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Abstract

Deutsche Zusammenfassung

Im Internet der Dinge (IoT) ermöglichen Niedrigenergie-Weitverkehrsnetze (LPWAN) IoT-
Anwendungen eine grosse Netzabdeckung und geringen Energieverbrauch. Long Range
(LoRa) Wide Area Network (WAN) ist eine bekannte LPWAN-Technologie, welche von der
LoRa-Modulation in der Bitübertragungsschicht Gebrauch macht. Forschungen im Bereich
der Netzwerkoptimierung führten Adaptive Data Rate (ADR) Algorithmen ein, welche in
LoRaWAN-Netzwerke installiert werden können, um Energieeffizienz, Skalierbarkeit und die
Verarbeitungsmenge zu verbessern. Diese These beinhaltet die Implementation und Evalua-
tion von ADR-Algorithmen vom letzten Stand der Technik (SotA). Die Implementation und
Evaluation erfolgt in einer Simulationsumgebung namens Network Simulator 3 (ns-3). Die
durchgeführten Simulationen gewähren Einblick in LoRaWAN-Netzwerke mit hohem Netzw-
erkverkehrsaufkommen, was in der Spezifikation, Implementation und Evaluation von neuar-
tigen ADR-Algorithmen resultiert. Die erwähnten ADR-Techniken werden miteinander ver-
glichen, wobei die neu entwickelten ADR-Algorithmen LoRaWAN-Netzwerken eine erheblich
höhere Netzwerkskalierung, Verarbeitungsmenge und Ausfallsicherheit ermöglichen.

English Abstract

In the Internet of Things (IoT), Low Power Wide Area Networks (LPWAN) enable IoT appli-
cations to cover large areas and operate with low energy consumption. Long Range (LoRa)
Wide Area Network (WAN) is a known LPWAN technology that uses LoRa modulation on the
physical layer. The performance of LoRa networks, i.e., energy efficiency, network scalability,
and throughput, is typically improved with Adaptive Data Rate (ADR) algorithms. This the-
sis provides implementation and evaluation of State-of-the-Art (SotA) ADR algorithms in the
Network Simulator 3 (ns-3) framework. The simulations revealed problems of SoTA ADRs in
highly congested networks. The solutions to those problems led to the specification, implemen-
tation, and evaluation of novel ADR techniques that further improve the network performance.
Several ADR schemes are compared and show that the newly developed ADR algorithms en-
able substantially higher network scalability, throughput, and reliability in comparison to the
SotA techniques.
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Chapter 1

Introduction

The Internet of Things (IoT) is an emerging technology for solving societal issues such as digital

cities, intelligent transportation, green environment monitoring, and medical care [6]. An IoT

application is supported through an underlying network technology that respects the technical

requirements of the application. Low Power Wide Area Network (LPWAN) technology offers

kilometer-range coverage, limited power consumption, and simplified network architecture [7].

Due to the LPWAN networks, battery-powered devices can operate for years [12] on a single

battery charge. For instance, nodes in LPWANs can last for up to 17 years, sending 100 B once

a day [16].

Long Range Wide Area Network (LoRaWAN) is a widely adopted LPWAN technology [1].

LoRaWAN defines a communication protocol and system architecture of the network that ex-

ploits a robust Chirp Spread Spectrum (CSS) modulation on the physical layer, also referred to

as LoRA [7,12]. The LoRaWAN architecture is simple and consists of End Devices (ED), Gate-

ways (GW), and a Network Server (NS) organised in a star-of-stars topology [12, 22]. While

LoRaWAN enables the configuration of EDs, numerous Adaptive Data Rate (ADR) algorithms

have been introduced that optimize LoRaWAN networks by enabling the NS to dynamically ad-

just transmission parameters on EDs to appropriately adapt to the current network state. More

specifically, the objective of ADR algorithms includes, but is not limited to, the improvement

9



10 CHAPTER 1. INTRODUCTION

of network scalability, energy efficiency, and throughput [10].

The rapidly increasing IoT market implies that the scale of future IoT applications will substan-

tially increase [11,21]. As a consequence, the network scalability of LoRaWAN networks needs

to be improved for the LoRaWAN technology to stay competitive in the IoT domain. However,

this is a non-trivial problem because LoRaWAN protocol only exploits the CSS modulation

technique on the physical layer [7] and as an ALOHA-like protocol does not make use of Listen

Before Talk (LBT) or Carrier Sense Multiple Access (CSMA) mechanisms [2].

This thesis investigates how reliably a LoRaWAN can operate in highly congested situations.

The evaluations performed in this thesis result from simulations that are conducted in a discrete-

event simulation environment called Network Simulator 3 (ns-3) [18]. The ns-3 framework

enables realistic LoRaWAN simulations through the integration of LoRaWAN modules [14,27].

Another subject that needs further investigation is the extent to which classical ADR algorithms

improve the network scalability of LoRaWAN networks. During the constant evaluation of

simulations in this thesis, novel ADR algorithms are specified, implemented, and evaluated

which are designed to improve the reliability and scalability of LoRaWAN networks.

1.1 Motivation

Since the LoRaWAN technology offers low energy consumption, high communication range,

and cost-effective devices [12], LoRaWAN is a competitive technology in the IoT network

domain. As more and more businesses will operate with IoT applications [11,21], more devices

will be connected to the IoT. As a consequence, the technical requirements of IoT networks

will become more demanding and more difficult to fulfill. LoRaWAN technology has to stay

competitive by the optimization research performed to improve the scalability of LoRaWAN

networks.
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1.2 Description of Work

In this thesis, multiple ADR algorithms are studied which optimize LoRaWAN networks. Since

energy efficiency of LoRaWAN networks is a metric that can be optimized in various ways,

other metrics that are related to energy efficiency are put into focus as well. For instance,

improving the reliability of LoRaWAN networks positively impacts the energy efficiency due

to the fact that less retransmissions must be performed by EDs.

Many ADR algorithms have been introduced in the LoRaWAN community. This thesis im-

plements one of the most recent State-of-the-Art (SotA) ADR algorithms [3]. The algorithm

is ported towards ns-3 as initially, it was only implemented in a custom-made simulator by its

authors. The simulations of this algorithm yield important results, which provide relevant feed-

back that allows for the specification of new ADR algorithms in this work. Those algorithms

are then again implemented and evaluated in ns-3. Such an iterative process considering the

specification, implementation, evaluation, and feedback is executed multiple times until newly

optimized ADR algorithms are implemented. Finally, they improve the overall reliability, scal-

ability, throughput, and collision rates in the LoRaWAN.

1.3 Thesis Outline

The thesis is divided into the following chapters. Chapter 2 provides descriptions of related

work, alternative LPWAN technologies, and the simulation framework used in this thesis. Chap-

ter 3 lays out the specifications of LoRaWAN and ADR algorithms. Chapter 4 provides descrip-

tions of the implementation of ADR algorithms. Chapter 5 presents and discusses the results

of the conducted simulations of the implemented algorithms. Chapter 6 contains a summary as

well as the conclusion of this thesis’ findings. Furthermore, an outlook on future work is given.
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Chapter 2

Related Work & Technologies

As many ADR algorithms are developed by the LoRaWAN community, an overview is needed

that allows the existing ADR solutions to be organized. Kufakunesu, Hancke, and Abu-Mahfouz

(2020) compared numerous ADR algorithms in a survey, in which they reveal the strengths and

drawbacks of different approaches [10]. Furthermore, they provide an overview of techniques

that prove to be useful in ADR algorithms [10]. This chapter contains several examples of

related work and sheds light on alternative LPWAN technologies and simulation frameworks.

2.1 Related Work

C. Moy (2019) implements a novel learning algorithm (IoTligent) that operates on the ED-

side [17]. He models the spectrum access issue with a Multi-Armed Bandit (MAB) prob-

lem [17]. He uses reinforcement learning, a form of machine learning, to find the best con-

figuration of transmission parameters. The NS "rewards" successful transmissions with an ac-

knowledgment (ACK) which informs nodes that the previously used configuration enabled a

successful transmission. A positive characteristic of this approach is that very low processing

and memory overhead is added to LoRaWAN devices in the network [17]. However, the uti-

lization of downlink transmissions (ACKs) for every successful transmission is questionable

13



14 CHAPTER 2. RELATED WORK & TECHNOLOGIES

because the performance of networks with an ALOHA-like protocol quickly degrades as the

network load increases [29]. Nevertheless, his evaluation demonstrates that EDs improve with

IoTligent (i.e. are more likely to use a channel that results in more successful transmissions).

Cuomo et al. (2020) specify a machine learning technique using classification and regression

trees in a theoretical model [5]. Nodes with a similar behavior within the network are clustered

together with a k-means algorithm [5], such that the machine learning toolbox can be used for

groups of nodes with a similar behavior. The NS using this machine learning technique can

predict future inter-arrival times (in this thesis referred to as TxTime) of nodes. This might be

particularly useful if the inter-arrival times vary. By using this technique, high traffic periods

could be detected and even avoided. However, they never implemented their model but their

work suggests that their algorithm may find usage in future ADR schemes.

Cuomo et al. (2017) specified and implemented an ADR algorithm named EXPLoRa-AT [4],

which balances the usage of Spreading Factors (SF) by taking Time on Air (ToA) into consid-

eration. They assume a single gateway with one channel and perfect orthogonality of LoRa

signals. They apply an ordered-waterfalling approach to balance out ToA in the channel. Their

evaluation shows that the number of packet collisions is reduced in a network using EXPLoRa-

AT, ultimately making the network more reliable. While their heuristic algorithm causes low

processing overhead, their approach (arguably) does not address the margin of successful com-

munication. For instance, in a LoRaWAN network with a low network load, the ADR mecha-

nism will balance out the SF distribution, although there might be no need for it. However, when

the system encounters high network loads, EXPLoRa-AT substantially reduces the collision rate

and possibly increases throughput by doing so.

Coutaud et al. (2020) specified and implemented an ADR solution [3] that optimizes SFs and

the Number of Transmissions (Nbtrans) for nodes. By being aware of lost packets, the NS can

estimate the nodes’ signal conditions. This estimation allows the NS to configure the nodes’

radio parameters in a way, such that the nodes send packets successfully while transmitting

with minimal effort. However, their suggested algorithm implies the assumption that packet
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loss only occurs due to weak signals between EDs and GWs. This assumption is careless due

to the fact that a LoRaWAN network with a high network load mainly loses packets due to

collisions and not due to weak signals (i.e. "bad network connection"). Their ADR algorithm

might even invoke destructive behavior in the network when a collision scenario is present (i.e.

when packet losses mainly occur due to collisions). Nonetheless, the evaluation of their network

emulations demonstrates that their algorithm is a significant improvement over the LoRaWAN

ADR algorithm suggested by TheThingsNetwork (TTN) [3]. The Data Error Rate (DER), the

loss ratio between EDs and NS, falls below the value of 1%, which indicates that the simulated

networks achieved high reliability.

2.2 Introduction to LPWAN

Low Power Wide Area Network (LPWAN) technologies address long-range communication,

low power consumption, and cost-effectiveness [22]. Long-range communication in LPWAN

technology is often achieved by using Sub-GHz bands and special modulation schemes, such

as narrowband and spread spectrum [22]. Having a star topology and duty cycling reduces

network complexity and allows nodes to turn off when they are neither transmitting nor receiv-

ing [22]. Due to reduced hardware complexity and simplified architecture [22], the cost and

power consumption of LPWAN devices is minimized [12, 24]. All the mentioned characteris-

tics let LPWAN technologies compete within domains, where short-range wireless technologies

and cellular networks are already well-established [22].
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2.3 Alternative LPWAN Technologies

Besides LoRaWAN, other LPWAN technologies exist as noteworthy competitors. Each offers a

set of diverse advantages, which makes them unique in their own way. This section will present

a short list of alternative LPWAN technologies with a short description of each:

• SIGFOX is a well-known LPWAN technology, where EDs connect to base stations us-

ing a Binary Phase Shift Keying (BPSK) modulation in an ultra-narrow (100Hz) Sub-

GHz band carrier [22]. By using ultra-narrow bands (UNB), their systems achieve

very low noise levels, high receiver sensitivity, ultra-low power consumption, and cost-

effectiveness [22]. However, these benefits come at the expense of a maximum uplink

throughput of 100 bps [22]. Like LoRaWAN, SIGFOX uses an ALOHA-like protocol,

which simplifies communication, but greatly limits the scalability of the network [29].

• Ingenu is a proprietary LPWAN technology that uses a patented Random Phase Multiple

Access (RPMA) physical access scheme, which is a variation of Code Division Multiple

Access (CDMA) [22]. The usage of RPMA reduces overlapping between transmitted

signals and therefore increases the signal-to-interference ratio for each link [22]. RPMA

also enables devices to have a high receiver sensitivity and high link budget [22]. As an

exception to other LPWAN technologies, Ingenu uses 2.4 GHz ISM bands for which reg-

ulations do not impose duty cycles on the network [22]. This enables higher throughput

and capacity in comparison to LPWAN technologies using Sub-GHz bands [22].

To further compare the mentioned LPWAN technologies with focus on this thesis’ points of

interest, the table below (Table 2.1) replicates a subset of the LPWAN comparison table that

was created by Raza, Kulkarni, and Sooriyabandara (2017):
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SIGFOX LORAWAN INGENU

Modulation UNB DBPSK(UL), GFSK(DL) CSS RPMA-DSSS(UL), CDMA(DL)

Band Sub-GHz ISM Sub-GHz ISM ISM 2.4GHz

Data Rate 100bps(UL),600bps(DL) 0.3-37.5kbps(LoRa),50 kbps(FSK) 78kbps(UL),19.5kbps(DL)

Range 10km Urban, 50km Rural 5km Urban, 15km Rural 15km Urban

FEC No Yes Yes

MAC unslotted ALOHA-like unslotted ALOHA-like CDMA-like

Topology star star of stars star, tree

ADR No Yes Yes

Payload Length 12B(UL), 8B(DL) up to 250B 10kB

Table 2.1: Technical Specifications of various LPWAN Technologies [22]

2.4 Simulation Frameworks for LoRaWAN

Communication network research is often constrained by limited resources, such as time and

money. While this field of research requires an extensive amount of network measurements

for validation, questions arise as to where one gets access to said networks. As a solution to

this problem, several simulation frameworks were developed in the past, such as OMNET++

[19] and Network Simulator 3 (ns-3) [18]. Both are based on C++ [26] and facilitate realistic

simulations of LoRaWAN networks by either allowing functional extensions of the framework

[25] or integration of LoRaWAN modules [14, 27].

Magrin et al. (2017) have developed a LoRaWAN module for ns-3 [14,15] that allows the sim-

ulation of LoRaWAN networks. The module implements class A EDs, GWs, and NS, whereas

ADR algorithms can be installed on the NS as a network component. Their precise definition

of link models allows the simulation of realistic LoRaWAN networks [26].
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Duda and To (2018) created an LoRaWAN module for ns-3 [27], with which they compared the

simulation results on a real-world testbed [28] and measured values reported by the work [9]

by Haxhibeqiri et al. (2017) [26]. The models are not well documented but it is shown in the

publication that the module correctly represents the capturing effect, lowering the packet loss

ratio due to collision [26]. However, the capturing effect with orthogonal SFs remains unclear

in the simulation [26].

FLoRa (Framework for LoRa) [25] is a simulation framework based on OMNeT++ that also al-

lows users to simulate LoRaWAN networks. FLoRa contains an accurate model of the physical

layer that also allows collisions and the capturing effect in simulations [25]. Like the other two

previous ns-3 modules, FLoRa also contains implementations of network components such as

EDs, GWs, and NS [26]. Additionally, the framework provides statistics of energy consumption

in the network [25].

2.5 Evaluation of Simulation Frameworks and Modules for

LoRaWAN

This thesis uses ns-3 as the simulation framework because ns-3 has proven to be the most suited

framework for similar theses within CSG. As for the ns-3 modules, Surbeck (2019) from CSG

evaluated the mentioned modules before [26]. His evaluation shows that the module [14] from

Magrin et al. (2017) offers the most beneficial properties, such as great usability, well-written

documentation, an acceptable implementation, and an available energy framework [26]. Due to

his detailed explanation as to why the module of Magrin et al. (2017) is well suited for his work

and the fact that our theses have similar simulation requirements, this thesis makes use of the

mentioned LoRaWAN module [14] as well.



Chapter 3

Specifications

The LoRa Alliance proposes a cellular topology with GWs that receive packets from EDs and

relay the data to a NS on a TCP connection [16]. LoRaWAN functions in an unlicensed Sub-

GHz ISM band (863–870 MHz band in Europe and 902–928 MHz in the USA) [10]. It uses the

125 kHz, 250 kHz, and 500 kHz bandwidth (BW) and transmits payloads of up to 250 Bytes

over 5–15 km [10]. A Sub-GHz ISM band normally includes a duty cycle for EDs, which limits

the amount of time that an ED is allowed to transmit. The value of the duty cycle varies and is

usually set to a value between 0.1% and 10% [13, 14]. However, ns-3 simulations using ISM

bands with a duty cycle smaller than 1% require more nodes to successfully study high conges-

tion LoRaWAN networks than they would with a larger duty cycle. If a higher duty cycle is cho-

sen for the network, nodes are allowed to transmit with a relatively high frequency (i.e. TxTime

∈ {9s, 10s, 11s, 12s, 13s}), which enables the simulation of high network loads in LoRaWAN

networks with fewer EDs. Thus a duty cycle of 10% is used in all simulations in this thesis.

The main goal of LoRaWAN is to create a network with low power consumption, long-range

transmissions, and low-cost infrastructure [12]. It was mainly designed for sensor networks that

use low data rates with relatively high time intervals between packets (e.g. transmit every hour

or even days) [4]. Usually, LoRa is referred to as two distinct layers: (a) the physical layer us-

ing Chirp Spread Spectrum (CSS) modulation and (b) a MAC layer protocol [4]. The following

sections give an overview of the two layers and the LoRaWAN architecture.

19
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3.1 LoRa Physical Layer

Transmissions are spread out on different data rates and frequency channels [13]. By using a

CSS modulation, an ED can use up to six different spreading factors SF ∈ {7, 8, 9, 10, 11, 12}

or data rates [5], whereas LoRa data rates range from 0.3 kbps to 50 kbps [13]. An ED using

a higher SF has a longer communication range, but the ToA increases exponentially with an

increasing SF due to a decreased data rate. Additionally, the Code Rate (CR), usually fixed at

4/5 for LoRaWAN [23], is the redundancy implemented by a Forward Error Correction (FEC)

mechanism that is used to detect errors and correct them. The relation between bit rate R and

SF is given as [4]:

R = SF× BW
2SF × CR

It should be noted that EDs will need to use a higher SF the farther away they are from the

GW. However, a transmission having a high ToA is more susceptible to collisions, therefore

an increase in SF should be made cautiously. Since SFs are quasi-orthogonal between each

other [8], frames sent with different SFs are much less exposed to interference. The interference

between LoRa signals is described in the co-channel rejection (dB) matrix (Table 3.1) created

by Goursaud and Gorce (2015) and is used for the interference model in the LoRaWAN ns-3

module [14] of this thesis:

Desired | Interferer (dB) SF7 SF8 SF9 SF10 SF11 SF12
SF7 -6 16 18 19 19 20
SF8 24 -6 20 22 22 22
SF9 27 27 -6 23 25 25
SF10 30 30 30 -6 26 28
SF11 33 33 33 33 -6 29
SF12 36 36 36 36 36 -6

Table 3.1: Cochannel Rejection (dB) for all Combinations of Spreading Factor for the Desired
and Interferer User [6]

The rejection coefficients define the values that decide over the destruction of signals due to

interference. The desired signal is destroyed by the interfering signal when the negative signal-

to-interference ratio is above the rejection coefficient given for a pair of signals [14]. It is
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observable that two EDs can transmit simultaneously if none of the frames is received with

a power significantly higher [6]. Note that the rejection coefficient increases with increasing

SF, which means that distant nodes transmitting with high SF will be able to overcome the

simultaneous reception of closer nodes, which will likely be received with higher reception

power [6].

3.2 LoRaWAN Architecture

LoRaWAN networks use a long-range star-of-stars topology [22] to preserve battery lifetime

while long-range connectivity can be achieved [12]. Mesh networks end up having high com-

plexity and increased energy consumption because nodes both receive and forward information

from other nodes [12]. Transmissions from GWs to EDs are referred to as downlink com-

munication and transmissions from EDs to GWs as uplink communication. The LoRaWAN

architecture is made up of three main components [4]:

• End Device (ED): The low-power consumption devices that communicate with GWs us-

ing LoRa [4]. According to the reception window profile, three classes are distinguished:

– Class A: EDs which enable bi-directional communication [12]. Downlink commu-

nication is only possible during two short reception windows, that open sequentially

after an uplink transmission [13]. Downlink reception is therefore only possible

when a class A node wakes up in order to transmit a frame to GWs. Class A op-

eration is the lowest power ED system for applications that may delay downlink

transmissions until an ED sends an uplink transmission [12].

– Class B: On top of the class A functionality, class B EDs give GWs the possibility

to schedule uplink-independent reception windows in addition to the two short ones

after each uplink transmission [12]. EDs receiving time-synchronized beacons allow

the GW to register when EDs will open additional reception windows [12]. Each
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additional reception window requires EDs to wake up, which makes class B EDs a

less efficient option for IoT applications.

– Class C: Class C EDs have continuously open reception windows, except during

uplink transmissions [12]. They represent the ED class with the lowest energy ef-

ficiency. Only applications that require EDs to be reachable at all times should

consider class C EDs.

• Gateway (GW): GWs are the intermediate devices that forward packets coming from

EDs to a NS over an IP backhaul interface allowing high throughput, such as Ethernet or

3G [4]. There can be multiple GWs in a LoRa deployment and the same data packet can

be received (and forwarded) by more than one GW [4].

• Network Server (NS): Responsible for deduplicating and decoding the packets sent by

the devices and generating packets that should be sent back to the EDs [4]. Usually, ADR

algorithms are installed in the NS.

3.3 LoRaWAN Protocol & MAC Commands

The LoRa Alliance has standardized the open-source LoRaWAN protocol that is used above

the LoRa physical layer [10]. The LoRaWAN MAC protocol provides the network with the

MAC commands that are found in the Table 3.2. These commands provide a wide range of

functionalities for the NS, with which the NS can configure radio parameters of EDs [4]. Having

access to these functionalities enables the NS to control the network, which ultimately allows

the implementation of ADR algorithms [4]. As mentioned before, the LoRaWAN protocol is

an ALOHA-like protocol and makes no use of LBT and CSMA mechanisms [2]. ALOHA-like

networks are known for their limited scalability, because they rapidly perform worse in terms

of reliability when the network load increases [29].
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Command Description
LinkCheck1 has the purpose of validating the connectivity of the device

to the network
LinkADR used to request to the end-device to change data-rate, trans-

mit power, repetition rate or channel
DutyCycle allows to set the maximum duty-cycle of a device for trans-

mission
RXParamSetup used to change the reception parameters of the device
DevStatus used by the network server to reset the status of the device
NewChannel allows to modify the definition of the radio channel param-

eters
RXTiming used to setup the time slots for reception by the device
TXParam used to change the transmission parameters
DIChannel allows to create an asymmetric channel by shifting the

downlink frequency band with respect to the uplink one
(otherwise they have the same band)

Table 3.2: LoRaWAN supported MAC Commands [4]

3.4 Specification of the State-Of-the-Art (SotA) ADR Algo-

rithm

Coutaud et al. [3] specified an ADR algorithm that they call ADRopt. ADRopt dynamically

adjusts radio parameters, such that the network gets the most out of the available radio links

[3]. More specifically, ADRopt extrapolates a presumable PER (PERpredic) for each pair [SF;

Nbtrans] from the observation on the channel over the previous transmission period [3]. Then

ADRopt calculates which pair [SF; Nbtrans] will yield the optimal result. This is done by choos-

ing the pair that fits into a PER interval between zero and the upper PER threshold (PERmax) that

is defined by their used FEC technique. The idea is that the FEC layer still reaches full recovery

when the calculated PERpredic is below the PERmax [3]. If multiple pairs of [SF; Nbtrans] result

in a value within the PER interval, the pair [SF; Nbtrans] with the highest PERpredic is chosen.

In the work of Couteaud et al. [3] the PERmax is set to 0.3, while it is set to 0.6 in this thesis.

The reason for this difference is that this thesis’ ns-3 simulations use a log-distance path loss
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model instead of a model that represents a Rayleigh channel.

The NS registers received frames and saves information about the last 20 received packets. The

frame counters of the last 20 received packets reveal lost packets when the sorted frame counter

list contains a gap. For instance, in the frame counter list [0, 2, 3, . . . , 19, 20] the frame counter

’1’ is missing. The NS then concludes that all frames of the packet number ’1’ were lost. This

packet loss detection gives the NS insight into the signal quality (PERcurrent) between a node

and the GWs that are within the node’s reach. If the NS notices that a list of a particular node is

missing too many frame counters, the NS will then send a downlink transmission to this specific

node. The downlink transmission contains an ADR bit within the header, which informs the ED

that the ADR mechanism would like to change the radio parameters of that node. The downlink

transmission contains information about the chosen pair [SF; Nbtrans] that the nodes will adjust

their radio parameters to.

It follows the pseudo-code of the SotA Server and SotA ADR algorithm. The code lays the

foundation of the ns-3 implementation of the SotA ADR specification, which then is evaluated

in Section 5.2. The pseudo-code is based heavily on the original specification of Couteaud et

al. [3]:

Algorithm 1: SotA ADR Algorithm
ChHistory(20) // Initialization of the list of the last 20 frames (with unique frame
counter) received;

while (true) do
ACKReq = waitRx();
if (ACKReq) then

TxParameters = executeSotA(ChHistory) // executes the SotA ADR Function;
changeNodeTxParameters(TxParameters);

end
end
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Algorithm 2: SotA ADR Function
INPUT: ChHistory
OUTPUT: [SFnew; Nbtransnew]
PERmax = 0.6;
PERcurrent = getPER(ChHistory);
PERnew = -inf;
SFnew ;
Nbtransnew ;
for SF ∈ {7, 8, 9, 10, 11, 12} do

for Nbtrans ∈ {1, 2, 3} do
PERpredic[SF; Nbtrans] = 1;
for GW ∈ receptionGW(ChHistory) do

PERpredic[SF; Nbtrans] *= (calculateFER(SF, PERcurrent))Nbtrans ;
end
if ((PERnew < PERpredic) && (PERpredic < PERmax)) then

PERnew = PERpredic[SF; Nbtrans];
SFnew = SF;
Nbtransnew = Nbtrans;

end
end

end
if ((0 < PERnew) && (PERnew < PERmax)) then

return [SFnew; Nbtransnew];
else

return null;
end
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Below are the formulas which are used for the calculation of PERpredic<Nbtrans,SF> (PER at

the NS which is extrapolated for each pair [SF; Nbtrans]). They were elaborated in the work

of Couteaud et al. [3], but some variables have slightly different names in this thesis. First,

the PERcurrent is calculated, which leads to the calculation of the SNRcorrection. The NS es-

timates the current SNR (ŜNR) by subtracting the SNRcorrection from the maximal SNR that

was experienced by all GWs.

PERcurrent =
(Number o f packet loss)

(Number o f packet loss) + 20
sizeS =

20
(1− PERcurrent)

∗ Nbtrans

CDF−1
exp(x) = −ln(1− x) CDFexp(x) = 1− e−x

SNRcorrection =
10 ∗ log10(CDF−1

exp(0.951/sizeS)

2
+

10 ∗ log10(CDF−1
exp(0.051/sizeS)

2

ŜNR = maxSNRGW(ChHistory)− SNRcorrection

Then the estimated SNR is used to calculate the Frame Error Rate (FER) for one transmission

at a single GW ( FER<GWi,SF>). Considering that multiple frames can be transmitted for one

packet, the PER at the GW is (FER<GWi,SF>)
Nbtrans . Finally, the PER<Nbtrans,SF> at the NS is

the multiplication of all PERs from all GWs that are in reach of the transmitting node.

SNR f loor = (−20) + ((12− SF) ∗ 2.5)

FER<GWi,SF> = CDFexp(10(SNR f loor − ŜNR))

PER<Nbtrans,SF> = ∏
∀GWi

(FER<GWi,SF>)
Nbtrans
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3.5 ADR-1 Specification

The evaluation of the SotA algorithm reveals that network congestion must also be considered

as a cause of packet loss. The first solution is ADR-1, which adds a collision avoidance feature

on top of the SotA algorithm. By saving the timestamps of received frames, the NS can calculate

the period between packets (TxTime). The number of received frames (per GW) with the same

frame counter defines the minimal Nbtrans that was used by a node. Since the NS also registers

the used SF for each packet, the NS holds all the information about the radio parameters of a

node, as these are crucial for the calculation of the network load contribution.

The NS is now able to calculate the number that represents the current network load. By having

a representative number for network load G, the NS can predict the collision probability in the

network by using the Collision-Rate-Prediction-Line in Figure 5.4 from the evaluation chapter.

Since SFs offer a quasi-orthogonality in transmissions sent with different SFs, six network loads

are distinguished by the SFs. The NS ultimately calculates the collision probability of a packet

for a given SF.

The idea of ADR-1 is that, on top of the SotA ADR mechanism, the NS detects collision situa-

tions and decreases the network load reactively, such that the overall PER decreases (i.e. PSR

increases). Decreasing the network traffic is possible without modifying a node’s signal quality

if TxTime (the period between packets) is included as a modifiable radio parameter. If a node

is transmitting within a SF group that has a high collision probability, then the TxTime of the

node is increased from TxTime ∈ {9s, 10s, 11s, 12s, 13s} to 50s. In return, the network load

decreases because transmissions are sent less often within the network. Then the NS calculates

the new radio parameters (SF and Nbtrans) of a node with the SotA ADR mechanism. The new

SF is only sent to the node if it does not yield a higher collision probability than the old SF. Ad-

ditionally, the new Nbtrans is not sent if the current collision probability is above the probability

threshold of 20%. The implementation of the ADR-1 algorithm is evaluated in Section 5.3.
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Algorithm 3: ADR-1 Algorithm
ChHistory(20) // Initialization of the list of the last 20 frames (with unique frame
counter) received;

while (true) do
ACKReq = waitRx();
if (ACKReq) then

if (isCollisionScenario(SF)) then
increaseTxTime(50s);
return;

end
TxParameters = executeSotA(ChHistory) // executes the SotA ADR Function;
if (isAllowed(TxParameters)) then

changeNodeTxParameters(TxParameters);
end

end
end

3.6 ADR-2 Specification

The evaluation of ADR-1 shows that LoRaWAN networks can be in a state in which parts of

the network experience a packet collision rate of nearly 100%. Those networks are not man-

ageable by the NS and a completely new ADR approach needs to be considered because Lo-

RaWAN networks with N≥1200 are (at least partially) in such a state. With the given TxTimes

∈ {9s, 10s, 11s, 12s, 13s}, the network is handed to the NS in a ’broken’ state for N≥1200. A

possible solution is that the initial network load of the network is substantially decreased, such

that the network gets into the state of unrecoverability for N much higher than 1200.

Similar to ADR-1, the ADR-2 algorithm builds upon the SotA ADR algorithm as well. How-

ever, the idea is that EDs enter a network with a higher TxTime than the TxTime defined by

the end-user. More specifically, the initial TxTime of a node is multiplied by α2 and the NS

decreases this TxTime if the predicted packet collision probability is below 20%. Decreasing

the TxTime of a node is done by dividing the current TxTime by α for a maximum of two times.

The ADR-2 algorithm sort of safely speeds up the network, whereas the ADR-1 algorithm tries

to recover the network by slowing it down. The difference between ADR-1 and ADR-2 is also

addressed in the evaluation of the ADR-2 algorithm in Section 5.4. In this thesis 3 is used for
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α but other values will work too if α stays reasonably low (α ≤ 20). For instance, choosing α =

100 would cause the network to be extremely scalable but it takes roughly 10’000 times longer

to activate ADR. The optimal value for α more or less depends on the scale of the network and

the requirements of the end-user(s).

Algorithm 4: ADR-2 Algorithm
ChHistory(20) // Initialization of the list of the last 20 frames (with unique frame
counter) received;

numberOfTxTimeDecrease = 0;
while (true) do

ACKReq = waitRx();
if (ACKReq) then

if (!isCollisionScenario(SF)) then
if (numberOfTxTimeDecrease < 2) then

decreaseTxTime(α));
numberOfTxTimeDecrease++;
return;

end
end
TxParameters = executeSotA(ChHistory) // executes the SotA ADR Function;
if (isAllowed(TxParameters)) then

changeNodeTxParameters(TxParameters);
end

end
end
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3.7 ADR 3 Specification

In order to further evaluate ADR-2, the ADR-3 algorithm is specified (and evaluated in Section

5.5). It needs to be evaluated whether the ADR-2 algorithm benefits from the usage of the SotA

ADR mechanism. The ADR-3 algorithm copies the ADR-2 algorithm but removes the usage of

the SotA ADR functionality.

Algorithm 5: ADR-3 Algorithm
ChHistory(20) // Initialization of the list of the last 20 frames (with unique frame
counter) received;

numberOfTxTimeDecrease = 0;
while (true) do

ACKReq = waitRx();
if (ACKReq) then

if (!isCollisionScenario(SF)) then
if (numberOfTxTimeDecrease < 2) then

decreaseTxTime(α));
numberOfTxTimeDecrease++;
return;

end
end

end
end



Chapter 4

Implementation

The main implementation of ADR algorithms in this thesis can be directly derived from the

pseudo-code presented in the specification chapter. However, some functionalities need further

explanation. More specifically, two mechanisms are required for the calculation of the number

of packet losses and the measurement of the network load within the network. As a part of

these implementations, this thesis provides two tools written in C++ that fulfill the mentioned

functions.

4.1 Packet Loss Tool

As mentioned in the specifications, the NS needs to keep track of unique frame counters, such

that the NS can register packet losses. Assuming exactly three GWs and the number of nodes

never exceeds 2000, the NS initializes a 3-dimensional integer array (counterHistory) with all

elements equal to zero. Moreover, another global array (LostHistory) is initialized that keeps

track of the calculated number of packet losses per GW from counterHistory:

i n t c o u n t e r H i s t o r y [ 2 0 0 0 ] [ 2 0 ] [ 3 ] = { 0 } ;
i n t L o s t H i s t o r y [ 2 0 0 0 ] [ 3 ] = { 0 } ;
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Every time the NS receives a frame which was forwarded by a GW, a callback is executed

that causes a network-controller-component (this is where ADR is installed) to receive a frame

copy and related information (status of the GW). For instance, a frame arrives at the NS and

thus a copy of the frame is sent to the network-controller-component. The network-controller-

component removes the header from the frame copy and inserts the frame counter into the

counterHistory for a given node (nodeIndex) and GW (gwIndex). The counterHistory array can

not contain duplicates and must be sorted in increasing order. Thus the insertion and packet loss

calculation is done as follows:

i n t c o u n t e r = e x t r a c t F r a m e C o u n t e r ( h e a d e r ) ;

f o r ( i n t i n d e x =0; index <19; i n d e x ++)
{

/ / Find t h e s m a l l e s t number i n t h e a r r a y
i f ( c o u n t e r H i s t o r y [ nodeIndex ] [ i n d e x ] [ gwIndex ] >

c o u n t e r H i s t o r y [ nodeIndex ] [ i n d e x + 1 ] [ gwIndex ] ) {

/ / D i s a b l e i n s e r t i o n o f d u p l i c a t e s
i f ( c o u n t e r H i s t o r y [ nodeIndex ] [ i n d e x ] [ gwIndex ]== c o u n t e r | |

c o u n t e r H i s t o r y [ nodeIndex ] [ i n d e x + 1 ] [ gwIndex ]== c o u n t e r ) {
break ;

}
/ / C a l c u l a t e t h e number o f p a c k e t s t h a t were l o s t be tween t h e
/ / l a s t 20 r e c e i v e d p a c k e t s
L o s t H i s t o r y [ nodeIndex ] [ gwIndex ]= c o u n t e r −

c o u n t e r H i s t o r y [ nodeNumber ] [ i n d e x + 1 ] [ gwIndex ] − 2 0 ;
/ / Save t h e new frame c o u n t e r
c o u n t e r H i s t o r y [ nodeNumber ] [ i n d e x + 1 ] [ gwIndex ] = c o u n t e r ;
break ;

}

/ / I f t h e s m a l l e s t number i s t h e a t i n d e x ==0, t h e n t h e code above
/ / w i l l n e v e r be e x e c u t e d . In such a case , t h e code below i s reached
/ / w i t h i n d e x ==18, s i n c e t h e n e x t e l e m e n t i s n e v e r s m a l l e r . I t r ema ins
/ / t o be checked whe ther t h e l a s t e l e m e n t i n t h e a r r a y i s no d u p l i c a t e .
i f ( i n d e x ==18 && c o u n t e r H i s t o r y [ nodeIndex ] [ 1 9 ] [ gwIndex ] != c o u n t e r ) {

i f ( c o u n t e r H i s t o r y [ nodeIndex ] [ 0 ] [ gwIndex ] != 0){

/ / C a l c u l a t e t h e number o f p a c k e t s t h a t were l o s t be tween t h e
/ / l a s t 20 r e c e i v e d p a c k e t s
L o s t H i s t o r y [ nodeIndex ] [ gwIndex ] =

c o u n t e r − c o u n t e r H i s t o r y [ nodeIndex ] [ 0 ] [ gwIndex ] − 2 0 ;
}
/ / Save t h e new frame c o u n t e r
c o u n t e r H i s t o r y [ nodeIndex ] [ 0 ] [ gwIndex ] = c o u n t e r ;
break ;

}
}
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Note that the number of lost packets is negative before 20 packets are successfully received for

a given node and GW. This does not matter to the ADR algorithm because GWs will only be

included in the calculation of PERpredic if they already forwarded at least 20 packets to the NS.

PERcurrent can then be calculated at any time within the simulation:

i n t numberOfLos tPacke t s = L o s t H i s t o r y [ nodeIndex ] [ gwIndex ] ;
double cu r ren tPER = numberOfLos tPacke t s / ( numberOfLos tPacke t s + 2 0 ) ;

4.2 Network Load Measurement Tool

ADR-1, ADR-2, and ADR-3 provide collision avoidance features that require the measurement

of the network load within the LoRaWAN network. In this thesis, the network load G is mea-

sured in Erlangs (Erl). The network load measured for a given simulation time can be calculated

as follows:

G =
(Number o f transmitted f rames) ∗ (ToA / transmission)

(Simulation time)
Erl

However, the NS must measure the network load at any point in time (i.e. independent of

the simulation time). By rewriting the formula, the simulation time can be removed from the

formula.

(Number o f transmitted f rames) =
(Simulation time) ∗ (Number o f nodes)

(TxTime/transmission)

G =

((((((((
Simulation time)∗(Number o f nodes)

(TxTime/((((((transmission) ∗ (ToA /(((((((
transmission)

((((((((((
(Simulation time)

Erl

=
(Number o f nodes) ∗ (ToA)

(TxTime)
Erl
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Finally, the following equation describes the network load contribution by one node at any

point in time. If Nbtrans is a modifiable radio parameter of nodes, then the NS just multiplies

the network load contribution of a node by Nbtrans.

G
(Number o f nodes)

=
(ToA)

(TxTime)
Erl

Since the network loads are separated by SFs, the ToA can take six different values depending

on the used SF. These ToA values are initialized in a double array (TimeOnAirTable). TxTime

is calculated as the time difference between the last two subsequently received packets. As the

last relevant parameter, Nbtrans values are saved in the NS as well.

/ / The t i m e on a i r v a l u e s f o r a l l SFs i n s e c o n d s
/ / The ToA v a l u e o f SF 7 would be 0 .055552 s
double TimeOnAirTable [ 6 ] =

{ 0 . 0 5 5 5 5 2 , 0 . 1 0 0 8 6 4 , 0 . 1 8 5 3 4 4 , 0 . 3 3 7 9 2 , 0 . 6 4 3 0 7 2 , 1 . 2 2 0 6 0 8 } ;

/ / t xNodeFrequency [ node Index ] [ 0 ] c u r r e n t TxTime
/ / t xNodeFrequency [ node Index ] [ 1 ] l a s t t i m e s t a m p i n s e c o n d s
/ / t xNodeFrequency [ node Index ] [ 2 ] l a s t f rame c o u n t e r
double txNodeFrequency [ 2 0 0 0 ] [ 3 ] ;

i n t NbHis to ry [ 2 0 0 0 ] ; / / i n i t i a l l y a l l e l e m e n t s are ’1 ’

i n t c o u n t e r = e x t r a c t F r a m e C o u n t e r ( h e a d e r ) ;

i f ( c o u n t e r ==0){
txNodeFrequency [ nodeIndex ] [ 0 ] = 0 ;
txNodeFrequency [ nodeIndex ] [ 1 ] = t imes t amp . GetSeconds ( ) ;
txNodeFrequency [ nodeIndex ] [ 2 ] = c o u n t e r ;

}
e l s e i f ( c o u n t e r > txNodeFrequency [ nodeIndex ] [ 2 ] ) {

txNodeFrequency [ nodeIndex ] [ 0 ] =
( i n t ) ( ( t imes t amp . GetSeconds ( ) − txNodeFrequency [ nodeIndex ] [ 1 ] ) /
( f r ameCounte r − txNodeFrequency [ nodeIndex ] [ 2 ] ) + 0 . 5 ) ;

txNodeFrequency [ nodeIndex ] [ 1 ] = t imes t amp . GetSeconds ( ) ;
txNodeFrequency [ nodeIndex ] [ 2 ] = c o u n t e r ;

}
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Finally, the network load contribution of a node can be calculated with the current TxTime,

ToA, and SF at any time in the simulation:

double n e t w o r k L o a d C o n t r i b u t i o n =
NbHis to ry [ nodeIndex ]* TimeOnAirTable [ SF −7] /
txNodeFrequency [ nodeIndex ] [ 0 ] ;
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Chapter 5

Evaluation

This chapter demonstrates general LoRaWAN network behavior, the performance of imple-

mented ADR specifications, and the explanation of critical events of simulations that led to new

specifications. Note that most figures demonstrate the performance of a network by showing

the Packet Success Rate (PSR) which is directly related to the Packet Error Rate (PER). The

relation between these expressions can be described by the following equation:

PSR = 1− PER

To validate the evaluations in this thesis, every data point in a figure represents the average of

four measurement values. Some figures also indicate the standard deviation as y-error bars,

such that results can be compared more effectively.

5.1 Simulation Settings and Environment

The simulations were run on three virtual machines provided by the University of Zürich. The

chosen operating system for the VMs is Ubuntu 20.04 LTS because Linux is generally recom-

mended within the ns-3 community.
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The simulation settings are split into three different simulation profiles. All profiles use the

constant simulation parameters defined in Table 5.1. However, they differ in the usage from the

simulation parameters in Table 5.2.

(Constant) Simulation Parameter Value
Code Rate 4

5
Duty Cycle 10%
Number of Gateways 3
TxTime of EDs random value of the set {9s, 10s, 11s, 12s, 13s}
Band Width 125’000 Hz
Uplink Transmission Power 14 dBm
Number of EDs N ∈ {50, 100, . . . , 1150, 1200}

Table 5.1: Simulation Parameters used in every Simulation

It must also be noted that each node is assigned a SF ∈ {7, 8, 9, 10, 11, 12} and Nbtrans equal to

1 at the start of each simulation. The distribution of SFs is done in a realistic setting, in which

end-users have no technical know-how of the LoRaWAN technology. Hence it is assumed that

end-users initially set the SFs high instead of low, as nodes are more likely to immediately

connect to a LoRaWAN network with a higher SF. This is because nodes using a higher SF also

have a higher communication range. This is implemented by inserting an offset into the default

SF allocation mechanism of the LoRaWAN module [14].

(Variable) Simulation Parameter Profile-1 Profile-2 Profile-3
Simulation Time 1000s 1000s 3000s
Radius 1m 5000m 5000m
ADR Algorithm No ADR No ADR, SotA, ADR-1 ADR-2, ADR-3

Table 5.2: Variable Simulation Parameters used for the different Simulation Profiles

The LoRa channel that is used in the simulations is defined by two different models. The used

propagation loss model is a log-distance path loss model. In this thesis, 3.76 is the value of the

path loss exponent, whereas the reference distance is equal to 1m and the reference loss is equal

to 7.7dB. As for the propagation delay model, the constant-speed propagation delay model is
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used for all simulations. Furthermore, all EDs and GWs connected to the network are stationary

and placed uniformly on the disc (with constant density) that is defined by the simulation radius.

Finally, any GW in the simulations offers a single channel operating at 868 MHz.
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5.2 SotA ADR Performance

Figure 5.1: Performance of the SotA Algorithm with y-Error Bars

After this thesis’ ns-3 implementation of the SotA ADR algorithm specified by Coutaud et

al. [3], the performance of the SotA algorithm is elaborated in a Profile-2 simulation. Figure

5.1 shows the achieved PSR in dependency of the number of nodes (N). The standard deviation

of the PSR is indicated with y-error bars. Compared to a LoRaWAN network without ADR,

the SotA algorithm achieves an improved network performance of a slightly higher PSR (i.e.

lower PER) than a default network (No ADR). This can be seen in Figure 5.12, but it must

also be noted that the improvement value approximates 0 as the number of EDs in the network

increases to a value higher than ∼800. This phenomenon is further analyzed in the following

subsections.
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5.2.1 Network Load Analysis

After observing the SotA algorithm lose value in highly loaded LoRaWAN networks, the basic

behaviors of LoRaWAN networks are further investigated in order to understand the observed

phenomenon. It is indicated that the number of nodes (N) impacts the performance of Lo-

RaWAN networks in general, because increasing N worsens the default network as well. Thus

several Profile-1 simulations without any ADR mechanism are conducted, such that the rela-

tion between N and the performance of LoRaWAN networks can be understood. For instance,

LoRaWAN networks with EDs which only transmit with SF 7 (i.e. SF-7-only network) are

simulated for an increasing number of EDs. Figure 5.2 displays the experienced network load

by the NS (not to be mistaken with the actual network load). It can be seen that the network

load proportionally increases with the number of nodes connected to the network.

Figure 5.2: The experienced Network Load at the Network Server in a SF-7-only Network

Due to the fact that increasing the SF of transmissions decreases the data rate of transmissions,

the ToA of transmissions increases as well. Therefore, the network load increases when the
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average SF of EDs increases within the network. This is demonstrated in Figure 5.3. As one

compares the two figures (Figure 5.2 and Figure 5.3), it can be seen that the NS in the SF-9-only

network initially experiences a much higher network load compared to the NS in the SF-7-only

network.

Figure 5.3: The experienced Network Load at the Network Server in a SF-9-only Network

The registered network load decreases at about N = 400 and approximates 0 for N ≥ 1000.

This can be explained by an increasing number of packet losses in the network. The NS never

receives the lost packets and therefore registers a network load lower than the actual network

load. Normally, packet loss occurs when the network signals are too weak or when transmit-

ted frames collide with each other. A collision occurs when two separately transmitted frames

simultaneously arrive at a GW, thus causing an incorrect reception of those frames. As a con-

sequence, the frames are dropped and the network suffers packet loss. Figure 5.4 displays the

results of numerous Profile-1 simulations (SF-7-only, SF-9-only, and SF-11-only networks).

More specifically, PSR is shown in dependency of the actual network load. As Profile-1 sim-

ulations set the network radius to one meter, the network connection between EDs and GWs
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is very strong. Hence it is assumed that packet loss in Profile-1 simulations is only caused by

network congestion (i.e. collisions). Thus it can be said that Figure 5.4 shows that an increasing

network load significantly worsens the PSR (i.e. PER) of LoRaWAN networks.

Figure 5.4: Packet Success Rate in Dependency of the actual Network Load

It is observable in Figure 5.4 that LoRaWAN networks fail to reliably operate if the actual

network load increases too much. Assuming the end-user requires a PSR of 60%, the actual

network load must not exceed ∼1 Erl for each SF. As a general trend of the graphs (SF 7, SF 9,

and SF 11), a straight line is drawn that represents a rough estimation of the success probability

of packets which are currently sent in a LoRaWAN network. The domain of this line’s function

(C) is G ∈ [0, 5] in Erlangs, whereas the codomain is simply PSR ∈ [0, 1]. Network loads that

reach values greater than five are simply set to five. The function is defined by the following

equation:

C(G) = 1− G
5
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5.2.2 The Scalability Limit of the SotA ADR Algorithm

The simulations from the previous subsection delivered results that give insight into the problem

of network congestion within a LoRaWAN network. Unless the network load is very low (i.e.

G ≤ 0.5 Erl), collisions generally should not be ignored in LoRaWAN networks. This explains

why the SotA algorithm fails for highly loaded networks. The work of Coutaud et al. [3] implies

the assumption that packet loss only occurs due to weak signals between EDs and GW. Thus the

SotA ADR mechanism reacts to packet losses with downlink transmissions which are meant to

enhance the signal between an ED and a GW. This is done by either increasing the SF or Nbtrans,

which - however - also increases the network load G (Figure 5.2 and Figure 5.3). To sum it

up, the SotA algorithm fails in collision situations (i.e. highly loaded networks), because the

SotA ADR mechanism increases the network load and ultimately further increases the packet

collision probability, as this is the main cause for packet loss in a collision scenario.

This degrades the network performance and makes the SotA algorithm questionable. This ac-

quired knowledge enables the specification of ADR-1 that is based on SotA ADR, but addition-

ally considers collisions as a cause of packet loss (see Section 3.5).

5.3 ADR-1 Performance

The evaluation of the SotA algorithm shows that the network traffic needs to be considered and

that increases in SF or Nbtrans need to be supervised. If a collision scenario is detected in ADR-

1, the NS first increases TxTime to decrease the network load. Subsequently, the NS executes

the SotA ADR sub-algorithm and controls the returned values. More specifically, the NS allows

an increase of SFs and Nbtrans if the collision probability is below 20%.

Taking a look at the results of the Profile-2 simulations with ADR-1 (Figure 5.12), it is visu-

alized that ADR-1 and the SotA ADR algorithm perform equally well for N ≤ 300. However,

as N increases above that value, ADR-1 yields a worse PSR than the default network. This

incident is further analyzed in the following subsection.
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5.3.1 The Unrecoverability of LoRaWAN Networks

To explain the observed phenomenon, the behavior of ADR-1 is further analyzed in detail.

Figure 5.5 showcases ADR-1 performing in a network with only 100 nodes. Furthermore,

Figure 5.5 visualizes the experienced network load of SF 10, 11, and 12 which are effectively

reduced by the operations of ADR-1. This is due to the fact that the EDs’ TxTime is increased

successfully, whereas some EDs reduce their SF to a lower value. Increasing the TxTime of a

SF 12 node is effective since the ToA of transmissions increases exponentially with increasing

SF. The result is a successful LoRaWAN network.

Figure 5.5: ADR-1 Network Activity with N=100

Still, ADR-1 performs poorly for N ≥ 300 (Figure 5.12). Figure 5.6 shows the experienced

network loads in a highly loaded LoRaWAN network running with ADR-1. Similar to the SF-

9-only network (Figure 5.3), the collision rate is so high, such that frames sent by the nodes

rarely reach the NS. In Figure 5.6, the experienced network load of SF 12 is 0 Erl while the

actual network load is above ∼30 Erl. According to the collision diagram (Figure 5.4), the

collision probability is predicted to be 100% for a network load above 5 Erl.
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Uplink and downlink transmissions sent with SF 12 never reach their destination, whereas

ADR-1 does not even activate for nodes that do not transmit 20 packets successfully. The

SF 12 group (i.e. the nodes transmitting with SF 12) is principally disconnected from the net-

work. SF groups that operate with an acceptable actual network load below 5 Erl are slowed

down by getting their TxTime increased by the NS if the network load for a given SF is above

1 Erl. By slowing down the successful nodes, without slowing down the unreachable nodes,

ADR-1 inevitably achieves a lower PSR than the original SotA algorithm, for networks with

high congestion.

Figure 5.6: ADR-1 Network Activity with N=1200

The evaluation of the ADR-1 simulations reveals that LoRaWAN networks can reach a state in

which they are unrecoverable. LoRaWAN networks in this state have such a high N for at least

one group of SFs, such that no ADR mechanism can decrease the network load anymore. This

means that any reactive ADR mechanism will fail in such a case because they activate only after

successfully receiving at least 20 packets.
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Additionally, downlink transmissions do not reach the nodes in the first place, if the collision

probability is too high. A completely different approach to collision avoidance needs to be

taken, leading to this thesis’ specification of ADR-2 (see Section 3.6).

5.4 ADR-2 Performance

The ADR-2 algorithm takes a entirely different approach than the previously specified algo-

rithm. A LoRaWAN network using the ADR-2 algorithm can detect and prevent collision sce-

narios much earlier for a given N. The reason for this improvement is that the initial network

load is significantly reduced before the network starts running. This is implemented by having

EDs multiply their required TxTime by α2. Note that the value of α is set to 3 in this thesis.

Instead of decreasing the transmission frequency (i.e. increasing TxTime) like in ADR-1, the

ADR-2 mechanisms decrease the TxTime by α every time the NS allows such a modification

(for a maximum of two times). Decreasing the TxTime of nodes is allowed if the predicted

collision probability is below the threshold of 20%.

The results are obtained by running Profile-3 simulations for ADR-2. Note that the simulation

time (3000s) is three times higher than the simulation time in Profile-1 and Profile-2 (1000s).

The reasoning behind this is that EDs take α2 times longer to successfully transmit the first

20 packets that enable ADR. The achieved PSR (see Figure 5.12) of the ADR-2 algorithm

is substantially higher than the previously achieved network performances of ADR-1 and the

SotA ADR. Figure 5.7 shows the results of the low-load LoRaWAN network running with

ADR-2. After most nodes have successfully transmitted 20 packets, the ADR-2 mechanism

starts decreasing the TxTime of EDs, which causes the network load to increase up to 1 Erl.

Note that on the right side of Figure 5.7 barely any changes are made for SF and Nbtrans, which

means that the SotA ADR functionality is rarely used.

The highly loaded LoRaWAN network using ADR-2 (Figure 5.8) also successfully manages

EDs. It can be seen for all SFs (except SF 12) that the network load is increased to 1 Erl
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as defined by the network. The initial network load of SF 12 is unfortunately already higher

than 1 Erl, although the SF 12 nodes transmit α2 times slower than required by the end-user.

The extremely high network load contribution of SF 12 nodes is also demonstrated in Figure

5.6, where the default nodes reach an initial (actual) network load of about 30 Erl. Unlike when

ADR-1 is used, the NS in the highly loaded network using ADR-2 is still able to receive packets

from SF 12 nodes. For validation’s sake, a last ADR algorithm (ADR-3) is specified in Section

3.7, which excludes the SotA ADR functionality from ADR-2.
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Figure 5.7: ADR-2 Network Activity with N=100

Figure 5.8: ADR-2 Network Activity with N=1200
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5.5 ADR-3 Performance

Figure 5.9: Performance of the ADR-3 Algorithm with y-Error Bars

As a simplified version of ADR-2 (without SotA ADR functionality), ADR-3 yields similar

results as ADR-2. Comparing the two, the ADR-3 algorithm achieves a slightly higher PSR for

any given N. This can be seen in Figure 5.12. The activity of networks using ADR-3 (Figure

5.10 and Figure 5.11) also look similar to ADR-2, but no changes in SF and Nbtrans can be

seen, as the SotA ADR functionality has been removed.
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Figure 5.10: ADR-3 Network Activity with N=100

Figure 5.11: ADR-3 Network Activity with N=1200
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5.6 Final ADR Comparison

This thesis contains three specifications for three novel ADR algorithms. The implementation

of these algorithms and the SotA ADR algorithm yield comparable results. Figure 5.12 displays

the PSR of the implementations in dependency of the number of nodes. The figure indicates that

the achieved PSR is much higher for ADR-2 and ADR-3, whereas ADR-1 and the SotA ADR

only show minor improvements over the default network. Note that the standard deviations

shown in Figure 5.1 and Figure 5.9 demonstrate that the performance difference between SotA

ADR and ADR-3 is compelling.

Figure 5.12: ADR Comparison



Chapter 6

Summary and Conclusion

This thesis provides a study of Long Range (LoRa) Wide Area Network (WAN) and Adaptive

Data Rate (ADR) algorithms in the ns-3 environment. As the first contribution, a State of the

Art (SotA) ADR algorithm [3] is implemented in a LoRaWAN ns-3 module [14], which enables

realistic simulations of LoRaWAN networks. It is shown in the simulation that the chosen SotA

ADR scheme yields minor incremental improvements, e.g., an increased PSR of around 20%

in comparison to regular LoRaWAN networks (i.e., without ADR in uncongested networks).

Furthermore, this ADR scheme is not scalable towards larger networks with significant conges-

tion, while it might even provide lower PSR in some situations in comparison to regular LoRa

networks. This work experienced a reduced PSR of -3% for a highly congested network using

the SotA ADR in comparison to a regular LoRa stack.

The second contribution is the specification, implementation, and evaluation of three novel

ADR algorithms, which use different collision avoidance features. The simulations show that

LoRaWAN networks finding themselves in highly congested situations can not successfully

recover from congestion anymore and, therefore, leave no room for optimization. This is due to

the fact that the absolute Packet Success Rate (PSR) is very close to 0 in such a case, and the NS

is unable to alleviate the congestion on End Devices (EDs), while the Gateway (GW) is not able

to receive from or send to congested EDs. This finding led to the development of ADR-2 and

53
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ADR-3, which require a minimal initial network load before the network starts operating under

the control of SotA ADR mechanisms. This way, the NS is still able to control and support a

higher number of nodes which would otherwise cause LoRaWAN networks to malfunction.

This thesis demonstrates that ADR-2 and ADR-3 yield substantial improvements, e.g., an in-

creased PSR of around 100% in comparison to regular LoRaWAN networks (i.e., without ADR

in uncongested networks). In contrast to the chosen SotA ADR scheme, the newly developed

ADR schemes (i.e. ADR-2 and ADR-3) are scalable towards larger networks with high conges-

tion. The simulations show that highly congested networks using either ADR-2 or ADR-3 have

a substantially increased PSR of around 500% in comparison to a regular LoRa stack.

6.1 Future Work

In the scope of this thesis, future work could experimentally verify this thesis’ ADR specifica-

tions and modify them with additional features (e.g., reducing load through dynamic duty-cycle

mechanisms). The implementation of this work is not yet at the running prototype level ready

for the development of future Internet-of-Things (IoT) applications on a large scale. Further-

more, future applications may have additional requirements that this work fails to address (e.g.,

real-time traffic).

Generally, the LoRaWAN technology is very limited by the ALOHA-like Medium Access Con-

trol (MAC) protocol. Current LoRaWAN research already tries to integrate various collision

avoidance features, such as Listen Before Talk (LBT) [26], Carrier-Sense Multiple Access

(CSMA) [28], slotted ALOHA [20], and machine learning techniques [5,17]. However, in order

for LoRaWAN to support the number of nodes that are currently connected to cellular networks

like in the 3rd Generation Partnership Project (3GPP) 4G/5G, further research is needed in the

area of LoRaWAN scalability.
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Abbreviations

IoT Internet of Things

SotA State of the Art

LPWAN Low Power Wide Area Network

LoRaWAN Long Range Wide Area Network

MAC Medium Access Control

QoS Quality of Service

SF Low Power Wide Area Network

Nbtrans The number of transmissions that an end device sends for one packet

TxTime Transmission Time - The time period between two subsequent packets of a node

Ptx Transmission Power

CR Code Rate

BW Bandwidth

PER Packet Error Rate

PSR Packet Success Rate

FER Frame Error Rate

GW Gateway

ED End Device

NS Network Server

N Number of nodes

CCS Chirp Spread Spectrum

FEC Forward Error Correction
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LBT Listen Before Talk

CSMA Carrier Sense Multiple Access



Glossary

to slow down : to decrease the transmission frequency of end devices

to speed up : to increase the transmission frequency of end devices

to suffer from something : being in a state, in which something degrades one’s technical per-

formance
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Appendix A

Installation Guidelines

To run simulations with this thesis’ source code, the ns-3 framework needs to be installed. Ns-3

can be installed by following the setup instructions on the ns-3 web-site [18]. It is recommended

to work with a Linux operating system. Alternatively, Windows10 users can install the Windows

Subsystem for Linux (WSL) that works as well.

A.1 Installation ns-3

This thesis uses the latest release of ns-3 (ns-3.34) and it is downloaded using git. Before

building ns-3 with the Waf tool, the NS3_LoRaWAN_SourceCode.zip (see appendix) needs

to be opened. Unzip this zip file and save the content in the directory where ns-3 was cloned in.

The file structure around your clone should now look like this:

67



68 APPENDIX A. INSTALLATION GUIDELINES

/
your_github_repositories

ns-3-allinone
ns-3-dev

scratch
src
. . .

NS3_LoRaWAN_SourceCode
lorawan
scratch
bash-scripts

Enter the your_github_repositories directory and execute the following commands. They
copy the relevant source files of this thesis into the installed ns-3 framework:
$ r s y n c −av NS3_LoRaWAN_ SourceCode / l o r awan / * ns −3− a l l i n o n e / ns −3−dev / s r c / l o r awan
$ r s y n c −av NS3_LoRaWAN_ SourceCode / bash − s c r i p t s * ns −3− a l l i n o n e / ns −3−dev
$ r s y n c −av NS3_LoRaWAN_ SourceCode / s c r a t c h / * ns −3− a l l i n o n e / ns −3−dev / s c r a t c h

A.2 Build with Waf

Now the source code of the complete framework needs to be compiled. Enter into the ns-3-dev
directory and execute the commands below. These commands configure the Waf tool, enable
logging in the previously copied source files, and build ns-3:

$ . / waf c o n f i g u r e −− b u i l d − p r o f i l e =debug −− enab l e − examples −− enab l e − t e s t s
$ e x p o r t ’NS_LOG= Algor i thm1 = l e v e l _ a l l | p r e f i x _ t ime ’
$ e x p o r t ’NS_LOG=Adr1= l e v e l _ a l l | p r e f i x _ t ime ’
$ e x p o r t ’NS_LOG=Adr2= l e v e l _ a l l | p r e f i x _ t ime ’
$ e x p o r t ’NS_LOG=Adr3= l e v e l _ a l l | p r e f i x _ t ime ’
$ e x p o r t ’NS_LOG=Adr4= l e v e l _ a l l | p r e f i x _ t ime ’
$ e x p o r t ’NS_LOG=Adr_ Noth ing = l e v e l _ a l l | p r e f i x _ t ime ’
$ . / waf
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A.3 Simulate LoRaWAN Networks

Every simulation of this thesis can be run with the Algorithm1.cc simulation script that was
copied into the scratch directory. From the ns-3-dev directory every simulation can be run
with this script:
$ . / waf −− run ’ s c r a t c h / Algor i thm1 . cc ’

Attributes are parameters that can be set to different values before a simulation. There exist
multiple attributes and every attribute is set to a default if no value is set.

• nDevices: The number of nodes N. N must be divisible by 5. The default is 100.

• radius: The simulation radius in meters. The default is 5000.

• simulationTime: The simulation time in seconds. The default is 1000.

• adrType: An integer that decides which ADR algorithm is installed in the NS. The default
is 1.

– adrType=1 corresponds to the SotA ADR

– adrType=2 corresponds to the ADR-1

– adrType=3 corresponds to the ADR-2

– adrType=4 corresponds to the ADR-3

– adrType=5 corresponds to no ADR

• sfDistribution: This number (1 or 0) decides whether the initial SFs of nodes are set in a
realistic scenario or uniformly. The default is 1.

• homogenousSF: If sfDistribution equals 0, then all SFs in the network are set to homoge-
nousSF. The default is 7.

Example 1: This command runs a Profile-2 simulation with the SotA ADR algorithm:
$ . / waf −− run ’ s c r a t c h / Algor i thm1 . cc −−adrType =1 ’

Example 2: This command runs a Profile-2 simulation with the SotA ADR algorithm and pro-
duces a log file of the results:
$ . / waf −− run ’ s c r a t c h / Algor i thm1 . cc −−adrType =1 ’ > l o g s . o u t 2>&1

Example 3: This command runs a Profile-1 simulation of a SF-7-only network with 200 nodes:
$ . / waf −− run ’ s c r a t c h / Algor i thm1 . cc −−adrType =5 −− s f D i s t r i b u t i o n =0

−−homogenousSF=7 −− nDev ices =200 − r a d i u s =1 ’
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Appendix B

Contents of the CD

• BScThesis_SteigerDavid.pdf: The thesis document in PDF format.

• BScThesis_SteigerDavid.zip: The Latex source code of this thesis’ PDF document.

• Abstract.txt: The abstract written in english.

• Zusfsg.txt: The abstract written in german.

• MidtermPresentation.odp: The intermediate presentation of this thesis.

• NS3_LoRaWAN_SourceCode.zip: The ns-3 source code that is required for the simula-

tions in this thesis.

• SimulationLogs.zip: The log files that were produced as a result of the simulations.

• LogParserScripts.zip: Python parser scripts that were used to extract information from

the logged data.

• SimulationDataSets.zip: Data sets that were produced from the parser scripts.

• Figures.zip: Figures that visually display information gathered in the data sets.
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