
Design and Implementation of an
Online Marketing Prediction System

Severin Wullschleger
Zürich, Switzerland

Student ID: 13-715-081

Supervisor: Eder J. Scheid, Dr. Thomas Bocek
Date of Submission: September 27, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r



Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/



Abstract

In online marketing, everything is about the Customer Acquisition Costs (CAC), which
indicate how much money has to be spent to acquire a new customer [13]. Especially in
the software industry, CAC are high and increasing [2][7]. Therefore, solutions are required
to reduce the CAC and keep them low as quickly as possible after a product launch.

In this thesis, it was researched what data can be exported from online marketing ad
platforms (e.g., Google Ads) and how it can be connected to the data collected by the
promoted mobile application. With this knowledge, the goal was to find out whether and
to what extent analyses and predictions regarding the performance of future online mobile
app campaigns can be made by using the aggregated data and calculated Key Performance
Indicators (KPI) based on the connected data from the different sources.

With the implementation of a prototype, the system operating costs were evaluated and
several challenges encountered in implementing such a system were identified. The main
challenge is that the export of data from mobile app campaigns is restricted in several
ways, and therefore the data volume is too low to train the machine learning models in
most cases. The designed prediction system component is affordable in terms of operation
costs and therefore worth a try if enough data is available.

Future work could test the system on data from campaigns that promote web applications,
as the data extraction capabilities are better for non-app campaigns and the low data
volume might be less of an issue.
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Im Online-Marketing dreht sich alles um die Kundenakquisitionskosten (Customer Acqui-
sition Costs, CAC), die angeben, wie viel Geld ausgegeben werden muss, um einen neuen
Kunden zu akquirieren [13]. Besonders in der Softwarebranche sind die CAC hoch und
steigend [2][7]. Daher sind Lösungen erforderlich, um die CAC nach einer Produktlancie-
rung so schnell wie möglich zu reduzieren und danach weiterhin niedrig zu halten.

In dieser Arbeit wurde untersucht, welche Daten aus Online-Marketing-Anzeigeplattformen
(z.B. Google Ads) exportiert und wie diese mit den von der beworbenen Mobile-Applikation
gesammelten Daten verbunden werden können. Mit diesem Wissen war das Ziel herauszu-
finden, ob und in welchem Umfang Analysen und Vorhersagen bezüglich der Performance
zukünftiger Online-Mobile-App-Kampagnen anhand der aggregierten Daten und berech-
neten Key Performance Indicators (KPI) auf der Grundlage der verknüpften Daten aus
den verschiedenen Quellen möglich sind.

Mit der Implementierung eines Prototyps wurden die Betriebskosten des Systems evaluiert
und mehrere Herausforderungen, die sich bei der Implementierung eines solchen Systems
ergeben, identifiziert. Die grösste Herausforderung besteht darin, dass der Export von
Daten aus Mobile-App-Kampagnen in mehrfacher Hinsicht eingeschränkt ist, sodass die
Datenmenge in den meisten Fällen zu gering ist, um die Machine Learning-Modelle zu
trainieren. Die entworfene Prediction-Systemkomponente ist in Bezug auf die Betriebs-
kosten erschwinglich und daher einen Versuch wert, wenn genügend Daten vorhanden
sind.

Zukünftige Arbeiten könnten das System mit Daten von Kampagnen für Webanwendun-
gen testen, da die Möglichkeiten der Datenextraktion für Nicht-App-Kampagnen besser
sind und das geringe Datenvolumen weniger ein Problem darstellen könnte.
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Chapter 1

Introduction

In online marketing, everything revolves around the so-called Customer Acquisition Costs
(CAC). The CAC indicates how much money has to be spent to acquire a new cus-
tomer [13]. It should be noted that a customer is not considered to have been acquired
when they registered on a platform, but only when they also reached or transacted the
defined goal of a platform. In this sense, it is irrelevant whether this was achieved by
concluding a subscription or ordering a product or service. Furthermore, in almost every
business, a customer is expected to achieve the platform goal more than once, e.g., by
repeatedly ordering a service or purchasing a monthly or yearly subscription.

With increasing digitization, fully digital companies are becoming more complex in terms
of both technology and content. As a result, the processes to successfully on-board a
customer become more challenging and lengthy for both the system and the customer [9].
Examples include Finance Tech (FinTech) applications that require legally binding user
identification to enable the user to open a bank account or portfolio [19]. Longer and
more complex on-boarding processes increase the likelihood that a potential customer
will cancel the on-boarding process and not become a customer. This, in turn, increases
CAC and the desire for advertising systems that make so-called re-engagement possible.

In the meantime, there are numerous communication channels and platforms that deal
with the placement of online advertising and the tracking of its results. Platforms that ac-
company the user in the on-boarding process and assist with emails and push notifications
are also widespread. Examples of such platforms are Facebook Ads [15], Google Ads [51],
Display & Video 360 (DV360) [44], Adjust.com [85], Customer.io [11] or Maatoo.io [87].
For mobile applications, there is also the possibility of placing ads in the App Store [3] or
Google Play Store [31]. Besides the fully digital communication channels, there are still
traditional marketing channels, such as radio and TV marketing or billboard advertising.

However, these platforms and their analytics are limited to the data they can collect them-
selves and few are able to handle internal application data of the advertised platform. In
addition, each advertising platform only evaluates the performance of the advertisements
placed with it due to lack of inter-communication between platforms and their intrinsic
competition. This does not benefit the user who contracted the service, as it does not have
a unified view of the performance of all their campaigns. Thus, a platform that evaluates

1



2 CHAPTER 1. INTRODUCTION

the performance across all advertisement networks, tracks the entire process from the first
impression to the defined end-target, and enables analysis of user- and platform-specific
data is required to address such issues. Moreover, predictions of how a planned campaign
will perform or suggestions to the user of which network campaigns should be started on
are not possible with existing platforms. Thus, the research on the design of a platform
that combines metrics from different platforms to provide an unified view of their perfor-
mances with the combination of Machine Learning (ML) and Artificial Intelligence (AI)
to provide such predictions is an interesting research topic.

1.1 Description of Work

The main focus of this thesis is the research of a solution that connects application-internal
data (e.g., a data warehouse) with cloud-based campaigns and advertising platforms to
provide predictions and insights concerning their performance on customer acquisition. In
this sense, it contains a research aspect, with the survey of available cloud-based campaign
and advertising platforms, with the listing of metrics that can be collected from them and
the selection of relevant metrics. In addition, it contains the research on ML and AI
algorithms that can be applied to predict the campaign effectiveness towards acquiring
customers. Besides the theoretical research aspect, the work includes a practical part
with the prototypical design and implementation of such a solution, and its evaluation to
assess feasibility and prediction accuracy.

To address the research aspect of this thesis, the literature regarding online advertising
platforms, the economics of CAC, and ML and AI techniques were studied. Further re-
search concerning related work on these topics and knowledge of the technical aspects were
acquired. Questions such as a how to retrieve the metrics provided by the platforms, and
which are the available ML libraries and frameworks to be integrated in the solution, were
tackled. An overview of existing solutions that address the thesis topic was elaborated.

The practical part of this work includes the design and implementation of a solution
that maps the entire process from a potential customer’s first point of contact, through
registration and on-boarding on the target platform, to app usage while collecting data
from the process. The stored data will enable the solution to perform Business Intel-
ligence (BI) and analytics, based on ML on the combination of application data linked
to the campaigns data (i.e., collected metrics). The designed prediction system should
allow users to enter planned campaigns as parameters (e.g., network, budget, and target
groups) and should calculate predictions on how the campaign will perform (e.g., number
of registrations, number of final target actions). Further, the solution should allow the
inverse path, providing suggestions based on desired outcomes of a campaign (e.g., target
groups, number of registrations, number of end target actions) as to where and to what
extent campaigns should be placed. The ML and AI models are expected to continue
to learn as the data increases. As there exist several advertising platforms, the solution
should be modular so that campaign and advertising tracking software as well as the data
model of the application(s) can be changed with little effort.
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The final stage of this thesis covers a comparative evaluation and discussion by looking
at the ML results, the cost of such a system and the challenges which need to be tackled
as well as drawing a conclusion and propose some future work.

1.2 Overall Goal and Research Questions

The overall goal of this thesis is to do the required research and to acquire the knowledge
to develop a design of an online marketing prediction system for mobile app campaigns
and to implement a prototype of this system. This prototype should be evaluated to
answer the following Research Questions (RQ):

RQ1 To what extent can advertising campaign results of mobile application campaigns,
which go beyond the normal advertising platform data horizon, be predicted when
the advertising platform data is linked to in-app data?

RQ2 To what extent are the predicted result useful and meaningful, and if not, what are
the prerequisites and requirements for such a system to become useful in real-life?

1.3 Thesis Outline

The thesis is structured as follows: Chapter 2 provides background information and out-
lines related work, describing popular cloud-based advertisement platforms and identifying
the metrics and fields that can be retrieved from these platforms. Chapter 2 compares
similar platforms and gives a brief introduction about relevant ML algorithms for the
predictions is given. Chapter 3 describes the design of the whole system. First, an archi-
tectural overview is provided before the design of each component is discussed in detail.
Chapter 4 details the implementation of the system prototype. Again an architectural
overview introduces the chapter before each component of the prototype is described
and explained in detail. The evaluation and discussion of the prototype can be found in
Chapter 5, where the ML results, the results of a performance and cost analysis and the
challenges of such a system are outlined. Finally, Chapter 6 concludes the thesis and lists
future work.
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Chapter 2

Background and Related Work

This chapter starts with introducing background information about customer acquisition
costs. It then discusses campaign platforms and metrics available in such platforms. It
continues with a description and comparison of similar platforms and a brief introduction
on ML algorithms that can be used for predictions. Finally, related work to this thesis is
addressed.

2.1 Theoretical Background

2.1.1 Customer Acquisition Costs (CAC)

In online marketing and sales, the CAC indicates how much money must be spent to
acquire a new customer. The CAC is calculated by dividing the total money spend on
sales and marketing by the amount of customers [13]. Especially for self-service-like online
platforms, where potential customers do not have contact to an employee of the company,
and where the user on-boarding is a multiple step process (e.g., opening a bank account
via a mobile app), registered users are likely to cancel or stop the on-boarding process in
the middle of it. These users are usually not considered customers since they are not fully
on-boarded and they do not use the app or have not ordered the product. Also, more
money needs to be spent to bring some of them back to the platform and turn them into
paying customers.

The height of the CAC depends to a large extent on the industry of the application [2], the
application type and of course the product itself, but also on seasonality and other time-
related components, which makes it a dynamic metric. Compared to other industries, the
software industry faces high [2] and significantly increasing CAC [7].

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Cloud-based Advertisement Platforms

This section presents the documentation on the research on available cloud-based adver-
tisement platforms and how the data can be retrieved. The platforms Google Ads [51],
Facebook Ads [15], Display & Video 360 [44] and Apple Ads Search are described. The
research was conducted on the whole online advertisement ecosystem. The most popular
and useful platforms for mobile app campaigning are described below.

The research of the available advertisement platforms and retrieval methods showed that
it is very much focused on the two big players Google and Facebook. Of course, there are
other advertising platform players out there such as Microsoft Ads [71], Twitter Ads [86],
LinkedIn Ads [68] and Yelp Ads [89]. For mobile app advertisement there are also solutions
such as AdMob [55] or AdColony [1] which allow the advertisers to place the ad in mobile
apps. For the sake of the scope of this thesis, it was decided to limit the further research
on the two big players Google and Facebook.

2.2.1 Google Ads

Google Ads (formerly Google AdWords and Google AdWords Express) is a solution that
allows companies to advertise their solutions, services and products online. Advertise-
ments are placed in different Google services (e.g., Google Search, YouTube [65], Google
Play Store where Android apps are downloaded [31]) or on private websites whose own-
ers receive a percentage of the revenue for displaying such advertisements. The simplest
Google Ads version is self-service based and everything can be done without a lot of
knowledge. Users can adjust budget, targets and goals as well as start or stop a campaign
within the platform [46].

Google Ads differentiates between three campaign categories [46]:

• Search campaigns that are displayed in Google search results;

• Display campaigns, which can be seen on websites and in apps; and

• Video campaigns, which are usually 6 to 15 seconds long and are embedded before
or in YouTube videos.

Google Ads runs the following payment models [46]:

• Cost Per Click (CPC) or Pay Per Click (PPC): The advertiser pays only if the ad
was clicked.

• Cost Per Impression (CPI): It is payed based on how many impressions (when the
ad is shown) the ad has.

• Cost Per Engagement (CPE): Only when a user engages with the ad and completes
the engagement, then the advertiser needs to pay. For example, the advertiser only
pays for a display video ad if the user watched it until the end.
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Data Retrieval Methods

Google Ads data can be accessed in various ways. In this section the most common
methods are described.

• Google Ads API Reports : Google Ads provides a powerful Application Programming
Interface (API) which can be used to access the Google Ads Platform programmat-
ically [62]. It is possible to pull numerous reports via the reports section of this
API. Not only read operations can be done with the API, also the campaigns and
ads can be adjusted, stopped or restarted. Google provides different client libraries
to access the API and it is not encouraged (only for developing purposes) to use
the native HTTP-REST interface [36]. Client libraries are available in Java, .NET,
PHP, Python, Ruby and Perl. The data can only be accessed with an access token,
which must be requested from Google.

• AdWords API [61]: As already mentioned, Google Ads was known before as Google
AdWords. The AdWords API is still functioning but will sunset on April 27, 2022.
For the sake of completeness and because one can still find a lot of references to the
AdWords API, it is listed here. The functionality of the AdWords API is included in
the Google Ads API, therefore it is recommended to use and migrate to the Google
Ads API.

• The Big Query Data Transfer Service [52] provides functionality to transfer Google
Ads data to a Big Query data set. Big Query [33] is the database, data warehouse
and big data tool of Google Cloud [37]. With Big Query Data Transfer it is possible
to transfer all Google Ads data to a data set at once. The transfer can also be
scheduled and run using the Google Cloud Console, the Google Cloud command
line tool, the REST interface or the Java client library. After the data transfer, the
data can be accessed querying the tables and views with normal Structured Query
Language (SQL) statements and it can also be exported.

• Google Ads Scripts [50] is a browser-based IDE that allows users to programmatically
access Google Ads data by using JavaScript. Pulling or accessing reports as well as
adjust ad and campaign parameters is possible.

• The Google Ads User Interface (UI) Console allows users to manually export the
displayed data to a CSV file (or various other file formats).

• When using the Google Analytics (GA) [28] platform, account managers can decide
to link the Google Ads account to their Google Analytics account. By doing so,
GA automatically connects some of the campaign data from Google Ads with the
click data from GA. The connected data is then accessible through the GA UI, can
be manually downloaded to a CSV file (or various other file formats) or, if GA is
connected to Big Query too, it is automatically stored in a Big Query data set where
it can be accessed, queried and exported.

• Google Data Studio is a BI tool from Google. It allows the user to connect to
several different data resources [42]. While data imports from Google products
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are supported from scratch, other data can be imported too, by using third-party
platform connectors. Data Studio is focused on visualization and BI and not on
data extraction and processing.

2.2.2 Facebook Ads

Facebook Ads is the advertisement platform of Facebook. It is part of the Facebook
for Business section. Like Google, Facebook owns more than one platform to place the
ads on. When using Facebook Ads, Facebook places the ads on the Facebook platform,
on Instagram and in the Facebook Messenger. The Facebook Ads platform is also self-
serviced and can be used with relatively few knowledge. All campaigns can be edited and
stopped whenever the user wants [15].

Facebook offers the different ad placement variations listed below [18].

• Feed-Ads : The ad is placed in the Facebook News feed, Instagram feed, Facebook
Marketplace, Facebook Video feed, in the Instagram Explore section and in the
Facebook Messenger inbox.

• Stories-Ads: The ad is placed in Facebook, Instagram and Messenger Stories. Stories
are the posts, which can only be seen for 24 hours.

• In-Stream Ads : The ad is shown in Facebook video streams, Instagram TV videos
and in Instagram Reels.

• Search Ads: The ad can be found in the Facebook Search results.

• Messaging Ads : It is possible to sponsor messages that will appear in the Facebook
Messenger for people the advertiser is already in contact with.

• In-Articles : The ad appears in Instant Articles in the Facebook Mobile App.

• App-Ads : The ad appears in third-party apps either in banners or as so called
Rewarded Videos (if the ad is watched, the user gets a reward).

Data Retrieval Methods

For accessing the data in Facebook Ads the best solution is to use the official Facebook
for Business tools.

The official user interface for accessing and managing the Facebook Ads is the Facebook
Ads Manager [14]. It provides all functionality to manage the campaigns and ads. To
see detailed statistics and reports one has to use the Facebook Ads Report tool. There,
reports can be generated, columns can be added and removed and reports can be manually
exported as an Excel or CSV file or as a PNG image.

Besides the user interface, Facebook provides the Marketing API, which offers various
endpoints to manage the Facebook campaigns. The reporting part of this API is called
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Ads Insights [17]. The API uses the Graph API, which is the way to read and write from
and to the Facebook social graph [16]. The Graph API from Facebook can also be called
directly instead of going through the Ads Insights API.

In addition to the official solutions, there is also numerous campaign and ad management
software available. Some are pricey and powerful and some cheaper or for free but with
less features. The data from Facebook can also be imported into Google Data Studio. A
third-party connector needs to be used, but then it is possible to do that in an automated
way.

2.2.3 Display & Video 360

Display & Video 360 belongs to the Google Marketing Platform. The Google Marketing
Platform has different products at hand for companies of different sizes. For small com-
panies they provide Google Analytics, Google Tag Manager, Google Optimize, Google
Surveys and Google Ads [48]. For bigger companies they offer Google Analytics 360,
Google Data Studio, Google Optimize 360, Google Search Ads 360, Google Surveys 360,
Google Tag Manager 360, the Google Campaign Manager 360 and, the core of it, Display
& Video 360 [45].

Similar as in Google Ads, in DV360 the advertiser can set up ad campaigns for the Google
Search, for YouTube, for the Google Play Store or for normal website where the ad can
be seen in banners around or between the content. Compared to Google Ads, DV360 is
less automated since there is more variation of the provided ad formats. Whereas Google
Ads includes Image, Expanded Text and Responsive Ads with a lot of limitations, DV360
gives the advertiser more room for creativity. DV360 is also more branding focused than
Google Ads [20].

A DV360 API exists, but it is only meant to manage campaigns but not reading report
data [49]. For extracting reports either a user interface can be used, which only allows for
manually exporting into CSV-files or automatically sending it to a Gmail address. For
exporting reports from the 360 ecosystem in a programmatic way, a DV360 Service called
Data Transfer v2.0 can be used. It transfers the data to CSV files and saves it in the
Google Cloud Storage [43].

Another solution is also Google Data Studio. Without much effort, DV360 data imports
can be scheduled to run every day, for example. As said, data processing or extraction
from Data Studio is not possible in an automated way.

2.2.4 Apple Search Ads

Apple Search Ads provides the possibility to promote iOS apps in the App Store from
Apple. There are two options to advertise the app, either by choosing the basic or the
advanced option. The advanced option the advertiser can place the ads to the search tab
of the app store or at the top of the search results. Customer groups can be specified
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autonomously and the campaigns and the strategy can be customized. Whereas with the
basic option, everything is automated, only the budget can be specified [4].

For the basic option, data retrieval works via dashboard with the possibility to manually
export report data. The advanced Search Ads option includes APIs to manage campaigns,
analyze the campaign and ad statistics as well as export these analyses [4].

2.3 Retrievable Metrics and Fields

This section gives an overview of what metrics and fields can be extracted from the Google
ecosystem products as well as from Facebook. The analytics in both ecosystem are setup
very similar and therefore the metrics are very well comparable. The above listed data
retrieval methods are used to extract these metrics and fields.

First, the possible metrics from Google Ads and Facebook Ads are listed and compared.
The second subsection describes Google Analytics and its role, and explains the metrics
and attributes that can be gathered from it.

2.3.1 Metrics Retrievable from Google Ads and Facebook Ads

The most important and most interesting metrics retrievable from both the Google and
Facebook ecosystem are listed and explained below. If there is a different term for the same
metric in Google than in Facebook or a metric is only available in one of the ecosystems,
the terms are marked with G or F.

Core performance metrics: These metrics are gathered by the platforms and are used for
the calculated performance metrics:

• Impressions: The number of times an ad was shown.

• Reach (F ): The number of people who saw the ad.

• Clicks: The number of times an ad was clicked on.

• Unique Clicks (F ): The number of different people who clicked on the ad.

• Outbound Clicks (F ): The number of clicks that led to properties not owned by
Facebook.

• Views (G): The number of times a video ad was viewed. As already mentioned, at
Google, a view is only counted if the video is watched until the end.

• Interactions (G) or Results (F ): The number of times a user interacted with the
ad. An interaction is a click for a text ad and a view for a video ad. Facebook
generalizes it as Results and it is possible to specify in the settings what action a
Result should be.
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• Cost (G) or Amount Spent (F ): The costs that caused an ad.

• Gross Impressions (F ): Number of impressions plus invalid impressions from non-
human traffic.

• Invalid Clicks (G): The number of clicks that are tagged as invalid by Google.

• Invalid Interactions (G): The number of interactions that are tagged as invalid by
Google.

• Impressions Absolute Top Percentage (G): The percentage of impressions coming
from ads displayed as the very top ad above the search result.

• Impressions Top Percentage (G): The percentage of impressions coming from ads
displayed above the search result.

Calculated performance metrics: The core performance metrics can be used to calculate
metrics. The following metrics are common but the list is obviously not complete:

• Frequency (F ): The average number of times an ad was seen from one person (Im-
pressions / Reach).

• Click-through Rate (CTR): The portion of impressions that led to clicks (Clicks /
Impressions).

• Unique CTR (F ): The percentage of people who saw the ad and clicked on it (Unique
Clicks / Reach).

• View Rate: The ratio between views and impressions (Views / Impressions).

• Interaction Rate (G) or Results rate (F ): The ratio between interactions and im-
pressions (Interactions / Impressions).

• Average Cost per Click (CPC): The average costs of one click (Cost / Clicks).

• Average Cost per Unique Click (F ): The average costs of a unique click (Cost /
Unique Clicks).

• Average Cost (G) or Cost per Result (F ): The average amount paid per interaction
(Cost / Interactions).

• Cost per 1000 People Reached (F ): The cost for reaching 1000 people.

• Cost per 1000 Impressions (CPM) (F ): The cost for reaching 1000 impressions.

• Invalid Click Rate (G): The ratio between invalid clicks and total amount of clicks.

• Invalid Interaction Rate (G): The ratio between invalid interactions and total amount
of interactions.

Core conversion metrics: These metrics are measured by the platforms and are used for
the calculated conversion metrics:
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• Conversions: The number of conversions that happened after interaction with the
ad. The actions resp. events that count as a conversion can be specified in the
settings. The bidding algorithms optimize towards this value.

• Conversion Value (G): If a value for the conversion is set, this is the sum of the
values. For example, if buying something in a web shop is set as conversion goal,
the purchase amount could be the conversion value.

• Installs: For mobile app campaigns and advertisements it is possible to count the
number of installs.

• In-App Actions: The number of in-app conversions that an ad led to. The conversion
actions can be defined in the settings. For iOS applications, conversions cannot be
tracked directly neither in Google nor in Facebook.

• Orders, Average cart size, Average order value, Cost of goods sold: These metrics
are in beta testing at Google. The goal is that shopping orders and their order
values can be tracked and optimized against these metrics.

Calculated conversion metrics: The core conversion metrics can be used together with
the performance metrics to calculate metrics such as the following ones:

• Cost per Conversion: The amount the advertiser paid for one conversion on average.

• Conversion Rate: How often an ad interaction led to a conversion on average. (Con-
versions / Interactions)

• Value per Conversion: How much a conversion is worth on average (Conversion
value / Conversions).

• Conversion Value per Cost: The conversion value is set in relation to the costs of
the ad. (Conversion value / Cost)

• Conversion Value per Click: The conversion value is set in relation to the number
of clicks of the ad. (Conversion value / Clicks)

• Cost per Install: Same as with other conversions, the cost of an app installation can
be calculated (Cost / Installs).

• Cost per In-App Action: Also the cost per in-app actions can be calculated (Cost /
In-app actions).

• The order metrics in Google beta testing can be used to calculate Gross Profit or
Revenue metrics.

• Average Target Cost per Action (CPA) (G): The target CPA is the cost per action
the bid system is optimizing for. It can be set in the campaign or ad configurations.
The average target CPA is calculated over the selected time period.
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• Average Target Cost per Install (CPI) (G): The target cost per install can be set
too, such that the bidding algorithm is optimizing for this value. The average target
CPI is calculated over the selected time period. Note that for Cost per Impression
and Cost per Install often the same abbreviations are used.

• Average Target Cost per In-App Action (G): The same can be done with the cost
per in-app action. The average target cost per in-app action is also calculated over
the selected time period.

The metrics can also be divided into different segments such as time, click type, conversion
action or category, device types, network type and so on. In addition to the metrics,
normal attribute fields are retrievable. For example, campaign attributes (e.g., ID, name,
campaign type, campaign start and end date) or ad attributes (e.g., ID, name, type,
format). For Google Ads, the following campaign parameter fields can be retrieved:

• Campaign Type

• Campaign Sub Type

• Campaign Name

• Campaign Status (e.g., Paused or Running)

• Start Date

• End Date

• Bidding Strategy Type (e.g., optimized towards installs or towards an action)

• Campaign Budget

• Target Cost per Install or Target Cost per Action

In addition to the normal campaign characteristics, campaign audience criterion can be
defined and retrieved as well. For example at Google Ads, it is possible to restrict the
campaign audience regarding Gender, Age, Income Cluster, Parental Status, Language,
Location the potential customer is based in and Location the potential customer is inter-
ested in.

Accessing and Exporting Raw Click Data

Besides figuring out which metrics can be extracted from the platform, it was also re-
searched if and how the raw data from the advertisement platforms can be accessed and
exported. The goal is to avoid reports with metrics like number of impressions, number
of clicks or number of views segmented in different ways, but to have a data record of a
single impression or a single click and to have all the meta data of it (e.g., which ad was
clicked and at what time).
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It turned out that the above mentioned metrics should always be retrieved in an aggre-
gated way. Every retrieval method is designed to export aggregated statistics on different
levels. The possibilities to export statistics about your campaign, ad groups or ads with
different segments or different attributes connected to it are very diverse. The data ana-
lyst has almost no limitations. For example, the Google Ads API (see the first bullet point
in Section 2.2.1) provides a list of reports which can be exported [62]. The list is divided
into Resources with metrics and Resources without metrics. It seems that almost every
database table can be read. For example, it is possibly to retrieve the click and impression
data segmented by gender or to export the amount of clicks of a specified campaign on a
specified day.

No possibility of exporting raw impression data was found. Probably due to data size
reasons, this is not available neither at Google nor at Facebook. There is only one report
available in the Google Ads API that kept alive the hope of having a single data record of
a click. Unfortunately, no such endpoint was found on the Facebook side. The Click View
report provides metrics aggregated at each click level, it is said in the documentation. For
data size reasons, it can only be queried with a filter of one day. Also, probably for the
same reason, the data can only be queried for the last 90 days [35].

Table 2.1 shows the specification of the Click View Report of the Google Ads API. One
can see that the metrics Clicks is the only metric which can be retrieved, and the metric
can be segmented with a few attributes. The meta data that can be gathered is seen in
the Resource field column. The ad_group_ad field is a so called resource name and it
references an ad group ad. The ad group ad meta data can be read from another report
(the Ad Group Ad Report [26]). By connecting the two reports, it is possible to figure
out which ad was clicked on. If the click belongs to a search channel ad, the keyword field
is filled with the referred keyword.

However, an important attribute in this report is the gclid. gclid stands for Google
Click ID and is the identifier of each click. Based on the research conducted, it was found
out that the gclid can also be found in the event logs of Google Analytics. With these
event logs, it is possible to send events and, more importantly, user properties from an
application (no matter if mobile or web application) to Google Analytics. The occurrence
of the Google Click ID in the GA events as well as in the Google Ads API Click View
Report builds the basis of the opportunity to connect application data with the Google
Ads campaign and click data. Google Analytics and its data retrieving opportunities are
outlined in Section 2.3.2 as well as applied in the Design chapter (Chapter 3).

The Google Ads reports are not only retrievable by the Google Ads API but also by the
Big Query Data Transfer Service that was mentioned as data retrieval method in Section
2.2.1 (third bullet point). The Big Query Data Transfer Service creates a table and a
view in a data set of Big Query for each exportable report. The reports that are exported
are still based on the AdWords API instead of the newer Google Ads API. Therefore, the
reports are slightly different. They are listed in the AdWords API documentation [61].
The Click View Report displayed in Table 2.1 is based on the former Click Performance
Report from the AdWords API. The two reports are very similar and the important
Google Click ID can be found also in the older one. In summary, this means that it is
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Table 2.1: Click View Report from the Google Ads API
Resource fields Segments Metrics
ad group ad ad network type clicks
area of interest.city click type
area of interest.country date
area of interest.metro device
area of interest.most specific month of year
area of interest.region slot
campaign location target
gclid
keyword
keyword info.match type
keyword info.text
location of presence.city
location of presence.country
location of presence.metro
location of presence.most specific
location of presence.region
page number
resource name
user list

possible to retrieve the click data (including the Google Click ID) not only by the Google
Ads API but also with the Big Query Data Transfer Service.

Retrievable Metrics and Fields for App Campaigns

What was not found out during the research because it is not documented anywhere,
but nevertheless belongs in this chapter even though it was not found out until deep
into the implementation phase, is the following: The mobile app campaigns of Google
Ads differ greatly from normal search and website ad campaigns when it comes to the
reporting, especially when it is about the click data being reported in the Click View or
Click Performance report. With mobile app campaigns it is not possible to use one of the
reports, it was replied by several Google Support employees (see Section 5.3).

Consequently, advertisers of mobile app campaigns are not able to extract single click
data records including the Google Click ID and therefore it is not possible to figure out
which app user clicked on which advertisement before installing and starting the app. In
addition to that (also something that was discovered during prototyping), the campaign
audience criterion that are retrievable for key word search campaigns differ from the ones
retrievable by mobile app campaigns. Although it is possible to restrict the mobile app
campaigns to that audience, the data cannot be gathered in a suitable way. For mobile app
campaigns, it is only possible to pull the location and the language criterion information.

The next section describes what still can be found out with the help of Google Analytics.
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2.3.2 Google Analytics and its Retrievable Attributes

Google Analytics (GA) is not an advertisement platform (and therefore not listed in
Section 2.2), but it is useful for tracking and retrieving data. Hence, introduced in this
section. Same as for the advertisement platforms, first a short GA introduction is given,
then data retrieving methods are described and lastly the retrievable data is presented.

GA is a powerful tool from Google to track and analyze the data and traffic of a company.
Company owners can analyze for website visitors, application events, how long visitors
stay on their website or platform, and which visitors return for a second app visit [28].

For websites and web applications, GA provides a so called global site tag (the gtag.js), a
JavaScript tagging framework that enables the sending of event data to the measurement
products [27]. Mobile apps are preferably using the Firebase Software Development Kits
(SDK) to measure user interactions [29][30]. Firebase is the app framework from Google
and one part of it is Google Analytics. Other parts are authentication, hosting, cloud
storage services, push-notification services or Crashalytics (which measures and logs app
crashes). Everything from Firebase is designed for Android and iOS mobile apps [47].

A third type of possible connections to the GA measurement products is the Measurement
Protocol, which allows basically every internet connected device to send event logs to GA
[54]. It was tried to log back-end events from the server directly to GA through the
Measurement Protocol. The tests were not successful, which proves that the message on
the documentation website that This is an alpha API is there for a reason.

GA gathers several data automatically while it is still possible to log customized events
from within the application. GA gathers enough data (e.g., device ID, IP address, appli-
cation version) from the Firebase SDK or the global site tag, to tell how many unique
users used the app, if it was a so called first open event or if the user was a recurring one.
The Firebase SDK or the global site tag allows to not only send logs from the app to GA,
it also includes the feature to send internal user properties to GA. By sending the internal
user ID to GA, it was later possible to associate and connect the data on the application
server with the one from GA.

Figure 2.1 shows GA’s browser-based application where data can be filtered and analyzed.
From there, it is possible to download visualization as images or report data in Excel or
CSV format as well as doing further reports in Google’s BI tool Google Data Studio. The
Figure shows the Acquisition page, which displays the number of new users and from
which network and campaigns these users came.

Besides using the UI, data is also accessible through an API. The API can be used with
different client libraries written in Java, Python, PHP and JavaScript [57]. In addition, as
mentioned earlier, GA can be connected with Google Big Query, resulting in an automatic
export of all event data from GA to a Big Query data set. The data is saved in a
partitioned table, meaning for every day a new table is created with the name in the
format events_YYYYMMDD [34].

Table 2.2 is from the GA help section and shows the columns which are exported to the
Big Query data set. The fields are divided into 11 categories: App, Device, Stream and
Platform, User, Campaign, Geo, Event, Ecommerce, Items, Web and Privacy info.
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Figure 2.1: Google Analytics’ User Interface

The category Device contains all device related data: For example, GA tracks which
operating system was used (device.operating_system). As it can be seen in the category
User, GA distributes a user_pseudo_id which is an identifier for the end user, and the
user_id can be read which is set via the setUserId interface. The category Geo contains
location specific data that is derived from the IP address of the user.

The category Event is the core of the data set and it is always filled: Every row of the data
set contains a date, a timestamp, an event name and usually some event parameters. The
event_name field contains first_open for example, when the user installed and opened
the app the first time, or it can contain customized events logged from the app (e.g.,
support window opened), when a user was looking around in the support section. The
event_params array-field in the Event category can contain various data about the event.
Usually, there are more than one event parameter per event log. For example, the Google
Click ID is also transferred in an event parameter with the event_params.key set to gclid
and the event_params.value.string_value set to the ID value.

The last category, which is very worth mentioning, is the Campaign category. If GA is
linked to the Google Ads account, the Campaign category contains information regard-
ing the origin of the traffic to the application. If a user clicks on an advertisement of a
Google Ads campaign (named Example Campaign) that directs the user to Apple’s App
Store where the app is downloaded and installed, then, when the user opens the app,
the Firebase SDK logs an event which contains the marketing campaign name (Exam-
ple Campaign) in traffic_source.name and the name of the network (Google Ads) in
traffic_source.source. As stated in Table 2.2, only the first traffic source information
is saved. If the user interacts with other networks or campaigns after that, the data in
these fields does not change [34].
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Origin Tracking with Urchin Tracking Module (UTM) Parameters

Google products are automatically tracked by GA. For activating the automatic tracking,
the advertiser only needs to activate the so called Auto-tagging in the Google Ads resp.
DV360 settings. Auto-tagging automatically extends the ad with an additional parameter,
namely the Google Click ID (GCLID) [32]. This allows GA to tell which ad the user
was coming from. With the GCLID, GA can link the event to an ad and therefore the
advertiser can find the campaign name in the traffic_source.name field.

For Facebook and other third-party advertisement platforms, on the other hand, UTM
parameters need to be set. UTM parameters are used to add campaign information or
references to destination URLs of the ad campaign. Google Analytics, other tracking
platforms or a self-made tracking system can use the URL query parameters to read the
information about the source of the traffic [40].

GA provides a Campaign URL Builder to implement the correct destination URLs with
correct UTM parameters [8]. There are five standardized UTM parameters that can be
added to the URL and are included by GA in the event log record [40]:

• utm_source: the advertiser sending traffic (e.g., google or facebook)

• utm_medium: the marketing medium (e.g., cpc, banner or newsletter)

• utm_campaign: the campaign name

• utm_term: identifies paid search keywords

• utm_content: can be used to distinguish different content in the same campaign or
ad. (e.g., two different newsletter links)

The use of UTM parameters to identify traffic source is only possible for ads that specify
a destination URL. If there are campaigns and ad types where no URL can be specified,
then obviously no UTM parameters can be set and therefore no traffic source can be
transferred. Mobile app campaigns are this kind of campaigns where no destination URL
can be set. For both Google Ads and Facebook Ads, instead of a destination URL, the
advertiser sets the iOS App bundle ID for an app published in Apple’s App Store or, in
case of an Android app published in the Google Play Store, the app’s package name. This
is the reason why for mobile app promotions, it is currently not possible to obtain click
event data associated to an end-user and associated to a Facebook Ads campaign at the
same time.

While for Google Ads and DV360 campaigns, GA automatically tracks the source, the
medium and the campaign name (see Section 2.3.2) and it is retrievable via the traf-

fic_source.name, the traffic_source.medium and the traffic_source.source fields,
it is, as with Facebook Ads, not possible to specify customized UTM parameters, because
there is no destination URL to specify. The inability to customize the destination URL
for app campaigns, combined with the fact that there is no report with raw click data
for mobile app campaigns (see Section 2.3.1), leads to the finding that for mobile app
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campaigns, the deepest level of information that can be linked to the end-user is that of
the campaign data (e.g., campaign name or campaign costs). Any deeper level, such as
which ad from the campaign was clicked, cannot be associated with the end-user. This
finding applies to Google Ads and DV360, while for Facebook Ads and other third-party
platform not even campaign data is linkable currently. Since the environments of these
advertisement platforms are very fast evolving, there is hope for the future, that customiz-
ing a destination URL will also become doable not only for website or web app campaigns
but also for mobile app campaigns.
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Table 2.2: Google Ads Export Data [34]

Field name Data type Description
App
app info RECORD A record of information on the app.
app info.id STRING The package name or bundle ID of the app.
app info.firebase app id STRING The Firebase App ID associated with the app
app info.install source STRING The store that installed the app.
app info.version STRING The app’s versionName (Android) or short bundle version.
Device
device RECORD A record of device information.
device.category STRING The device category (mobile, tablet, desktop).
device.mobile brand name STRING The device brand name.
device.mobile model name STRING The device model name.
device.mobile marketing name STRING The device marketing name.
device.mobile os hardware model STRING The device model information retrieved directly from the operating system.
device.operating system STRING The operating system of the device.
device.operating system version STRING The OS version.
device.vendor id STRING IDFV (present only if IDFA is not collected).
device.advertising id STRING Advertising ID/IDFA.
device.language STRING The OS language.
device.time zone offset seconds INTEGER The offset from GMT in seconds.
device.is limited ad tracking BOOLEAN The device’s Limit Ad Tracking setting. On iOS14+, returns false if the

IDFA is non-zero.
Stream and platform
stream id STRING The numeric ID of the stream.
platform STRING The platform on which the app was built.
User
user first touch timestamp INTEGER The time (in microseconds) at which the user first opened the app or visited

the site.
user id STRING The user ID set via the setUserId API.
user pseudo id STRING The pseudonymous id (e.g., app instance ID) for the user.
user properties RECORD A repeated record of user properties set with the setUserProperty API.
user properties.key STRING The name of the user property.
user properties.value RECORD A record for the user property value.
user properties.value.string value STRING The string value of the user property.
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Table 2.2: Google Ads Export Data [34]

Field name Data type Description
user properties.value.int value INTEGER The integer value of the user property.
user properties.value.double value FLOAT The double value of the user property.
user properties.value.float value FLOAT This field is currently unused.
user properties.value.set timestamp micros INTEGER The time (in microseconds) at which the user property was last set.
user ltv RECORD A record of Lifetime Value information about the user. This field is not

populated in intraday tables.
user ltv.revenue FLOAT The Lifetime Value (revenue) of the user. This field is not populated in

intraday tables.
user ltv.currency STRING The Lifetime Value (currency) of the user. This field is not populated in

intraday tables.
Campaign Note: traffic source attribution is based on cross-channel last click traf-

fic source values do not change if the user interacts with subsequent cam-
paigns after installation

traffic source RECORD Name of the traffic source that first acquired the user. This field is not
populated in intraday tables.

traffic source.name STRING Name of the marketing campaign that first acquired the user. This field is
not populated in intraday tables.

traffic source.medium STRING Name of the medium (paid search, organic search, email, etc.) that first
acquired the user. This field is not populated in intraday tables.

traffic source.source STRING Name of the network that first acquired the user. This field is not populated
in intraday tables.

Geo
geo RECORD A record of the user’s geographic information.
geo.continent STRING The continent from which events were reported, based on IP address.
geo.sub continent STRING The subcontinent from which events were reported, based on IP address.
geo.country STRING The country from which events were reported, based on IP address.
geo.region STRING The region from which events were reported, based on IP address.
geo.metro STRING The metro from which events were reported, based on IP address.
geo.city STRING The city from which events were reported, based on IP address.
Event
event date STRING The date on which the event was logged (YYYYMMDD format in the

registered timezone of your app).
event timestamp INTEGER The time (in microseconds, UTC) at which the event was logged on the

client.



22
C
H
A
P
T
E
R

2.
B
A
C
K
G
R
O
U
N
D

A
N
D

R
E
L
A
T
E
D

W
O
R
K

Table 2.2: Google Ads Export Data [34]

Field name Data type Description
event previous timestamp INTEGER The time (in microseconds, UTC) at which the event was previously logged

on the client.
event name STRING The name of the event.
event params RECORD A repeated record of the parameters associated with this event.
event params.key STRING The event parameter’s key.
event params.value RECORD A record of the event parameter’s value.
event params.value.string value STRING The string value of the event parameter.
event params.value.int value INTEGER The integer value of the event parameter.
event params.value.double value FLOAT The double value of the event parameter.
event params.value.float value FLOAT The float value of the event parameter. This field is currently unused.
event value in usd FLOAT The currency-converted value (in USD) of the event’s ”value” parameter.
event bundle sequence id INTEGER The sequential ID of the bundle in which these events were uploaded.
event server timestamp offset INTEGER Timestamp offset between collection time and upload time in micros.
Ecommerce
ecommerce RECORD A record of information about ecommerce.
ecommerce.total item quantity INTEGER Total number of items in this event, which is the sum of items.quantity.
ecommerce.purchase revenue in usd FLOAT Purchase revenue of this event, represented in USD with standard unit.

Populated for purchase event only.
ecommerce.purchase revenue FLOAT Purchase revenue of this event, represented in local currency with standard

unit. Populated for purchase event only.
ecommerce.refund value in usd FLOAT The amount of refund in this event, represented in USD with standard unit.

Populated for refund event only.
ecommerce.refund value FLOAT The amount of refund in this event, represented in local currency with

standard unit. Populated for refund event only.
ecommerce.shipping value in usd FLOAT The shipping cost in this event, represented in USD with standard unit.
ecommerce.shipping value FLOAT The shipping cost in this event, represented in local currency.
ecommerce.tax value in usd FLOAT The tax value in this event, represented in USD with standard unit.
ecommerce.tax value FLOAT The tax value in this event, represented in local currency with standard

unit.
ecommerce.transaction id STRING The transaction ID of the ecommerce transaction.
ecommerce.unique items INTEGER The number of unique items in this event, based on item id, item name,

and item brand.
Items
items RECORD A repeated record of items included in this event.
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Table 2.2: Google Ads Export Data [34]

Field name Data type Description
items.item id STRING The ID of the item.
items.item name STRING The name of the item.
items.item brand STRING The brand of the item.
items.item variant STRING The variant of the item.
items.item category STRING The category of the item.
items.item category2 STRING The sub category of the item.
items.item category3 STRING The sub category of the item.
items.item category4 STRING The sub category of the item.
items.item category5 STRING The sub category of the item.
items.price in usd FLOAT The price of the item, in USD with standard unit.
items.price FLOAT The price of the item in local currency.
items.quantity INTEGER The quantity of the item.
items.item revenue in usd FLOAT The revenue of this item, calculated as price in usd * quantity. It is popu-

lated for purchase events only, in USD with standard unit.
items.item revenue FLOAT The revenue of this item, calculated as price * quantity. It is populated for

purchase events only, in local currency with standard unit.
items.item refund in usd FLOAT The refund value of this item, calculated as price in usd * quantity. It is

populated for refund events only, in USD with standard unit.
items.item refund FLOAT The refund value of this item, calculated as price * quantity. It is populated

for refund events only, in local currency with standard unit.
items.coupon STRING Coupon code applied to this item.
items.affiliation STRING A product affiliation to designate a supplying company or brick and mortar

store location.
items.location id STRING The location associated with the item.
items.item list id STRING The ID of the list in which the item was presented to the user.
items.item list name STRING The name of the list in which the item was presented to the user.
Items.item list index STRING The position of the item in a list.
items.promotion id STRING The ID of a product promotion.
items.promotion name STRING The name of a product promotion.
items.creative name STRING The name of a creative used in a promotional spot.
items.creative slot STRING The name of a creative slot.
Web
web info RECORD A record of information for web data.
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Table 2.2: Google Ads Export Data [34]

Field name Data type Description
web info.hostname STRING The hostname associated with the logged event.
web info.browser STRING The browser in which the user viewed content.
web info.browser version STRING The version of the browser in which the user viewed content.
Privacy info
privacy info.ads storage STRING Whether ad targeting is enabled for a user. Possible values: Yes, No, Unset
privacy info.analytics storage STRING Whether Analytics storage is enabled for the user. Possible values: Yes,

No, Unset
privacy info.uses transient token STRING Whether a web user has denied Analytics storage and the developer has

enabled measurement without cookies based on transient tokens in server
data. Possible values: Yes, No, Unset
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2.4 Similar Platforms

Table 2.3 presents an overview and a comparison of platforms similar to the one designed
in this thesis.

There are numerous applications which focus on gathering all the information from social
media applications and ad platforms, as well as from analytics platforms (e.g., Google
Analytics) and, in addition to that, from Customer Relation Management (CRM) plat-
forms (e.g., SalesForce [79]). These platforms (e.g., Easy Insights [69], Singular [82],
Measured [70]) are business intelligence tools with good integration capabilities. Usually,
all the data is stored in the cloud and the platforms are focusing on data visualization
and beautiful reporting.

A second category of applications (e.g., Nexoya [78] or Datorama from SalesForce [12])
extend the features of the previous category by not only providing BI features but also
calculating predictions about growth numbers and other results. For example, Nexoya
predicts the growth of different key performance indicators (KPI), the number of followers
or the number of page likes. They also offer the calculation of growth potential based on
their predicted optimizations (e.g., change of budget allocation), anomaly and correlation
detection. The predictions are usually based on the aggregated data and KPIs and not on
raw click and user data since the data is not available at that granularity level on these
platforms.

Another similar platform worth mentioning is Adjust [85]. Adjust focuses on data col-
lection and measurement and can integrate various advertising platforms (e.g., Facebook,
TikTok, Google Ads) and can also measure newsletter performances, for example. It
makes use of its own Adjust SDK which needs to be integrated in the front-end of the
application. With this tracking framework, Adjust can measure and collect a whole dif-
ferent level of data granularity. As Google Analytics, Adjust collects raw events and click
data and makes it accessible to the platform user either by sending the data directly via
callback to a data warehouse or by providing an export feature. While the tracking and
collecting features are very strong, Adjust does not offer any prediction or optimization
functionality.

Last but not least, also Google Analytics needs to be mentioned in this section. Although
it has already been described as a tool to retrieve Google Ads or DV360 data, as well as
to retrieve raw app event and click data, it is also a similar platform to the one developed
in this thesis. GA is the leader in tracking, collecting and measuring usage data and also
provides BI functionalities to analyze, visualize and report the data. Like Adjust, GA
makes use of a tracking tool which needs to be integrated into the front-end code (global
site tag or Firebase SDK) to gain access to a detailed data level and therefore, GA is able
to store raw event data and make it accessible to the GA user. On the other hand, no
prediction or optimization features are offered.

The last column of the Table 2.3 includes the classification of this thesis’ design against
the discussed characteristics of the similar platforms mentioned in the preceding columns:
The design presented in this paper focuses on collecting raw click data and combining
it with user sensitive application data because this is the only way to make predictions
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related to user and target groups in combination with their traffic sources. Compared to
the other platforms, the focus is less on normalizing and visualizing the platform data but
more on using the linked data towards target group predictions. In addition, the problem
is tackled that application data does not necessarily want to be kept on external servers,
but should at least be hosted in a private cloud. This is because, as seen in the Data
storage row of table 2.3, the platforms mentioned all use cloud storage and are therefore
not considered by every customer (e.g., banks).
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Table 2.3: Similar Platforms Comparison

Easy Insights Nexoya Adjust Google Analytics Main thesis goal
Ad platform integrations Yes, e.g., Twitter,

Apple
Yes, e.g., Facebook,
Twitter, Mailchimp,
Linkedin

Yes, e.g., Facebook, Tik-
Tok, Newsletter, every
platform which uses ad
destination URLs

Yes, Google products
and every platform
which uses ad destina-
tion URLs

Mobile app capmpaign
platforms, especially
Google Ads, DV360
and Facebook

Analytics platform integra-
tions

Yes, e.g., Google
Analytics, Firebase,
Adjust

Yes, e.g., Google Ana-
lytics

No No No

CRM platform integrations Yes, e.g., SalesForce,
Zapier

Yes, e.g., SalesForce No No No

Data tracking and aggrega-
tion

Yes Yes Yes Yes Yes

Data normalization, stan-
dardization and visualiza-
tion

Yes Yes Yes Yes Yes (No priority)

Access to raw click and user
data

No No Yes, via instant callback
and as export

Yes, accessible directly
in Google BigQuery

Yes

Predictions based on aggre-
gated data

No Yes, predicts e.g.,
growth rate, number
of followers, number
page likes

No No No

Predictions based on raw
click and user data

No No No No Yes

Optimization No Yes, shows potential
and optimization pos-
sibilities (e.g., in bud-
get allocation)

No No No, only model im-
provement

Data storage Cloud Cloud Cloud Cloud On-premise in private
cloud or encrypted at
Google Cloud

Other features Interactive reports,
Beautiful visualiza-
tions

Anomaly detection,
Correlation detection

Audience Builder, Mo-
bile app install and unin-
stall tracking with its
own SDK, customized
events

Real-time report, Traf-
fic source detection

App user data only in
private cloud
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2.5 ML and AI Algorithms for Predictions

In this sections, ML algorithms for making predictions are outlined. Machine learning sys-
tems can be categorized in supervised, unsupervised, semi- supervised and reinforcement
learning. The following list quickly explains the main idea of each category. This section
is based on the book “Hands-on Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems” [21].

• In Supervised Learning, the algorithm is fed with labeled training data and optimizes
the model toward this label, so that a new data set without label can be entered and
the model returns with a predicted label. Supervised learning can be categorised
in classification problems, where the label is a class (categorical), and regression
problems, where the label is numerical. Some of the most important supervised
learning algorithms are k-Nearest Neighbors, Linear Regression, Logistic Regression,
Support Vector Machines (SVM), Decision Trees (DT) and Random Forests. Neural
networks can also be supervised.

• In Unsupervised Learning the algorithm input is data without labels. The algorithm
does not learn towards a specific item but can categorize or simplify data or can find
rules based on the input data. The most important unsupervised learning types are
clustering, dimensionality reduction and association rule learning.

• Semi-supervised Learning algorithms are usually combinations of the two above.
For example, some labeled data as input is used for doing predictions based on the
combination with a clustering algorithm.

• Reinforcement Learning works differently. Many robots implement it. The learning
system (called agent), observes the environment, performs an action and gets either
rewarded or penalized for good resp. bad actions. The algorithm learns over time
which strategy results in the most reward.

In this thesis, supervised learning algorithms are used, since the goal is to do campaign
outcome predictions (new label) based on the outcome of previous campaigns (labeled
input data). The outcome of a marketing campaign is measured by the number of addi-
tional users or by an amount which reflects the purchase amount, the investment amount
or something similar (see Section 3.3.2). Therefore, the used ML algorithms need to
be capable of solving regression problems. In the following subsections some of the ML
algorithms for regression problems are described.

2.5.1 Linear Regression

Linear Regression is one of the simplest algorithm in supervised machine learning [21].
Linear regression models are linear functions of the input features. Basically, the model
predicts a value based on a weighted sum of all the input features plus a so-called bias
term or intercept term [21]. Known from basic mathematics, adding a constant to a
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function does not change the shape of the function but only its position. Because the linear
regression algorithm calculates a sum of features, it can only deal with numerical features.
Categorical features need to be transformed into a binary feature for each category. This
process is called one-hot-encoding [21]. Another solution to transform categorical features
into numerical ones, is to give every category a number. However, this is suggested only
if the categories are ordinal. Otherwise, the ML algorithm interprets, for example, the
categories 1 and 2 as more similar than the categories 0 and 3.

2.5.2 Decision Trees

Decision Trees can perform classification as well as regression problems. DT are very
powerful and it is also possible to perform multi-output predictions [21]. They work by
splitting the input data set in two subsets. This is being done recursively until the defined
maximum depth of the tree (defined as a hyper-parameter) is reached. The splitting of
the data set is done by defining a condition with a feature and a threshold (e.g., campaign
duration > four month). The feature-threshold-pair that generates the most balanced
subsets is selected for the next decision [21].

The Random Forest algorithm is one of the most popular representatives of DT algorithms
and it is also an example for ensemble learning strategies. Ensemble Learning describes the
strategy of training many models instead of one. To obtain predictions, the input features
are passed to all trained models. The final prediction is then derived by aggregating the
predictions from all models [21]. The simplest examples for an ensemble learning algorithm
would be to have three individual models (no matter what kind of model as long as the
output format is the same), each predicting the asked value. The ensemble learning
algorithm then aggregates the three values (for regression) or decides for the majority of
predicted classes (classification). In many cases, the decision from the ensemble learning
algorithm is more accurate than the one from the best algorithm [21]. The Random
Forest algorithm uses the same training algorithm on randomly selected subsets of the
training set and trains multiple trees (e.g., 500 trees). During the splitting of the data
sets, Random Forest does not search for the very best feature among all features but for
the best feature in a randomly chosen subset of features. This improves the tree diversity
and results generally in a better model overall [21].

Decision Tree models such as the Random Forest algorithm can be boosted. Boosting
describes the technique of training the models sequentially and that each model is trying
to correct its previously trained predictor [21]. An example for a boosted DT model is
the Gradient Boosted Random Forest algorithm.

2.5.3 Deep Neural Network (DNN)

The definition of a deep neural network is an Artificial Neural Networks (ANN) with more
than one hidden layer [24]. A linear regression model, for example, has no hidden layer.
It has two layers, one is the input layer which includes the input features and the bias
term (see above), and the second is the single output layer which includes the label or the
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Figure 2.2: A simple ANN: The Multi-Layer Perceptron

prediction [21]. As mentioned, each input feature is weighted and the best weights are
searched for the given outputs. In DNNs, on the other hand, there are additional layers
that are neither the input nor the output layer. Each layer, besides the output layer,
contains a number of so called perceptrons (neurons) and a constant (the bias term)[24].
Each neuron is fully connected to each neuron of its previous and next layer and each
input of a neuron is weighted [24]. Figure 2.2 shows a simple ANN with one hidden
layer. This ANN is called Multi-Layer Perceptron (MLP). Such a network can be trained
by using the backpropagation training algorithm which functions as followed: For each
training instance, the backpropagation algorithm first makes a prediction (forward pass).
With the prediction the error is measured. Then, the algorithm runs through each layer
in the reverse direction to measure what contribution each connection makes to the error
(backpropagation). Finally, the connection weights are adjusted slightly to reduce the
error (gradient descent step) [24]. This can be repeated as often as it is specified, while
one of these repetitions is called an epoch.

Compared to the linear regression algorithm, deep neural networks can deal with nonlinear
dependencies while linear regression is limited to linearities [21]. This means, if changes
of the input features do not affect the output in a direct proportion, there might be a
better choice than a linear regression model.

2.6 Related Work

The following subsections present related work in the field of online marketing systems,
prediction systems and intelligent self-learning systems.

All three papers contain parts that are helpful and interesting as a foundation and/or
comparison to this thesis. It should be noted that the number of related approaches is
low due to novelty of the solution proposed in this master thesis.
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2.6.1 Build an Intelligent Online Marketing System: An Overview

Cui et al. (2019) [10] designed and built an intelligent online marketing system. They see
challenges when it comes to the enormous amount of data and clicks that can be collected.
Collecting the data is not the problem, but analyzing it. They also see difficulties because
the conversion of a user can take a long time. While the collected data (e.g., ad clicks)
is very big, the data from conversion events (e.g., user purchases the product) can be
relatively small. A third point that makes it difficult is the fact that users usually not
only have one touch point with the marketing of the same product, which makes the
conversion tracking even more complicated.

They claim their system to be the “first publicly available architecture of an intelligent
online marketing system” which was developed and put to production. The goal of their
work was the automation of ads creation, automatically updating ads and their bids and
the budget allocated to each ad. In addition to that, reporting on ad performances and
visualizing it were further objectives.

[10] identifies “data logging, multitouch attribution, lifetime value (LTV) modeling, bid-
ding and budget optimization, ad and campaign management, keyword expansion, and
an experimentation and reporting framework” as crucial parts of such a system. Data
tracking as the base part of the system is crucial but there exists no consensus which met-
rics are useful. On the other hand, every possible metric should be tracked and kept to
allow future analysis. Business intelligence can eventually use every possible data for sup-
porting strategic decisions. The system performs internal data tracking with a messaging
framework based on Kafka [67]. The external data is tracked with third party APIs. If
possible, the system collects the same data from internal as well as external data sources
and cross-validates the data from different sources and performs abnormalities detection
on it.

The problem of how a campaign can be optimized towards first party user data, such as
payment amounts, is also addressed by the proposal of a front-end and a back-end. The
front-end approach uses Google Tag Manager (GTM) [53] although it is raised that a
front-end approach may not be suitable for tracking first party user data. The back-end
approach is to extract the conversion which was highly likely saved in a database and
manually load it to the third party campaign tool.

Multi-touch Attribution, which describes the fact that a converting user has contact to
more than one ad and crediting only the first or the last one the user saw or clicked on is
not necessarily fair, is tackled by User-Defined Functions (UDF) that run rule-based and
model-based methods to overcome or at least minimize that problem. Figure 2.3 shows
the multi-touch attribution visualization of [10].

Moreover, [10] points out the need of a LTV of a conversion. When user convert, their
conversion have varying LTVs, meaning they bring different amount of revenues to the
advertiser. They built two models, one estimating the LTV assuming the conversion event
already happened and the other estimating the likely hood of the conversion event really
happening. The final result is the product of both models. With the resulting models, the
value of each ad can be estimated and, in combination with strategic decisions, the bidding
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Figure 2.3: Multi-touch Attribution [10]

and budget optimization can be performed. It is also interesting that they performed the
LTV calculations with a conversion time-frame of one year.

Other parts of the overview contain the automation of the ads and campaign management,
automated keyword expansion, an experimentation framework to perform A/B testing
automatically and the need for an nearly real-time reporting system. [10] conclude that a
marketing system as outlined can “reduce operational cost, increase operational efficiency,
optimize ROI [Return On Investment (ROI)], and improve customer engagement.” They
also point out that their solution is not yet the best way to build a marketing system.
They expect, with raising amount of click data being collected, to see experiments in
leveraging deep learning for bidding and LTV modeling and Natural Language Processing
(NLP) suggesting ad content and new keywords.

2.6.2 Predictive Modeling of Campaigns to Quantify Performance in
Fashion Retail Industry

Giri et al. (2019) [22] recognized that promotional campaigns are often very expensive and
the revenue from it is not very high. Difficulties in identifying the correct factors which
drive customers attention are widespread, especially in the fashion retail industry where
their experiment was conducted. The goal of the work was to develop data-driven predic-
tive analytics to identify the success rate and profitability of campaigns. By modelling the
behaviour of past campaigns, the goal was to identify the campaign’s key parameters. The
goal was to come up with two different predictions: A regression model that calculates
the average profit of the campaign and a classification model that classifies the overall
performance of the campaign into success or failure.

[22] used 826 campaigns and the data from it to define a feature catalogue with 28 features,
which needed to be collected and calculated for every campaign in the data preparation
phase. Figure 2.4 lists the 28 campaign attributes [22] used for the models.

As shown in Figure 2.4, the attributes can be divided into six groups: campaign type at-
tributes, discount attributes, add-on attributes, requirement attributes, the gross demand
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Figure 2.4: The 28 Campaign Data Attributes as Model Features [22]

attribute and the campaign performance attributes. The date for the attributes were
carefully collected and prepared to fit in the 28 features. For example, the overall cam-
paign performance was calculated and clustered into Unsuccessful, Successful and Highly
Successful by calculating the activation value and combining it with the profit of the cam-
paign. The activation value was defined by Total number of orders received divided by
Total number of recipients. For example, a high activation plus a high profit was classified
as Highly Successful. Figure 2.5 shows the clustering of the campaign performances.

The 25 features were used for both the prediction of the profit as well as the prediction
of the success of the campaign. Regression trees and random forest were used for the
profit modeling and classification trees and random forest for the success modeling. For
evaluating of the models, the standard 10-fold cross-validation was used.

The profit predictions resulted “quite accurate, on average” [22]. The square Root of the
Mean Squared Errors (RMSE) and the Mean Absolute Error (MAE) metrics were used
to evaluate that. In addition, the R-Squared was calculated to see how well the model
fits the data. General insights could be gathered from the structure of the regression tree
of this task.

For the success predictions, the two models were compared in terms of Classification Accu-
racy (CA) and the Area Under the Curve (AUC). This measures the ability of a classifier
to differentiate classes. The random forest model shows a slightly better performance
than the classification trees. To display the results of the classifier predictions, confusion
matrices were created, as shown in Figure 2.6, and the Receiver Operating Characteristic
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Figure 2.5: Clustering of the Campaign Performances [22]

Figure 2.6: Confusion Matrices of the Classifier Predictions [22]

(ROC) curves were plotted (Figure 2.7). Additionally, insights were gathered by looking
into the decision rules of the classification tree.

2.6.3 Development of Autonomous Intelligent System for Google Ads

Pak, Mocan, Yoldas an Baz (2018) [74] developed an “Autonomous Intelligent System for
Google Ads” to reduce the cumbersome work of manually adjusting and optimizing the
campaign parameters in Google Ads [51], which is not efficient and error prone due to
human interaction.

A first version of the system included five sub-modules, namely automatic account de-
tection which were the cause of errors in the system, automatic positive and negative
keyword conflict detection and removal, URL error detection and budget and bidding
optimization. The second version brings four additional sub-modules which extend the
autonomous intelligent system: optimization of the ad text, automatic optimization of
the ROI metric, optimization towards conversion and towards profit.

The automatic optimizations are performed as follows: [74] developed the sub-modules
independent from each other, by developing each of them as a transfer function. In the end,
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Figure 2.7: ROC Curves for the Classifier Predictions

the designed system is an optimization problem where every function tries to optimize
its designated parameters. The advertisement data (such as conversion rate and other
metrics as well as campaign parameters) is collected and adjusted by the Google Ads API
[62] and by Google Ads Scripts [50]. Google Ads Scripts is a browser-based development
environment and can be used as programming language. It facilitates the automation of
Google Ads tasks. [74] used Google Ads Scripts to develop the sub-modules.

The optimization tasks are all done with algorithmic logic. The algorithms of all sub-
modules are relying on some defined threshold values and if the extracted and/or calcu-
lated metric is higher, then an adjustment is made and if it is lower then the adjustment
is made in the other direction. The module logic of the sub-modules can be described in
pseudo code. The following code is the pseudo-code of the ROI optimization sub-module
described by [74]. The other sub-modules work in a similar way.

{ if loss impression share (budget) >= 33%

if Return on Investment > 0

then increase maximum cost per click (max cpc) and report

else decrease max cpc and report

else (do nothing) }

The conclusions from the work of [74] are that the system is saving a lot of time and
reduces the amount of errors since the campaigns are not managed manually anymore.
More than 15,000 campaigns were managed by this system’s first version already. Two
modules of the second version were successfully tested at the time of writing and two
modules were in the alpha test phase.

The challenges of such a system is not the automation of the data extraction or the
adjustment of the Google Ads parameters. The most difficult part is to have reliable and
sufficient performance data to do the measurements and calculate the metrics, they say.
Interesting is also there future work section, where they state that it would be a good
idea to investigate different machine learning algorithms for doing the optimizations and
comparing them with the existing system.
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2.6.4 Research Insights

When studying the related work and comparing the found papers with each other and
with the goal of this thesis, some learnings and key differences were identified.

While the goal of this thesis is also, similar to [10], to combine external third-party data
(Google Ads) with the internal data from the application, the plan and goal was to provide
a solution to combine and store the connected data on the internal side. [10] does the
whole connection on the external side. Another conclusion from this paper is, that it
would have been nice to learn more about the LTV models and to know how the LTV
values and the conversions are connected, since this could be integrated in a system as
the one designed in this thesis.

Although the use case of [22]’s work is not in the online marketing area, valuable insights
about the methodology and approach can still be drawn from it. For example, similar
model evaluation and plotting methods could be used. The machine learning problem
of this paper is also about marketing campaigns. The goal of the thesis at hand was to
implement the predictions on a lower level, but this was not possible due to technical
reasons. Besides the predictions of the numerical outcome of the campaign, [22] also
generated a classification problem that was also considered for this thesis.

In the third paper from [74], Google Ads data is extracted automatically via the Google
Ads API and Google Ads Script, which is also of central relevance for this thesis. The
same interfaces are also used to adjust campaign parameters and change campaigns in the
other direction. The automatic adjustment and optimization of the campaign parameters
of [74], which happens only after the campaign has been started, could be combined with
a prediction system like the one designed in this thesis to combine optimizations before
and during a campaign.



Chapter 3

Design

This chapter describes the design of the system in detail. First, the overall architecture of
the design is outlined in Section 3.1. Then, the data warehouse architecture is discussed
in Section 3.2, before a short description of the BI metrics is presented in Section 3.3.
In the second part of this chapter, the prediction system’s architecture is introduced in
Section 3.4. Lastly, the User Interface (UI) functionality is discussed in Section 3.5.

In the following sections describing architectures, their components are highlighted in
bold.

3.1 Architecture Overview

Figure 3.1 shows a simplified component diagram of the whole system.

There exists a Mobile Application (e.g., a cross-platform React Native application for iOS
and Android) that is to be promoted with the help of online Advertisement Platforms
(e.g., Google Ads). The app is published in app stores (e.g., App Store or Google Play
Store) and can be downloaded and installed from there.

The online Marketing Specialist sets up app campaigns on different advertisement plat-
forms to promote the application. The advertisement platforms display ads to the poten-
tial end-user depending on the campaign settings configured by the marketing specialist.

The End-User (also referred as user) sees one or more ads and eventually clicks on one of
them. The end-user is redirected to an app store from where the app is downloaded and
installed. The user opens the application, registers and completes an on-boarding process
(including e.g., identity verification) before finally using the app.

The mobile app as front-end communicates to an Application Back-End where user and
application data is stored. This includes logging and storing of events for actions per-
formed on the app. In addition to the internal logging, the front-end also sends events to
the Analytics Platform. With this event logging, the ad platforms can measure conver-
sions (e.g., number of installs or number of registrations).

37
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Figure 3.1: Designed Architecture Overview

The application data from the back-end is copied to a Data Warehouse instance in a
frequent manner (e.g., every night). The same data warehouse collects the data from all
the advertisement platforms and the analytics platform.

Within the data warehouse, all the data is processed so that it can be used by the Predic-
tion System component. The prediction instance uses the preprocessed data to train the
prediction models. In that way, it is assured that the modelling can be repeated in a fre-
quent manner too. The data warehouse does not only process the data for the prediction
system, it also prepares different views for the usage in the BI Front-End component.

The marketing specialist or other analysts can access the data via the BI component.
It is possible to see visualization and reports and to download the raw data for further
analytics. In addition, the Prediction Front-End component allows the marketing spe-
cialist to enter parameters about future campaigns and it will return predictions about
the campaign outcome based on the passed parameters and the historical application and
campaign data used to train the model. The prediction system also allows the other di-
rection: The marketing specialist enters the desired campaign results and gets suggested
campaign parameters.
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3.2 Application and Data Warehouse Architecture

The first component of the architecture is the data warehouse. It was designed to be used
independently from the prediction system part. The only restriction of this component
is that the data needs to be exportable so that it can be used as input to the prediction
system. By doing the designs independent from each other it was also ensured that the
goal of a modular overall system was pursued and achieved.

The system’s design considers, in general, two situations. Either the application owner is
able to send all the app data and all user information to big cloud providers (e.g., Google
Cloud, Amazon Web Services (AWS), Azure), or they cannot allow the data being saved
on external servers. The problem with the big cloud providers is that while various data
center regions exist (also data centers in Switzerland), most providers cannot guaran-
tee that the data will always and without exception be held in Switzerland. Therefore,
institutions that are obliged to store data within Swiss borders (e.g., banks) are often
unable to use any of the large cloud providers. If not allowed, usually a private or trusted
cloud provider is chosen where the system is hosted, or the whole system is hosted on the
company’s own servers.

3.2.1 Google Cloud Data Warehouse

Figure 3.2 depicts the architecture with a Data WareHouse (DWH) completely hosted in
the cloud. The other parts of the system (application back-end the application DataBase
(DB)) are preferably hosted in the same cloud, but can basically be hosted everywhere.
Google Cloud is the ideal cloud provider for the DWH, because with Google Ads, DV360
and Google Analytics, central advertising and analytics components of the system are
already hosted by Google, in the Google Cloud, or at least enable smooth integration.
The next paragraphs describe the DWH architecture design in detail.

The React Native Mobile Application communicates via HTTPS with two REST APIs
hosted in Kubernetes clusters running on Google Cloud’s Kubernetes Engine. One API is
the one of the Identity Access Management (IAM) server (IAM Cluster), which handles
the authentication and authorization of the user. So there is the registration endpoint,
all the authentication endpoints that work according to OAuth 2.0 specification, as well
as identity change endpoints, such as password or email changes. The second API is the
Application Server (Backend Cluster) API and contains the remaining endpoints that are
required for the application usage.

The IAM and the application server are Java Spring Boot applications. To persist data,
they have a Java Database Connectivity (JDBC) connection to the Production DB in a
Cockroach DB cluster (running on Google Cloud’s Kubernetes Engine too). As shown in
Figure 3.2, the IAM and the back-end are connected to the same database. A schema
or table level split was deemed sufficient for this use case. If a third-party IAM would
be used or if the data should be clearly separated from each other, a dedicated database
would be preferred.
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Figure 3.2: Google Cloud Data Warehouse Design

There is another front-end, the Admin Dashboard web application, which is primarily
used for the administration of the application and therefore also communicates with the
back-end. For example, it is used to manage app settings or app content. The requests
also go through a REST API via HTTPS. The second use of this front-end is discussed
below, after explaining the setup of the data warehouse.

This cloud solution of the data warehouse architecture is characterized by the fact that
the DWH is hosted in a serverless manner in Google Cloud’s Big Query service. Big
Query is Google’s highly scalable, serverless database, data warehouse and data analytics
service. It enables efficient storage and querying of data and also includes ML features
that could be used directly within the database solution. Another feature is that the data
in the Big Query data set can be encrypted with Customer-Managed Encryption Keys
(CMEK). This means that even if the data is stored in the cloud, the encryption keys can
be held off-site at the customer.

The DWH in this system consists of a so called data set in the Big Query service. The data
sets contains all tables and views used for the DWH. The DWH includes the following
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three stages:

• Stage 1: Extracted data from different applications (raw and unmodified).

• Stage 2: Processed data with application specific calculated fields (KPIs) and at-
tributes.

• Stage 3: Data from Stage 2 is connected with each other and prepared such that BI
analysts and the ML component can access it.

The data from the Production DB is transferred nightly to the Big Query DWH using
the following Extract Transform and Load (ETL) process:

1. First, the Production DB data tables are saved via CSV dump to a Google Cloud
Storage (GCS) bucket. This step is triggered by a Kubernetes cron job in the
Production DB cockroach cluster.

2. Then the data is loaded into Stage 1 of the DWH. This is done by Big Query’s Data
Transfer Service, which can access the GCS bucket, reads the CSV files and fills
the tables in the DWH data set. The Data Transfer task is configured to run every
night. The imported data corresponds to a duplicate of the data in the Production
DB.

3. In a further step, the data is transformed with the help of views (e.g., attributes
and KPIs are calculated). This forms Stage 2 of the DWH.

The result of this ETL process is that the application data of the Production DB is in
tables of the Big Query DWH. The application data was cleaned and KPIs and other
attributes were calculated and persisted as well.

The lower part of Figure 3.2 outlines the path of advertisement platform data and other
analytics data into the DWH. The design is limited to the assumption that ads are served
on Facebook for Business (Facebook Ads; including Facebook and Instagram) and on
the Google platforms Google Ads and Display & Video 360. However, if ad platforms
are added, they can also be loaded into the data warehouse. The connection is different
depending on the platform, but usually it is done by pulling the data via API, converting
it into a CSV file and saving the CSV file in a GCS bucket. As long as the data can be
queried, any application can be connected to the solution in a modular way.

The ad platforms display ads to the end user. The end user clicks or does not click
on the advertisement and thus triggers impressions and click events that can be tracked
autonomously by the ad platforms. However, once the app is downloaded and installed,
the ad platforms are no longer able to collect further data independently, because the
actions take place within the app and outside the ad platform coverage area. For this,
two SDKs are integrated in the mobile app. These enable conversion tracking for the
advertisement platforms. To measure Facebook Ads conversions, the Facebook SDK is
integrated in the mobile app and for Google Ads and DV360 the Firebase SDK needs to be
integrated. The Firebase SDK collects additional data and sends it to Google Analytics.
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The two SDKs send events to Facebook and Google Analytics independently, and addi-
tionally the sending of customized events can be triggered within the front-end code. As
indicated in Figure 3.2, all events from the two SDKs are sent as HTTPS requests. In
addition to the customized events, it is important that after a successful registration, the
front-end sends the Account ID received from the application server as a user property to
Google Analytics and Facebook (via the SDKs). This way, the connection between the
GA event data, the Ad platform data and the application data from the Production DB
can be established in the DWH. Sending the user properties to GA is triggered in the
front-end code.

As explained in Section 2.3.2, the GA data is automatically stored in a Big Query data
set by allowing the link between Google Analytics and Big Query. This is required by
this design. Also GA and Google Ads as well as GA and DV360 are linked, so that the
conversion data is transferred from GA to Google Ads and DV360 and that GA receives
campaign information from the ad platforms.

An ETL process pulls the data from each of the ad platforms to the DWH:

• To extract the Facebook Ads data, a scheduled Google Cloud Function (GCF) is
set up to run nightly. The GCF calls the Facebook Ads Insights API via HTTPS
and converts the response into a CSV file which is stored in a GCS bucket. From
the GCS bucket, it can in turn be read by the DWH using the Big Query Data
Transfer service and populate the tables in the DWH. The Data Transfer task is
configured for a nightly import from the GCS bucket. The scheduling of the GCF is
done by the Google Cloud Scheduler (a cron job service in the Google Cloud) [39],
which sends a message to a so-called subscription in a Google Cloud Pub/Sub (a
messaging service in the Google Cloud) topic [38]. The GCF, in turn, is configured
that it fires when a message is received on the said subscription.

• The Google Ads data is extracted via Big Query Data Transfer Service and loaded
into Big Query. The service creates its own data set that contains various partitioned
tables and views with all accessible Google Ads data. The scheduling (nightly) of
the transfer is defined in the task configuration of the data transfer.

• The DV360 data is loaded into a GCS bucket by the DV360 Data Transfer service.
This happens every hour automatically. From the GCS bucket, they are imported
nightly into a Big Query data set, again via a GCS CSV import task with the Data
Transfer Service.

In a second step, the Ad Platform data in the first stage of the DWH is processed with
Big Query views so that it can be well analyzed and linked to other data (DWH Stage 2).
After this step, all collected data is in Stage 2 of the DWH. For Stage 3 they are connected
with each other. Connecting the data is also done with views. Finally, the connected data
is aggregated, standardized and normalized. This results in cross-application KPIs that
are valuable for BI and the predictions. This forms the last step of the ETL process.

Unfortunately, views present bad performance, because each call to the view also generates
underlying queries on the tables; thus, data needs to be calculated from start, which hinder
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performance. However, in traditional DWHs, the problem can be solved by regularly
extracting tables with indices from the views. This could also be implemented in Big
Query if view performance were an issue.

The last part of the data warehouse architecture is how the data is consumed, while the
consumers have different options to access the DWH data. The goal is to serve different
DWH access options for different levels of technical skills and for different requirements of
data insight depth. First, a BI Dashboard is integrated into the existing admin dashboard,
which displays the most important and most frequently used BI reports and KPIs within
the browser. The web application receives the required data via the back-end, which
connects to the DWH using JDBC. However, the customizability and available features in
this dashboard are limited. Visualization and table report can be downloaded as images
or CSV files. For customizable reports, drill-down and drill-through functionalities, a
power user tool which connects to the DWH directly is available, as a second option (e.g.,
Google Data Studio or Tableau [25]). Analysts can perform their own data analysis and
create their own interactive reports. A third option is the possibility to access the DWH
tables and views directly and use them in custom SQL queries. In this way, even the
technical and SQL-savvy data analyst is served and can draw his insights from the data.
Querying the DWH with SQL queries can be done with the Big Query UI Console, the
Google Cloud Command Line Interface (CLI) or with one of the offered client libraries.

3.2.2 Self-hosted Data Warehouse

In this section, a solution that is suitable for application owners who do not want to
send their data to the Google Cloud (e.g., banks) is presented. Different parts of the
architecture are identical and will not be discussed in the same level of detail. Mainly,
the differences to the above described Google Cloud DWH architecture are highlighted.
Figure 3.3 depicts the described architecture.

In this design, the application is hosted in a trusted private cloud or on dedicated servers.
The IAM and the Backend Cluster, the Admin Dashboard and the Production DB
Cockroach cluster run in an in-house Kubernetes environment or in that of a private
cloud. The goal is to host the data warehouse in the same environment.

The data warehouse is designed as a separate Cockroach DB cluster: the DWH / Analytics
DB. It is deployed in the same Kubernetes environment as the Production DB Cluster.
Consequently, the ETL process from the Production DB to the DWH is not identical to
the cloud solution: Every night, a Kubernetes cron job in the Production DB Cockroach
cluster triggers a CSV dump that converts the data tables of the Production DB into
CSV files and stores them in a directory or the private cloud storage. A second cron job
in the DWH Cockroach cluster controls the import of the saved CSV files and the loading
of the data into Stage 1 of the DWH. Then, as in Big Query, the data is processed using
views and the DWH Stage 2 is created.

Extracting the data from the ad platforms works identically to the cloud data warehouse
solution. However, as shown in Figure 3.3, after extracting the data, it is not loaded into
Big Query but the goal of each extracting process is to have a CSV file on the Google



44 CHAPTER 3. DESIGN

Figure 3.3: Self-hosted Data Warehouse Design

Cloud Storage bucket. The Facebook Ads API is called by a Google Cloud Function and
the response is converted into a CSV file and stored in the GCS bucket and the DV360
Data Transfer loads the data into a GCS bucket anyway. So the processes only differ
from the cloud DWH solution in the sense that the data is not transferred from GCS to
Big Query. The Google Ads data that is extracted with the Big Query Transfer Service
as well as the Google Analytics data that is automatically stored in Big Query must be
exported from Big Query as a CSV file and transferred to Google Cloud Storage. A
Google Cloud Function is used for this purpose, as this is the only way to implement a
recurring export from Big Query. The GCF is once again set up with the Google Cloud
Scheduler and Google PubSub so that an export to GCS is triggered every night.

Another Kubernetes cron job in the DWH Cockroach Cluster triggers the imports of all
mentioned CSV files from the GCS bucket and the loading of the contained data into the
corresponding Stage 1 tables. The processing of the data to Stage 2 and the linking of
the data to cross-platform KPIs and attributes (resulting in Stage 3) is done identically
to the cloud data warehouse design.
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The BI Dashboard in the web front-end receives the required data via the back-end,
which connects to the DWH Cockroach DB using JDBC. The Power User BI tools connect
directly to the database. Which protocol is used, depends on the BI tool.

3.3 Relevant Metrics and Attributes

In this section the relevant metrics for the business intelligence as well as the prediction
sub system are identified and described.

3.3.1 Metrics and Attributes for Business Intelligence

The following basic metrics were evaluated as relevant for the business intelligence system.
Various other interesting metrics are calculated from these basic metrics. Some examples
of these calculated metrics can be found below.

• No. of app installs

• No. of registrations

• No. of users stuck in the identification process

• No. of fully on-boarded users

• No. of paying users

• Total amount paid

• Costs of the campaign

• Costs of the ad group

• Costs of the ad

The relevant metrics depend on the on-boarding process and the functionalities of the
app. In this design, it is assumed that the mobile app is a finance tech (Fin Tech) app,
which contains some common app building blocks: The app contains a registration process
that requires users to identify themselves (e.g., to open a bank account) before they are
considered as fully on-boarded. In addition, there is an app functionality related to a
payment, the value of which is stored and can therefore be read. This payment can be of
different size and can occur several times (e.g., different subscriptions).

With the basic metrics listed above, various other values can be calculated. For example,
the campaign costs per install, per registration, per fully-onboarded user or the customer
acquisition costs (Costs of the campaign divided by No. of paying users). In order
to improve the campaigning as much as possible, the campaign costs per paid amount
should be optimized (Costs of the campaign divided by Amount paid). This metric can



46 CHAPTER 3. DESIGN

be equated with the capital turnover, which sets the revenue in relation to the invested
money. Depending on what service or product that amount was paid for, that metric may
be called different: e.g., cost per subscription amount, cost per purchase amount or cost
per asset under management.

Furthermore, in business intelligence, it should be possible to segment the KPIs by some
attributes. The following were identified as interesting and relevant segmentation at-
tributes. They also depend on the app use case and the data being stored.

• Gender,

• Age group (e.g., 25-34),

• Living area (e.g., postal code grouped by first digit),

• Device operating system,

• Nationality, and

• Language.

In addition, there are segmentation attributes that are very app-specific. For example,
an investment app can be segmented according to a selected risk profile, the selected
investment horizon or the selected investment focus.

In the case of ad platforms, there are also options for splitting the data further. Once
several campaigns, ad groups or advertisements have been set up and executed, their
parameters and results can be compared with each other. For app campaigns, the settings
that can be set when creating an app campaign are very limited compared to other
campaign types. Below is a list of app campaign properties that are considered relevant
for BI.

• Campaign type

• Campaign sub type

• App platform (e.g., Apple App Store, Google Play Store)

• Start date

• End date

• Daily budget

• Target locations: One can set the area, where an ad campaign shall appear.

• Targeted location type: It is possible to either target people in the specified locations
or people interested in the specified locations.

• Excluded location type: The exclusion of locations does also work either with people
in or interested in a specified location.
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• Target languages

• Bidding focus: The bidding algorithm can optimize toward the number of app in-
stalls or towards the number of an action event (e.g., registration).

• Target cost value: The target value for cost per install or cost per action event
(depending what bidding focus was chosen) can be defined.

• List of ad headlines

• No. of ad headlines

• Avg. length of headline

• List of ad descriptions

• No. of ad descriptions

• Avg. length of ad description

• No. of image ads

• No. of video ads

• No. of html5 ads

• List of audience groups

For non-app campaigns, more campaign and campaign criterion parameters can be re-
trieved. Especially the audience of the campaign can be examined better. For the sake
of completeness, the relevant campaign properties that are only available for non-app
campaigns are listed below.

• Audience gender female

• Audience gender male

• Audience gender unknown

• Audience age 18-24

• Audience age 25-34

• Audience age 35-44

• Audience age 45-54

• Audience age 55-64

• Audience age 65+

• Audience age unknown

• Audience household income top 10%
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• Audience household income 11-20%

• Audience household income 21-30%

• Audience household income 31-40%

• Audience household income 41-50%

• Audience household income lower 50%

The data in Stage 2 of the DWH (see Section 3.2) is linked and processed in such a way
that the DWH Stage 3 contains the KPIs and attributes listed above so that they can be
read by the BI dashboard, the BI Power user tool and by self-written SQL statements.

3.3.2 Feature and Target Selection for the Prediction System

For the prediction system, the campaign attributes shown in Table 3.1 were defined as
machine learning features. As mentioned, for app campaigns, the last 15 features cannot
be set. Nevertheless, they were defined as desired features because they are usable for
other campaign types.

Table 3.1: Selected features for the ML models

Feature Name Feature type
campaign type categorical
campaign sub type categorical
app platform categorical
start month numerical
end month numerical
campaign duration (no. of month) numerical
daily budget numerical
target language en binary
target language de binary
target language fr binary
target language it binary
bidding focus categorical
target cost value numerical
no. of ad headlines numerical
avg. length of headline numerical
no. of ad descriptions numerical
avg. length of ad description numerical
no. of image ads numerical
no. of video ads numerical
no. of html5 ads numerical
audience gender female binary
audience gender male binary
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audience gender unknown binary
audience age 18-24 binary
audience age 25-34 binary
audience age 35-44 binary
audience age 45-54 binary
audience age 55-64 binary
audience age 65+ binary
audience age unknown binary
audience household income top 10% binary
audience household income 11-20% binary
audience household income 21-30% binary
audience household income 31-40% binary
audience household income 41-50% binary
audience household income lower 50% binary

The features listed in Table 3.1 are used to predict campaign results. The KPIs in Table
3.2 were selected as labels for the machine learning. The labels focus on the on-boarding
states and the most desired states (fully on-boarded user and paying user) should be
predictable segmented by gender, age and paid amount (e.g., investment amount). The
two KPIs Customer acquisition costs and Cost per Assets Under Management (AUM)
are not defined as labels, as they are calculated from the campaign costs divided by the
predicted number of paying users resp. from the campaign costs divided by the predicted
AUM.

Table 3.2: Selected KPIs (labels) for the ML models

Label name Label type
app installs numerical
registrations numerical
fully on-boarded users numerical
paying users numerical
total amount paid numerical
fully on-boarded users female numerical
fully on-boarded users male numerical
fully on-boarded users age -14 numerical
fully on-boarded users age 15-24 numerical
fully on-boarded users age 25-34 numerical
fully on-boarded users age 35-44 numerical
fully on-boarded users age 45-54 numerical
fully on-boarded users age 55-64 numerical
fully on-boarded users age 65+ numerical
fully on-boarded users ios numerical
fully on-boarded users android numerical
fully on-boarded users age -14 male numerical
fully on-boarded users age 15-24 male numerical
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fully on-boarded users age 25-34 male numerical
fully on-boarded users age 35-44 male numerical
fully on-boarded users age 45-54s male numerical
fully on-boarded users age 55-64s male numerical
fully on-boarded users age 65+ male numerical
fully on-boarded users age -14 female numerical
fully on-boarded users age 15-24 female numerical
fully on-boarded users age 25-34 female numerical
fully on-boarded users age 35-44 female numerical
fully on-boarded users age 45-54 female numerical
fully on-boarded users age 55-64 female numerical
fully on-boarded users age 65+ female numerical
paying users female numerical
paying users male numerical
paying users age -14 numerical
paying users age 15-24 numerical
paying users age 25-34 numerical
paying users age 35-44 numerical
paying users age 45-54 numerical
paying users age 55-64 numerical
paying users age 65+ numerical
paying users amount -3k numerical
paying users amount 3k-7k numerical
paying users amount 7k-15k numerical
paying users amount 15k-35k numerical
paying users amount 35k-75k numerical
paying users amount 75k-150k numerical
paying users amount 150k-300k numerical
paying users amount 300k+ numerical
AUM numerical
AUM per user numerical

For the suggestions in the other direction, the same variables are used as basis. The user
of the suggestion system can select one of the labels listed in Table 3.2 and define it as the
desired outcome. The system will then search for campaigns with similar outcomes and
list these parameters. The user can then modify the variables to meet his requirements.
Central to the suggestions of the system is that the total budget is as low as possible.
The total budget is calculated with budgettotal = bugdetdaily × durationcampaing × 30.

3.4 Prediction System Architecture

In this section, based on the DWH design and the identified features and labels for the ML,
a prediction system architecture is proposed to achieve the goal of successfully predicted
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campaign outcomes. The prediction system architecture depends on the selected data
warehouse architecture and the data storage needs of the application and data owner. For
each of the proposed DWH designs, a suitable prediction system design is outlined.

3.4.1 With a Google Cloud DWH and Vertex AI for Model Training
and Serving

Figure 3.4 shows the prediction system architecture if, in addition to the ad platform
data, the app data can also be sent to the Google Cloud and therefore a Google Cloud
Big Query data warehouse has been chosen. In this case, the Google Cloud Machine
Learning service Vertex AI [64] can be used in its full potential.

Figure 3.4: Overall Design with a Cloud DWH and a Vertex AI Prediction Component

In Stage 3 of the Big Query DWH, a view is prepared to match the machine learning
requirements of Vertex AI: The defined features as well as the labels in one column each.
In the Vertex AI ML engine, the DWH view is defined as the data set import source.
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Vertex AI directly connects to the Big Query DWH. Vertex AI works well with various
machine learning frameworks (e.g., TensorFlow [83], scikit-learn [81] or PyTorch [76]).
The Machine Learning code is containerized using Docker and is loaded into the Google
Container Registry (GCR). The Vertex AI training job then pulls the Docker container
directly from the GCR. During the training process, for each label specified in Table 3.2,
a ML model is trained and stored in the specified GCS bucket.

The models are also deployed to cloud endpoints using Vertex AI. For this, the endpoint
service of Vertex AI is connected to the GCS bucket where the trained models were previ-
ously stored. Predictions can be obtained by sending requests to the deployed endpoints
or by using the Google Cloud libraries (e.g., Python), which sends the same HTTPS
request.

The requirement of the continuing learning system is fulfilled by triggering the Vertex AI
training every week. This is done by scheduling a GCF with a Cloud Scheduler job, which
starts the Vertex training. In addition, the GCF backups the old model and the training
job then overwrites it with a new one. By doing this, the endpoints are automatically
using the freshly trained models. In the future, the Vertex service Pipelines should handle
the scheduled training but this feature is not available yet.

3.4.2 With a Self-hosted DWH and Self-hosted Model Training and

Serving

If a self-hosted DWH is used, there is a higher likelihood that the data will also not want
to be stored in a GCS bucket for model training with Vertex AI. A design for a fully
self-hosted prediction system is described below and visualized in Figure 3.5.

The DWH view in Stage 3 is exported to a CSV file and stored in the internal Document
Storage. The dockerized machine learning code (running on the Kubernetes ML Cluster)
reads the CSV file in the internal document storage and processes the data directly.
The trained models are stored back into the document storage. The new models are
then hosted in the additional Kubernetes Prediction Cluster and exposed as prediction
endpoints.

Exporting the CSV files, training the models and re-deploying the models is done as a
bash script pipeline and kicked off with a Kubernetes cron job on a weekly basis. The
predictions can than be retrieved by sending HTTPS request to the prediction endpoints.

3.4.3 With a Self-hosted DWH, Vertex AI Training and Self-hosted
Model Serving

If the application data does not want to be stored in a GCS bucket, but the own server
infrastructure or that of the chosen private cloud is too weak or not suitable to train
the machine learning models, then there is a hybrid design, visualized in Figure 3.6, that
can be chosen. The required DWH view is exported to the private Document Storage in
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Figure 3.5: Self-hosted Model Training and Serving Design

the same way as in the fully self-hosted system (see Section 3.4.2), also scheduled with a
Kubernetes cron job.

The dockerized machine learning code runs in Vertex AI, but pulls the required data (the
CSV file) from the document storage in the private environment. The ML framework
trains the models and stores them directly back into the private environment. Since the
machine learning code is written and dockerized in-house, it can be ensured that the data
is only stored in the memory of the machine learning code and cannot be retrieved from
the outside. Vertex AI only executes the code in the Dockerfile and even if the container
is not deleted after execution, no data from the DWH can be found within the container.

The models can then be deployed, again in the same way as in the fully self-hosted
system architecture; in the Kubernetes Prediction Cluster and accessed from the outside
via HTTPS requests.

Access to the document storage in the private environment can also be restricted so that
only the used CSV file can be loaded from the Google Cloud IPs and also only models from
the Google Cloud IPs can be stored in the document storage (path and IP restriction).

3.4.4 (Continues) Model Learning

Various sub processes across the data warehouse are scheduled with cron jobs and Google
Cloud schedulers so that they export and/or transform data nightly. Business intelligence
processes and analytics are automatically updated to the data from the previous day.
With the prediction system, this would technically also be possible, but would not make
financial sense, since training the models is computationally intensive and the input data
for the machine learning only changes when a new campaign is completed. This design
foresees a weekly update of the models. The pipelines are triggered by cron jobs or Google
Cloud scheduling is used, depending on the design being implemented.
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Figure 3.6: Design with a self-hosted DWH, Vertex AI Training and self-hosted Model
Serving

Supervised machine learning algorithms are used for training the data. The prediction of
the defined labels (see Table 3.2) form a regression problem, since all results can be any
values in the positive value range. It was decided to not use an additional classification
problem that predicts if the campaign overall is a success or not (see Section 2.6.2). The
reason for this is that a human interaction would be needed to classify the past campaigns
as success or fail. And if no human interaction is necessary, meaning that the success or
fail can be calculated, then the overall success for the predicted campaign can also be
derived from the other predicted values.

To train and build the models, the ML frameworks TensorFlow, scikit-learn and PyTorch
can be used, as they are compatible with Vertex AI. This design does not define which
ML algorithms should be used. Several should be tried and the one that performs best
with the test data should be used. If there is a large change in the data or the amount
of data, the selected ML algorithm should be reevaluated to ensure an optimal design.
Supervised machine learning algorithms for regression problems that can be used are, for
example, Linear Regression, Decision Tree, Random Forest, Support Vector Regression
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or a Deep Neural Network Regression.

The machine learning code is containerized in a Docker image. This way it can be used
on any machine and in any environment.

3.5 UI Features

The web application’s UI, shown in Figure 3.2 and Figure 3.3 in the top right corner in
each case, includes three functionalities.

• App content management: Translations of the app texts or adjustable app values
(e.g., the price of a subscription) can be managed without a new front-end release.

• BI dashboard: Contains the most important and most used reports and KPIs for
fast and simple reporting.

• Prediction interface: The marketing analyst can enter the marketing campaign pa-
rameters with this interface, and KPIs and results of such a campaign are predicted.

• Suggestion interface: The marketing analyst enters a desired campaign outcome,
and the system displays campaigns that performed almost as good as or better than
the desired outcome. The result list is sorted by the costs of the campaign.
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Chapter 4

Implementation

To evaluate the design described in Chapter 3, a prototype of the designed system was
implemented. It was focused on the automated processing of data from the ad platforms
and the mobile app resp. the app back-end. The goal was not to implement one part of the
system in a detailed and clean way, but to implement the whole process from exporting
data from the different systems, aggregating and connecting this data, machine learning
on the connected data and providing the trained models as endpoints that can be called
by the admin dashboard to get predictions, to see what hurdles and difficulties such a
design brings.

4.1 Implemented Architecture Overview

While describing the implemented architecture, its components are highlighted in bold.

Figure 4.1 shows a diagram of the prototype architecture. The Mobile Application, the
IAM and the app Backend in Kubernetes Cluster and the Cockroach Cluster with the
Cockroach Application DB have been implemented already. Also existing was an Admin
Dashboard front-end hosted on the back-end server that could be used to customize the
app content. The existing system could be deployed to the local machine with little effort
using Docker Compose [73], so only a Docker engine is needed rather than a Kubernetes
engine. This made it easier to extend these components and add the new components to
the system.

The mobile app and the app back-end have been extended so that app events are logged
and persisted in an event table in the Production DB and the Firebase SDK has been
integrated in the mobile app so that events can be logged directly to Firebase. Firebase
was connected to Google Analytics so that events are automatically forwarded to GA. In
addition, Google Ads was set up and Firebase was connected with it so that the events can
be interpreted as a conversion and the Google Ads algorithm can learn with it. Campaigns
were set up on Google Ads. The integration was limited to Google Ads, as the additional
integration of Facebook Ads and DV360 would have massively increased the complexity
of the prototype and thus the effort of this implementation.

57
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Figure 4.1: Architecture of the Prototype Implementation

The data warehouse implementation is a simplified version of the self-hosted DWH design
described in Section 3.2.2. A Cockroach DWH / Analytics DB Docker container was set
up and the events data stored by the app as well as the data of the created accounts
are exported and imported into the data warehouse. Google Ads data is exported to a
CSV file via a Google Cloud Function and Google Ads API and imported via Cockroach
Import statement. Google Analytics was connected to Big Query so that the GA event
logs are exported directly to Big Query. From there, the data is converted to a CSV
file via GCF and stored in a Google Cloud Storage bucket. Another Cockroach Import
statement then pulls the GA data into the DWH. In the DWH, the data is processed,
enriched and connected with the help of views.

The prediction model training was on the one hand implemented self-hosted (on the local
computer) with the ML Container and on the other hand the model training was addi-
tionally outsourced to Vertex AI, in order to be able to evaluate the two implementation
types in terms of performance and costs. The view in Stage 3 of the DWH is converted
to a CSV file with a Cockroach Export statement and stored on the computer. For ma-
chine learning, TensorFlow was chosen. The TensorFlow ML code imports the CSV file,
trains the models and stores them again, on the computer or in the GCS bucket. In the
self-hosted implementation, the models are then deployed as prediction endpoints using
the Prediction Container with TensorFlow Serving. For the Vertex AI implementation
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variant, the models are provided as endpoints by Vertex AI.

The admin dashboard has been extended with a simple prediction functionality to an
Admin & Analytics Dashboard. Parameters of new campaigns can be entered via front-
end input fields and the predicted campaign performance will be displayed. The predicted
CAC are returned too.

4.2 Event Logging

This section describes how events are tracked by the app back-end and how the imple-
mented Firebase SDK is used.

4.2.1 Data Tracking within the App

Whenever possible, events are logged from the back-end. That is, when an API endpoint
is called from the mobile app (e.g. create bank account), the front-end does not send an
additional request to save an event, but the back-end calls a saveEvent function at the
end of the called method, which saves a new row in the events table. Only if no request is
sent from the front-end to the back-end, but an event should be saved anyway, a request
is sent to the implemented event endpoint. An example of this is when a user opens a
support screen, which normally does not trigger a back-end request.

There are two types of events. The pre-registered events and the normal (or post-
registered) events. Pre-registered events are events that happen before registration and
therefore no account ID is known yet. However, it is useful to store these events, for
example, to find out which screens are interacted with before registration and how often.

Listing 4.1 shows the implemented POST endpoint apiv1events{event_type} for normal
(post-registered) events in the EventController and the method from EventService that is
called. The EventService’s storeEvent method is the method that is also called by other
endpoint functions to log an event. The event timestamp, the event type, the advertisment
IDs of Apple and Google (idfa and gpsAdid) and the account ID that triggered the event
are stored. For pre-registered events, no account ID can be stored. The app back-end is
implemented in Java Spring Boot.

1 // EventsController

2 @SecurityRequirement(name = "OAuth2")

3 @RequestMapping(path = "/api/v1/events /{ eventType}", method =

RequestMethod.POST)

4 @ResponseStatus(HttpStatus.OK)

5 public void triggerEventFromUI(@Valid @PathVariable("eventType")

EventType eventType) {

6 Account account = securityService.getLoggedInAccount ();

7 eventService.storeEvent(account , eventType);

8 }

9
10 // EventsService
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11 public void storeEvent(Account account , EventType eventType) {

12 Event event = new Event();

13 event.setCreatedAt(new Date());

14 event.setType(eventType);

15 event.setAccount(account);

16 event.setIdfa(account.getIdfa ());

17 event.setGpsAdid(account.getGpsAdid ());

18 eventRepository.save(event);

19 }

Listing 4.1: The Event endpoint and the EventService methods to store the logged events.

To be able to imagine which event types are stored, in Listing 4.2 the EventTypes Enum
is shown in an abbreviated form. There are pre-registered events (e.g., a failed registration
attempt), on-boarding events (e.g., the successful identification of the user) or app usage
events (e.g., the user changed the language).

1 export enum EventTypes {

2 // Pre -register events

3 APP_OPENED = ’APP_OPENED ’,

4 REGISTRATION_ATTEMPT = ’REGISTRATION_ATTEMPT ’,

5 [...]

6
7 // onboarding

8 REGISTERED = ’REGISTERED ’,

9 PHONE_NUMBER_ADDED = ’PHONE_NUMBER_ADDED ’,

10 PHONE_NUMBER_VERIFIED = ’PHONE_NUMBER_VERIFIED ’,

11 [...]

12 IDENTITY_VERIFICATION_ACCEPTED = ’IDENTITY_VERIFICATION_ACCEPTED ’,

13 [...]

14
15 // app usage

16 LOGGED_IN = ’LOGGED_IN ’,

17 SIMULATION_WINDOW_OPENED = ’SIMULATION_WINDOW_OPENED ’,

18 HELP_VIEWED = ’HELP_VIEWED ’,

19 LANGUAGE_CHANGED = ’LANGUAGE_CHANGED ’,

20 [...]

21 }

Listing 4.2: Some of the event types that are logged and saved in the Events DB table.

In addition to the events, information about the user and their account is stored on the
account entity. The following is a list of what is stored.

• User information

First name

Last name

Living address

Nationality

Date of birth

Gender

Language
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• Device meta-data

Apple Ad ID

Google Ad ID

Used app version

Used phone operating system (OS)

Used OS version

If the user has a jailbreaked iPhone

The Firebase cloud messaging token

If the user’s phone has WhatsApp installed to reach the user for support

• Account and on-boarding related data

The on-boarding step the account is currently in (e.g., IDENTIFICATION_SUBMITTED
or ON_BOARDED)

The chosen investment risk profile

The chosen investment horizon

The chosen investment topics the user wants to invest in

and other app related properties

4.2.2 Firebase Integration and Logging to Google Analytics

The mobile application is implemented in React Native [77]. On one hand, it was extended
with the event endpoint requests where it was needed, and on the other hand, the Firebase
SDK was integrated.

The Firebase SDK logs most Google Analytics events automatically, but custom event
logs must be implemented in the front-end code. Listing 4.3 shows that after the successful
registration of a new user not only the REGISTERED event is sent to GA (line 7), but also
the received user resp. account ID (line 6). This is an important step, which allows to
connect the data from the application database with the GA and Google Ads data.

Only the events that are relevant for the Google Ads algorithm and can be interpreted
as a conversion are sent to Google Analytics. All other events are tracked only via the
application back-end.

1 import analytics , {firebase} from ’@react -native -firebase/analytics ’;

2
3 const onContinue = useCallback(async () => {

4 const tokenPair = await createUserCall ({email , password });

5 dispatch(setTokens(tokenPair.accessToken , tokenPair.refreshToken));

6 const newUser = await getUserCall ();

7
8 setAnalyticsUserId(newUser);

9 logEventToFirebase(EventTypes.REGISTERED);

10 [...]

11 }
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12
13 const setAnalyticsUserId = (user: UserType) => {

14 firebase.analytics ().setUserId(user.id);

15 };

16
17 const logEventToFirebase = (eventType: EventTypes) => {

18 firebase.analytics ().logEvent(eventType.toString ());

19 };

Listing 4.3: The front-end code which sends the user ID and the REGISTERED event to
Google Analytics after a successful registration.

4.3 Data Warehouse

This section describes the implementation of the data warehouse. Firstly, it describes
how the data is exported from the various sources and secondly, how it is then loaded
into Stage 1 of the DWH and processed in Stages 2 and 3 so that it can be used by the
BI tools and the prediction system.

One exporter each was implemented for the Application DB data, the Google Ads data,
and the Google Analytics data. All three work slightly in a different way and are inter-
esting to look at in more detail, because if further systems should be integrated, it is very
likely that one of these export approaches can be used.

4.3.1 Application Data Export

The Account entity and all related entities are exported. This results in an export of the
data of the database tables Account, Event and an additional auxiliary table.

A SQL select statement was developed that combines all data into one view. This select
statement can be seen in Listing 4.4. First, the account data is anonymized: First name,
last name and home address are removed, only the zip code is kept. Email and phone
number are not included in the Account table anyway, since they are stored in the user
entity of the IAM. Additionally, auxiliary tables are joined and converted to columns
(lines 8-26). The event data is split into pre-registered (lines 29-37) and post-registered
(lines 39-46), because they need to be associated differently with the account data: The
post-registered events can be joined using the account ID (line 51) while the pre-registered
events uses the Firebase Cloud messaging token (fcm_token) and the two advertisement
IDs (idfa and gps_adid) as connection variables (lines 63-64).

1 WITH

2 /* Accounts without sensitive attributes */

3 anonym_accounts AS (

4 SELECT account_id ,

5 gender ,

6 onboarding_state ,

7 [...]

8 MAX(sinn_profil) AS sinn_profil_2 ,
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9 CASE

10 WHEN MIN(sinn_profil) IS NOT NULL THEN

11 concat(MIN(sinn_profil), ’ & ’, MAX(sinn_profil))

12 ELSE

13 NULL

14 END AS sinn_profil_pair

15 FROM (

16 SELECT a.id AS account_id ,

17 a.gender ,

18 a.onboarding_state ,

19 [...]

20 s.sinn_profil

21 FROM account AS a

22 LEFT OUTER JOIN account_sinn_profil AS s ON a.id = s.

account_id

23 ORDER BY s.sinn_profil)

24 GROUP BY account_id ,

25 gender ,

26 [...]

27 ),

28 /* Pre -registered events only (only fcm_token is available) */

29 pre_registering_events AS (

30 SELECT id AS event_id ,

31 fcm_token AS event_fcm_token ,

32 [...]

33 FROM events

34 WHERE account_id IS NULL

35 AND fcm_token <> ’’

36 AND fcm_token IS NOT NULL

37 ),

38 /* All events triggered for users having an account_id */

39 post_registering_events AS (

40 SELECT id AS event_id ,

41 account_id AS event_account_id ,

42 fcm_token AS event_fcm_token ,

43 [...]

44 FROM events

45 WHERE account_id IS NOT NULL

46 )

47
48 /* Add account attributes to all (pre - and post -registering) events */

49 SELECT *

50 FROM post_registering_events

51 LEFT OUTER JOIN anonym_accounts ON event_account_id = account_id

52 UNION

53 SELECT DISTINCT ON (event_id ,

54 event_account_id ,

55 event_created_at ,

56 event_fcm_token ,

57 event_gps_adid ,

58 event_idfa ,

59 event_type ,

60 event_attribute_key ,

61 event_attribute_value) *

62 FROM pre_registering_events

63 LEFT OUTER JOIN anonym_accounts
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64 ON event_fcm_token = fcm_token AND event_idfa = idfa AND

event_gps_adid = gps_adid

Listing 4.4: The SQL select statement for exporting the data from the application’s
production database.

To export a SQL select statement from a cockroach database to a CSV file, a bash script
with the cockroach command in Listing 4.5 is needed. This allows the CSV file to be placed
directly on the host machine, in a GCS bucket, or in any other document storage. Lines
4 or 6 specifies the destination, line 7 tells the process to save NULL-fields as ”NULL” in
the CSV file and the SQL statement is pasted at line 9. For exporting to a GCS bucket, a
service account is needed and the credentials need to be integrated in the bucket Uniform
Resource Identifier (URI). Line 4 contains the command to Base64 encode the service
account credentials and add it to the URI. The whole command can be scheduled on the
Production DB with a Kubernetes cron job and on the local environment with a cron job
in a Docker container.

Listing 4.6 shows an example Kubernetes cron job which was implemented for triggering
the export of the data from the Production DB. It has not been deployed to production.
The cron job would run the export script every night at 2 AM (CEST).

1 cockroach sql --insecure -e "

2 EXPORT INTO CSV

3 -- to GCS bucket:

4 --’gs://${BUCKET_NAME }?AUTH=specified&CREDENTIALS=$(cat /root/

gcloud_service_account_creds.json | base64 --wrap =0)’

5 -- to the local file storage:

6 ’nodelocal :// self/data_transfer/v_events_anonymized_accounts.csv’

7 WITH nullas = ’NULL’

8 FROM

9 <<THE SQL STATEMENT GOES HERE >>

10 ;"

Listing 4.5: The cockroach export command, which is used to export data from a
cockroach DB to a CSV file and save it either to the local file system, a GCS bucket
or another document storage.

1 apiVersion: batch/v1beta1

2 kind: CronJob

3 metadata:

4 name: export -cron

5 spec:

6 schedule: "0 0 * * *"

7 concurrencyPolicy: Forbid

8 jobTemplate:

9 spec:

10 template:

11 spec:

12 containers:

13 - name: production -db-postgres

14 image: cockroachdb/cockroach

15 command: ["/bin/bash", "/csv -export -app -account -and -event -

data.sh"]
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16 restartPolicy: OnFailure

Listing 4.6: The Kubernetes cron job YAML file which could be used to export the
application data from the production DB every night at 2 AM (CEST).

4.3.2 Google Analytics Data Export

As mentioned earlier, the Google Analytics data is automatically saved to a Big Query
table when GA is linked to Big Query. The linking could be done via the settings in the
Google Analytics UI.

The data in Big Query is structured by Firebase Project IDs. The GA data can be found
under the path <FIREBASE_PROJECT_ID>:analytics_<ANALYTICS_ID>.events_*. The
data is stored in a partitioned table. For each day a new partition is created automatically
(e.g., partition events 20210601 ). In addition, the data in the tables are nested. This
means that table columns can contain not only the known primitive database types but
also objects, maps and arrays, comparable to a JSON file, which makes querying the data
more difficult. It also complicates the export as CSV file, because the data has to be
flattened. Another difficulty is that the new partitions are created with a table expiration
time of 60 days and this cannot be changed. This means, for an implementation of a
Cloud DWH in Big Query, that the data of the newly created partitions must be copied
nightly to another table where no table expiration is set. However, for a self-hosted DWH,
the following implementation is sufficient.

As a first step, a Big Query View was created, which combines the data in the partitioned
events table into a single table, and additionally selects the columns relevant for the DWH
and flattens them in such a way that a normal table structure is created. A snippet of the
CREATE VIEW statement that can be executed in the CLI using the Google Cloud SDK
can be seen in Listing 4.7. Lines 9 and 10-13 show how a nested object can be flattened.
How mappings and arrays are unnested can be seen in lines 20-23. Line 15 then adds the
unnested Google Click ID to the query output.

1 CREATE OR REPLACE VIEW ‘<FIREBASE_PROJECT_ID >. analytics_270412022.

v_events ‘ AS

2 SELECT

3 event_date ,

4 event_timestamp ,

5 event_name ,

6 [...]

7 user_id ,

8 user_pseudo_id ,

9 device.operating_system device_operating_system ,

10 [...]

11 traffic_source.name traffic_source_name ,

12 traffic_source.medium traffic_source_medium ,

13 traffic_source.source traffic_source_source ,

14 [...]

15 ep_gclid.value.string_value ep_gclid ,

16 [...]

17 FROM
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18 ‘<FIREBASE_PROJECT_ID >. analytics_270412022.events_*‘

19 [...]

20 LEFT OUTER JOIN

21 UNNEST(event_params) AS ep_gclid

22 ON

23 ep_gclid.key = "gclid"

24 [...]

Listing 4.7: The Big Query CREATE VIEW statement to union all partitioned event tables
and flatten the nested objects.

Based on the created view, the automated nightly export process can be started. Manually
exporting the data from Big Query to a CSV file is easy to implement. Using the CLI
command in Listing 4.8, the data in the same Google Cloud account can be transferred
to the bucket even without credentials. However, scheduling the same task is a bit more
tedious. The Google Cloud SDK can be installed on a Docker container and a cron job
could nightly invoke the command in Listing 4.8.

1 bq extract \

2 --destination_format CSV \

3 "<FIREBASE_PROJECT_ID >: analytics_270412022.v_events" \

4 gs://<BUCKET_NAME >/ bigquery_ga_export.csv

Listing 4.8: The Google Cloud CLI command to export a Big Query View to a GCS
bucket.

To avoid having to control operations within the Google Cloud from a Docker container
outside the cloud, the export was implemented and scheduled with Google Cloud services
instead: A Google Cloud Function reads the data from the Big Query View, converts it
to a CSV file and stores it in the GCS bucket. The GCF is implemented that it can be
triggered with a Google Pub/Sub message. Listing 4.9 shows a snippet of the mentioned
Google Cloud Function written in Java. The Java class overrides the accept method which
requires a PubSubMessage input parameter. The message can be read as it is done in line
11. The parameters defined in lines 3-7 are combined into a Big Query Job object (lines
15-18) and the job is started in lines 19-22.

1 public class CSVExtractor implements BackgroundFunction <PubSubMessage > {

2 Logger logger = Logger.getLogger(CSVExtractor.class.getName ());

3 String projectId = "<FIREBASE_PROJECT_ID >";

4 String datasetName = "analytics_270412022";

5 String tableName = "v_events";

6 String destinationUri = "gs://" + <BUCKET_NAME > + "/ga-events.csv";

7 String dataFormat = "CSV";

8
9 @Override

10 public void accept(PubSubMessage pubSubMessage , Context context) {

11 logger.info("Received message with id " + pubSubMessage.messageId);

12 try {

13 BigQuery bigquery = BigQueryOptions.getDefaultInstance ().

getService ();

14
15 TableId tableId = TableId.of(projectId , datasetName , tableName);

16 Table table = bigquery.getTable(tableId);

17
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18 Job job = table.extract(dataFormat , destinationUri);

19 Job completedJob =

20 job.waitFor(

21 RetryOption.initialRetryDelay(Duration.ofSeconds

(1)),

22 RetryOption.totalTimeout(Duration.ofMinutes (3)));

23
24 if (completedJob.getStatus ().getError () != null) {

25 [...]

Listing 4.9: The Google Cloud Function which extracts the data from the Big Query
View, transforms it to a CSV file and loads it to the GCS bucket.

The GCF was manually deployed to the europe-west6 region of the Google Cloud. The
function was allocated with 512 MB of memory and the timeout was set to 60 seconds. A
Cloud Pub/Sub topic dwh-start-etl was created for triggering the GCF. This means that
every time a message is written to this topic, the GCF is executed. Finally, a Google
Cloud Scheduler job was set up to send a message to the dwh-start-etl topic at 2 AM
to start the GCF. Figure 4.2 shows the configuration of the Cloud Scheduler job. The
job is defined by a cron statement. In addition, a development runner was implemented
that allows the cloud function to work on the local machine triggered by HTTP requests
instead of Pub/Sub messages.

4.3.3 Google Ads Data Export

The export of the Google Ads data was also implemented with a Google Cloud Function.
The GCF is implemented in Java and sends requests to the Google Ads API. In order
to connect to the Google Ads API, a registration process for a developer token must be
completed. An application with a completed questionnaire and an architectural sketch of
the system is required to receive a token. If the application is accepted, the token can
be found in the Google Ads UI console. The whole process requires admin rights on the
so-called My Client Center (MCC) account of Google Ads. Also, a Google Cloud service
account is needed [56], which has system wide domain delegation rights [41][63].

The GCF for the Google Ads data export contains six requests to the Google Ads API.
The requests are sent to the API one by one, the response is converted to a CSV file and
stored on the local machine. The GCF can be scheduled with Google Cloud Scheduler
just like the Google Analytics export function (see Section 4.3.2). With the implemented
function, the following Google Ads reports are queried.

• Campaign Performance Report : All existing campaigns and their meta data and
parameters.

• Campaign Criterion Report : The criterion of a campaign. Can be connected with
the belonging campaign.

• Ad Group Report : The ad groups of a campaign. Can be connected with the be-
longing campaign.
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Figure 4.2: Configuration for the Google Cloud Scheduler job which triggers the Google
Cloud Functions

• Ad Group Ad Report : The ads that belong to an ad group. Can be connected to
the ad group and should be connectable to the Click View Report (see below).

• Ad Asset Report : The assets that belong to an ad. Can be connected to the belong-
ing ad.

• Click View Report (see Section 2.3.1): Contains click data with the Google Click ID
and an Ad Group Ad reference. Therefore, should be connectable to the Ad Group
Ad Report.

It is important to mention that the Click View Report can only be retrieved for the last 90
days. In addition, the API does not support historization. Consequently, changes (e.g., a
campaign parameter) and their historization must be handled by the DWH. Historization
was not implemented for this prototype. If a campaign is changed, the old one is over-
written. Therefore, for this prototype it would be suggested to stop a running campaign
and start a new one instead of changing the running campaign.

The code snippet in Listing 4.10 illustrates how the Google Ads API is used in the Java
GCF. The rest of the GCF is similar in structure to that of the GA Export (see Listing 4.9).
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Line 1 initializes the Google Ads Client. The ads.properties file which is needed for the
initialization contains the developer token, the user email (it must be one of the Google
Workspace domain) and the service account credentials path. The search query is defined
in lines 5-12 and then passed into the SearchGoogleAdsStreamRequest object in lines
14-18. Instead of a data stream it is also possible to use a pagination endpoint. The API
is called in line 21 and the response read, parsed and added to the csvRows list in lines
33-48. Before that, the CSV header row is added in lines 24-31. As seen in line 41, the
different data types need to be all parsed to String. The CSVConverter in line 49 then
finally converts and saves the CSV file to a specified path.

1 GoogleAdsClient googleAdsClient = GoogleAdsClient.newBuilder ().

fromPropertiesFile(new File("./ads.properties")).build();

2 GoogleAdsServiceClient googleAdsServiceClient =

3 googleAdsClient.getLatestVersion ().createGoogleAdsServiceClient ();

4
5 String searchQuery =

6 "SELECT "

7 [...]

8 + "campaign.name ,"

9 + "campaign.start_date ,"

10 + "campaign.status ,"

11 [...]

12 + " FROM campaign";

13
14 SearchGoogleAdsStreamRequest request =

15 SearchGoogleAdsStreamRequest.newBuilder ()

16 .setCustomerId(Long.toString(CUSTOMER_ID))

17 .setQuery(searchQuery)

18 .build();

19
20 ServerStream <SearchGoogleAdsStreamResponse > stream =

21 googleAdsServiceClient.searchStreamCallable ().call(request);

22
23 List <String[]> csvRows = new ArrayList <>();

24 csvRows.add(

25 new String [] {

26 [...]]

27 "campaign_name",

28 "campaign_start_date",

29 "campaign_status",

30 [...]

31 });

32
33 for (SearchGoogleAdsStreamResponse response : stream) {

34 for (GoogleAdsRow googleAdsRow : response.getResultsList ()) {

35 csvRows.add(

36 new String [] {

37 [...]

38 googleAdsRow.getCampaign ().getStartDate (),

39 googleAdsRow.getCampaign ().getStatus ().name(),

40 googleAdsRow.getCampaign ().getAppCampaignSetting ().getAppStore

().name(),

41 Long.toString(googleAdsRow.getCampaignBudget ().getAmountMicros

()),

42 [...]
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43 googleAdsRow.getCampaign ().getUrlCustomParametersList ().stream

()

44 .map(o -> o.getKey () + ":" + o.getValue ())

45 .collect(Collectors.joining(",")),

46 });

47 }

48 }

49 CSVConverter.toCSV("./ data_transfer/campaignReport.csv", csvRows);

Listing 4.10: The code snippet which calls the Google Ads API and transforms the
response to a CSV file.

4.3.4 Importing the Data into DWH Stage 1

At this point in the DWH ETL process, all data is exported to CSV files and resides
on the local machine or in the GCS bucket. This means, the next step is to load this
data automatically and every day into Stage 1 of the DWH. Using Docker Compose and a
Cockroach DB Docker image, a new Docker container was spun up for the DWH Cockroach
DB. Listing 4.11 shows what the service definition looks like. When the container is
started, first an initialize script is executed and then a Cockroach DB single node is
booted (line 6). In addition to the data storage volume and the initialize script, a data
transfer folder is mounted into the container (line 10) to access the CSV files already on
the host machine. This would not be necessary in a production deployment, since all files
are pulled from document storages. The standard ports to access the Cockroach DB and
the Cockroach Web UI had to be changed, because the Production DB already uses the
standard Cockroach DB port 26257 and the application back-end already uses port 8080
(line 12-13).

1 version: "3"

2 services:

3 dwh -db:

4 image: cockroachdb/cockroach

5 container_name: dwh -db

6 command: shell -c ’chmod a+x /etc/cockroach/conf/init -dwh -db.sh; /

etc/cockroach/conf/init -dwh -db.sh & /cockroach/cockroach start -

single -node --insecure ’

7 volumes:

8 - ./. data/node_1 :/ cockroach/cockroach -data

9 - ./init -dwh -db.sh:/etc/cockroach/conf/init -dwh -db.sh

10 - ./ data_transfer :/ cockroach/cockroach -data/extern/data_transfer

11 ports:

12 - "26258:26257" # 26257 occupied by production db

13 - "8081:8080" # 8080 occupied by backend

14 environment:

15 - COCKROACH_USER=${DWH_COCKROACH_USER}

16 - COCKROACH_DATABASE=${DWH_COCKROACH_DATABASE}

Listing 4.11: The Docker Compose YAML file to start the DWH DB as a Cockroach DB.

To import the data in the CSV files into the Cockroach DB, a Cockroach import command
as in Listing 4.12 is used for each import. As with the export, the storage URI for the



4.3. DATA WAREHOUSE 71

import can be either a GCS bucket URI, a URI to the local machine (as in line 5) or to
another document storage. Before the commands are executed for the first time, the table
schemas must be created with normal SQL CREATE TABLE commands. For data sources
that always provide all data, the table can be truncated before the import. For data
sources that provide only a part of the data, the old data must not be deleted, of course.
Lines 8-10 define the import options. In the case of this example, a comma separated
CSV is expected, the string NULL is interpreted as NULL and the header line is ignored
(line 10).

The commands are scheduled with a cron job in a separate Docker container. The data
is imported each day at 3 AM. The architecture of the cron job container is discussed in
Section 4.3.7, as the same cron job container is also used to export data from the DWH.

1 cockroach sql --insecure -e "

2 TRUNCATE TABLE t_googleads_campaigns;

3 IMPORT INTO t_googleads_campaigns

4 CSV DATA (

5 ’nodelocal :// self/data_transfer/campaignReport.csv’

6 )

7 WITH

8 delimiter = ’,’,

9 nullif = ’NULL ’,

10 skip = ’1’

11 ;"

Listing 4.12: The cockroach command to import a CSV file from the local machine to
the Cockroach DB table.

4.3.5 Transforming the Data to Stage 2

The next step, Stage 2, is the transformation of the data. The data from different data
sources still remain separate from each other. In the next subsections the transformations
in this stage are described.

Application Data Transformations

The account data of the application DB is enriched, for example by grouping and aggre-
gating the event data by account ID. In this way, additional KPIs can be obtained at the
account level. The following transformations were implemented.

• The date of birth is used to calculate the age and create an age group property. The
age groups in Google Ads for example are 18-24, 25-34, 35-44, and so on, instead of
10-20, 20-30 and 30-40. In this prototype the age group is calculated the same way.
It can be calculated by subtracting 5 years from the age, rounding to the tens and
then adding the 5 years again (e.g., the date of birth 1988-05-06 is the age 33 and
becomes the age group 25-34). Listing 4.13 shows how the age group is calculated
in SQL.
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1 FLOOR(

2 (EXTRACT(days FROM

3 (CAST(CURRENT_DATE AS TIMESTAMP) - CAST(dob AS TIMESTAMP)))

4 / 365 - 5) / 10) * 10 + 5 as age_group ,

Listing 4.13: The SQL statement snippet which performs the age group calculation.

• The postal code is rounded to the thousands, in that way a postal code region is
created which reflects, in Switzerland at least, also geographic regions (e.g., 8006
becomes 8000, which reflects the canton of Zurich).

• The gender column and the age group property is combined to a gender age group
property (e.g., f 25-34 ).

• All the events triggered from an account are counted and the resulting number is
saved to a new column (e.g., how many times the app was opened by counting the
APP_OPENED event triggered by an account).

• For the on-boarding events the event_created_at timestamps were extracted to
generate additional properties on the account level (e.g., the on-boarding duration
or the duration from registration to the first payment).

• Since it was not possible to get payment amount information from the bank, some
additional mocked payment properties were added to the account level: A property
was mocked to reflect the amount of money an account invested.

• Because the bank did not allow to pull real investment and payment data into this
prototype, additional properties had to be mocked: A field was mocked to show
the total invested amount. The mocked amount was calculated from the first three
digits of the postal code and the age group.

• From the total invested amount (= total assets under management), the AUM
cluster, which an account is part of, is calculated. The AUM clusters were defined
as 0-15k, 15k-30k, 30k-45k and so on. Listing 4.14 displays the implementation of
the AUM mock and the one of the AUM cluster.

1 CAST(LEFT(plz , 2) AS FLOAT) * age_group as aum_mock ,

2 FLOOR( CAST(LEFT(plz , 2) AS FLOAT) * age_group / 15000 ) * 15000 as

aum_group_mock

Listing 4.14: The SQL implementation of the AUM mock.

Google Analytics Data Transformations

Listing 4.15 includes a shortened version of the view that performs the GA data transfor-
mations. The Google Analytics data is grouped and aggregated by Pseudo User ID (line
24) to get one row of GA KPIs per user identified by GA. The Pseudo User ID is the
ID GA assigns to a user, and it remains the same for events coming from the same user.
Since there are usually multiple events per Pseudo User ID, each GA column needs to be
aggregated. The following aggregations and additions were implemented.
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• String properties are concatenated with a semicolon if there are several different
values. These include values that can change during app usage (e.g., device category,
device OS, device language) and those that should actually be unique per Pseudo
User ID. These include the properties User ID (line 7), which is important for
connecting the data and corresponds to the Account ID of the application data, the
traffic source name (line 9), which corresponds to the ad campaign name, or the
Google Click ID, which can be used to connect the Click View Report.

• To aggregate the event date, event timestamp or other time or integer columns, the
SQL MIN-function is used (line 5).

• A APP_REMOVE_cnt property is generated which counts how many times the APP_REMOVE
event has been logged, and thus tells if the app has already been uninstalled by the
user (lines 11-14).

• Additionally, the timestamps of the FIRST_OPEN and the APP_REMOVE events are
extracted, so that the app usage duration can be returned (lines 3 and 15-22).

1 SELECT event_date ,

2 [...]

3 APP_REMOVE_et - FIRST_OPEN_et app_usage_duration

4 FROM (

5 SELECT MIN(event_date) event_date ,

6 [...]

7 STRING_AGG(distinct user_id , ’;’) user_id ,

8 user_pseudo_id ,

9 STRING_AGG(distinct traffic_source_name , ’;’)

traffic_source_name ,

10 [...]

11 (SELECT count (*)

12 FROM t_ga_events

13 WHERE user_pseudo_id = tgae.user_pseudo_id

14 AND event_name = ’app_remove ’) APP_REMOVE_cnt ,

15 (SELECT MIN(event_timestamp)

16 FROM t_ga_events

17 WHERE user_pseudo_id = tgae.user_pseudo_id

18 AND event_name = ’first_open ’) FIRST_OPEN_et ,

19 (SELECT MAX(event_timestamp)

20 FROM t_ga_events

21 WHERE user_pseudo_id = tgae.user_pseudo_id

22 AND event_name = ’app_remove ’) APP_REMOVE_et

23 FROM t_ga_events tgae

24 GROUP BY user_pseudo_id

25 )

26 WHERE

27 -- only take environments NULL or ’prod’

28 (up_environment IS NULL

29 OR up_environment = ’prod’)

30 -- not more than one user_id per user_pseudo_id -> this only happens

during development

31 AND user_id NOT LIKE ’%;%’

Listing 4.15: The SQL statement snippet which performs the GA data transformations.
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Google Ads Data Transformation

The Google Ads data transformation mainly involves connecting the exported reports
with each other. The Ad Asset Report contains a reference to the Ad Group Ad. The
Ad Group Ad Report references the Ad Group and the Ad Group Report references the
Campaign. Additionally, the Campaign Criterion Report references the campaign. The
Click View Report contains a reference to both the Campaign and the Ad Group Ad
entity (see also the challenges described in Section 5.3). The views that connect the data
with each other are simple joins of to database tables. In addition to joining the reports
data, the following transformations are performed.

• In order to recognize possible seasonality, the start month and the end month as
well as the start quarter and the end quarter of the campaign start and end date
are extracted from the Campaign Performance Report.

• The campaign duration is calculated from start and end date and added as a prop-
erty. Listing 4.16 is the part of the SELECT-clause which adds the campaign dura-
tion column.

1 CASE

2 WHEN campaign_end_date != ’2037 -12 -30’ THEN

3 (campaign_end_date - campaign_start_date) / 30

4 END AS duration_in_month ,

Listing 4.16: The SQL statement snippet which calculates the campaign duration.

• The Campaign Criterion Report is grouped and aggregated by the associated cam-
paign. The categorical data from multiple rows are transformed into binary columns
to represent the different criteria in one row per campaign. An example code snippet
is found in Listing 4.17. It shows the generation of the binary gender_type_female

column.

1 COUNT( CASE WHEN campaign_criterion_gender_type = ’FEMALE ’ AND

campaign_criterion_negative = FALSE THEN 1 END )

gender_type_female ,

Listing 4.17: The SQL statement which generates the binary gender_type_female

column.

• The Ad Group Ads Report is grouped by campaign and the amount of different
image ads, video ads, ad descriptions and ad headlines are counted. In addition, for
the ad headlines and ad descriptions the average text length was calculated.

4.3.6 Stage 3: Connecting the Data from Different Sources

With the data from the different sources being transformed, the data is ready to be
connected with each other. The application data is linked to the Google Analytics data
using the account ID. In the case of Google Analytics, this corresponds to the user ID that
is sent from the front end to Google Analytics after the user has registered. The Google
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Analytics data, in turn, is connected to the Google Ads data using the Google Click ID.
During the implementation it was noticed that there are very few Google Analytics events
with a Google Click ID value, but comparatively many with a traffic_source_name

field pointing to the campaign name of a Google Ads campaign. This issue is described
in more detail in Section 5.3. Due to this inconsistency it was decided to additionally
link the GA data directly to the campaign names from the Google Ads data using the
traffic_source_name field. In this way, all accounts from the Application DB that GA
were able to associate with a Google Ads campaign, can still be linked to the Google Ads
campaigns and the campaign criterion data.

The view v_overall_kpis_by_campaigns in Listing 4.18 is used to connect the GA data
with the application data. For the usage by the BI tools only the JOIN statement in
lines 33-34 is used, since the BI tools are able to group, aggregate and filter the data
on their own. For the prediction system the data is grouped by campaign name (the
traffic_source_name field) (see line 35) and the application data KPIs defined in Table
3.2, which are used as ML labels later, are generated. For each campaign name the fully
onboarded users (lines 3-21) and the users in the on-boarding process (lines 22-24) are
counted, segmented by gender (lines 4-6), age group (lines 7-9), device (lines 10-12), postal
code thousands (lines 13-15), gender-age-group-pair (lines 16-18) and AUM cluster (lines
19-21). Also the users stuck in the on-boarding process (lines 22-23), the users stuck right
before or in the identity verification step (lines 25-26), the paying users (lines 27-28) and
the amount of payments (lines 29-30) are counted. The total assets under management
generated by each campaign are returned with lines 31-32.

1 SELECT

2 traffic_source_name ,

3 -- amount fully onboarded users

4 -- by gender

5 COUNT( CASE WHEN onboarding_state = ’ON_BOARDED ’ AND gender ILIKE ’

female ’ THEN 1 ELSE NULL END ) as fully_onb_users_f ,

6 [...]

7 -- by age group

8 COUNT( CASE WHEN onboarding_state = ’ON_BOARDED ’ AND age_group = 10

THEN 1 ELSE NULL END ) as fully_onb_users_age_10s ,

9 [...]

10 -- by device

11 COUNT( CASE WHEN onboarding_state = ’ON_BOARDED ’ AND phoneos ILIKE ’

ios’ THEN 1 ELSE NULL END ) as fully_onb_users_ios ,

12 [...]

13 -- by plz 1000s

14 COUNT( CASE WHEN onboarding_state = ’ON_BOARDED ’ AND plz_region = ’

1000’ THEN 1 ELSE NULL END ) as fully_onb_users_plz_1000 ,

15 [...]

16 -- by (gender , age_group)-pair

17 COUNT( CASE WHEN onboarding_state = ’ON_BOARDED ’ AND gender_age_group

ILIKE ’male_10 ’ THEN 1 ELSE NULL END ) as

fully_onb_users_age_10s_m ,

18 [...]

19 -- by asset under management cluster (mocked)

20 COUNT( CASE WHEN onboarding_state = ’ON_BOARDED ’ AND aum_group_mock <

3000 THEN 1 ELSE NULL END ) as fully_onb_users_aum_less_3k ,

21 [...]

22 -- amount users in onboarding process (same categories as for fully
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onboarded)

23 COUNT( CASE WHEN onboarding_state != ’ON_BOARDED ’ AND gender ILIKE ’

female ’ THEN 1 ELSE NULL END ) as registered_users_f ,

24 [...]

25 -- amount users before identification

26 COUNT( CASE WHEN onboarding_state = ’IDENTITY_VERIFICATION ’ THEN 1

ELSE NULL END ) as users_in_identification ,

27 -- amount paying users (both single payments and standing orders)

28 COUNT( CASE WHEN EINZELAUFTRAG_PAID_cnt > 0 OR

REPEATED_TRANSACTION_cnt > 0 THEN 1 ELSE NULL END ) as paying_users

,

29 -- amount payments

30 CAST(SUM( EINZELAUFTRAG_PAID_cnt ) + SUM( REPEATED_TRANSACTION_cnt )

AS INT) as payments_cnt ,

31 -- amount of asset under management

32 CAST(ROUND( SUM( aum_mock ) / 25000 ) * 25000 AS INT) as AUM

33 FROM v_accounts_with_event_kpis ea

34 RIGHT OUTER JOIN v_ga_events gae ON ea.account_id = gae.user_id;

35 GROUP BY traffic_source_name;

Listing 4.18: The view v_overall_kpis_by_campaigns which connects application data
with GA data.

The last and most important view for predicting the campaign outcomes is the v_para-
meters_and_kpis_by_campaign view in Listing 4.19. The view contains the majority of
the features that have been identified as relevant (see Table 3.1) and can be extracted
from the available data, as well as the labels or KPIs that could be retrieved from the
combination of all data (see Table 3.2). The v_overall_kpis_by_campaigns view is
joined with the view v_googleads_overall_parameters_by_campaign (lines 15-16) in
which all the information from Google Ads are summarized by campaign. Since after this
step, the marketing cost and the marketing revenue are joined in one view, finally the
important overall KPIs customer acquisition costs (line 13) and the cost per AUM (line
14) can be retrieved. This view is the basis for the prediction system. How it is exported
and used in the prediction system is described in the next sections.

1 SELECT

2 [...]

3 traffic_source_name ,

4 fully_onb_users_f ,

5 [...]

6 users_in_identification ,

7 users_before_identification ,

8 paying_users ,

9 payments_cnt ,

10 AUM ,

11 CAST(CASE WHEN paying_users > 0 THEN AUM / paying_users END AS INT) AS

aum_per_user ,

12 CAST(daily_campaign_budget_amount_micros * duration_in_month * 30 AS

INT) AS campaign_costs ,

13 CASE WHEN paying_users > 0 THEN CAST(

daily_campaign_budget_amount_micros * duration_in_month * 30 AS INT

) / paying_users END AS cac_micros ,

14 CAST(CASE WHEN AUM > 0 THEN CAST(daily_campaign_budget_amount_micros *

duration_in_month * 30 AS INT) / AUM END AS INT) AS cost_per_aum

15 FROM v_googleads_overall_parameters_by_campaign param
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16 LEFT OUTER JOIN v_overall_kpis_by_campaigns kpis ON param.

campaign_name = kpis.traffic_source_name

Listing 4.19: The final (before using
the data for predictions) view v_parameters_and_kpis_by_campaign, which connects
application, GA and Google Ads data and calculates important KPIs per campaign.

4.3.7 Exporting the Data

The prediction system needs the v_parameters_and_kpis_by_campaign view described
in the previous section to train the models. To keep the overall system modular, it does
not make sense to let the ML code access the DWH view in a cumbersome way, but it is
best, as designed, to work with a CSV export and import again. Thus, the requirement
was that the view is exported every night to a CSV file. Other required exports can be
implemented identically.

An additional Docker Compose service dwh-cron-job was set up, whose Dockerfile is
based on the latest Ubuntu image. Cron is installed on it. In addition, the Cockroach
DB image is installed that cockroach commands can be executed. All commands that
should be executed regularly are added to a bash script each and made executable. The
dwh-crontab file, where all cron jobs are defined is added to the cron service. The
entrypoint of the Dockerfile starts the cron daemon: ENTRYPOINT ["cron","-f"]. Listing
4.20 shows the implemented crontab file. It schedules the export of the application data
from the Production DB (lines 1-2), the imports of the CSV files into the DWH (lines 3-7)
and the CSV export of the v_parameters_and_kpis_by_campaign view from the DWH
(line 8). The DWH view is exported every night at 4 AM. Cron jobs are defined in UTC
time.

1 0 0 * * * /csv -export -anonymized -account -data.sh >> /var/log/export -

anonymized -account -data.log 2>&1

2 0 0 * * * /csv -export -events -data.sh >> /var/log/export -events -data.log

2>&1

3 0 1 * * * /import_into_t_ga_events.sh >> /var/log/

import_into_t_ga_events.log 2>&1

4 0 1 * * * /import_into_t_googleads_campaigns.sh >> /var/log/

import_into_t_googleads_campaigns.log 2>&1

5 0 1 * * * /import_into_t_googleads_campaign_criterions.sh >> /var/log/

import_into_t_googleads_campaign_criterions.log 2>&1

6 0 1 * * * /import_into_t_googleads_adgroupads.sh >> /var/log/

import_into_t_googleads_adgroupads.log 2>&1

7 0 1 * * * /import_into_t_googleads_clickview.sh >> /var/log/

import_into_t_googleads_clickview.log 2>&1

8 0 2 * * * /csv -export -overall -view.sh >> /var/log/export -overall -view.

log 2>&1

Listing 4.20: The crontab file which schedules the CSV file exports and imports.
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4.4 Prediction System

This section describes the prediction system prototype that was implemented. First, it
explains how the model training works, how the continues learning is achieved and how
the models are deployed as prediction API endpoints.

4.4.1 Model and Training Code Definition

The machine learning code is written using TensorFlow in Python. Using the classic
Keras [66] of TensorFlow, a regression problem was implemented so that the models can
be trained with a linear regression algorithm. Additionally, the linear model was extended
with two hidden non-linear layers to a deep neural network model. Besides that, both
models are identical. With the TensorFlow Decision Forests sub-framework, also using
Keras [66], code for training two additional models was implemented. Random Forest and
Gradient Boosted Trees models can be trained with this code.

Regression Models

In Listing 4.21, a section of the regression model training code is shown in a simplified
and abbreviated form. The program code goes through the following steps.

1. The data is read from the CSV file in line 1.

2. Line 2 gets the model version number from the environment variable. This is im-
portant if the models should not be overwritten when a new training is done.

3. The labels for which models should be trained are defined in lines 3-6. For this
prototype, only seven of the labels defined in the design chapter were used for the
model training. For every label defined in this array, the same code starting at line
8 is executed.

4. The data set is copied (line 8) and with one-hot encoding the categorical columns
are converted into binary ones (line 10).

5. In lines 12-25, the data set is split into a train and test data set (lines 12-13) and
the current label is selected and removed from the train feature and the test feature
data set (lines 18-19). The labels trained in the other iterations need to be removed
as well (lines 21-25).

6. A normalization of the data ranges is prepared in lines 27-28. It is generally advised
to do normalization of the data ranges [6].

7. The normalizer layer is added to the model definition in lines 29-32. For regression
models Keras’ Sequential model is used.
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8. The linear model is compiled (lines 34-37): An optimizer is set and the loss function
is defined. An optional metrics array is passed.

9. The model training is executed with model.fit at line 39 and the training history
is saved to the linear_history variable to plot the training process later.

10. The test results are saved in memory to later display a comparison with the DNN
model (lines 45-46) and the trained model for this label is saved to the file system
(line 49).

11. The training history is plotted in lines 51-60 and the diagram is saved to the file
system too (line 59).

For the DNN model, the same train and test feature data sets are used. The model
definition and compilation as well as the training, saving and plotting process works
identically. Lines 62-67 shows the only difference between the two models: While still
using the Sequential model from Keras and the same normalization layer, two additional
hidden, Dense layers using the non-linear activation function relu (Rectified Linear Unit)
are used instead of a single linear layer.

The code obviously cannot be used for a productive system, because with the for-loop the
same model training parameters are used for each label. The code is intended to show
that automated training with the same DB view is possible and that the models and the
model training are all set up the same way. The for-loop must of course be broken down
into individual sequential pieces of code (or even individual Python modules) so that the
parameters can be tweaked for each model individually.

1 raw_dataset = pd.read_csv("/data/v_parameters_and_kpis_by_campaign.csv")

2 MODEL_VERSION = os.getenv(’MODEL_VERSION ’, ’1’)

3 LABELS = [’fully_onb_users_f ’, ’fully_onb_users_m ’, ’paying_users ’, ’aum

’, ’aum_per_user ’, ’cac_micros ’, ’cost_per_aum ’,

4 #’fully_onb_users_age_10s ’,

5 [...]]

6
7 for label in LABELS:

8 dataset = raw_dataset.copy()

9
10 dataset = pd.get_dummies(dataset , columns =[’

campaign_advertising_channel_type ’, ...], prefix=’’, prefix_sep=’’)

11
12 train_dataset = dataset.sample(frac =0.8, random_state =0)

13 test_dataset = dataset.drop(train_dataset.index)

14
15 train_features = train_dataset.copy()

16 test_features = test_dataset.copy()

17
18 train_labels = train_features.pop(label)

19 test_labels = test_features.pop(label)

20
21 nonFeatures = LABELS.copy()

22 nonFeatures.remove(label)

23 for nonFeature in nonFeatures:

24 train_features.pop(nonFeature)
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25 test_features.pop(nonFeature)

26
27 normalizer = preprocessing.Normalization(axis=-1)

28 normalizer.adapt(np.array(train_features))

29 linear_model = tf.keras.Sequential ([

30 normalizer ,

31 layers.Dense(units =1)

32 ])

33
34 linear_model.compile(

35 optimizer=tf.optimizers.Adam(learning_rate =0.1) ,

36 loss=’mean_absolute_error ’,

37 metrics =["mse"])

38
39 linear_history = linear_model.fit(

40 train_features , train_labels ,

41 epochs =100,

42 verbose=0,

43 validation_split = 0.2)

44
45 test_results = {}

46 test_results[’linear_model ’] = linear_model.evaluate(

47 test_features , test_labels , verbose =0)

48
49 linear_model.save(’./ models/linear_regression/’ + label + ’/’ +

MODEL_VERSION)

50
51 fig = plt.figure(figsize =(12 ,8))

52 plt.plot(linear_history.history[’mse’])

53 plt.plot(linear_history.history[’val_mse ’])

54 plt.title(’model loss’)

55 plt.ylabel(’MSE’)

56 plt.xlabel(’Epoch’)

57 plt.legend ([’mse’, ’val_mse ’], loc=’upper left’)

58 plt.show()

59 fig.savefig(’./ models/linear_regression/linear_reg_mse_ ’ + label + ’_’

+ MODEL_VERSION + ’.jpg’)

60 plt.close(fig)

61
62 dnn_model = keras.Sequential ([

63 normalizer ,

64 layers.Dense(64, activation=’relu’),

65 layers.Dense(64, activation=’relu’),

66 layers.Dense (1)

67 ])

68 [...]

69 print("Results:")

70 print(pd.DataFrame(test_results , index=[’MAE’, ’MSE’]).T)

Listing 4.21: The code which trains the linear regression and the DNN-Regression model.

Decision Forest Models

In Listing 4.22 the abbreviated code for the decision forest models is shown. For the
Random Forest and the Gradient Boosted Trees Model the TensorFlow Decision forest
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package must be imported (line 1). In this package, Keras is also included, but the
implementation of Keras is slightly different. For the Decision Forest models, similar
program steps to the ones from the regression models are executed.

1. The data set is imported.

2. The model version and the model labels to be trained are defined as environment
variable and in the LABELS array (lines 2-3).

3. For this framework, the features must be defined individually if not all columns are
needed as features (lines 4-7).

4. For each label the data set is copied and split into a train and test data frame and
converted from a data frame to a data set (lines 15-17). The label and the task type
are being defined at lines 16 and 17.

5. At line 19, the model is configured as a regression task with the defined features
and compiled with an optional metrics array (line 20).

6. The model training is executed at line 21.

7. Using similar functions as in the regression code, the models are evaluated, the
results are cached and the model is stored to the file system.

8. With a training logs inspector the logs can be retrieved and a diagram can be drawn.

The code for the Gradient Boosted Trees models is identical with the exception that
the model at Line 5 is configured with tfdf.keras.GradientBoostedTreesModel. Also
plotting training logs is not possible for this model.

1 import tensorflow_decision_forests as tfdf

2 [...]

3 LABELS = [’fully_onb_users_f ’, ...]

4 all_features = [

5 tfdf.keras.FeatureUsage(name="campaign_advertising_channel_type"),

6 tfdf.keras.FeatureUsage(name="campaign_advertising_channel_sub_type"),

7 [...]]

8
9 def split_dataset(dataset , test_ratio =0.30):

10 test_indices = np.random.rand(len(dataset)) < test_ratio

11 return dataset [~ test_indices], dataset[test_indices]

12
13 for label in LABELS:

14 dataset_df = raw_dataset.copy()

15 train_ds_pd , test_ds_pd = split_dataset(dataset_df , 0.30)

16 train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd , label=

label , task=tfdf.keras.Task.REGRESSION)

17 test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd , label=

label , task=tfdf.keras.Task.REGRESSION)

18
19 model_1 = tfdf.keras.RandomForestModel(task = tfdf.keras.Task.

REGRESSION , features=all_features , exclude_non_specified_features=

True , num_trees =300)
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20 model_1.compile(metrics =["mse", "mae"])

21 model_1.fit(x=train_ds)

22 [...]

Listing 4.22: The code which trains the random forest and the gradient boosted trees
model.

4.4.2 Synthetic Data / Oversampling the Data

During the implementation of Stage 2 of the DWH (see Section 4.3.5), it was found out
that machine learning cannot be performed on ad level since the traffic source can only
be gathered on the campaign level and therefore it is not possible to figure out which
mobile app user clicked on which ad before installing the app (see also Section 5.3). Even
if it was possible to gather the data on the ad click level, it is not sure that it would be
a sufficient data volume to perform the machine learning on it. Since April 2021 only
three real campaigns were run with Google Ads. 895 out of 1510 created accounts can
be associated with one of the three campaigns. The calculation of KPIs is very good
possible, but nevertheless, the machine learning ends up with three examples of campaign
parameters connected with KPIs as input data. This is the reason why synthetic data
was needed.

Additional data was generated in two ways. Firstly, a Generative Adversarial Network
(GAN) algorithm for structured data, Tabular GAN [23] [5], was used to generate data
automatically and secondly, since Tabular GAN only works with a minimum of 10 training
and 10 test examples, the data was synthesized manually. For the manual approach the
three examples where copied and the parameters and KPI were adjusted by hand and
mostly in a way that seemed realistic. However, care was taken to ensure that unexpected
data and outliers were also present.

Listing 4.23 shows the code developed to synthesize the data with the Tabular GAN
generator. This method could be called between lines 10 and 12 in the regression model
code (see Listing 4.21) and between lines 14 and 15 in the decision forests model code (see
Listing 4.22). First, the data is sampled into train and test features for the GAN algorithm
(lines 4-5) and the label on which the algorithm is to be optimized is deleted from the test
and training data set (lines 6-7). In line 9 the GANGenerator is initialized and then, in
line 17, the pipeline is run. Most of the values are the default ones. Important is line 10,
where the multiplier (how many examples should be generated) is passed, and lines 18-21,
where the train features, the train labels and the test features are passed. Also line 15 is
adjusted to disable the post processing because the validation fails when there are so few
records available. Lines 24-25 appends the test data back to the new_train data set so
no original data is lost. Line 26 merges the new labels with the new train data resulting
in one data set again, which is returned in line 28. Line 27 saves the synthesized data as
CSV file.

1 #!pip install -q tabgan

2 from tabgan.sampler import GANGenerator

3 def synthesize_data(dataset , label , gen_x_times , train_frac =0.2):

4 gan_train_features = dataset.sample(frac=train_frac , random_state =0)
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5 gan_test_features = dataset.drop(gan_train_features.index)

6 gan_train_labels = gan_train_features.pop(label)

7 gan_test_labels = gan_test_features.pop(label)

8
9 new_train , new_labels = GANGenerator(

10 gen_x_times=gen_x_times ,

11 cat_cols=None , bot_filter_quantile =0.001 , top_filter_quantile

=0.999 ,

12 is_post_process=False , # default is True

13 adversaial_model_params ={[...]} ,

14 pregeneration_frac =2,

15 only_generated_data=False ,

16 epochs =500

17 ).generate_data_pipe(

18 gan_train_features ,

19 gan_train_labels.to_frame (),

20 # a minimum of 10 test features are needed

21 gan_test_features ,

22 deep_copy=True , only_adversarial=False , use_adversarial=True)

23
24 new_train = new_train.append(gan_test_features , True , True)

25 new_labels = new_labels.append(gan_test_labels , True , True)

26 new_train.insert(len(new_train.columns), label , new_labels)

27 new_train.to_csv(BUCKET_NAME + "/data/" + nowString + "

_synthesized_data_" + label + ".csv")

28 return new_train

Listing 4.23: The code to call the Tabular GAN generator to synthesize the data to more
examples.

4.4.3 Model Training

This section describes how the execution of the previously described ML code works.
Two approaches were implemented to compare them with each other. First, the models
were trained on the local machine and exposed as API endpoints and second, Google
Cloud’s Vertex AI was used. The model training code was dockerized to run on any
machine and environment. The base image used is tensorflow/tensorflow:2.6.0. The
decision forest models need the decision forest TensorFlow extension which can be installed
in the Docker container using pip3. The ML code is added to the container and the
entry point runs both python programs: ENTRYPOINT ["/bin/sh","-c", "python -m

trainer.regression && python -m trainer.decision_forest"]

Self-hosted Training

To train the model once, only the Docker container needs to be booted. The following
command (Listing 4.24) builds and starts the container, reads the DWH view from the
data transfer folder and saves the models and the training log visualizations on the host
machine (in the models folder).
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1 docker build ./ -t prediction -models && \

2 docker run -v "$(pwd)/models :/ models" \

3 -v "$(pwd)/data_transfer :/data" \

4 prediction -models

Listing 4.24: The Docker command to build and run the model training on a local machine.

For the weekly automated training of new models, the previously mentioned Docker con-
tainer has been extended. Additionally, cron is installed, with crontab /etc/cron.d/

ml-crontab the ml-crontab file is added and, instead of the entry point above, it is now
ENTRYPOINT ["cron", "-f"]. The crontab entry looks as follows (Listing 4.25). Every
Sunday at 4:30 AM, first, the environment variables are set and then the two python
modules are executed. Since the DWH view is defined to be exported every night (see
Listing 4.20), every week, the new data is automatically used to train the models.

1 30 4 * * 0 export PATH=/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/

usr/sbin:/usr/bin:/sbin:/bin; /bin/sh -c "cd / && python -m trainer.

regression && python -m trainer.decision_forest" >> /var/log/model -

training.log 2>&1

Listing 4.25: The models are freshly trained every week.

Training with Vertex AI

The model training with Vertex AI was implemented as follows. The CSV file of the input
data was uploaded to the GCS bucket. The lines where the CSV files are read (line 1 in
Listing 4.21) were changed to point to the GCS bucket path. The same was done with
the paths for the model saving, so that the trained models are also stored in the bucket
instead of the local machine. The generating and saving of the diagrams was disabled
for Vertex AI training and the comparison of the two approaches. The rest of the ML
code remained the same. All changes can be implemented based on program arguments or
environment variables, so no different Docker images have to be used for the local machine
and the Vertex AI training.

The Docker image was rebuilt and pushed to the Google Container Registry. This requires
authentication with the Google Cloud (preferably with service account credentials). Af-
ter the Docker image was successfully uploaded, a Vertex AI training instance could be
created: In the UI Console, a Custom Training with no managed dataset was configured.
The uploaded Docker image was selected as the Custom [training] container. As a final
step, the machine type to train on was selected (the cheapest Standard machine, which
has 4 vCPUs and 15 GiB memory allocated to it) and the training was started. The
training was finished after 13 minutes and 6 seconds and the models were successfully
saved to the GCS bucket. The models can now be deployed as Prediction API endpoints,
whether using Vertex AI or a self-hosted architecture (see Section 4.4.4).

Figure 4.3 shows the configuration and the stats of the last Vertex AI model training with
a custom Docker image uploaded to the GCR at gcr.io/<GCLOUD_PRODJECT_ID>/ml/v1.

The automated weekly recurring training with Vertex AI has not been implemented. The
implementation of a GCF connected to Cloud Scheduler can be studied in Section 4.3.2.
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Figure 4.3: Configuration and Stats of the last Vertex AI Model Training with a custom
Docker image

Only the content of the GCF would be slightly different, triggering a Vertex AI training
instead of a Big Query export.

4.4.4 Model Serving

The model serving was also implemented with the two approaches: once self-hosted and
once with Vertex AI.

Self-hosted Prediction API

To achieve the fully automated continues-learning chain, the newly trained models need
to be re-deployed in an automated way. The deployment of the models is enabled by
TensorFlow-Serving [84]. A suitable TensorFlow-Serving Docker image can be downloaded
from Docker Hub using docker pull tensorflow/serving. However, this only works
with the standard TensorFlow and not (yet) with the TensorFlow Decision Forests frame-
work. Fortunately, the team of ML6 [72] has implemented a fork that closes this gap. Their
fork’s Docker image can be downloaded using docker pull ml6team/tf-serving-tfdf.

With one command, the models can be hosted as prediction endpoints. What is needed
is just a configuration file that references all the models which want to be deployed.
Listing 4.26 contains a subset of the configuration file. For each label that wants to
be predicted, there must exist a configuration object. The command in Listing 4.27
deploys the configured models as an API on port 8501 of the local machine. The flag
--file_system_poll_wait _seconds=604800 in line 6 causes the service to check the
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file system for new model versions every seven days. Thus, the newly trained models are
also provided automatically.

The prediction API is then accessible at http://localhost:8501/v1/models/. For ex-
ample, an AUM prediction can be requested with a POST request to http://localhost:

8501/v1/models/linear_regression_aum:predict.

1 model_config_list {

2 config {

3 name: ’linear_regression_aum ’

4 base_path: ’/models/linear_regression/aum’

5 model_platform: ’tensorflow ’

6 }

7 config {

8 name: ’linear_regression_aum_per_user ’

9 base_path: ’/models/linear_regression/aum_per_user ’

10 model_platform: ’tensorflow ’

11 }

12 config {

13 name: ’linear_regression_cac_micros ’

14 base_path: ’/models/linear_regression/cac_micros ’

15 model_platform: ’tensorflow ’

16 }

17 [...]

Listing 4.26: The configuration file for serving the trained models with TensorFlow-
Serving [84].

1 docker run --name serve -ml-models \

2 -p 8501:8501 \

3 -v "$(pwd)/models /:/ models/" \

4 ml6team/tf -serving -tfdf \

5 --model_config_file =/ models/models.config \

6 --file_system_poll_wait_seconds =604800 &

Listing 4.27: The command which serves all models as prediction endpoints and renews
the models every week.

Vertex AI Prediction Endpoints

The import and model hosting at Vertex AI was done, like the training configuration, via
the Vertex UI Console. In the console, under the tab Models, the functionality Import was
selected. To import model artifacts into a new pre-built container the model framework
(TensorFlow) and the used version (2.6 ) had to be chosen. After that, the model artifacts
saved previously to the GCS bucket were selected. For all other options, the default values
were kept.

After successfully importing the model, it could be deployed to the first model endpoint
by again choosing the cheapest machine available (2 vCPUs and 7.5 GiB memory) and
keeping the default parameters for all other configuration options. This needs to be done
for every model that should be exposed as an API endpoint. After deploying an endpoint,
Vertex proposes sample requests to get the predictions via a CURL statement. For getting
a prediction, the client needs to be authenticated with the Google Cloud.
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4.5 Prediction Front-End

The predictions can be obtained with simple HTTP(S) requests to the host, mentioned in
Section 4.4.4. CURL sample commands to obtain the predictions were created for both
trained model types, because they are not identical. Listing 4.28 and Listing 4.29 show
that the request body for the linear regression model looks different from that for the
random forest model. For the random forest model request, an instances array of objects
must be passed with the feature names as properties, while for the linear regression model
request, the feature values in a numbers array are filled into the instances array. The
requests return a response object with a predictions array (see how it is parsed in Listing
4.30).

1 curl -d ’{" instances ": [

2 [ 1.97,

3 1,

4 [...]

5 ]]

6 }’ \

7 -X POST http:// localhost :8501/ v1/models/

linear_regression_fully_onb_users_f:predict

Listing 4.28: CURL Command to get predictions from a served regression model.

1 curl -d ’{" instances ": [{

2 "duration_in_month ":[1.97] ,

3 "start_month ":[1] ,

4 [...]

5 }]

6 }’ \

7 -X POST http:// localhost :8501/ v1/models/random_forest_fully_onb_users_f:

predict

Listing 4.29: CURL Command to get predictions from a served decision forests model.

The admin dashboard front-end was extended with the prediction functionality. An ad-
ditional sidebar entry, Campaigning, was added. On the Campaign Predictions page, the
marketing specialist can enter the parameters of the planned campaign (see Figure 4.4
and Figure 4.5) and by clicking Predict Outcome, the predictions for the five KPIs (no.
of fully onboarded female users, no. of fully onboarded male users, no. of paying users,
total amount of assets under management and amount of AUM per user) are returned. In
addition, the campaign costs are calculated from the specified parameters and, in combi-
nation with the retrieved KPIs, the predicted CAC and the costs per AUM are calculated
and displayed. The prediction results can be seen in Figure 4.6.

Listing 4.30 shows a code snippet of the prediction request from the front-end implemented
in React.

1 const onSubmit = useCallback(async () => {

2 setSubmitting(true);

3 try {

4 const stringifiedBody = JSON.stringify ({

5 instances: [

6 {
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Figure 4.4: Campaign Predictions Page of the Prediction Front-End, the Campaign Pa-
rameter Input Fields, Part 1
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Figure 4.5: Campaign Predictions Page of the Prediction Front-End, the Campaign Pa-
rameter Input Fields, Part 2
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Figure 4.6: Campaign Predictions Page with the retrieved Prediction Results and the
calculated KPIs



4.6. BI TOOL 91

7 [...]

8 campaign_target_cpa_target_cpa_micros: [( cpaTarget ?? 0) *

1000000] ,

9 daily_campaign_budget_amount_micros: [( dailyBudget ?? 0) *

1000000] ,

10 start_month: [Number(dateRange ?.start?. format(’M’))],

11 end_month: [Number(dateRange ?.end?. format(’M’))],

12 duration_in_month: [

13 dateRange ?.end?.diff(dateRange ?.start , ’months ’, true)

14 ],

15 language_constant_code_de: [languageDe ? 1 : 0],

16 [...]

17 }

18 ]

19 });

20 let predictions = await makeRequestToOtherDomain(

21 ’http :// localhost :8501/ v1/models/random_forest_fully_onb_users_f:

predict ’,

22 HTTP_REQUEST_METHODS.POST ,

23 stringifiedBody

24 );

25 setFullOnbUsersF(predictions.predictions [0][0]);

Listing 4.30: Code Snippet of the Prediction Request from the React front-end

4.6 BI Tool

Google Data Studio and Tableau were tested as BI tools. While the Tableau Desktop
application is able to connect directly to the DWH Cockroach DB on the local machine,
Google Data Studio required a CSV export. Since Data Studio is a browser app, connect-
ing to the data on the local machine is not possible. However, if the DWH was accessible
on a unique domain, connecting would not be a problem either.

Various visualizations can be made with the connected data from the different sources. To
illustrate this, two charts from the Google Data Studio BI tool are shown in Figures 4.7
and 4.8. Figure 4.7 shows a dashboard with a lot of information. Among other things, it
shows in which on-boarding steps how many users from the campaigns got stuck. Figure
4.8 shows all fully on-boarded users segmented by the campaign from which the users
arrived and by the (newly generated) gender-age-group cluster. From the graph, it can be
read that the best performing campaign is App promotion Android In App Registered.
This is a Google Ads Android campaign that optimizes towards the Registered event
instead of the Install event. In addition, it can be seen that age group 25-34 perform well
for both genders, with males 35-44 years old on-boarding the most.
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Figure 4.7: BI Dashboard built in Google Data Studio

Figure 4.8: BI Chart that visualizes the fully on-boarded users split by traffic source and
gender-age-group



Chapter 5

Evaluation & Discussion

This chapter first presents the results of the machine learning and the prediction system
cost analysis. Then, the challenges of implementing such an architecture are discussed.

5.1 Results of ML

The results are divided into two categories. The results of the regression models are
described first, followed by the results of the decision forests models.

5.1.1 Regression Models

The models were trained with different parameters and the outcomes were compared
with each other. Each model was trained with 50, 100, 150, 200, 250 and 300 epochs. As
shown in the implementation section, the MAE was defined as loss function. As evaluation
metrics, the Mean Squared Error (MSE) was additionally calculated as well as the mean of
the training labels in order to show the percentage deviation of the MAE. The validation
split was always set to 20%. No further tweaking of the parameters was performed, as
optimizing the models makes little sense with such a large amount of fake data. However,
this should be done when the models can be trained with more real data.

The models were trained once with only 24 examples (resp. with only manually synthe-
sised data) and once the 24 examples were extended to 136 examples with the help of the
synthesis with the GAN generator (see Section 4.4.2). The 24 examples are part of the
136. Table 5.1 lists the results of the training with only 24 rows and Table 5.2 shows the
evaluation of the models with the automatically synthesized data. It can be seen that
especially the deep neural network performs better with the 24 examples. But also the
linear model can handle the few 24 examples at least as good as the generated data. All
DNN models perform better than the linear regression models. To be able to compare the
individual models with each other, the deviation was calculated with the MAE and the
mean of the training data. The best performing model is the DNN model to predict the

93
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Table 5.1: ML Results of training the Regression models with 24 examples

Model Identifier
Nr. of
Epochs

MAE MSE Mean
Deviation
(Mean / MAE)

linear model-fully onb users f 125 9.093 101.229 11.053 0.823
dnn model-fully onb users f 125 3.804 30.648 11.053 0.344
linear model-fully onb users m 125 17.957 512.088 17.421 1.031
dnn model-fully onb users m 125 9.466 144.605 17.421 0.543
linear model-paying users 125 3.556 15.988 6.105 0.582
dnn model-paying users 50 1.759 4.665 6.105 0.288
linear model-aum 150 6.180 58.562 8.195 0.754
dnn model-aum 50 2.225 8.674 8.195 0.272
linear model-aum per user 125 1.453 2.522 1.481 0.981
dnn model-aum per user 125 0.943 1.195 1.481 0.637

Table 5.2: ML Results of training the Regression models with GAN-synthesized data (136
examples)

Model Identifier
Nr. of
Epochs

MAE MSE Mean
Deviation
(Mean / MAE)

linear model-fully onb users f 200 8.479 131.594 6.661 1.273
dnn model-fully onb users f 200 11.772 209.994 6.661 1.767
linear model-fully onb users m 200 14.167 349.341 20.266 0.699
dnn model-fully onb users m 200 13.801 312.981 20.266 0.681
linear model-paying users 100 4.588 39.924 5.321 0.862
dnn model-paying users 100 4.927 36.955 5.321 0.926
linear model-aum 100 8.245 101.720 12.031 0.685
dnn model-aum 100 7.584 94.993 12.031 0.630
linear model-aum per user 100 1.886 7.087 1.625 1.161
dnn model-aum per user 100 2.325 11.713 1.625 1.431

AUM generated by a campaign. Followed by the number of paying users model and the
model to predict the number of female fully on-boarded users. The evaluated MAE of the
best model is 2.225, which corresponds to a deviation from the mean of the training data
of 27.2%. To put this in perspective: With a true value of 82’000 AUM, the predicted
value is on average 59’696 or 104’304. The other DNN models performed with a deviation
between 28.8% and 75.4%.

Figures 5.1 and 5.2 show the visualized training of the best two performing DNN models.
In addition, Figure 5.3 visualizes the training of the best linear regression model. Looking
at the visualized training is important to detect over-fitting and to improve the model
performance in general. For example, the DNN AUM model could be tweaked to the
model with the best evaluation, as it was found out that the model was strongly over-
fitted after the 50th epoch. Figure 5.4 shows the visualized training of this model with
125 epochs. The over-fitting is clearly visible. Therefore, the training was reduced to 50
epochs and the performance could be improved.
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Figure 5.1: Training Visualization of the DNN-Model for the AUM prediction

Figure 5.2: Training Visualization of the DNN-Model for the fully on-boarded female
users prediction
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Figure 5.3: Training Visualization of the best performing Linear Regression Model: the
number of paying users prediction

Figure 5.4: Training Visualization of the DNN-Model for the AUM prediction before
reducing the number of epochs to 50
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5.1.2 Decision Forests Models

When training the decision forest models, the parameters were also changed to see how
the results would vary. For decision forest models, however, changing the number of
trees does not have a large effect like it has with changing the epochs for the regression
models. In Figure 5.5 it can be seen that the MSE changes only minimally after the
first few iterations. The MSE is set as the loss function. As with the regression models,
the two evaluation metrics MAE and MSE are output and additionally, the mean of the
training labels and the average deviation are calculated with the MAE and the mean. The
validation split is unchanged with 20%. The models were trained with the 24 examples
as well as with the additional 112 GAN-synthesized examples.

Table 5.3 shows the results of the training with only 24 rows and Table 5.4 shows the
evaluation of the models with the automatically synthesized data. Also, for the decision
forest models, the smaller data set with 24 examples performs at least as good as the
one with the synthesized data. It can be stated that an automatic synthesis with the
GAN generator does not bring much of an improvement. The GAN generator would be
helpful to increase a data set of 5-10 campaign samples, since most algorithms, including
the decision forest models, for example, cannot handle such a small amount of data.
However, since the GAN generator itself needs at least 10 examples each for the training
and the test data set, this is also not possible. Additionally, by evaluating the models,
it can be concluded that the performance of the random forest and the gradient boosted
trees algorithm is relatively similar. Through the multiple training of the models with
different train and test data set splits, it was determined that the performances of the two
algorithms correlate relatively strongly. This can be seen for example in rows 6 and 7 of
Table 5.3 or in rows 2-3, 4-5, 8-9 and 10-11 of Table 5.4. The models with the 24 examples
perform better. Which of these models performs best can be determined less clearly as
with the regression models. When repeating the training runs with other data splits,
the best models could not often be confirmed. The best models in Table 5.3 are those
to predict AUM per user (random forest, row 10), fully onboarded male users (gradient
boosted trees, row 5), and fully onboarded female users (random forest, row 2). The best
model performs with a MAE of 7300 AUM per user and thus a deviation from the mean
of 41.5%. In other words, with a true value of 18’000 AUM per user, the predicted value is
on average at 10’530 or 25’470 AUM per user. The other models perform with a deviation
between 47.6% and 105.2%.

Figures 5.5 and 5.6 show the visualized training of the two best performing random forest
models. One is the prediction of AUM per user and the other is the prediction of fully
onboarded female users. Only the visualization of the loss function (MSE) and not the
MAE is available. It can be seen that random forest models are resistant to over-fitting
when increasing the number of trees. In the first visualization (see Figure 5.5), the MSE
swings slightly above 1.8 from about the 25th tree on-wards. In Figure 5.6, the MSE
swings between 9.25 and 9.50 from the 100th tree on-wards.

For decision forests models, in addition to the training visualizations, the decision trees
can be visualized and viewed. Figure 5.7 shows the decision tree for predictions of fully
onboarded female users with the random forest model. It is to see that the tree has only
a depth of 2. This is due to the small number of examples. If we visualize the tree of
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Table 5.3: ML Results of training the Decision Forests models with 24 examples

Model Identifier
Nr. of
Trees

MAE MSE Mean
Deviation
(Mean / MAE)

random forest-fully onb users f 300 5.595 41.664 11.053 0.506
gradient boosted trees-fully onb users f 300 8.282 121.912 11.053 0.749
random forest-fully onb users m 300 10.977 146.175 17.263 0.636
gradient boosted trees-fully onb users m 300 8.211 171.203 17.263 0.476
random forest-paying users 300 4.611 42.698 4.647 0.992
gradient boosted trees-paying users 300 4.641 32.163 4.647 0.999
random forest-aum 300 6.495 90.497 6.174 1.052
gradient boosted trees-aum 300 5.030 65.273 6.174 0.815
random forest-aum per user 300 0.728 1.030 1.751 0.415
gradient boosted trees-aum per user 300 1.041 1.803 1.751 0.595

Table 5.4: ML Results of training the Decision Forests model with GAN-synthesized data
(136 examples)

Model Identifier
Nr. of
Trees

MAE MSE Mean
Deviation
(Mean / MAE)

random forest-fully onb users f 300 10.810 198.527 14.578 0.742
gradient boosted trees-fully onb users f 300 10.408 189.073 14.578 0.714
random forest-fully onb users m 300 19.368 618.528 18.088 1.071
gradient boosted trees-fully onb users m 300 19.849 663.570 18.088 1.097
random forest-paying users 300 3.731 18.772 3.439 1.085
gradient boosted trees-paying users 300 3.345 16.752 3.439 0.973
random forest-aum 300 7.260 75.662 10.599 0.685
gradient boosted trees-aum 300 6.940 72.883 10.599 0.655
random forest-aum per user 300 1.973 5.849 1.133 1.742
gradient boosted trees-aum per user 300 2.034 6.688 1.133 1.795
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Figure 5.5: Training Visualization of the Random Forest Model for the AUM per user
prediction

a model trained with the 136 examples, the visualized tree is larger. In Figure 5.8 the
decision tree of the AUM prediction random forest model trained with 136 examples was
visualized. The visualization is limited to depth 4.

5.2 Cost Analysis

Besides considering and interpreting the machine learning results, the prediction system
design was evaluated in terms of its operating costs. The cost analysis was focused on
the prediction system part and not extended to the cost estimation of a DWH, because
the DWH costs depend significantly on the amount of data it contains. The prediction
system, on the other hand, contains only the data used for the machine learning, which is
already aggregated. In addition, a DWH is already often used by default, whereas with
the prediction system component the question of whether such a component is worthwhile
in terms of costs probably arises more frequently. The costs of such a ML system depend
on the performance of the ML code and on the frequency the ML code is run. For each
of the prototypes, the training performance was measured and the operating costs were
calculated.

As mentioned in the description of the implementation, the cheapest Standard machine
was chosen for the Vertex AI training. This type of machine provides 4 vCPUs and 15 GiB
of memory to train the models. Although the performance of Virtual Central Processing
Units (vCPU) is not identical to that of regular Central Processing Units (CPU), they
are still comparable to each other [88]. A one-to-one comparison is sufficient for this
performance comparison and for the resulting cost estimation. Therefore, the Docker
Engine on the local machine was provided with 4 CPUs and 16 GB of memory (15 GiB



100 CHAPTER 5. EVALUATION & DISCUSSION

Figure 5.6: Training Visualization of the Random Forest Model for the fully on-boarded
female users prediction

Figure 5.7: Decision Tree for the fully on-boarded female users prediction random forest
model trained with 24 examples

Figure 5.8: Decision Tree for the AUM prediction random forest model trained with 136
examples
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= 16.11 GB). Both training systems were run with the same ML code training only the
DNN models. The only difference in the code was the file path of the input data and the
storage path of the models. Before training, the 24 input examples were multiplied with
the GAN synthesizer and stored as new input CSV file, so that the training time and cost
correspond to a ML with 136 instead of 24 data records.

The training on the local machine took 21 seconds (with 24 records it took 20 seconds).
In Vertex AI, the training job took 12 minutes and 35 seconds. Interestingly, the training
also took exactly 12 minutes and 35 seconds when the models were trained with only 24
examples. Two more test runs lasted 2 minutes and 2 seconds each. Another test run after
that took 12 minutes and 35 seconds again. A reason for this could not be determined.
As a basis for the cost calculation, the higher value was used and rounded up.

The prototype code trains five labels (fully_onb_users_f, fully_onb_users_m, paying
_users, aum and aum_per_user). The proposed design includes 50 labels consequently
resulting in 50 models that need to be trained. Since the models are trained in a for-loop in
the prototype code and would be trained sequentially in the production code, the training
time of the 5 labels is extrapolated by a factor of 10 for the cost estimation. In Table 5.5
the costs for a prediction system with Vertex AI are listed and calculated. The costs were
calculated for one year. The following costs were considered: Storing the Docker image
in the GCR (which consumes the free tier of the GCS storage), storing the CSV files and
the models, the model training, the triggering of the training by a GCF, scheduling this
GCF, and hosting the model endpoints. The model training is the most expensive cost
item and still very low at $25 per year. The cost of the Cloud Scheduler job ($1.20 per
year), the model hosting with Vertex AI ($1.30 per year) and the Google Cloud Storage
($1.90 per year) are also reasonable, and the GCF costs fall into the Google Cloud Free
Tier. Rounded up, the total costs of the predictions are 30 USD per year.

If you compare the cloud costs with a server specifically purchased for this machine learn-
ing task, the dedicated server obviously cannot keep up with the costs of the cloud. For a
standard server, acquisition costs of 600 CHF are assumed. If this is linearly depreciated
over three years, this equals in 200 CHF per year. Electricity and internet costs have to
be added to this. Since the server would only be used once a week, an average overall
capacity usage of 10-20% can be assumed. For the power consumption at a 10-20% ca-
pacity usage, 120 Watt are assumed [75]. With a run time of 24 hours during 365 days,
this results in a power consumption of about 1050 kWh. The average energy rate in
Switzerland is assumed to be CHF 0.20/kWh [80], which results in total electricity costs
of 210 CHF per year. The internet costs are assumed to be relatively low at 50 CHF per
month. This results in operating costs of 810 CHF per year (incl. internet) and 210 CHF
per year (excl. internet). Adding the server investment results in a rounded total costs of
1000 CHF resp. 400 CHF per year.

5.3 Challenges

The implementation of the prediction system prototype brought to light several challenges,
some of which were then flowed back into the design through an iterative approach.
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Table 5.5: Cost Analysis of Model Training with Google Vertex AI
Pricing Usage Calculated

Costs
Docker
Container
Registry

Google Container Registry uses
Standard GCS buckets to store the
Docker images. The Docker im-
age only needs to be uploaded once.
5GB per month is free, after that
$0.020 in Belgium (europe-west1)
and $0.025 in Zurich (europe-
west6), while in Zurich there is no
Vertex AI model training and host-
ing available yet [59].

The Docker image is 8.31
GiB.

8.31GiB
- 5GB =
3.892 GB,
3.892 *
$0.020 * 12
= $0.93

Storage of
CSV Files
and Mod-
els in GCS
bucket

5GB per month is free, after that
$0.020 in Belgium (europe-west1)
and $0.025 in Zurich (europe-
west6) per month, while in Zurich
there is no Vertex AI model train-
ing and hosting available yet [59].

The current bucket size is
259 MB and includes several
unused files. Assuming, be-
cause of growing data and
training models for 50 in-
stead of 5 labels, a bucket
size of max. 4 GB.

4.0 * $0.020
* 12 = $0.96

Model Train-
ing

The cost in Europe regions are
$0.54 per hour, per training unit.
For the cheapest machine (n1-
standard-4) it is $0.2200 (0.4074
units) per hour [60].

Training weekly for around
13 minutes (for 5 labels).

$0.2200 * 10
* 13/60 * 52
= $24.79

Triggering
Weekly
Training
with GCF

The first 2 million GCF invocations
are free. In addition, a free-tier of
400’000 GB-seconds, 200’000 GHz-
seconds compute time and 5GB of
Internet egress traffic exists. Af-
ter that, the GCF with 512MB
memory and a 200MHz CPU pro-
visioned costs $0.000000231 per
100ms [58].

Triggering the model train-
ing is a very short task. As-
suming this function runs for
1 second every week, the free
tier is used.

400’000
- 0.512 *
1 * 52 =
399’973,
200’000
- 0.200 *
1 * 52 =
199’990
$0.00

Triggering
the GCF
with Cloud
Scheduler

One job for triggering the
GCF is set up.

$0.10 * 1 *
12 = $1.20

Model Im-
port/Config-
uration

Importing the models to
Vertex AI and configuring it
needs to be done only once.
The models are stored in the
GCS bucket.

$0.00

Model Host-
ing on End-
points

The costs for predictions hosting
in Europe regions for the cheap-
est machine (n1-standard-2) are
$0.1100 per node hour [60].

Assuming every week predic-
tions are made and the node
runs 1 hour per week in to-
tal.

$0.1100 * 12
= $1.32

Total costs per year $29.20
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5.3.1 Complexity of the Online Advertisement Universe and the Re-
strictions on the Data Access

In general, it should be noted that the online marketing environment, in which this thesis
is located, is very much in development and changes to platforms and APIs happen con-
tinuously. The online ad marketing world is fixed on the two universes Facebook (with
Instagram and WhatsApp) and Google (with e.g., Google Ads, Youtube, or DV360). Es-
pecially on Google, services and companies are acquired and combined with each other,
and renewed again, so that the overview can be lost quickly. For example, Google Analyt-
ics still has the old product called Universal Analytics in operation and the documentation
prominently available, even though Google Analytics 4 is already recommended. Further-
more, there are several projects for marketing campaigns in the mobile app area, one for
promoting an app in the browser and the other for advertising in another mobile app.
Moreover, and as a third example, the AdWords platform, that was bought by Google,
and its API is named Google AdWords in the first version and then Google Ads, while
both APIs and the documentation of it can be accessed. In addition, the ad platforms are
very sparse with information about what and how their data can be exported. Especially,
when it comes to raw click data, Facebook doesn’t allow it at all and Google Ads only
allows a small portion that is not available for mobile app campaigns.

5.3.2 Linking Data on Ad Level for Mobile App Campaigns

Initially, the goal was to implement predictions at a lower data level. Predictions or at
least analytics on the ad level would have been provided, so that the BI analyst would get
the information which ad of the campaign performs best. To implement this, the Google
Analytics data (which can be connected to the application data without issues) would
need to be linked to the Google Ads data.

Generally, there are two ways to do so. Either the Google Click ID, which is tracked by
the Firebase SDK and forwarded to Google Analytics, is linked to the Google Click ID
referenced in the Click View Report of Google Ads. Or Google Analytics tracks the origin
of the click automatically or via UTM parameter (see Section 2.3.2). With either option,
mobile app campaigns face unsolvable challenges.

Google Analytics uses the event property Traffic Source to automatically track the Google
Ads campaign (the campaign name) from which the user originated. Also the so-called
source and the medium is automatically stored. The Google Analytics UI can additionally,
if Google Ads is connected to it, segment the user acquisitions by Google Ads’ Ad Group.
However, this data is not available in the export. To get a deeper segmentation, the
use of UTM parameters is required. This means that each ad or its linked URL could
be equipped with a different URL query parameter that identifies the ad. This UTM
parameter (e.g., utm_content=imageAdCouple) would then be automatically tracked by
GA. This way, Facebook campaigns and their ads could additionally be tracked by GA.
The problem: For mobile app campaigns, neither Google Ads nor Facebook Ads use
URLs. Instead, the ads are linked to the app store entry without the possibility to specify
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a URL or UTM parameters. In the future, it will be interesting to see if, how and when
there will be a UTM tracking option for mobile app campaigns.

The first way mentioned above (linking the GCLID with the Click View Report) looked
promising for a long time. As described in Section 2.3.1, there are two methods to get
the Click View Report. The Big Query Data Transfer exports a Click View Report table,
but it remains empty. After several attempts and contacting Google Cloud Support, it
was disclosed that the Click View Report is only available for non-mobile app campaigns.
This is another example showing the complexity and chaos between Google platforms:
In each case, the Big Query Data Transfer documentation references Google Ads, while
Google Cloud Support referenced the AdWords documentation, which indicates which
reports are available for app campaigns. This information is not available in the Google
Ads documentation. As an alternative to the Big Query Data Transfer, the Google Ads
API can be used, which successfully delivers the Click View Report filled with data. The
Click View Report includes a reference to the campaign, the ad group and the ad group
ad entity. Technically, the campaign, campaign criterion, ad group, ad group ad and ad
asset entities can all be successfully connected. However, during the implementation it
turned out that the Click View Report did not contain valid references to the ad group
and to the ad group ad, while the campaign reference pointed to the expected campaign.
The ad group and also the ad group ad ID referenced in the Click View Report are missing
in the other tables. Thus, the Google Ads API Support was contacted. They have come
to the following conclusion and a solution has not been communicated yet:

I can confirm that those ad group IDs are unexpected. I’ve sent this over to
someone who specializes in this area to take a look to see if we can filter them
out. Thanks for bringing this to our attention!

This finding means that the Click View Report data cannot be linked to the ad group and
ad group ad reports. As a result, the click data is only available at the campaign level.
It is not possible, at least not for mobile app campaigns, to extract which user clicked on
which ad, but only to which campaign the clicked ad belongs.

Another inconsistency was found when the number of users with a GCLID were compared
to the number of users with a set traffic source. Only 62 accounts identified by GA have a
GCLID, while 895 users can be assigned to a campaign via the traffic source field. When
the GCLID can be retrieved and when it cannot was not found out.

5.3.3 Audience Restrictions for Mobile App Campaigns

A final difficulty related to mobile app campaigns is that the audience to which the
campaign is directed cannot be extracted. The audience for app campaigns is controlled
via Firebase. Existing users can be grouped together. These user lists can then be used
in new campaigns to include or exclude users. These user lists are extractable via the
Google Ads API, but they do not contain the criteria used to create the user list (e.g.,
gender). Besides that, the audience can only be defined in a limited way: Only the
language and geographic location can be specified in the campaign settings and they can
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also be exported as campaign parameters. For non-app campaigns, however, the campaign
parameters Gender, Age Group, Income Cluster and Parental Status can also be set as
audience properties and can be extracted as campaign parameters for ML.

5.3.4 Data Volume & Synthesized Data

For the machine learning part, the amount of data is a big challenge. The above mentioned
problems led to the fact that the machine learning could only be performed on campaign
level. Since April 2021, only three Google Ads campaigns have been run promoting the
app. Two campaigns for Android users (one optimized towards the install conversion and
one optimized towards the registration conversion) and one for iPhone users optimized
towards installation. Therefore, the data had to be synthesized manually and in an
automated way. Obviously, with this synthesized data, the quality of the ML models
could not be neither optimized nor verified content-wise. The findings of this thesis show
that if this design of a prediction system is to be used for mobile app campaigns, more but
shorter campaigns should be run, otherwise the amount of data needed for the predictions
cannot be reached. Also, campaigns, ad groups or ads should not be edited, but the old
one should always be closed and new ones should be created. However, it remains to be
clarified whether this strategy is compatible with the best practices and algorithms of
Google or Facebook.

5.3.5 Conclusion

It would be interesting to see whether all the challenges mentioned can be overcome with
non-app campaigns. In a non-app campaign, for example key word or display campaigns
for a browser web application, each ad could have its own UTM identifier. Furthermore,
the click view report could be exported via Big Query Data Transfer and the audience
parameters of the campaigns, ad groups or individual ads could be used as ML features
(see Future Work in Chapter 6). This would mean that all KPIs could be collected and
calculated on the ad level and, consequently, the predictions could be made on this level
too. For the machine learning, this would mean that the three real examples on campaign
level would become more than 15 real examples on ad level (at least five ads per campaign).
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Chapter 6

Summary, Conclusion, and Future Work

In this thesis, it was researched what data can be exported from online marketing ad
platforms, such as Google Ads and Facebook Ads, and how it can be connected to the
data collected by the promoted application. With this knowledge, the goal was to find
out if and to what extent analyses and predictions regarding the performance of online
campaigns can be made that go beyond the metrics of the campaign platforms by using
KPIs based on the connected data from different sources. Another goal was to find suitable
solutions also for data (application) owners who do not want to send any data, or as little
data as possible, to the big cloud providers.

A modular architecture design was developed that extends a client-server architecture
(a mobile app with application back-end and separate IAM connected to a production
DB) with the integration of ad platforms, a data warehouse accessed with BI tools, and
a prediction system component. The design includes the fully automated and recurring
extraction of ad click event data, account and event data from the production DB, as well
as the data and properties of the campaigns that have been run. In the data warehouse,
the data from the different sources is processed and linked to each other before KPIs based
on the combination of that data are calculated (e.g., the customer acquisition costs of a
campaign or the costs per asset under management). With BI tools, these KPIs can be
analyzed and segmented. In the prediction system component, machine learning is used
to train models to predict these KPIs.

The design contains the feature and target selection for the machine learning as well as a
concept for satisfying the requirement of a system that continuously learns with the freshly
gathered data. It also contains the concept for hosting the models as API endpoints and
accessing them with prediction requests. A system prototype was developed to evaluate
what challenges such a system implementation entails, what machine learning results
might be expected and what operational costs the deployment and hosting of such a
prediction system would incur. This was done to see if it would be worthwhile to have
such a prediction system in place to try to reduce the customer acquisitions costs of
campaigns by consulting the machine learning predictions of future campaign outcomes.

The implementation of the prototype revealed that such a system in combination with a
mobile app is exposed to several challenges. The main reason for this is that for mobile
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app campaigns, which advertise the installation of an app and therefore directly redirect
the user to the app store when clicking on the ad, only the app store identifier is specified
instead of a link URL, as it is the case for website campaigns. Thus, no custom query
parameters (UTM parameter) can be set and the advertiser can therefore not submit
additional tags and is dependent on what traffic information is automatically collected.
This automatically collected traffic information is limited to the campaign name to which
the ad belongs that the user clicked on. This leads to the discovery that the account and
usage data of the app can only be connected to the marketing data on campaign level and
therefore the KPIs can only be calculated on this level. Consequently, answering RQ1
(see Section 1.2), the machine learning and predictions are also limited to this level. Since
data from only three campaigns was available, the three records with the real campaign
parameters and KPIs had to be manually synthesized into 24 examples so that at least
the machine learning functionality could be tested.

Due to the small amount of real data, the prediction results of the prototype are useless in
terms of campaign-insights and their significance could not be assessed (RQ2, Section 1.2).
To make this possible, approximately 20-50 real campaign records are required (RQ2).
Nevertheless, it was found that for the present regression problem with few data records,
a deep neural network model performs best compared to a linear regression, a random
forest, and a gradient boosted trees model. Another finding of this work is that the use
of the prediction system component in addition to a data warehouse, with the goal to
improve the campaign performance and thus reduce customer acquisition costs, might be
worth trying, presuming the data volume and ML model quality are high enough. Since
using this design of the prediction component with a weekly retraining of the models
(hosted in the Google Cloud), costs only about 30 USD per year.

As future work, it would be interesting to test the system prototype with campaigns
advertising a normal website or browser web application (non-mobile app campaigns).
Since with this kind of advertising, it is possible to add additional, track-able parameters
to the URL link of the ads, chances are high, that the analytics and the predictions can
be taken to the lower ad level instead of the campaign level. This way, users could predict
the outcome of an additional ad instead of an additional campaign. The possibility to
use URL parameters also allows to integrate Facebook Ads, Newsletters and any other
campaign. This also increases the amount of data, and the prediction models can be
optimized and verified based on real data. Once enough real data is available (no matter
if at ad or campaign level), the deep neural network model could be optimized from a
single output to a multi output model.
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Appendix A

Installation Guidelines

A.1 Repository Structure

The source code contains a directory for each component of the implemented prototype.
In the following it is described what directories the repository includes and what can be
found in there.

• application-backend: Contains the Java Spring Boot Application Back-end. The
existing application was reduced to the basics such that it now contains only the
Account and Event entity and the added endpoints for sending events.

• application-db

– export : This sub folder contains the SQL scripts and the cockroach com-
mands to export the data from the application DB. In addition, the mentioned
kubernets-cron-job.yaml file is included.

– init-db.sh: This script is used to initialize the Cockroach DB.

– .data: The data from the DB is saved in this folder.

• cloud-data-export: Contains utilities to export data from Big Query and Google
Ads.

– big-query : Contains the SQL scripts for creating the GA events views in Big
Query.

– google-cloud-functions : Contains the Java code for running the GCF locally.
The GCFs exportGoogleAdsData (to export Google Ads data), flattenGaEvents
(to unnest the GA events table in Big Query table) and gaEventsCsvToGcs (to
export GA events to GCS) are included.

• data-warehouse: Contains a folder for each stage of the DWH.

– 0-schema-creation: Contains the SQL scripts to create the tables.
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– 1-imports : Contains the import scripts and commands to import the data
into the tables. Most of the commands are also included in the dwh-cron-job
directory.

– 2-views : Contains the views which transform the data for each source.

– 3-connecting-sources : Contains the view which connect the data from different
sources

– 4-export : Contains the script to export the data for the ML.

– init-db.sh: This script is used to initialize the DWH Cockroach DB.

– .data: The data from the DWH DB is saved in this folder.

• document-storage: This is the mocked internal document storage. The services save
and import the CSV files from this folder.

• dwh-cron-job: Contains the scripts and the definition of the cron job Docker con-
tainer.

– application-db-export : Contains the scripts which export the data form the
application DB.

– dwh-export : Contains the script to export the ML input data view from the
DWH.

– dwh-import : Contains the commands for importing the data from the CSV files
in the document storage to the DWH.

– Dockerfile: Defines the Docker container for starting the cron job service

– dwh-crontab: The crontab file which is used bei de cron job.

• ml-model-serving: Contains the files used for serving the models.

– models.config : The model configuration file. It defines where the model can be
found and the name of the model.

– README.md : Deploy and usage instructions for the ML Serving service.

• ml-model-training:

– trainer : Contains the machine learning code for the decision forests and the
regression models.

– Dockerfile Cron: The Dockerfile for starting the cron job container which starts
the training of the models every week.

– Dockerfile Train: The Docker file which is used to train the model instantly.

– evaluation tables.xlsx : The Excel file which was used for comparing and eval-
uating the ML results and for the cost analysis.

– ml-crontab: The crontab which defines the weekly training of the models.

– README.md : Contains instructions how to train the models locally and with
Vertex AI.
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– training.log : The manual training.log which was done during training the mod-
els.

• prediction-frontend: Contains the source code for the React admin & analytics
dashboard.

• .env: The environment variables which are needed by the docker-compose file.

• docker-compose.yml: The Docker Compose configuration file specifies all services
resulting in a container network.

• README.md: The README on root level contains instructions how to use the
Docker Compose system to build and run all the services. It also contains informa-
tion how to connect to a running container and how to send prediction requests to
the Model Serving service.

A.2 Running the System on the Local Machine

All instructions can also be found in the README.md files.

Prerequisites

• Docker needs to be installed.

• (For accessing Google Ads data) It need to be applied for a Google Ads Developer
Token. The received token needs to be added to cloud-data-export/google-cloud-
functions/ads.properties. See here for more information: https://developers.

google.com/google-ads/api/docs/first-call/dev-token

• (For accessing Google Ads and Google Analytics data) A Google Cloud service
account needs to be created. The service account credentials need to be downloaded
as JSON and copied to the dwh-cron-job and the cloud-data-export/google-cloud-
functions folder. See here for more information: https://developers.google.

com/google-ads/api/docs/client-libs/java/oauth-service

• For the service account Delegating domain-wide authority to the service account
is important. See here: https://developers.google.com/identity/protocols/

oauth2/service-account#delegatingauthority

Build the Services

The whole system resp. all services can be build with this command:

1 docker compose --env -file .env build

Build a single service:

1 docker compose --env -file .env application -db
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Run the Services

The built system services can be run with this command:

1 docker compose --env -file .env up --abort -on-container -exit

Run a single service:

1 docker compose --env -file .env up --abort -on-container -exit application -

db

Connecting to a running container is possible with:

1 docker exec -it application -db /bin/sh

Retrieving Predictions

When all services are run, the system is ready to receive prediction requests.

From a regression model:

1 curl -d ’{" instances ": [[1.4838871833555929 ,

2 1.8659883497083019 ,

3 2.234620276849616 ,

4 1.0187816540094903 ,

5 -2.530890710602246 ,

6 -1.6046416850441676 ,

7 -0.4651483719733302 ,

8 -0.4952254087173721 ,

9 -0.4952254087173721 ,

10 -0.4952254087173721 ,

11 -0.4952254087173721 ,

12 -0.4952254087173721 ,

13 -0.4952254087173721 ,

14 -0.4952254087173721 ,

15 -0.4952254087173721 ,

16 -0.4952254087173721 ,

17 -0.4952254087173721 ,

18 -0.4952254087173721 ,

19 -0.4952254087173721 ,

20 -0.4952254087173721 ,

21 0.7746763768735953]]

22 }’ \

23 -X POST http:// localhost :8501/ v1/models/

linear_regression_fully_onb_users_f:predict

From a decision forest model:

1 curl -d ’{" instances ": [{

2 "ad_app_ad_descriptions_avg_length ":[1.0] ,

3 "ad_app_ad_descriptions_cnt ":[1],

4 "ad_app_ad_headlines_avg_length ":[1.0] ,

5 "ad_app_ad_headlines_cnt ":[1] ,

6 "ad_app_ad_images_cnt ":[1],
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7 "ad_app_ad_youtube_videos_cnt ":[1],

8 "campaign_advertising_channel_sub_type ":[" APP_CAMPAIGN "],

9 "campaign_advertising_channel_type ":[" MULTI_CHANNEL "],

10 "campaign_app_campaign_setting_app_store ":[" GOOGLE_APP_STORE "],

11 "campaign_app_campaign_setting_bidding_strategy_goal_type ":["

OPTIMIZE_IN_APP_CONVERSIONS_TARGET_CONVERSION_COST "],

12 "campaign_target_cpa_target_cpa_micros ":[1],

13 "daily_campaign_budget_amount_micros ":[1],

14 "duration_in_month ":[1.0] ,

15 "end_month ":[1],

16 "language_constant_code_de ":[1],

17 "language_constant_code_en ":[1],

18 "language_constant_code_fr ":[1],

19 "language_constant_code_it ":[1],

20 "start_month ":[1]

21 }]

22 }’ \

23 -X POST http:// localhost :8501/ v1/models/random_forest_fully_onb_users_f:

predict

Retrieving Predictions from the Prediction Front-End

The front-end can be built and started in developer-mode with:

1 cd prediction -frontend && yarn && yarn start

Retraining the Models

The models are automatically retrained every seven days. If the training should start
immediately, the following two steps should be done.

1. Uncomment the ml-model-training-now service (line 88-94) in the docker-compose.yml
file.

2. Build and run the container with

1 docker compose --env -file .env ml-model -training -now && \

2 docker compose --env -file .env up --abort -on-container -exit ml -

model -training -now

Serving the Models

A new version of models is pulled automatically every seven days. If new models should
be served immediately, this can be done by restarting the service:

1 docker compose restart ml -model -serving

or, if the service does not run, by starting it:

1 docker compose --env -file .env up --abort -on-container -exit ml -model -

serving
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Running the Google Cloud Functions

If the GCF want to be run locally for debugging or to get the current Google Ads data,
a Google Ads Developer Token and a Google Cloud Service Account needs to be created.
If they are at hand the following steps can be done:

1. Place the service account JSON file at cloud-data-export/google-cloud-functions

2. Adjust the information in cloud-data-export/google-cloud-functions/ads.properties
with the path to the service account JSON file and the developer token. See here for
help: https://developers.google.com/google-ads/api/docs/client-libs/java/
config-file

3. Run the following command:

1 ./ gradlew runFunction -Prun.functionTarget=LocalHttpRunner -Prun.

port =8093

4. Click on the link in the console to trigger the GCF.

A.3 Running the Prediction Component on Vertex AI

Training the Models

These steps need to be followed to train the models with Vertex AI:

1. Set the BUCKET_NAME in trainer/decision forests.py and in trainer/regression.py ref-
erencing to the GCS bucket

2. Build the container:

1 cd ml -model -training && docker build ./ -t "gcr.io/ml-model -

training/ml/v1"

3. Get the service account JSON. See https://cloud.google.com/container-registry/
docs/advanced-authentication for help.

4. Login to GCR with Docker:

1 cat <SERVICE_ACCOUNT_JSON >.json | docker login -u _json_key --

password -stdin https://gcr.io

5. Push the Docker image to GCR:

1 docker push "gcr.io/ml-model -training/ml/v1"

6. Do not forget to upload the input data CSV file to the GCS bucket referenced in
the code.
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7. Create training in Vertex AI:

8. Choose no managed dataset and custom training

9. Add a model name

10. Search the uploaded container image in the GCR

11. Choose no hyper parameter tuning

12. Choose the machine type: e.g., the cheapest one: Standard -> Standard -> n1-
standard-4, 4 vCPUs, 15 GiB memory

13. Start the training

After the training, the models can be found in the specified GCS bucket.

Serving the Models

Import a model from the GCS bucket:

1. Go to the Models section of Vertex AI and choose Import Models

2. Select Import Model artifacts into a new pre-built container.

3. Choose TensorFlow with the version 2.6 as pre-built container.

4. Select the GCS bucket path wehre the model is saved.

5. Import

Hosting the model endpoint:

1. Go to the Endpoints section of Vertex AI and click Create Endpoint.

2. Choose the model which was created before.

3. Use the default settings for everything else.

Retrieving Predictions from Vertex AI Endpoints

Set the ENDPOINT_ID and the Google PROJECT_ID as environment variables. Then, pre-
dictions from the DNN-model can be retrieved with the following command.

The Google Cloud SDK is needed for getting the credentials in line 5.
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1 ENDPOINT_ID="3465731019494129664" \

2 PROJECT_ID="<GCLOUD_PROJECT_ID >" \

3 bash -c ’curl \

4 -X POST \

5 -H "Authorization: Bearer $(gcloud auth print -access -token)" \

6 -H "Content -Type: application/json" \

7 https ://europe -west1 -aiplatform.googleapis.com/v1/projects/${PROJECT_ID

}/ locations/europe -west1/endpoints/${ENDPOINT_ID }: predict \

8 -d "{

9 "instances ": [[

10 1.4838871833555929 ,

11 1.8659883497083019 ,

12 2.234620276849616 ,

13 1.0187816540094903 ,

14 -2.530890710602246 ,

15 -1.6046416850441676 ,

16 -0.4651483719733302 ,

17 -0.4952254087173721 ,

18 -0.4952254087173721 ,

19 -0.4952254087173721 ,

20 -0.4952254087173721 ,

21 -0.4952254087173721 ,

22 -0.4952254087173721 ,

23 -0.4952254087173721 ,

24 -0.4952254087173721 ,

25 -0.4952254087173721 ,

26 -0.4952254087173721 ,

27 -0.4952254087173721 ,

28 -0.4952254087173721 ,

29 -0.4952254087173721 ,

30 0.7746763768735953

31 ]]}"

32 ’
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Contents of the CD

The attached CD and a ZIP file contains the following directories and files:

• System Source Code: Contains a repository with the source code of all implemented
services and for each service a README.md file with instructions. The sub-folders
contain also the ML training logs and Excel files used for the ML results comparison
and the cost analysis calculations.

• Related Work: Contains the discussed related work as PDF documents.

• Written Thesis Report: This directory contains the written report with the follow-
ing files:

– Abstract.txt : Plain text file with the English abstract.

– Zusammenfassung.txt : Plain text file with the German abstract.

– Thesis.pdf : The written report in PDF format.

– Latex Sources: The ZIP file of all Latex sources including all referenced images.
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