2, -10, -10, -10]

[1.0, -10, 0, 0]

Equal 0.968 0.96667 ± 0.00913

(16.675%)

[1.0, -10, -10, -10]

[1.0, -10, 0, 0]

[1.0, -10, 10, -10]

Equal 0.964 0.96767 ± 0.00589

(19.517%)

SimpleGA [1.1, 10, 10, 10]

[1.1, 0, 10, -10]

[1.1, -10, 10, 10]

[1.0, 0, 0, 0]

[1.1, 0, 10, 0]

[1.2, -10, 10, -10]

[1.2, -10, -10, 0]

[1.1, -10, 10, 10]

[1.3, -10, 10, -10]

12.5%

12.5%

12.5%

7.5%

17.5%

12.5%

12.5%

2.5%

10%

0.966 0.96367 ± 0.00834

(9.175%)

[1.0, -10, 10, 0]

[1.2, 10, 0, 0]

[1.1, -10, -10, 0]

[1.0, 10, 10, 0]

25%

25%

31.25%

18.75%

0.968 0.9645 ± 0.0069

(11.626%)

Table 5.5: Result Comparison. The top single perturbation and the best perturbation combination
are chosen according to the test accuracy on the view 1 test dataset, then they are tested on the
view 2 dataset to get the view 2 test accuracy as the final report. Percentage in the parenthe-
ses is the reduction of error rate compared with the baseline. Detected landmarks are used for
perturbations. Accuracy is rounded to 5 decimal places, zeros at the end are omitted.

reduce the error rate, which is defined as 1 - accuracy, by 16.675% and 19.517% for ResNet51_align
and ResNet51 respectively. SimpleGA variant approach reduces the error rate by 9.175% and
11.626% for ResNet51_align and ResNet51 respectively. Top single perturbation improves the
performance very little for ResNet51_align, while it reduces the error rate by 7.468% for ResNet51.

T-tests are run to check whether the mean difference of different situations of perturbations
are significant or not. Table 5.6 shows the p-value of each test.

Firstly, different perturbation results are compared with the baseline for the two models. It
shows the mean accuracy difference between greedy search result and baseline result is statis-
tically significant at 90% confidence level for ResNet51_align and at 99% confidence level for
ResNet51. The improvement made by greedy search is statistically significant. The mean accuracy
difference between SimpleGA varaint approach and baseline is statistically significant at 88% con-
fidence level for ResNet51, while the difference is not statistically significant for ResNet51_align.
In addition, the difference between the top single perturbation result and baseline result is not
statistically significant for both models.

Secondly, different situations of perturbation are compared pairwisely. The mean accuracy
difference between Greedy search results and top single perturbations are statistically significant
at 83% confidence level for both models, while results of SimpleGA variant approach and top
single perturbation has no significant difference. The difference between greedy search and Sim-
pleGA variant approach is significant at 70% confidence level for ResNet51, while the two has no
significant difference for ResNet51_align.

Furthermore, the difference between the two models at each situation of perturbation is com-
pared. The p-values of T-tests are shown in Table 5.7.

The p-value of T-test for the two baseline is 0.955, which informs that the baseline result of the

40 Chapter 5. Perturbation in Test Stage

ResNet51_align ResNet51

Baseline vs. Single 0.934 0.313
Baseline vs. Greedy 0.09 * 0.006 **
Baseline vs. SimpleGA 0.313 0.111
Single vs. Greedy 0.163 0.121
Single vs. SimpleGA 0.437 0.607
Greedy vs. SimpleGA 0.453 0.284

Table 5.6: P_Values Of T-Tests. ** 99% confidence level, * 90% conficence level. Detected land-
marks are used in perturbations.

ResNet51_align vs. ResNet51

Baseline 0.955
Single 0.54
Greedy 0.774
SimpleGA 0.81

Table 5.7: T Tests to Compare Two Models at the Same Situations of Perturbation. P_value of each
test is listed in the table. Detected landmarks are used in perturbations.

two models have no significant difference. The p-values for the top single perturbation, greedy,
SimpleGA of the two models are 0.540, 0.774, 0.810 respectively, which shows the two models
have no significant difference on their top single perturbations, combinations found by greedy
and combinations found by SimpleGA.

The comparisons reveal several findings:

• Model trained on the AFFACT-perturbed images (ResNet51) can extract features of aligned
images (baseline) as good as model trained on aligned images (ResNet51_align), for their
baselines have no significant difference.

• Proper single perturbation in the test stage may improve face verification accuracy for both
models, but T-test shows the effect is not significant.

• Non-weighted combination of perturbations found by greedy algorithm in the test stage
boost the performance of both models. The results are statistically larger than the results of
baselines.

• Weighted combination of perturbations found by SimpleGA variant approach are not as
good as the non-weighted combinations found by greedy algorithm. The result of this ap-
proach strongly depends on the large amount of experiments, the hyperparameters, and the
methods of selection and generation replacement. More satisfactory results could be found
if experimenting more and changing to some other selection methods.

• The test time perturbation can boost the performance of the two models to the same level, as
the result difference of the same boosting method is not statistically significant for ResNet51_align
and ResNet51 when using the LFW funneled dataset.

5.4 Results Comparison and Test on View 2 Dataset 41

In conclusion, model trained with AFFACT technique (ResNet51) has better performance on
images with large variance than model trained on aligned images (ResNet51_align), as the result
of the 135 single perturbations reveals in the histogram of accuracy and the Mann-Whitney U
Test in the Section 5.1. ResNet51 works as good as ResNet51_align on the baseline aligned faces
of LFW funneled. In addition, proper combination of perturbations in the test time can boost the
model performance.

Chapter 6

Discussion

1. Why slightly modify AFFACT?
The scale parameter is Gaussian distributed with mean 1.0 and standard deviation 0.1 in the

original research (Günther et al., 2017). The original work was conducted on CeleA dataset for
facial attribute classification. As the training database and model task are changed, the scale pa-
rameter may not be suitable for my work. Therefore, I trained models with scale parameter of
different distributions. ResNet51_aign and ResNet51 are trained with both γ̃s ∼ N(1.0, 0.1) and
γ̃s ∼ N(1.2, 0.1). The best validation EER for different scale parameters is shown in Table 6.1.
N(1.2, 0.1) comes to the lower validation EER for both models, so I modify the mean of the distri-
bution to 1.2.

ResNet51_align ResNet51

N(1.0, 0.1) 0.0594 0.0616
N(1.2, 0.1) 0.0562 0.0576

Table 6.1: Best Validation EERs. The best validation EERs when using different normal distribu-
tion of scale parameter to preprocess training images.

2. How about directly use detected bounding boxes for test time perturbations?
With AFFACT model, the landmarks are not necessarily needed. Detected bounding boxes can

be directly used for perturbation in the test stage. I use the MTCNN detected bounding boxes
for single perturbations and compared the results of the two models. Historgram of Accuracy
is plotted (Figure 6.1) and Mann-Whitney U test is conducted. The p_value of H0 on training
accuracy is 6.40e-08, and the p_value of H0 on the test accuracy is 4.38e-19. The result reveals the
same fact that ResNet51 is more robust to facial variance than ResNet51_align.

Combinations of perturbations are also searched by greedy and SimpleGA variant approach,
then all situations of perturbations are tested on view 2 dataset of LFW funneled (Table 6.2). T
tests are conducted as well (Table 6.3). The conclusion is similar as in Section 5.4. The combination
of perturbations found by greedy algorithm boost the model performance the most, reducing the
error rate by 18.441% for ResNet51_align and 16.453% ResNet51, and the mean accuracy differ-
ences between greedy search result and baseline result is statistically significant at 95% confidence
level. The combinations found by SimpleGA reduce the error rate by 13.941% for ResNet51_align
and 5.786% for ResNet51, but at a low confidence level.

44 Chapter 6. Discussion

Figure 6.1: Histograms of Accuracy of ResNet51_align and ResNet51. Detected bounding boxes
are used in perturbation.

However, the scale parameters of the selected perturbations vary a lot from those perturba-
tions performed with detected landmarks. For perturbation with detected landmarks, the scale
parameters of the selected perturbations are around 1.1 - 1.3, however for the detected bounding
boxes, the scale parameters are around 0.5 - 0.6.

3. Why the scale parameters of the found perturbations differ a lot from those of perturba-
tions by using detected landmarks?

The reason is that the heights and widths of the detected bounding boxes are smaller than the
bounding boxes calculated by detected landmarks. As it’s shown in Figure 6.2, the red rectan-
gle on the original image is the detected bounding box, scale is calculated by s = min(Ww ,

H
h) · γs,

where W and H are the crop size, w and h are the width and height of the bounding box. The blue
dots on the original image are the detected landmarks. To calculated bounding box by the land-
marks, the distance d between eye center and mouth center is computed at first, then the width
and height of bounding box are set as w = h = d · 5.5. The width and height of the calculated
bounding box are quite high, greater than the detected ones. That is why by detected landmarks,
the scale parameter γs is larger to realize the same scale s.

For this specific image sample in Figure 6.2, the width and height of bounding box calculated
by the landmarks extend the full size of the image.

Figure 6.2 also visually compares different scale parameters for the two cases. The scaling of
face with γs = 0.5 by detect bounding boxes is close to those with γs = 1.1 or 1.2 by detect
landmarks.

The visual comparison also shows that when adding the scale parameter by 0.1, the image
upscales more by using detected bounding box than by using detect landmarks. That is why
the the scale parameters of the selected perturbations conducted with detected landmarks scatter

45

ResNet51_align ResNet51

Selected

Perturbations

Weights View 1 Test

Accuracy

View 2 Test

Accuracy

Selected

Perturbations

Weights View 1 Test

Accuracy

View 2 Test

Accuracy

Baseline [0.5, 0, 0, 0] None 0.962 0.95933 ± 0.00794

(0%)

[0.5, 0, 0, 0] None 0.962 0.9625 ± 0.00498

(0%)

Single [0.5, 0, 0, 10] None 0.963 0.95683 ± 0.01357

(-6.147%)

[0.5, -10, 0, 0] None 0.969 0.96533 ± 0.00745

(7.547%)

Greedy [0.5, -10, 0, 10]

[0.5, -10, 10, -10]

[0.5, -10, 0, 0]

[0.5, 0, 0, -10]

[0.5, 0, 10, 10]

[0.5, -10, -10, -10]

[0.5, 0, 0, 10]

[0.5, -10, 0, -10]

[0.5, 0, 0, 0]

[0.5, 10, 10, -10]

[0.5, -10, 10, 0]

[0.6, -10, 0, 10]

[0.5, 0, 10, -10]

[0.5, 10, 0, 10]

Equal 0.97 0.96683 ± 0.00687

(18.441%)

[0.5, 0, 10, -10]

[0.5, -10, -10, 10]

[0.5, -10, -10, -10]

[0.5, 10, 10, 0]

[0.5, -10, -10, 0]

[0.5, -10, 0, -10]

[0.5, 10, 0, -10]

[0.5, -10, 0, 10]

[0.5, -10, 10, 0]

[0.5, 10, 0, 10]

[0.5, 0, 10, 10]

[0.5, -10, 10, -10]

Equal 0.97 0.96867 ± 0.00618

(16.453%)

SimpleGA [0.5, 0, 10, -10]

[0.5, -10, 0, 10]

33.333%

66.667%

0.969 0.965 ± 0.00885

(13.941%)

[0.5, 10, 0, 0]

[0.5, 10, 10, 0]

66.667%

33.333%

0.97 0.96467 ± 0.00637

(5.786%)

Table 6.2: Result Comparison (Bounding Box). Detected bounding boxes are used in perturba-
tions. The top single perturbation and the best perturbation combination are chosen according to
the test accuracy on the view 1 test dataset, then they are tested on the view 2 dataset to get the
view 2 test accuracy as the final report. Percentage in the parentheses is the reduction of error
rate compared with the baseline. Accuracy is rounded to 5 decimal places, zeros at the end are
omitted.

among 1.0 - 1.3, while those with detected bounding boxes dense at 0.5. It also explains why the
histogram scatters in a wider range of accuracy here.

4. Why the baseline is chosen as [0.5, 0, 0, 0] when using detected bounding boxes to
perform perturbations?

As the detected bounding box varies a lot from the bounding box calculated by the landmarks,
the values of scale parameter γs are quite different to achieve the same scale s for the two methods.
Therefore, the γs = 1.2 can not be set as the baseline here. As Figure 6.2 shows, the scale with
γs = 0.5 when using detected bounding box for perturbation is similar to the scale with γs = 1.2
when using detected landmarks for perturbation, so I choose [γs, γa, γx, γy] = [0.5, 0, 0, 0] as the
baseline here.

5. Same verification accuracy for different perturbations
The number of pairs is not large in LFW dataset, so verification accuracy of many different sin-

gle perturbations are the same or differ slightly. Other larger datasets may be chosen to perform
the model test. One point needs to be mentioned is that the dataset biases can affect the general-
ization across datasets. Phillips (2017) compared different test dataset for VGGFace model for face
recognition. He found that the model can achieve high accuracy on LFW and YTF, yet obtained

46 Chapter 6. Discussion

ResNet51_align ResNet51

Baseline vs. Single 0.621 0.331
Baseline vs. Greedy 0.037 ** 0.024 **
Baseline vs. SimpleGA 0.149 0.408
Single vs. Greedy 0.052 * 0.290
Single vs. SimpleGA 0.128 0.832
Greedy vs. SimpleGA 0.611 0.171

Table 6.3: P_Values of T-Tests (Bounding Box). ** 95% confidence level, * 90% confidence level.
Detected bounding boxes are used in perturbations.

very low accuracy on Ugly and Bad datasets (Phillips et al., 2011). Therefore, when selecting other
test dataset, the dataset bias should be considered.

6. Other approach to use SimpleGA
The SimpleGA variant approach I use in this thesis is not a standard SimpleGA approach, and it

has a severe limitation, that is the pool of individuals selected for reproduction is limited. I select
some top individuals from the population, and then the reproduction is based on these individu-
als. Although mutation can introduce some other individual perturbations into the reproduction
process, it cannot search the whole space of the population effectively. Other approaches could
be designed to use the SimpleGA, for instance, an individual could be defined as a vector of 135
weights, each element of the vector corresponds to the weight of a perturbation, and the pop-
ulation can be initialized as several 135-dimension vectors. In this way, a standard SimpleGA
approach can be implemented, and the result could be more promising.

7. Loss function
In my work, I use the categorical cross entropy loss to train the face recognition model. How-

ever, the loss is not sufficiently effective for the intra-person variations could be greater than the
inter-person differences. Other loss function may be used to optimize the model, such as CosFace,
ArcFace loss.

47

Figure 6.2: LFW Image Samples with Different Scale Parameters. The red rectangle on the original
image is the detected bounding box, and the blue dots on the original image are the detected land-
marks. The first row of perturbed images are with scale factor s0 calculated by detected bounding
boxes; the second row of perturbed images are with scale factor s0 computed by detected land-
marks.

Chapter 7

Conclusion

In this thesis, a target model (ResNet51) is trained with AFFACT technique and a baseline model
(ResNet51_align) is trained on aligned images for comparison. 135 perturbations are experi-
mented in the test time for both models. The results of 135 perturbations reveal that model
trained with AFFACT technique extracts better features for face verification from LFW images
with large variance. I also use optimization algorithms (greedy and SimpleGA variant approach)
to search for the satisfactory combinations of perturbations. It shows that combination of pertur-
bations in the test time can boost the model performance. Compared with the baselines in the
test time, greedy searched combinations reduce the error rate of face verification by 16.675% and
19.517% for ResNet51_align and ResNet51 respectively, and combinations found by SimpleGA
variant approach reduce the error rate by 9.175% and 11.626% for ResNet51_align and ResNet51
respectively.

Using Evolutionary algorithm for data augmentation is an emerging research field in recent
years. In this thesis, I use an approach inspired by SimpleGA to search the perturbation combi-
nations, in which the chromosome of an individual is the weight and perturbation parameters.
Based on the results, this approach is not effective enough, other SimpleGA methods could be
experimented to improve the performance. Besides, other large test dataset could be adopted for
more precise results, and the model could be optimized by using other loss functions.

Appendix A

Attachements

52 Appendix A. Attachements

Table A.1: Single Perturbation Results of ResNet51_align Part 1 (Landmarks). Detected land-
marks are used in perturbations.

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
1 [1.0, -10, -10, -10] 0.95455 0.95 46 [1.1, 10, -10, -10] 0.95 0.944
2 [1.0, -10, -10, 0] 0.95091 0.953 47 [1.1, 10, -10, 0] 0.94818 0.952
3 [1.0, -10, -10, 10] 0.95182 0.953 48 [1.1, 10, -10, 10] 0.95091 0.95
4 [1.0, -10, 0, -10] 0.95455 0.961 49 [1.1, 10, 0, -10] 0.95364 0.959
5 [1.0, -10, 0, 0] 0.95636 0.96 50 [1.1, 10, 0, 0] 0.95455 0.953
6 [1.0, -10, 0, 10] 0.95455 0.962 51 [1.1, 10, 0, 10] 0.95545 0.958
7 [1.0, -10, 10, -10] 0.95091 0.949 52 [1.1, 10, 10, -10] 0.94818 0.949
8 [1.0, -10, 10, 0] 0.95182 0.949 53 [1.1, 10, 10, 0] 0.94818 0.955
9 [1.0, -10, 10, 10] 0.94636 0.95 54 [1.1, 10, 10, 10] 0.95091 0.948
10 [1.0, 0, -10, -10] 0.95182 0.951 55 [1.2, -10, -10, -10] 0.95909 0.955
11 [1.0, 0, -10, 0] 0.95273 0.961 56 [1.2, -10, -10, 0] 0.95273 0.953
12 [1.0, 0, -10, 10] 0.95455 0.953 57 [1.2, -10, -10, 10] 0.95455 0.947
13 [1.0, 0, 0, -10] 0.95455 0.955 58 [1.2, -10, 0, -10] 0.95727 0.958
14 [1.0, 0, 0, 0] 0.95545 0.963 59 [1.2, -10, 0, 0] 0.95636 0.954
15 [1.0, 0, 0, 10] 0.94909 0.953 60 [1.2, -10, 0, 10] 0.95909 0.963
16 [1.0, 0, 10, -10] 0.95455 0.951 61 [1.2, -10, 10, -10] 0.96 0.957
17 [1.0, 0, 10, 0] 0.94909 0.959 62 [1.2, -10, 10, 0] 0.95727 0.951
18 [1.0, 0, 10, 10] 0.95273 0.948 63 [1.2, -10, 10, 10] 0.95455 0.95
19 [1.0, 10, -10, -10] 0.94818 0.95 64 [1.2, 0, -10, -10] 0.95364 0.948
20 [1.0, 10, -10, 0] 0.94545 0.951 65 [1.2, 0, -10, 0] 0.95455 0.954
21 [1.0, 10, -10, 10] 0.94909 0.953 66 [1.2, 0, -10, 10] 0.95636 0.951
22 [1.0, 10, 0, -10] 0.94909 0.951 67 [1.2, 0, 0, -10] 0.95727 0.954
23 [1.0, 10, 0, 0] 0.94364 0.959 68 [1.2, 0, 0, 0] 0.95909 0.952
24 [1.0, 10, 0, 10] 0.95091 0.955 69 [1.2, 0, 0, 10] 0.95636 0.949
25 [1.0, 10, 10, -10] 0.94364 0.95 70 [1.2, 0, 10, -10] 0.95636 0.958
26 [1.0, 10, 10, 0] 0.94545 0.959 71 [1.2, 0, 10, 0] 0.95727 0.96
27 [1.0, 10, 10, 10] 0.94273 0.951 72 [1.2, 0, 10, 10] 0.95545 0.961
28 [1.1, -10, -10, -10] 0.95364 0.952 73 [1.2, 10, -10, -10] 0.95364 0.95
29 [1.1, -10, -10, 0] 0.95636 0.956 74 [1.2, 10, -10, 0] 0.95182 0.944
30 [1.1, -10, -10, 10] 0.95455 0.957 75 [1.2, 10, -10, 10] 0.95273 0.951
31 [1.1, -10, 0, -10] 0.96 0.965 76 [1.2, 10, 0, -10] 0.95545 0.96
32 [1.1, -10, 0, 0] 0.95909 0.961 77 [1.2, 10, 0, 0] 0.95364 0.95
33 [1.1, -10, 0, 10] 0.96 0.96 78 [1.2, 10, 0, 10] 0.95273 0.958
34 [1.1, -10, 10, -10] 0.95455 0.951 79 [1.2, 10, 10, -10] 0.95545 0.951
35 [1.1, -10, 10, 0] 0.95455 0.949 80 [1.2, 10, 10, 0] 0.94818 0.954
36 [1.1, -10, 10, 10] 0.95273 0.954 81 [1.2, 10, 10, 10] 0.95091 0.951
37 [1.1, 0, -10, -10] 0.95182 0.958 82 [1.3, -10, -10, -10] 0.95818 0.951
38 [1.1, 0, -10, 0] 0.95182 0.959 83 [1.3, -10, -10, 0] 0.95455 0.948
39 [1.1, 0, -10, 10] 0.95364 0.953 84 [1.3, -10, -10, 10] 0.95273 0.944
40 [1.1, 0, 0, -10] 0.96 0.96 85 [1.3, -10, 0, -10] 0.96091 0.946
41 [1.1, 0, 0, 0] 0.96 0.96 86 [1.3, -10, 0, 0] 0.95545 0.951
42 [1.1, 0, 0, 10] 0.95455 0.957 87 [1.3, -10, 0, 10] 0.95455 0.954
43 [1.1, 0, 10, -10] 0.95636 0.952 88 [1.3, -10, 10, -10] 0.95364 0.95
44 [1.1, 0, 10, 0] 0.95 0.958 89 [1.3, -10, 10, 0] 0.95545 0.946
45 [1.1, 0, 10, 10] 0.95727 0.95 90 [1.3, -10, 10, 10] 0.95182 0.946

53

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
91 [1.3, 0, -10, -10] 0.95455 0.953 114 [1.4, -10, 0, 10] 0.95182 0.944
92 [1.3, 0, -10, 0] 0.95545 0.952 115 [1.4, -10, 10, -10] 0.95182 0.94
93 [1.3, 0, -10, 10] 0.95273 0.943 116 [1.4, -10, 10, 0] 0.95 0.949
94 [1.3, 0, 0, -10] 0.95636 0.947 117 [1.4, -10, 10, 10] 0.95273 0.94
95 [1.3, 0, 0, 0] 0.96 0.944 118 [1.4, 0, -10, -10] 0.95273 0.949
96 [1.3, 0, 0, 10] 0.95545 0.943 119 [1.4, 0, -10, 0] 0.94909 0.949
97 [1.3, 0, 10, -10] 0.95545 0.952 120 [1.4, 0, -10, 10] 0.95182 0.934
98 [1.3, 0, 10, 0] 0.95455 0.955 121 [1.4, 0, 0, -10] 0.95545 0.943
99 [1.3, 0, 10, 10] 0.95364 0.949 122 [1.4, 0, 0, 0] 0.95636 0.942
100 [1.3, 10, -10, -10] 0.95273 0.943 123 [1.4, 0, 0, 10] 0.95455 0.937
101 [1.3, 10, -10, 0] 0.95455 0.948 124 [1.4, 0, 10, -10] 0.95455 0.95
102 [1.3, 10, -10, 10] 0.95182 0.948 125 [1.4, 0, 10, 0] 0.95636 0.95
103 [1.3, 10, 0, -10] 0.95364 0.95 126 [1.4, 0, 10, 10] 0.95364 0.945
104 [1.3, 10, 0, 0] 0.95455 0.948 127 [1.4, 10, -10, -10] 0.94818 0.949
105 [1.3, 10, 0, 10] 0.95545 0.948 128 [1.4, 10, -10, 0] 0.94455 0.949
106 [1.3, 10, 10, -10] 0.95364 0.952 129 [1.4, 10, -10, 10] 0.94909 0.954
107 [1.3, 10, 10, 0] 0.95182 0.957 130 [1.4, 10, 0, -10] 0.95091 0.941
108 [1.3, 10, 10, 10] 0.95091 0.942 131 [1.4, 10, 0, 0] 0.95273 0.945
109 [1.4, -10, -10, -10] 0.95182 0.946 132 [1.4, 10, 0, 10] 0.95 0.939
110 [1.4, -10, -10, 0] 0.95545 0.949 133 [1.4, 10, 10, -10] 0.94636 0.951
111 [1.4, -10, -10, 10] 0.95273 0.944 134 [1.4, 10, 10, 0] 0.94818 0.95
112 [1.4, -10, 0, -10] 0.95273 0.945 135 [1.4, 10, 10, 10] 0.95 0.946
113 [1.4, -10, 0, 0] 0.95364 0.944

Table A.2: Single Perturbation Results of ResNet51_align Part 2 (Landmarks). Detected land-
marks are used in perturbations.

54 Appendix A. Attachements

Table A.3: Single Perturbation Results of ResNet51 Part 1 (Landmarks) . Detected landmarks are
used in perturbations.

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
1 [1.0, -10, -10, -10] 0.96727 0.96 46 [1.1, 10, -10, -10] 0.95818 0.967
2 [1.0, -10, -10, 0] 0.96091 0.962 47 [1.1, 10, -10, 0] 0.96 0.968
3 [1.0, -10, -10, 10] 0.96 0.961 48 [1.1, 10, -10, 10] 0.95636 0.964
4 [1.0, -10, 0, -10] 0.96 0.961 49 [1.1, 10, 0, -10] 0.95818 0.962
5 [1.0, -10, 0, 0] 0.95909 0.964 50 [1.1, 10, 0, 0] 0.95909 0.964
6 [1.0, -10, 0, 10] 0.95909 0.962 51 [1.1, 10, 0, 10] 0.95818 0.962
7 [1.0, -10, 10, -10] 0.96182 0.955 52 [1.1, 10, 10, -10] 0.95909 0.968
8 [1.0, -10, 10, 0] 0.96 0.959 53 [1.1, 10, 10, 0] 0.96 0.961
9 [1.0, -10, 10, 10] 0.96 0.963 54 [1.1, 10, 10, 10] 0.96091 0.957
10 [1.0, 0, -10, -10] 0.95818 0.958 55 [1.2, -10, -10, -10] 0.95545 0.964
11 [1.0, 0, -10, 0] 0.95455 0.966 56 [1.2, -10, -10, 0] 0.95818 0.962
12 [1.0, 0, -10, 10] 0.95364 0.964 57 [1.2, -10, -10, 10] 0.95636 0.963
13 [1.0, 0, 0, -10] 0.95636 0.961 58 [1.2, -10, 0, -10] 0.95727 0.963
14 [1.0, 0, 0, 0] 0.95545 0.962 59 [1.2, -10, 0, 0] 0.95636 0.961
15 [1.0, 0, 0, 10] 0.95636 0.963 60 [1.2, -10, 0, 10] 0.95636 0.961
16 [1.0, 0, 10, -10] 0.96091 0.967 61 [1.2, -10, 10, -10] 0.95909 0.955
17 [1.0, 0, 10, 0] 0.95545 0.959 62 [1.2, -10, 10, 0] 0.96 0.96
18 [1.0, 0, 10, 10] 0.95909 0.962 63 [1.2, -10, 10, 10] 0.95545 0.961
19 [1.0, 10, -10, -10] 0.95727 0.968 64 [1.2, 0, -10, -10] 0.95727 0.961
20 [1.0, 10, -10, 0] 0.96091 0.959 65 [1.2, 0, -10, 0] 0.95727 0.961
21 [1.0, 10, -10, 10] 0.95818 0.965 66 [1.2, 0, -10, 10] 0.95727 0.963
22 [1.0, 10, 0, -10] 0.95455 0.968 67 [1.2, 0, 0, -10] 0.96 0.957
23 [1.0, 10, 0, 0] 0.96091 0.96 68 [1.2, 0, 0, 0] 0.95636 0.956
24 [1.0, 10, 0, 10] 0.96273 0.966 69 [1.2, 0, 0, 10] 0.95364 0.959
25 [1.0, 10, 10, -10] 0.96091 0.962 70 [1.2, 0, 10, -10] 0.95909 0.959
26 [1.0, 10, 10, 0] 0.96091 0.961 71 [1.2, 0, 10, 0] 0.96 0.96
27 [1.0, 10, 10, 10] 0.95727 0.96 72 [1.2, 0, 10, 10] 0.95364 0.957
28 [1.1, -10, -10, -10] 0.96 0.966 73 [1.2, 10, -10, -10] 0.95727 0.963
29 [1.1, -10, -10, 0] 0.95909 0.964 74 [1.2, 10, -10, 0] 0.95818 0.966
30 [1.1, -10, -10, 10] 0.95727 0.969 75 [1.2, 10, -10, 10] 0.95636 0.961
31 [1.1, -10, 0, -10] 0.96091 0.962 76 [1.2, 10, 0, -10] 0.95909 0.962
32 [1.1, -10, 0, 0] 0.95636 0.956 77 [1.2, 10, 0, 0] 0.95545 0.963
33 [1.1, -10, 0, 10] 0.95909 0.963 78 [1.2, 10, 0, 10] 0.95636 0.962
34 [1.1, -10, 10, -10] 0.96091 0.958 79 [1.2, 10, 10, -10] 0.95727 0.959
35 [1.1, -10, 10, 0] 0.96182 0.957 80 [1.2, 10, 10, 0] 0.95727 0.96
36 [1.1, -10, 10, 10] 0.95909 0.966 81 [1.2, 10, 10, 10] 0.95818 0.955
37 [1.1, 0, -10, -10] 0.95909 0.958 82 [1.3, -10, -10, -10] 0.96 0.959
38 [1.1, 0, -10, 0] 0.95636 0.958 83 [1.3, -10, -10, 0] 0.95727 0.962
39 [1.1, 0, -10, 10] 0.95455 0.959 84 [1.3, -10, -10, 10] 0.95545 0.96
40 [1.1, 0, 0, -10] 0.96 0.959 85 [1.3, -10, 0, -10] 0.95364 0.961
41 [1.1, 0, 0, 0] 0.95636 0.961 86 [1.3, -10, 0, 0] 0.95364 0.96
42 [1.1, 0, 0, 10] 0.95545 0.963 87 [1.3, -10, 0, 10] 0.95273 0.965
43 [1.1, 0, 10, -10] 0.96091 0.962 88 [1.3, -10, 10, -10] 0.95909 0.958
44 [1.1, 0, 10, 0] 0.95909 0.961 89 [1.3, -10, 10, 0] 0.95727 0.959
45 [1.1, 0, 10, 10] 0.95818 0.961 90 [1.3, -10, 10, 10] 0.95545 0.957

55

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
91 [1.3, 0, -10, -10] 0.95727 0.957 114 [1.4, -10, 0, 10] 0.95182 0.962
92 [1.3, 0, -10, 0] 0.95909 0.957 115 [1.4, -10, 10, -10] 0.95364 0.959
93 [1.3, 0, -10, 10] 0.95 0.962 116 [1.4, -10, 10, 0] 0.95636 0.958
94 [1.3, 0, 0, -10] 0.95364 0.951 117 [1.4, -10, 10, 10] 0.95455 0.958
95 [1.3, 0, 0, 0] 0.95545 0.958 118 [1.4, 0, -10, -10] 0.95455 0.958
96 [1.3, 0, 0, 10] 0.95364 0.957 119 [1.4, 0, -10, 0] 0.95636 0.958
97 [1.3, 0, 10, -10] 0.95545 0.959 120 [1.4, 0, -10, 10] 0.95545 0.959
98 [1.3, 0, 10, 0] 0.95636 0.957 121 [1.4, 0, 0, -10] 0.95455 0.953
99 [1.3, 0, 10, 10] 0.95364 0.955 122 [1.4, 0, 0, 0] 0.95545 0.951
100 [1.3, 10, -10, -10] 0.95818 0.961 123 [1.4, 0, 0, 10] 0.95455 0.952
101 [1.3, 10, -10, 0] 0.95909 0.96 124 [1.4, 0, 10, -10] 0.95273 0.954
102 [1.3, 10, -10, 10] 0.95727 0.963 125 [1.4, 0, 10, 0] 0.95545 0.952
103 [1.3, 10, 0, -10] 0.95364 0.958 126 [1.4, 0, 10, 10] 0.95455 0.955
104 [1.3, 10, 0, 0] 0.95545 0.959 127 [1.4, 10, -10, -10] 0.95545 0.96
105 [1.3, 10, 0, 10] 0.95364 0.959 128 [1.4, 10, -10, 0] 0.95273 0.956
106 [1.3, 10, 10, -10] 0.95727 0.956 129 [1.4, 10, -10, 10] 0.95455 0.959
107 [1.3, 10, 10, 0] 0.95636 0.96 130 [1.4, 10, 0, -10] 0.95545 0.955
108 [1.3, 10, 10, 10] 0.95636 0.959 131 [1.4, 10, 0, 0] 0.95182 0.958
109 [1.4, -10, -10, -10] 0.95545 0.961 132 [1.4, 10, 0, 10] 0.95273 0.953
110 [1.4, -10, -10, 0] 0.95636 0.966 133 [1.4, 10, 10, -10] 0.95636 0.955
111 [1.4, -10, -10, 10] 0.95455 0.958 134 [1.4, 10, 10, 0] 0.95273 0.956
112 [1.4, -10, 0, -10] 0.95364 0.966 135 [1.4, 10, 10, 10] 0.95364 0.958
113 [1.4, -10, 0, 0] 0.95273 0.958

Table A.4: Single Perturbation Results of ResNet51 Part 2 (Landmarks) . Detected landmarks are
used in perturbations.

56 Appendix A. Attachements

Table A.5: Single Perturbation Results of ResNet51_align Part 1 (Bounding Box). Detected bound-
ing boxes are used in perturbations.

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
1 [0.5, -10, -10, -10] 0.95273 0.951 46 [0.6, 10, -10, -10] 0.94818 0.949
2 [0.5, -10, -10, 0] 0.94818 0.958 47 [0.6, 10, -10, 0] 0.95182 0.95
3 [0.5, -10, -10, 10] 0.95364 0.957 48 [0.6, 10, -10, 10] 0.95273 0.953
4 [0.5, -10, 0, -10] 0.95636 0.958 49 [0.6, 10, 0, -10] 0.95091 0.954
5 [0.5, -10, 0, 0] 0.95545 0.959 50 [0.6, 10, 0, 0] 0.95182 0.946
6 [0.5, -10, 0, 10] 0.96 0.956 51 [0.6, 10, 0, 10] 0.95182 0.948
7 [0.5, -10, 10, -10] 0.95455 0.949 52 [0.6, 10, 10, -10] 0.95091 0.948
8 [0.5, -10, 10, 0] 0.95273 0.958 53 [0.6, 10, 10, 0] 0.95 0.947
9 [0.5, -10, 10, 10] 0.94545 0.954 54 [0.6, 10, 10, 10] 0.95273 0.95
10 [0.5, 0, -10, -10] 0.95182 0.962 55 [0.7, -10, -10, -10] 0.94818 0.948
11 [0.5, 0, -10, 0] 0.95273 0.951 56 [0.7, -10, -10, 0] 0.94727 0.951
12 [0.5, 0, -10, 10] 0.94636 0.955 57 [0.7, -10, -10, 10] 0.94909 0.941
13 [0.5, 0, 0, -10] 0.95636 0.958 58 [0.7, -10, 0, -10] 0.95273 0.942
14 [0.5, 0, 0, 0] 0.95818 0.962 59 [0.7, -10, 0, 0] 0.95364 0.944
15 [0.5, 0, 0, 10] 0.95545 0.963 60 [0.7, -10, 0, 10] 0.94909 0.94
16 [0.5, 0, 10, -10] 0.95545 0.961 61 [0.7, -10, 10, -10] 0.95364 0.945
17 [0.5, 0, 10, 0] 0.95091 0.955 62 [0.7, -10, 10, 0] 0.95636 0.952
18 [0.5, 0, 10, 10] 0.94909 0.956 63 [0.7, -10, 10, 10] 0.95545 0.944
19 [0.5, 10, -10, -10] 0.95 0.951 64 [0.7, 0, -10, -10] 0.95182 0.942
20 [0.5, 10, -10, 0] 0.94636 0.954 65 [0.7, 0, -10, 0] 0.95091 0.946
21 [0.5, 10, -10, 10] 0.94 0.956 66 [0.7, 0, -10, 10] 0.95091 0.948
22 [0.5, 10, 0, -10] 0.95 0.953 67 [0.7, 0, 0, -10] 0.95091 0.947
23 [0.5, 10, 0, 0] 0.95364 0.955 68 [0.7, 0, 0, 0] 0.95182 0.94
24 [0.5, 10, 0, 10] 0.95455 0.953 69 [0.7, 0, 0, 10] 0.95091 0.943
25 [0.5, 10, 10, -10] 0.94727 0.958 70 [0.7, 0, 10, -10] 0.95273 0.949
26 [0.5, 10, 10, 0] 0.94636 0.955 71 [0.7, 0, 10, 0] 0.95364 0.947
27 [0.5, 10, 10, 10] 0.95 0.955 72 [0.7, 0, 10, 10] 0.95091 0.953
28 [0.6, -10, -10, -10] 0.95455 0.955 73 [0.7, 10, -10, -10] 0.94091 0.949
29 [0.6, -10, -10, 0] 0.95 0.944 74 [0.7, 10, -10, 0] 0.94545 0.95
30 [0.6, -10, -10, 10] 0.95091 0.946 75 [0.7, 10, -10, 10] 0.94727 0.954
31 [0.6, -10, 0, -10] 0.95636 0.948 76 [0.7, 10, 0, -10] 0.94818 0.941
32 [0.6, -10, 0, 0] 0.95727 0.951 77 [0.7, 10, 0, 0] 0.94727 0.943
33 [0.6, -10, 0, 10] 0.95545 0.951 78 [0.7, 10, 0, 10] 0.95 0.949
34 [0.6, -10, 10, -10] 0.95273 0.954 79 [0.7, 10, 10, -10] 0.94727 0.944
35 [0.6, -10, 10, 0] 0.95818 0.955 80 [0.7, 10, 10, 0] 0.94636 0.944
36 [0.6, -10, 10, 10] 0.95273 0.952 81 [0.7, 10, 10, 10] 0.94909 0.944
37 [0.6, 0, -10, -10] 0.95182 0.948 82 [0.8, -10, -10, -10] 0.94182 0.941
38 [0.6, 0, -10, 0] 0.95364 0.957 83 [0.8, -10, -10, 0] 0.94727 0.932
39 [0.6, 0, -10, 10] 0.95636 0.946 84 [0.8, -10, -10, 10] 0.94455 0.938
40 [0.6, 0, 0, -10] 0.95909 0.949 85 [0.8, -10, 0, -10] 0.94364 0.935
41 [0.6, 0, 0, 0] 0.95364 0.943 86 [0.8, -10, 0, 0] 0.94455 0.93
42 [0.6, 0, 0, 10] 0.95455 0.946 87 [0.8, -10, 0, 10] 0.94455 0.934
43 [0.6, 0, 10, -10] 0.95273 0.955 88 [0.8, -10, 10, -10] 0.94182 0.937
44 [0.6, 0, 10, 0] 0.95364 0.95 89 [0.8, -10, 10, 0] 0.94273 0.938
45 [0.6, 0, 10, 10] 0.95455 0.952 90 [0.8, -10, 10, 10] 0.94273 0.934

57

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
91 [0.8, 0, -10, -10] 0.94727 0.941 114 [0.9, -10, 0, 10] 0.92727 0.923
92 [0.8, 0, -10, 0] 0.94818 0.943 115 [0.9, -10, 10, -10] 0.93455 0.929
93 [0.8, 0, -10, 10] 0.94727 0.938 116 [0.9, -10, 10, 0] 0.93273 0.922
94 [0.8, 0, 0, -10] 0.95 0.945 117 [0.9, -10, 10, 10] 0.93182 0.922
95 [0.8, 0, 0, 0] 0.94636 0.937 118 [0.9, 0, -10, -10] 0.93727 0.924
96 [0.8, 0, 0, 10] 0.94636 0.934 119 [0.9, 0, -10, 0] 0.92818 0.929
97 [0.8, 0, 10, -10] 0.94727 0.935 120 [0.9, 0, -10, 10] 0.93364 0.928
98 [0.8, 0, 10, 0] 0.94273 0.935 121 [0.9, 0, 0, -10] 0.94 0.936
99 [0.8, 0, 10, 10] 0.94364 0.935 122 [0.9, 0, 0, 0] 0.93182 0.923
100 [0.8, 10, -10, -10] 0.93818 0.938 123 [0.9, 0, 0, 10] 0.93182 0.927
101 [0.8, 10, -10, 0] 0.94 0.94 124 [0.9, 0, 10, -10] 0.93727 0.937
102 [0.8, 10, -10, 10] 0.94091 0.938 125 [0.9, 0, 10, 0] 0.93636 0.93
103 [0.8, 10, 0, -10] 0.94091 0.936 126 [0.9, 0, 10, 10] 0.93364 0.924
104 [0.8, 10, 0, 0] 0.94273 0.949 127 [0.9, 10, -10, -10] 0.92 0.919
105 [0.8, 10, 0, 10] 0.94545 0.937 128 [0.9, 10, -10, 0] 0.92727 0.926
106 [0.8, 10, 10, -10] 0.93909 0.942 129 [0.9, 10, -10, 10] 0.93 0.92
107 [0.8, 10, 10, 0] 0.94 0.943 130 [0.9, 10, 0, -10] 0.93 0.923
108 [0.8, 10, 10, 10] 0.93818 0.938 131 [0.9, 10, 0, 0] 0.92818 0.924
109 [0.9, -10, -10, -10] 0.93636 0.927 132 [0.9, 10, 0, 10] 0.93182 0.927
110 [0.9, -10, -10, 0] 0.93636 0.929 133 [0.9, 10, 10, -10] 0.92909 0.928
111 [0.9, -10, -10, 10] 0.93182 0.931 134 [0.9, 10, 10, 0] 0.92545 0.923
112 [0.9, -10, 0, -10] 0.93091 0.923 135 [0.9, 10, 10, 10] 0.92818 0.921
113 [0.9, -10, 0, 0] 0.93545 0.923

Table A.6: Single Perturbation Results of ResNet51_align Part 2 (Bounding Box). Detected bound-
ing boxes are used in perturbations.

58 Appendix A. Attachements

Table A.7: Single Perturbation Results of ResNet51 Part 1 (Bounding Box). Detected bounding
boxes are used in perturbations.

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
1 [0.5, -10, -10, -10] 0.96091 0.962 46 [0.6, 10, -10, -10] 0.95818 0.962
2 [0.5, -10, -10, 0] 0.96273 0.967 47 [0.6, 10, -10, 0] 0.95545 0.954
3 [0.5, -10, -10, 10] 0.95909 0.968 48 [0.6, 10, -10, 10] 0.95545 0.953
4 [0.5, -10, 0, -10] 0.96091 0.966 49 [0.6, 10, 0, -10] 0.95818 0.962
5 [0.5, -10, 0, 0] 0.95818 0.969 50 [0.6, 10, 0, 0] 0.95455 0.962
6 [0.5, -10, 0, 10] 0.95727 0.968 51 [0.6, 10, 0, 10] 0.95636 0.957
7 [0.5, -10, 10, -10] 0.96182 0.961 52 [0.6, 10, 10, -10] 0.96091 0.961
8 [0.5, -10, 10, 0] 0.96273 0.961 53 [0.6, 10, 10, 0] 0.95818 0.957
9 [0.5, -10, 10, 10] 0.95909 0.963 54 [0.6, 10, 10, 10] 0.95818 0.957
10 [0.5, 0, -10, -10] 0.95909 0.963 55 [0.7, -10, -10, -10] 0.95364 0.958
11 [0.5, 0, -10, 0] 0.95909 0.959 56 [0.7, -10, -10, 0] 0.95455 0.961
12 [0.5, 0, -10, 10] 0.95727 0.959 57 [0.7, -10, -10, 10] 0.95182 0.962
13 [0.5, 0, 0, -10] 0.95545 0.96 58 [0.7, -10, 0, -10] 0.95273 0.953
14 [0.5, 0, 0, 0] 0.95545 0.962 59 [0.7, -10, 0, 0] 0.95364 0.957
15 [0.5, 0, 0, 10] 0.95 0.961 60 [0.7, -10, 0, 10] 0.95182 0.955
16 [0.5, 0, 10, -10] 0.96364 0.957 61 [0.7, -10, 10, -10] 0.95455 0.955
17 [0.5, 0, 10, 0] 0.95909 0.959 62 [0.7, -10, 10, 0] 0.95364 0.958
18 [0.5, 0, 10, 10] 0.96091 0.962 63 [0.7, -10, 10, 10] 0.95273 0.959
19 [0.5, 10, -10, -10] 0.95727 0.964 64 [0.7, 0, -10, -10] 0.95182 0.955
20 [0.5, 10, -10, 0] 0.96182 0.963 65 [0.7, 0, -10, 0] 0.95273 0.957
21 [0.5, 10, -10, 10] 0.95636 0.965 66 [0.7, 0, -10, 10] 0.95182 0.953
22 [0.5, 10, 0, -10] 0.95727 0.961 67 [0.7, 0, 0, -10] 0.95364 0.957
23 [0.5, 10, 0, 0] 0.96364 0.967 68 [0.7, 0, 0, 0] 0.95364 0.952
24 [0.5, 10, 0, 10] 0.96 0.964 69 [0.7, 0, 0, 10] 0.95545 0.952
25 [0.5, 10, 10, -10] 0.96 0.966 70 [0.7, 0, 10, -10] 0.95455 0.955
26 [0.5, 10, 10, 0] 0.96 0.96 71 [0.7, 0, 10, 0] 0.95182 0.952
27 [0.5, 10, 10, 10] 0.95818 0.962 72 [0.7, 0, 10, 10] 0.95273 0.954
28 [0.6, -10, -10, -10] 0.95636 0.962 73 [0.7, 10, -10, -10] 0.95273 0.957
29 [0.6, -10, -10, 0] 0.95636 0.963 74 [0.7, 10, -10, 0] 0.95364 0.958
30 [0.6, -10, -10, 10] 0.95636 0.956 75 [0.7, 10, -10, 10] 0.95273 0.956
31 [0.6, -10, 0, -10] 0.95727 0.964 76 [0.7, 10, 0, -10] 0.95636 0.956
32 [0.6, -10, 0, 0] 0.95727 0.958 77 [0.7, 10, 0, 0] 0.95273 0.952
33 [0.6, -10, 0, 10] 0.95545 0.961 78 [0.7, 10, 0, 10] 0.95273 0.955
34 [0.6, -10, 10, -10] 0.95909 0.958 79 [0.7, 10, 10, -10] 0.95364 0.955
35 [0.6, -10, 10, 0] 0.95818 0.959 80 [0.7, 10, 10, 0] 0.95455 0.956
36 [0.6, -10, 10, 10] 0.95818 0.957 81 [0.7, 10, 10, 10] 0.95455 0.954
37 [0.6, 0, -10, -10] 0.95455 0.956 82 [0.8, -10, -10, -10] 0.94727 0.953
38 [0.6, 0, -10, 0] 0.95545 0.954 83 [0.8, -10, -10, 0] 0.94545 0.949
39 [0.6, 0, -10, 10] 0.95364 0.96 84 [0.8, -10, -10, 10] 0.94545 0.954
40 [0.6, 0, 0, -10] 0.95636 0.956 85 [0.8, -10, 0, -10] 0.94727 0.953
41 [0.6, 0, 0, 0] 0.95636 0.958 86 [0.8, -10, 0, 0] 0.94909 0.953
42 [0.6, 0, 0, 10] 0.95455 0.952 87 [0.8, -10, 0, 10] 0.94909 0.958
43 [0.6, 0, 10, -10] 0.95909 0.96 88 [0.8, -10, 10, -10] 0.95 0.959
44 [0.6, 0, 10, 0] 0.95545 0.954 89 [0.8, -10, 10, 0] 0.94909 0.956
45 [0.6, 0, 10, 10] 0.95636 0.953 90 [0.8, -10, 10, 10] 0.95091 0.958

59

No. Perturbation Train Acc Test Acc No. Perturbation Train Acc Test Acc
91 [0.8, 0, -10, -10] 0.94727 0.952 114 [0.9, -10, 0, 10] 0.93727 0.948
92 [0.8, 0, -10, 0] 0.94727 0.948 115 [0.9, -10, 10, -10] 0.94273 0.946
93 [0.8, 0, -10, 10] 0.94818 0.948 116 [0.9, -10, 10, 0] 0.94273 0.948
94 [0.8, 0, 0, -10] 0.94727 0.953 117 [0.9, -10, 10, 10] 0.94182 0.95
95 [0.8, 0, 0, 0] 0.94364 0.952 118 [0.9, 0, -10, -10] 0.93636 0.948
96 [0.8, 0, 0, 10] 0.94727 0.945 119 [0.9, 0, -10, 0] 0.93818 0.946
97 [0.8, 0, 10, -10] 0.95273 0.955 120 [0.9, 0, -10, 10] 0.93545 0.944
98 [0.8, 0, 10, 0] 0.94727 0.946 121 [0.9, 0, 0, -10] 0.94 0.944
99 [0.8, 0, 10, 10] 0.95 0.952 122 [0.9, 0, 0, 0] 0.93909 0.943
100 [0.8, 10, -10, -10] 0.94727 0.953 123 [0.9, 0, 0, 10] 0.93818 0.942
101 [0.8, 10, -10, 0] 0.94545 0.949 124 [0.9, 0, 10, -10] 0.94091 0.949
102 [0.8, 10, -10, 10] 0.94818 0.95 125 [0.9, 0, 10, 0] 0.94273 0.944
103 [0.8, 10, 0, -10] 0.95091 0.958 126 [0.9, 0, 10, 10] 0.94091 0.941
104 [0.8, 10, 0, 0] 0.95 0.953 127 [0.9, 10, -10, -10] 0.93636 0.947
105 [0.8, 10, 0, 10] 0.94818 0.951 128 [0.9, 10, -10, 0] 0.94091 0.945
106 [0.8, 10, 10, -10] 0.94818 0.96 129 [0.9, 10, -10, 10] 0.93909 0.945
107 [0.8, 10, 10, 0] 0.94636 0.949 130 [0.9, 10, 0, -10] 0.94 0.946
108 [0.8, 10, 10, 10] 0.94909 0.953 131 [0.9, 10, 0, 0] 0.93818 0.95
109 [0.9, -10, -10, -10] 0.93818 0.942 132 [0.9, 10, 0, 10] 0.94091 0.95
110 [0.9, -10, -10, 0] 0.94 0.948 133 [0.9, 10, 10, -10] 0.94091 0.943
111 [0.9, -10, -10, 10] 0.93545 0.95 134 [0.9, 10, 10, 0] 0.94455 0.942
112 [0.9, -10, 0, -10] 0.94091 0.944 135 [0.9, 10, 10, 10] 0.94727 0.941
113 [0.9, -10, 0, 0] 0.93818 0.946

Table A.8: Single Perturbation Results of ResNet51 Part 2 (Bounding Box). Detected bounding
boxes are used in perturbations.

Iteration No. Selected Perturbations No. Train Accuracy Test Accuracy

1 [16] 0.9636363636 0.957
2 [16, 3] 0.9654545455 0.968
3 [16, 3, 1] 0.9663636364 0.968
4 [16, 3, 1, 26] 0.9663636364 0.967
5 [16, 3, 1, 26, 2] 0.9663636364 0.968
6 [16, 3, 1, 26, 2, 4] 0.9663636364 0.965
7 [16, 3, 1, 26, 2, 4, 22] 0.9672727273 0.965
8 [16, 3, 1, 26, 2, 4, 22, 6] 0.9672727273 0.967
9 [16, 3, 1, 26, 2, 4, 22, 6, 8] 0.9672727273 0.967

10 [16, 3, 1, 26, 2, 4, 22, 6, 8, 24] 0.9672727273 0.967
11 [16, 3, 1, 26, 2, 4, 22, 6, 8, 24, 18] 0.9672727273 0.969
12 [16, 3, 1, 26, 2, 4, 22, 6, 8, 24, 18, 7] 0.9672727273 0.97
13 [16, 3, 1, 26, 2, 4, 22, 6, 8, 24, 18, 7, 23] 0.9672727273 0.968
14 [16, 3, 1, 26, 2, 4, 22, 6, 8, 24, 18, 7, 23, 5] 0.9672727273 0.969

Table A.9: Tracked Results of Greedy algorithm For ResNet51_align. The perturbation parameters
[γs, γa, γx, γy] of certain perturbation No. can be looked up in Appendix Table A.1-A.2. Detected
Landmarks are used for perturbations.

60 Appendix A. Attachements

Iteration No. Selected Perturbations No. Train Accuracy Test Accuracy

1 [1] 0.9672727273 0.96
2 [1, 5] 0.9681818182 0.961
3 [1, 5, 7] 0.9681818182 0.964
4 [1, 5, 7, 4] 0.9681818182 0.963
5 [1, 5, 7, 4, 55] 0.9681818182 0.963
6 [1, 5, 7, 4, 55, 19] 0.9681818182 0.963
7 [1, 5, 7, 4, 55, 19, 56] 0.9681818182 0.963
8 [1, 5, 7, 4, 55, 19, 56, 28] 0.9681818182 0.962

Table A.10: Tracked Results of Greedy Algorithm for Resnet51. The perturbation parameters
[γs, γa, γx, γy] of certain perturbation No. can be looked up in Appendix Table A.3-A.4. Detected
landmarks are used for perturbations.

61

Conditions Selected
Perturbations
[γs, γa, γx, γy]

Weights Training
Accuracy

Test
Accuracy

Elite selection: Top 12
Weight initialization: equal (5)
Combination method: simple
Generation replacement: cover

[1.1, 10, 10, 10]
[1.1, 0, 10, -10]
[1.1, -10, 10, 10]
[1.0, 0, 0, 0]
[1.1, 0, 10, 0]
[1.2, -10, 10, -10]
[1.2, -10, -10, 0]
[1.1, -10, 10, 10]
[1.3, -10, 10, -10]

12.5%
12.5%
12.5%
7.5%
17.5%
12.5%
12.5%
2.5%
10%

0.96182 0.966

Elite selection: Top 12
Weight initialization: equal (5)
Combination method: simple
Generation replacement: cover

[1.3, 10, -10, 10]
[1.1, -10, 0, -10]
[1.0, -10, 0, -10]
[1.0, 0, -10, 10]
[1.3, 10, 10, -10]

23.077%
15.385%
34.615%
15.385%
11.538%

0.96182 0.966

Elite selection: Top 12
Weight initialization: equal (5)
Combination method: simple
Generation replacement: cover

[1.2, 0, -10, -10]
[1.3, 0, 10, -10]
[1.1, 10, 0, -10]
[1.0, 0, 0, 10]
[1.3, 10, 10, -10]

25%
12.5%
33.333%
16.667%
12.5%

0.96182 0.965

Table A.11: Top 3 Weighted Perturbation Combinations Found by SimpleGA Variant Approach
for Resnet51_align. Elite selection: select the 12 single perturbations that have the top 12 greatest
accuracy on the training set into the parent pool. Weight initialization: equally initializing weights
as 5. Combination method: choose the combination of perturbations and calculate the verifica-
tion accuracy by the ’simple’ method; Generation replacement: the parent generation is replaced
by the children generation totally. Detected landmarks are used for perturbations. Accuracy is
rounded to 5 decimal places, zeros at the end are omitted.

62 Appendix A. Attachements

Conditions Selected
Perturbations
[γs, γa, γx, γy]

Weights Training
Accuracy

Test
Accuracy

Elite selection: Top 5
Weight initialization: unequal ([1, 5])
Combination method: simple
Generation replacement: cover

[1.0, -10, 10, 0]
[1.2, 10, 0, 0]
[1.1, -10, -10, 0]
[1.0, 10, 10, 0]

25%
25%
31.25%
18.75%

0.96 0.968

Elite selection: Top 10
Weight initialization: equal (5)
Combination method: simple
Generation replacement: cover

[1.2, 0, -10, 10]
[1.0, 0, -10, 0]
[1.2, -10, 0, 0]
[1.2, 10, 0, 0]
[1.1, 0, 0, 10]
[1.3, 10, 10, -10]
[1.1, -10, 10, 10]
[1.3, -10, 0, 10]

8.333%
19.444%
19.444%
13.889%
19.444%
8.333%
8.333%
2.778%

0.95818 0.967

Elite selection: Top 5
Weight initialization: equal (5)
Combination method: simple
Generation replacement: cover

[1.2, 0, -10, -10]
[1.3, -10, 0, 10]
[1.0, 0, -10, 0]

36.364%
36.364%
27.273%

0.95636 0.966

Table A.12: Top 3 Weighted Perturbation Combinations Found by SimpleGA Variant Approach
for Resnet51. "Elite selection: Top 5" means select the 5 single perturbations that have the top 5
greatest accuracy on the training set. "Weight initialization: unequal([1, 5])" means initializing
each weight by randomly selecting an integer in the range [1,5]. "Combination method: simple"
means to choose the combination of perturbation by the ’simple’ method. "Generation replace-
ment: cover" means the parent generation is replaced by the children generation totally. Detected
landmarks are used for perturbations. Accuracy is rounded to 5 decimal places, zeros at the end
are omitted.

63

List of Figures
2.1 Illustration of Flipping . 4
2.2 Illustration of Cropping . 4
2.3 Illustration of Scaling . 5
2.4 Illustration of Rotation . 5
2.5 Illustration of Shift . 6
2.6 Illustration of Blurring . 6
2.7 Process of Landmark Perturbation . 7
2.8 Random Perturbations on CeleA . 8
2.9 An Overview of Face Transformations . 9

4.1 Architecture of ResNet51 . 16
4.2 Original and Modified-AFFACT Perturbed Images 19
4.3 Original and Non-aligned Images . 20
4.4 Original and Aligned Images . 21

5.1 Histograms of Training and Test Accuracy of ResNet51 and ResNet51_align 28
5.2 Illustration of SimpleGA Variant Approach . 33
5.3 Illustration of Crossover . 36
5.4 Illustration of Mutation . 37

6.1 Histograms of Accuracy of ResNet51_align and ResNet51 44
6.2 LFW Image Samples with Different Scale Parameters 47

64 Appendix A. Attachements

List of Tables
4.1 Training and Validation Transformers for ResNet51_align and ResNet51 18

5.1 Results of Baseline and Top Perturbation . 29
5.2 Perturbation Combinations Found by Greedy Algorithm. 31
5.3 Hyperparameters of the SimpleGA Variant Approach 37
5.4 Weighted Perturbation Combinations Found by SimpleGA Variant Approach . . . 38
5.5 Result Comparison . 39
5.6 P-Values Of T-Tests . 40
5.7 T Tests to Compare Two Models at the Same Situations of Perturbation 40

6.1 Best Validation EERs . 43
6.2 Result Comparison (Bounding Box) . 45
6.3 P-Values of T-Tests (Bounding Box) . 46

A.1 Single Perturbation Results of ResNet51_align Part 1 (Landmarks) 52
A.2 Single Perturbation Results of ResNet51_align Part 2 (Landmarks) 53
A.3 Single Perturbation Results of ResNet51 Part 1 (Landmarks) 54
A.4 Single Perturbation Results of ResNet51 Part 2 (Landmarks) 55
A.5 Single Perturbation Results of ResNet51_align Part 1 (Bounding Box) 56
A.6 Single Perturbation Results of ResNet51_align Part 2 (Bounding Box) 57
A.7 Single Perturbation Results of ResNet51 Part 1 (Bounding Box) 58
A.8 Single Perturbation Results of ResNet51 Part 2 (Bounding Box) 59
A.9 Tracked Results of Greedy algorithm For ResNet51_align 59
A.10 Tracked Results of Greedy Algorithm for Resnet51. 60
A.11 Top 3 Weighted Perturbation Combinations Found by SimpleGA Variant Approach

for Resnet51_align . 61
A.12 Top 3 Weighted Perturbation Combinations Found by SimpleGA Variant Approach

for Resnet51 . 62

Bibliography

Anjos, A., Günther, M., de Freitas Pereira, T., Korshunov, P., Mohammadi, A., and Marcel, S.
(2017). Continuously reproducing toolchains in pattern recognition and machine learning ex-
periments. In International Conference on Machine Learning (ICML).

Balas, B., Gable, J., and Pearson, H. (2018). The effects of blur and inversion on the recognition of
ambient face images. Perception, 48:030100661881258.

Beveridge, J., Phillips, P. J., Bolme, D., Draper, B., Given, G., Lui, Y., Teli, M., Zhang, H., Scruggs,
W., Bowyer, K., Flynn, P., and Cheng, S. (2013). The challenge of face recognition from digital
point-and-shoot cameras. pages 1–8.

Cao, Q., Shen, L., Xie, W., Parkhi, O., and Zisserman, A. (2018). Vggface2: A dataset for recognis-
ing faces across pose and age. pages 67–74.

Correia, J., Martins, T., and Machado, P. (2019). Evolutionary data augmentation in deep face
detection. pages 163–164.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019a). Arcface: Additive angular margin loss for
deep face recognition. pages 4685–4694.

Deng, J., Trigeorgis, G., Zhou, Y., and Zafeiriou, S. (2019b). Joint multi-view face alignment in the
wild. IEEE Transactions on Image Processing, PP:1–1.

Fiche, C., Ladret, P., and Vu, N. S. (2010). Blurred face recognition algorithm guided by a no-
reference blur metric. Blurred face recognition algorithm guided by a no-reference blur metric.

Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition.

Günther, M., Rozsa, A., and Boult, T. (2017). Affact: Alignment-free facial attribute classification
technique. pages 90–99.

Hasan, M. K. and Pal, C. (2011). Improving alignment of faces for recognition. pages 249 – 254.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. pages
770–778.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M. M. A.,
Yang, Y., and Zhou, Y. (2017). Deep learning scaling is predictable, empirically.

Howard, A. (2013a). Some improvements on deep convolutional neural network based image
classification.

66 BIBLIOGRAPHY

Howard, A. (2013b). Some improvements on deep convolutional neural network based image
classification.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. pages 7132–7141.

Huang, G. B., Jain, V., and Learned-Miller, E. (2007). Unsupervised joint alignment of complex
images. In ICCV.

Jin, X. and Tan, X. (2016). Face alignment in-the-wild: A survey. Computer Vision and Image
Understanding, 162.

Kemelmacher, I., Seitz, S., Miller, D., and Brossard, E. (2016). The megaface benchmark: 1 million
faces for recognition at scale. pages 4873–4882.

Klare, B., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., Grother, P., Mah, A., and Jain,
A. (2015). Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus
benchmark a.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolu-
tional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

Lim, S., Kim, I., Kim, T., Kim, C., and Kim, S. (2019). Fast autoaugment.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV).

Lv, J.-J., Shao, X.-H., Huang, J.-S., Zhou, X.-D., and Zhou, X. (2016). Data augmentation for face
recognition. Neurocomputing, 230.

Mash, R., Borghetti, B., and Pecarina, J. (2016). Improved aircraft recognition for aerial refueling
through data augmentation in convolutional neural networks. volume 10072.

Masi, I., Trn, A., Hassner, T., Leksut, J., and Medioni, G. (2016). Do we really need to collect
millions of faces for effective face recognition? volume 9909, pages 579–596.

Maze, B., Adams, J., Duncan, J., Kalka, N., Miller, T., Otto, C., Jain, A., Niggel, W., Anderson, J.,
Cheney, J., and Grother, P. (2018). Iarpa janus benchmark - c: Face dataset and protocol. pages
158–165.

Molchanov, D., Lyzhov, A., Molchanova, Y., Ashukha, A., and Vetrov, D. (2020). Greedy policy
search: A simple baseline for learnable test-time augmentation.

Nguyen, H. and Bai, L. (2010). Cosine similarity metric learning for face verification. volume
6493, pages 709–720.

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. In British Machine
Vision Conference.

Paulin, M., Revaud, J., Harchaoui, Z., and Schmid, C. (2014). Transformation pursuit for image
classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition.

Phillips, P. (2017). A cross benchmark assessment of a deep convolutional neural network for face
recognition. pages 705–710.

BIBLIOGRAPHY 67

Phillips, P. J., Beveridge, J., Draper, B., Givens, G., O’Toole, A., Bolme, D., Dunlop, J., Lui, Y.,
Sahibzada, H., and Weimer, S. (2011). An introduction to the good, the bad, the ugly face
recognition challenge problem. pages 346–353.

Qinghe, Z., Yang, M., Tian, X., Jiang, N., and Wang, D. (2020). A full stage data augmentation
method in deep convolutional neural network for natural image classification. Discrete Dynam-
ics in Nature and Society, 2020:1–11.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recog-
nition and clustering. Proc. CVPR.

Shan, S., Chang, Y., Gao, W., Cao, B., and Yang, P. (2004). Curse of mis-alignment in face recogni-
tion: Problem and a novel mis-alignment learning solution. pages 314– 320.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations.

Sun, Y., Wang, X., and Tang, X. (2014). Deep learning face representation by joint identification-
verification. Proc. NIPS, 27.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. pages 1–9.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to human-level
performance in face verification.

Taylor, L. and Nitschke, G. (2017). Improving deep learning using generic data augmentation.

Terauchi, A. and Mori, N. (2021). pages 9851–9858.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features.
volume 1, pages I–511.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Li, Z., Gong, D., Zhou, J., and Liu, W. (2018). Cosface: Large
margin cosine loss for deep face recognition.

Wang, N., Gao, X., Tao, D., and Liu, W. (2014). Facial feature point detection: A comprehensive
survey. Neurocomputing, 275.

Wang, X., Wang, K., and Lian, S. (2019). A survey on face data augmentation.

Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). A discriminative feature learning approach for
deep face recognition. volume 9911, pages 499–515.

Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams, J., Miller, T., Kalka, N., Jain, A., Duncan,
J., Allen, K., Cheney, J., and Grother, P. (2017). Iarpa janus benchmark-b face dataset. pages 592–
600.

Xie, S. and Tu, Z. (2017). Holistically-nested edge detection. International Journal of Computer
Vision, 125:1–16.

Xiong, X. and De la Torre, F. (2013). Supervised descent method and its applications to face
alignment. pages 532–539.

Xu, Y., Li, X., Yang, J., and Zhang, D. (2014). Integrate the original face image and its mirror image
for face recognition. Neurocomputing, 131:191–199.

68 BIBLIOGRAPHY

Yang, H. and Patras, I. (2015). Mirror, mirror on the wall, tell me, is the error small? pages
4685–4693.

Yi, D., Lei, Z., Liao, S., and Li, S. (2014). Learning face representation from scratch.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multi-
task cascaded convolutional networks. IEEE Signal Processing Letters, 23.

Zhang, X., Fang, Z., Wen, Y., Li, Z., and Qiao, Y. (2017). Range loss for deep face recognition with
long-tailed training data. pages 5419–5428.

Zhou, E., Cao, Z., and Yin, q. (2015). Naive-deep face recognition: Touching the limit of lfw
benchmark or not?

