
Influence Of Changing
Environments On

Model-Based
Reinforcement Learning

Algorithms

Master Thesis

Severin Siffert
14-720-536

Submitted on
October 4 2021

Thesis Supervisor
Prof. Dr. Manuel Günther

Ar
tifi

ci
al Intelligence M

A
C

H
IN

E

Learning

Department of
Informatics

1

Master Thesis

Author: Severin Siffert, severin.siffert@uzh.ch

Project period: April 6 2021 - October 6 2021

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Abstract

Current work on reinforcement learning algorithms for the reset-free setting focuses heavily on
model-based agents because of their strong planning capabilities, especially for previously un-
seen tasks. Model-based reinforcement learning relies heavily on internal models of the world
surrounding the agent, but not much attention is paid to shifting environment dynamics, which
is likely to happen in various real-world scenarios. In this work, LiSP (Lifelong Skill Planning)
and LSR (Learning Skillful Resets) are evaluated and compared against SAC (Soft Actor-Critic)
in situations with different environment behaviour. Additionally, methods of environment shap-
ing and environment dynamism are examined to facilitate the adaptation to new environment
dynamics or as an alternative way to slowly introduce complex environment dynamics during
training. The results suggest that both LiSP’s and LSR’s exploration mechanisms fail to explore
both environments sufficiently to achieve good performance. SAC needs some help in the form of
environment shaping or the help of occasional resets to achieve near-optimal performance in one
environment, but fails to learn in the second. The results demonstrate what kinds of environment
modifications are most useful to improve performance and which ones are better avoided.

Zusammenfassung

Aktuelle Fortschritte an Reinforcement Learning-Algorithmen in endlosen Umgebungen konzen-
trieren sich vor allem auf modellbasierte Methoden, da diese gut planen können und besonders
bei komplett neuen Aufgaben brillieren. Modellbasiertes Reinforcement Learning ist stark auf in-
terne Modelle der umgebenden Welt angewiesen. Es wird aber kaum beachtet, wie sich diese auf
ändernde Umgebungen reagieren, obwohl in der realen Welt oft Veränderungen geschehen. In
dieser Arbeit werden LiSP (Lifelong Skill Planning) und LSR (Learning Skillful Resets) evaluiert
und mit SAC (Soft Actor-Critic) in Situationen mit unterschiedlichen Umgebungsverhalten ver-
glichen. Zusätzlich zu diesen Vergleichen werden Techniken namens Environment Shaping und
Environment Dynamism evaluiert, ob sie sich dazu eignen, während dem Trainingsprozess Kom-
plexität langsam einzuführen. Die Resultate zeigen, dass LiSP und LSR die Umgebungen nicht
genügend erkunden, um zufriedenstellende Leistung zu erbringen. SAC braucht Hilfe in Form
von Environment Shaping oder gelegentliche Resets um in der einen Umgebung nahezu perfekte
Leistung zu bringen, schafft es aber in der zweiten Umgebung nicht, etwas zu lernen. Die Resul-
tate liefern ausserdem Hinweise darauf, welche Arten von Modifikation an den Umgebungen am
meisten Nutzen bringen und welche Arten zu vermeiden sind.

Contents

1 Introduction 1

2 Background 3
2.1 Challenges of RL Algorithms . 4
2.2 Unsupervised Skill Learning Using Mutual Information 4
2.3 Learning Skillful Resets . 5
2.4 Lifelong Skill Planning . 6

2.4.1 Training . 7
2.4.2 Generating Actions . 9

2.5 Entropy-based Learning . 10
2.6 Environment Shaping . 11
2.7 Environment Dynamism . 11

3 Experimental Evaluation 13
3.1 Experiment 1: Volcano . 13

3.1.1 Baseline . 14
3.1.2 Baseline with Resets . 14
3.1.3 Randomized Actions . 15
3.1.4 Shifting Environment . 15
3.1.5 Combination . 15

3.2 Experiment 2: 2D Minecraft . 15
3.2.1 Baseline . 16
3.2.2 Baseline with Resets . 16
3.2.3 Shifting Environment . 17
3.2.4 Shaped Environment . 17

3.3 Investigating Implementation Problems . 17

4 Results 19
4.1 Volcano Experiments . 19

4.1.1 Baseline . 19
4.1.2 Baseline with Resets . 20
4.1.3 Randomized Actions . 20
4.1.4 Shifting Environment . 20
4.1.5 Combination . 20

4.2 2D Minecraft Experiments . 22
4.3 Implementation Corrections . 23

vi Contents

5 Discussion 25
5.1 Volcano . 25

5.1.1 2D Minecraft . 26
5.1.2 LiSP . 26
5.1.3 LSR . 27
5.1.4 SAC . 27
5.1.5 Environment Shaping and Dynamism . 27

6 Future Work 29

7 Conclusion 31

8 Appendix 33

Chapter 1

Introduction

In reinforcement learning (RL), an agent is placed in an environment and is supposed to solve
a task. This is done by letting the agent do whatever it wants in trial-and-error style while it
learns. After a certain (low) number of steps, the whole problem (minus the agent’s logic) is reset
to its original state and the agent may try again. This process is then repeated until training ends.
The goal to be achieved is often some sort of movement task like walking in a straight line or
navigating a maze. Minimal video games are also a relatively popular choice of task.

During model-based reinforcement learning (MBRL), learning how the environment behaves
and which actions distribute rewards in what state is a crucial factor in creating a successful agent.
Those learned environment dynamics (also called environment models) are used to hypothesize
about the consequences of different courses of action, so that the best one can be chosen. In tradi-
tional reinforcement learning, the environment dynamics are learned through countless attempts
at the same problem, where the environment is reset to a previous state quite often. Lately, the so-
called reset-free setting has gotten more attention. The reset-free setting is concerned with cases
where going back to the initial state is expensive, impractical, or completely infeasible. This is
often the case where agents are deployed in the real world, e.g. a robot that works with large
items. In those settings, using a training algorithm that requires little external intervention is
highly desirable.

Recent work by Co-Reyes et al. (2020) has shown that RL agents should be viewed more in
connection with their environment. They proposed environment shaping (making the environ-
ment more agent-friendly and slowly ramping up the difficulty) and environment dynamism
(adding some randomness to the environment’s behaviour) as quite effective ways to accelerate
learning and improve stability of the learned behaviours. Besides those manual interventions in
the training process, the environment may also change on its own during the training process.
Environmental factors may change visibility or movement patterns because of fog or wind, path-
ways can get better or worse with attrition, or new agents could join the environment. While their
results demonstrate substantial improvements in performance, they only looked at a very simple
agents in a toy-scale problem.

Current algorithms for reset-free RL like Lifelong Skill Planning (LiSP) (Lu et al., 2021) or
Learning Skillful Resets (LSR) (Xu et al., 2020) focus on learning a diverse and predictable set of
skills to use at a later point in conjunction with a model of the environment. This works really
well in all their demonstrated MuJoCo benchmarks. All benchmarks these and similar papers
use, however, do not include anything that could be considered a ’dynamic’ environment. For
example the most popular benchmark, Ant-Waypoint, consists only of the agent itself and and a
completely flat world. Nothing about this environment changes during or between trials except
for the positioning of the waypoints. It is unknown how those algorithms behave in an environ-
ment that changes.

Since the proposed environment modifications environment shaping and environment dy-

2 Chapter 1. Introduction

namism make the environment less static, the algorithms may not work as well anymore. On the
other hand, adding the right kind of dynamics may even improve performance in comparison
with the more static environments. The purpose of this thesis is to investigate how the algorithms
react to such changes and to find out what kind of modifications are beneficial.

To evaluate how the proposed environment modifications affect the algorithms, LiSP, LSR, and
Soft Actor-Critic (SAC, the most popular benchmark for RL) (Haarnoja et al., 2019) are evaluated
on the Volcano and 2D Minecraft environments introduced by Lu et al. (2021). In addition, their
performance under various modifications according to environment shaping or environment dy-
namism is compared. The results show that LiSP and LSR both struggle surprisingly much with
both tasks, even with the most useful modifications.

Not all versions of environment dynamism and environment shaping proved successful. Sim-
ply adding noise to movement commands turned out to be less useful than having a chance
for random movements. Altering the environment improved performance the most when small
modifications were made that alter the optimal path so that the previously optimal strategy needs
to be adapted slightly.

Chapter 2

Background

A RL problem can be described as a Markov decision process that visits different states s1, . . . , sT
in a state space S over T discrete time steps. The sequence of states visited is determined by the
actions a1, . . . , aT the performing agent takes from an action space A. Which actions the agent
takes is determined by the agent’s policy π(st) = at, which is then applied to the environment
to transition to the next state: d(st, at) = st+1. If an agent uses an internal representation of the
(unknown) environment dynamics d, it uses an approximation denoted by q. The transition from
one state to the next produces a reward rt for the agent, which can be used to optimize the policy
π.

It is possible to extend the policy in order to allow for multiple distinguishable behaviours
called skills. Skills are denoted by either natural numbers z ∈ N for entirely distinct behaviours
(as used in LSR in Section 2.3) or they can be used as gradual modifications to the base policy
z ∈ [−1, 1]dim(z) (as used in LiSP in Section 2.4). In either case, the agent’s policy not only depends
on the current state, but also the skill(s) to be performed π(st, zt) = at. The choice of skill is done
by the skill policy p(st) = zt depending on the current state of the environment.

The following algorithms heavily rely on entropy H and mutual information I . (Shannon) en-
tropy as defined in Eq. 2.1 describes how much randomness a random variable X or a distribution
contains. The conditional entropy H(X|Y) (Eq. 2.2) also describes the randomness in a random
variable X, but with prior knowledge about a (likely related) different random variable Y.

H(X) = −
n∑
i

p(xi) log p(xi) (2.1)

H(X|Y) = −
n∑
i

p(xi, yi) log
p(xi, yi)

p(yi)
(2.2)

H(X|Y,Z) = −
n∑
i

p(xi, yi, zi) log
p(xi, yi, zi)

p(yi, zi)
(2.3)

Mutual information I(X,Y) (Eq. 2.4) explains how much information about X we can gain
by observing Y. Similarly to the entropy, mutual information can also be extended to conditional
mutual information I(X,Y |Z) (Eq. 2.5), which then describes the expected mutual information
I(X,Y) given knowledge about random variable Z.

I(X;Y) = H(X)−H(X|Y) (2.4)

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) (2.5)

4 Chapter 2. Background

2.1 Challenges of RL Algorithms
One classic problem during RL is the choice of exploration strategy. In order to learn how to solve
a specific task, the RL agent needs to attempt a lot of different approaches and see which ones
work well and which ones do not. In the well-known ε-greedy strategy, this is done by trying
out random actions and using the results of those actions to estimate the reward of future actions.
While this (mostly) random exploration produces good results in relatively simple problems, it
has two major drawbacks: By taking random actions, certain states are unlikely to be reached and
therefore never discovered. And by using a reward function to judge the reached states, a lot of a
priori knowledge is required. (Eysenbach et al., 2018) Even if the reward function is known and
the random exploration goes in the right direction, the agent may not hit a rewarding state, and
stop short of finding a new path to rewards.

To avoid the problems introduced by reward functions, unsupervised exploration can be used.
One approach to unsupervised exploration is examined in Eysenbach et al. (2018). Their algo-
rithm DIAYN learns a set of diverse behaviours without using an external reward function. Those
behaviours can then be used either in a hierarchical controller or as a basis for further training to-
wards a specific reward function. A hierarchical controller would take the learned behaviours
and then learn when to execute which behaviour.

A challenge for real-life application of RL is the requirement for lots of resets to an identical
start state. In most RL formulations, the agent gets many thousand chances (episodes) to perform
well from the same starting state. In-between episodes the policy is then updated to incorporate
the new experiences. This resetting works very well for computer games and similar virtual envi-
ronments. In real-life, such resets may not be very practical for many reasons: Even very precise
machines have some amount of imprecision in their actions, so a perfect reset is impossible. Be-
sides that, resets may take a long time to do, for example when a truck has flipped over because
it drove off the road into slanted territory. If resets are fast to perform, they still can be expensive,
for example when they require experts to intervene or when parts can break. (Lu et al., 2021)

For those reasons, it is desirable to have algorithms that do not require much external inter-
vention, or preferably none at all. Such algorithms with limited need for resets (for an example
see Section 2.3) still need to experience similar states multiple times to learn enough. This re-
quires that the agent can somehow reset the environment to some extent from all states. If this is
not possible (as in the flipped truck example), external resets are still needed occasionally.

2.2 Unsupervised Skill Learning Using Mutual In-
formation

One problem many RL algorithms have is that they rely heavily on a (sparse) reward function. In
many real-life applications such a reward function can only be supplied by a human, which may
be expensive (Christiano et al., 2017). Certain algorithms, however, do not rely on a reward func-
tion for large parts of their training, which makes them very appealing in such cases. Algorithms
that do not rely on an external reward function are called unsupervised.

Mutual Information can be used as a general reward function to encourage an unsupervised
RL agent to explore the environment. Typically, it tries to maximize the entropy over all states S,
and tries to minimize the entropy of the states given the taken action A:

I(S;A) = H(S)−H(S|A) (2.6)

MaximizingH(S) means that the agent tries to explore as much of the environment as possible. At
the same time, minimizing the conditional entropyH(S|A) makes the taken actions as predictable

2.3 Learning Skillful Resets 5

as possible. (Sharma et al., 2020)
Certain approaches do not just train the entire policy as a whole on this objective, but also add

in skills which should exhibit a palette of distinctive behaviours. Eysenbach et al. (2018) define a
skill as a latent-conditioned policy that alters that state of the environment in a consistent way, meaning
that the policy does not produce an action given a current state (at = π(st)), but can be influenced
by a skill z which alters the behaviour: at = π(st, zt). Note that according to this definition it is
ultimately irrelevant which actions are taken. Instead, it only cares about the reached state and
which skill was used to get to that state.

The skill-based objective function tries to make the skills consistent, but also tries to maximize
entropy in behaviour as much as possible to encourage exploration. In mathematical terms, the
objective intends that the mutual information I(S;Z) between reached state S and the performed
skill Z is maximized. To make sure that the actions are not used to distinguish the skills, the
mutual information between skills and actions given the state I(A;Z|S) is minimized at the same
time. Having distinguishable skills is, however, not sufficient to ensure that a large part of the
state space is explored. Eysenbach et al. (2018) add another objective to do that: Rewarding a
higher entropy of actions given a state H(A|S) makes the agent try out more varying actions.
Putting those objectives together, we get the objective function in Eq. 2.7

rintrinsic = I(S;Z) +H(A|S)− I(A;S|Z) (2.7)
= H(Z)−H(Z|S) +H(A|S,Z) (2.8)

Simplifying, we get Eq. 2.8, which can be interpreted as well: H(Z) intends that the agent de-
velops as many skills as specified. The second term wants the skills to be clearly discriminable
by the visited states, completely ignoring the actions taken. This is very much intended: in the
end, we care about outcome, and not how the agent got there. As an example, look at a robotic
arm grasping a cup: Unless the cup shatters, we do not care how much force is used to grasp the
cup, as long as it is actually grasped. The last term H(A|S,Z) encourages further exploration by
rewarding more random behaviour. (Eysenbach et al., 2018)

These learned skills do not need to be used as they were trained in the end. Eysenbach et al.
(2018) propose to take the learned skills and then keep training towards one specific reward func-
tion, since one or two of the learned skills will probably be close to what the actual goal is. Sharma
et al. (2020), on the other hand, take the learned skills and put a controller on top of the skills
which is then trained to perform the right skill at the right time, while the skills themselves stay
the same.

One possible pitfall with hierarchical controllers can occur: If the learned skills are to be used
in a hierarchical setting, it is an obvious idea to learn skills and policy to use those skills at the
same time. However, if both are trained at the same time, then the skill controller quickly only
chooses the most promising few skills and completely forgets about the rest. (Eysenbach et al.,
2018)

2.3 Learning Skillful Resets
Learning Skillful Resets (LSR, Algorithm 1) (Xu et al., 2020) is an unsupervised approach to learn-
ing skills that requires no hard resets. LSR trains two policies: One that does standard RL, called
forward policy, and one that resets the environment into a variety of start states using learned
skills, called reset policy. The two policies then take turns controlling the agent. This training
process is similar to Asymmetric Self-Play (Sukhbaatar et al., 2018). By having the reset policy
challenge the performing policy, it is more likely that a significant part of the domain gets ex-
plored and the forward agent learns to perform its task from a variety of initial states. It is, of
course, necessary that the environment/task can be reset by the agent in some way.

6 Chapter 2. Background

This reset game is implemented as a positive-sum game between two players. The task policy
tries to score well, and the reset policy tries to make it harder for the task policy to succeed. To
produce more diverse starting states, the reset policy also gets rewarded for producing a variety
of different starting states. The two policies then learn very distinct skills that can later be used
together as skill sets for a model-based planner or hierarchical controller.

Once training is done, the forward actor can be used to solve the task in a very robust manner
because it has trained from many different starting states. The reset actor can be used like a
DIAYN model with a variety of skills that can be used by a hierarchical controller, or to specialize
towards a new task. This is especially useful if more models in the same environment should be
trained because they can use different skills as a starting point for training.

Similar to DIAYN (Eysenbach et al., 2018), LSR uses the objective function I(S;Z)− I(A;S|Z)
as an intrinsic reward for the reset policy. I(S;Z) = H(S) − H(S|Z) maximizes state coverage
while maximizing predictability, and I(A;S|Z) = H(A|S) −H(A|S,Z) makes sure the skills are
recognized by the resulting states instead of by the actions they take. This results in the intrinsic
reward function rskill(π, p, s, z, a) = log p(z|s)−log p(z)−log π(a|s, z) (Xu et al., 2020). p represents
the ground truth and prior assumptions. p(z) is an assumed prior distribution of skills, usually a
uniform distribution. p(z|s) describes how likely the used skill can be predicted from the reached
state, and π(a|s, z) is the likelihood that he policy π takes action a given state s and skill z. Because
p is unavailable to the algorithm, it has to be approximated with a learned function q. In contrast
to DIAYN, LSR does not include an additional reward H(A|S) for diverse behaviour within a
skill for unmentioned reasons. Likely, this is because finding a challenging starting state for the
forward policy is already encouragement enough to explore new states and the extra reward is
not necessary.

The forward agent tries to optimize the reward Jforward =
∑
t γ

tr(at, st), whereas the reset
agent tries to optimize Jreset =

∑
t γ

trskill(a
′
t, s
′
t) − λJforward. Here, λ describes how important

the received reward by the forward agent is compared to the intrinsic reward rskill. For λ = 0, we
get the same formulation as it is used in DIAYN, and λ > 0 encourages the reset controller to find
more challenging starting states for the forward controller since it gets punished if the forward
controller earns a high reward. Rewards further in the future are less likely to be accurate and
should therefore be discounted a bit. γ controls the value decay over time and is usually set to
γ = 0.99. The resulting reset game can be described as a Stackelberg Game, which means that the
problem can be solved optimally. In the RL setting, this would require an infeasible amount of
samples, but the solution can be approximated by alternating turns between the two agents, and
with the reset agent having a slower learning rate. (Xu et al., 2020)

Some implementation details are worth clarifying:

• The prior skill policy p(z) is not explained in Xu et al. (2020), but it is supposed to be kept
stable for an extended period of time. DIAYN takes a uniform distribution during the whole
training to maximize H(z), which is part of the objective function.

• The learned skill discriminator q is taken from DIAYN and tries to predict the skill from the
reached state. It is optimized using cross-entropy loss.

• Soft Actor-Critic (SAC) (Haarnoja et al., 2019) is used to optimize the two actors.

2.4 Lifelong Skill Planning
Lifelong Skill Planning (LiSP) (Lu et al., 2021) is an unsupervised skill learning framework meant
to be used in MBRL, meaning it does not learn an optimal policy, but a set of useful skills that a
skill policy then learns to use. It focuses on a reset-free setting by trying to avoid needing a reset,

2.4 Lifelong Skill Planning 7

Algorithm 1: Learning Skillful Resets (Xu et al., 2020), discriminator qω(st|at) corrected
to qω(z|st)

Input : Environment
Initialize: policy π, reset policy πresetφ , discriminator qω(z|st), prior p(z)
for N iterations do

Sample skill z ∼ p(z)
set environment
for t← 0 . . . Treset−1 do

Sample at ∼ πresetφ (at|st, z)
Step env st+1 ∼ Ps(st+1|st, at), compute reward for reset controller rresett

solve task
for t← 0 . . . T − 1 do

Sample at ∼ π(at|st)
Step env st+1 ∼ Ps(st+1|st, at), obtain reward rt

Update reset policy’s final reward rresetT = −
∑T
t=0 γ

trt(at, st)
Update πresetφ , π to maximize respective return using SAC
Update discriminator qω using Adam

Algorithm 2: Lifelong Skill Planning (LiSP), online mode. In offline mode the last line is
skipped. (Lu et al., 2021)

Initialize: true replay buffer D, generated replay buffer D̂, dynamics model ensemble
{fφi}Ni=1, policy π, discriminator q, skill-practice distribution ψ

while alive do
Update fφ using D
Update policy models with UpdatePolicy(D, D̂, fφ, π, q, ψ)
Perform GetAction(s, fφ, π) and record experience in D

but also permits skill discovery from offline data or a standard environment with frequent resets.
When LiSP is runing in online mode (see Algorithm 2), it alternates between taking actions and
training its models. In offline mode, only training happens and the last line of Algorithm 2 is
skipped.

One major goal of LiSP is to avoid resets. It is impossible to avoid them completely since
any algorithm without prior knowledge will not know what actions will lead to a sink state and
require a reset, but LiSP is very good at avoiding accidentally triggering sink states. The main
mechanism to do this is within the model it uses to predict what happens to the environment: In-
stead of maintaining a single environment model, the environment dynamics are predicted with
an ensemble of predictors {fφi

}Ii=1 that have the same architecture but different initial weights.
Predictions for the future are then ran through all models in the ensemble. Only if the mod-
els agree enough with each other is the prediction actually used. Otherwise, a heavily negative
reward is put in place to deter the policy from exploring that space by accident.

2.4.1 Training
LiSP learns the following four functions during Algorithm 3, UpdatePolicy:

• An environment model ensemble {fφi
}Ii=1 that predicts the next state of the environment

8 Chapter 2. Background

Algorithm 3: LiSP’s UpdatePolicy (Lu et al., 2021)
Hyperparameters: number of rollouts M , disagreement threshold α
Inputs : true replay buffer D, generated replay buffer D̂, dynamics model fφ,

policy π, discriminator q, skill-practice distribution ψ
Function UpdatePolicy(D,D̂,fφ,π,q,ψ):

for i=1. . . M do
Sample si0 from D
Sample zi with ψ(si0)
Generate ai with π(si0, zi)
Generate si1 with fφ(si0, ai)
Add (si0, a

i, zi, si1) to D̂
Using the M samples, update q to maximize log q(s1|s0, z)
Calculate radjusted for samples in D̂
Update π, q, ψ using SAC with minibatches from D̂

given a state and an action to perform.

• A skill-policy π that produces an action given a state and a skill to perform.

• A discriminator q used to compute the intrinsic reward during unsupervised training. It
predicts how likely it is that a state follows a previous state if a specific skill was performed.

• A skill-practice distribution ψ that chooses skills to practice given the current state.

To learn as much as possible from every single experience, LiSP not only trains on the actual
experiences (stored in replay buffer D) but also on a set of generated experiences (stored in gen-
erated replay buffer D̂) that seem plausible given the previous real experience. Only dynamics
model fφ is trained on the real transitions. The other functions are trained during UpdatePolicy
(Algorithm 3) on data generated using fφ. Because fφ is constantly learning and creating more
accurate generated states, generated replay buffer D̂ has a rather small size so that it is completely
replaced within 10 to 20 training steps, whereas a replay buffer usually stores data from one mil-
lion exploration steps. The quick replacement of the generated experiences is needed because
the environment model is updated continuously. Leaving the generated samples in for too long
would mean that the model trains on outdated data for a longer time than is necessary. The true
replay buffer on the other hand can contain a large amount of samples because those are true
experiences that were collected in the real environment, so they do not need to be replaced.

Defining an intrinsic reward function is a crucial part for every unsupervised RL algorithm.
LiSP uses an intrinsic reward r̃ (see Eq. 2.9) proposed by Sharma et al. (2020), which is derived
from an approximation of I(st+1; z|st). q(st+1|st, z) says how likely state st+1 is to occur when
one step is taken from state st with skill z. This value is compared to how likely st+1 is to follow
st given any random skill zi. To make this computationally feasible, this expectation is sampled
from L random samples (Lu et al. (2021) use L = 16, Sharma et al. (2020) use L = 512) using
a uniform distribution as p(z). As a result, the intrinsic reward wants the different skills to be
predictable (rewarded in the first term) and at the same time distinguishable (rewarded in the
second term).

r̃(s, z, st+1) = log q(st+1|s, z)− log
1

L

L∑
i=1

q(st+1|s, zi) where zi ∼ p(z) (2.9)

2.4 Lifelong Skill Planning 9

Algorithm 4: LiSP’s GetAction (Lu et al., 2021)
Hyperparameters: population size S, planning horizon H , planning iterations P ,

discount γ
Inputs : current state s0, dynamics model fφ, policy π
Function GetAction(s0, fφ,π):

for p=1. . . P do
Sample skills {zi}Si=1 ∼ [−1, 1]dim(z)×H based on distribution of previous iteration.
Estimate returns R = {

∑H−1
t=0 γtr(sit, π(s

i
t, z

i
t), s

i
t+1)}Si=1 using trajectory sampling,

with states si sampled from fφ for skills zi.
Use MPPI update rule on R and z to generate new distribution of skills {zt}H−1t=0 .

return a ∼ π(s0, z0)

To avoid training on imprecise generated experiences, the intrinsic reward r̃ is only awarded
when the dynamics model ensemble {fφi

}Ii=1 is reasonably certain of its predictions. To see how
certain fφ is of its predicition, a disagreement score dis(s, a) is calculated between the different
models in the ensemble:

dis(s, a) = Ei6=j [‖fφi
(s, a)− fφj

(s, a)‖22] (2.10)

When dis(s, a) is too large (larger than hyperparameter αthresh), a constant penalty −κ is
awarded instead of r̃. This results in r̃adjusted, which is used as an intrinsic reward function:

r̃adjusted =

{
r̃ if dis(s, a) ≤ αthresh
−κ if dis(s, a) > αthresh

(2.11)

After generating new samples for generated replay buffer D̂, policy π, discriminator q, and
skill practice distribution ψ are updated using Soft Actor Critic Haarnoja et al. (2019) with mini-
batches sampled from D̂.

2.4.2 Generating Actions
The goal ofGetAction (Algorithm 4) is to develop a sequence of skills to perform and to return the
next action to take. LiSP does this with a Model-Predictive Control (MPC) approach Nagabandi
et al. (2019), meaning it tries to predict the changes in state and reward if it takes different courses
of action. The MPC implementation used in LiSP to optimize the plan is Model-Path Predictive
Integral (MPPI) (Williams et al., 2015), which uses trajectory sampling. Trajectory sampling is a
technique where a number of slightly random courses of action are simulated and averaged to
find the best base plan.

Typically, MPC approaches search through the entire action space to find the best course of
action for a planning horizon of H steps. Similar to Dynamics-Aware Discovery Of Skills (DADS)
(Sharma et al., 2020), however, LiSP plans its course of action in terms of skills the agent has
learned, which reduces the planning space significantly in comparison to action-based planning.
This allows for a substantially larger planning horizon. They do, however, examine the individ-
ual actions taken by the skills so that they avoid sink states with very high certainty. Because
the policy is encouraged to only perform actions where the dynamics model is confident in its
predictions (see r̃adjusted in Eq. 2.11), it is even more unlikely that a sink state is accidentally
reached.

10 Chapter 2. Background

To avoid repeating optimization work, the plan of skills to use (distribution of skills {zt}H−1t=0

in Algorithm 4) is stored between the different calls of GetAction. Whenever an action is taken,
the first skill to perform is cut from the plan, the rest of the planned skills are advanced one time
slot, and a neutral skill is added at the end of the sequence. This way the planning iterations
build upon each other instead of discarding the whole optimization and starting from scratch
every time.

An additional technique (not visualized in Algorithm 4 but implemented in Lu et al. (2021))
to expand the planning horizon is to perform multiple actions for every planned skill. In doing
so, the algorithm looks farther into the future without making the planning space larger. When
this technique is used, the planning loop is only performed every n steps, where n is the number
of times the same skill is used to sample an action.

The MPPI update rule (Eq. 2.12) is simply a reward-weighted average of random variations in the
[sequence of skills] (Williams et al., 2015). The environment model fφ and policy π are used to
predict what happens when a sequence of skills {zt}H−1t=0 is performed from the current state. A
lot of slightly different sequences of skills are generated by adding some Gaussian noise to the
currently planned sequence (reminder: in LiSP, skills are defined as z ∈ [−1, 1]dim(z) and not as a
natural number like in LSR), which then are all estimated and averaged to produce an updated
sequence of skills according to Eq. 2.12. The update takes more inspiration from the better ran-
dom deviations while taking less from the worse ones. It relies on a temperature parameter λ
and weighs the inputs based on the cost (or negated reward) ct,m =

∑t
n=1(−rn,m), which is the

cumulative cost of all steps up to step t of the predicted state of sample m.

zt ← zt +

M∑
n=1

exp(− 1
λct,n)(zt,n − zt)∑M

m=1 exp(−
1
λct,m)

(2.12)

2.5 Entropy-based Learning
Currently, the most popular family of supervised learning algorithms is the group of algorithms
based on entropy maximization. Soft Actor-Critic (SAC) (Haarnoja et al., 2019) is the baseline
everyone competes against, together with Proximal Policy Optimization (PPO) (Schulman et al.,
2017), which is SAC’s precursor. This family of algorithms maximizes the objective function

L = R+ αH(S) (2.13)

where R is the earned reward and αH(S) is the entropy over the visited states multiplied by a
scaling factor (also called temperature) to account for reward scales and relative importance of the
terms. Just like in LiSP and LSR, adding the entropy to the objective function is here to encourage
exploration of the entire state space.

The main improvement of SAC over PPO is its off-policy formulation. PPO is a so-called on-
policy algorithm, which means that only data collected with the current version of the policy can
be used for training and after just one training step all data needs to be discarded. Haarnoja et al.
(2018) managed to create an algorithm to optimize for the same objective from Eq. 2.13 but in
an off-policy formulation. Off-policy means that all collected data can be used to train, even if
it was collected with an entirely different algorithm. As a further improvement, Haarnoja et al.
(2019) then also found a small adjustment that allows the temperature parameter α to be adjusted
automatically, so that almost no parameter tuning needs to be done. Thanks to its off-policy
formulation and the automatic temperature adjustment, SAC has become a crucial component of
many algorithms, including LiSP, LSR, and their precursors.

2.6 Environment Shaping 11

2.6 Environment Shaping
Traditionally, in environments with very sparse rewards, reward shaping is used to make it easier
for policies to learn. For example, an agent is not just rewarded when it completes the task,
but also a small reward is given when an intermediate step is completed, and maybe even an
even smaller reward when it moves towards the correct position for the next step. While reward
shaping can solve a lot of issues, it is not without problems: It often requires access to privileged
information (such as the distance to the next goal) which may not be available to the agent through
its normal sensors. This is rarely a problem in simulations, but for the real world collecting that
information may be very expensive. In addition, it is also very hard to create a good reward
function. Intermediate rewards may discourage the agent from searching for the ultimate reward
because it’s not large enough, or a path to the solution may exist but is not recognized with
intermediate rewards, so it will never be explored.

Environment shaping is a technique proposed by Co-Reyes et al. (2020) as a more natural al-
ternative to reward shaping to help agents get over the initial hurdles of sparse rewards much
more quickly. When using environment shaping, the agent is placed in a much more cooperative
environment at the beginning of training, just like human parents support their kid at the begin-
ning of its life. For example, in a deer hunting scenario, where the deer will flee in the evaluation
setting, the deer starts off by walking towards the agent. After some success the deer might stop
moving towards the agent and starts to move randomly instead. Once the agent has learned to
move towards the randomly moving deer, the agent can be placed in the real setting where the
deer starts to move away from the agent. If the agent was placed in the real setting from the start,
it may have never even reached one deer and would be stuck randomly exploring for a very long
time. Of course, the evaluation environment is not changed.

Co-Reyes et al. (2020) attribute their improved training speed to the smaller disparity between
the current and the optimal policy. RL learns best if the optimal policy is not too different from the
current agent’s behaviour. The problem in the deer hunting scenario is that the optimal behaviour
is very different from the random actions a RL agent typically takes at the start. With the deer
moving towards or very close to the agent, even a random policy has a good chance at succeeding
because it is easy to stumble upon the correct action sequence. It is also possible that the starting
positions are changed instead of (or in addition to) the environment’s behaviour: If the deer starts
very close to the untrained agent, it is likely for the agent to catch the deer even if it tries to flee.

2.7 Environment Dynamism
Environment dynamism is the practice of adding some randomness to the behaviour of the en-
vironment, also proposed by Co-Reyes et al. (2020). It is very similar to environment shaping,
even in the benefits it provides, but more like a stochastic version of it. In their experiments they
found that giving certain elements in the environment (such as the deer in the previous example)
a probability (in the example 10-20%) of completely random behaviour instead of their normal
behaviour improves performance significantly, both in training and evaluation. The more dy-
namic environment d̃ can be described as having more entropy in its transitions than the real
environment d:

Hd̃(st+1|s, a) ≥ Hd(st+1|s, a) (2.14)

In their discussion of the cause of those performance gains, Co-Reyes et al. (2020) attribute the
gains to the fact that having more entropy during training will result in a more uniform distribu-
tion of all the visited states. Because more states are visited, the agent’s policy is nudged towards
a more generally useful one. Especially at the beginning (when the policy is completely untrained

12 Chapter 2. Background

and essentially random) a more random environment increases the likelihood of encountering a
rewarding state. And when the agent gets stuck in a place in a reset-free environment, the ran-
domness can act like a soft reset function. An experiment with sparse rewards showed a 28%
decrease in the average time until the first rewarding state was reached. When the entropy is
increased too far however, the state distribution becomes too uniform and the actions performed
by the agent become irrelevant, making training useless.

Co-Reyes et al. (2020) also claim that traditional RL theory forgets about the fact that the real
world is quite dynamic already and that the typical benchmarks (like the MuJoCo (Brockman
et al., 2016) environment) are too clinical. In the real world, even if an agent does nothing, it’s
likely that it can learn a lot already just from observing what happens around it. They say that
adding randomness to pre-training in a simulator is likely beneficial because the learned policy
is then a bit more stable to small errors in measurement. The impact on environment models for
MBRL algorithms is unclear and should be investigated more.

Chapter 3

Experimental Evaluation

The goal of this thesis is to examine the performance of current MBRL agents for the reset-free
setting under changing environment dynamics as described by Co-Reyes et al. (2020). The first
step is getting LiSP1 and LSR2 to run on LiSP’s Volcano and 2D Minecraft environments, called
volcano-baseline and minecraft-baseline in this thesis. Besides the reproduction, potential issues in
the implementations are examined for their relevance to the algorithms working.

Following that, LiSP and LSR are evaluated under novel conditions that employ environment
shaping and environment dynamism. Those new experiments are all adapted from the environ-
ments provided in LiSP’s implementation. In addition to examining LiSP and LSR, a comparison
is also made against Soft Actor-Critic (SAC) (Haarnoja et al., 2019), which is one of the most-used
baseline algorithms. Hyperparameters are set to the values recommended in the papers.

The most common baseline environments for RL papers are the MuJoCo environments (Brock-
man et al., 2016). They are, however, not suited for this work because the license forbids modi-
fications, so environment shaping and environment dynamism are illegal to try. Another set of
candidate environments to use in the experiments were the ones used in Co-Reyes et al. (2020),
but incompatible libraries made the effort to get them to work with the algorithms too large.

3.1 Experiment 1: Volcano
The Volcano environment is a simple 2D navigation task where the agent needs to move towards
a goal while navigating around a hole. Besides the goal and the inescapable hole, there is also
lava, which should be avoided. The hole is located between the starting position of the agent
and the goal. The most direct path (around the hole) to the goal is safe; everything else is filled
with lava, as is displayed in Figure 3.1(a). The picture makes it look like a discrete environment,
but it actually is continuous. Possible actions a ∈ [−1, 1]2 consist of movement in horizontal and
vertical direction, with the maximum step covering almost one tile in any direction. The state
visible to the agent consists of the agent’s position, the position of the hole, and the position of
the goal.

When the agent lands in the hole, it is stuck there and the episode ends. Touching lava is not
as bad as falling down the hole: it only distributes an additional punishment and the agent can
continue on its path. To compute the reward the agent receives every step, the distance to the
goal and the kind of tile the agent is standing on are taken into consideration: As a base reward,
the negative L2-distance is used, and if the agent is standing in lava or in the hole, an additional

1Code available at https://github.com/kzl/lifelong_rl
2Code available at https://github.com/siddharthverma314/clcp-neurips-2020

https://github.com/kzl/lifelong_rl
https://github.com/siddharthverma314/clcp-neurips-2020

14 Chapter 3. Experimental Evaluation

(a) Volcano default layout. Green: Goal. Blue: Hole.
Orange: Lava.

(b) Minecraft default layout. Brown: Crafting table.
Green: Wood. Black: Stone. Light Grey: Iron.

Figure 3.1: ENVIRONMENT LAYOUTS. Pictured are the baseline layouts for the Volcano (a) and 2D
Minecraft (b) environments. Yellow: Agent spawn/reset tile. Dark grey border: Wall.

punishment is awarded. Since the experiments are not about reward shaping and this is a not an
extensively shaped reward function, it is used as provided.

This scenario is mainly about avoiding danger, which Lu et al. (2021) explicitly laude as a
strength of LiSP. According to them, LiSP excels at not accidentally triggering sink states, which
in this case would be falling in the hole. But, the Volcano scenario is also about balancing different
threats: If the agent avoids the hole too much, then it will get punished for standing in lava.

3.1.1 Baseline
The task volcano-baseline is just what it says: a baseline to compare modifications to. The environ-
ment layout is the one displayed in Figure 3.1(a) and does not change. Whenever a terminal state
is reached, the agent is reset to its starting position. Terminal states are reached when the agent
reaches the goal or falls into the hole. Otherwise no resets happen, even if the agent gets stuck in
a corner for hundreds of steps. Standing in lava simply gets a lower reward but is not terminal.

This baseline environment is the environment that is used for performance evaluation of the
following tasks.

3.1.2 Baseline with Resets
The experiment volcano-baseline-reset is almost the same as volcano-baseline, but with the small
difference that resets happen even if the agent has not reached a terminal state. When the agent
reaches a terminal state OR if 500 steps since the last reset have passed, then the task is reset. This
completely removes the reset-free aspect of the problems and is therefore much more similar to
the episodic problems typical in RL.

In a setting where frequent resets happen, more aggressive exploration policies are favoured
because they do not have to find a terminal state to try again. If they get stuck at some location,

3.2 Experiment 2: 2D Minecraft 15

they will get reset anyway. This also makes the experiment setup easier because there is less need
for complex logic to find out when a reset may be useful. In the worst case, the agent will be stuck
for the 500 steps until the reset happens.

One way the frequent resets may harm training is when the reset frequency is set too high.
Then, the agent will experience the start of the problem and does not get enough time to explore
the later parts of the problem. This is, however, certainly not a problem in this case as travelling
from corner to corner of the environment is possible in 20 steps.

3.1.3 Randomized Actions
In the volcano-random-actions environment, the movement does not work as precise as in the oth-
ers. While the layout is the same as the baseline, some random noise is added to the actions: To
every action a ∈ [−1, 1]2 a random value in [−0.1, 0.1] is added in every dimension. Afterwards
the values are clipped to be within [−1, 1] again. The clipping could be left out, but that would
allow the possibility of jumping over the hole, which would possibly alter the optimal strategy
significantly, which is not the intention of adding noise.

Because of the random noise added to the actions the movement becomes less precise. While
the noise is not very large in comparison to the commands, an additional margin of safety is
needed since the noise can vary the final position by almost a third of a tile. Additionally, planning
is harder because not everything is deterministic anymore.

3.1.4 Shifting Environment
In the environment volcano-shifting the floor layout shifts around slightly. Every 500 steps a new
predefined layout is loaded. The new layouts are all mostly copied from the baseline layout, but
the hole and the safe path around the hole are moved left, right, up, or down by a tile. Occasion-
ally, the safe path can also be a bit bigger, and in one layout there are even two holes directly left
and right of the optimal path.

These differences in the layout are supposed to challenge the pathfinding. By changing the
location of the hole, the algorithm now needs to respond to the hole’s location, whereas before-
hand it was enough to follow the same path every time. This makes it harder to train, but should
improve performance on unseen problems significantly.

3.1.5 Combination
The task volcano-shifting-random is a combination of the modifications from both volcano-random-
action and volcano-shifting. This makes the problem even more challenging but should make the
resulting algorithm even more robust.

3.2 Experiment 2: 2D Minecraft
The 2D Minecraft environment is a hierarchical 2D navigational task with the basic movement
working exactly the same as in the Volcano environment. As in the real Minecraft game, better
items can be gathered by spending lower-level items at the right location. The more complex the
items are, the more reward is distributed to the agent. The limiting factor in this task is the small
inventory size: Because the agent can only carry one item of every type at the same time, it has to
go back to the same resource over and over to gather more resources for the next crafting steps.
This setup lends itself especially well for skill-based algorithms because of those repeating tasks.

16 Chapter 3. Experimental Evaluation

There is no overall inventory size limit since this is not supposed to be an inventory management
component to the problem. The state visible to the agent consists of the agent’s position, the
position of the interesting tiles (resources and crafting table), as well as the inventory content.

The environment consists of mostly empty space with some resources and a crafting table lo-
cated somewhere, as pictured in Figure 3.1(b). Since there is no danger to avoid, the experiment
minecraft-random (analogous to volcano-random) was not performed. When touching the resource
tiles, the agent collects one of the corresponding item (wood, stone, or iron) as long as it has the
requisite tool available (wood: no item required, stone: wood pickaxe required, iron: stone pick-
axe required), consuming the requisite tool. When the crafting table is visited, possible crafting
recipes are used automatically: Wood can be turned into a stick, and a wood or stone block can
be combined with a stick to create a wood or stone pickaxe. When a resource or item is acquired
by stepping on the resource tile or the crafting table, the agent receives a reward. Items further
in the task order award larger rewards (e.g. collecting a piece of wood awards a score of one, but
crafting the wood into a stick awards a score of two). This leads to the following task progression
(some steps do not have to be taken in this exact order):

1. Collect wood

2. Craft stick with wood

3. Collect wood

4. Craft wood pickaxe with wood and stick

5. Collect stone using wood pickaxe

6. Collect wood

7. Craft stick with wood

8. Craft stone pickaxe with stone and stick

9. Collect iron with stone pickaxe

3.2.1 Baseline
Just like with volcano-baseline, the task minecraft-baseline is simply a baseline to compare the fol-
lowing experiments with. It has a very similar configuration as volcano-baseline: Again, the agent
is only reset when it reaches a terminal state. In the minecraft environment, this only is the case
when the last step, getting iron, is achieved. Because this requires a lot of discrete tasks to be com-
pleted, learning in the minecraft environment is much slower than in the volcano environment.
According to Lu et al. (2021), LiSP takes around ten times as long to learn the minecraft task as it
takes to learn the volcano task.

This baseline environment is the environment that is used for performance evaluation of the
following tasks. Its layout is displayed in listing 3.1(b).

3.2.2 Baseline with Resets
The task minecraft-baseline-reset has the exact same modifications in comparison with minecraft-
baseline as volcano-baseline-reset has compared to volcano-baseline. The problem is reset if a terminal
state is reached OR 500 steps have passed since the last reset.

For this task, the frequent resets are more aggressive in comparison to the volcano setting
because the task takes much longer to achieve. The agent has to have a somewhat optimized

3.3 Investigating Implementation Problems 17

technique in order to get to the point of crafting more advanced tools before the time runs out.
On the other hand, the first few basic tasks (gathering wood and making a stick out of it) can be
learned much more quickly because the resets put the agent back into the position to try those
tasks again. Eysenbach et al. (2018), the work LSR is built upon, explicitly state that their algo-
rithm DIAYN is good at solving this kind of challenge where the start of the task is very repetitive
and the possibilities only open up once the first step is completed.

3.2.3 Shifting Environment
In the minecraft-shifting environment, the interesting tiles (resources, crafting table) do not stay
where they are. With a small probability (5% per time step used in all experiments) a resource tile
or the crafting table move their location one tile up, down, left, or right. This forces the algorithm
to figure out where the resources are at the moment. Having to learn that recognition skill instead
of hard-coded locations makes the problem harder, of course, but should make the agent much
more resilient to being thrown into completely unseen setups or an imperfect reset, which could
happen in real-world scenarios.

3.2.4 Shaped Environment
Instead of randomly moving the tiles of interest, they can be manually placed. In the environ-
ments minecraft-shaping and minecraft-line, the tiles are arranged in different shapes so that the
algorithm can collect more useful data early on. In the minecraft-line layout, the resources start in
a line beginning from the starting position, so the agent only needs to move up a number of times
to start solving the task. Afterwards, the tiles slowly start moving away from each other until
they are entirely back to their positions as they are in the evaluation environment.

In the minecraft-shaping experiment, the tiles are in the same direction from the agent, but
pulled much closer to the starting point. At the beginning, the agent starts on the crafting table
and only needs to move half a tile to touch any of the resources. The tiles then slowly start moving
outwards until they reach the same position as used in the baseline.

The goal of the shaped environments is to reduce the time to accidental completion of the task
as much as possible. In the baseline environment, it takes a long time until a completely random
agent happens to solve even the first few steps because they are so far from the starting point,
so the collected data is almost useless for a long time. In the shaped environments, accidental
completion is much more likely to happen early on and therefore more useful data is available at
an earlier point in time.

3.3 Investigating Implementation Problems
Both LiSP and LSR have potential problems with their provided implementations (to access the
code follow the footnotes at the beginning of Section 3). In order to investigate if they are valid
problems and to find out how significant those problems are, the baseline is run once with the
original code and once with the issues cleaned up.

LiSP’s potential problem is with the data collectors. Its implementation can use different data
collectors. The step collector and the path collector perform one (for the step collector) or more
(path collector) steps and reset the environment after either the environment reports that the
episode is over or after a maximum number of steps was taken in the same episode, so it can
work like the *-reset environments. But, for some experiments, the reset free collector is used.
This collector ignores every way to indicate that the environment should be reset and instead
just keeps on collecting data. While this is totally fine for the MuJoCo environments (Brockman

18 Chapter 3. Experimental Evaluation

et al., 2016) which most reported results in the paper stem from, in the volcano and 2D Minecraft
environment, this will mean that the agent cannot continue trying to solve the task once the agent
falls into the hole or the entire inventory is full. Then, nothing the agent can do will give useful
information anymore. Therefore the corrected version of LiSP uses the path collector and the
original implementation uses the reset free collector.

LSR’s potential problem is with the performance evaluation. After every episode of training,
the current performance of the agent is evaluated, potentially in a different environment than the
one the training happens in. The data collected during evaluation is only supposed to be used for
evaluation, but the supplied code also uses that data to train the agent further. This means that the
agent trains on data it is not supposed to train on and therefore probably will have better results
than it is supposed to be. By allowing the agent to train on the evaluation data, it is possible that
the results are overfitted to the evaluation environment. The corrected version of LSR does not
train on the evaluation data.

Chapter 4

Results

This chapter presents the results of the various experiments described in the previous section. For
most LSR experiments one run was performed. For most LiSP and SAC experiments three runs
were executed. For those, the most average run was chosen to represent the performance.

Some additional notes regarding the graphs presented in this chapter: All curves for LSR
were so erratic that they covered up every other curve and were illegible themselves. Therefore
all performance curves for LSR are smoothened with a moving average over 5 training units.
Additionally, the performance numbers displayed in the graphs are not in the typical format of
one reset per episode since the resets happen very seldom in the described setups. How a training
unit looks and how long they take to calculate per algorithm are shown in Table 4.1.

4.1 Volcano Experiments

4.1.1 Baseline
As can be seen in Fig. 4.1a, the performances of the three algorithms are very close to each other.
While at the very beginning some differences are visible, ultimately all algorithms reach similar
levels of performance. Even the peaks are very close to each other.

In terms of stability there are some differences. Regarding the worst achieved performance,
LiSP definitely is the best because it never dropped below -2100 performance, not even in the
other experiments. LSR is very erratic in its curve, as it is in all experiments. Except for a short
period of 300 training units, SAC shows by far the most consistent performance. While it jitters a
little bit more than LiSP on occasion, it contains much fewer sudden jumps.

Algorithm Environment steps Training steps Computation effort
per training unit per training unit per training unit

SAC 100 10 1 second
LiSP 100 10 19 seconds
LSR 500 25 3.5 seconds

Table 4.1: Comparison of what one training unit means for the different algorithms. Steps per
training unit does not contain steps made for evaluation. A training step refers to computing
losses on one batch of training data and applying an update step to the weights. Computation
effort is measured on one GPU.

20 Chapter 4. Results

0 250 500 750 1000 1250 1500 1750 2000
Training Units

5000

4000

3000

2000

1000

Re
wa

rd

sac volcano baseline
lisp volcano baseline
lsr volcano baseline (smoothened)

(a) Baseline performance on the volcano layout 3.1a.

0 250 500 750 1000 1250 1500 1750 2000
Training Units

5000

4000

3000

2000

1000

0

Re
wa

rd

sac baseline
lisp baseline
lisp reset
sac reset

(b) Performance on the volcano baseline but with
frequent resets.

Figure 4.1: VOLCANO BASELINE RESULTS. Pictured are the baseline results in the volcano environment
with minimal resets (a) as well as the results with frequent resets (b).

4.1.2 Baseline with Resets
The results for the baseline with frequent resets can be seen in Fig. 4.1b. With resets, SAC rather
quickly reaches a level of performance that reflects what a human can achieve. LiSP fails to
improve in comparison with the baseline and becomes more unstable.

LiSP’s instability is actually quite surprising: In no other experiment does LiSP show such
high variance in results, but there are no serious outliers. It still does not go below the -2100
barrier. While the instability is still not that large in comparison to LSR (the magnitude is up to a
third as big as unsmoothened LSR), no improvement at all in average performance was definitely
not expected.

4.1.3 Randomized Actions
Adding some noise to the actions turned out to have barely any impact at all, as can be seen in
the orange curves in Fig. 4.2. While there are some substantial deviations for quite long periods
(e.g. for SAC in Fig. 4.2c), ultimately the performance ends up not far from the baseline for all
algorithms. For LSR, adding some noise to the actions made the graph by far the most stable of
all the experiments.

4.1.4 Shifting Environment
Of all the modifications to the volcano environment, the shifting modification had the most im-
pact (see the green curves in Fig. 4.2). For LiSP and SAC, shifting the hole around resulted in a
much better and very stable performance compared to the baseline. LSR, however, was not able
to learn from the shifting environment and ultimately had a worse performance than the baseline.

4.1.5 Combination
The combination of adding noise to the movement as well as shifting the environment around
on average seems to be a little bit worse than only the shifting environment(see red curves in Fig.
4.2). For LSR, the combination has basically no effect in comparison to pure shifting. For both LiSP

4.1 Volcano Experiments 21

0 250 500 750 1000 1250 1500 1750 2000
Training Units

2000

1750

1500

1250

1000

750

500

250

Re
wa

rd

lisp baseline
lisp random action
lisp shifting
lisp shifting-random

(a) Impact of the modifications on LiSP performance.

0 250 500 750 1000 1250 1500 1750 2000
Training Units

5000

4000

3000

2000

1000

Re
wa

rd
lsr baseline (smoothened)
lsr random action (smoothened)
lsr shifting (smoothened)
lsr shifting-random (smoothened)

(b) Impact of the modifications on LSR performance.
The curves are smoothened with a 10 training unit
wide moving average to make the graph legible.

0 250 500 750 1000 1250 1500 1750 2000
Training Units

5000

4000

3000

2000

1000

0

Re
wa

rd

sac baseline
sac random action
sac shifting
sac shifting-random

(c) Impact of the modifications on SAC performance.

Figure 4.2: VOLCANO MODIFICATION RESULTS. Impact on the performance of the modifications to the
volcano environment.

22 Chapter 4. Results

0 250 500 750 1000 1250 1500 1750 2000
Training Units

0

1

2

3

4

5
Re

wa
rd

lsr baseline
lsr shaping
lsr shifting
lsr line

Figure 4.3: MINECRAFT MODIFICATION RESULTS. Pictured are the modification results for LSR in the
minecraft environment. SAC and LiSP failed to go beyond a reward of 1 within 80.000 training units of
training.

and SAC, performance looks better at the beginning than with any other set of modifications, but
at the end drops below the curve with pure shifting. But, they still end up better than the baseline.
Also worth noting is that SAC with the combination of shifting tiles and noisy movement is the
only algorithm that was able to match the optimal performance that SAC achieves in the setting
with resets for a while.

4.2 2D Minecraft Experiments
All algorithms had severe trouble with the 2D Minecraft environment. SAC and LiSP completely
failed to learn anything. Occasionally, they accidentally collected one piece of wood (collecting a
reward of 1), but never got over that stage. In a very long experiment spanning 80.000 training
units they both did not get any further (corrected and original implementation), even after grid-
searching over many different parameter combinations. Even when using the exact parameters
mentioned in the paper, LiSP never learned anything. Because of that their graphs are not pictured
at all.

In the (ultimately unsuccessful) search for parameters with better performance most exper-
iments concerned the learning rates and MPPI configuration since those appeared to be most
promising. Even though a learning rate of 3 × 10−4 is used in almost every implementation of
SAC going up or down an order of magnitude was tried because learning rates are known to have
a large impact on performance. The MPPI configuration (such as planning horizon, sensitivity to
model disagreements, or planning iterations) also seemed like a promising place for experiments
because MPPI is where the actions to be performed are ultimately chosen. Also worth mentioning
is the reward scale: even though LiSP completely ignores rewards during training in favour of
the described entropy measures, SAC and the MPPI part of LiSP do consider the rewards. But
even scaling the rewards by a factor of 100 was not enough to make the algorithms do what they
were supposed to.

LSR had a substantially better performance than SAC and LiSP, as can be seen in Figure 4.3.
The performance still can not be described as satisfying (a reward of 30 would mean that the task

4.3 Implementation Corrections 23

0 250 500 750 1000 1250 1500 1750 2000
Training Units

5000

4000

3000

2000

1000

0

Re
wa

rd

lisp baseline
sac rf collector
lisp rf collector

(a) Impact of the corrections on LiSP and SAC
performance.

0 200 400 600 800 1000
Training Units

5000

4000

3000

2000

1000

0

Re
wa

rd

lsr baseline
lsr train on eval

(b) Impact of the corrections on LSR performance.

Figure 4.4: VOLCANO CORRECTION RESULTS. Impact on the performance of the corrections to the
implementations.

sequence was solved once), but at least some trends are visible. The modifications all offered some
small improvements over the baseline for a short time, but performance dropped to the level of
the baseline quickly afterwards. Some additional experiments with LSR show that adjusting how
quickly the shaping progresses did not improve performance.

4.3 Implementation Corrections
Figure 4.4 shows the effect of the corrections in LiSP’s and LSR’s code. In both cases, the results
are opposite to what was expected.

For LiSP and SAC, the expectation was that performance would improve since more useful
information is collected in the baseline. By not using the reset free (rf) collector, the environment
is reset when the episode is over (the agent reached the goal or got stuck in the hole) and there-
fore the agent should be able to collect useful information again. Instead, performance decreased
by the correction, and stability was also affected: SAC became much less stable with much better
performance, but LiSP’s performance decreased slightly but became much more stable. The insta-
bility exhibited by LiSP with the rf collector looks similar to the one exhibited in the experiment
with frequent resets.

A possible explanation for these results is in how data is collected about stuck agents. With
the rf collector, the agents will be trained on lots of data that shows how badly the agent can be
stuck in the hole. With the path collector this data is missing because upon falling in the hole the
episode is reset. The experience of falling in the hole and receiving a punishment is there, but
not for multiple time steps at a time. Therefore the hole will be avoided more in the rf setting.
In addition to that, LiSP’s implementation of MPPI does not expect episodes ever to be over, so
planning can go wrong when MPPI looks too far into the future where no experiences are.

For LSR, the expectation was that performance would decrease with the correction because
there is an entire evaluation period of data not being trained on, and that for every training unit.
This should result in roughly half as much training happening in the corrected version. By hav-
ing so much less training, the performance should have decreased. Instead, the corrected version
performs much better, even when the amount of training steps is accounted for. A possible in-
terpretation is that the resets cause the policies to have so much exposure to the beginning of the
episodes that it fails to learn beyond the beginning since everything else gets drowned out by the

24 Chapter 4. Results

sheer volume of training on starting data. Lowering the learning rates may help with that.

Chapter 5

Discussion

Given the graphs displayed in their original papers, LSR’s and LiSP’s performance is quite disap-
pointing, especially considering the time they took to train (see Table 4.1). This section discusses
the individual experiments, the algorithms, and what can be concluded from the modifications’
effect on performance.

5.1 Volcano
The volcano problem turned out to be surprisingly difficult for all agents to learn. Ultimately, only
SAC with resets was able to entirely solve the task and SAC with the combined modifications
came close to solving it. Such difficulty in solving a task that seems trivial to humans was not
expected.

One possible explanation is that the algorithms struggle to explore the domain sufficiently.
When resets happen frequently, it is possible to try many different strategies from similar starting
positions. In the reset-free setting, this (at least in RL) very common assumption does not hold
and if the agents get stuck they simply do not have enough randomness to get unstuck again.
This could also explain why SAC with shifting-random was able to do so much better: Because
the input to the neural net varies occasionally and because the actions themselves have some
added randomness, those almost-sink states are not as hard to break out of.

This theory of exploration through added randomness could help explain what kind of ran-
domness is helpful for learning: If the randomness does not substantially affect what happens,
then it is not useful. The added noise in the random action modification is under no condition
sufficient to free an agent that is determined to be stuck in a corner. By shifting the environ-
ment, however, a large portion of the inputs to the neural network are changed, which is much
more likely to provoke a different reaction. This also matches what Co-Reyes et al. (2020) demon-
strated: Their randomness gives parts of the environment a probability to take an entirely random
action instead of adding some randomness to every action. Their form of randomness improved
performance much more.

LSR performed completely differently, however. Its performance actually degraded under the
more random conditions. This could mean that LSR contains enough internal randomness gener-
ation and is actually hurt by additional randomness from the outside. In contrast with LiSP and
SAC, LSR actually contains some internal randomness: The choice of skill to perform is chosen
randomly in LSR, whereas SAC does not use skills and LiSP uses its skill-practice distribution,
which depends on the state visible to the agent without any source of randomness.

The experiments in the volcano environment show how much RL algorithms can profit from
frequent resets. If the explanation of improved exploration through internal randomness holds, it
may be necessary to add some of it to algorithms for environments with limited resets. This is a

26 Chapter 5. Discussion

technique even human brains employ: a part of the brain is responsible for creating noise, which
is then used to draw ’inspiration’ from (Briggs et al., 2001, p. 255ff). A very simplistic way to
do this in RL could be to simply append a few random numbers to the environment state. But,
since the algorithms can learn quickly to ignore such an input, probably a more substantial part
of the algorithms needs to be controlled by randomness. For LSR, this could mean that not only
the reset policy employs randomly chosen skills but also the forward policy needs to respond to
some randomly controlled input. LiSP could easily be adapted to use a (partially) random choice
of skills instead of the entirely deterministic skill-practice distribution.

5.1.1 2D Minecraft
Because of the terrible performance of all algorithms it is difficult to draw any meaningful con-
clusions from the 2D Minecraft experiments. What can be seen from Figure 4.3 is that the mod-
ifications were useful at the beginning. Especially the shifting environment (green curve) looks
promising because it sustained the better performance for a longer time.

Both LSR and LiSP failed to learn useful skills in this environment. LSR occasionally plots
what the individual skills do, and after 2000 training units none of the skills moves into the lower
half of the grid. Apparently moving into the bottom half was even unlearned since earlier plots
show that this skill existed already at 100 units. LiSP’s skills also only move to the corner without
really paying attention to the resources. It is possible that the change in location simply generated
too much entropy/intrinsic reward in comparison to picking up an item, which would explain
why collecting items was neglected, but still does not explain why LSR only stayed in the upper
half of the grid.

It is unlikely that the reward structure interfered with learning skills. Even though the rewards
are very sparse in comparison with the volcano environment the rewards only play a minor role
for the development of skills. LiSP completely ignores rewards during training and for LSR the
rewards only play a minor role.

A potentially critical issue with the intrinsic rewards lies in the nature of the 2D Minecraft
environment: The intrinsic reward expects that the resulting state changes from performing a
certain skill can be detected anytime the skill was executed. This is, however, not the case in 2D
Minecraft: Take the skill of moving to the stone location as an example. A piece of stone can only
be acquired when the inventory contains a wooden pickaxe. Otherwise nothing happens when
the stone location is reached. Therefore the result of successfully moving to the stone location may
only be detected if the inventory contained a wooden pickaxe before the skill was performed.
With the current formulation for intrinsic rewards, such conditional skills cannot properly be
developed.

5.1.2 LiSP
LiSP showed the most stable performance in comparison with the other algorithms over all ex-
periments together. For example, Figure 4.2a is the only one of the three graphs in Figure 4.2 that
does not go down to -5000 reward as a lowest point. On the other hand, it takes a very long time
to train in comparison with the other algorithms (see Table 4.1). In most situations that additional
training time is probably not worth it.

Additionally, LiSP was not even remotely able to reproduce the 2D Minecraft performance
indicated in Lu et al. (2021), even though the parameters were as close to the paper’s codebase
and the paper’s appendix as possible. Given that LiSP fails to convince even under those ideal
circumstances it is hard to defend LiSP as a solid choice for real-world applications, even though
the reasoning behind the code is promising.

5.1 Volcano 27

Another major drawback of LiSP is the very large number of hyperparameters. The full ex-
periment configurations contain roughly 65 hyperparameters to configure for LiSP, whereas SAC
experiments only takes seven of them. Maybe it would be possible to hide some of them in pref-
erence of unchangeable defaults like LSR does it, but that would require a lot of work to figure
out what values perform well over many different problems.

Besides the many hyperparameters, the LiSP codebase also contains lots of small optimiza-
tions that seem vital to the algorithm. For example, the environment model does not predict
the next state, but the difference between the current and next state. Given the complex im-
plementation and large number of hyperparameters, it is likely that the hyperparameters are
also dependent on such optimizations and therefore even more brittle. According to Figure 4.1,
simply changing the frequency of resets already has a strong impact on the stability of LiSP. A
completely separate task environment could make the effect even stronger, so it is unlikely that
generally near-optimal hyperparameters can be found.

5.1.3 LSR
The most surprising characteristic of LSR in the experiments is its huge variability in the evalu-
ation results. Even though the evaluation of every training unit is averaged over five trials and
the other algorithms are evaluated only in one trial, LSR’s performance graphs still are by far the
most unstable ones. Even the smoothened graphs show an impressive volatility.

This unexplained volatility is a big concern for real-world application of LSR. If just one unit
of training can have such a massive impact, any application that needs to be somewhat stable can
hardly be justified from a safety perspective.

Another concern for real-world application of LSR is the implementation: The current im-
plementation for the experiments is not one easily configurable module like LiSP but is instead
stitched together from DIAYN and SAC in every experiment separately, and lacks obvious points
for configuration for rather critical parameters like λ in Jforward. Even such minor configura-
tions require relatively deep understanding of the underlying code and risk breaking a lot of the
implementation.

The reaction of LSR to the modifications is almost opposite to the reactions of the other algo-
rithms. Where SAC and LiSP were able to learn more, LSR mostly did worse and where SAC and
LiSP showed no improvement, LSR improved. Because of that, for applications where SAC and
LiSP do not perform well it is worth trying how LSR does. The difference most likely comes from
the difference in exploration strategies and skill choice since both LiSP and LSR use SAC under
the hood.

5.1.4 SAC
While it was not a goal of this thesis to examine the performance of SAC, it was surprising how
well SAC compares against LiSP and LSR. SAC is clearly able to hold its ground against the
more complex algorithms and it is obvious that SAC is a good choice for a general baseline in
reinforcement learning problems.

When taking training time into account (see Table 4.1), SAC definitely performed best. In
addition to the solid performance it is also the easiest to configure and available in all codebases
that are concerned with RL.

5.1.5 Environment Shaping and Dynamism
Environment shaping turned out to perform not very well in the experiments. Maybe this is
because the environment shaping experiments were done in 2D Minecraft and the algorithms

28 Chapter 5. Discussion

struggled in the entire experimental setup, but it is also possible that the environment shaping
simply was not very useful. Multiple experiments with the speed of environment shaping show
that the issue with the experiments is not in how quickly the shaping happened.

As already explained above, not all randomness is equally useful. The noise added to the
movement commands was not useful, but the slight changes to the problem layout made a major
difference in performance. This can be explained with a central piece of theory from Co-Reyes
et al. (2020): the difference between the current policy and the optimal policy. The noise added to
the movement commands has no substantial impact on the optimal policy. All it does is forcing
a small bit of exploration. The shifting environment, on the other hand, modifies the optimal
policy by a small, but still significant amount. This means that the policy has to learn to solve
the problem in general, but also needs to take the small variations into account to adjust to the
correct version that is currently active, therefore becoming more responsive to what is important
(analogous to data augmentation in computer vision).

From that, we can draw some conclusions on what kind of environment dynamism improves
the results:

• Adding noise to the output of the policy leads only to very minor additional exploration.

• To improve accidental exploration, having a small percentage to take a completely random
action is likely more useful to explore the environment. For examples of that, see the exper-
iments in Co-Reyes et al. (2020).

• The most useful dynamism leaves the task mostly the same, but makes some small adjust-
ments to the problem so that the policy needs to respond to them.

• The dynamic elements do not need to be very sophisticated to be useful. volcano-shifting
consists of a handful of tiny, hard-coded shifts that are cycled through and still produces
substantial improvements.

Chapter 6

Future Work

Overall, the experiments show that current RL algorithms struggle with the reset-free setting,
which is an important factor for real-world applications. Especially the exploration strategies for
environments with little feedback (in terms of both rewards and state change) seem to be a place
where substantial improvements could be made. In their current version SAC and LiSP easily get
stuck in corners since they have no mechanism like LSR’s internal randomness to substantially
change behaviours occasionally.

The current entropy-based approach to exploration was clearly shown to be insufficient for
certain problems. Both LiSP and LSR were not capable of correctly balancing the entropy awarded
from rare changes in inventory content against the more frequent changes in position. It would
certainly be possible to adjust how entropy is calculated to encourage certain kinds of exploration,
but that would already be very close to reward shaping, which is what unsupervised approaches
try to avoid entirely. A compromise could be the ability to mark certain fields in the state as
important so that the algorithm can focus primarily on manipulating those.

Another extension the current skill-based algorithms require to become more proficient at
general-purpose problem solving is the ability to develop skills that only are executed under
certain conditions. In their current state, the intrinsic rewards do not reward the learning of skills
that have certain preconditions for them to be impactful.

Lu et al. (2021) claim that using the skill-practice distribution ψ to determine the skill to be
performed improves performance of LiSP compared to a random choice. Eysenbach et al. (2018),
on the other hand, say that they choose the skill to be performed in DIAYN (which is a part of
LSR) randomly because using a different mechanism regularly leads to only very few skills being
learned and the others are completely ignored. While the authors do not speak about exactly the
same issue (In LiSP it is about which skill has the largest learning potential whereas in LSR it is
about which skill has the best performance), resolving the differing positions about random or
non-random choice of skills during training could offer substantial improvements to some skill-
based approaches.

As it is, environment shaping and environment dynamism look like very promising and rel-
atively cheap improvements to training performance, but the process is still very informal. The
list in Section 5.1.5 is a first step towards developing reliable patterns for environment manipu-
lation. Developing a standard set of techniques for environment manipulation could have a very
positive impact for real-world application of RL algorithms.

Chapter 7

Conclusion

Two reinforcement learning algorithms for the reset-free setting were looked at in detail: Lifelong
Skill Planning (LiSP) and Learning Skillful Resets (LSR). LiSP is a skill-based algorithm which
uses an environment model to decide on the skill that will produce the most reward. LSR per-
forms a reset game in which two policies challenge each other to increasingly more difficult chal-
lenges in order to learn various useful behaviours.

LiSP and LSR were then evaluated on different scenarios in 2D navigational tasks where they
competed against Soft Actor-Critic (SAC). While SAC clearly won in performance achieved per
training time, LiSP showed much better worst-case performance, which may be useful in real-
world scenarios where certain actions should be avoided. That improved worst-case performance
comes at the cost of substantially longer training time, however. LSR exhibited substantially
different reactions to the environments than SAC and LiSP did and therefore should be considered
as an alternative for tasks where SAC or LiSP do not perform well.

Experiments conducted with different environment behaviours indicate what kind of modi-
fications to the environment may be beneficial for training. Simply adding noise to the agents’
outputs was not very beneficial for training. Instead, it is more useful to have a small chance
for a random action. The most worthwhile modification in the experiments performed was to
move the environment around such that the task stayed mostly the same, but responding to the
modification is critical for success.

Chapter 8

Appendix

34 Chapter 8. Appendix

35

List of Figures
3.1 Environment Layouts . 14

4.1 Volcano Baseline Results . 20
4.2 Volcano Modification Results . 21
4.3 Minecraft Modification Results . 22
4.4 Volcano Correction Results . 23

36 Chapter 8. Appendix

List of Tables
4.1 Comparison of what one training unit means for the different algorithms. Steps

per training unit does not contain steps made for evaluation. A training step refers
to computing losses on one batch of training data and applying an update step to
the weights. Computation effort is measured on one GPU. 19

Bibliography

Briggs, J., Peat, F. D., and Briggs, J. (2001). Die Entdeckung des Chaos: Eine Reise durch die Chaos-
Theorie. Number 33047 in dtv. Dt. Taschenbuch-Verl, München, seventh edition.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). OpenAI Gym. arXiv:1606.01540 [cs].

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg, S., and Amodei, D. (2017). Deep reinforce-
ment learning from human preferences. arXiv:1706.03741 [cs, stat].

Co-Reyes, J. D., Sanjeev, S., Berseth, G., Gupta, A., and Levine, S. (2020). Ecological Reinforcement
Learning. arXiv:2006.12478 [cs, stat].

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018). Diversity is All You Need: Learning
Skills without a Reward Function. arXiv:1802.06070 [cs].

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv:1801.01290 [cs, stat].

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H.,
Gupta, A., Abbeel, P., and Levine, S. (2019). Soft Actor-Critic Algorithms and Applications.
arXiv:1812.05905 [cs, stat].

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. (2021). Reset-Free Lifelong Learning with Skill-
Space Planning. arXiv:2012.03548 [cs].

Nagabandi, A., Konolige, K., Levine, S., and Kumar, V. (2019). Deep Dynamics Models for Learn-
ing Dexterous Manipulation. page 12.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy Opti-
mization Algorithms. arXiv:1707.06347 [cs].

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K. (2020). Dynamics-Aware Unsuper-
vised Discovery of Skills. arXiv:1907.01657 [cs, stat].

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam, A., and Fergus, R. (2018). Intrinsic
Motivation and Automatic Curricula via Asymmetric Self-Play. arXiv:1703.05407 [cs].

Williams, G., Aldrich, A., and Theodorou, E. (2015). Model Predictive Path Integral Control using
Covariance Variable Importance Sampling. arXiv:1509.01149 [cs].

Xu, K., Verma, S., Finn, C., and Levine, S. (2020). Continual Learning of Control Primitives: Skill
Discovery via Reset-Games. arXiv:2011.05286 [cs].

