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Abstract

A real-world test situation not only comprises of classes that a supervised model is trained with,
but also consists of unknown classes that the model is unaware of. Such a test situation forms part
of an open space, and an open-set classifier, trained using open-set algorithms is used to handle it.
These algorithms are developed using artificially generated open space, created using available
datasets and their classes. Open-set algorithms that are currently in place are either developed
using small datasets or, address only those unknown samples that are distinctly different from
known classes. In this thesis, | propose three ImageNet based open-set protocols that closely align
with the real-world open space and also, address unknown samples that are similar to known
classes. | use these protocols to compare the performance of two easy-to-implement open-set
algorithms, SoftMax with Garbage Class and Entropic Open-set Loss, that were developed using
small datasets, and compare their performance to that of a baseline Traditional SoftMax.






Zusammenfassung

In realen Testsituationen bestehen die Klassen nicht nur aus den bekannten Klassen, die zum
Trainieren des Modells benutzt werden, sondern auch aus unbekannten Klassen, die das Modell
nicht kennt. Solche Testsituationen sind Teil eines Open Spaces und ein mit open-set Algorithmen
trainiertes Open-Set-Bildklassifikationsmodell wird eingesetzt, um es zu behandeln. Anhand
der verfugbaren Datensatze und Klassen werden kinstliche Open Sets generiert. Diese Open
Sets werden benutzt, um die Open-Set Algorithmen zu entwickeln. Open-Set-Algorithmen, die
heutzutage benutzt werden, wurden entweder nur mit kleinen Datensatzen entwickelt, oder be-
fassen sich nur mit Datensétzen, die sich deutlich von den bekannten Klassen unterscheiden.
In dieser Thesis, schlage ich drei ImageNet-basierte Open-Set-Protokolle vor, die dem realen
Open Set sehr &hnlich sind und Datenséatze bertcksichtigen, deren Klassen unbekannt, jedoch
mit den bekannten Klassen verwandt sind. Mit Hilfe dieser Protokolle, vergleiche ich zwei Open-
Set-Algorithmen miteinander. Beide Open-Set-Algorithmen, «SoftMax with Garbage Class» und
«Entropic Open-Set Loss», sind einfach zu implementieren und wurden mit kleinen Datensatzen
entwickelt. Zudem vergleiche ich die Performance beider Algorithmen mit einer Baseline, dem
traditionellen SoftMax.
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Chapter 1

Introduction

On February 12, 2002, the United States Secretary of Defense, Donald Rumsfeld, answered a ques-
tion posed to him during a news brie ng regarding the lack of evidence that proves that the Gov-
ernment of Iraq is responsible for supporting terrorist groups with weapons of mass destruction,
and the exact words of his answer were as follows:

"Reports that say that something hasn't happened are always interesting to me, because as we know,
there are known knowns; there are things we know we know. We also know there are known unknowns;
that is to say we know there are some things we do not know. But there are also unknown unknowns - the
ones we don't know we don't know. And if one looks throughout the history of our country and other free
countries, it is the latter category that tends to be the dif cult ongs."

This response is relevant not only in case of humans but also in case of machines. Supervised
image classi cation algorithms have achieved tremendous success when it comes to detecting
classes from a nite number of known knownclasses, what is commonly known as evaluation un-
der the closed-set assumption ( , ). However, gauging their performance is tricky
when they are fed with unknown unknownsamples, existence of which is an absolute mystery
to the model. In fact, current classi cation models sometimes confuse unknown unknown sam-
ples as known classes with high con dence, when ideally, they are expected to detect them as
unknown and reject them ( , ). Figure 1.1(a) shows how under closed-set
classi cation, samples are correctly classi ed as one of the nite number of known classes. The
model develops decision regions for each of the known classes represented by the different colors.

But, it is upon zooming out of this closed space that one can visualize the real-world test space,
termed as open space by ( ), as seen in Figure 1.1(b), samples from which are likely
to be encountered during testing. When decision regions learnt using closed-set classi cation are
extended into the open space, unknown samples, represented by "?" get comfortably misclassi-
ed as one of the known classes depending on the extended decision region they fall in. However,
models are expected to identify them as unknown (that is none of the known classes), and reject
them, as seen in Figure 1.2. To achieve this objective, researchers must shift from designing per-
fect closed-set classi ers to developing near-perfect open-set classi ers. For this, it is important to
understand the composition of open space. ( ) divide the open space into three
parts and this division also aligns with Mr. Donald Rumsfeld's answer.

1. Known Classes: A nite known space occupied by known classes, that also form the closed-
space in closed-set classi cation. The model is trained using these classes and has complete
information about them. Closed-set as well as open-set classi ers are expected to correctly
classify all these classes.

2. Known Unknown Classes : A nite known unknown space occupied by known unknown
classes. The model only has partial information about these classes, and sometimes, they

Ihttps://en.wikipedia.org/wiki/There_are_known_knowns
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(a) Classi cation under (b) Extension into
closed-set assumption Open-space

Figure 1.1: CLOSED SPACE VERSUSOPEN SPACE. This gure shows how under closed-set classi cation,
all samples are correctly classi ed as seen in (a), until the closed-space is extended to open-space as seen in

(b). Source: ( , )

Figure 1.2: OPEN-SETCLASSIFICATION . Under open-set classi cation, a classi er is expected to correctly
classify all known classes and correctly detect all unknown samples in open space. Source: ( ,

are used for training to provide the model with a hint of possible unknown unknown sam-
ples likely to be encountered during testing, assuming the unknown unknown samples will
behave similarly as samples from these classes.

3. Unknown Unknown Classes : An in nite unknown unknown space occupied by samples
that the model does not see at all during training and hence has no knowledge about. An
ideal open-set algorithm is expected to detect all samples from these classes.

| call these classes as open-set partitions of the open space and sometimes, jointly refer to known
unknown and unknown unknown samples as just unknown samples. While it is impossible
to train a classi cation model with all possible unknown examples, it is possible to distinguish
known samples from unknown samples by using a known decision boundary threshold beyond
which an input becomes unknown or/and by manipulating their feature representations (
, ). Itis using these concepts that models can detect unknown samples and reject them,

while maintaining their performance in correctly classifying known samples.

Till now, several approaches have been taken by researchers to satisfy the open-set goal, and
each approach addresses the open-set problem in a different Way and has been developed us-

ing d|fferent datasets and dlfferent theories (
3.1n this thesis, | use two of these approaches,

2https://github.com/iCGY96/awesome_OpenSetRecognition_list



namely SoftMax with Garbage Class and Entropic Open-set Loss, which attempt to reduce over-
lap between known and unknown classes in open space ( , ), and compare the
performance of these algorithms on a large-scale hierarchical dataset called ImageNet. SoftMax
with Garbage Class uses a garbage class created usinggnown unknownclasses, to train classi ca-
tion models such that they separate samples from garbage class and unknown unknown classes
in a space different from that of all the known classes. Entropic Open-Set Loss uses a novel loss
function to shorten the Euclidean length of the feature vector of known unknown and unknown
unknown test samples in comparison to that of known samples. Both the approaches prove to be
effective on open-set partitions created using small datasets, where known and unknown classes
are also distinctly different from each other in appearance.

To test their performance on a large hierarchical dataset, | design three ImageNet protocols,
with different open-set partitions, for open-set evaluation. This is done since ImageNet is a
closed-set classi cation dataset and never before have there been open-set partitions created us-
ing the same ImageNet dataset, that address varying levels of dif culty faced in the real-world
open space test situation. | explore different levels of hierarchy and similarity between ImageNet
classes to design these protocols to provide a stronger sense of open-set evaluation for the two
approaches. Itis also a rst time that such an intensive evaluation of the two open-set algorithms
is carried out using open-set ImageNet protocols.

The thesis is outlined as follows:

Dataset - In this chapter, | will discuss about ImageNet and the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) dataset that | use to perform my experiments.

Related Work - In this chapter, | will rst introduce traditional SoftMax and then dive into
different open-set algorithms, two of which are experimented with in this thesis. | will also
provide a comparison between open-set classi cation and another application that is closely
related to it called Out-of-Distribution Detection.

Open-set ImageNet Protocols - Here, | will highlight how | design the three open-set Im-
ageNet protocols to address varying levels of dif culty in terms of correctly classifying
known classes and correctly detecting unknown unknown classes that are similar to known
classes.

Experimental Set-up - Here, | will explain how | set-up my experiments that is how Ima-
geNet is accessed at different hierarchical levels to create the open-set protocols, how cus-
tom datasets and dataloaders are created, the network selected for the experiments and the
hyperparameters used.

Experiments - In this chapter, | will rst introduce two novel evaluation metrics used for
open-set evaluation. | will then detail how | execute SoftMax with Garbage Class, Entropic
Open-Set Loss and the baseline traditional SoftMax and train the network using these algo-
rithms. | will also share the results of my experiments and draw observations from them in
this chapter.

Discussion - In this chapter, | will derive insights using my observations from the results
and discuss potential limitations.

Conclusion and Future Work - In this chapter, | will draw conclusions from my thesis by
summarizing the results and insights from my open-set experiments. | will also discuss
gaps that can be lled through future work.






Chapter 2

Dataset

While small datasets provide a quick way to experiment and develop advanced computer vi-
sion algorithms, it is only by developing an algorithm using a rich, hierarchical dataset that a
high quality benchmark can be achieved to compare against. ImageNet is one such large-scale
hierarchical dataset, that serves both as a benchmark dataset in developing advanced computer
vision algorithms and a benchmark to compare performance of state-of-the-art algorithms. It is
due to this reason that | select ImageNet to perform my experiments. Speci cally, | use a subset
of ImageNet that was created for ImageNet based 2012 challenge, details of which | discuss in
section 2.2.

2.1 ImageNet - An Image Database

ImageNet is a huge collection of human annotated and quality controlled images that are struc-
tured as per the WordNet hierarchy. * WordNet is a large lexical database of English words, where
adjectives, verbs, nouns and adverbs, that are linked together by a semantic relationship to rep-
resent the same distinct concept, are clubbed together to form "synsets" or synonym sets. This
semantic hierarchy can be visualized as a tree and the complete hierarchy of a word can be easily
explored using the WordNet online tool. > Two hierarchical examples are shown in Figure 2.1.
Here, huskyand trimaran represent the most distinct noun, which get grouped under semantically
similar nouns, eventually leading to the root nodes of mammaland vehiclerespectively. To address
these nodes more clearly, | use the following terms:

Superclass - A class that has one or more classes under itis called a Superclass. For example,
in Figure 2.1, all classes precedinghuskyare superclasses.

Subclass - A class under a superclass is called a subclass and classes with with no further
subclasses are called leaves. The terms subclass and descendant are used interchangeably.
In Figure 2.1, dogas well as huskyare subclasses oimamma) where huskyis also a leaf.

Since the publication of ( , ), ImageNet has grown from 5,247 synsets with 3.2
million images to 21,481 synsets with ~ 14.2 million images as per its latest update.® It is an
ongoing research effort which aims to address around 80,000 noun synsets of WordNet, with an
average of at least 1000 clean and full resolution images per synset.

Lhttps://wordnet.princeton.edu/
2http://wordnetweb.princeton.edu/perl/webwn
Shttp://www.image-net.org/
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Figure 2.1: SNAPSHOT OF IMAGENET. This gure shows an example of two root-to-leaf branches of
ImageNet. The class on the right side of an arrow is a subclass of the preceding superclass and the class on
the extreme right end is a leaf. Source: ( , )

Ever since its creation, ImageNet has been used rigorously by the computer vision community
for several applications like image classi cation, tree based image classi cation, object localiza-
tion, and object detection. Image classi cation is fairly simple, where given an image, an algo-
rithm needs to identify the object class present in the image. Tree based image classi cation takes
advantage of the semantic hierarchy within ImageNet to not only classify an image by its super-
class, but to also provide information about its subclass. Object localization identi es the location
of objects within an image and places a bounding box around it, and object detection uses these
bounding boxes to identify the class of the bounded object. These applications of ImageNet were
further explored through a competitive challenge, details of which are described in the following
section.

2.2 ImageNet Large Scale Visual Recognition Chal-
lenge

ImageNet Large Scale Visual Recognition Challenge or ILSVRC, was an annual competition held
between 2010 and 2017. Subsets of ImageNet were created for these challenges, with the aim of
comparing advances in image classi cation, object detection and localization algorithms, as well
as to track the progress of large-scale computer vision algorithms ( , ). Each
subset consisted of a training, validation and test set. The training set was created using human
annotated ImageNet images, while the test set was created using images from outside ImageNet,
whose annotations were held back from the public.

Performance on ILSVRC classi cation task, that is the task of producing a list of ve most
probable object classes to classify an image, was evaluated under the closed-set assumptiorf. Im-
provement in closed-set classi cation performance by winning teams between 2010 and 2014, in
terms of top-5 classi cation error, that is the fraction of test samples for which the correct object
class is not present in the ve most probable classes predicted by the model, can be seen in Fig-
ure 2.2. This performance improved further between 2015 - 2017 with the top-5 classi cation error
being as low as 2.251% for the winning entry in ILSVRC2017.° With such tremendous improve-
ment in classi cation of ImageNet images over the years, the question that lingers is how does the

4https://image-net.org/challenges/LSVRC/
Shttps://www.kaggle.com/getting-started/149448
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Figure 2.2: CLOSED-SET CLASSIFICATION PERFORMANCE ON IMAGENET. This gure shows the
improvement in top-5 classi cation error of winning entries in closed-set classi cation tasks from ILSVRC
2010 - 2014 Source: ( , )

performance look like when the classi cation task is changed from being closed-set to open-set.
ILSVRC2012: Other than the task of producing a list of ve object classes in descending order
of con dence and specifying their location in the image using bounding boxes, the 2012 challenge
included a ne-grained image classi cation task for 120 dog classes, with one prediction per im-
age. The training set of ILSVRC2012 consists of 1000 classes with 1.2 million human annotated
ImageNet images spread almost equally across all the classes or synsets (732-1300 per synset).
The validation and test set consist of 150,000 images, out of which only 50,000 annotated images
(50 images per synset) were available as validation set to the public, while the remaining 100,000
images (100 images per synset) were made available without annotations only during testing. The
1000 classes are available as 1000 synset IDs.






Chapter 3

Related Work

While many researches have been published in the last decade in the eld of open-set image clas-
si cation, | believe this thesis draws inspiration from ve of them and | focus on discussing those

in this chapter. But before discussing the related literature and diving into open-set algorithms,
it is essential to understand how closed-set classi cation with deep networks work using a tradi-
tional SoftMax and why it is not effective in open-set classi cation. | also provide a comparison
of open-set image classi cation with another application called Out-of-Distribution Detection,
which is closely related to it.

3.1 Traditional SoftMax

A SoftMax function is used to represent the probability distribution in a multi-class classi cation
problem, where the predicted class can be one among O different classes. In other words, when
the output of a network is not binary, but has O possible options, a SoftMax function is used. A
SoftMax converts real-valued logit values, calculated using network weights and activation func-
tions, to probabilities ( , ). Under closed set classi cation, the probabilities
thus generated sum to 1. The class with the largest probability is then predicted as the class of the
input sample by the network. The SoftMax function can be calculated as follows:
Zo
Yo = —pe (3.1)
e’o0
00=1

Here, y, is the predicted probability for class o, calculated by dividing the exponential of logit
values for class o (z,) by the sum of the exponential of logit values for all O classes. TheO
output classes are sometimes called SoftMax targets and the predicted probabilities are called
con dences. For the task of image classi cation, a traditional network looks like that shown in
Figure 3.1, where convolutional layers are used for effective and ef cient classi cation. ' As can
be seen, SoftMax function is used in the nal fully-connected layer, as the output of the network.

3.2 Open-set Algorithms

In open-set classi cation, a classi er is expected to correctly classify known test samples and
correctly detect unknown test samples and reject them. SoftMax may be effective in predicting

Ihttps://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-net
works-584bc134cle2
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Figure 3.1: TRADITIONAL IMAGE CLASSIFICATION NETWORK. This gure shows a traditional convo-
lutional classi cation network, with L convolutional layers (Conv) and three fully-connected layers - FC1,
FC2 and SoftMax.

classes that the network has seen before (known classes), but what happens when the input to the
network is an unknown class? An easy approach would be to threshold on the maximum class
probability, using what is known as the con dence threshold, assuming that for an unknown in-
put, the probab|I|ty would be distributed across all the classes and hence, would be low (

, ). But such an approach is not effective when unknown inputs over-
lap S|gn| cantly with known decision regions and tend to get misclassi ed as a known class with
high con dence. This can be represented visually using 2D bottleneck plots or ower plots, cre-
ated using features extracted from fully connected layer FC1 in Figure 3.1, that is selected to have
two neurons to produce 2D plots ( , ). Training on MNIST 2 using a traditional
SoftMax would produce a bottleneck plot as shown in Figure 3.2, where colored dots represent
test samples from 10 known MNIST classes and black dots represent test samples from unknown
unknown Devanagari classes ( , ). Gray lines denote class boundaries and if a sam-
ple falls on any class boundary, it has equal chances of being detected as belonging to either of
the two neighbouring known classes. It can be seen from Figure 3.2 that there is a large amount
of overlap between known and unknown unknown test samples, which leads to the misclassi -
cation of many unknown unknown samples as known classes with high con dence.

It is therefore essential to devise techniques that are more effective than simply thresholding
SoftMax probabilities in detecting unknown inputs. Some initial approaches include extension of

1-class and binary Support Vector Machine (SVM) as implemented by ( ) and
devising recognition systems to continuously learn new classes as implemented by
( ) and ( ). In this chapter, | will discuss the work of ( )in

detail and then discuss other recent approaches that attempt to solve the open-set problem.

3.2.1 Extreme Value Machine

Extreme Value Machine or EVM incorporates a compact online incremental update mechanism
which incrementally updates known classes by making use of their decision boundaries (

, ). Under EVM, known classes are characterized by a set of speci ¢ data points and
distributions or extreme vectors (EV) that best summarize the class. These EVs are then used to

2http:/lyann.lecun.com/exdb/mnist/
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Figure 3.2: BOTTLENECK PLOT USING TRADITIONAL SOFTMAX. This gure shows bottleneck or
ower plot for 10 known MNIST classes (colored dots) and unknown unknown Devanagari classes (black
dots), when Traditional SoftMax is used. Overlap between these classes leads to misclassi cation of un-
known samples as known classes. Source: ( , )

generate radial boundaries for each known class that determine the probability of an input be-
longing to that class or the probability of sample inclusion, as termed in the paper. This avoids
considering redundant data points, thereby reducing computing cost and storage requirements,
without compromising on classi cation accuracy. For their experiments, ( ) consid-
ered a data point of a class as redundant if it had greater than 50% probability of getting covered
by other data points of that class.

During the initial training phase, rst set of EVs are obtained, post which the model is re-
trained with a new batch of data to update its EVs using old EVs and new training data points.
If EVM spots an unknown data point among new training data points, it saves its distribution
to produce EVs for new classes. This leads to producing updated EVs for each known class and
identi cation of EVs for new classes. This process is repeated for multiple new training batches
to update the model's EVs using previous EVs, EVs of new classes and new training points.

Dataset of ILSVRC2014 was used for training and testing EVM. The initial training phase
consists of samples from 50 classes of ILSVRC2014 training set followed by classi cation of 0, 50,
100, 150 and 200 unknown classes from the test set. After the initial training step, the model is
incrementally retrained with samples of 50 additional classes at each increment from the training
set, followed by classi cation of samples of known classes and samples from 0, 50, 100, 150 and
200 additional unknown classes from the test set. The Nearest Non-Outlier (NNO) algorithm,
which generates a decision boundary using a thresholded distance from the nearest class mean

, ), was used to compare the performance of EVM on ILSVRC2014. EVM
performed better than NNO both in terms of F1 score and classi cation accuracy. °

Despite its advantages, the computational load and storage requirements of EVM is highly de-
pendent on how much redundancy is avoided/allowed in the model, while maintaining a good
accuracy. Moreover, it fails to elaborate on the impact of encountering an outlier of a known
class during training. Its performance is also dependent on the selection of certain distributional
hyperparameters for which there is no known de nite selection window. Also, authors used a
pretrained AlexNet ( , ), pretrained on ImageNet to extract features of input
images, which ensures that features of known and unknown classes are different and thus sepa-
rable. However, it is not known how EVM would perform when unknown classes are not seen
at all during training, that is when a non pretrained model is used to extract features. There-
fore, while EVM might be an interesting open-set algorithm, it needs further work to address its
disadvantages.

Shttps://www.kaggle.com/getting-started/221303
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Figure 3.3: EXTREME VALUE M ACHINE . This gure shows EVM algorithm trained on four classes where
"?" represents unknown data points. "A" is the extreme vector (EV) for the class represented by blue dots.
The isocontour rings represent the radial probability of sample inclusion boundaries for each of the four
known classes. Source: ( , )

3.2.2 OpenMax

( ) use two main concepts to develop a robust open-set classi cation al-
gorithm for deep networks - Multi-class Meta-Recognition and OpenMax. A Meta Recognition
system is known to guide the decisions of a recognition system by analyzing its recognition per-
formance. In case of open-set classi cation, this Multi-class Meta-Recognition dwells on the idea
of how far an input is from the known training space, wherein the known training space is de ned
for each known class. The function of OpenMax is to modify the SoftMax function by removing
the constraint of all known class probabilities adding to 1, to accommodate prediction of an un-
known class. These concepts together form the foundation that open-set deep networks use for
classifying known samples with suf cient accuracy while rejecting any unknown samples during
testing.

Using network scores/logit values from the penultimate layer (FC2 in Figure 3.1), also termed
as Activation Vector (AV), a Mean Activation Vector (MAV) is computed for each class by taking
the mean of all correctly classi ed training sample AVs. Each known class is thus represented as
a point denoted by its MAV. The MAV for a given class is also assumed to be representative of
related classes, since AVs for related classes are similar. Figure 3.4 shows AVs for four different
ImageNet classes, denoted by the line corresponding to their real image. Related classes like
hammerhead shark and great white shark respond similarly and hence, are seen to have similar
levels of activation for correlated classes like shark, whales and sh.

During training, AVs are used to generate MAVs for each known class. Based on prior work
on meta recognition that suggest that the nal system scores follow Weibull distribution, * Weibull
tting is used to threshold on the largest of the distances between MAV of a known class and all
correctly classi ed training samples of that class to demarcate a known boundary for that class
( , ). This gives rise to a probability parameter that estimates the probability

4https://www.weibull.com/hotwire/issuel4/relbasics14.htm
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Figure 3.4: ACTIVATION VECTORS This gure shows activation vectors or AVs for four different Ima-
geNet classes and their corresponding fooling and open set AVs. While all 1000classes are used for training,
each AV in this Figure is shortened to have responses from the rst 450 ImageNet classes, with responses for
some categories shown at the bottom. Green lines represent high activation while blue lines represent low
activation. Source: ( , )

of an input being outside the known boundary. This probability also provides meaningful in-
sights about if an input belongs to the top few classes, instead of just the top-1 class for which
it produced maximum activation during testing. Therefore, activation (logit values) for the top
few classes are weighted and also, a pseudo activation is computed for unknown unknown class
while maintaining the total activation level. An uncertainty threshold is further used on these
OpenMax probabilities to determine the class of the input during testing.

The Meta-Recognition and OpenMax system thus allows to develop a robust open-set classi-
cation algorithm by training only on known samples. The training set of ILSVRC2012 was used
to train OpenMax model. Since the test set of ILSVRC2012 is not publicly available, a test set was
created using 50,000 validation images from ILSVRC2012, 15,000 fooling images (provided by

( )) and 15,000 open set images drawn from 360 categories of ILSVRC2010 that

were not present in ILSVRC2012. For evaluation, F-score is used, wherein true positives are de-
termined using correct classi cation of validation set images, false positives are determined using
incorrect classi cation of validation set images and false negatives are determined by the number
of fooling and open-set images that are incorrectly classi ed as known classes by OpenMax.

OpenMax is shown to work well with open set images (unknown images that are known to
exist in real world) and abstract fooling images as seen in Figure 3.5. However, OpenMax is
shown to fail when presented with open-set images that are similar to known classes. For exam-
ple, ( ) show that OpenMax incorrectly classi es an image of a Police van
as an Ambulance. But, they do not experiment extensively with more such unknown samples
and hence, it is dif cult to gauge the effectiveness of OpenMax when it comes to unknown sam-
ples that are similar to known classes. Further, the disadvantage of using a pretrained network,
pretrained on ImageNet, as mentioned in subsection 3.2.1, exists in case of OpenMax as well.
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Figure 3.5: SOFTM AX VERSUS OPENM AX. This gure shows SoftMax scores (SM) and OpenMax scores
(OM) for real, fooling, and open-set images of two ImageNet classes. OpenMax correctly identi es fool-
ing and open-set images as long as they are not similar to known classes. For example, the image in the
bottom left is not rejected as unknown, since it shares similar features with the known class of baseball.
Source:( , )

3.2.3 SoftMax with Garbage Class

Some recent approaches use a garbage class during training to enhance the network's capability
of detecting unknown unknown classes during testing. ( ) use a separate set of
known unknown classes to create a garbage class while ( ) mix known classes to
create the same. In this subsection, | provide details about these two approaches.

Garbage Class created using Known Unknown Classes

For this SoftMax with Garbage Class approach, a garbage class is created using a separate set
of known unknown classes. The network is trained with samples from these classes, hoping
that they are suf ciently representative of unknown unknown test samples. ( )
used NIST letters ( , ) as known unknowns along with all MNIST classes as known
classes. All known unknown classes are collected into a single garbage class by assigning them a
common class label. If there are O known classes, then under this algorithm, there willbe O +1
total classes with O known classes plus 1 garbage class. The garbage class can be labeled as= 0
and known classes can be labeled agt = 1;2;3::;; O. Alternatively, known classes can be labeled
ast =0;1;2;::;;0 1and the garbage class can be labeled a$ = O. The garbage class is labeled
in such a way so that the model identi es it as one among the known classes. All known and
known unknown classes are then weighted according to the number of training samples per class
according to the following equation:

- _N
t~ ON; 3.2)

where N is the total number of training samples, O is the number of known classes and N; is the
number of training samples in the class for which the weight is being calculated. These weights
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Figure 3.6: BOTTLENECK PLOT USING SOFTMAX WITH GARBAGE CLASS. This gure shows
bottleneck plot for 10 known MNIST classes (colored dots) and unknown unknown Devanagari classes
(black dots) when trained using SoftMax with Garbage Class, created using known unknown NIST letters.
Source:( , )

follow the logic that classes with a lower number of samples are weighted higher than those with

a higher number of samples. When garbage class is added as one of the classes, it usually contains
a higher number of samples as compared to the known classes, given that it is a collection of a
number of known unknown classes. Known classes not only contain fewer samples than the
garbage class but are also almost balanced in a typical dataset. So, all the known classes tend
to have similar weights while the garbage class gets a much smaller weight. All weights sum to
the total number of samples. The loss that is then calculated is weighted by these weights. As a
result, garbage class samples are pushed into a separate part of the deep feature space than that
occupied by the known classes as can be seen in Figure 3.6.

Garbage Class created by mixing Known Classes

( ) propose a novel open-set algorithm called the PlaceholdeRs for Open-SEt
Recognition or PROSER, where a classi er learns adaptive thresholds for different known class
combinations to effectively separate known space from unknown space. PROSPER also makes
use of a garbage class to achieve this open-set objective, but instead of using a separate set of
known unknown classes, it mixes known classes to create a garbage class.

PROSPER learns two kinds of placeholders to achieve the open-set goal - classi er placehold-
ers and data placeholders. The function of learning classi er placeholders is to create dummy
classi ers which output the second best known class label for an input image and thus get placed
somewhere between the target known class and non-target known class. For example, as can be
seen in Figure 3.7, a dummy classi er is created using a sample of Known Class 3 and gets placed
between Class 3 (target known class) and Class 2 (hon-target class). Thus, when closed-set clas-
si ers are augmented with these dummy classi ers, they serve as input sample based adaptive
thresholds, learnt by only using known class samples.

The function of learning data placeholders is to generate samples that have a distribution
different from that of known samples and are generated by mixing pairs of known sample distri-
butions. These new samples then push the decision boundaries of the known classes using which
they are generated, resulting in tighter boundaries for those known classes and thus reducing
overlap between known and unknown space as illustrated in Figure 3.8.

It is by adding these placeholders to pretrained closed-set classi ers that the training is then
carried out, without the use of separate known unknown classes, to perform open-set classi ca-
tion. Upon evaluating PROSPER using different multi-class datasets and comparing it with other
state-of-the-art open-set algorithms like OpenMax, it is shown to achieve better performance in
both correctly classifying known classes and correctly detecting variety of unknown samples.
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Figure 3.7: CLASSIFIER PLACEHOLDERS IN PROSPER Multiple dummy classi er placeholders are
created using samples of known class 1 and known class 3, which when augmented to a closed-set classi er,
serve as input sample based adaptive thresholds for these known classes.Source: ( , )

Figure 3.8: DATA PLACEHOLDERS IN PROSPERA Data Placeholder is created by mixing known dis-
tributions of Class 1 and Class 2. The presence of this data placeholder pushes for tighter decision boundaries
for Classes 1 and 2.Source:( , )

3.2.4 Entropic Open-set Loss

In this approach, a novel Entropic Open-set Loss is used to satisfy the goal of reducing over-
lap between known and unknown samples. During training, logit values for all samples from
known unknown classes are made to be equal, so that they produce equal SoftMax probabilities
for all known classes when presented with an unknown sample ( , ). Unknown
unknown test samples are assumed to behave similarly as known unknown training samples.
Known class labels (SoftMax targets) are converted into one-hot vectors and known unknown
class labels are converted into 1=0 vectors of length O, where O is the number of known classes.
This is done assuming that unknown samples share features with known samples in the open
space. For example, if there are ve known classest = 1;2;3;4;5, then the one-hot vector for
t = 1 will be [1;0;0;0;0] while the 1=0 vector for a known unknown class like t = 0 will be
[1=5; 1=5; 1=5; 1=5; 1=5]. Samples are then trained using these modi ed targets and a modi ed
softmax loss. The Entropic Open-set Loss can be calculated as follows:

)
Je(xX) = toINny, (3.3)

o=1
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Figure 3.9: BOTTLENECK PLOT USING ENTROPIC OPEN-SETLOSS This gure shows bottleneck plot
for 10 known MNIST (colored dots) and unknown unknown Devanagari classes (black dots) when trained
using Entropic Open-set Loss on MNIST classes and known unknown NIST letters. Source: (

)

where t, represents element of the target vector for classoand y, represents the predicted SoftMax
output for it.

During training, if a sample belongs to a known class, itis trained as itis, i.e., using a standard
Categorical Cross Entropy loss using one-hot targets, which can be calculated in the same way as
Equation (3.3), the only difference being that all targets are one-hot vectors and there are no 1=0
vectors. When a sample belongs to a known unknown class, its logit values are modi ed to be
equal for all the known classes, and this value is very close to 0. This is done to make the network
behave equally towards all known classes, without any bias for their features. Equal logit values
means equal SoftMax probabilities, and when this is the case, deep features are seen to gather
around the origin of the feature space, as seen in Figure 3.9.

| select SoftMax with Garbage Class, created using a separate set of known unknown classes
and Entropic Open-set Loss to experiment with in this thesis due to their simplicity in terms
of implementation and ease of understanding the concepts behind these algorithms. It would
indeed be interesting to see if these easy-to-implement open-set algorithms are equally effective
on open-set partitions created using large and rich datasets, as they are on open-set partitions
created using small datasets. It would also be interesting to see how these algorithms handle
unknown unknown classes that are similar to known classes in appearance.

3.3 Comparison with Out of Distribution Detection

Out-of-Distribution Detection or OoD detection is an application that is closely related to open-
set classi cation. The main difference between the two is that the former considers only a binary
problem at hand, where the task is to classify a sample as either known or unknown, with no
further need to correctly classify known classes. In other words, OoD detection only serves the
goal of determining whether an input belongs to the training distribution or not, irrespective of
whether the input is correctly classi ed when it does belong to the training distribution.

( ) compare OoD detection and open-set classi cation algorithms using Im-
ageNet, and show that Out-of-Distribution detector for Neural networks or ODIN ( ,

), an OoD detection algorithm, performs better than OpenMax ( , ), an
open-set classi cation algorithm. But the catch is that it compares only the OoD performance of
these algorithms. So, ODIN may outperform OpenMax in terms of classifying an input as known
or unknown, but how accurately do the identi ed known classes get classi ed correctly remains
a question to be answered. When it comes to comparing the computational and memory cost of
these algorithms, ( ) show that OpenMax has a much lower cost as compared to
ODIN or Mahalanobis ( , ), another OoD detection algorithm.

Despite the difference between the two applications, they behave similarly when it comes to
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system design and performance. As in the case of designing an effective open-set classi er, de-
signing an effectlve OoD detector sometimes requires OoD data to tune hyperparameters (

, ). But given the in nite space of OoD data, it is not possible to
tune hyperparameters using every possible OoD data, thereby leading to tuning them only for
selective OoD data. While there are some algorithms that do not need OoD data for training
like ODIN and OpenMax, both open-set classi cation and OoD detection algorithms face a com-
mon challenge of correctly detecting unknown test samples that are closely related to the known
classes/distribution.

An ideal open-set classi er must not only detect unknown test samples, but it must also be
able to correctly classify known samples. To satisfy this two-fold goal, a two-stage classi er needs
to be designed, where at the rst stage OoD samples are detected and in the second stage, closed-
set classi cation of known samples is done. Even though this is a feasible solution, the compu-
tational and memory cost disadvantage of effective OoD classi ers like ODIN would still persist.
Further, it won't be possible to learn separate features for unknown samples using OoD detec-
tion, to reduce overlap between known and unknown samples. This is why | skip evaluating a
two-stage classi er in this thesis.



Chapter 4

Open-set ImageNet Protocols

An ideal open-set algorithm must correctly classify known samples and correctly detect unknown
samples. This includes detecting unknown samples that are not similar in appearance to known
classes as well as detecting those that are similar or are related to the known classes in some
way. For example, if known classes are birds, dogs and fruits, an ideal open-set classi er must
correctly classify an image of a ying bird as well as an image of a bird perched on a tree as
belonging to the class of birds. Similarly, it must classify an image of a banana and an image of
an apple as belonging to the class of fruits. This is given that the classi er has been trained with
different types of images of birds, dogs and fruits. Now, when this open-set classi er is shown an
image of a computer, it must detect it as an unknown, since it never saw anything like that during
training. Similarly, it must also detect an image of a ying plane as an unknown during testing
and not confuse it with an image of a ying bird. It must also detect an image of a beetroot as an
unknown and not incorrectly classify it as a fruit, given that it might look similar to the image of
an apple that the classi er was trained with.

To achieve this open-set objective, | design three open-set ImageNet protocols using the dataset
of ILSVRC2012. Each protocol has three sets of classes, corresponding to known, known unknown
and unknown unknown components of the open space, as described in chapter 1. All 1000 classes
of ILSVRC2012 are not used to create the open-set partitions. Instead, a small number of classes
are used, which reduces the amount of time taken to perform the experiments, while maintain-
ing hierarchical richness of the dataset and closeness to real-world open space. Till now, there
have been no research work that use the same ImageNet dataset to create these components of

open space. For example, ( ) used 1000 classes of ILSVRC2012 as known
classes and, fooling images and images from 360 categories of ILSVRC2010 that were not present
in ILSVRC2012, as unknown classes, while ( ) used 500 random ImageNet classes

as known classes and the remaining 500 classes as unknown classes.

| design three different protocols to create three different arti cial open spaces, with each hav-
ing a varying level of similarity in appearance between known and unknown unknown classes.
The protocols also incorporate varying level of dif culty in classifying known classes that share
similar features. Each protocol is also created using different sets of known unknown classes, to
train the network to better differentiate between known and unknown classes. Known unknown
classes are selected such that they have increasing similarity to known classes, which increases
the network's ability to detect unknown unknown samples during testing ( , ).
It is on these protocols that | then compare the performance of the algorithms, that is SoftMax
with Garbage Class and Entropic Open-set Loss, thus setting a high quality benchmark for these
algorithms. It is also a rst time there has been such a comparison between state-of-the-art open-
set algorithms using open-set ImageNet protocols that address different real-world test situations
and are designed using the same ImageNet challenge dataset. The protocols and their open-set
partitions are presented in Table 4.1. The superclasses that make these protocols are presented in
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Table 4.2. The superclasses, along with their class IDs are presented in Table A.1, in Appendix A. |
study the ImageNet-1k tree structure * and use the robustness library to create these protocols,
details of which | explain later in section 5.1.

As can be seen in Table 4.1, Protocol 1 uses all descendants of the dog superclass as known
classes and addresses unknown unknown classes that are not related to dogs in any way, thereby
making it easier to identify them. For example, an image of a car does not share any features with
an image of a Siberian husky and thus is easier to reject as unknown. But the known classes are
dif cult to classify in this protocol, as the classi er needs to correctly identify the exact descendant
of the dog superclass. Known unknown classes like zebra, monkey and fox are similar to the
known dog classes in that they are all four-legged animals.

Protocol 2 considers some descendants of a subclass of the dog superclass as known classes (I
choose the subclass of hunting dogs as this subclass has the highest number of descendants) and
addresses unknown unknown classes that share similar features as known classes. For example,
wolves and toy dogs share features like four legs and ears on top of head with hunting dogs and
hence, there is the possibility of the classi er confusing these images with that of a hunting dog.
Known classes are dif cult to classify in this protocol as well, given that the classi er needs to
identify the exact descendant of hunting dog. Known unknown classes are similar to the known
classes in that they are both descendants of hunting dog superclass, but different descendants of
hunting dogs are used as known unknown classes than those used as known classes.

Protocol 3 is created usingrobustness library's pre-packaged ImageNet dataset of "mixed_13"
which has a mixture of living things/classes and non-living things/classes. It uses some descen-
dants of mixed_13 as known classes, and descendants of some classes, other than thmixed_13
classes as unknown unknown classes, in a way that the unknown unknown classes are also a
mixture of living things/classes and non-living things/classes. This leads to the possibility of the
unknown unknown classes being related to one or more known classes. For example, an image
of a ying aircraft may be confused for an image of a ying bird or since it is a means of trans-
portation, the classi er might confuse it with other means of transportation like car, truck or boat.
Similarly, an image of an ungulate like goat or horse or hippopotamus share features like being
4-legged with an image of a dog or a monkey or a cat, thus making it dif cult for the open-set
algorithm to avoid confusing these unknown unknown classes as one of the known classes. But
unknown unknown classes in this protocol may not share as many features with known classes
as in case of Protocol 2, and hence might be easier to detect in comparison to those in Protocol
2. Classi cation of known classes should be easy for this protocol as there is clear distinction
between superclasses, but identifying the exact descendant of a superclass might still be dif cult.
Known unknown classes are made similar to the known classes by using different descendants of
mixed_13 superclasses than those used as known classes.

The open-set algorithms experimented with in this thesis use known unknown classes for
training. Therefore, the training and validation sets are made up of known and known unknown
classes. The test set is made up of known, known unknown and unknown unknown classes.
Known unknown classes are also included in the test set to check whether the open-set algorithm
behaves differently towards samples of these classes that were seen during training and those that
were never seen. The number of training, validation and test images for known, known unknown
and unknown unknown classes for each Protocol is shown in Table 4.3.

Lhttps://observablehq.com/@mbostock/imagenet-hierarchy
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Open-set
Partition

Protocol 1

Protocol 2

Protocol 3

Known classes

All dog classes
(116 descendants)

Some classes of a
particular dog
subclass (31

Some classes of
some ancestors
(159 descendants)

Unknown classes

classes like zebra,
monkey, fox, etc
(67 descendants)

descendants)
Some other Some other Other classes of
. classes of the
4-legged animal the same
Known same dog

subclass as the
known classes (30
descendants)

ancestors as the
known classes
(137 descendants)

Some non-animal
classes like car,

Some classes of
another dog
subclass and

Unknown
Unknown classes food, sunglasses, some othgr other ancestors
etc (166 4-legged animal (116 descendants)
descendants) classes (55
descendants)

Some classes of

Table 4.1: OVERVIEW OF OPEN-SET IMAGE NET PROTOCOLS. This table gives an overview of the three
open-set ILSVRC2012 based protocols and how they are split into known, known unknown and unknown
unknown classes, along with the number of descendants for each partition (highlighted in red).

Hunting dog

Ope_n.-set Protocol 1 Protocol 2 Protocol 3
Partition
Some descendants of
Dog, Bird, Insect,
Some descendants of Furniture, Fish,
Known classes Dog

Monkey,Car, Cat,Truck,
Fruit, Fungus, Boat,
Computer

Known
Unknown classes

Fox, Wild dog, Wolf,
Feline, Bear, Musteline
mammal, Ungulate,

Primate

Other descendants of
Hunting dog

Other descendants of
Dog, Bird, Insect,
Furniture, Fish,
Monkey, Car, Cat,
Truck, Fruit, Fungus,
Boat, Computer

Unknown
Unknown classes

Food, Motor vehicle,

Device

Toy dog, Fox, Wild dog,
Wolf, Feline, Bear,
Musteline mammal,
Ungulate

Reptile, Clothing,
Ungulate, Vegetable,
Aircraft

Table 4.2: MAGENET SUPERCLASSES THAT MAKE THE PROTOCOLS. This table shows the ImageNet
superclasses that were used to create the protocols. Known and known unknown classes are used for train-
ing the open-set algorithms experimented with in this thesis, and unseen samples from all the three parti-

tions are used for testing.
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Protocols Open-set Partition Training Size | Validation Size | Test Size
Known 116,212 29,061 5,800
Protocol 1 Known Unknown 69,680 17,420 3,350
Unknown Unknown - - 8,300
Known 30,629 7,661 1,550
Protocol 2 Known Unknown 30,055 7,517 1,500
Unknown Unknown - - 2,750
Known 161,661 40,425 7,950
Protocol 3 Known Unknown 140,477 35,122 6,850
Unknown Unknown - - 5,800

Table 4.3: ROTOCOL SPLITS. Number of training, validation and test images for open-set partitions of
each open-set ImageNet protocol.



Chapter 5

Experimental Set-up

To perform experiments using Entropic Open-set Loss and SoftMax with Garbage Class (created
using known unknown classes) on open-set ImageNet protocols, | need to rst set up the experi-
ment base. That is create dataset for each protocol by accessing speci ¢ hierarchies of ImageNet,
wrap the dataset into an iterable of batches, initialize the network and set hyperparameters. In
this chapter, | provide details about each of these steps and thus lay the foundation for the ex-
periments ahead. All experiments follow the same set up. | use Python programming language,
the PyTorch deep learning framework and GPUs (CUDA 10.1) provided by the Arti cial Intel-
ligence and Machine Learning Group (AIML) at the University of Zurich, Switzerland to create
this set-up and for performing my experiments.

5.1 Accessing ImageNet and its hierarchy

ImageNet can be accessed in two ways to conduct experiments - accessing the entire dataset or
accessing hierarchical parts of the dataset. Given the fast-paced developments in computer vision,
both ways of accessing ImageNet have been packed into easy-to-use packages and libraries, to
expedite the process of experimental set-up.

5.1.1 Accessing entire dataset

In PyTorch, one can simply make use of torchvision.datasets.ImageNet ! to access the
entire dataset, which can then be loaded into the memory using PyTorch DatalLoader 2, in an
iterative manner. In other words, the dataset is wrapped into an iterable of batches, with certain
xed number of samples per batch called the batch_size

Once batches of data are loaded into the memory, the entire dataset is ready to be experi-
mented with. But given the hierarchical complexity of ImageNet, the larger number of classes
and the higher resolution of images as compared to other existing image datasets like MNIST
and CIFAR-10, it takes signi cant amount of time to run experiments using the entire dataset. It
would be easier to run experiments using a smaller number of classes while still maintaining the
hierarchical richness of ImageNet.

Lhttps://pytorch.org/vision/stable/datasets.html#imagenet
2https://pytorch.org/docs/stable/data.html
Shttps://www.cs.toronto.edu/~kriz/cifar.html






