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Abstract

As criminals have become more sophisticated in the manner they launder their illicit
funds, financial institutions and regulators across the world have been quick in their rush
to adapt much more stringent Anti Money Laundering (AML) controls. Unfortunately,
AML laws oftentimes come at the expense of the most financially vulnerable in soci-
ety [1]. In fact, many banks today would rather reject low-value or low-income customers
(whether officially or bureaucratically) than risk high costs or fines associated with com-
plicated AML procedures.

The relatively new phenomenon of cryptocurrencies has lowered the regulatory barrier
and cost for both domestic transactions as well as international remittances for people all
over the world. At the same time, it is important to acknowledge that money laundering
and illegal transactions do occur on the blockchain. However, the nature and openness
of the blockchain has presented an opportunity for machine learning algorithms to make
the financial system safer by detecting and tracing such illicit funds moving throughout
the network.

This thesis is motivated to improve the AML process for both financial institutions, busi-
nesses, as well as ordinary people. In particular, a machine learning model (XGBoost)
is presented that not only depicts a robust way to detect anomalous transactions on the
Bitcoin blockchain, but also to explain what drives its underlying decisions. With that
said, having an accurate model alone is not enough for such an endeavour due to the
regulatory landscape surrounding AML laws. In fact, explaining why a model arrived at
the result it did - in particular, why something was flagged as an anomaly is a salient of
a concept as the performance metrics of the model itself.
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Zusammenfassung

Straftäter im Bereich Geldwäscherei basieren auf immer raffinierteren Methoden aufgrund
dieser Fonds, Finanzinstitute und Aufsichtsbehörden auf der ganzen Welt der Bekämpfung
hinterherhinken, dies meist zu Lasten von wirtschaftlich schwächer gestellten Personen.
Dies führt bedauerlicherweise dazu, dass Banken Neukunden lieber ablehnen, anstatt hohe
regulatorische Kosten oder sogar Bussgelder zu riskieren. Die neue Asset Klasse Kryp-
towährungen bieten ebenfalls Möglichkeiten zur Umgehung von Geldwäschereigesetzen.

Transaktionen via Kryptowährungen bieten jedoch einen entscheidenden Vorteil: Sie
finden auf der Blockchain statt. Somit können maschinellen Lernalgorithmen dazu beitra-
gen, das Finanzsystem sicherer zu machen, indem solche illegalen Gelder, die sich im
Netzwerk bewegen, erkannt und verfolgt werden können. In der vorliegenden Arbeit
wird ein Modell für maschinelles Lernen (XGBoost) vorgestellt, welches nicht nur eine
robuste Methodik, um anomale Transaktionen in der Blockchain zu erkennen, verfolgt
sondern ebenfalls versucht zu erklären, auf welchen Vorkommnissen die zugrunde liegen-
den Entscheidungen für diese Anomalien beruhen. Nur ein genaues Modell zu haben reicht
für ein solches Unterfangen aufgrund der regulatorischen Landschaft rund um AML nicht
aus. Wichtiger ist zu erklären, wie ein Modell zu den jeweiligen Ergebnissen gelangt ist,
insbesondere im Zusammenhang mit den besprochenen Anomalien.

v



vi



Contents

Abstract i

Acknowledgments iii

Zusammenfassung v

1 Introduction 1

1.1 Description and Motivation for Work . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5

2.1 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Transacting in Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Minting Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 UTXO Currencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Implications of Bitcoin on the Financial System . . . . . . . . . . . 7

2.1.5 Misconceptions around Bitcoin . . . . . . . . . . . . . . . . . . . . 8

2.1.6 Why Bitcoin is not Anonymous? . . . . . . . . . . . . . . . . . . . 9

2.2 Money Laundering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Enormous Impact of Money Laundering . . . . . . . . . . . . . . . . . 11

2.3.1 Costs Arising from Strict Regulations . . . . . . . . . . . . . . . . . 12

2.3.2 Deterrence as a Form of Prevention . . . . . . . . . . . . . . . . . . 12

2.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



viii CONTENTS

2.5 Interpretable and Explainable AI (XAI) . . . . . . . . . . . . . . . . . . . 14

2.5.1 Anomaly Detection and AML . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Explainability (XAI) for Anomalies . . . . . . . . . . . . . . . . . . 15

2.5.3 The Importance of Explainability in ML Models . . . . . . . . . . . 15

2.5.4 Case Study of XAI Importance . . . . . . . . . . . . . . . . . . . . 16

2.5.5 SHAP and ELI5 Values . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Related Work 19

3.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 K-means, Kd-trees with Random Forests . . . . . . . . . . . . . . . 20

3.3 Semi-Supervised and Unsupervised . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Agglomerative Clustering Algorithms . . . . . . . . . . . . . . . . . 20

3.3.2 K-means Clustering, Mahalanobis distance, and Unsupervised Sup-
port Vector Machine (SVM) learning . . . . . . . . . . . . . . . . . 21

3.4 Uncovering Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Graph Centric Analytics . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Bayesian approaches to identify Bitcoin users . . . . . . . . . . . . 23

3.4.3 Dealing with Mixing/Tumbling Obfuscation Services . . . . . . . . 23

4 Implementation 27

4.1 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Frameworks and Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Ensemble Methods and Gradient Boosting . . . . . . . . . . . . . . . . . . 31

4.4 Choosing XGBoost (Extreme Gradient Boosting) . . . . . . . . . . . . . . 31

4.4.1 GridSearchCV - Hyper parameter Tuning . . . . . . . . . . . . . . 33

4.5 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.2 ELI5 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



CONTENTS ix

5 Evaluation 37

5.1 Performance Metric Summary . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 XGBoost Outperformance . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Explaining Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 SHAP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2 ELI5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Summary and Conclusions 47

Bibliography 51

Abbreviations 53

Glossary 55

List of Figures 55

List of Tables 57

A Installation Guidelines 61

B Contents of the CD 63



x CONTENTS



Chapter 1

Introduction

Anomaly detection has long been heralded as a salient method for fraud detection and its
subsequent prevention within financial systems. Within the scope of this thesis, we define
an anomaly as something that is irregular or unlikely to occur by honest participants of
a financial network. Criminals who deal with the proceeds of crime – or in other words,
commit money laundering offenses are oftentimes anomalous in their activities. Thus,
as others in this field have done, we can use this anomalous behavior as a ‘proxy’ for
suspicious financial behavior [2].

This thesis will focus on detecting anomalies on Bitcoin network utilizing supervised
machine learning algorithms. By detecting suspicious activity within nodes, it is possible
to uncover illicit activity on the network and prevent large monetary damage to victims of
crime – both to private individuals as well as corporations. It is also possible to lower the
costs associated with Anti Money Laundering (AML) regulations – which are oftentimes
passed on towards ordinary people and have a disproportionate negative effect on lower
income households [1].

We present methods that seek to pinpoint more accurately cases of financial crime while
also keeping false negatives at a reasonable level. Such constraints are in the interests of
feasibility from a compliance standpoint. In addition, for the purposes of AML and being
compliant with global regulations, the models presented in this paper must be explainable
or at the very least endeavour to make a sophisticated effort in justifying why they are
actually explainable.

1.1 Description and Motivation for Work

The ultimate goal of this thesis is twofold. The first is to find viable ways to detect
anomalies on the blockchain, while the second is also to do have clear justification behind
why a transaction is considered an anomaly. Currently many low income households are
“unbanked” and therefore they bear the brunt of ever-so tightening AML regulations [1].
This is because traditional banks tend to reject high-risk, low-income clients rather than

1



2 CHAPTER 1. INTRODUCTION

risk high fines for being uncompliant with AML procedures. Improving AML on the
blockchain by detecting anomalies through Machine Learning is an opportunity for all
of society to make payments accessible to everyone in a safe, controlled and resilient
manner [1]. The most noteworthy goals of the thesis will be as follows:

1. An objective overview of the current approaches for anomaly detection as well as
past publications

2. Reproduce and analyze the Machine Learning methods presented in the first public
paper on the Elliptic Dataset

3. Propose a new/better method which increases detection of anomalies, but is also
feasible to be used for AML purposes from a regulatory standpoint (e.g., Explainable
AI - XAI)

4. Discover and target the most salient features/important variables that differentiate
licit transactions from illicit ones

1.2 Thesis Outline

This Master Thesis will be organized in the following manner:

1. Background:

• Brief introduction to Bitcoin, its architecture and the misconceptions surround-
ing the technology

• What is Money Laundering?

• Why should we care about Money Laundering on the blockchain?

2. Related Work:

• Various Clustering Algorithms (Agglomerative, K-means), Graphic Centric
Analysis, Mahalanobis distance, U-SVM

• K-means, Random Forest

• Geographic Identification of Bitcoin clients

• Explainable Artificial Intelligence (XAI) in Machine Learning

• Why anomaly detection requires good explainable and interpretable models

3. Implementation - Frameworks used and the reasoning for doing so:

• Exploratory Data Analysis of dataset

• Ensemble Methods in Machine Learning

• Feature Importance

4. Evaluation - Results of the Machine Learning Model(s):
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• Performance metrics of Machine Learning model(s)

• Analysis of Interpretability of model(s)

• Limitations of experiments
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Chapter 2

Background

Depending on who you ask - Bitcoin can either be viewed as one of the biggest digital
developments since the Internet, or it can also be viewed as a tool for criminals to launder
funds. This chapter will give a brief background on Bitcoin and also aspects of money
laundering. Not only will this give some background to the reader about these concepts,
but it will also seek to motivate issues currently surrounding these closely interlinked
topics.

2.1 Bitcoin

There were many ideas of a digital asset or electronic money in the 1990’s - ranging
from HashCash to Bit Gold and B-money. However, it was not until 2008, when the
pseudonymous Satoshi Nakamoto released his paper: Bitcoin: A Peer-to-Peer Electronic
Cash System that the first mainstream cryptocurrency was actually launched [3]. With
his protocol focusing on a decentralized architecture, Satoshi was able to revolutionize
payments between users. Bitcoin not only allowed users to make irreversible transactions
with each other without the need of a trusted third party, but also took care of minting
currency without the use of a central authority.

2.1.1 Transacting in Bitcoin

Through its distributed peer-to-peer network, people are able to transfer Bitcoin in a
decentralized manner and also have every transaction stored and available for anyone to
review at any time. The fact that anyone is now able to send a transaction to anyone in
the world without needing to wait for the servicing schedule of a money payment service
is at the heart of Bitcoin. Cryptographic proof was able to replace the typical leap of faith
when it came to trust and time that people attributed to countless third parties; Satoshi’s
creation made sending and receiving funds transparent and controllable in almost every
manner - ranging from the involved wallet addresses, to the fees, and also the delivery
time. Satoshi defined Bitcoin as a chain of digital signatures - where the owner would be

5



6 CHAPTER 2. BACKGROUND

able to transfer the coins to another person by digitally signing a hash of the previous
transaction with the public key of the intended recipient.

Figure 2.1: Bitcoin - A Chain of Digital Signatures [3]

2.1.2 Minting Bitcoin

New Bitcoins are minted by miners - individuals or groups who exchange their computing
power which run complex mathematical algorithms in order to find the next valid block.
Blocks contain transactions from the memory pool (mempool) – which are essentially
transactions users broadcast that they would like to send. The job of the miners is to
ensure the transaction is valid and only then include it in the next block. Usually, the
miner will prioritize the transactions which contain the highest fee. Thus, as a result,
users of the Bitcoin network can manually specify a fee at which they want to send their
transaction based on how fast they need the transaction to be confirmed. In turn, miners
who find a valid block are rewarded with a chunk of new Bitcoin (in addition to the
transaction fees) – called the block reward. Roughly every four years, the block reward is
halved (currently at 6.25 BTC). Finding a new block takes roughly 10 minutes, and the
respective difficulty is adjusted, so that production of Bitcoin will eventually reach zero.
This is currently predicated to be in 2033 as Bitcoin has a finite cap on the number of
coins at 21 million [4].

2.1.3 UTXO Currencies

Bitcoin is based on the UTXO (unspent transaction output) framework. Many cryp-
tocurrencies are based on such a mechanism, with the most popular being Bitcoin. Other
notable ones are Bitcoin Cash, Litecoin, ZCash. In general however, UTXO based cryp-
tocurrencies have certain features, characteristics and also complexities that other cryp-
tocurrencies may not have. As a result, this thesis will primarily focus on the Bitcoin
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blockchain - the largest and most popular (by market-cap and adoption) UTXO based
cryptocurrency to date. Aside from being the most popular cryptocurrency, it also has
the most research and analytic work behind it when it comes to anomaly detection.

UTXO is a way to manage the transaction balances on an append only ledger. Rather
than the traditional account based system that we are used to in traditional banking (and
also used by some other cryptocurrencies such as Ethereum, Ripple), UTXO’s are mainly
comprised of two pieces of information – the Ownership Data and Amount [5]. However,
while this may seem similar to an account based system, in such a framework, there are
actually no set accounts or wallets – instead the amount someone can relay as a trans-
action entirely depends on the series of unspent transaction outputs one has available to
them. In essence, when a transaction is sent, it consumes already existing UTXO’s and
creates new UTXO’s in their place.

UTXO’s allow each Bitcoin transaction to be uniquely identified by an ID that is made up
of a series of inputs and unspent transaction outputs. This also means that a user can use
a single or a combination of multiple inputs to send a transaction (and can even specify
which inputs to use for a transaction). UTXO’s have some privacy preserving mechanisms
since one can always generate a new address to accept coins. However, oftentimes when
sending, depending on the wallet which the person uses, unspent coins are combined from
various inputs. As a result, it is possible to link different coins to a single owner in many
cases where additional steps of privacy increasing behaviour are not actively taken (e.g.,
by running a local node).

Figure 2.2: UTXO Model [5]

2.1.4 Implications of Bitcoin on the Financial System

Lastly, although it is easy to recognize the power behind Bitcoin’s decentralized, append-
only ledger system, it is just as important to recognize how the same decentralization has
also removed the traditional safeguards that we are accustomed towards. The architecture
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of Bitcoin makes it so that nobody can reverse a transaction even if an entire group agrees
that the funds were stolen from an honest party; this makes dealing with the recovery
or reversal of proceeds of crime much more difficult. Furthermore, since there is no
initial onboarding or KYC (Know Your Customer) process, it is not possible to prevent
an adversary or a certain group from accessing or using the Bitcoin network. While
it is possible for individual miners or pools opt to not include a certain broadcasted
transaction in the block, it is generally not practical to prevent a person or group from
using the network for any significant period of time.

2.1.5 Misconceptions around Bitcoin

Today there are many misconceptions which surround Bitcoin. In popular culture, Bit-
coin is often portrayed as an anonymous means of value transfer, whereas it is actually
pseudonymous. The fact of the matter is that Bitcoin is actually extraordinarily trans-
parent – every single payment that has ever been sent to any address can be visible by
anyone at anytime and from anywhere in the world. Furthermore, this record of transfer
is immutable – making it impossible for anyone to ever modify or delete entries on the
ledger after being confirmed by the network.

Ultimately, while Bitcoin is pseudonymous, it does not mean that it is completely private.
In fact, identities of people on the network can be readily uncovered when examining a
variety of variables - ranging from transactions hashes, to wallet addresses and even IP
addresses [6] [7]. More significantly, Bitcoin is often portrayed as an instrument which
criminals use in order to evade detection by law enforcement when conducting illegal fi-
nancial operations [8]. The usage of Bitcoin for criminal activities has been infamously
highlighted many times over the last decade and has cast a dark shadow on the cryp-
tocurrency as a result. However, while it is not possible to prevent criminals from using
and transacting on the Bitcoin network (similarly to fiat systems), it is definitely possible
to both uncover and trace their illicit transactions.

With the help of anomaly detection machine algorithms, such illicit transactions can
be discovered on the blockchain, leading to many criminals being exposed for their trans-
actions – including both the ones who do indeed hide in plain site and also ones who
employ more sophisticated privacy measures on the network. Furthermore, because the
Bitcoin network is accessible to everyone and is an append only ledger, the types of foren-
sic analysis that is possible to conduct through machine learning is much more detailed.
For instance, in a traditional fiat financial system, many banks must enforce rules on their
own (usually within their own organizations) and once money is outside of their control,
another entity is responsible; as a result, it is very difficult to get a complete picture of
money flow without the cooperation and coordination of all the involved financial institu-
tions. This is even more significant if the transactions in question also traverse national
borders and require cooperation from various courts, governments and law enforcement
agencies.
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2.1.6 Why Bitcoin is not Anonymous?

While the actual blockchain does not store names and identifying personal information,
the transactions one makes with their address can be linked to real-world identities in
many cases. For instance, a transaction made to a merchant, a cryptocurrency exchange,
or even a remittance to a family member allows the possibility of a connection to a real-
world identity to be revealed. In essence, Bitcoin transactions leave one of the most
detailed and honest paper trails for anyone to follow as every single transaction is pub-
licly announced without fail. Breaking up the paper trail by sending through a myriad of
addresses or using “tumblers” to obfuscate the origins of the Bitcoin exist, but can also be
ultimately identified; these strategies will be addressed later in the thesis. Finally, it has
been proved and demonstrated over the years that tracing money using the blockchain
is possible and uncovering the identity of the users behind the addresses is possible in
conjunction with available information that is external to the Bitcoin network [9]. As a
result, identifying anomalous transactions on the blockchain is a very fruitful task for law
enforcement and governments – since it often allows them to identify who is behind the
illicit transaction and potentially recover illicitly obtained funds.

Perhaps one of the most prominent ways to uncover who is behind a transaction is in
the onboarding/offboarding process of Bitcoin. When an entity wants to buy or sell Bit-
coin, they usually do it from a centralized exchange. Most trustworthy exchanges (by
volume and users) require users to undergo an in-depth KYC/AML process that asks for
documents such as passports, ID cards, tax bills, residence documents, etc in order to al-
low the person to buy or sell Bitcoin. Thus, information can be secured about both where
the Bitcoin came from as well as the involved parties during the onboarding/offboarding
stages. Furthermore, because of the extremely open nature of the network, it oftentimes
leads to other discoveries of other bad actors (e.g., criminals conducting transactions with
other criminals) since “bad Bitcoins” have a tendency to stay in bad neighbourhoods [6].

2.2 Money Laundering

While money laundering has various levels of sophistication, the exact definition of it
is when “a person or business deals in any way with another entities benefits from a
crime” [10]. The impact of money laundering stretches on a global scale and the conse-
quences of it can range from an individual or corporation being defrauded all the way to
an entire government being undermined. The United Nations Office on Drugs and Crime
estimated that between USD 800 billion and USD 2 trillion worth of money is laundered
every year [11]. Amounting to around 5% of global GDP and financing both criminal
and terrorist organization, this makes it one of the most prolific crimes in our world [11].
Classically, money laundering primarily consists of three main steps [11]:

1. Placement – the injection of unlawful money into the financial system

2. Layering – the movement of illicit funds through the financial system in order to
disguise their origin and ownership. This obfuscation step is often the most crucial
part of the scheme



10 CHAPTER 2. BACKGROUND

3. Integration – the reintroduction or reinvestment of funds into the legitimate econ-
omy

Figure 2.3: Money Laundering Cycle according to the United Nations, 2018 [11]

Combatting money laundering in a fiat currency system poses many challenges. Often-
times, policies of KYC/AML can only detect the most blatant type of money laundering.
Varying levels of KYC in certain regions of the world allow criminals to target regions
where KYC can be circumvented entirely or where it is weak. Furthermore, given this
global dimension of money laundering operations, cooperation from different countries is
often paramount in order to successfully prosecute a criminal organization. However, in
reality, cross border cooperation is difficult to establish due to hurdles from legal, mone-
tary and regulatory standpoints. Oftentimes, such transnational cooperation from various
parties over the globe is too unfeasible to conduct in order to investigate money launder-
ing in a timely and cost effective fashion.

In a fiat money laundering operation, criminals will often use a network of money mules
to help move proceeds of crime [12]. Money mules are used because they are able to move
relatively small quantities of capital with a very low risk of being detected. Due to this,
the head (or top) of the criminal organization remains both at low risk of getting pros-
ecuted and also has a high likelihood of continuing the criminal enterprise since money
mules are expendable and easily replaceable [13]. Furthermore, some money mules are not
even aware that they are a participant of a criminal operation; a large portion of money
mules are often recruited under the guise of a legitimate job advertisements, social media
posts or training courses, with a particular focus on young adults and people who would
otherwise be looking for quick cash [14].
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Furthermore, criminal organizations with various levels of sophistication are often quite
aware of the safeguards in place in traditional financial systems to combat money laun-
dering. As a result, criminals have adapted and will often recruit money mules to help
launder up to a statutory reporting threshold (e.g., less than 10,000 euros).

While the scale of funds laundered through Bitcoin is eclipsed by that of traditional
fiat systems, it disproportionately receives a bad name for its “assumed ease” to do so.
While it may be difficult and ignorant to turn a blind eye towards Bitcoin’s presence in
dark-web marketplaces and in various cybercrime activities (e.g., carding, ransomware),
it must also be recognized that many prolific cyber-criminals have been apprehended after
hiding their transactions in the Bitcoin blockchain [15].

Furthermore, investigating money laundering through Bitcoin has its advantages; cer-
tain aspects of the investigation are often easier in comparison to traditional fiat currency
systems as less cooperation with different banks and intermediaries is required. This is
due to the open ledger – anyone can view any transaction at any time from any place in
the world. Furthermore, since the Bitcoin network provides everyone with access to its
transaction graph – it is possible to uncover and also follow anomalous/suspicious events
which are isolatable due to their rare occurrences.

Almost always, criminals will eventually want to convert their cryptocurrency into tan-
gible assets. More often than not, various tools, such as prepaid credit cards that can
be loaded with cryptocurrency are used [16]. The use of such methods is growing in
popularity due to relatively relaxed KYC measures when onboarding customers for these
cards. However, by leveraging machine learning methods, such techniques are able to
infer complex patterns from historical data where money laundering was identified. This
helps investigators understand the connections which surround those particular instances
to help identify futures ones more easily.

2.3 The Enormous Impact of Money Laundering

Money laundering is an ever present and growing problem in our world today. As regu-
lators and governments all over the world attempt to crack down on the issue, they are
increasing regulations. There are many rules in place on who financial institutions may
conduct business with. More importantly, these regulations also stipulate under which
conditions they can conduct their business – both in the fiat space as well as in the cryp-
tocurrency space. This means that financial institutions who are not compliant with all
AML procedures are liable to massive fines and can ultimately face lengthy and costly
court proceedings.
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2.3.1 Costs Arising from Strict Regulations

Unfortunately, the cost associated with the extra regulation imposed on financial in-
stitutions is most often passed onto the customer. More specifically, it negatively and
disproportionally affects those who are less well off, leading to almost 2 billion people
around the world being unbanked according to the World Bank [1] [17]. This is because
rather than risk fines and expensive bureaucratic procedures, financial institutions rather
opt to refuse certain customers from certain regions. This refusal can take shape in a sort
of official ban or by simply making it logistically impractical for the person to pass AML
checks (e.g., requiring proof of income for undocumented workers or source of funds for
unemployed people). In essence, while criminal organizations such as drug cartels, hu-
man smugglers, terrorists launder hundreds of billions of dollars, low-income households,
immigrants, refugees and other vulnerable people are left unbanked as they are seen low
value plus high risk by many financial institutions [18].

Not only is AML often tricky and expensive for such a person to pass, the transaction fees
for using services such as remittances are excruciatingly high. For instance, the World
Bank estimates that roughly 7% of remittances goes towards paying the bank’s transac-
tion fee [18] [17]. And while it is possible to argue that Bitcoin transaction fees can also
reach such amounts when the network activity is high, there is still an opportunity to
help lower income households in the aforementioned AML and compliance cost area. This
is where many people, such as Weber have realized that while omitting transaction fees
on remittances can prove to be challenging, improving the AML process using machine
learning to detect anomalies is possible [1]. Not only is this good for the cryptocurrency
space in general, but it also offers both a practical and economical advantages for nearly
all parties involved (e.g., users, government, regulators, financial institutions).

2.3.2 Deterrence as a Form of Prevention

Having solid AML tools and anomaly detection algorithms in-place can also cut down on
criminal activity on the blockchain. If a criminal understands that he or she is unlikely to
successfully launder the funds, they are unlikely to use the blockchain to commit crime or
as a medium for money laundering in general. If fact, as blockchain analytics companies
have been steadily developing new algorithms to identify and track stolen funds, criminals
have even returned ill-gotten gains on their own accord. Most often however, the stolen
funds are recovered or seized after a person is apprehended by law enforcement.

Poly Network Hack Case

More recently, a phenomenon has taken place where cybercriminals were essentially forced
to return stolen funds prior to their real world identities being exposed or them having
been arrested by law enforcement. For instance, in August 2021, a decentralized financial
network by the name of Poly Network was hacked and roughly $600 million (USD) was
stolen from the wallets of the network [19]. The hacker, who exposed a vulnerability in
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the contract calls of the platform was able to send funds to a series of personal wallets.
Fortunately, for the hacked network, exchanges and various blockchain analytics groups
convened together in unison to mention that they would all be monitoring and tracing the
funds. Such a revelation prompted the hacker to subtly realize that while he may be able
to retain control of the funds in his wallet, he may not be able to actual use the funds or
launder it in any way which would not compromise their identity.

Thus, we can see that developing anomaly detection tools can not only help identify
crime on the blockchain, but also serve as an extremely strong deterrent from it even ini-
tially occurring. This concept of deterrance as prevention can also be extended to many
other money laundering schemes - such as ransomware demands and Ponzi schemes.

2.4 Decision Trees

In machine learning, decision trees are the underlying basis for some of the most popular
and high performance algorithms. Since the models in our thesis will use decision trees,
(e.g., random forest, XGBoost) we describe them here. The basic structure of a decision
tree is quite intuitive for anyone to understand and consists of three main elements:

• Decision Nodes - these are a binary/boolean question (the ovals)

• Leaf Nodes - also referred to as prediction nodes as they are the ones which predict
the outcome (the rectangles)

• Edges - the connections from one node to another node (the arrows)

Figure 2.4: A very basic example of a decision tree
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The tree is inverted from a classical real life tree. To traverse the tree, you start from the
top of the tree (the first level). The next node you visit depends on the decision made
at the first node and the process only terminates when you reach a leaf node. In general,
traversing a decision tree is a relatively simple task to accomplish; the actual real work is
knowing which questions to ask and in what order - or in other words, finding a good split
for the tree. In general, the higher the level a feature exists on a tree, the more weight a
feature has on a model. Above in Figure 2.4 is a very basic example of a decision tree.

2.5 Interpretable and Explainable AI (XAI)

This section will serve as an introduction to Interpretable and Explainable Artificial In-
telligence (XAI) and why it is crucial for our model. In general however, it is important
to note that XAI is not needed for every machine learning model. For low risk situations
such as a multimedia recommending system, explainable AI is oftentimes both unneces-
sary and costly. However, Explainable AI is central to our model design for numerous
reasons. As stated in the previous section, we need our model to be compliant with AML
procedures and regulations around the world; in practice, this inherently implies that we
need to be able to explain why a model arrived at the decision it did - particularly if it
detected an anomaly.

2.5.1 Anomaly Detection and AML

Anomaly detection on blockchains is a somewhat challenging task due to the fact that most
times nodes and transactions come in an unlabelled manner. As of today, not much work
specifically on blockchain anomaly detection has been done due to the relative novelty of
the cryptocurrency space in general. Furthermore, the oftentimes “black-box” nature var-
ious unsupervised models are characterized as, prevent the industry from adopting them
for AML purposes on any large scale. This is because we are currently in a regulatory
environment where it is not compliant to enforce AML without strict guidelines and well
defined metrics; opaque models such as the ones mentioned above are simply not feasible.

There must be a clear explanation of wrongdoing or a basis for suspicion as an anomaly
usually implies immediate consequences for a certain party. In essence, what this implies
is that while many Unsupervised Methods and more specifically, active learning/graph
convolutional network’s (GCN’s) may prove to be helpful in understanding certain pat-
terns, they are ultimately unable to be put into practice due to constraints arising from
the regulatory landscape [1][18]. Furthermore, the robustness of many of these active
learning algorithms are questionable. For example, as certain Dark Markets have been
shut down by law enforcement, these methods essentially stop working completely due to
the complete change in the network structure [1].

While Explainable AI is unable to cover all possible cases of the model in advance, it
can allow us to verify the reasoning of the model through its enumerated predictions [20].
Moreover, local explainability (e.g., explanations for specific observations) generally has
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more of a useful effect when it comes to justification of a certain individual decision.
Global interpretability on the other hand tends to identify general biases in the model or
when a more high-level understanding of a particular task is desired.

2.5.2 Explainability (XAI) for Anomalies

Explainability is a critical aspect of our machine learning model (and in machine lear-
ing model in blockchain anomaly detection). Explainability is simply the ability of the
parameters to justify the results, or in other words answer a few key questions [21]:

1. “Why should I trust the prediction of the model?”

2. “Which key factors ensured the model to be a success?”

3. “What are the most important categories (dependant variables) in a model which
influence its decision (and also likewise, the ones that negatively affected its deci-
sion)”?

2.5.3 The Importance of Explainability in ML Models

Explainability is not always significant in many machine learning models – especially in
a low risk situation. However, in our case, being able to justify why a certain transaction
is indeed flagged as an anomaly is very critical. There are many reasons beyond just the
legal and regulatory ramifications as to why an anomaly detection method needs to be
explainable. In Doshi’s paper, the most salient reasons include [20]:

1. Multi-objective trade-offs - there are trade-offs that are made which are not
fully known. For instance, a decision between the tradeoffs of privacy and accuracy
of the prediction

2. Scientific Understanding - in general a computer can find relationships that we
do not initially see

3. Ethics - an explanation can guard against possible discrimination that were not
seen initially in the dataset

4. Mismatched Objectives - sometimes a model will work to predict an incomplete
objective. For instance, to optimize a control without considering adherence princi-
ples

Understanding why a machine learning model makes the predictions it does is one of the
most crucial aspects of AML regulatory issues. In fact, the ability to explain why a model
behaves and predicts the way it does is almost as quintessential as the accuracy itself. In a
regulatory environment, being confident of a model’s output means understanding the so
called theoretical “black box” that machine learning algorithms are oftentimes compared
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to. It is not enough to simply trust the results (no matter how accurate they seem),
but humans using the outcomes need to understand what an anomaly truly entails. A
cryptocurrency exchange or financial provider would quickly find itself in a detrimental
situation from a regulatory standpoint if an algorithm flags an account or certain trans-
action as suspicious and they proceed to shut it down without fully understanding why
the detector flagged it. For instance, can we be sure that the algorithm is not biased
towards people from a certain region or towards a certain nationality based on previous
fraud cases?

2.5.4 Case Study of XAI Importance

Not being able to explain why something is suspicious is a serious limitation. For instance,
Mark Weber, who was one of the first people to work with the Elliptic Dataset (which we
use as the basis in the Implementation and Evaluation section of this paper) and is quite
known in the blockchain anomaly detection field, explains in his presentation of a case
where a traditional bank account could not be shut down [18]. In that specific situation,
the algorithm that compliance at the bank had used noticed that a client may have some
suspicious business transactions; for two years, they were following the suspicious flag,
but could not do anything because there was no clear wrongdoing or explanation of why
it was suspicious. However, years after the initial flag, it turned out the bank account was
involved in the financing of the 2005 London subway terrorist bombing [18]. Although
this is definitely a more extreme case, this highlights the dilemma that both financial
institutions face as well as the development hurdles data scientists face working in such
situations.

When there are a few features in a model, it is quite understandable by humans (es-
pecially if the algorithm is based on relatively simple decision trees) – however, as the
number of features in a model grows, interpretability of the model by a human declines
rapidly. To help humans with this task, there have been many various visualization and
analytical tools developed to understand what fuels the decisions of a model. One of
the most popular tools employed to attempt to explain classification problems in machine
learning are heat maps. However, oftentimes the use of these maps in truly understanding
the output is questionable at best since we as humans have limitations when it comes to
interpreting visualization data [22].

2.5.5 SHAP and ELI5 Values

In our paper, we elect to use SHAP (Shapley Additive exPlanations) as one of the primary
frameworks to help explain our models performance. The model allows us to quantify
and understand the drivers of predictions (feature importance) on both a global scale and
also for each individual datapoint [23]. For example, while regular feature importance
highlights the most critical variables for the global dataset, there may be another set of
variables which have an extremely significant predictive power for a subset of transactions.
We also implement ELI5 in our work for comparison. ELI5 (colloquially known as“Explain
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Like I’m 5”) is able to give feature importance’s while also is able to explain individual
predictions by showing feature weights [24]. A more formal definition and also results of
our SHAP and ELI5 experiments can be found in the subsequent Implementation and
Evaluation sections of this paper (respectively).
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Chapter 3

Related Work

This chapter will discuss published research work on anomaly detection with regards to
supervised, semi-supervised and unsupervised machine learning methods. The section will
also show research that goes beyond simply identifying anomalies - more specifically, it
will show that is it possible to identify users and certain fund flows with the information
available on the blockchain.

3.1 Anomaly Detection

Anomaly detection in networks predates Bitcoin itself. Financial institutions have been
using different anomaly detection methods as well as scoring models to identify (and pre-
vent) fraudulent activities for many years [2]. However, in recent times, there has been a
high interest in research work dedicated towards studying anomaly detection specifically
on the blockchain. Although this is a relatively new area of study, principles from decades
of anomaly detection in networks can readily be applied for blockchain related research.
The common framework applied is to identify those who show atypical (i.e., anomalous)
behaviour and highlight them, as these as the people who are likely to be involved in
financial crime [25].

For anomaly detection in a network, it is possible to apply any of the three main types of
machine learning methods typically applied 1) Supervised, 2) Semi Supervised, 3) Unsu-
pervised.

With that said, there are many advantages and disadvantages to applying various types
of machine learning. This section will serve as a discussion on which machine learning
methods are applied in current blockchain anomaly detection literature. There will also
be discussion on other supplementary methods which aid anomaly detection.

19
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3.2 Supervised Machine Learning

In general, supervised machined learning has been applied on many different Bitcoin trans-
action datasets with various degrees of success. The challenge that supervised learning
poses in this field is the lack of enough labeled datasets. Lorenz et al (2020) addresses the
real-world challenges of detecting money laundering using machine learning algorithms
that require labels: 1) it is unlikely to ensure with certainty that a dataset can identify all
money laundering transactions and, 2) accurate labels are an administrative effort which
take too much time and is often very costly [26].

3.2.1 K-means, Kd-trees with Random Forests

Monamo et al (2016), defined two various types of anomalies – global and local [27].
In their global definition of anomaly, they refer to an anomaly that is made with re-
spect to many instances under study – while a local outlier only considers its surrounding
neighbourhood. In their global approach, they used trimmed k-means and in their local
approach, they used kd-trees. They subsequently assigned class labels as either global or
local anomaly present (or not present). With regards to the dataset, the top 1% based
on kd and trimmed k-means were labelled as anomalies while the remainder of instances
were assigned a normal (licit) label. This was done in order to serve as proxies for licit
and illicit transactions so that an adequate baseline could be established for supervised
learning techniques.

Interestingly, Monamo finds that out of the 3 models they ran, Random Forest was the
best performing classifier despite the class imbalance issue. They had 8 features in their
model and Random Forest depicted almost near perfect performance. Furthermore, they
show that similar results can be reached by only using 2 features instead of 8 features.
Out of all financial attributes, the ones which were significant in predicting outliers were:

• Average value sent

• Total received

• Standard deviation sent

• Standard deviation received

3.3 Semi-Supervised and Unsupervised

3.3.1 Agglomerative Clustering Algorithms

Androulaki et al (2013) present a method to identify 40% of all users in a simulator
that mimics the Bitcoin system in a closed setting [28]. This figure even includes users
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who adopt recommended privacy measures such as not reusing addresses. They are able
to accomplish this by leveraging behaviour-based clustering techniques (K-Means and
Hierarchical Agglomerative Clustering algorithms also, 80% accuracy) even when users
send transactions to their other pseudonyms (bitcoin addresses) to try and enhance their
level of privacy. Change addresses, transaction in certain geographical locations and links
to vendors were all shown as a very likely method for an adversary to link someone to
their real-world identity. In general, Androulaki shows that two heuristics are responsible
for exploiting privacy in Bitcoin [28]:

1. Heuristic I--Multi-input Transactions: This multi-input transaction event
occurs when u wishes to perform a payment, and the payment amount exceeds
the value of each of the available BTCs in u’s wallet. When the payment is made
from aggregated addresses, it is trivial to see that the input addresses are owned by
the same user.

2. Heuristic II--Shadow Addresses: The protocol generates a change address to
which the sender can claim back the “change” from the transaction. This exposure
occurs when a transaction with 2 output addresses contains a new address and one
with an old address. Thus it is possible to conclude that the new address is a shadow
address.

3.3.2 K-means Clustering, Mahalanobis distance, and Unsupervised Sup-

port Vector Machine (SVM) learning

Pham and Lee (2016) propose using unsupervised learning methods to detect anomalies
on the Bitcoin blockchain – namely, they use: k-means clustering, Mahalanobis distance,
and Unsupervised Support Vector Machine (SVM) learning [2]. Pham and Lee use a
two-pronged approach: they parse the data into a user graph, where each user owns a
list of addresses and is a node, and the transactions between users are edges. They also
use a transaction graph which shows the transactions as the nodes and the Bitcoin flow
between transactions as edges. The basis for this two-pronged approach is to be able to
identify both suspicious users and also suspicious transactions. By doing so, they can
subsequently refer to the results of both graphs and determine whether or not any overlap
exists with regards to anomalous activity. For instance, using this“Dual Evaluation”, they
can reinforce whether both suspicious transactions occurred in both the node study and
also the edge study; if a suspicious observation was made in the node study, they would
also see if it was made in the edge model study to increase confidence.

Their methods successfully identified 10% of all the known cases of financial loss. More
specifically, out of the 30 known cases of financial crime they had, the algorithm success-
fully identified two known cases of theft and one known case of loss [2]. There is also an
indication that it tends to identify large, and more pronounced losses as one of the cases
involved a loss of 2600 BTC. As a result, we can see that unsupervised learning on the
blockchain is immensely difficult.



22 CHAPTER 3. RELATED WORK

Since many of the observations are initially unlabeled in the Bitcoin transaction graph,
supervised learning methods are not always feasible for all existing datasets. With that
said, the barrage of regulatory issues surrounding AML laws oftentimes also limit unsuper-
vised methods to be used in somewhat meaningful ways. Pham and Lee’s (2016) various
unsupervised learning methods ranging from k-means clustering to their own modified
Unsupervised Support Vector Machine (SVM) technique establish a baseline for anomaly
detection on unlabelled datasets, but do not offer insightful explanations into the models
decisions. And although it is difficult to establish evaluation metrics in unlabeled data,
their proposed visualization evaluation still commands the characteristics of a black box
model.

3.4 Uncovering Anomalies

This section motivates the discovery of anomalies and revealing identities of addresses
after a machine learning algorithm detects an anomaly. Moreover, it shows why it is
important, useful and also possible to identify users on the network even if their addresses
are initially pseudonymous.

3.4.1 Graph Centric Analytics

Haslhofer et al (2016) showed that by building an analytics platform called GraphSense,
they were able to semantically enrich and understand better the information from trans-
action graphs [6]. The ability to explore a transaction graph allows for the exploration of
transactions and the subsequent characteristics of money flow. Following this, they are
able to search for certain path and graph patterns that lead to anomalous transactions
on a cryptocurrency network. In their work, they apply heuristics to group addresses in
a blockchain cluster which are likely to be owned by the same real-world entities. They
observed in their study the presence of around 2,000 super-clusters which were responsible
for 23% of all transaction outputs [6]. They also postulate that such centralized clusters
are often linked to major darknet markets, gambling rings, exchanges or mining pools
which can be tagged and further explored accordingly.

Objectively, it is useful from an analytical standpoint to be able to leverage such graph
tools in an investigation which allow searches by tag, transaction identifier, traversal (e.g.,
shortest path), or cluster. Furthermore, they seem to follow a concept that postulates
“bad bitcoins tend to stay in bad neighbourhoods”. Haslhofer’s paper has shown how
blockchain analysis techniques such as the multiple input heuristic and change heuristics
are able to be used to detect anomalies. Furthermore, such de-anonymization efforts can
also be directly applied to a wide range of other cryptocurrencies.
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3.4.2 Bayesian approaches to identify Bitcoin users

Juhasz et al (2018) also show how clients can also be identified by IP addresses [29]. Since
Bitcoin transactions must be publicly announced, IP address mappings can be used to
narrow down a user’s geographic location. They built a näıve Bayes classifier that assigned
Bitcoin addresses to the clients who likely were controlling them. They were able to do
this because of a known characteristic of Bitcoin transactions – addresses appearing on the
input side of the same transaction typically belong to the same client. Furthermore, their
model also adds an element to the transaction graph which helps further visualize the flow
of bitcoins – geolocation. In general, they also expose the typical privacy issue in Bitcoin;
in Figure 3.1 below, the left side depicts the transactions and the input Bitcoin addresses
where the Bitcoins are sent from. Typically these Bitcoin addresses and transactions
belong to the same user. Next, when a Bitcoin address appears in different transactions
(marked by red and by bold), all the Bitcoin addresses can be merged and attributed to
the same user.

Figure 3.1: Input side client exposed from Juhasz [29]

Juhasz et al also contributed to identifying not only specific users, but also fund flows
from one country to another. This is a useful feature for cross-border transactions and
explicitly tracing monetary flows between bad actors. For instance, the paper found that
the largest key flows occurred between 1) Germany and Argentina, 2) China and the
Netherlands, 3) Domestically within the United States [29].

3.4.3 Dealing with Mixing/Tumbling Obfuscation Services

One of the main hurdles law enforcement agencies face when investigating financial crime
with Bitcoin is the so called tumbling problem. Sophisticated criminal enterprises are
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Figure 3.2: Geographic Mapping of Bitcoin Fund Flows [29]

able to add a layer to their existing money laundering operation by taking advantage of
privacy oriented services such as tumblers and mixers.

These aforementioned services allow people the ability to send coins to a specified ad-
dress; subsequently, after a series of transactions over a random period of time, the coins
are relayed (after taking a nominal fee for the service) back to the original sender(s) in
relative proportion. These services often add a time delay, split the output into many
addresses and also use various levels of transaction fees to conduct the mixing operation.
And while these services do have legitimate use cases – for example, for people who want
to anonymize their coins after their address becomes known, criminals also often leverage
this service as well to further obfuscate the origin of their funds.

Prado-Romero et al (2018) propose an algorithm by modelling Bitcoin as a social net-
work and using community anomaly detection to uncover such mixing accounts [30]. The
premise of their work is that just like in the fiat world, people tend to transact mostly
within their communities and also with same known group of people. Since mixing in-
volves combining coins from different users, and redistributing them, by definition this
is anomalous behaviour as most of the transactions are outside of their typical expected
transaction graph. Furthermore, there are potentially more anomalous traits as a very
small minority of users actually use mixing services. The central thesis of their paper is
that people who ultimately possess significantly more inter-community connections com-
pared to the rest of users belonging to its same community are likely to be related to
probable mixing sites. They develop an algorithm called InterScore that searches for this
community outlier factor and analyzes each element in its community in an unsupervised
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fashion. At the end of the analysis, a score of an outlier ranking for each user is outputted.

Although the authors stipulate they cannot guarantee with absolute certainty whether
an address is truly affiliated with criminal activity, it is a good starting point for further
analysis and investigation. Many services which take cryptocurrencies today as payment
already have algorithms in place to detect whether a transaction input originated from
a mixing service. Once such a transaction is identified, it is either frozen or returned
to sender. For the purposes of our thesis, we refer and assume mixed coins to directly
trigger a regulatory KYC/AML process when received by an exchange as this is likely to
be considered anomalous activity.
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Chapter 4

Implementation

This chapter contains the description for the code implementation part of the thesis -
specifically the machine learning models. It includes the tools and frameworks used and
provides reasoning as to why each one is used. In the subsequent Evaluation chapter, a
discussion of the results from the models and its implications is conducted.

4.1 The Dataset

For the purposes of this study, we use to our knowledge one of the most comprehensive
blockchain datasets which are publicly available – the Bitcoin dataset released by Ellip-
tic [31]. Getting complete, real world blockchain transaction data is often cumbersome
and impractical, so Elliptic is one of the best known complete datasets that exist to date.
Furthermore, the company Elliptic itself is a leader in forensic cryptoanalysis; as a result,
not only does this dataset allow us to conduct the research for this paper on industry
standard data, but it also allows for direct comparison to work already done by other
authors in the field, (as this dataset is often the baseline for many experiments conducted
in published papers) such as the Weber paper [1]. More specifically, the dataset consists
of:

• 203,769 total transactions

• 234,355 edges (directed flows)

• 46,564 definitively labelled transactions

• 9:1 licit to illicit transaction ratio

• 94 local features (e.g., time step, in/out count activity, transaction fee)

• 72 one hop aggregate features (e.g., maximum, minimum, standard deviation and
correlation coefficients of the neighbour transactions)

27
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Figure 4.1 shows the composition of transactions in the dataset (illicit, licit and unknown).
Illicit transactions are typically defined to consist of various scams, crypto-exchange heists,
ransomware payments and Ponzi schemes, while licit transactions are simply payments
made between honest users of the network and for honest goods and services. After map-
ping the Bitcoin datasets to real entities (both belonging to illicit and licit categories), a
graph is made such that nodes represent transactions, while the edges depict the flow of
Bitcoin going from one transaction to the next.

Furthermore, each transaction has 166 features, out of which 94 are local features and
the remaining 72 are called aggregate features. For instance, local features include things
like time step, number of inputs/outputs, transaction fee, output volume, while aggre-
gated features are constructed by using information one-hop backward/forward from the
transaction; for example, the standard deviation of each transaction feature, the correla-
tion coefficients of the neighbour transactions for the same information data (number of
inputs/outputs, transaction fee, etc) [1]. The Elliptic dataset has been explored in depth
and published by many since its release (in particularly on Kaggle) - for this we give credit
to the various open source works available for starter code and charts [31]. With that said,
we elect to include Figure 4.2 and Figure 4.3 to describe the dataset even further; Figure
4.2 shows the number of transactions at each Time Step, whilst Figure 4.3 highlights the
type of transaction (unknown, licit or illicit) at each timestep. Finally, Figure 4.4 shows
the head of our dataset after completing the necessary pre-processing for our model.

Figure 4.1: Distribution of Classes from the Elliptic Dataset
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Figure 4.2: Number of transactions by time step

Figure 4.3: Number of transaction types at each time step
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Figure 4.4: Processed dataset (203769 rows × 168 columns) [31]

4.2 Frameworks and Tools Used

For the purposes of the experiments of this thesis, the following main technology was
used:

• Python 3 - the programming language used to conduct all of the experiments within
this thesis

• Jupyter Notebooks - computational notebook which allows the sharing and presen-
tation of both live code and markdown in a user friendly way (thesis experiments
can be downloaded via an .ipynb)

• scikit-learn (sklearn) - machine learning library that supports data pre-processing
and ML algorithm implementation

• networkx - a Python library that allows us to visually create and manipulate graph
networks

• numpy - a Python library for multi-dimensional arrays and matrices that are able
to support mathematical transformations

• pandas - a Python library which allows for data manipulation and various data
structure operations

• matplotlib - a Python library (extension of numpy) that allows for the creation of
various plots and visualizations

• seaborn - a Python library for more visualizations

• xgboost - the primary machine learning algorithm used (also using Random Forest,
Logistic Regression from scikit-learn)

• SHAP - a Python library for which allows us to get an explanation of how are
machine learning algorithm makes decisions

• ELI5 - another Python library to explain predictions made via our machine learning
algorithms
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4.3 Ensemble Methods and Gradient Boosting

An ensemble model is simple a technique that combines more than one model during its
prediction stage. In general, models can arrive at incorrect predictions due to a variety
of factors and reasons; however, if you take information from many models, it is possible
and likely to get a progressively better model. Thus ensemble methods often solve various
issues [32]:

• Accuracy - can increase accuracy by using more than just a single estimator

• Variance - can prevent high variance in its usable inputs

• Feature Bias - can prevent the model from heavily relying on noise and bias during
the prediction stage

Gradient Boosting is a way to make weak learners into strong ones. A weak learner is
defined as one whose performance is at least slightly better than complete pure random
chance. One of the first gradient boosting algorithms created was known as Adaptive
Boosting, (or colloquially known as) AdaBoost. There are three main elements in Gradient
Boosting [33]:

• A loss function to be optimized

• A weak learner to make predictions

• An additive model to add weak learners to minimize the loss function

More intuitively, in such a gradient boosting framework, a decision tree is first trained in
which each observation has the same (equal) weights. Then after the first tree iteration,
the pre-existing weights are adjusted higher and lower based on the observations that are
(respectively) more difficult / simpler to classify. By doing this stage-wise addition on
another tree, the predictions of the first tree have the chance to be improved since the
model now suddenly contains more trees. This is because newly created trees have the
ability to classify observations which were not classified in the best way by the former
trees. Then, once all the trees are grown, the (ensemble) model is the weighted sum of
predictions made by the tree models. In essence, performance can be vastly improved by
combining many simple models into a single model more optimized model.

4.4 Choosing XGBoost (Extreme Gradient Boosting)

As the Weber paper showed superiority of Random Forest over a multitude of other al-
gorithms that they ran, this is the direction this thesis took [1]. In fact, the authors
specifically invited further contributions to improve their baselines. One of the ways that
random forest can be improved in certain situations is through Gradient Boosting. In
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many studies, it has been shown that Gradient Boosting is favoured to simple Random
Forests when it comes to both performance and predictive ability [32]. Thus, we will
introduce XGBoost to our study (eXtreme Gradient Boosting) [34]. Extreme Gradient
Boosting uses a gradient boosting framework that was mentioned in the previous sub-
heading. However, it is much more optimized when it comes to speed and performance.
It uses both a presorted algorithm and histogram based one to compute the very best
split. Thousands of models on various subsets of the dataset are trained, and then votes
are casted for the most accurate performing models. We elect to choose XGBoost as it
has many advantages, with some very specific to our dataset [34]:

• it is great for unbalanced datasets (we have a definite class imbalance in our dataset
as there are many more licit transactions vs. illicit transactions)

• XGBoost straight away prunes the tree with a score called “Similarity score” before
entering into the actual modeling purposes

• XGBoost always gives more importance to functional space when reducing the cost
of a model while Random Forest tries to give more preferences to hyperparameters
to optimize the model

• the fastest gradient-boosting library for Python

• parallelization – implemented to train with multiple CPU cores

• prevention of severe overfitting – penalties assigned through its regularization pro-
cess

• scalability – can process vasts amounts of data

• cross-validation – exists already implemented in the algorithm itself

Usually gradient boosted trees can choose a loss function depending on whether the prob-
lem is a classification or regression one. The size and number of trees can be adjusted
as well. In XGBoost, rather than minimize the loss function, it minimizes the objective
function Lm which in addition to the loss function also has a regularization term Ω(bm)
that limits the complexity of the model. More formally [35]:

Lm =
N∑
i=1

L((yi, fm−1(xi) + bm)xi)) + Ω(bm)

where,

Ω(bm) = γT +
1

2
λ||s||2

Notable Tradeoffs: As with any machine learning algorithm, there are definitely some
trade-offs when it comes to applying XGBoost [35]:
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• more susceptible to overfitting

• XGBoost is much harder to tune vs. Random Forest algorithm

A major advantage when it comes to using XGBoost is that it is resilient when many
features exist. XGBoost allows us to give our model a large number of variables without
having to commit to any hard decisions about the dataset prior to the learning itself.

Furthermore, XGBoost also allows us to satisfy the condition for the model to be explain-
able with regards to AML regulations; to do this we run the SHAP (SHapley Additive
exPlanations) technique on our model. SHAP is a game theoretic approach to explain
the output a Machine Learning model which has been discussed in the previous section.
SHAP is based on the game theoretic Shapley values developed in the 1950’s by the math-
ematician Lloyd Shapley [36]. The premise behind his concept was that he could assign
a unique distribution of values (excess surplus) to a certain group who was playing a co-
operative (coalition) game; for instance, those who contributed more to a positive result
should reasonably expect to be compensated more than those who contributed less. This
expectation is called consistency and it one of the first Fairness properties. The second
fairness property is called Additivity – where the amounts must sum up to exactly to the
final game result; you subsequently count the marginal contribution for each player – each
running the game with and without this player for the entire subset of players [37][38].

4.4.1 GridSearchCV - Hyper parameter Tuning

Sklearn’s model_selection package has a tool which assists with hyper parameter tuning
of our model. We employ the GridSearchCV tool as a method to ensure that we have
the most optimal hyper parameters for our specific dataset and subsequent model. Grid-
SearchCV is a brute force way that tries every possible combination of hyper parameters
and tells us in the end which one to use. This is one of the most salient steps in any
machine learning problem as the performance of the model can vary drastically based on
the values of the hyper parameters.

4.5 Feature Importance

Oftentimes, the generic feature importance plots for machine learning models contradict
one another. This is because feature importance is based on the improvement in loss or
impurity that has been contributed by all the occasions where the tree splits were based
on that feature. While generic feature importance plots sometimes highlight variables
which appear to make sense, they also can be misleading due to various definitions of
“importance”. Relatively recently though, namely in 2017, a very sophisticated approach
that revamped feature importance was published (discussed in section 4.5.1 below).
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Nevertheless, when running XGBoost, we are able to generate a Feature Importance plot
for the model for the top 20 features. In the next Evaluation chapter, we show 3 different
types of feature importance - cover, weight, gain. While each of these metrics have their
own reasons to be interpreted, we propose to use a different method in order to not only
identify global feature importance but also be able to pinpoint individual local decisions.

4.5.1 Shapley Values

In their paper A Unified Approach to Interpreting Model Predictions by Lundberg and Lee,
they explain how a model’s interpretability is as central as its underlying accuracy. They
adapt the Shapley values from the 1950 to machine learning scenarios; intuitively, they
explain how much a feature, p, contributes to f(x), they count over all possible subsets
of features and calculate the model result with and without feature p. This results in a
marginal error which is the contribution with or without feature p, then after averaging
it over all possible features, you can get the SHAP value for feature p. Summing over
the contributions for all features p, you get a value that depicts how much information
contained in the features causes the prediction to shift relative to a model prediction φ0.
By summing φ0 and all the individual feature contributions φ1(f, x), i = 1, 2, ..., p, you
can get the model prediction [37] [39]:

f(x) = φ0(f, x) +

p∑
i=1

φi(f, x).

The Shapley value for a certain feature i (out of n total features), given a prediction
p is:

φi(p) =
∑

S⊆N/i

|S|!(n− |S| − 1)!

n!
(p(S ∪ i)− p(S))

Behind the scenes, the SHAP package samples a certain amount of features instead of
going over all the subset of features (you can set how many subsets you want). They
posit that high accuracy in large datasets that are relevant today is often achieved by
utilizing complex models (such as ensemble ones). They state that although there are
an abundance of methods which seek to drive the explainability of models, it is often
unclear which one is superior over the other. In fact, we demonstrate this issue in the
next section where we show feature importance plots utilizing different bases. To address
this debate on which one to use in which situation, Lundberg and Lee propose the SHAP
(Shapley Additive exPlanation) framework. The entire purpose of SHAP is to get closer
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to explaining individual predictions for an isolated observation rather than predictions
on a global scale. By exploring SHAP, we show that the Machine Learning model is in-
terpretable and explanatory – both of which are vital aspects of any AML model that is
designed. Some factors which give the rise for such a need are the need to give consumer
explanations, anti-discrimination measures, compliance costs and also risk management
purposes. SHAP allows us to visualize explanations for a single transaction since it can
be both applied for:

1. Global Interpretability – shows how much (either through a positive or negative
relationship) each predictor affects the target variable

2. Local Interpretability – every single observation in our model can have its own
SHAP values generated in a map

Local SHAP values can also be used to calculate overall importance. The global SHAP
model has been shown to provide more accurate and useful metrics for model behavior.
Shapley values result from average over all N ! possible ordering (which is NP-hard) and
require us to find a way to compute these values extremely efficiently. At the end, each
Shapley value is a measure of contributions that each predictor (feature) has on a machine
learning model.

4.5.2 ELI5 Values

Similarly to SHAP values, a popular metric to explain Machine Learning Models is ELI5.
An advantage is that it uses actual features for permutation rather than the inputs and
outputs of the model itself to determine importance. ELI5 gives us two different ways to
understand our model which can be directly compared to SHAP values:

1. Analyze model weights to understand the global performance of the model (Global
Interpretability)

2. Analyze individual sample prediction to understand the local performance of the
model. This can help us drill down as to why a particular prediction was made and
which parameters played what role in that prediction (Local Interpretability)

ELI5 is especially superior than the feature importance available by default with XGBoost
as it sets clearly defined permutation definitions. On the other hand, for the regular built-
in feature importance on XGBoost, we must interpret whether we care about weight, cover
or gain for each specific case. This also allows the model to be explained to a stakeholder
who does not need the advance technical know-how in machine learning model debugging
or understanding.

We can see all the aforementioned plots along with a discussion of them in Chapter
5.
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Chapter 5

Evaluation

This chapter provides the results for all the machine learning models created for this thesis.
Various metrics for evaluating machine learning models are employed. Furthermore, we
compare our results to models, which already exist in publications (who also use the
dataset released by Elliptic), to establish a confident baseline.

5.1 Performance Metric Summary

One of the most popular ways to evaluate the performance of a machine learning model
is through a classification report or a confusion matrix. We first summarize the results of
three models in a table below - Logistic Regression, Random Forest and XGBoost. The
aforementioned models all used a 70:30 split - meaning 70% of the data was for training
and the remaining 30% was for testing purposes. It is notable that XGBoost was the
best performer out of the models we ran. Furthermore, we can compare our results to
another published paper on the same dataset and can see that our precision score is the
highest and recall still amongst the top performers. This shows that XGBoost is one of
the preferred algorithms to use on this dataset.

Machine Learning Algorithms
Method Illicit Preci-

sion
Illicit Recall F1 Micro F1

Logistic Regr 0.454 0.633 0.529 0.928
Random Forest 0.615 0.622 0.618 0.951
XGBoost 0.984 0.636 0.773 0.976

Table 5.1: Results of our Machine Learning Models

5.1.1 XGBoost Outperformance

Notably, we can see that tree based ensemble methods do outperform Logistic Regression.
Both methods reduce the error rate for False Positives and also False Negatives in a
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Figure 5.1: Results of Weber (2019) for Comparison [1]

noticeable way. However, we find that the XGBoost model is the most quite useful when
it comes to anomaly detection. We tuned our XGBoost model even further by running
GridSearchCV - this brute force way proved to be an efficient way to find the optimal
hyper parameters for our underlying dataset (see models.ipynb file).

Figure 5.2: Confusion Matrix (for XGBoost)
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5.1.2 Feature Importance

We examine XGBoost by first plotting the various feature importances - notably weight,
cover, and gain [40]:

• The weight metric (also called frequency) is the percentage representing the relative
number of times a particular feature occurs in the trees of the model

Figure 5.3: Feature Importance (type = weight) after running XGBoost

• The Coverage metric means the relative number of observations related to this
feature. The cover is normally expressed as a percentage for all the features’ cover
metrics.

Figure 5.4: Feature Importance (type = cover) after running XGBoost
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• The Gain implies the relative contribution of the corresponding feature to the model
calculated by taking each feature’s contribution for each tree in the model. A higher
value of this metric when compared to another feature implies it is more important
for generating a prediction. On the other hand, a lower value for this metric depicts
it is less important for generating a prediction.

Figure 5.5: Feature Importance (type = gain) after running XGBoost

Global and Local Interpretability

The below Figure 5.6 presents the most important variables (in descending order) in our
model to help understand what is driving its decisions. In other words, the plot is sorted
in order to use SHAP values which show the distribution and subsequent impact that each
feature carries on the actual model. This is an improvement to simply using the generic
feature importance(s) which varied significantly depending on the importance metric used.

The SHAP Global Summary Plot figure gives us a combination of feature importance and
also feature effects. Here, we have the most important 20 features and their subsequent ef-
fects. Moreover, we can see that the most important features are: Local_TX_Feature_53,
Local_TX_Feature_5 and Local_TX_Feature_59 and the most important aggregate fea-
ture is Aggregate_TX_Feature_69. The position on the x-axis is determined by Shapley
value. The colour of the feature ranges from high to low and represents the value of
the feature and impact of class prediction. For instance, we can see that low values of
Local_TX_Feature_53 and Local_TX_Feature_5 both have a very high impact on the
model output. Interestingly, we can see in turn that Local_TX_Feature_46 and Lo-

cal_TX_Feature_40 both have a very high impact when the values are medium to high
- while low values tend to impact the model in the opposite direction.
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Figure 5.6: SHAP Global Summary Plot



42 CHAPTER 5. EVALUATION

5.2 Explaining Features

This section explains the results and rankings of variables for individual observations using
the motivated SHAP values and ELI5 permutation technique.

5.2.1 SHAP Results

Moreover, we are interested in explaining individual observations that our model pre-
dicted. For this, we can use SHAP explanation force plots which were motivated in the
previous section. Each feature in the below plot is one that either can increase or de-
crease the class prediction from the baseline. At the end, we can see why the prediction
is closer to class 0 or class 1 (licit and illicit, respectively). As expected, we can see some
overlap between the global SHAP plot and the local one. Here, we see the two most
dominant features which impact the model the most - they are Local_TX_Feature_53

and Local_TX_Feature_31.

The local plot starts with a base value of −4.412. As XGBoost is built on the log-
odds scale, the negative values are valid and contributions are still readily visible. The
model’s base value is then impacted higher or lower based on the features for that par-
ticular observation. In this case, we end with f(x) = −9.93 which is markedly lower
than our base value - this indicates that the model predicted class 0 or in other words,
that the transaction was from the licit class. As the model predicted a lower value, we
can now see the contribution of each individual feature to the model. For example, we
can see that Local_TX_Feature_53 and Aggregate_TX_Feature_31 contributed the most
to showing that this was indeed a legitimate and licit transaction. On the other hand,
Local_TX_Feature_5 and Local_TX_Feature_90 were the main drivers for the model
thinking that it could potentially belong to the illicit category or class 1.

Figure 5.7: SHAP Local Explanations

5.2.2 ELI5 Results

As mentioned in the previous section, another way to see feature importance with per-
mutations is via ELI5. In Figure 5.8, we share the results of the most important features
and least important features (green and red respectively) for an observation. While there
are some differences in comparison to SHAP, they are not significant and further reinforce
that certain features in our dataset have higher (and lower) predictive powers relative to
others.
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Figure 5.8: ELI5 Local Explanations

Likewise, we can also view the weights from a global perspective in Figure 5.9. This
aggregation shows the weights that each feature carries. The higher the weight, the more
critical the feature is in the model’s scoring. Once again, this is strikingly similar to SHAP,
which further reinforces our confidence when it comes to model interpretability as we see
overlaps in both Local and Aggregate Feature rankings (out of 166 total features). ELI5
allows us to take what is an opaque tree model and achieve some interpretable results.

Figure 5.9: ELI5 Global Explanations

5.3 Summary

We can that see that our top performing model (XGBoost with GridSearchCV) shows very
encouraging results. We identify over 98% of all illicit transactions correctly. This means
that any compliance efforts using such a model would not be drastically overburdened by
the large amount of false positives or fraud flags for illicit transactions. This is ever so
important as investigations on the blockchain can both be time consuming and laborious.
Furthermore, by being able to capture 64% of all cases of known fraud, it shows that our
model can be quite valuable in the fight against money laundering on the blockchain.

To date, there does not exist much work with regards to explaining and interpreting
anomalies on the blockchain. Shapley values and ELI5 offer an opportunity for regulators
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and blockchain investigators to be quite confident about the results of a model by showing
which variables contribute to a certain prediction the most. Such explanations prevent
the model from falling under regulatory scrutiny of being too opaque. By being able to
see and assess the impact that each individual feature (or variable) has on the predicted
outcome, it allows investigators to dive much more deeper into a potential fraudulent
scheme. Moreover, by continuing research in this direction, it can be possible to prevent
cryptocurrencies from being overly regulated - which would keep payments accessible for
all of society.

Limitations

The dataset released by Elliptic Co is one of the largest and most comprehensive transac-
tion labelled datasets released to the public. However, it is important to note that having
access to more of such labelled data for the purposes of further model development is
not always feasible as this requires a high manual effort by some individual or company.
Thus, anomaly detection is generally an unsupervised machine learning task. Moreover,
the aforementioned party must also be willing to release its data to the public.

Furthermore, while Elliptic has released the dataset to the public in hopes of encour-
aging research interest on novel anomaly detection methods, most of their data remains
in an anonymous form. For instance, we saw in the previous sections which features were
the most important for global and local interpretability (e.g., Local_TX_Feature_53),
but we actually do not know what the underlying feature truly is as it is anonymized.
Elliptic has given clues of what local features and aggregate features are (e.g., the number
of inputs and outputs, the transferred amounts, payments to miners, etc), but we cannot
make a certain 1-to-1 mapping of it from their dataset description. This is a limitation
in the sense for compliance officers and those conducting certain investigations, but for
model development, gauging performance remains unimpeded.

With that said, (a questionable practice, but important to acknowledge) there have al-
ready been efforts to deanonymize the Elliptic dataset. At the time of writing, it is
possible to deanonymize the transactions by building a directed graph and calculating
the incoming and outgoing degree of each transaction ID [41]. Then, using the elliptic
time value, it is feasible to link the transactions in which the specified numbers occur only
once in the Bitcoin blockchain’s history. In this case, it means taking the random ID’s
Elliptic has assigned and finding the actual transaction hashes from the transaction list
provided. It is then possible to overlay the other attributes (e.g., the number of inputs and
outputs, the transferred amounts, payments to miners) to see most of the feature values.
However, in the spirit of Elliptic’s release of the dataset to the public sphere for anomaly
detection research, the attributes provided are enough to gauge both model performance
and interpretability. The actual transaction hashes and attributes would be most useful
to those who are conducting an in-depth blockchain investigation.

Lastly, the nature of transactions on the blockchain are always changing. Places where
illicit transaction tend to cluster around - darknet marketplaces, illegal gambling sites con-
stantly open and shut-down. In fact, this concept was demonstrated by Mark Weber where
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following a a large dark web marketplace shutdown, many anomaly detection algorithms
were not working as expected and suffered performance wise [1]. What makes something
anomolous today, may not be an anomaly (or may not even exist) on the blockchain
tomorrow; as a result, it is always imperative to have new observations and transaction
history - particularly if you are training a supervised machine learning algorithm.
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Chapter 6

Summary and Conclusions

Cryptocurrencies today make up an irrefutably significant portion of financial transac-
tions. While the vast majority of transactions are made for honest and legitimate services,
a portion of them are comprised of illicit transactions. Rather than settle for strict AML
laws or simply have regulators put curbs on cryptocurrencies, anomaly detection presents
us with a way to both to identify and trace such illicit transactions on the blockchain.
Furthermore, having sophisticated machine learning tools to detect anomalies not only
allows us to identify illegal flows, but also serves as a major deterrent from criminals using
the network for their own illicit gain in the first place.

The cross border component of many blockchain transactions means we need a novel and
clever way to combat money laundering and organized crime within cryptocurrencies. The
traditional way – where a centralized 3rd party was in charge of verifying transactions
has been shown that it could be replaced by digital signatures and cryptographic proof.
Although there appears to be less control in such a system, there is at the same time,
a higher level of immutable data that can be viewed and verified by anyone at anytime.
We showed that by leveraging the power of machine learning, it is possible to uncover
illicit transactions at a strikingly accurate rate. By doing so, we can catch criminals and
also drastically reduce the negative effects that strict AML/KYC laws have on society -
especially those who are most financially vulnerable.

Furthermore, not only did we show that it is feasible to identify anomalous activity on
the blockchain with a reasonably high accuracy, but the thesis also depicted that it is also
possible to explain what drives the decision of the model. Explainable machine learning -
in particular, the local interpretability factors are something that is crucial in the compli-
ance world since it is not possible to simply rely on a black box machine learning model.
Rather, we can take an opaque model and readily understand the decisions it makes.
The progress made in recent years when it comes to improving the ability to explain the
decisions of various machine learning models should not be ignored for anomaly detection
on the blockchain.

The existence of illicit transactions on the blockchain impacts all realms of society -
ranging from stolen funds from ordinary people, to ransomware attacks on corporations,
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and to even actions that can destabilize entire governments. The oftentimes high paced
nature of cryptocurrency and blockchain development make it somewhat difficult for reg-
ulators and law enforcement to adequately keep up. However, it is clear from the results
of the machine learning algorithms and also the work done by other researchers, that
even the most sophisticated ways to hide on the blockchain can ultimately be identified
and tracked. While some level of regulation for the blockchain may be necessary, when
working with vasts amounts of immutable data, human ingenuity can be an effective way
to deal with illicit transactions on the blockchain.
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Abbreviations

AI Artificial Intelligence
AML Anti Money Laundering
ELI5 Explain Like I’m 5
GCN Graph Convolutional Network
IP Internet Protocol
KYC Know Your Customer
ML Machine Learning
SHAP SHapley Additive exPlanations
SVM Supervised Vector Machine
TX Transaction
UI User Interface
U-SVM Unsupervised Vector Machine
UTXO Unspent Transaction Output
XAI Explainable Artificial Intelligence
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Glossary

Anti Money Laundering - refers to the laws, regulations and procedures intended to pre-
vent criminals from disguising illegally obtained funds through licit goods and trans-
actions

Artificial Intelligence - a technology which enables a machine to simulate human be-
haviour.

Blockchain - a public distributed and decentralized append only ledger linked in a peer-
to-peer fashion

Confusion Matrix - an error matrix which allows for easy visualization of a machine
learning model’s performance metrics

EDA - Exploratory Data Analysis

ELI5 - known colloquially as ’Explain Like I’m 5’

Graph Convolutional Network - it is a very powerful neural network architecture that is
specifically designed for machine learning on graphs

Know Your Customer - a set of laws in which financial institutions and money provider
services must adhere to - this usually includes asking for ID, proof of income, address.
This law also is part of anti money laundering procedures

Machine Learning - a subset of artificial intelligence. Here, machines are able to learn to
use data in order to find patterns and learn how humans would learn

Pseudonymous - using a fake or misleading name or identifier to prevent a real identity
from being exposed

Unspent Transaction Output - a blockchain transaction that has not been spent, i.e. can
be used as an input in a new transaction

XGBoost - eXtreme Gradient Boosting is a gradient boosting framework which aids in
machine learning. It is based on decision tree ensemble learning methods.
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Appendix A

Installation Guidelines

Any version of Python 3 will suffice. You will also need to have Jupyter Notebooks

installed to make following the code easier with the markdown and comments. To do
this, I recommend installing Anaconda - the Python distribution which has already has
many data science features and packages preinstalled for ease of use.

Anaconda download: https://www.anaconda.com/products/individual.

Next you will also need to packages to run the model. The list of packages can be
found below, with the detailed descriptions of each found in the Implementation Chap-
ter (Section 5.2). You can either do conda install [package_name] or pip install

[package_name]. Note - some packages are already preinstalled if you chose to install via
the Anaconda distribution route.

• scikit-learn (sklearn)

• networkx

• numpy

• pandas

• matplotlib

• seaborn

• xgboost

• SHAP

• ELI5

You may then use your Shell to start Jupyter Notebooks by typing jupyter notebook

as the command in your shell. The notebook service will start locally to which you may
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upload the models.ipynb file included in the project folder. You may then execute line-
by-line the code (or choose simply choose the model you wish to run by the subheadings).
Make sure you are reading the dataset files prior to running the model however - you can
do this by ensuring that they are in the same directory (or point them to where you wish
by editing the path accordingly in the code). It is also possible to have a view-only file
by using models.html.



Appendix B

Contents of the CD

The CD contains the following items:

• /main/models.ipynb - a file for the source code (main file is models.ipynb)

• elliptic_dataset.zip - the Elliptic dataset files (three .csv files in total)

• /main/models.html - a file for the source code in html for easier viewing

• thesis.pdf - the final thesis in PDF format (thesis.pdf)

• /main/tex.zip/ - a folder for the Latex source code for the thesis

• midterm.pptx - the midterm presentation in PowerPoint format

• final.pptx - the final presentation in PowerPoint format

63


