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Zusammenfassung

Moderne Klassifizierungssysteme, die auf neuronalen Netzen basieren, benötigen oft
grosse Trainings-Sets und haben mit einer abnehmenden Klassifizierungsleistung zu
kämpfen, wenn sie mit ungesehenen Objektkategorien konfrontiert werden. Diese Ar-
beit untersucht praktische und effektive Wege, um eine aktive Lernpipeline für die
Konzepterkennung in Videos zu implementieren, welche in der Lage ist, ständig neue
Objektkategorien aus annotierten Bildern zu lernen, die von Menschen bereitgestellt
werden. Um dieses Ziel zu erreichen, verwendet die vorgeschlagene Pipeline eine aktive
Lernschleife mit einer einfachen, auf Unsicherheit basierenden Heuristik, um die informa-
tivsten Bilder für die Annotation auszuwählen. Die Bewertung von vier verschiedenen
Convolutional Neural Networks für die Einbettung von Bildmerkmalen hat gezeigt, dass
die InceptionResNetV2-Architektur in allen untersuchten Klassifizierungsszenarien die
beste Leistung erbringt. Ausserdem gibt es keine spezifische Klassifizierungsmethode,
die in allen Klassifizierungsszenarien am besten funktioniert. Es ist vorteilhaft, dem Sys-
tem die Wahl des ‘besten’ Klassifikators für jede Klassifizierungsaufgabe zu überlassen.
Darüber hinaus kann die Klassifizierungsleistung bei sehr kleinen Trainings-Sets weiter
verbessert werden, wenn extrahierte Box-Bilder als zusätzliche Trainingsinstanzen ver-
wendet werden.





Abstract

Modern neural network based classifications system often require large training sets and
struggle with degrading classification performance when confronted with unseen objects
categories. This thesis investigates practical and effective ways to implement a large-scale
active learning pipeline for concept detection in videos, which is capable to constantly
learn new object categories from annotated images provided by human supervisors. The
proposed pipeline uses an active learning loop with a simple uncertainty-based heuristic
to select the most informative images for annotation to achieve this goal. The evaluation
of four different convolutional neural networks for image feature embedding showed
that the InceptionResNetV2 architecture delivers the best performance over all studied
classification scenarios. Furthermore, there is no single classification methods which
works best in all classification scenarios. It is advantageous to let the system chose the
‘best’ classifier for each classification task. Moreover, the classification performance can
be further improved for very small training sets if extracted box images are added as
training instances.
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1

Introduction

Object classification in images and videos is one of the major problems in computer
vision. Almost 20 years ago, Sivic and Zisserman [Sivic and Zisserman, 2003] presented
a new approach to localize object in videos. They used scale-invariant feature transform
(SIFT) descriptors and a visual vocabulary to detect and classify objects. Since then,
significant advances have been made. Modern neural network based methods allow to
classify objects with high precision. However, many approaches rely on an extensive col-
lection of training instances and their classification performance starts to degrade when
confronted with unseen objects categories. Another major drawback of neural network
classifiers is that the learning process for new object categories requires the retraining
of the entire network, or at least fine-tuning the classification layer. Yet, fine-tuning can
lead to unsatisfactory classification results if the training sets for each object category
are highly unbalanced. Fortunately, active learning loops provide a framework to address
this challenge.

The aim of this thesis is to investigated practical and effective ways to implement
a large-scale active learning pipeline for concept detection in videos. Using an active
learning loop, the system should be able to continuously learn new object categories
from annotated images provided by human supervisors. At the same time, the burden
of image annotation should be reduced as much as possible. Hence, with each training
cycle, the system is expected to extend its capabilities to detect objects in images and
videos.

The project of developing an active learning pipeline for concept detection in videos
can be divided into individual subtasks: First, object features from individual images
must be extracted. Thereby, the feature vector space of the embedding model must
be large enough to reliably distinguish between an unknown number of object types.
Second, a suitable classification method must be found that has the ability to constantly
learn new object categories. Third, the system must be an effective learner. This means
that it only needs a limited number of annotated images to learn new objects. One such
method is active learning, where the system only ask for image annotation which are
most informative for classification. Last but not least, a working application must be
developed, which allows for extensive testing of the proposed pipeline.



2 CHAPTER 1. INTRODUCTION

The structure of the thesis is based on the above-mentioned subtasks. Chapter 2 in-
troduces convolution neural networks which demonstrated impressive classification per-
formance results in large-scale image classification challenges like the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2015]. The four dif-
ferent network architectures that are considered as feature extraction model for the
active learning pipeline are discussed in detail. Chapter 3 examines the classification
problem and presents seven classifier candidates for the pipeline. Chapter 4 presents
preliminary classification results of different combinations of feature extraction models
and classifier types. Then, chapter 5 takes a closer look at active learning methods and
introduces the uncertainty based heuristic chosen for this thesis. Chapter 6 discusses
the pipeline design and explains the mode of operation of the proposed pipeline. It also
discusses implementation details and limitations. The evaluation results of the active
learning pipelines are presented in Chapter 7. It also draws important conclusions for an
active learning pipeline for concept detection and identifies open questions that should
be explored in future research on this topic. Chapter 8 provides and overview over all
aspects of the active learning pipeline for concept detection in video that could not be
analyzed conclusively. The chapter formulates open questions guides future research on
the topic. The thesis ends with the conclusions in Chapter 9.

2
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Feature Extraction

Scientific interest for object detection in images and videos received a boost with the
introduction of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in
2010 [Russakovsky et al., 2015]. A major breakthrough was achieved by Krizhevsky et
al. [Krizhevsky et al., 2012] with the introduction of AlexNet. It was the first con-
tender to use a convolutional neural network and won the competition by a big margin.
Since AlexNet, ConvNets have continued to push the boundaries in the field of image
classification and object detection.

This chapter introduces the four ConvNets used for feature extraction in this thesis.
Those features are then fed to a bank of classifiers for classification (see Chapter 3). The
chapter starts with an introduction of the general architecture of ConvNets. Sections
2.2, 2.3, 2.4 and 2.5 introduce the Inception, ResNet, InceptionResNet and MobileNet
architectures, respectively. Every section briefly discusses the characteristics of each
architecture and explores its properties.

2.1 Convolutional Neural Networks

The quality of image classification and object recognition tasks has made tremendous
progress in recent years. This rapid progress is mainly due to the widespread use and
of Convolutional Neural Networks (CNNs or ConvNets). This section provides a brief
introduction to the general architecture of ConvNets and explores the reason for their
success.

ConvNets consist of three main types of layers: (i) convolutional layers, (ii) pooling
layers and (iii) fully-connected layers. In the following section, we take a brief look at
each of the three layer types.

2.1.1 Convolutional layer

A convolutional layer consists of three main components: (i) an input, (ii) a filter or
kernel, and (iii) an output array or feature map [IBM Cloud Education, 2020]. Figure
2.1 depicts the three components of a convolutional layer. For a color image, the input
is a 3-dimensional matrix, where the third dimension corresponds to the RGB values
and is called depth. The filter or kernel is a n× n matrix (or a n× n× 3 matrix in case
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of an RGB image) of weights. These weights are learned by the neural network during
training by stochastic gradient descend with back propagation of errors. The size of the
kernel defines the receptive field and can vary in size, however, it is typically a 3 × 3
matrix. By taking the dot product between the input values and the kernel, we get a
value for the feature map (in figure 2.1, the value is 16). The kernel is then moved over
the entire image to produce a complete feature map. The pixel distance between each
kernel movement is called stride, where larger strides leads to a smaller feature maps.
However, most ConvNets apply strides of either 1 or 2 pixels.

After each convolutional operation, an activation function is applied to the feature
map. Such activation functions introduce non-linearity and help the network to learn
more complex mapping functions. Sigmoid, hyperbolic tangent, and ReLU are
three common activation functions. The logistic sigmoid function maps the output
values to the range [0, 1], whereas the hyperbolic tangent maps the output values to the
range [−1, 1]. Both activation functions feature symmetric saturation cut-offs, which
means that values above the limits are truncated. Once saturation has been reached,
it gets difficult to improve the model performance by adjusting the weights during the
learning process. This ultimately leads to the vanishing gradients problem, where back
propagated errors become too small to contain any useful gradient information for very
deep layers of a neural network and, therefore, prevent effective learning. The rectified
linear activation unit (ReLU) overcomes these issues. It maps the output values to the
range [0,∞). [I. Goodfellow and Courville, 2016]

In order to see intuitively how convolutional layers are suitable for image classification
tasks, consider a ConvNet consisting of a cascade of convolutional layers. Convolutional
layers deep down in the network cover a spatially limited receptive field. Through
training, these layers produce feature maps for locally prominent features like single
edges, corners or radii. Progressing further up in the network, the convolutional layers
take these feature maps as input and learn kernel weights which produce feature maps of
more complex shapes, like circles, squares or star shapes. Continuing further up, more
and more semantics are added to the shapes, e.g. circles might be learned to be a wheel.
Finally, layers which are close to the top learn feature maps of semantic objects, like a
car or a house.

2.1.2 Pooling layer

As discussed in Section 2.1.1, the receptive field of a standard 3 × 3 kernel matrix is
small compared to the size of an input image (e.g. 224× 224 pixels). In order to reach
a receptive field which covers the entire image, a large number of convolutional layers
would be necessary, resulting in a large number of model parameters. Furthermore,
applying several different kernels in each layer would increase the number of parameters
even further. Such a model would not only suffer from very poor training efficiency, it
would also be prone to overfitting. Pooling layers help to reduce the dimensionality of the
neural network by applying a kernel to the input layer similar to the convolutional layer.
However, instead of a kernel consisting of learned weights, the pooling layer applies an
aggregation function to the values in the receptive field. The two main types of pooling

4
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Source: [IBM Cloud Education, 2020]
Figure 2.1: Basic architecture of a convolution layer

layers are max pooling and average pooling [IBM Cloud Education, 2020]. Where
the former method adds the highest value of the receptive field, the latter adds the
average of the values in the receptive field to the output array. Pooling layers also apply
an activation function, similar to the convolutional layers.

2.1.3 Fully-connected layer

ConvNets used for image classification feature a fully-connected layer at the top of the
network, where each node of the output layer connects directly to a node of the previous
layer. This is different to convolutional and pooling layers, which only connect to the
receptive field and are, therefore, only partially-connected. It performs classification by
taking the feature vectors extracted from the previous layers as input and maps them
to classification nodes in the output layer [IBM Cloud Education, 2020].

In this project, the ConvNets are used to extract feature vectors of the input images.
The classification task itself is performed by trained classifiers (please refer to Chap-
ter 3 to learn about the reasons). Consequently, the fully-connected layer will not be
considered any further in this project.

2.2 Inception Architecture

There is an obvious way to increase the performance of ConvNets: increasing their size.
The network size can grow in two dimensions, (i) the depth (the number in layers) and
(ii) the width of the network (the number of kernels applied at each layer). However,
simply increasing the size comes with the cost of an increasing number of parameters.
As has been discussed in Section 2.1.2 this can lead to overfitting (especially if only a
limited number of training samples are available) and might be computationally pro-
hibitive. Szegedy et al. [Szegedy et al., 2015] introduced the Inception architecture
which attempts to overcome the aforementioned problems.

5
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2.2.1 Motivation

The architecture is inspired by the work of Arora et al. [Arora et al., 2014]. They
present a mathematical proof for an optimal network topology, given that the probability
distribution of a data set can be represented by a large, sparse deep neural network. It
is constructed by analyzing the correlation statistics in the last layer. Then clusters of
units with high correlation are built which form the units of the next layer. Finally, the
units of the previous and the units of the current layer are connected. This layer-by-
layer approach mimics the biological Hebbian principle: “Things that fire together wire
together” [Hebb, 1949]. Arora et al. rephrase the principal as: “Nodes in the same layer
that fire together a lot are likely to be connected (with positive weight) to the same node
at the higher layer.” [Arora et al., 2014] Szegedy et al. admit that the proof requires
strict conditions which are not met with their approach. The proposed architecture
tries to approximate an optimal local sparse structure with dense components for which
modern computational hardware is optimized.

2.2.2 Layer Module Architecture

The suggested solution clusters groups of nodes with high correlation from the previous
layers to form units of the next layer. These units are then connected to the previous
layer. To do so, Szegedy et al. assume that “each unit from the earlier layer corresponds
to some region of the input image and these units are grouped into filter banks. In the
lower layers (the ones close to the input) correlated units would concentrate in local re-
gions. This means, we would end up with a lot of clusters concentrated in a single region
and they can be covered by a layer of 1× 1 convolutions in the next layer. However, one
can also expect that there will be a smaller number of more spatially spread out clusters
that can be covered by convolutions over larger patches, and there will be a decreasing
number of patches over larger and larger regions.”[Szegedy et al., 2015] Following this
reasoning, the authors propose to stack single Inception modules as shown in Figure 2.2.
A naive inception module consists of three kernel sizes and a max pooling branch which
get concatenated as input for the next layer. Intuitively speaking, the three different
patch sizes process the visual information at different scales. Then, the next stage uses
the aggregated input to abstract features from different scales simultaneously. Another
important feature of the Inception architecture is the widespread use of dimension re-
duction by applying 1× 1 convolutions. Figure 2.2 (b) shows a final Inception module.
Although, dimension reduction leads to some information loss, it keeps the computa-
tional complexity under control and allows for deeper and wider inception networks.
[Szegedy et al., 2015]

2.2.3 InceptionV3

For Version 3 of the Inception network (which is used in this thesis) Szegedy et al.
introduced various optimizations over version 1. All new introduction were aimed at
optimizing the computational efficiency of the Inception architecture. The most notable

6
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Source: [Szegedy et al., 2015]
Figure 2.2: Architecture of a inception module

introductions is the spatial factorization into asymmetric convolutions. The au-
thors propose to replace the computationally expensive 5× 5 convolution of the original
Inception module by two consecutive 1 × 3 and 3 × 1 convolutions. Using the same
number of filters, the asymmetric approach is more cost efficient and, thus, allows for a
bigger network at the same computational cost. [Szegedy et al., 2016b]

2.2.4 Network Architecture

The InceptionV3 network used in this thesis has a depth of 159 layers and consists of
23’851’784 parameters. [Chollet et al., 2015] It achieved a top-1 accuracy of 0.779 and a
top-5 accuracy of 0.937 on the ImageNet [Russakovsky et al., 2015] validation data set
(see also table A.2 in the appendix, section A.1.5). A more detailed detailed layout of
the InceptionV3 network architecture can also be found in the appendix, section A.1.1.

2.3 ResNet Architecture

The ResNet architecture pursues a similar goal as the Inception architecture: to reach
even deeper convolutional neural networks. Where the Inception architecture exploits the
theoretical findings from Arora et al. and makes widespread use of dimension reduction
convolutions to reduce the computational complexity of the network, ResNet introduces
a deep residual learning framework.

2.3.1 Motivation

The ResNet architecture is motivated by a peculiar observation for deep neural networks.
Many networks exhibit a degradation in accuracy when more layers are added to the
network. [He and Sun, 2015] Interestingly, the degradation is not caused by overfitting,
but higher training errors. He et al. investigated the problem further and found that
when identity mapping layers are added to one of two otherwise identical networks, there
is still a degradation in accuracy for the deeper network. Apparently, the solvers where

7
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not able to find a solution to approximate an identity mapping by multiple non-linear
layers. [He et al., 2016a]

2.3.2 Layer Module Architecture

He et al. hypothesize that it is easier for a solver to learn a residual mapping F := H−x
than a underlying mapping function H. They argue that if “one hypothesizes that
multiple nonlinear layers can asymptotically approximate complicated functions, then
it is equivalent to hypothesize that they can asymptotically approximate the residual
functions, i.e., H−x (assuming that the input and output are of the same dimensions)”.
[He et al., 2016a] In the aforementioned case of approximating an identity mapping, the
solver would simply need to push the weights of the multiple non-linear layers towards
zero to find a good solution.

Figure 2.3 shows a residual learning building block. Instead of the desired underlying
mappingH, the training algorithm fits the residual mapping function F := H−x. Figure
2.3 also shows the shortcut connection which allows for the restoration of the desired
underlying mapping function by simply adding element-wise the identity x to the output
feature maps, channel-by-channel. A residual learning block typically consists of 2 or
3 convolutional layers. He et al. emphasized that the shortcut connection still allows
for stochastic gradient descend with back propagation of errors and neither adds extra
parameters nor extra complexity to the network.

Source: [He et al., 2016a]
Figure 2.3: Residual learning building block

2.3.3 ResNetV2

The main contribution of the second version of the ResNet architecture is the redesign
of the shortcut path. He et al. propose an identity mapping not only within a residual
learning building block but also between blocks. They found that a network which allows
for direct propagation of information through the entire network is easier to train and
generalizes better. This gives room for even deeper networks.

The new building block design is shown in Figure 2.4 b). Compared to the original
design, no ReLU activation function is applied after restoring F = H− x. Instead, the

8
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authors propose a pre-activation of the convolutional layers (please note, how the ReLU
function is applied before the weight kernel). This is a departure from the conventional
post-activation of feature maps. However, empirical evidence show that an identity
mapping between blocks simplifies training and reduces overfitting. [He et al., 2016b]

2.3.4 Network Architecture

Figure A.4 in the appendix, Section A.1.3, provides a schematic overview of the network
topology with 34 parameter layers. Please note, that the ResNetV2 network used in
this thesis features 50 parameter layers. Keras [Chollet et al., 2015] actually provides
even deeper pre-traind ResNetV2 networks. However, the network with 50 parameter
layers features a similar parameter count as the InceptionV3 network (25’613’800 vs
23’851’784). Therefore, it allows for a direct comparison of the performance between the
two layer modules architectures. ResNet50V2 achieved a top-1 accuracy of 0.749 and a
top-5 accuracy of 0.921 on the ImageNet validation data set (see also table A.2 in the
appendix, section A.1.5). [Chollet et al., 2015]

Source: [He et al., 2016b]
Figure 2.4: Residual learning building blocks in ResNet and ResNet V2

2.4 InceptionResNet Architecture

After the successful introduction of the ResNet architecture, Szegedy et al. investigated
if their Inception architecture could gain any performance improvements if it was com-
bined with the residual learning approach. In their study, the authors basically used
residual learning blocks with post-activation architecture and replaced the conventional
convolution layers with an Inception module. [Szegedy et al., 2016a]

9
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2.4.1 Layer Module Architecture

The authors used slightly lighter Inception modules compared to original module, in
order to roughly match the computational cost of the InceptionV3 network. Other
technical adjustments to the Inception module were necessary. For example, a filter
expansion layer (1×1 convolution without activation) was introduced after each block to
match the dimensionality of the input. This is necessary, because the original Inception
module uses dimension reduction to keep the computational complexity under control.
However, the restoration of the underlying mapping function H = F + x requires the
input and output of a residual training block to be of the same dimensionality (see 2.3.2).
Szegedy et al. also propose a technical adjustment to the residual learning block. For
very deep variants, they found the network to become saturated during training. Also
He et al. made this observation. [He et al., 2016a] Scaling down the linear activation by
a factor between 0.1 and 0.3 stabilized the network.

In addition to the adjustments on block level, Szegedy et al. [Szegedy et al., 2016a]
also tuned the number of filters in the entire network. This optimization improved the
training efficiency compared to Inception V3 without affecting the quality of the trained
network.

2.4.2 Network Architecture

With 55’873’736 parameters and a depth of 572 layers, the InceptionResNetV2 network
is by far the largest network considered in this thesis (see also Table A.2 in the appendix
for a size comparison). It also exhibits the highest scores for top-1 and top-5 accuracy on
the ImageNet validation data set. [Chollet et al., 2015] However, the marginal gains over
the other ConvNets is relatively small compared to the increase in network size. Please
refer to the appendix, Section A.1.3, to learn more about the network architecture.

2.5 MobileNet Architecture

The general trend in ConvNet architecture has been to build deeper and wider networks
to improve accuracy in vision tasks such as image classification and object recognition.
The MobileNet architecture pursues a different goal. It focuses mainly on network
efficiency.

2.5.1 Motivation

Computer vision is increasingly finding its way into real-world applications. Augmented
reality applications on smartphones, situation aware self-driving cars and self navigating
robots are just a few examples. Many of these applications run on computationally
limited hardware and the recognition task must be executed in real time. The previously
discussed architectures, Inception and ResNet, target very deep and wide networks with
high detection accuracy. It comes at the cost of comparably high embedding latency

10
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and high memory loads. MobileNet is an efficient network architecture which allows to
build small and low latency networks [Howard et al., 2017].

2.5.2 Layer Module Architecture

Similar to the InceptionV3 architecture, MobileNet uses factorization of convolution
layers to reduce the model size and, hence, computation. At the core of the MobileNet
architecture are depthwise separable convolution layers, which split a standard convolu-
tion into a two-step process. The first step is to apply a single filter of size DK ×DK ×1
on each input channel m ∈M (depthwise convolution), where DK is the spatial dimen-
sion of the kernel. In the second step, a 1 × 1 ×M kernel creates a linear combination
over the M output feature maps from the first step. Figure 2.5 illustrates the two ap-
proaches. In order to see how depthwise separable convolutions reduce the network size,
consider the following comparison: A standard convolution is parameterized by a kernel
of size DK ×DK ×M ×N , where DK is the spatial dimension of the kernel, M is num-
ber of input channels and N the number of output channels. The depthwise separable
convolution requires kernels of size DK ×DK ×M and 1× 1×M ×N , respectively. The
reduction in the number parameters is: [Howard et al., 2017]

DK ·DK ·M + 1 · 1 ·M ·N
DK ·DK ·M ·N

=
1

N
+

1

D2
K

(2.1)

Source: [Howard et al., 2017]
Figure 2.5: A Standard convolution filter (a) is replaced by a depthwise convolution (b)

and a pointwise convolution (c)

2.5.3 MobileNetV2

Sandler et al. [Sandler et al., 2018] improved the MobileNet layer module architecture
with the introduction of a novel layer module: the inverted residuals with linear bot-
tleneck. A bottleneck is a layer with fewer nodes then the layers above or below it.
1 × 1 convolutions are used to compress high dimensional representations into lower
dimension space (see also [Szegedy et al., 2015]). The authors use linear activations af-
ter the bottleneck as it prevents non-linearities from destroying too much information.
Figure 2.6 b) shows an inverted residual block with linear bottleneck. Please note that
(i) the inverted residual block connects the bottlenecks with shortcuts, (ii) the input
gets expanded into a higher dimensional space after the first bottleneck and (iii), the

11
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convolutions applied between bottlenecks are conventional ReLU activations instead of
the linear activations. Please refer to Figure A.12 in the Appendix A.1.4 to learn more
about the specification of the module. According to the authors, this design “provides a
natural separation between the input/output domains of the building blocks (bottleneck
layers), and the layer transformation – that is a non-linear function that converts input
to the output. The former can be seen as the capacity of the network at each layer,
whereas the latter as the expressiveness”. [Sandler et al., 2018]

Source: [Sandler et al., 2018]
Figure 2.6: A standard residual block in (a) and an inverted residual block in (b)

2.5.4 Network Architecture

The MobileNetV2 network consists of 20 blocks without the fully-connected layer. Out
of the 20 blocks, 17 are inverted residual linear bottleneck blocks (please refer to figure
A.13 in the appendix, Section A.1.4, to learn more about the details of the network
architecture). The full model contains 3’538’984 parameters and features a depth of
88 layers. It achieved a top-1 accuracy of 0.713 and a top-5 accuracy of 0.901 on
the ImageNet validation data set (see also Table A.2 in the appendix, Section A.1.5)
[Chollet et al., 2015].

12
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Classifiers

In the introduction of Chapter 2, the great successes of Convolutional Neutral Networks
in image classification competitions, such as the ILSVRC was pointed out. Such contests
are usually structured as follows: The teams are provided with a comprehensive training
set of images with a fixed number of labeled objects. Furthermore, a validation set and
a test set are provided, which contain different images compared to the training set, but
identical objects. The winner is chosen based on the classification results on the test set.
Since the individual objects are known and fixed in advance, it is advantageous to train
the ConvNet using a huge number of training images containing these objects. In this
regard, the fully-connected layer (as described in Section 2.1.3) functions as a classifier.

However, the challenge in this thesis is that the number and type of objects are not
known in advance. The system is constantly confronted with new objects, which it must
learn and identify in unseen images. One possibility would be to retrain the entire Con-
vNet including the fully-connected layer whenever a user adds newly labeled objects to
the system. From a computational perspective, this would be rather challenging. A
possible alternative would be to retrain the fully-connected layer only, which is known
as transfer learning. However, the number of labeled images might vary significantly
between different classes. Buda et al. [Buda et al., 2017] show that the effect of unbal-
anced data is detrimental on classification performance. A solution to this problem is
to train a dedicated classifier for each object class. The ConvNet simply embeds the
image into the feature vector space. The feature vectors are then used to train a classifier.

This chapter introduces the different classification methods considered in this thesis.
Section 3.1 discusses the Gaussian Naive Bayes classifier and Section 3.2 introduces the
k-Nearest Neighbor classifier. In Section 3.3, two related classifier are presented, first the
Decision Tree classifier and, second, the Random Forest classifier. Section 3.4 presents
the Support Vector Classifiers with a linear kernel and with a radial basis function kernel.
The chapter ends with the introduction of the Multi-layer Perceptron classifier in Section
3.5. A detailed discussion about the classification performance of each method follows
in Chapter 4.
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3.1 Gaussian Naive Bayes

Naive Bayes (NB) is a relatively simple classification technique. The underlying assump-
tion of a NB classifier is that features are conditionally independent from each other.
Hence, the joint probability density function (pdf) can be written as the product of the
individual conditional probabilities, or more formally:

P (X | C) =
n∏

i=1

P (Xi | C),

where X = (X1, . . . , Xn) are the extracted features, e.g. the embedded feature of an
image in a multidimensional vector space, and C is a a class. The Bayes classifier is then
defined as [Rish, 2001]:

h∗(x) = argmax
x

P (C = i | X = x)

=
P (X = x | C = i)P (C = i)

P (X = x)

= P (X = x | C = i)P (C = i),

(3.1)

where P (X = x) can be ignored in Equation 3.1 because it is the same for all classes.
A Gaussian NB classifier simply assumes that the values associated with each class
follow a Gaussian (or normal) distribution. This assumption facilitates training substan-
tially because the class-conditional distribution can be described using only the first two
moments.

The assumption of independent features is highly unlikely in real-world applications,
which is why it is called naive. However, the NB classifier has proven itself despite
dependencies among features. [Kelly and Johnson, 2021], [Kamel et al., 2019] Domingos
and Pazzani [Domingos and Pazzani, 1997] argue that for an optimal classifier (in terms
of classification error) it is more important that the estimated and the actual distribution
agree on the same class. The quality of the fit to an assumed probability distribution is
of secondary importance. Rish [Rish, 2001] shows that NB classifiers perform best when
(i) features are completely independent or for (ii) almost-deterministic (low-entropy)
feature dependencies. In between the two extremes, the NB classifiers performs poorly.
This supports the empirical finding that NB classifiers perform very well in certain
tasks. Combined with their simplicity, fast training time and low memory requirements
it makes them the classifier of choice in many applications.

3.2 K-Nearest Neighbor

Another very simple but surprisingly effective classification method is the k-Nearest
Neighbor classifier. Fix and Hodges [Fix and Hodges, 1951] first introduced the method.
The algorithm classifies samples based on the majority vote of its nearest neighbors and
is specified by a single parameter k. Figure 3.1 illustrates the mode of operation of
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the classifier. For k = 1 the query sample (green star) is assigned to class Blue. In
case k = 3, the majority vote of the three nearest neighbors is Orange. For k = 5 the
assigned class is Blue again. Besides the simple specification, the classifier has other
desirable properties: (i) the method allows for non-linear decision boundaries, (ii) the
prediction quality improves with the number of training samples and (iii) the trivial
learning procedure rarely causes overfitting. [Goldberger et al., 2004] The aforemen-
tioned benefits are a direct consequence of the classifier being an instance-based learning
algorithm: it simply stores all training instances and compares the query sample against
them. Instance-based-learners do not learn an internal model for classification. This has
one major drawback: because the algorithm relies on a distances metric between the
(multi-dimensional) feature vectors of the query sample and the training samples, it has
to go through all training instances to find the right class. For large training sets this
can become very expensive, both from a computational and a memory load perspective.
Another problem is how to choose the best distance metric for the classification prob-
lem at hand. Figure 3.1 uses the Euclidean distance with a uniform distance weight to
determine the nearest neighbors. For specific classification tasks other distance metrics
with non-uniform distance weights might be more useful. However, the best specification
cannot be known in advance. [Goldberger et al., 2004]

Source: own depiction
Figure 3.1: k-nearest neighbor classification with k = 1, k = 3, k = 5, distance metric

Euclidean and uniform distance weight

3.3 Decision Trees

Decision Trees belong to the class of model-based learning algorithms. Based on the
feature vectors and the class labels of the training set, these algorithms attempt to find
a tree representation (model) of the classification problem at hand. A Decision Tree
consists of the following components: (i) the terminal nodes (or leaves) of a Decision
Tree represent the discrete class labels, (ii) branches, which lead to the leaves, represent
conjunctions of input features which ultimately determine the class of a single sample.
Breiman et al. [Breiman et al., 1984] popularized the method among statisticians and
data scientists with the introduction of the CART algorithm. Figure 3.2 shows a Decision
Tree for the Iris data set on the left. The gray terminal nodes are the class labels. The
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white intermediate nodes represent individual features of the input data. The condition
at which an instance either follows the right or the left branch is also shown for each
feature (e.g. if the petal length is less than 2.45cm the flower is classified as a Setosa).

There exists a variety of different algorithms to construct and train Decision Trees:
Chi-square Automatic Interaction Detectors (CHAID) by Sonquist and Morgan was the
first algorithm for Decision Trees [Sonquist and Morgan, 1964]. Quinlan introduced
three incrementally improved algorithms: ID3 [Quinlan, 1986], C4.5 [Quinlan, 1993],
and C5.0 which is the most recent variant. Other algorithms are Multivariant Re-
gression Splines (MARS) by Friedman [Friedman, 1991] and CART by Breiman et al.
[Breiman et al., 1984]. These algorithms differ mainly with respect to the applied split-
ting criteria, pruning method and noise handling [Kohavi and Quinlan, 1999]. In the
following sections, we will first take a closer look at the CART algorithm. A modified
version of it is used in this thesis. [Pedregosa et al., 2011] Then we will discuss the
Random Forest classifier which fixes a drawback of simple Decision Trees.

Source: [Loh, 2014]
Figure 3.2: Classification tree model for the iris data set. The numbers beneath each
terminal node shows the number of misclassified samples and the node sample size.

3.3.1 CART Decision Tree

The basic strategy of the CART algorithm, as most other Decision Tree algorithms, is
the recursive partitioning of the feature vector set into subsets. The procedure is induced
top-down and continued until the subsets all have the same target value, or splitting does
not add any information to the prediction. The CART algorithm uses the Gini impurity
as splitting criteria and only allows for binary splits in a tree. The splitting criteria is
defined as:

IG(p) =
J∑

i=1

(
pi
∑
k 6=i

pk

)
=

J∑
i=1

pi(1− pi) = 1−
J∑

i=1

p2i (3.2)

where J is the set of classes in the set of training instances and pi is the fraction of
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instances labeled with class i. The Gini impurity can be understood as the probability
of mislabeling a randomly chosen instance from the training set if the labels where
randomly selected according to the distribution of labels in the subset. An optimal split
is reached if IG(p) = 0, which means that all instances at a node belong to the same
target class.

After growing the tree, CART prunes it based on a minimal cost complexity. The cost
is assigned to each subtree. It assumes that the resubstitution error (which measures
the error rate of the modeled tree evaluated on the training set) increases linearly with
the number of terminal nodes. Breiman et al. [Breiman et al., 1984] showed that there
exists a unique smallest tree which minimizes that cost.

Important advantages of the algorithm are that it can handle both, numerical and
categorical features (the former is of importance for this thesis), the cost of predicting
data is logarithmic in the number of instances used for training and that it can easily
handle outliers. On the downside, learning an optimal Decision Tree is a NP-hard
problem and the CART algorithm may produce overly complex trees and is prone to
overfitting. This issue can be mitigated by defining a maximal tree depth and a minimal
number of samples required at the terminal nodes. The algorithm may also produce
unstable Decision Trees. Already small changes in the training set might result in a
different tree. Using a Decision Tree within an ensemble can reduce this problem. The
Random Forest classifier does exactly that. [Pedregosa et al., 2011]

3.3.2 Random Forest

The Random Forest classifier was popularized by Breiman in 2001 [Breiman, 2001].
It is a method to construct a classification ensemble consisting of a collection of tree-
structured classifiers. Its main idea is to grow a set of Decision Trees in randomly selected
subspaces of the training features. To classify sample x, each Decision Tree casts one
vote, and the class that receives the majority of votes is assigned to sample x. Breiman
explains the creation of a random forest as follows: “The simplest random forest with
random features is formed by selecting at random, at each node, a small group of input
variables to split on. Grow the tree using CART methodology to maximum size and do
not prune.” [Breiman, 2001]

Two advantages of Random Forest classifiers are based on the fact that they consist
of a set of individual Decision Trees. First, due to majority voting, Random Forest
classifiers are much more stable than simple Decision Trees. Second, each Decision Tree
can be grown independently from each other. This allows for easy parallelization of
the compute process and makes it a highly efficient classifier even for large data sets.
However, Xu et al. [Xu et al., 2012] mention a potential drawback, especially when
used with high dimensional input data, like images. They argue that through randomly
selecting a small subspace from the high dimensional feature input space it is likely that
uninformative features (with regard to the class label) get selected. If the resulting
Random Forest consist of a large portion of such uninformed trees, it is likely that the
classifier suffers from poor classification power.

17
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3.4 Support Vector Machine

Vladimir Vapnik, in collaboration with various colleagues, is considered the inventor of
the Support Vector Machine (SVM), which has had a major impact on machine learning
ever since. In 1993, Boser et al. [Boser et al., 1992] proposed a training algorithm which
extended the original idea and solved a general problem in machine learning. The authors
describe the problem as follows: “Good generalization performance is achieved when the
capacity of the classifier function is matched to the size of the training set. Classifiers
with a large number of adjustable parameters and therefore large capacity likely learn
the training set without errors, but exhibit poor generalization. Conversely, a classifier
with insufficient capacity might not be able to learn the task at all. In between, there is
an optimal capacity of the classifier which minimizes the expected generalization error
for a given amount of training data.”[Boser et al., 1992] The idea behind their algorithm
is to maximizes the margin between training examples and class boundary. To do so,
only a small subset of the training data is usually required, the so-called support vectors.
Figure 3.3 illustrates the idea. More formally, the algorithm constructs a hyperplane
in a high-dimensional space with optimal margin to the training samples. For class
prediction, it is sufficient to check on which side of the hyperplane the test sample falls.

SVM offers both, a linear and a non-linear variant for classification. The linear variant
of the SVM is briefly discussed in Section 3.4.2 and a non-linear variant in Section 3.4.3.
We start with the problem definition in Section 3.4.1.

Source: [Cortes and Vapnik, 1995]
Figure 3.3: An example of a separable problem in a 2-dimensional space. The support
vectors, marked with grey squares, define the margin of largest separation between the

two classes.

3.4.1 Problem Definition

The goal of the algorithm from Boser et al. [Boser et al., 1992] is to find a decision
function D(x) for the n-dimensional feature vectors x in the training set. The training
set consists of p samples with labels y, where yi is either 1 or −1. A sample xi is of class
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1 if D(x) > 0 and of class −1 otherwise. Formally, the decision function, which defines
a separating hyperplane in ϕ-space, is given by:

D(x) = w ·ϕ(x) + b, (3.3)

where w is an n-dimensional normal vector to the hyperplane and b is a bias. Both, w
and b are adjustable parameters of the decision function. ϕ is a predefined function of
x. Figure 3.4 illustrates the decision function in a (ϕ = x)-dimensional space. If the two
classes can be separated by a hyperplane with margin M then the following inequality
applies to all training samples:

Source: [Boser et al., 1992]
Figure 3.4: Decision function D(x) = w ·ϕ(x) + b with ϕ = x

ykD(xk)

‖w‖
≥M, (3.4)

where D(xk)/‖w‖ is the distance between the hyperplane and the sample xk (see
Figure 3.4). The objective function of the algorithm is therefore:

M∗ = max
w,‖w‖=1

M

subject to

ykD(xk) ≥M, for k = 1, . . . , p

(3.5)

The samples with the smallest margin are called support vectors. The bound M∗ in
Figure 3.4 is defined by these support vectors:

M∗ = min
k
ykD(xk) (3.6)

The optimization problem can be rewritten as a minimax-problem by plugging Equa-
tion 3.6 into in Equation 3.5. Furthermore, instead of fixing the norm ‖w‖ = 1 in
Equation 3.5 the authors fix M · ‖w‖ = 1. Consequently, maximizing M is equivalent
to minimizing the norm ‖w‖ and the optimization problem simplifies to:
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min
w
‖w‖2

subject to

ykD(xk) ≥ 1, for k = 1, . . . , p

(3.7)

and the maximum margin is M∗ = 1/‖w∗‖.
In principal, Equation 3.7 can be solved numerically. However, this can become im-
practical for high-dimensional ϕ-spaces. To solve this issue, the authors transform the
maximization problem into the dual-space. For the purpose of this section, this is con-
sidered out-of-scope. Please refer to the paper [Boser et al., 1992] to learn more about
it.

3.4.2 Linear SVC

The simplest variant is the linear Support Vector Classifier (SVC) with ϕ = x. It is
depicted in Figure 3.4. The decision function is defined by:

D(x) = w · x− b, (3.8)

In order to get the maximum margin hyperplane, the algorithm solves Equation 3.7
subject to the decision function defined in 3.8.

3.4.3 Radial Basis Function SVC

The beauty of the algorithm by Boser et al. [Boser et al., 1992] is that it also allows for
classification of non-linearly separable data sets. To do so, the authors take advantage
of the kernel trick. The idea behind this method is to transform the data into a higher
dimensional space, in which a linear discrimination between classes is possible. The
kernel trick is a well established method and kernels for different non-linear functions
exists. Among others, kernels are known for polynomials, hyperbolic tangents and the
Gaussian radial basis function (RBF). The exact workings of the kernel trick is beyond
the scope of this section. However, a SVC with a RBF kernel is used as a classifier in
this thesis. The RBF kernel is defined as:

K(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
,

and corresponds to a radial basis expansion of ϕ(x).

3.4.4 Properties of SVCs

Due to definition of the algorithm, as described above, SVCs are highly effective in high
dimensional space and are still effective if the number of feature dimensions outnumbers
the training sample size. These two properties makes it a very suitable choice for the
image classification tasks at hand. Furthermore, it is very memory efficient as only a
subset of training sample is required to form the decision function.
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3.5 Multi-Layer Perceptron Classifier

A Multi-Layer Perceptron (MLP) can be understood as a basic neural network. The
research foundations were laid by Rosenblatt [Rosenblatt, 1958]. Inspired by the neurons
in a human brain, he proposed a a single neuron for classification, the perceptron.

3.5.1 Perceptron

It is the basic processing element of every neural network. In Figure 3.5 xj , j = 1, . . . , d
are the input units, e.g. an input feature vector or the outputs of other perceptrons. Each
input is associated with a connection weight wj . The output y of a simple perceptron
is given by the weighted sum of all inputs plus an intercept value x0 (also called bias):
y = wT · x. The perceptron with several inputs (as shown in Figure 3.5) defines a
hyperplane and can be used as a linear discriminant function to separate to two classes
(similar to the Linear SVC in Section 3.4.2). In other words, perceptrons are just a way
to implement a hyperplane. [Alpaydin, 2014]

Source: [Alpaydin, 2014]
Figure 3.5: Depiction of a simple perceptron

3.5.2 Multi-Layer Perceptron

As discussed above, simple perceptrons can only approximate linear discrimination func-
tions. In order to classify input with non-linear separable features, additional hidden
layers can be added. Figure 3.6 shows the architecture of an MLP, where the nodes zh,
h = 1, . . . H, are the hidden units. MLP are fully connected networks, so every hidden
node receives an input from each input node and is connected to each node in the next
level. The value of zh is defined by:

zh = φ(xT
h · x),

where φ is an activation function (see also 2.1.1 to learn more about activation func-
tions). The output yi are then given by: yi = vT

i · z), where vi are the weights.
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Source: [Alpaydin, 2014]
Figure 3.6: Depiction of a multi-layer perceptron

3.5.3 Training of MLPs

MLP are trained in a supervised fashion using back propagation of errors. In the example
of a three layer MLP with one input layer, a hidden layer and an output layer and for
classification with two classes, the error in an output node j for a training example with
index t is defined by,

Et(v | zt, rt) = −rt log yt − (1− rt) log(1− yt)

where rt is the target value at the output node and yt is the value produced by
the perceptron. [Alpaydin, 2014] Using stochastic gradient descent the weights of each
hidden node are changed according to the update rule:

∆vth = η(rt − yt)zth, for h = 0, . . . ,H (3.9)

In Equation 3.9 η is a learning factor and gradually decreases in time for convergence.
In order to calculate the input-layer weights, wh,j , we can simply propagate the errors
from the hidden layer backward using the chain rule:

∂E

∂wh,j
=
∂E

∂y

∂y

∂zh

∂zh
∂wh,j

.

3.5.4 Properties of MLPs

As has been discussed in Section 3.5.2, MLPs can learn to discriminate non-linear sep-
arable data sets. They are capable to learn on-line, meaning the network updates is
parameters with each training instance, one by one. MLPs can delivery good prediction
accuracy already with only a small training sample set. However, MLP requires tuning
of several hyperparameters, such as the network size (number of hidden nodes and lay-
ers). The optimal specification depends on the classification task and the most common
approach is to test many variations of network sizes. [Alpaydin, 2014] Furthermore, the
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hidden layers have non-convex loss functions. Depending on the initial weight initializa-
tion, stochastic gradient descent may result in different local minimum which in return
can result in different validation accuracy [Pedregosa et al., 2011].
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4

Preliminary Evaluation

This chapter reports the classification performance results for different combinations
of feature extraction models and classifiers. Section 4.1 formulates 5 research question
to guide the evaluation. Section 4.2 introduces the data sets used in the evaluation
and Section 4.3 explains the evaluation setup. The chapter finishes with the evaluation
results in Section 4.4.

4.1 Research Questions

This chapter aims to answer the following research questions:

• RQ1: Which combination of feature vector embedding model and classifier per-
forms best for the task of image classification?

• RQ2: How does the classification performance depend on the number of training
instances?

• RQ3: How good is the classification performance for a data set containing non-
iconic images?

• RQ4: How good is the classification system in distinguishing subtypes of an object
category?

• RQ5: Does the classification performance improve if (in addition to the labeled
images) the system is also trained on extracted box images of the objects?

4.2 Data Sets

In order to answer the research questions stated above, 2 different data sets were used.
Section 4.2.1 introduces the COCO data set and Section 4.2.2 explains the tf flowers
data set.
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4.2.1 COCO Data Sets

Microsoft common object in context (COCO) [Lin et al., 2014] is a large-scale data set
introduced in 2014 as part of a new object detection and image captioning challenge.
Since its introduction, other tasks have been added to the annual competition, like
keypoint detection or dense pose tasks. The data set used in this thesis was released
in 2014. It was specifically designed to address three research problems: (i) detecting
objects from non-iconic views, (ii) precise localization and segmentation of objects in 2D
and (iii) contextual reasoning between objects. For the task at hand, the detection of
objects from non-iconic views is of particular relevance. It means that an object is shown
in its natural context and might be in the background or partially obscured. Figure 4.1
c) shows some examples of non-iconic images.

The data set consists of, among others, a training split and a validation split, con-
taining 82’783 and 40’504 images, respectively. The images are labeled with 80 different
objects categories, like person, motorcycle, giraffe, knife, toilet or hair drier, just to
name a few. Furthermore, the data set also contains separate bounding boxes for each
object instance. To answer research question 4, the bounding boxes were used to ex-
tract the individual objects from the training images. The extracted box images where
then fed to the classifiers as additional training instances (please refer to Section 4.4.2
to learn more about the results). The data set was downloaded from Tensorflow Hub
[Abadi et al., 2015] in a TFRecord format.

Source: [Lin et al., 2014]
Figure 4.1: Examples of different images types in the COCO data set

4.2.2 TF Flowers Data Sets

The tf flowers data set is also provided by Tensorflow [The TensorFlow Team, 2019]. It
contains 5 different types of flowers: dandelion, daisy, tulips, sunflowers, roses. The data
set consist of 3670 images with roughly 700 to 750 images of each flower type. In most
images, the flowers are depicted in an iconic view, centered and unobscured. The data
set does not provide any bounding boxes. Therefore, the data set is primarily used to
answer research question 4. As the objects are mainly depicted in an iconic view, the
classification results reported in Section 4.4.3 can also be understood as a base against
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which the results of the the COCO data set can be compared. Hence, it also helps to
answer research question 3.

Figure 4.2: Examples of the tf flowers data set

4.3 Evaluation Setup

This sections outlines the test setup. Section 4.3.1 gives additional information about
the feature extraction models used for this evaluation. Section 4.3.2 briefly discusses
the parameterization of the classifiers and Section 4.3.3 explains how the training and
validation sets were created.

The entire evaluation was run on a MacBook Pro with macOS 10.15.7, an Intel Core
i7 processor and 8 GB of RAM. No dedicated GPU resources were assigned to the task.
The code is written in Python, version 3.8, with extensive use of the Tensorflow package,
version 2.4.1, and classifiers from Scikit-learn, version 0.24.1 [Pedregosa et al., 2011].

4.3.1 Feature Extraction Models

For all architectures discussed in Chapter 3, Tensorflow Hub provides pre-trained feature
extraction models from Keras [Chollet et al., 2015]. They were trained on the ILSVRC-
2012-CLS data set, which contains 1,281,167 training images and spans 1000 object
classes [Russakovsky et al., 2015]. The embedded feature vectors of the images were
extracted right below the full-connected classification layer. The architectures differ
significantly in layer depth and width (please refer to Table A.2 in the Appendix). The
same is true for the output feature vector sizes. Table 4.1 provides an overview. However,
the architecture of the second-to-last layer determines the output layer size. Therefore,
a higher parameter count does not necessarily translate to a large feature output vector.

Model Image input size Output feature vector size

InceptionV3 224 x 224 x 3 51200

ResNet50V2 224 x 224 x 3 100352

InceptionResNetV2 224 x 224 x 3 38400

MobileNetV2 224 x 224 x 3 62720

Table 4.1: Input and output sizes of the pre-trained models from Keras
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4.3.2 Classifiers

The classifiers were obtained from Scikit-learn [Pedregosa et al., 2011]. The parameter-
ization of the classifiers corresponded mainly to the default settings. In order to control
the classification results over several runs, the initialization of the random state was set
to 0 where necessary. Please be aware that this might cause the stochastic gradient de-
scent to result in a non-optimal local minimum for the MLP classifier. Table 4.2 provides
an overview of important model parameters

Classifier Important model parameterization

GaussianNB -

K-Nearest Neighbor k = 5; uniform weights; Euclidean distance

Decision Tree Gini impurity criterion; unlimited max depth

Random Forest nr. trees = 100; Gini impurity criterion; unlimited max depth

Linear SVC kernel = linear; optimization problem in dual space

SVC kernel = rbf; optimization problem in dual space

MLP hidden layer size = 100, activation = ReLU

Table 4.2: Classifier parameterization

4.3.3 Training and Validation Sets

The aim of this thesis is to study the performance of an active learning image clas-
sification system. As will be discussed in more details in Chapter 5, active learn-
ing requires a user to feed new object categories to the system. Because annotating
large numbers of images is extremely time consuming, it is of high importance that
the classification system performs reasonably well even for small numbers of train-
ing instances. In order to answer research question 2, I incrementally increased the
number of positive training instances in a pseudo-logarithmic way, starting from 1:
ni,j ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}, where ni is the number of training instances
and j is an object category. All images contained in ni are also part of ni+1. Validation
was always performed on the total number of positive validation instances (capped at
1000 if more were available).

COCO

In order to keep the computing time within limits, 10 object categories were sub-sampled
from the 80 categories available in the COCO data set. The selection of sub-sampled cat-
egories is shown in Table 4.3. Please note that for certain categories insufficient instances
were available to run the entire test schedule. Training of the classifiers was carried out
with strictly balanced training set: For every randomly sampled positive training in-
stance, a randomly sampled negative training instance was added to the training set.
The same applies to the validation set.
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Category Positive training Positive validation

Person 1000 1000

Elephant 1000 714

Zebra 1000 677

Knife 1000 1000

Carrot 1000 578

Remote 1000 1000

Toaster 151 74

Vase 1000 1000

Scissors 673 302

Toothbrush 700 431

Table 4.3: Available positive training and validation instances per category in the
COCO data set (capped at 1000 if the data set contains more)

COCOBox

For the COCOBox data set, the individual annotated objects are extracted from each
COCO training image using the object bounding boxes provided by the COCO data set.
Each extracted box object is treated as a separate image and added to the training set as
an additional training instance. Let us consider an example, were the system is trained
on 1 training image of object category elephants: Let say we have three elephants (and
three bounding boxes) in the training image. The three elephants are extracted from
the image and added to the training set as three separate images. The resulting training
set consists of 4 positive training instances of category elephant. To keep the training
set balanced, three extracted box images that do not contain elephants are also added
as negative training instances. In total, the training set consist of 8 images: 2 original
images and 6 extracted box images.

The aim of this training set is to understand whether the classification performance
can be improved, if the system is additionally trained on iconic-views of the object.

TF Flowers

The images in the tf flowers data set were randomly assigned to the training set (2600
images) and the validation set (1000 images). Table 4.4 reports the available numbers
for each flower category. For evaluation all training and validation instances were used.
Since only a limited number of images were available, the test run with 1000 training
instances was waived.

4.3.4 Evaluation Procedure

For the evaluation of the classification system a separate classifier for each combination
of feature extraction model, classifier, object category and training sample count was
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Category Positive training Positive validation

Dandelions 631 267

Daisy 475 158

Sunflower 591 208

Tulips 513 186

Roses 460 181

Table 4.4: Available positive training and validation instances per category in the
COCO data set (capped at 1000 if the data set contains more)

trained. The test data set was then classified in a binary fashion: The test image either
contains the trained object or it does not.

4.3.5 Performance Metrics

For the evaluation of the classification performance, I mainly focus on two metrics:
Accuracy and F1. Accuracy is the number of true predictions over all predictions.
More formally, it is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
, (4.1)

where TP are the number of true positives, TN the true negatives, FP the false
positive and FN the false negative predictions of the classification system. Accuracy
can be a problematic metric for highly imbalanced data sets, where the distribution of
condition positive and condition negative examples in the validation set is not equal.
However, for this evaluation a balanced validation set was used (see Section 4.3.3). The
second performance metric used is F1. It is the harmonic mean of Precision and Recall:

F1 = 2 · Precision ·Recall
Precision+Recall

, (4.2)

where Precision = TP/(TP+FP ) and Recall = TP/(TP+FN). Precision measures
the proportion of true positives out of all positive classifications and Recall quantifies the
number of correctly positively classified examples out of all positive classifications. Or
in other words: For an object classification system, if an image is classified to contain an
object, Precision measures if the image really contains the object and Recall indicates
whether the system is capable to capture as many images containing the object as
possible. The F1 score balances the two targets.

Accuracy and F1 scores where calculated for each combination of feature extraction
model, classifier, object category and training sample count. However, to get a better
understanding of the overall performance of a feature extraction model and classifier
combination, the performance metrics had be aggregated over the different object cat-
egories. Instead of calculating Accuracy and F1 based on Equations 4.1 and 4.2 over
all object categories, the weighted average over all object categories is considered. The
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weight is determined by the number of positive validation samples for each category (see
also Table 4.3).

Accuracy Weighted =

∑
j(Accuracyj · vj)∑

j vj
, (4.3)

where j is the object category and vj is the number of validation samples per object
category. Correspondingly, the weighted F1 scores is defined as:

F1 Weighted =

∑
j(F1j · vj)∑

j vj
. (4.4)

4.4 Classification Results

The following section briefly discusses the classification results. Section 4.4.1 and 4.4.3
discusses the results on the COCO data set and the tf flowers data set, respectively.
Section 4.4.2 reports the classification results on the COCOBox data set. Section 4.4.4
concludes this chapter with a discussion of the research questions introduced in Section
4.1.

4.4.1 Results COCO Data Set

Figure 4.3 shows weighted F1 results over all object categories for each vector extraction
model. The weighted Accuracy results are reported in the Appendix, Section A.2.1,
Figure A.14. The support vector machines with linear kernel (LinearSVC) performs
consistently well on all feature extraction models. It performs best on lower numbers of
training samples. SVC has a slight advantage when training is done with larger training
samples (> 100). Another classifier which perform reasonably well for larger training
sets is the RandomForest classifier. GaussianNB and the MLP classifier show very mixed
results and seem to be sensitive to the composition of the training sets. Please note that
the KNeighbors classifier requires at least 5 training samples. Therefore, no results are
reported if the training set contains fewer instances than 5. Another interesting finding
is that the relatively small MobileNetV2 architecture performs much better with the
LinearSVC than the InceptionV3 architecture for small training sets (< 10).

Figure 4.4 plots the F1 classification scores for selected classifiers. Again for small
training sets, the LinearSVC seems to work well in combination with the ResNet50V2
architecture. For larger training samples (> 20) the different architectures seem to have
only a limited influence on the classification performance, except for the MLP classifier.
The Accuracy plots can be found in the Appendix, Section A.2.1, Figure A.15.

However, for the classification task at hand, not only the overall performance of the
classification system is of importance. The classification system should specifically show
good results for detecting objects of a particular category. Table 4.5 reports selected
Accuracy scores for the feature extraction model InceptionV3 and a training set size of 5
images. For most object categories, the LinearSVC performs best: Zebra, Knife, Carrot,
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Figure 4.3: Weighted F1 scores for each feature extraction model for the COCO data
set

Remote, Vase and Toothbrush. The GaussianNB classifier performed best for Person
and Scissors and MLP performed best for Elephant and Toaster. Even though the
overall performance of the RandomForest classifier is much better than the GaussianNB
and the MLP classifiers, it could not reach best classification performance for any of
the categories. Similar results can be found for other combination of feature extraction
models, classifiers and training set sizes. Consequently, research question 1 (see RQ1
in Section 4.1) cannot be answered conclusively. Table 4.5 also impressively shows the
variation of classification performance for different object categories. For many object
types, the Accuracy score is between 0.8 and 0.95, even for a small training set of only
5 images. For other categories such as Person or Remote, Accuracy can be reported as
low as 0.58 and 0.70, respectively.
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Figure 4.4: Weighted F1 scores for selected classifiers for the COCO data set

4.4.2 Results COCOBox Data Set

Adding extracted object box images to the training set yields interesting results. Figure
4.5 plots the weighted F1 scores for selected classifiers. The plots of the F1 scores for each
feature extraction model and the plots with the weighted Accuracy scores are depicted in
the Appendix, Section A.2.2. Please note, that the reported number of positive training
samples only includes the original images. The box objects extracted form these images
and added to the training set are not included. First, the classification performance peaks
at around 100 training instances and declines afterwards. This pattern is particularly
pronounced for the F1 score (see Figures A.18 in the appendix for comparison). It is
a strong indication that classifiers tend to overfit if they are trained on too many box
images. Second, adding box images does not seem to improve the classification accuracy
at all. The weighted Accuracy scores are lower for all training set sizes compared to the
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Category GaussianNB LinearSVC RandomForest MLP

Person 0.58 0.56 0.53 0.50

Elephant 0.82 0.93 0.79 0.94

Zebra 0.85 0.95 0.55 0.51

Knife 0.57 0.80 0.65 0.52

Carrot 0.75 0.83 0.70 0.65

Remote 0.57 0.70 0.58 0.50

Toaster 0.21 0.82 0.88 0.93

Vase 0.73 0.79 0.68 0.50

Scissors 0.74 0.67 0.53 0.32

Toothbrush 0.38 0.85 0.71 0.77

Table 4.5: Accuracy for feature extraction model InceptionV3 and 5 positive training
instances and selected classifiers

scores on the COCO data set (see Figures A.16 and A.18). Third, adding box images to
the training set seems to improve the F1 scores at least for very small training set sizes
of 1 or 2 images. This can be observed for all combination of feature extraction models
and classifiers (see Figures 4.5 and A.17 in the appendix). Hence, it might be a good
strategy to extract box images if only very few images of an object are available.

4.4.3 Results TF Flowers Data Set

In general, the classification performance scores for the tf flowers data set show similar
patterns as for the COCO data set. Figure 4.6 shows the weighted F1 scores for each
embedding model. The plots for the weighted Accuracy scores as well as the plots for the
F1 scores for selected classifiers are available in the appendix, Section A.2.3. Weighted
Accuracy is even better for the tf flowers data set than for the COCO data set. The best
performing classifier reaches Accuracy scores of 0.9 or above for all feature extraction
models if trained with a large training set (> 100 images) (see Figure A.19). Overall
the LinearSVC, SVC and the RandomForest classifier perform comparably well again.
The MLP and GaussianNB classifier deliver very interesting results: For very small
training sets (2 images), the two classifiers seem two work very well in combination with
the MobileNetV2 architecture. However, for larger sets, MLP shows mixed results and
GaussianNB has a tendency for overfitting. Even more interesting is the fact that the
weighted F1 scores are considerably lower for the tf flowers data set than for the COCO
data set. The partially nuanced distinction between the different types of flowers seems
to be problematic especially for smaller training sets. The F1 scores increase steadily
with an increasing number of training instances, whereas for the COCO data set, the
curve runs flatter for more than 10 training instances. There is strong indication, that
in order to distinguish subtypes of an object category, a much higher number of training
instances is required even if the objects are mainly depicted in an iconic view. This
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Figure 4.5: Weighted F1 scores for selected classifiers for the COCOBox data set

answers research question 4.

4.4.4 Discussion

The evaluation results discussed earlier allow some conclusions to be drawn about the
research questions listed in Section 4.1. First, there is not a single combination of a
feature extraction model and a classifier, which performs best for all categories tested
in this evaluation (RQ1). Second, the classification performance increases steadily with
an increasing number of training instances for most combinations of feature extraction
model and classifier. Only adding too many extracted box images leads to overfitting.
However, the biggest marginal gains in classification performance can be made between
1 and 50 training images. After 50 images the curves flatten out quite a bit (RQ2).
Third, RQ3 cannot be answered based on the results gained from these evaluation runs.
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Figure 4.6: Weighted F1 scores for each feature extraction model for the tf flowers data
set

The weighted Accuracy scores are much larger for the tf flowers data set (which consist
mainly of iconic-view images) compared to the COCO data set. However, the weighted
F1 scores are lower. Forth, distinguishing subtle subtypes of object categories requires
larger numbers of training samples (RQ4). This conclusion can be drawn from the
evaluation on the tf flowers data set. Last, adding extracted box images to the training
set might improve the classification performance if only very few training images of an
object are available RQ5.
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Active Learning

The following Chapter discusses active learning in the context of the classification prob-
lem at hand. The Chapter starts with a problem definition in Section 5.1. Section 5.2
introduces different active learning methods: It briefly discusses active learning methods
for ConvNets in Section 5.2.1 and more importantly, active learning methods for clas-
sifiers considered in this thesis in Section 5.2.2. Section 5.2.3 draws a brief conclusion
about human machine interaction and Section 5.2.4 provides some preliminary design
requirements for an active learning loop. The final pipeline design is introduces in the
next chapter.

5.1 Problem Definition

Traditionally, supervised learning methods requires large amounts of annotated data.
Important image classification challenges like the Large Scale Visual Recognition Chal-
lenge (ILSVRC) [Russakovsky et al., 2015] or the COCO challenge [Lin et al., 2014] pro-
vide large annotated data sets on which new network architectures can be trained and
tested, resulting in systems with very impressive classification and object detection re-
sults. However, annotating large image sets is not only a tedious work, it is also very
expensive. This is especially true for annotation tasks which require experts, such as
annotating radiology images of cancer patients or Covid-19 infected lungs. Extensive re-
search has been conducted to develop methods which help to reduces the amount labeled
data to achieve good classification results. Active learning is a branch which attracted
much attention in the last years. Succinctly put, active learning is about minimizing
human effort by selecting those instances for annotation which are most informative to
the classifier.

5.2 Active Learning Methods

Three main selection strategies can be distinguished: (i) membership-query synthesis,
(ii) stream-based selection and (iii) pool-based selection.
The membership-query synthesis was introduced by D. Angulin [Angluin, 1988]. In this
approach the system itself generates the instances that require a label. Zhang et al.
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[Zhang et al., 2020] indicate that the strategy achieves good results in some domains.
However, they also refer to a scientific study by Baum and Lang [Baum and Lang, 1992]
which shows that query instances generated by a model are not suitable when people
are asked for annotations. Often, the model generates feature patterns which are unrec-
ognizable to humans. In the stream-based approach, the system decides sequentially for
each instance whether a label is required by a (human) oracle. In a pool-based approach,
the entire unannotated data set is evaluated and ranked according to its informativeness
[Zhang et al., 2020]. It is the most widely used method in the field of active learning
research. Different methods to determine the informativeness of an instance have been
proposed.

5.2.1 Active Learning Methods for ConvNets

Hemmer et al. [Hemmer et al., 2020] indicate that many traditional active learning
methods struggle to deal with high-dimensional data, such as images. Therefore, re-
searchers developed methods specifically for image classification with ConvNets. Among
the pool-based approaches, two main categories can be distinguished: diversity-based
approaches and uncertainty-based approaches. The former aims to select a set of im-
ages for annotation that best represents the pool of unannotated images. The latter
follows the intuition that the more uncertain the model is about a prediction, the more
informative it is for training. Sener and Savarese [Sener and Savarese, 2018] propose a
diversity-based, core-selection approach which minimizes the Euclidean distance in the
feature vector space between the sets of selected and non-selected images. Hemmer et
al. point out an important disadvantage of such a distance-based approach: distance
metrics can concentrate in high-dimensional spaces and make the distances between
different elements appear to be similar. Recent uncertainty-based approaches where
proposed by Wang et al. [Wang et al., 2016], Gal et al. [Gal et al., 2017], Beluch et
al. [Beluch et al., 2018], Yoo and Kweon [Yoo and Kweon, 2019] and Hemmer et al.
[Hemmer et al., 2020]. Wang et al. apply a minimal margin criterion to the class proba-
bilities of the softmax output layer to determine the most uncertain and, therefore, the
most informative samples. Gal et al. apply a technique called Monte Carlo dropout. It
approaches uncertainty from a Bayesian perspective. The framework conducts multiple
forward passes of each instance through the model. Because dropout is enabled, each
forward pass leads to different prediction results. Hemmer et al. write that this leads to
more accurate uncertainty approximates compared to the approach by Wang et al. The
main advantage is that it approximates a uncertainty distribution over the model pa-
rameters compared to a single softmax point estimate. Beluch et al. try to approximate
such a uncertainty distribution not by multiple forward passes but by an ensemble of
fully parameterized ConvNets. Their evaluation results indicate that such an ensemble
of ConvNets can better infer prediction uncertainty. Yoo and Kweon follow a different
idea. They train a separate loss prediction model using the output of the ConvNet to
predict the losses of unlabeled samples. The image selection process for annotation then
simply consist of querying those samples with high expected loss. Finally, Hemmer et
al. propose to apply a Dirichlet distribution on the class probabilities generated by the

38



5.2. ACTIVE LEARNING METHODS 39

softmax layer. According to the authors, the main advantage of this approach is that
it only requires a few forward passes of each instance through the network in order to
achieve good uncertainty approximations.

5.2.2 Active Learning Methods for other Classifiers

In this thesis, classification is not directly performed by the softmax classification layer
of the ConvNet but dedicated classifiers, which take the extracted feature vectors of the
images as input (see Chapter 3). However, the goal of active learning in such a setting
stays the same: Selecting those instances for annotation which are most informative
for the model. Among others, Schohn and Cohn [Schohn and Cohn, 2000] have studied
active learning methods for the support vector machine (SVM) classifier. They consider
the probabilistic correct approach as one possible active learning criteria for sample se-
lection. The probabilistic approach relies on the algorithm of Platt [Platt, 1999] which
assigns probabilities to instances in the space classified by the SVM. This method is
required because the SVM is a discriminant classifier and does not provided any proba-
bilistic estimates of a classification confidence. Schohn and Cohn describe the algorithm
of Pratt in an intuitive way: “project all examples onto an axis perpendicular to the
dividing hyperplane, and perform logistic regression on them to extract class probabil-
ities. By integrating the probability of error over the volume of the space, weighted by
some assumed distributions of test examples, we can estimate the expected error of the
classifier” [Schohn and Cohn, 2000]. Once, classification probabilities are available for
each instance, the authors compute the expected effect of adding an arbitrary unlabeled
example x. The greedy algorithm to do so works as follows:

1. Compute the class probability P (y = 1 | x) and P (y = 0 | x) (where y is the class
under consideration)

2. Add (x, 1) to the training set, retrain and compute the expected error E(x,1)

3. Remove (x, 1) and add (x, 0) to the training set, retrain and compute the expected
error E(x,0)

4. Estimate the expected error after annotating and adding x, by:
Ex = P (y = 1 | x) · E(x,1) + P (y = 0 | x) · E(x,0)

5. From all candidate instances the model selects those which minimize Ex.

The proposed greedy procedure is the best one can do but it is computationally very
intensive and therefore, impractical for large classification tasks. This is also recognised
by the authors. However, the method gives rise to a simplified active learning heuristic
which uses the classification probability as an indicator of uncertainty. This uncertainty
criteria is then exploited in a pool-based approach: Consider a classification system which
is trained on a small training set, consisting of images containing J categories. Classifying
the pool of unannotated images M results in J sets of images with (xi | yj = 1) ∈ M ,

39



40 CHAPTER 5. ACTIVE LEARNING

where j is a single object category and xi is an image. To construct the selection of
images for annotation, the system simply queries the positively classified images for each
category. In order to get the most informative images, the system sorts the images based
on the classification probability P (yj = 1 | xi) in a ascending order. The classification
probability P (yj = 1 | xi) can be calculated for all classifiers considered in this thesis.
It is available in the Scikit-learn [Pedregosa et al., 2011] implementations.

5.2.3 Human Machine Interaction

For many visual tasks, the human visual perception is superior to the visual perception
of trained machines. This superiority is particularly pronounced when only a limited
number of image are available for ‘training’ and the objects are shown in their natural
context where they might be in the background or partially obscured. The human brain
is structured in such a way that in many cases a single picture of an object is sufficient to
distinguish it from other objects. Humans are also very fast in detecting specific objects
in images. With an experiment where people where asked to detect a specific letter in a
simple line image, Spence [Spence, 2002] showed that humans are capable to correctly
process up to 10 images per second. This finding is a strong indication that people can
rapidly scan large amount of images for a specific object. The active learning loop should
take this finding into account and utilize human annotation capacities accordingly.

5.2.4 Active Learning Loop

Based on the findings in Sections 5.2.2 and 5.2.3, the active learning loop should feature
the following characteristics: (i) Annotation should mainly be done on images which are
most informative to the classification system and (ii) it is most likely more efficient to
utilize the human annotation capacity in a way where people annotate image of a single
category at the time.
In order to select the most informative images based on the uncertainty criterion de-
scribed in Section 5.2.2, the classification system has to calculate the classification prob-
ability of each object category for each image in the pool of unannotated images. This
requires some annotated images for initial classifier training. Furthermore, the system
should be capable to learn a variety of different object categories. The more categories
the system knows, the better. This leads to a third requirement: (iii) The system must
provide functionality which allows the user to annotated images in the most effective
way possible.
Once the classification probabilities have been calculated for each object category, the
positively classified images are presented to the user for annotation. In this context, one
could also speak of confirming, since the user either confirms or rejects the presence of
an specific object category in the image. The images which are confirmed to contain a
specific object can then be used in the pool of annotated images in the next training
cycle. With an increased number of training instances, the classification performance is
expected to increase (see evaluation results in Section 4.4.4). Again, the classification
results are presented to the user who confirms or rejects the presence of a specific object
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category and the confirmed images are fed back to the pool of annotated images.
The next chapter introduces the proposed pipeline design in more detail and explains
the implementation details.
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Pipeline Design

Based on the findings from Chapters 4 and 5, a large scale active learning pipeline for
concept detection in video is designed, implemented and tested. This chapter focuses
on the design and implementation details of the pipeline. The evaluation results are
reported in Chapter 7. The Chapter starts with made assumptions and requirements
for the proposed pipeline in Section 6.1. A design overview is shown in Section 6.2 and
Section 6.3 discusses implementation details. The chapter ends with a brief discussion
of existing opportunities for improvements.

6.1 Assumptions and Requirements

The following section introduces the scope and the major challenges for a large scale
active learning pipeline for concept detection in video. Section 6.1.1 briefly explains why
the pipeline uses single images as input and Section 6.1.2 list the functional requirements
for the classification pipeline.

6.1.1 Object Classification in Video

Concept detection in videos requires some sort of segmentation. It is computationally
inefficient to process every single frame of a video. vitrivr is an award winning, fully
working system for retrieving multimedia data based on its content. Cineast by Ros-
setto et al. [Rossetto et al., 2014], which is the retrieval engine of vitrivr, performs shot
segmentation of videos using a fuzzy color diagram. Based on the Euclidean distance of
two consecutive normalized histograms, Cineast is capable to distinguish scene changes
in a video. Furthermore, it identifies an average and median image for each shot. The
proposed pipeline is based on the idea of analyzing a single representative frame. It as-
sumes that such a frame is available for each scene. Consequently, the proposed pipeline
design performs image classification on single images instead of entire videos.

6.1.2 Requirements

Chapter 4 and 5 provided important insights into the functional requirements for the
pipeline. The following list gives an overview of some essential functional requirements:
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• The system must be capable to handle large amounts of data. Extracting feature
vectors, training classifiers and the classification of unclassified images is computa-
tionally very demanding. It would required large amount of memory if everything
is done in memory. Therefore, an efficient storage for annotated ground truth data,
embedded feature vectors and classification results is required.

• The user must be able to upload new image data to the system so that they can
search these images for specific categories.

• The user must be able to train the system with new object categories so that the
system is capable to identify these new object categories in the pool of uploaded
images.

• In Section 4.4.1, we saw that there is not a specific classifier which works best for
every feature extraction model and object category. The pipeline must be capable
to select the best classifier for the classification task at hand so that the user gets
the best possible search results.

• Sections 4.4.3 and 4.4.4 provided clear evidence that classification performance is
highly positively correlated with the number of training instances. The system
must provide functionality which allows the user to rapidly grow the number of
training instances so that the classification performance can be rapidly improved.

• The classification performance of object categories for which only a very limited
number of training instance is available can be improved by adding extracted box
object images to the training set (see 4.4.2). The pipeline must provide function-
ality to manually annotate box objects in images and use these box annotations
for training so that the user gets the best possible classification performance even
for very small training sets.

6.2 Overview

The mode of operation for the proposed active learning pipeline for concept detection
is as follows: 1) The user uploads unannotated images to the system. 2) In order to
teach the system new object categories the user can either upload images of a specific
object category or box annotate randomly selected images from the pool of unannotated
images. 3) The system is then trained on the available training instances. 4) Using
the best performing classifier for each object category, the system classifies the pool
of unannotated images. 5) The positively classified images are then presented to the
user who can confirm the classification given the object is present in the image. 6) The
confirmed images are fed back to the pool of annotated images and used in the next
training and validation cycle.

Figures 6.1 provides a schematic overview of the image import and annotation process
of the proposed pipeline. The import process of images, which form the pool of unanno-
tated images, is straight forward: Based on the import path provided by the user, the
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images are uploaded and feature vectors are extracted. The user can choose between the
different feature extraction models introduced in Chapter 4. Both, the information of
the uploaded images as well as the feature vectors are stored in a database (see Section
6.3.2 to learn more about the database). For object annotation, the system provides two
options: First, the user can randomly select images from the pool of unannotated im-
ages and box annotate all objects present in the image using the VGG Image Annotator
(VIA) application by Dutta et al. [Dutta et al., 2016] and [Dutta and Zisserman, 2019].
Second, the user can upload images containing a specific object directly to the system.
The second option allows to rapidly grow the pool of available annotated images of a
specific object category, while the first option is more exploratory. Once the images are
annotated, the images are split into a training data set and validation data set, based
on a splitting ratio defined by the user.

Figure 6.1: Schema of the import and annotation process. For image annotation, there
are two different ways to grow the training and validation data pools. First, the user
can randomly select images from the pool of unannotated images (indicated by blue
arrows). Second, the user can import images which contain a specific object category

(indicated by orange arrows).

Figure 6.2 schematically shows the training, classification, object search and object
confirmation process. In the training process, for each object category all classifiers intro-
duced in Chapter 3 are trained with the extracted feature vectors. The trained classifier
are stored on a local drive. The validation set is then used to validate each classifier and
store the classification performance results on the database. Based on these result, the
best classifier is chosen by the system to classify the pool of unannotated images in the
classification process. If the user decided to allocate none of the annotated images to the
validation pool, the LinearSVC is selected as a default classifier. After classification, the
user can search the pool of classified images for specific object categories. The search
results are presented in the web frontend. The user has then the possibility to confirm
images which contain the object of interest. Confirmed images are then back assigned to
the pool of annotated images and can be used in the next training and validation cycle.
This functionality helps to rapidly grow the pool of annotated images.
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Figure 6.2: Schema of the training (blue arrows), classification (orange arrows), object
search (green arrows) and object confirmation process (purple arrows)

6.3 Implementation Details

This section provides further implementation details of the classification pipeline. Sec-
tion 6.3.1 starts with a overview of the technologies used. Section 6.3.2 explains the
database schema

6.3.1 Technologies

The backend of the classification pipeline is entire build in Python, version 3.8, with
extensive use of the Tensorflow package [Abadi et al., 2015], version 2.4.1, and classifiers
from Scikit-learn [Pedregosa et al., 2011], version 0.24.1. For storage, the system relies
on the Cottontail DB by Gasser et al. [Gasser et al., 2020], version 0.12.12 and the
Cottontail-Python-Client, version 0.0.4. The Web frontend uses HTML, CSS, Javascript
and jQuery and the web server is powered by Flask, version 2.01. A REST API with
Swagger documentation ensures communication between frontend and backend.

6.3.2 Cottontail DB

Cottontail DB is a column store developed by Gasser et at. [Gasser et al., 2020] specif-
ically for multimedia retrieval. The proposed pipeline uses Cottontail DB to store all
relevant data for the active learning task. Figure 6.3 depicts the database schema. Please
note that certain connections between units have been omitted for the sake of clarity.
Specifically, all connection between the entity categories and the entities depicted on the
right have been omitted. Furthermore, there exist a dedicated entity feature vectors
for each feature extraction model.
The central entity is the multimedia objects entity. For each imported image an en-
try is written in the entity. The column object id contains a unique identifier for each
image. It is generated by hashing the image with the SHA256 algorithm. Please note
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that Cottontail DB currently does not support primary keys. However, object id would
be the primary key of the entity. Also during import, the feature vectors get extracted.
The feature vectors are stored in separate entities for each feature extraction model.

The entity annotated objects contains the necessary information of annotated im-
ages. Each entry represents an annotated image. Images annotated using the VIA
box annotation tool may contain several box object of the same category. Again, an-
notation information on image level are stored in the annotated objects entity. All
information regarding annotated box objects within an image are stored in the entities
annotated boxes and extracted box objects.
As has been discussed Section 6.2, the system is capable to select the best classifier
for each feature embedding model and object category. In order to determine the best
classifier, the system requires images assigned to the validation pool. If such images are
available, four different performance metrics are calculated for each classifier: Accuracy,
Precision, Recall and F1 and the results are stored in the classifier performance en-
tity.
The entity classifications contains all classification results. Only positively classified
images are stored in the the entity. An object id may occur multiple times in the entity
due to the fact that en entry is written for each combination of feature extraction model
and classifier.
The remaining entities are categories, classifiers and embedders. The entity cate-
gories contains all object categories known by the system. If an new category is added,
an additional entry is written to the entity. The latter two entities contain the names of
the classifiers and feature extraction models known by the system.

6.3.3 Backend and API Endpoints

This section provides more details about the backend processes of the system. The
section is structures based on the most important API endpoints and shows pseudo code
for the most important routines.

Import

As shown in Figure 6.1 there are two methods to import images to the system: (i) im-
porting unannotated images and (ii) importing annotated images. The following pseudo
codes shows the routine for each method.

Annotation

The endpoint annotation is used for annotation with the VIA application as shown in 6.1
(see process with blue arrows). It randomly selects unannotated images from the mul-
timedia objects entity and hands them over to the VIA application. A representation
in pseudo code is omitted.
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Algorithm 1 import.import unannotated media(media path, embedder)

1: for each image do
2: get sha256 image hash
3: rename image with image hash
4: collect image information required for multimedia objects
5: end for
6: batch insert all image information into entity multimedia objects
7: for each embedder do
8: extract feature vectors of all unannotated images
9: insert feature vectors into entity feature vectors modelname

10: end for
11: update entity multimedia objects, set embedded = TRUE
12: return object ids

Algorithm 2 import.import annotated media(images, embedder, category label)

1: Do Algorithm 1
2: if category label not in entity categories then
3: get new category id
4: insert category label, category label into entity categories
5: end if
6: insert object ids, category id into entity annotated objects
7: entity multimedia objects, set annotated = TRUE
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Figure 6.3: Cottontail DB schema

Process

Process provides three functionalities: (i) process.annotations to db processes the anno-
tation file, which is provided by the VIA application. (ii) process.split training validation
splits the pool of annotated images into a training set and a validation set based on the
splitting ratio defined by the user and (iii) process.read annotated images reads the pool
of annotated images and returns a statistic about the number of available training and
validation instances for each object category back to the frontend. In the following,
pseudo code for process.annotations to db is shown.

Train

The training process can be started with the endpoint train. The following pseudo code
shows a simplified version of the procedure.

In line 7 and line 8 of Algorithm 4 the training and validation sets are created. Their
composition is always perfectly balanced, meaning they consist of an equal number
of positive and negative training instances: First, all positive instances are selected.
Then, the system randomly chooses an equal number of negative instances from the
pool of annotated training/validation images. If the user wants to include extracted
box images to the training set, the system adds all extracted box images of the positive
training instances to the training set, which contain the object of interest. Again, it
then randomly selects an equal number of negative box images. Please note, that no
extracted box images are added to the validation set.
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Algorithm 3 process.annotations to db(annotation file, embedder)

1: extract object ids, annotations, category ids, category labels, from annotation file
2: insert category ids, category labels into entity categories
3: for each object id do
4: for each annotation do
5: collect box coordinates, category id
6: end for
7: insert box objects info into entities annotated objects, annotated boxes
8: end for
9: for each object id do

10: get all box coordinates
11: for each box coordinates do
12: crop image to box coordinates
13: resize image
14: get sha256 image hash
15: insert extracted box image info into entity extracted box objects table
16: end for
17: end for
18: for each embedder do
19: extract feature vectors of all box images
20: insert feature vectors into entity feature vectors modelname
21: end for
22: update entity multimedia objects, set embedded = TRUE
23: update entity multimedia objects, set annotated = TRUE
24: update entity annotated objects, set extracted = TRUE
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Algorithm 4 train.train classifiers(embedder, category ids, category id, all categories,
include box images)

1: if all categories then
2: get all category ids from entity categories
3: else
4: get category id
5: end if
6: for each category id do
7: get training set (including box images if include box images = TRUE)
8: get validation set
9: get feature vectors of training set and validation set

10: end for
11: get all classifier
12: for each embedder do
13: get feature vectors of training set and validation set for embedder
14: for each classifier do
15: train classifier
16: store classifier to local drive
17: if validation set available then
18: predict validation set with classifier
19: insert performance metrics into entity classifier performance
20: end if
21: end for
22: end for
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Classification

The endpoint classification provides two functionalities:
(i) with classification.classify multimedia objects the classification process is started. (ii)
classification.confirm classification allows the user to confirm classification results which
are then added to the pool of annotated images (see also Figure 6.2. The following pseudo
code shows the procedure for classification.classify multimedia objects.

Results

The endpoint results.get results retrieves the classification results for specified embedder,
category id, classifier and performance measure and make the images accessible to the
frontend. If classifier is defined as ‘best’, the best classifier is selected based on the per-
formance measure and the results are selected accordingly. A representation in pseudo
code is omitted.

6.3.4 Frontend

The frontend provides the user with access to the system. The entry page is divided into
a control area and a display area. The control area consists of the following sections:

• General Settings: Under general settings, the user can define the feature extrac-
tion model used by the system. Besides the four models introduced in Chapter
2, the user can also choose to run the system with all feature extraction mod-
els. If ‘all Models’ is selected, the import, training and classification is done for
each feature extraction model separately. Also under general settings, the user can
define the classifier with which the training and classification is performed. The
recommended setting is ‘best’: The system will train all classifiers and select the
best performing classifier (based on the performance metric defined) for classifi-
cation. Alternative settings are ‘All Classifiers’ in which case the classification is
done for each classifier separately or a specific classifier. Please be aware that the
general settings apply for all control areas like Import, Annotation, Train and
Classification but also for the view area Classification Results

• Import: This control area allows the user to import unannotated images from a
local folder.

• Annotation: There are two ways to provide image annotations to the system (see
also Figure 6.1). Both processes can be started via this control area. First, the user
can provide box annotation for randomly selected images using the VIA application
by Dutta et al. [Dutta et al., 2016] and [Dutta and Zisserman, 2019]. To do so,
the user can define a number of images and press the Start Annotation button. The
VIA application then automatically starts. Please refer to the Appendix, Section
A.4, to get a short tutorial on how VIA should be used. It is very important to
note that the integration of the VIA application was done in a very shallow way.
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Algorithm 5 classification.classify multimedia objects (embedder, category id,
all categories, classifier, performance measure, classify all media)

1: if classify all media then
2: get object ids of all unannotated images form entity multimedia objects
3: else
4: get object ids of all unclassified images form entity multimedia objects
5: end if
6: if all categories then
7: get all category ids from entity categories
8: else
9: get category id

10: end if
11: for each embedder do
12: get feature vectors of all object ids
13: for each category id do
14: if classifier = ‘best’ then
15: get name of best classifier from entity classifier performance
16: else if classifier = ‘all’ then
17: get all classifier names from entity classifiers
18: else
19: get classifier name
20: end if
21: for each classifier do
22: load classifier from local drive
23: predict class of feature vectors
24: if classify all media then
25: delete classification results in entity classifications
26: update entity classifications with classification results
27: else
28: update entity classifications with classification results
29: end if
30: end for
31: end for
32: update entity multimedia objects, set classified = TRUE
33: end for
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Please refer to Section 6.4 to learn more about it. The second option to import
annotations is the direct import of images of a specific category. After image
selection, a preview is shown and the user is ask to provide a category label.

• Train: In this control area, the user can start the training process. Training can
either be done for a specific category, in which case the user has to provide the
category id and set ‘All Categories’ to false, or for all categories (‘All Categories’
to true). The user can also determine if training should include extracted box
images.

• Classification: Here, the user can start the classification process. Again, classifi-
cation can either be done for a specific category or for all categories. Furthermore,
the user can define, whether classification should be done for all unannotated media
objects in the database or only for those which are not classified yet.

The view area only consists of two sections: First, there is a section Available anno-
tated images which provides a table with the number count of available training and
validation instances for each category. Second, the classification results for a specified
category can be accessed in the Section Classification Results. Please be aware that
classification results can only be shown for a specific feature extraction model. No results
are shown if ‘all Models’ is selected in the General Settings.

6.4 Known Issue And Future Work

The current implementation still has some issues. These known issues are listed below
and may guide future efforts to improve the pipeline:

• Database

– Currently, primary keys are not supported in Cottontail DB. Therefore, it is
possible to import several copies of the same image. This may cause problems
during the creation of the training and validation sets. The problem should
be solved as soon as Cottontail DB supports primary keys. The initialization
script of the database entities has already been prepared accordingly.

– The two entities extracted box objects and annotated boxes can be
merged without any loss of information. The current schema design resulted
from a different approach which was later abandoned.

• Backend

– The primary goal of this thesis was to get a working prototype of the pipeline
which seamlessly inter-operates with vitrivr’s query engine Cineast. Unfor-
tunately, due to time constraints, I could not establish inter-operability with
Cineast. Furthermore, the processes were not specifically optimized for effi-
ciency regarding process time and memory consumption.
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– Currently only ’.jpg’ and ’.JEPG’ images are supported

– When training and classification is done for all feature extraction models, the
backend loads the feature vectors for all models into memory. There might
be more efficient ways to do it.

– Currently, the random split of annotated images into training and validation
sets is done for the entire pool of annotated images. It would be more efficient
if the split would only be performed for categories, for which new images were
added.

– For the evaluation of the pipeline, unannotated images were not uploaded to
the web server during import, but kept in the local directory. This way, the
classification performance results could be calculated in a more controlled way.
When displaying the classification results to the user, the positively classified
images are copied to a folder managed by the web server and provided from
there to the classification results page. In doing so, the sorting based on the
classification probability gets lost and the images are no longer presented in
a way that the most uncertain classified images come first. This issue can be
easily solved by uploading the images to the web server during import and
serve them in the correct order to the results page.

• VIA integration

– Currently, the VIA application has difficulties with category ids which are
not continuous. Therefore, it is important to assign continuously increasing
integer ids when adding new categories in VIA (see also Section A.4 in the
Appendix).

– The integration of the VIA application in the pipeline is very shallow. For
example, randomly selected images for annotation are not directly provided
by the web server. The web server provides the images to the entry page and
from there the images are stored to the local storage. The VIA application
reads the image from the local storage. Due to the limited size of the storage
(around 5MB) only a limited number of images can be transferred.
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Pipeline Evaluation

This chapter presents the evaluation results of the proposes classification pipeline. The
chapter starts with three research questions in Section 7.1. The analysis of the results
were guided by these questions. Section 7.2 introduces the custom data set used for the
evaluation. Section 7.3 briefly discusses the Setup and Section 7.4 discusses the results.
The chapter ends with a brief summary and answers the research questions.

7.1 Research Questions

This chapter aims to answer the following research questions:

• RQ1: Which combination of feature vector embedding model and classifier per-
forms best in the proposed pipeline?

• RQ2: Can we achieve a reasonable classification performance for iconic and non-
iconic view objects with only a limited number of annotated training instances?

• RQ3: Can we reduce the annotation effort by adding extracted box images to the
training set?

7.2 Data Set

For the evaluation of the proposed pipeline, a custom data set was created. To under-
stand the classification capabilities of the system, the data set has to cover a variety of
different classification scenarios. The following scenarios were considered: (i) The object
is depicted in an iconic view, (ii) the object is depicted in its natural context. This
includes animals in their natural environment or objects which are in the background
of an image or partially obscured. (iii) Images which represent different concepts. This
may include real-world images, x-ray images or comics/cartoons.

In addition to the classification scenarios stated above, the test data set should consist
of images from sources other than those used for the evaluation in Chapter 4.
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7.2.1 Training and Test Sets

As a primary source of annotated images I used the Open Images V5 validation data set
[Kuznetsova et al., 2020]. It consists of 41, 620 images containing 600 object categories.
However, for many object categories there are not enough images available to run the
intended evaluation. Therefore, a subsample of 8 object categories was selected. Table
7.1 provides an overview of all object categories including a subjective assessment of the
classification scenario and classification difficulty.

Object category Data source Scenario Difficulty

Ball Open Images Natural context Hard

Bird Open Images Natural context Medium

Bread Open Images Iconic view Easy

Camera Open Images Mainly iconic view Medium

Fish Open Images Natural context Hard

Goggles Open Images Natural context Hard

Guitar Open Images Mainly iconic view Medium

Chainsaw Imagenette Mainly iconic view Medium

French Horn Imagenette Mainly iconic view Easy

Motorcycle Open Images Natural context Medium

Radiology Kaggle Concept Easy

Comic Kaggle Concept Easy

Table 7.1: Object categories in the evaluation data set

In addition to the 8 categories from Open Images, 4 more categories where added
to the data set. Chainsaw and French horn are both from the Imagenette data set
[Hammel et al., 2019]. Imagenette is a subsample of relatively easy classifiable object
categories of the ImageNet data set [Russakovsky et al., 2015]. Please note, that the
feature extraction models were trained on the ImageNet. The object category Radiology
is one of two categories representing a different image concept. It consists of chest x-ray
images collected from the Kaggle [Mooney, 2017]. Last but not least, a collection of
screen shot images from the animated series ‘The Simpsons‘ were added. The data set is
also available on Kaggle [Malov, 2021]. It represents the concept Comics. An example
image of each object category is depcited in Figure 7.1.

Test Set

From each object category described in Section 7.2.1, 30 images were added to the test
set. 640 more images were randomly selected from the Open Images data set taking care
to use only images that did not contain any of the above objects. Consequently, for each
object category, the data set contains 30 condition positive and 970 condition negative
images.
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Figure 7.1: Classification test examples for each category. Starting from the top left:
Ball, Bird, Bread, Camera, Fish, Goggles, Guitar, Chainsaw, French Horn, Motorcycle,

Radiology, Comic

Training Set

The training set consist of 70 images of each object category. Similar to the procedure
described in Section 4.3.3 the number of positive training instances is incrementally
increased in a pseudo logarithmic way, starting from 1. However, the maximum number
of positive training instances is limited to 50. This is due to the finding in Section 4.4.4
which showed that after 50 positive training instances the marginal gains in classification
performance reduced substantially. For the test run with 50 positive training samples
20 instance were assigned to the validation pool. For all other training steps, a split rate
of 50% was applied, resulting in a equal training pool and validation pool size.

7.3 Evaluation Setup

The entire evaluation was run on a MacBook Pro with macOS 10.15.7, an Intel Core i7
processor and 8 GB of RAM. No dedicated GPU resources were assigned to the task.

7.3.1 Pipeline Configuration

The pipeline was configured to select the ‘best’ classifier based on the F1 performance
metric. As described in Section 6.2, the performance of each classifier is determined by
the classification of the validation data set. The evaluation was performed for all feature-
extraction models simultaneously, using the provided functionality of the pipeline.
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7.3.2 Performance Metric and Result Analysis

For the evaluation of the proposed pipeline I focused on the same performance metrics
as described in Section 4.3.5. However, for the intended purpose of the pipeline, the F1
metric captures more relevant information than the Accuracy metric. The evaluation
results were then analyzed and visualized using Microsoft Excel.

7.4 Evaluation Results

To evaluate the classification performance, three separate evaluation runs were con-
ducted. It was necessary to account for the randomness in the system: 1) Annotated
images are randomly assigned to the training and validation pools based on the split ra-
tion defined by the user. 2) The selection of negative training samples (also of negative
training box images) is conducted in a random fashion. Hence, the following results are
shown as an average over all evaluation runs if not stated differently.

The Section is structured as follows: Section 7.4.1 presents the classification perfor-
mance over all object categories. Section 7.4.2 discusses the performance on individual
object categories. In Section 7.4.3 I answer the question whether it is beneficial to in-
cluded extracted box images for the initial training cycle and Section 7.4.4 analyses the
chosen classifiers for the classification scenarios.

7.4.1 Classification Performance Over All Object Categories

Figure 7.2 plots the F1 classification performance metric for each feature extraction
model over all object categories. Overall, the InceptionResNetV2 architecture outper-
forms the other models by some distance. The performance difference is especially ap-
parent for small training sets. Interestingly, InceptionResNetV2 reaches an F1 value of
almost 0.6 with only 10 training instances but cannot improve much with larger training
sets. On the other hand, the InceptionV3 and ResNet50V2 models gain steadily from
more training instances and almost ketch up to the InceptionResNetV2 with 50 positive
training instances. InceptionV3 also performs well with small training sets (≤ 5). The
MobileNetV2 architecture is the second best performer for training set between 5 and
20 training instances. For a lightweight architecture, this might come as a surprise.
However, already the preliminary results presented in Chapter 4 indicated good classi-
fication performance of the MobileNetV2 architecture. However, the architecture might
contribute to some overfitting of the classifiers, because the F1 decreased between 20 and
50 positive training instances. In general, there seems to be some saturation tendencies
in all architectures, which occur earlier than in the previous tests (see for instance Figure
4.3 for comparison). The Accuracy scores can be found in the Appendix, Section A.3.1.

As has been mentioned in the introduction to this Section, the pipeline features some
randomness. It is therefore important to know how this randomness effects the classifica-
tion performance of the system. Figure 7.3 shows the average weighted F1 score together
with the minimum and maximum score over three separate evaluation runs (please note
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Figure 7.2: F1 classification performance for each feature extraction model over all
object object categories

that the graphs feature a different x-axis scale). The InceptionV3 model has the high-
est variance across runs. The ResNet50V2 model seems to deliver the most consistent
results. Interestingly, the MobileNetV2 model had almost the exact same weighted F1
scores in each run for training sets with 2 and 50 instances. Even when accounting for
the minimum score of the InceptionResNetV2 architecture, it still outperforms the other
feature extraction models in most cases.

A first preliminary conclusion can be drawn from the analysis of the results over all
object categories: The InceptionResNetV2 architecture achieved the highest F1 scores
and features an acceptable variance over different runs. The average and minimum and
maximum Accuracy scores can be found in the Appendix, Section A.23.

7.4.2 Classification Performance for Single Categories

Looking at the F1 scores for each category individually underlines the finding from
Section 7.4.1. Table 7.2 reports the average weighted F1 scores for each feature extraction
model over all training set sizes, from 1 positive training instance up to 50 positive
training instances. For 6 out of 12 categories, the InceptionResNetV2 model achieved
the highest score. Especially, for object classification problems which are considered to be
hard, like Ball and Fish, the model performed well compared to the other models. Only
in the third hard problem, Goggles, the MobileNetV2 architecture performed better.
Interestingly, it struggled in the category Bird, with an average weighted F1 score of
only 0.192.

Table 7.2 also shows how different the classification performance is for different ob-
ject types: Chainsaw, French Horn, Radiology and Comic could be classified with high
scores. On the other end are Goggles, Ball, Fish and Bird. This was expected due to
the different classification difficulty of the object types. However, Chainsaw and French
Horn performed much better than Bread which is also considered to be an easy classifi-
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Figure 7.3: Average and MinMax range of the F1 classification performance over three
separate evaluation runs

Category InceptionV3 InceptionResNetV2 ResNet50V2 MobileNetV2

Ball 0.275 0.322 0.177 0.257

Bird 0.188 0.192 0.382 0.317

Bread 0.387 0.436 0.317 0.390

Camera 0.420 0.392 0.410 0.374

Fish 0.316 0.321 0.193 0.254

Goggles 0.238 0.268 0.244 0.288

Guitar 0.541 0.555 0.397 0.345

Chainsaw 0.473 0.735 0.324 0.341

French Horn 0.852 0.781 0.457 0.474

Motorcycle 0.379 0.371 0.405 0.354

Radiology 0.608 0.763 0.693 0.815

Comic 0.621 0.610 0.563 0.749

Table 7.2: Highest average weighted F1 scores over all training sets

cation task. One might conclude that the former classes performed way better because
the feature extraction model were trained on these categories. However, this conclusion
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is not fully supported by Figure 7.4 which illustrates the differences graphically. Sub-
stantially better results were only achieved for the InceptionResNetV2 (Chainsaw and
French Horn) and InceptionV3 architectures (French Horn). All other models resulted
in similar classification performance as for the category Bread. The figure also shows
that InceptionResNetV2 performs comparably well in all but one category.

Figure 7.4: Highest average weighted F1 scores over all training sets

For the proposed pipeline, object classes must not only be classified efficiently over all
training set sizes. Since the pipeline’s sequence of operations assumes that the system is
initially trained with a limited number of annotated images and the positively classified
images are then presented to the user for confirmation, the best possible classification
performance is required even for small training sets. Figure 7.5 plots the average F1
scores for all object categories. Analysing the results provides important insights: First,
for classification tasks which are considered to be easy – like French Horn, Radiology and
Radiology – provide good results even for training sets with only 5 instances. Also Guitar
and Chainsaw were classified well with only 5 instances. This is especially true for the
InceptionResNetV2 architecture. Other categories like Bread, Camera, Motorcycles and
Bird require ideally 10 instances to achieve acceptable results (the InceptionResNetV2
model requires 50 instances to achieve a F1 score of 0.4 for the the category Bird). The
category Fish also achieves good results with 10 instances but only with the Inception-
ResNetV2 model. The most difficult categories are Ball and Goggles. Although for both
categories an F1 requires of 0.5 is achieved with 20 and 10 positive training instances,
respectively, with the InceptionResNetV2 model, there seems to be a substantial sat-
uration tendency. Also, other categories like Bread, Guitar, and Motorcycle exhibit a
substantial saturation tendency, if not overfitting. This is problematic because we can
no longer follow the simple heuristic that the more training instances, the better. Fu-
ture work on this topic should be directed toward investigating the reasons for this trend.

Analysing the classification performance for each object category supports the finding
from Section 7.4.1 that the InceptionResNetV2 network is over all the most capable
feature extraction model even for small training sets. The saturation tendency for many
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object categories is problematic and should be investigated in more detail in a future
study.

Figure 7.5: F1 scores for each object category

7.4.3 Boosting Performance by adding Box Images?

Research question 3 asks if the burden of annotation can be reduced by adding extracted
box images to the training sets. The preliminary evaluation results from Section 4.4.2
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indicated that it is advantageous to add extracted box images if only very few train-
ing instances are available (≤ 5). This Section reports the results from the pipeline
evaluation.

To evaluate the effect of adding extracted box images, separate evaluations with and
without extracted box images were conducted, each evaluation consisting of 3 runs. The
evaluation focused on training sets with 1, 2 and 5 training instances. Only a single
object was box annotated in each image. Care was taken to ensure that the training
in the box vs. no box cases was done on the same positive training samples. Figure
7.6 plots the average weighted F1 scores over all object categories. The InceptionV3
and InceptionResNetV2 architectures register marginal gains when the classifiers are
trained with additional extracted box objects. ResNet50V2 and especially MobileNetV2
performed worse.

Figure 7.6: Average weighted F1 scores over all object categories with and without
extracted box objects

Table 7.3 provides more detailed results for the object categories Ball, Fish, Goggles
and Motorcycle. The Figure shows F1 scores averaged over 3 runs for each training
set size. Interestingly, extracting a box image was especially beneficial in the scenario
where only one training instance of category Ball was used. Other then that, there is no
obvious pattern which clearly indicates that one strategy works better than the other.
However, if we consider the sum of the individual net gains

∑
i∈[1,2,5],j(bi,j − ni,j) of
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each strategy, where b is the F1 score with box and n the score without box, j is the
category and i the size of positive training instances, adding box images is most effective
for the InceptionResNetV2 model. Over the four categories depicted in Figure 7.6 a net
gain of 0.318 can be reported. For the MobileNetV2 architecture adding box images is
counterproductive.

The presented results provide some indication that adding extracted box images to
the training is beneficial for the InceptionResNetV2 model. However, the marginal gains
depend on object type to be classified.

Category Ball Fish Goggles Motorcycle
Nr. pos training samples 1 2 5 1 2 5 1 2 5 1 2 5

F1 AVG Box 0.228 0.068 0.222 0.048 0.121 0.142 0.066 0.092 0.196 0.083 0.118 0.266
InceptionV3

F1 AVG No Box 0.074 0.066 0.235 0.089 0.087 0.266 0.063 0.186 0.141 0.068 0.196 0.127

F1 AVG Box 0.390 0.190 0.174 0.039 0.225 0.283 0.065 0.120 0.207 0.062 0.476 0.257
InceptionResNetV2

F1 AVG No Box 0.055 0.076 0.380 0.064 0.090 0.188 0.311 0.100 0.307 0.123 0.182 0.297

F1 AVG Box 0.100 0.120 0.149 0.058 0.135 0.094 0.162 0.125 0.163 0.100 0.145 0.393
ResNet50V2

F1 AVG No Box 0.055 0.099 0.119 0.060 0.061 0.159 0.054 0.258 0.362 0.074 0.110 0.258

F1 AVG Box 0.349 0.078 0.239 0.053 0.094 0.286 0.064 0.153 0.284 0.041 0.094 0.189
MobileNetV2

F1 AVG No Box 0.056 0.132 0.327 0.061 0.141 0.299 0.057 0.313 0.128 0.070 0.176 0.286

Table 7.3: Average F1 scores for each object category and training set size with and
without extracted box objects

7.4.4 Classifier Selection

As has been discussed in Chapter 6, the classification system selects the ‘best’ classifier
for each object category. This section takes a closer look at the selected classifier. Figure
7.7 shows the ratio at which a specific classifier was selected for each category. Please
note, that the figure does not present average ratios but the results from run 1. Two
main insights can be gained from this figure: First, there is no such thing as the ‘best’
classifier for a specific object category. Second, the ‘best’ classifier task depends strongly
on the specific embedding model. Please keep in mind that the exact same training and
validation sets where used for each feature extraction model.

Furthermore, even if the object categories and the feature extraction model is kept
constant, the selection of the ‘best’ classifier varies considerable if different images of
the same object category are used for training. Figure 7.8 shows the ratio of selected
classifiers for the InceptionResNetV2 model for 3 different runs. Please note that for each
run a the pool of annotated images was randomly split to the training and validation set.
Also the set of negative training and validation images differ between runs. However,
the within-model variance is not as big as the between-model variance.

Whereas the object category is not a very good indicator to determine the ‘best’
classifier, a stronger correlation between the number of training samples and classifier
type is observable. Figure 7.9 presents the ratio of selected classifiers for each training set
size. InceptionV3 and InceptionResNetV2 show very similar patterns: With an increase
in the training set size, the share of the GaussianNB classifier decreases. For training
set sizes ≥ 5 the LinearSVC is the most popular choice. The LinearSVC is also the
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Figure 7.7: Ratio of selected classifiers for each object category for evaluation run 1

dominant classifier type for bigger sample sets for the other two networks. The Figure
showing the ratio of selected classifiers for the InceptionResNetV2 model for 3 different
runs can be found in the Appendix, Section A.24.

One important take away from this section is that the ‘best’ classifier depends on
various factors, like the number of training instance, the feature extraction model, the
object type and the individual images that make up the training and validation sets.
It is therefore highly recommended to assign a certain share of annotated images to
the validation pool. Without such validation images, a default classifier is selected
(LinearSVC), which might not deliver the best results. The optimal size of the validation
set is still an open question. The composition and size of the validation set has an
influence on the ‘best’ classifier. On the other hand, annotating images just for validation
without gaining any positive training effect is costly. There might be an optimal size
which balances the two opposing factors. I have to leave the answer to this question to
future research on the subject.

7.5 Discussion

Section 7.1 lists three research questions, the answers to which may contribute to a
productive large-scale active learning application for concept detection in video. Sections
7.4.1 and 7.4.2 provided strong evidence that the InceptionResNetV2 network achieves
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Figure 7.8: Ratio of selected classifiers for the InceptionResNetV2 model over 3 runs

the best classification performance for the proposed sequence of operations. It achieved
the highest F1 scores over all object categories. Also for single object categories it is
the most capable model. This is true even for small training sets. Regarding the best
combination of feature extraction model and classifier, Section 7.4.4 shows that there is
no single classifier which works ‘best’ in all classification scenarios. Each tasks requires
a specific classifier. Therefore, it is recommended to let the system choose the ‘best’
classifier for each task. Consequently, a certain share of annotated images should be
assigned to the validation pool. The optimal split ratio between training and validation
pool could not be determined in this thesis. These findings answer RQ1. Section 7.4.2
discusses in much detail the F1 scores for single categories. Iconic view objects like Bread,
Guitar, Chainsaw, French Horn and Camera were classified with a high F1 score even
with only 5 or 10 positive training instances. For the two categories representing different
concepts (Radiology and Comic) the classification performance was even better. Hence,
RQ2 can be answered with a yes for iconic view objects. Non iconic view objects like Ball
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Figure 7.9: Ratio of selected classifiers for each training set size for evaluation run 1

and Fish required at least 20 or 50 training instances, respectively. For small training
sets (≤ 5), the F1 scores for Goggles is 0.2 or below. This means a higher annotation
effort for the user when scrolling through the predicted positive samples. The saturation
tendency for many object categories is problematic. This problem should be addressed
in a future study. RQ3 asks whether it is beneficial to add extracted box images to
the training set. In Section 7.4.3 I show that marginal gains can be achieved for the
InceptionResNetV2 network. Therefore, it is recommended to box annotate new object
categories using the VIA application in the proposed pipeline.
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Future Work

During the processing of the thesis, many aspects of a large-scale active learning pipeline
for concept detection in video could not be analyzed conclusively due to time constraints.
Furthermore, the evaluation of the proposed pipeline revealed new questions, which could
not be answered within the given time frame. This chapter identifies the most important
open questions and discusses the limitation of the proposed pipeline. Hence, it should
help to guide future research on the topic. The chapter is structured as follows: Section
8.1 discusses potential future work related to the feature extraction models. Section 8.2
presents possible research topics in connection with the classifiers. Section 8.3 explains
how an adjusted active learning method could potentially improve the classification
performance and proposes to investigate more on meta-learning approaches. The chapter
ends with a few suggestions for further evaluation test scenarios in Section 8.4. A list
of known issues and possible improvements for the pipeline implementation is omitted
here. It was already discussed in Section 6.4.

8.1 Future Work on Feature Extraction

Chapter 2 discusses in great detail the different feature extraction architectures con-
sidered in this thesis. However, research progresses rapidly in this field. It would be
interesting to see if future architectures can provide even better classification results.
Another interesting approach is to extract features from different hidden layers of the
ConvNet and combine them to a single feature representation. One could also study
the effect of a condensed feature vector on the classification performance. In the current
setup, all elements of the output vector are used for training and classification. It was
the intention to use as much information as possible from each image. However, this
comes at the cost of high computational loads and higher storage requirements. Future
research could focus on the limits to which the output vector can be condensed without
compromising classification performance in a few-shot classification system.

8.2 Future Work on Classifiers

All classifiers described in Chapter 3 can be parameterized for the specific classifica-
tion task at hand. For instance, for the K-Nearest Neighbor classifier, the number of
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neighbors, the distance metric, and the weighting function can be defined. The MLP
classifier provides several hyperparameters, such as the number of hidden nodes and
layers or the initial weight initialization. An optimal parameterization can further im-
prove classification performance. It would be interesting to see if future research could
derive near optimal parameter settings for each classifier. Another potential way is to
introduce new classifier types which are not covered in this thesis. Also, the question
whether combining different classifiers and/or combining the output feature vectors of
the feature extraction models improves classification performance is a potential field of
future research.

8.3 Future Work on Active Learning

Another field which holds much potential for further improvements is the field of active
learning and few shot image classification techniques. In the proposed active learning
method, positive classified images are presented to the users. They are then asked to
confirm the most uncertain classified images which contain the object category. This
provides the system image information which is highly informative. However, one down-
side of this method is that no informative negative training samples can be gathered. An
additional functionality which allows the user to reject falsely-positive classified images
would be necessary. Furthermore, such a method would require dedicated negative train-
ing set pools for each object category. Future work could be dedicated to investigate the
effectiveness of such a method. Another topic of interest are few-shot techniques with
meta-learners. For instance Sung et al. [Sung et al., 2018] use a meta-learning method
which is based on a distance metric between images. The intuition behind this ‘learn-
ing to compare’ approach is that if a model can determine the similarity between two
images, it can classify an unseen input image with the labelled instances. Chen et al.
[Chen et al., 2019] also mention approaches which focus on transfer learning and fine-
tuning methods. In transfer learning, the classification layer of a ConvNet is trained on
new image objects. ‘Learning to-fine tune’ tries to learn an optimal model initialization
and ‘Learning an optimizer’ replaces the stochastic gradient decent optimizer and the
weight-update mechanism with an external memory. Future research could implement
such meta-learning techniques and validate their effectiveness in comparison to the more
traditional approach chosen for this thesis.

8.4 Ideas for further Evaluations of the Proposed Pipeline

The proposed pipeline should be evaluated with large-scale user experiments. Unfortu-
nately, the time restrictions did not allow me to do these tests. Such user experiments
could provide important insights about the optimal specification of the proposed mode
of operations. For instance, it should be tested how frequently a user should be asked
to annotate new images in the active learning cycles. Another open question is about
the frequency at which a user should confirm positive classified images. The answers to
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these question heavily depends on the annotation budget of a user. In order to motivate
users to spend more time annotating images, one could also think about potential user
incentives. Other future research could be dedicated to the question about the optimal
validation set size. As has been discussed in Section 7.4.4, assigning more annotated im-
ages to the validation pool may result in a better classifier selection. However, it comes
with the cost that these images are not available for training anymore. Further test
runs might provide insights about an optimal validation set size. Another unanswered
question is about the saturation tendency in certain object categories (see Section 7.4.2).
Further tests should focus on this issue.
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Conclusions

The presented Master’s thesis investigated practical and effective ways to implement a
large-scale active learning pipeline for concept detection in videos. The journey started
with the search for suitable methods to extract the most informative features from key
frame images. The feature vector space of the models should not only allow for effective
object classification. It should also be large enough to distinguish a variety of different
object types. Because of the outstanding success of convolutional neural networks in
large-scale image classification challenges, it was natural to consider these models for
feature embedding. However, the ConvNets could not be used for classification because
the system is constantly confronted with new object categories. Retraining the entire
network is computationally prohibitive. Also, retraining only the classification layer is
not a valid alternative because the training sets for each object category are expected
to be highly unbalanced. Therefore, a different approach was taken: For each object
category a dedicated classifier would be trained. A preliminary evaluation of the most
effective combination of feature extraction model and classifier type yielded ambiguous
results. There is no unique combination of feature extraction model and classifier type
which performs best in all classification scenario. Hence, the classification system should
select the best classifier for each classification task at hand.

Another challenge was to find a practical method that would reduce the burden of
manual image annotation as much as possible. Traditionally, supervised learning meth-
ods require huge amounts of annotated images. For a classification system which is
expected to constantly learn new object categories from its users, requiring large num-
bers of training instances is not practical. Fortunately, active learning methods provide a
framework to address this challenge. The aim of active learning is to select only the most
informative images for the classification system. The proposed pipeline uses a simple
uncertainty based heuristic to query the most informative images. The user is then asked
to confirm those images which contain the object of interest. However, this approach
requires an initial training cycle and thus a few initial training instances. In order to
further improve the classification performance on very small training set, I experimented
with box annotation of objects. It was found that the classification performance can be
improved for certain feature extraction models when extracted box objects are added to
the training set.
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A final evaluation of the proposed active learning pipeline found that the Inception-
ResNetV2 network is best suited for the task. It not only delivered the best performance
over all classification scenarios, it also showed the best results for individual object cat-
egories and for small training sets. Adding extracted box images as training instances
further improved the classification performance with the InceptionResNetV2 model. The
evaluation also confirmed that there is no classifier type which works best in all clas-
sification scenarios. However, for the system to select the ‘best’ classifier, it requires
a set of validation images to evaluate the classification performance of each classifier.
The optimal trade-off between gaining information about the ‘best’ classifier and loosing
potential training instances could not be answered conclusively. This question is left to
future research on the subject.
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Appendix

A.1 Network Architectures

This section contains complementary information for the network architectures presented
in Chapter 2.

A.1.1 InceptionV3

The following table provides an overview of the InceptionV3 network architecture from
section 2.2.3.

Type Patch Size / Stride Input Size

Conv 3× 3 / 2 299× 299× 3

Conv 3× 3 / 1 149× 149× 32

Conv padded 3× 3 / 1 147× 147× 32

Pool 3× 3 / 2 147× 147× 64

Conv 3× 3 / 1 73× 73× 64

Conv 3× 3 / 2 71× 71× 80

Conv 3× 3 / 1 35× 35× 192

3× Inception as in A.1 35× 35× 288

5× Inception as in A.2 17× 17× 768

2× Inception as in A.3 8× 8× 1280

Pool 8× 8 8× 8× 2048

Linear Logits 1× 1× 2048

Softmax Classifier 1× 1× 1000

Table A.1: Outline of the InceptionV3 network architecture

Source: [Szegedy et al., 2016b]
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Source: [Szegedy et al., 2016b]
Figure A.1: Inception modules where
each 5× 5 convolution is replaced by

two 3× 3 convolution.

Source: [Szegedy et al., 2016b]
Figure A.2: Inception modules after

the factorization of the n× n
convolutions. In the proposed

architecture, the authors chose n = 7
for the 17× 17 grid.

Source: [Szegedy et al., 2016b]
Figure A.3: Inception modules with expanded filter bank outputs. This architecture is

used on the coarsest (8× 8) grids to promote high dimensional representations.
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A.1.2 ResNetV2

Figure A.4 shows a schematic ResNet network with 34 parameter layers. Please note
that the ResNetV2 network used in the thesis consists of 50 parameter layers.

Source: [He et al., 2016a]
Figure A.4: ResNet with 34 parameter layers. The dotted shortcuts increase

dimensions.
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A.1.3 InceptionResNetV2

The following figures provide supplement details for the InceptionResNetV2 architecture
from section 2.4. Figure A.5 shows the general schema and figures A.6, A.7, A.8, A.9,
A.10 and A.11 its components.

Source: [Szegedy et al., 2016a]
Figure A.5: Schema for the
InceptionResNetV2 network

Source: [Szegedy et al., 2016a]
Figure A.6: Stem of the

InceptionResNetV2 network
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Source: [Szegedy et al., 2016a]
Figure A.7: Inception-resnet-A Block

Source: [Szegedy et al., 2016a]
Figure A.8: Inception-resnet-B Block

Source: [Szegedy et al., 2016a]
Figure A.9: Inception-resnet-C Block
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Source: [Szegedy et al., 2016a]
Figure A.10: Reduction-A Block

Source: [Szegedy et al., 2016a]
Figure A.11: Reduction-B Block

A.1.4 MobileNetV2

The following figures provide supplement details for the MobileNetV2 architecture from
section 2.5.3. Figure A.12 shows the architecture of a linear bottleneck layer and figure
A.13 describes the general layout of the MobileNetV2 network.

Source: [Sandler et al., 2018]
Figure A.12: Bottleneck residual block transforming from k to k′ channels, with stride

s, and expansion factor t. h is the height and w the width of the input
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Source: [Sandler et al., 2018]
Figure A.13: Each line describes a sequence of 1 or more identical (modulo stride)

layers, repeated n times. All layers in the same sequence have the same number c of
output channels. The first layer of each sequence has a stride s and all others use stride
1. All spatial convolutions use 3× 3 kernels. The expansion factor t is always applied

to the input size

A.1.5 Keras Pre-trained Models

The following table provides an overview of the pre-trained models used in this thesis:

Table A.2: Pre-trained models from Keras

Model Size Top-1 Top-5 Parameters Depth

InceptionV3 92 MB 0.779 0.937 23’851’784 159

ResNet50V2 98 MB 0.749 0.921 25’636’712 -

InceptionResNetV2 215 MB 0.803 0.953 55’873’736 572

MobileNetV2 14 MB 0.713 0.901 3,538,984 88

Source: [Chollet et al., 2015]

A.2 Feature Extraction Models and Classifier Evaluation Re-

sults

The following section reports additional evaluation results from Section 4.4
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A.2.1 Results Coco Data Set

This Section reports additional result plots for the Coco data set.

Figure A.14: Weighted Accuracy scores for each feature extraction model of the Coco
data set
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Figure A.15: Weighted Accuracy scores for selected classifiers of the Coco data set

A.2.2 Results CocoBox Data Set

This section reports additional result plots for the CocoBox data set.
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Figure A.16: Weighted Accuracy scores for each feature extraction model for the
CocoBox data set
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Figure A.17: Weighted F1 scores for each feature extraction model for the CocoBox
data set

93



94 APPENDIX A. APPENDIX

Figure A.18: Weighted Accuracy scores for selected classifiers for the CocoBox data set
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A.2.3 Results TF Flowers Data Set

This section reports additional result plots for the tf flowers data set.

Figure A.19: Weighted Accuracy scores for each feature extraction model for the
tf flowers data set
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Figure A.20: Weighted Accuracy scores for selected classifiers for the tf flowers data set

96



A.2. FEATURE EXTRACTION MODELS AND CLASSIFIER EVALUATION
RESULTS 97

Figure A.21: Weighted F1 scores for selected classifiers for the tf flowers data set
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A.3 Further Results of the Pipeline Evaluation

This section reports additional evaluation results from Chapter 7

A.3.1 Performance Results Over All Object Categories

This section presents the average weighted Accuracy scores over all object categories

Figure A.22: Accuracy for each feature extraction model over all object object
categories
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Figure A.23: Average and MinMax range of the Accuracy scores over three separate
evaluation runs

A.3.2 Classifier Selection Results

This section presents an additional graphic for Section 7.4.4.
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Figure A.24: Ratio of selected classifiers for the InceptionResNetV2 model over 3 runs

A.4 The VIA application - Tutorial

This section contains brief instructions on how to use the box application VIA by Dutta
et al. [Dutta et al., 2016] and [Dutta and Zisserman, 2019]. Figure A.25 illustrates the
box annotation process.

1. Navigate to the Annotation section on the entry page.

2. Enter the number of randomly selected images to be annotated and click the ‘Start
Annotation’ Button. The VIA application starts automatically.

3. Select an image for annotation.

4. If the object is unknown to the system, define an id and a label. IMPORTANT:
The id must be a continuously increasing integer number. VIA cannot
handle gaps between ids. Furthermore, do not delete the first entry with id: 1.
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5. Draw a box and select the correct label. Continue until all object of interest are
annotated.

6. Finish the process by either clicking on the rightmost icon or navigate to Process
– End Annotation Process.

Figure A.25: Tutorial for Box annotation with the VIA application
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