Universitat
Zurich™

DEPARTMENT OF INFORMATICS

BACHELOR’S THESIS

Fuzzing Playground: Easy-to-Use Web-Based
Tool to Demonstrate Fuzzing

Oliver Kamer
16-921-009
oliver.kamer@uzh.ch

supervised by
Prof. Dr. Alberto Bacchelli
David Ackermann
Zurich Empirical Software Engineering Team

SEPTEMBER 14, 2021

ABSTRACT

Fuzzing describes the fully automatic testing of software for bugs. While fuzzing has become
more popular in recent times, the process of setting up a fuzzer for learning purposes is compli-
cated and the output of the fuzzer is hard to understand. This report presents a Fuzzing Play-
ground that gives the user the possibility to easily and quickly start a fuzzing process and see
what is happening under the hood. This is being done by running the fuzzing process in-browser
and by having precompiled fuzzing targets, ready for the user to pick. The output visualizes the
processes of the fuzzer and presents the user with the real fuzzed data.

ZUSAMMENFASSUNG

Fuzzing beschreibt das vollautomatische Testen von Software auf Fehler. Fuzzing ist in letzter
Zeit immer beliebter geworden, der Prozess der Einrichtung eines Fuzzers zu Lernzwecken ist
aber kompliziert und die Ausgaben des Fuzzers sind schwer zu verstehen. In diesem Bericht
wird ein Fuzzing Playground vorgestellt, der einem Anwender die Moglichkeit gibt, einfach und
schnell einen Fuzzing-Prozess zu starten und zu sehen, was hinter dem Vorhang passiert. Dies
wird ermdglicht, indem der Fuzzing-Prozess im Browser ausgefiihrt wird und vorkompilierte
Fuzzing-Targets zur Verfiigung stehen, aus welchen der Anwender auswihlen kann. Der Play-
ground visualisiert die Vorgange des Fuzzers und prasentiert dem Benutzer die Daten, welche
durch den Fuzzer generiert wurden.

ii

ACKNOWLEDGEMENTS

Thanks to Prof. Dr. Alberto Bacchelli for allowing me to explore the field of fuzzing in-depth,
for making pragmatic decisions in the right moments, and for giving feedback to my monthly
updates.

Thanks to David Ackermann for looking after me and the work, for patiently answering my
many questions about the topic and about thesis work in general, and for giving me thoughtful
and often new ideas to pursue. He also offered a holistic view of the project and reminded me to
think about challenges in the larger context. I would like to further thank him for keeping me
motivated and engaged with the topic, and picking me up when frustration about the speed of
progress sometimes got the better of me.

And finally, thanks to my family and friends that received a sometimes unwanted introduc-
tory class in software testing to be able to comprehend my work and who endured this process
with me, offering their support, open ears, and love at every point.

iii

CONTENTS

Abstract i
Zusammenfassung ii
Acknowledgements iii
1 Introduction 1
2 Previous work 2
2.1 Web-based tools illustrative tools 2

2.2 Visualizing fuzztesting Lo L Lo 3

23 Webbased fuzzingtools. 4

3 Background 5
3.1 Typesoffuzzers 5
3.1.1 Black-boxfuzzer 5

3.1.2 White-box fuzzer L L 5

3.1.3 Grey-boxfuzzer. 5

3.2 Modern coverage-guided fuzzers Lo oL 6

33 Emscripten 7

34 Preact L 7

4 Implementation 8
41 Goals 8

42 Buildprocess 8
4.2.1 Build fuzzing targets for WEBASSEMBLY 8

43 Layers 9
43.1 Communication L 11

43.2 Storage 13

44 Product 14
441 Controls L 14

442 TFuzzing process 15

45 Visualization L 15
4.5.1 Runningindication 0 L oL 15

452 Terminal 16

453 COIPUS . . . v v vt i 17

5 Discussion 18
5.1 Limitations 19

52 Futurework 19

6 Conclusion 21
References 23
A Frontend code 29
A1 ReadfilesfromINDEXEDDB L L 29
A2 Generate image input visualization 30

B Example L1BFUZZER output 30

C Docker build

C.1 Dockerfile
C.2 compile_libFuzzer.sh

C.3 build.sh

vi

30
30
32
32

LisT OF FIGURES

g W

(o)}

Screenshot of the TEACHABLE MACHINE [12, 26] trained to detect a happy or a sad

Screenshot of the TENSORFLOW PLAYGROUND [64,70]
Overview of the layer model with communications and storage
Control buttons in different states 0oL
The two illustrations simulating the mutations and coverage that L1BFUzZER uses
internally when fuzzing LODEPNG.
The terminal display the real output of LiBFuzzER.
Corpus display during execution with number of elements, size, and illustration
ofthecorpus.
File preview for a seed file that was provided to the fuzzer and a file the fuzzer
generated and stored inthecorpus. oL

List OF TABLES

1

Options set for emcc to compile fuzzing target to WEBASSEMBLY

LisT OF LISTINGS

Setting the seed and starting the fuzzing process from the main frame
Web worker sending messages to the frontend L.
Frontend dealing with incoming messages from web worker depending on the
action attribute of the transmitted object
Frontend terminating the web worker which has run the fuzzer before start a
new web worker depending on the keepRunning variable
Code to read the files from INDEXEDDB L
Code that generated the image visualization
A example of a recommended dictionary by LisFuzzer
Dockerfile for the environment to build the fuzzing target to EMSCRIPTEN
Script to compile L1BFUZZER with EMSCRIPTEN
Using the EMSCRIPTEN drop in command emcc to build the fuzzing target

Vil

11
14

16
17

17

18

10

12
12

12

13
29
30
30
30
32
32

Vviii

1 INTRODUCTION

Fuzzing is the fully automatic testing of software. The first attempts at fuzzing were done early
on in 1990 when Miller et al. [50] generated “a stream of random characters to be consumed by
a target program” for various Unix programs.

Today, there are many specialized tools to fuzz different programs. Some are unstructured
(and therefore quite similar to the original fuzzer described by Miller et al. [50]), while others that
are aware of the structure of the program that is to be fuzzed. Modern, structure-aware fuzzers
include AFL [78, 23] and L1BFuzZER [37] and HONGFUZZ [27].

Fuzzing is being used widely to find bugs and other errors in software, and has become in-
creasingly important to ensure high quality in software. A wide know example of that is the
HEARTBLEED bug, which was discovered by some security researchers through fuzzing (5, 62, 72].

More recently, Google announced that they would continuously fuzz open-source projects
they deemed important [2] and have since found and “reported over 9,000 bugs” [59] found in the
projects alone. Another computer giant, Microsoft has announced their fuzzing framework in
recent times, to address some difficulties of fuzzing, such as the ability to “harness, execute, and
extract information” [10] from the fuzzing process. Campbell and Walker [10] further mention,
that the complexity of fuzz testing in part “required dedicated security engineering teams to build
and operate fuzz testing capabilities”.

Metzman and Ali [46] further underlines the importance of Fuzz testing. They explain that
in “an ideal world, fuzzing should be as ubiquitous and simple as writing a unit test” and that
developers should “fuzz your code because if you don’t, someone else will”. Google has developed
CLusTERFUZZ, specifically to be able to Fuzz test software on a large scale [3, 4].

Even today, “simple black-box techniques” [49] are being used for fuzzing. The conclusion
by Miller et al. is that “after more than thirty years, it appears that there is still a place for this
type of basic fuzz testing”. Having high-quality software is not only more convenient, useful,
and less stress-inducing for users, but bad software quality is a major cost as well. Krasner [34]
estimate that “the cost of poor quality software in the US in 2018 is approximately $2.84 trillion”,
as such, private businesses demand high software quality.

The process of starting to fuzz a piece of software by oneself can be quite hard and chal-
lenging. While a simple demo effect can easily be achieved by someone who has set up fuzzing
tools beforehand, actually starting to fuzz is quite a challenge for novices. It requires one to
instruct and compile the target, run the fuzzer, and then also be able to understand the outputs
the fuzzer provides. With the importance of fuzz testing and the difficulty of setting it up and
understanding it, fuzzing can often look like a difficult and daunting task to newcomers, that is
only performed by big companies with security teams or specialized security companies.

The PLAYGROUND FUZZER attempts to be an easy-to-use education tool, where anyone, no
matter the background and technical understanding, can start a fuzzing process and see the work.
It runs in most modern browsers [53] without any installation needed. As such, the time between
loading the site and being able to start fuzzing is minimal, and people with little to no technical
understanding can use it. The tool also provides visual feedback to the user while the fuzzer is
running and shows the user the fuzzing corpus, so the user can see how many elements are in
the corpus. Further, the user can also download these test cases.

= Teachable Machine

) Modell
exportieren

Vorschau
Happy

63 Bild-Beispiele

.. mmmmmn
Webcam Hochladen { { . v { { Training

Modell ist trainiert

Sad

59 Bild-Beispiele

m} P 1t 1l f f i [

[Klasse hinzufligen

Figure 1: Screenshot of the TEACHABLE MACHINE [12, 26] trained to detect a happy or a sad face.

2 PREVIOUS WORK

While there are many fuzzers [50, 17, 23, 27, 37] of different kinds, most run in a terminal, and
most of the computing power invested in fuzzing is probably in the cloud [59]. As such, they are
often hard to understand and not easily set up.

Usability is often not one of the main concerns for developers of fuzzers. In fact, Ploger et al.
[57] state that “to the best of [their] knowledge, there are no studies concerning the usability of
fuzzers or a usability comparison of static analysis and fuzzing”. Particularly, L1IBFUZZER is widely
understood to be difficult to use. Ploger et al. found that there was “no step in the libFuzzer
process that did not cause our participants severe problems” when using participants that were
familiar with LINUX.

While the FuzziNnG PLAYGROUND doesn’t address the usability of L1BFUZZER, it does serve as
an educational tool where potential users can get familiar with fuzzing in a very low-barrier-of-
entry environment and strives to have high usability.

2.1 Web-based tools illustrative tools

Modern complex technical concepts are often hard to understand and harder to explain. One
approach to bridge the understanding gap is to get people wanting to learn about the difficult
technical concepts to try it by themselves [15, 13, 63]. This approach, while good for learning, is
often hard to do, as it takes a lot of time and the barrier of entry can be quite high for many of
these modern technical tools.

One of these difficult concepts in recent times in computer science is machine learning. While
machine learning “is increasingly prevalent in daily life” [12], it is often difficult to grasp. As
such, the setup to produce small machine learning outputs takes a lot of time, even for people
familiar with technical systems. Carney et al. [12] approached this by developing a simple-to-
use machine learning classifier, that uses transfer learning under the hood. The complexity that
arises from using machine learning, as well as retraining data, is “hidden from users, who simply
benefit by needing fewer data and training time to create useful, accurate models” [12]. Figure
1 shows an example where the TEACHABLE MACHINE is trained to recognize exaggerated facial
expressions, in this case Happy and Sad. A setup similar to the example takes less than two
minutes to produce, and the output is reasonably accurate.

In a similar vein, Smilkov et al. [64] developed a web tool where users can try out a Neural
Network called TENSORFLOW PLAYGROUND. The tool allows the user to choose one of four pre-
defined datasets, the features, and the number of hidden layers among other input factors. It also

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

5 Epoch Learning rate Activation Regularization Regularization rate Problem type
Pl
000,512 0.03 Tanh None 0 Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset dc \ e Test loss 0.517 —
want t n e Y= Training loss 0.377 \
4 neurons 2 neurans -
* O~ L4 s=={_}
% '
kY -0"
\ s
£
2 3 o
5,
-‘.-

REGENERATE

[showiestdata [Discretize outpu

Figure 2: Screenshot of the TENSORFLOW PLAYGROUND [64, 70]

has a big play button that starts the training and various data points, such as the neurons of the
hidden layers, are available to see through hovering of them. Figure 2 shows the TENsorRFLow
PLAYGROUND during the execution.

Both Smilkov et al. [64] and Carney et al. [12] have highlighted the educational use of their
respective tools. Further, Carney [11] highlighted the usage of TEACHABLE MACHINE “to under-
stand what Al really is and how to apply it to their domain”.

Inspired by the success of the TENSORFLOW PLAYGROUND as an education tool [60, 64], other
researchers and developers followed suit. The usability and ability to quickly demonstrate more
complicated technical concepts, especially in the fields of artificial intelligence [64, 12] is often
inspired by the TENsORFLow PLAYGROUND. For example, Norton and Qi [56] presented a play-
ground styled tool called ADVERSARIAL-PLAYGROUND that visualized “machine learning systems
in adversarial environments” that is inspired by the TENsSORFLow PLAYGROUND playground.

2.2 Visualizing fuzz testing

Some attempts to visualize fuzz testing were previously done. Some of these visualization had
the purpose to be able to see the overall progress more closely, while others were done to be able
to interact with the code and the relating code coverage.

Vainio [71] describes obtaining “performance metrics [...] along with data output from the
fuzzer, and pack them conveniently in some format” to be able to display various performance
measurements collected from the machines that are running fuzzers. The system setup “con-
sisted of a monitoring server and a remote client that were connected via network”, where the
monitoring server collected and aggregated the data from hosts running fuzzers. This allowed
for more in-depth monitoring of the fuzzing system.

Zhou et al. [80] developed VisFuzz “to help test engineers to locate the boundary of unex-
plored regions, understand the semantic context around the bottleneck, and intervene the fuzzing
process [...] to achieve higher coverage”. Using the tool, they were able to increase coverage and
find more unique crashes.

Fioraldi and Pileggi [22] developed FuzzSpLORE to explore the different coverage points pro-
duced by different fuzzers. By producing plots, the user can “select a subset of fuzzers that explore
different program points if the points related to each fuzzer in the graphs are clustered”. The user
can then see “when there is a huge increment of the number of edges”. By “selecting testcases in
the graph, the user can see if the testcases are similar in the scatterplot in order to understand
the ability of the mutator to generate similar or different derived inputs”. As such, FuzzSpLORE
gives the user immediate feedback for coverage data that the user is able to interact with.

2.3 Web based fuzzing tools

The first found instance of web-based fuzzing is a talk and implementation by Metzman [42].
Metzman states the goal of being able to run the OSS-Fuzz [42] project at home. The project
demonstrates a) the ability to run a fuzzer in-browser, b) shows the potential problems, such as
slower speeds when displaying the output of the fuzzer in some way. Further, the fuzzer cannot
be controlled in any meaningful way, such as stopping it or restarting it after a crash. Metzman
also provides a DOCKERFILE to build a DocKER image [44] where one can compile the SQLITE
[45] example. As of May 2021, the image cannot be built, as dependencies are outdated and the
selected image of UBUNTU 16.04 has reached the end of support for the image [61].

SSLab at Georgia Tech [65] developed Fuzzcoin, a combination of fuzzing and BiTcoIin. As
such, it is a “is a public fuzzing network inspired from group-mining of BitCoin” [67]. While
the thought process behind the development of Fuzzcoin is not clear, one can assume that the
wastefulness of bitcoin mining [76] might have been an inspiration to use the proof-of-work
concept for something more interesting and productive. The stated goal of Fuzzcoin is to “beat
Google’s computing power together” [65] of over 25000 cores [4].

While the in-browser fuzzer works, the recommended setup is to use a custom docker con-
tainer [67]. The project still works, it doesn’t appear to have been updated since July 2020 [66].

3 BACKGROUND

3.1 Types of fuzzers

Most fuzzers work fundamentally the same by following two major principles: they mutate or
generate inputs and run with little to no human input [50, 48, 8, 32, 23]. While traditional unit
tests attempt to ensure the correctness of certain software components, mostly small parts of
code, fuzzing is only looking for bugs [69, 36]. Bugs that do not result in a hang or crash, but
rather in an incorrect output by the software cannot be detected by fuzzers, as it would require
the fuzzers to have an understanding of correct outputs. Most of the time fuzzers will, however,
be able to find certain bugs that normal tests do not cover and on average they achieve much
higher code coverage [33, 28] than manual testing through developers writing test cases. No
open-source project survey by Zhai et al. [79] reached as high of code coverage as the best fuzzers
surveyed by Google [28].

3.1.1 Black-box fuzzer

The first generation of fuzzers were black-box fuzzers, as described by Miller et al. [50, 48]. Black-
box fuzzers cannot see inside the program that is being fuzzed and are unaware of the structure
of the program or source code.

Sutton et al. [68] describes black-box fuzzing as “[y]ou as the end user control the input that
goes into the black box, and you can observe the output that emerges from the other end, but
you do not have knowledge of the inner workings of your target”.

Miller et al. [50, 48, 51, 49] have over time repeated their experiment using simple black box
fuzzer and found in their 2020 paper that they “are still seeing failure rates from 12% to 19% with
the original simple methods” [49].

They also comment that “[s]some of the errors that we found have been present in the code
for many years, as far back as 1994 for checknr, ctags, dc, and indent; 1997 for spell; and
1998 for gdb and ptx” and state that “[m]ore frequent application of the basic fuzz tests could
help to avoid this situation” [49].

As such, black-box fuzzer, while not being the exciting new thing, can still find a relatively
high number of bugs and be potentially of use to find issues in software.

3.1.2 White-box fuzzer

In contrast to black-box fuzzing, white-box fuzzing requires full access to all source code and the
fuzzing process is not as random and directly based on the code. Sutton et al. [68] describe the
information necessary for white-box fuzzing as follows: “If you were taking a pure white box
approach to breaking into a home, you would have full access to all information about the home
before breaking in. This might include blueprints, a list of lock manufacturers used, details of the
construction materials used in building the home, and more”

Bounimova et al. [8] describe the success at MICROSOFT using white-box fuzzing to find bugs
in WinDows 7. Further Godefroid et al. [25] propose “an alternative whitebox fuzz testing ap-
proach inspired by recent advances in symbolic execution and dynamic test generation”.

An example of a widely used white-box fuzzer is KLEE [9] that gets “100% coverage on 16
tools and over 90% coverage on 56 while the developer tests get 100% on a single utility” when
fuzzing the GNU COREUTILS suite.

3.1.3 Grey-box fuzzer

Grey-box fuzzers are fuzzer that combine some white-box and some black-box approaches. As
such, there is no need for access to the source code, but the fuzzers do look at certain signals

during the execution, mostly coverage of the executed code [23, 37].

The logic behind coverage-guided fuzzers is to cover as much code as possible in the exe-
cution to find new or well hidden bugs. This is done by mutating the inputs and storing the
interesting ones that produce new coverage to the corpus. Coverage-guided fuzzers generally
use “instrumentation to determine a unique identifier for the path that is exercised by an input”
[7].

Grey-box fuzzers generally sacrifice in-depth code analysis for fast, lightweight information
about the execution [41]. This means execution is much faster, which leads to more inputs being
tried for a program. On the other hand, this sometimes leads to finding less uncovered parts
of the program, especially in comparison to white-box fuzzing. Bohme et al. [7] writes that
“coverage-based fuzzers tend to visit certain paths with high frequency, generating too much
fuzz that exercises the same few paths”. Real-life tests however also show that grey-box fuzzers
generate high code coverage, with all fuzzers getting coverage of more than 84%, while L1BFuzzeR
and AFL reached coverages of more than 90% [28, 47].

Modern coverage-guided grey-box fuzzers have enjoyed great success in finding security
vulnerabilities and software bugs [32, 36]. They are also widely used internally by companies to
find bugs and security issues with their software and systems [52, 2].

3.2 Modern coverage-guided fuzzers

Two fuzzers were evaluated for this product: AFL [78] and LiBFuzzer [37]. They are quite similar
in that they are both coverage-based grey-box fuzzers. They are also often described as being the
most popular fuzzers currently around [36, 80, 6].

Both of them are widely in use and are often used side by side. They both have some internal
mechanisms to keep track of coverage found and produce a corpus with interesting seeds. AFL
has many newer and improved iterations and generally performs better, finding more coverage
after a set amount of time [28].

One major difference is the process of starting the fuzzer. With AFL one instruments the
fuzzing target using a special flag that inserts the executable with the code coverage signals at
various points. One then has to compile AFL and run the fuzzer against the instructed binary.
On the other hand, L1BFUZZER is an in-process fuzzer. This means one first has to write a harness,
that takes the inputs from the fuzzer and then runs this input through the target software. In a
second step, the target, harness, and fuzzer have to be compiled together into a single fuzzing
executable, that can then be run. For general fuzzing applications, this means that Li1BFUZZER
will stop after having found a single crash, while AFL will simply take note of the crash and keep
fuzzing until stopped [32].

For this playground, using the in-process fuzzer from rLiBFuzzER means that one has to only
compile a single executable that is the fuzzer and fuzzing target all in one. Attempts using AFL
were unsuccessful, as linking an executable that is compiled through EmMscrIPTEN to AFL was
not achieved. Further compilation of AFL to WEBASSEMBLY was also not achieved. In fact,
instrumentation of WEBASSEMBLY targets is on a list of possible future ideas for AFL++ [1].

Compilation of the in-process fuzzer L1BFuzZER was shown by Metzman [42]. The disadvan-
tages of using the less popular fuzzer are, in this case, negligible, as the playground intends to
be an educational tool and not a fuzzer to find bugs. It generally not expected that the fuzzer
finds any crashes, especially considering the targets are already well fuzzed through OSS-Fuzz
[2]. Secondly, the lower coverage finding rate of L1BFUZZER in comparison to AFL++ [28] also
doesn’t matter, since the performance loss from running the fuzzer in the WEBASSEMBLY Vvir-
tual machine, already makes the in-browser fuzzer unattractive as direct competition to normal
fuzzing that is done for bug discovery purposes instead of educational ones.

3.3 Emscripten

EMSCRIPTEN is a compiler that allows to compile C or C++ code to code that can be executed in
browser. More precisely, it compiles Low LEVEL VIRTUAL MACHINE (LLVM) assembly code to
JavaScriptT and WEBASSEMBLY [74]. EMSCRIPTEN “allows compiling a very large subset of C and
C++ code into JavaScript, which can then be run on the web” [77].

EMSCRIPTEN was conceived to be able to run interactive code more easily in browsers. While
many approaches to run code in the browser have existed and do still exist, the only platform that
is available to pretty much all browsers is JavaScripT. As such Zakai [77] first wrote a compiler
from LLVM assembly code to JAVASCRIPT, as “JavaScript is present in essentially all web browsers,
by compiling one’s language of choice into JavaScript, one can still generate content that will run
practically everywhere” [77].

The early JavaScripT implementation of EMSCRIPTEN faced the interesting challenge of hav-
ing to compile alow-level language, LLVM assembly code, to a higher level language, JAvAScrIpPT.
This meant EMscRIPTEN had to address some specific problem, such as recreating control state-
ments native to JAVASCRIPT to ensure the interpreter of the resulting code can use optimizations
native to JAvAScrIPT. For this purpose, EMSCRIPTEN introduces the RELOOPER algorithm, which
“generates high-level loop structures from low-level branching data, and prove its validity” [77].

EmscrIPTEN compiled its code into a specialized subset of JAvAScripT called Asm.js. Speeds
of executing this JAVASCRIPT subset are described to be anywhere between 1/10th [77], 1/2nd
[31] and 2/3rd [24] of native execution speed. It is assumed, that execution speed is affected
by the JavaScripT implementation of the browser. In fact, FIREFOx even implemented specific
optimizations to increase the speed of the Asm.Js execution [73].

Based on the asm.Js specification, WEBAsSEMBLY was then developed to address the speed,
safety, portability, and compactness of the code that is executed in browser [30]. WEBASSEMBLY
executes much faster, with benchmarks showing it to be “33.7% faster than asm.js” and nearly all
the benchmarks being “within 2x of native”.

As EMscRIPTEN is specifically made for LLVM assembly code, it is an almost perfect fit for
L1BFuUzZzER, which is part of the LLVM ToorcHAIN. This allows fuzzing processes that are com-
piled to WEBASSEMBLY to be executed in the browser at pretty fast speeds, although certainly
some components, including the frontend, slow down the fuzzing process additionally.

WEBASSEMBLY and therefore compilation through EMSCRIPTEN is supported by most mod-
ern browsers, and these browsers should also be able to execute the compiled code successfully
[16]. It is noted, that certain WEBASSEMBLY features are not supported in all browsers and the
specification, as well as the support thereof, is evolving [75].

3.4 Preact

PREACT is a frontend framework that describes itself as a fast, lightweight REAcT alternative [58].
It allows the use of the wide REACT ecosystem and helps with quickly developing interactive
web applications. To display the information, the input is first received, stored as states in the
frontend, which then automatically triggers re-rendering from PREACT.

4 |IMPLEMENTATION

4.1 Goals

The following six goals are defined for the playground. These goals ensure that the playground
is of educational value:

G1 The playground should be so easy to run that anyone without prior technical knowledge or
specialized tools can run it within a reasonable amount of time and without reading lots
of documentation.

G2 The user should be able to control the process through simple-to-use controls and abstrac-
tions thereof. The controls should be pretty much self-explanatory.

G3 The playground should provide reasonable defaults and simple to use, clearly understandable
options.

G4 The visualization should indicate to the user when the fuzzer is running, in order for the user
to understand the current state and be able to interact with it accordingly.

G5 The visualization should help the user understand what the fuzzer is doing and provide some
additional insights into the current process of the fuzzer.

G6 The fuzzer should implement a state-of-the-art fuzzer that is running and not simply show
results that were calculated in advance or simulations of the actions of the fuzzer.

4.2 Build process

There are two main parts of the build process. One is to compile to projects that are to be fuzzed,
and the other is to build the PReacT [58] frontend.

The compilation of the frontend is rather simple. One just needs to install all the packages
from NPM and then run the command npm run build. This then produces a build folder, which
can be deployed to a server or shown locally in the browser as well.

Compilation of the targets is a bit more complicated. To ensure consistent and reproducible
build, DockEr was chosen, as it allows to clearly define via the Dockerfile which packages to
use and is a complete system-in-a-box that allows for reproducible builds. Building the fuzzer in
DoOCKER is also the chosen approach by OSS-Fuzz [2] and Metzman [42].

4.2.1 Build fuzzing targets for WEBASSEMBLY

The following section describes the process to build the fuzzing targets for the WEBASSEMBLY
build target. EMSCRIPTEN provides some drops in compiler commands to replace common build
tools such as emcc [20] as a replacement to calling the CLANG COMPILER.

The Dockerfile prepares the environment to be able to build the fuzzer to EMSCRIPTEN. It is
largely inspired by the Dockerfile provided by Metzman [43] and the respective Dockerfile
available from OSS-Fuzz [29]. It does the following to be able to do that (see Listing 8 in Appendix
O).

Line 17 Grab the Docker image for the most recent Ubuntu LTS version.

Lines 20-23 Update all package lists and packages. Install the necessary build tools to compile
c and c++ code.

Lines 25-28 Create folder to work in, including the output folder. The output folder can then
be mounted into the local system to get the output back from the DocKER container.

Line 21 Install more packages to build LLVM.

Lines 32-34 Clone the CHROMIUM clang version, as shown by Metzman [43]. This has multiple
reasons: Firstly, LIBFUZZER states that “you will need the current (or at least a very recent)
version of the Clang compiler” [37] and the version provided in UBUNTU 20.04 is currently
outdated two major versions (10.0 [40] in Ubuntu against the current version 12.0.1 [38])
and the CHROMIUM version is “just upstream clang built at a known-good revision that we
bump every two weeks or so” [14], ensuring a relatively current stable version.

Lines 36-37 Grab the current version of LLVM, getting an up-to-date LIBFUZZER.

Lines 42-46 Build the cOMPILER-RT runtime libraries, cLANG and the LDD linker and installs
them.

Line 48 Downloads the latest version of EMspk which allows a specific version of the Em-
SCRIPTEN TOOLCHAIN to be installed and activated.

Line 50 Install the pyTHON package, which is needed by EMSCRIPTEN even though it is the same
as the pyTHON3 package installed earlier.

Lines 51-52 Install and activate a specific EMSCRIPTEN version.

Lines 53-57 Activate the emsdk and overwrite the configuration to ensure getting the current
LLVM build, that was built just earlier.

Lines 60-62 Copy the custom compile_libFuzzer.sh file, overwriting the upstream one.
Then run the L1BFUzZER compilation and compile the fuzzer using emcc as a drop-in re-
placement compiler.

Lines 65-70 Download and install the packages needed to build the target. Then clones the
target’s source code and copies the fuzzing harness and build script into the DockEeRr con-
tainer.

After having built the DOCKER container, one can then run the container using the following
command: docker run -v ~/out:/out -it. The -v option for volume is needed to get the
compiled files out of the docker container again. The out folder can be mounted anywhere to
the host.

Once in the container, the build script which was previously copied to the container can
simply be run with bash build.sh. The build script can be seen in Listing 10 in Appendix C.3.
Table 1 explains the different options set to the emcc command.

The program that is to be fuzzed (Lodepng . cpp), the fuzzing harness (lodepng_fuzzer. cpp)
and LIBFUZZER are then compiled together into the output file specified with -o. It should be
noted that not only the JavaScripr file is generated, but also a corresponding WEBASSEMBLY file
that is called from the generated JavAScripT file.

4.3 Layers

The main stack has three distinct layers. All three layers run in the user’s browser and are respon-
sible for different tasks. Figure 3 shows an overview of the different layers, their communication
streams and their shared storage.

Frontend The frontend that the user sees and interacts with is written in JavaScript using the
PrReAcT framework. This is where the user can select the inputs and sees the visualization
and the corpus of the fuzzer.

Option

Purpose

-s ERROR_ON_UNDEFINED_SYMBOLS=0

Turn off link-time errors as not all
symbols are defined.

-s ALLOW_MEMORY GROWTH_=1

Ensure fuzzer isn’t aborted with error
when trying to allocate more memory.

-s EXIT_RUNTIME=1

Properly exiting the WEBASSEMBLY
runtime after successful finish of the
fuzzing iterations. Also prevents
warning printed about fuzzer being
finished but not terminated.

-s TOTAL_MEMORY=GB1

An alias for INITIAL_ MEMORY and
setting the initial memory to 1 GB.

-02

Run as many optimizations as possible
to ensure low file-size without
running the JAVASCRIPT CLOSURE
CoMPILER that would change
JavaScript variable names and
therefore not accept Module input
anymore.

-fsanitize-coverage=inline-8bit-counters

Increment a counter of every edge hit,
[39]. This option is passed to CLANG.

-lidbfs. js

To activate the persistent INDEXEDDB
storage

Table 1: Options set for emcc to compile fuzzing target to WEBASSEMBLY

10

Frontend web worker WebAssembly
virtual machine

Communication
I Module.p:eRun[])
postMessage() Module.postRun[] ()
start()
postMessage() Module.print ()
u |

Storage
|

IndexedDB (persistent browser storage)

Emscripten in-memory storage
|

Figure 3: Overview of the layer model with communications and storage

JavaScript Web Worker A web worker who is started from the frontend that controls the ex-
ecution of the WEBASSEMBLY virtual machine and handles its outputs.

Web Assembly A WEBAsSEMBLY Virtual Machine in which the actual fuzzing process takes
place.

4.3.1 Communication

Each of the layers can communicate with its neighboring layers directly and often through some
command also with the other layer indirectly via the middle layer. For example, the start button
pressed by the user in the frontend sends a message to the web worker, which in turn calls the
start function in the web worker to start the execution of the fuzzer in the WEBASSEMBLY virtual
machine.

4.3.1.1 Frontend and web worker

The communication between the frontend and the web worker is exclusively through mes-
sages, both the frontend and the web worker implement a onMessage method that is used to
handle the messages sent by postMessage [55]. Throughout the messages, a JavaScript object
is used that defines an action and often additional data depending on the action. Such objects
being sent to the worker or the front end can be seen in Listings 1 and 2. The communication via
message is shown in Figure 3 in the communications level.

This allows to use the single available communication channel efficiently and ensure that both
the frontend and the web worker can deal with the incoming messages in a good and targeted
way, as shown in Listing 3.

After every run of the fuzzer, the worker is terminated as shown in line two of Listing 4
before potentially starting a new web worker as shown in lines 8-18.

11

N NG W N e

B W N =

O 00 N N U R W N =

[I S S T e T o =
_ O 0 0NN RN RO

let newWorker = new Worker ();

// Set the selected seed
newWorker .postMessage ({ action: "setSeed", seed: currentSeed.name });

// Start the fuzzing process
newWorker .postMessage ({ action: "start" })

Listing 1: Setting the seed and starting the fuzzing process from the main frame

// Send filenames of currentFiles
postMessage ({ action: "currentFiles", files: fileNames 1});

// Web worker sending the message that the current fuzzing iterations if
finished

postMessage ({ action: "runFinished" });

Listing 2: Web worker sending messages to the frontend

newWorker.onmessage = function (e) {
const action = e.data.action;
// deal with output
if (action == "console") {
const outputlLine = e.data.message;

[...]

// File list is sent
if (action == "fileList") {
setCurrentFilesList (e.data.files);

3

// Run finished massage sent

if (action == "runFinished") {
console.log("Run finished");
setCurrentRunBaselterations ((prevState) => prevState + runs);
setCurrentRunIterations (0) ;
setRunning (false) ;

}

};

Listing 3: Frontend dealing with incoming messages from web worker depending on the action
attribute of the transmitted object

12

O 00 N N U R W N =

// Terminate worker
worker .terminate () ;

// Reading of files from IndexedDB
[...]

// Potentially restart worker
setTimeout (async () => {
if (keepRunning) {
console.log("Keep running is active, starting another run.");
setCurrentRuns (runs) ;
const startedWorker = await startWorker (newRuns) ;
setWorker (startedWorker) ;
setRunning (true) ;
} else {
console.log("Keep running is inactive, stopping.");
}
1
Listing 4: Frontend terminating the web worker which has run the fuzzer before start a new web

worker depending on the keepRunning variable

4.3.1.2 Web worker and WEBASSEMBLY virtual machine

The web worker controls the execution of the fuzzer in the WEBAssEMBLY virtual machine
through the usage of the Module object [19]. The Module object defines any potential argu-
ments that are passed to the executable, which is used here to define the folder the corpus is
saved to and the max executions for the specific iteration. The Module object defines functions
that are run before, during, and after execution of the WEBAsSEMBLY code. Figure 3 shows the
communications paths between web worker and WEBASSEMBLY virtual machine.

Before the execution, the functions for preRun are being called. In this case, during the
prerun, the file system is being set up and potentially already available files in the INDEXEDDB
are being synced to the EMSCRIPTEN in-memory file system. Further, if any initial seeds have
been selected, these are also put in the file system for the fuzzer to find them.

During the execution, whenever the fuzzer prints any output, the function print is being
called when something is printed to output by LIBFUZZER in the WEBASSEMBLY virtual machine.
This print function mostly acts as a forward to the frontend, where certain information is ex-
tracted, and the lines are displayed in the terminal.

When the execution of a certain number of iterations is finished, the fuzzer exits gracefully
and the postRun functions are called by EMSCRIPTEN. In the PLAYGROUND FuzzgRr this has two
main tasks. Firstly and foremost, the files that are in the in-memory file system need to be synced
to the persistent INDEXEDDB. Subsequently, a list of all files is generated using the FS.readdir ()
method. That list is then sent to the frontend, so the reading from the INDEXEDDB is a bit easier
later. Finally, the signal that the run is finished is also sent to the frontend. This allows for the
PLAYGROUND FuzzER to ensure that the program has finished gracefully and there won’t be any
damage or loss of data by terminating the web worker, as we are sure the files are synced to
persistent storage, by only posting the message that the run is finished in the callback function
of the FS.syncfs () method.

4.3.2 Storage

Every fuzzer needs some kind of memory and storage [78, 37]. The memory is mostly used to
hold short-lived artifacts, such as current test cases and their relating coverage, while persistent
storage is used to keep the corpus. This is especially important, so one can interrupt the fuzzing
process and resume later without losing access to the coverage already discovered. It further

13

0 ol 0

(a) Start button (b) Stop button (c) Stopping indication

Figure 4: Control buttons in different states

enables the ability to run the fuzzer in a distributed environment, where many machines are
fuzzing a target, but they share or sync the corpus from time to time to ensure a low amount of
duplicate work.

In the browser, memory and storage are often a bit more complicated, as the browsers sand-
box the execution. While modern browsers often support some kind of access to the file system,
for example through the FILE SYysTEM Access API [35], EMSCRIPTEN does not currently imple-
ment this as of August 2021. Therefore, this feature could not be used. Instead, a mixture of the
JavaScript stack and the browser API for INDEXEDDB [54] is used to store the corpus files first
in-memory and later persistently in the INDEXEDDB. It should be noted that the INDEXEDDB is
not a complete file system with folders and files, but rather a form of key-value storage. Em-
SCRIPTEN abstracts its internal, in-memory file system to the INDEXEDDB by using the full path
as the key and then store the object as the value [18, 21].

The JAVAScRIPT web worker and the WEBASSEMBLY virtual machine both have access to the
EMSCRIPTEN in-memory file system [18] symbolized by the FS object. This means that the web
worker can preload files into the file system in the preRun functions and sync the file system to
the INDEXEDDB in one of the postRun functions [19].

The in-memory file system understands folders and must be activated through the build flag
FORCE_FILESYSTEM=1. It’s not persistent. When the web worker is terminated, so is the cor-
responding file system. This leads to the FS object being destroyed, as “all files exist strictly
in-memory, and any data written to them is lost when the page is reloaded” [18].

The frontend and the web worker both have access to the INDEXEDDB. The frontend never
writes to the INDEXEDDB but extracts the corpus from it after the web worker synced the in-
memory file system to the INDEXEDDB.

The web worker, acting as the intermediary layer between frontend and WEBASSEMBLY vir-
tual machine, has access to both the in-memory storage and the persistent INDEXEDDB. The web
worker does not have access to the memory of the WEBAsSEMBLY virtual machine and can there-
fore not extract data during the execution.

4.4 Product

4.4.1 Controls

The running and stopping of the playground are controlled by two buttons: a start/stop button
and a reset button. Figure 4 show the buttons in the different states.

When the fuzzer is not running, the start button (shown in Figure 4a) is shown. By clicking
on the button, the fuzzing process is started from the current state.

During the execution, the stop button (shown in Figure 4b) is visible. Clicking the button will
however not immediately stop the process as to not lose the data from the fuzzer. It will set a flag
to not start any new process and change to the button shown in Figure 4c to indicate to the user
that the stop signal has been received. The fuzzing process will finish the predefined number
of iterations before gracefully stopping. After having stopped, the user is once again shown the
state as in Figure 4b and could restart from the current state.

Should the user want to restart with a clean slate, the reset button will reset and remove
all data from the previous fuzzing run, recreating a state that is identical to when the Fuzzing

14

PLAYGROUND is first loaded. This is useful if one wants to compare between running the fuzzer
for a while with different seeds. Selecting a different target resets the fuzzer automatically.

4.4.2 Fuzzing process

While most fuzzers are normally run for a set amount of time or even more likely indefinitely,
this could not be replicated in this implementation. Continuous fuzzing is possible in the WE-
BASSEMBLY virtual machine, but then access of the data in the in-memory data system is not
possible. To access that data, one needs to be able to use the FS.syncfs () command to sync the
files to IDBFS file system that was mounted beforehand through FS.mount () [18].

One could also run L1BFUZZER continuously and use the JavaScripT web worker to control the
execution, which would allow the fuzzer to be stopped pretty quickly at any point. Unfortunately,
this would not be a soft termination but rather a hard termination of the web worker, which would
result in all the data stored in the in-memory file system of EMscrRIPTEN and the web worker being
lost. Because of the abrupt nature of the termination, syncing the files to the IDBFS file system
would also not be possible. It would also further not be possible to execute a command in the
web worker running the WEBAsSeEMBLY file. This is because of the asynchronous architecture
of JavaScripT, which means the execution of the command, which could potentially stop the
execution more graceful, gets delayed until the execution is finished. A continuous fuzzer would
not stop unless there is a crash.

Therefore, the Playground does not do continuous fuzzing, but rather a set amount of fuzzing
executions that are repeated until the user decided to stop or pause the process.

When the user starts the process, the following takes place:

1. A new JAVAScRIPT web worker is started with the input values from the user.

2. A set number of fuzzing iterations is performed, during which the direct outputs are sent
to the JAVAScRIPT frontend.

3. After the set number of iterations, the files are synced from the in-memory storage of the
WEBASSEMBLY virtual machine to the persistent storage in the browser, the INDEXEDDB.

4. The files are then displayed in the JavaScriprT frontend for the user to see.

5. The JavaScripT web worker and corresponding WEBASSEMBLY virtual machine is termi-
nated.

6. If the user has not paused or stopped the execution, the JavaScripT frontend will automat-
ically repeat step 1, with the generated corpus as the initial seed for the new process.

The number of iterations is increased, as it is assumed that the longer the user leaves the
fuzzer running, the less likely the user wants to immediately stop the execution. The number of
iterations starts off being 1000, are then doubled every run (which should lead to approximately
always double the execution time) and finally stall out at 100,000 iterations per run.

4.5 Visualization

4.5.1 Running indication

There are two main visualizations to indicate the fuzzer is currently running. As the data in the
fuzzer is not available during execution, these indicators are generated to show the user what is
happening under the hood in a simulation, without actually being able to look under said hood.

The numbers displaying how many inputs were tried, how many features were found and
the number of items and the file size of the corpus are read directly out of the terminal output

15

286

features discovered

1000

inputs tried

L

(b) Hlustration of the graph tree by gen-
erating an approximate graph tree and
(a) Mustration of the current input by mutation of the adding node and leaves when newly cov-
original image ered features are found.

Figure 5: The two illustrations simulating the mutations and coverage that LIBFUZZER uses inter-
nally when fuzzing LoDEPNG.

of L1BFuzzER and displayed for the user to see. This gives the user the ability to quickly discern
what the fuzzer is doing, for example, how quickly it is generating new test cases or how many
test cases get moved to the corpus.

To illustrate what the fuzzer is doing, there is a simulated look under the hood. One that has
an input is repeatably manipulated at random places to simulate what is happening in the system.
Ideally, one would be able to access actual inputs and actual coverage data from LIBFUZZER, but as
this is not available during execution and coverage is not stored by the fuzzer, this approximation
gives a good indication of what is happening.

Figure 5a shows an ever-changing for the mutating input when fuzzing LopepNG. That image
that often looks glitched or broken. This is achieved by randomly mutating certain parts of the
image while keeping the file structure of the image intact. To not be overwhelming and to not
crash the site, the image is generated every second by the code shown in Listing 6 in Appendix
A2

Finally, Figure 5b illustrates how the fuzzer covers more of the code. While the tree is only
a visualization and doesn’t show the real coverage data found by L1BFuzzER it does grow at the
same pace as the fuzzer finds more coverage. This allows the user to quickly see if the fuzzer is
finding more coverage or not. It also allows for the comparison with empty seeds and non-empty
ones, seeing a much faster growing tree if a seed is provided initially.

4.5.2 Terminal

When running 118FuzzEeR normally, there is two main outputs one can have alook at the terminal
indicating inputs tried and features found among other indicators and the output directory if one
has provided one to the fuzzer. A terminal is also provided in the Fuzzing PLAYGROUND to display

16

Figure 6: The terminal display the real output of LIBFUZZER.

45 58KB

Elements in Corpus size of Corps
B & E B B G E E BB BB
B & B B B EE E B B BB
B & B B B EGE E B B B B
B B B B B B B B B

88 files, 75.5 kB

Figure 7: Corpus display during execution with number of elements, size, and illustration of the
corpus.

the terminal output by LiBFUZZER.

The small terminal in the FuzziNg PLAYGROUND serves two main purposes. On the one hand,
it is another indicator that the fuzzer is currently running, and it gives the user a similar view as
if they are running the compiled L1BFUZZER on their machine. As such, the user can look into the
real running fuzzer and, for example, check which mutations are currently being applied among
some other outputs by the fuzzer.

On the one hand, this is also a great way for more advanced users to see the difference when
choosing different fuzzing configurations. The terminal also contains interesting information on
startup, such as the seed and how many elements are already in the corpus, and the max file size
calculated from the corpus.

After having finished the execution, L1BFUzZzER also displays some additional information as
the time taken for the number of iterations and the recommend dictionary, as shown in Listing
7 in Appendix B.

4.5.3 Corpus

The corpus is displayed while L1BFUZZER is running, as well as when it is paused. During exe-
cution, one cannot access the files produced by LIBFUZZER, as they are not available. The reason
one cannot access the files is that they first need to be synced to a persistent storage location.
The display of the corpus can be seen in Figure 7.

Once the execution of the fuzzer has stopped, the files are loaded by the frontend by opening
the INDEXEDDB storage of the browser and loading the files. The files that were synced to the
INDEXEDDB before in the post-run step of the web worker are displayed in the frontend.

After the sync, the user can hover over the files and see the filename and size of the file. Often
the files are rather small, but differences in file sizes are very much apparent. Especially when
comparing the fuzzer that is being run with an empty initial seed, where most of the interesting
inputs found early on are tiny, while runs with some interesting seeds, will often produce larger
results, mostly similar in size to the seeds provided in addition to the small files.

17

ps2n2c16.png e034¢36ae1077808318f5a51706a5afe1h473ebe

File name: ps2n2c16.png File name: e034¢c36ae1077808318f5a51706a5afe1b473e6c

File size: 2.48 kB File size: 106 B

Last modified: Fri Sep 10 2021 16:01:21 GMT+0200 (Mitteleuropéische Last modified: Fri Sep 10 2021 16:01:28 GMT+0200 (Mitteleuropéische
Sommerzeit) Sommerzeit)

DOWNLOAD DOWNLOAD

(a) Seed file (b) Generated file

Figure 8: File preview for a seed file that was provided to the fuzzer and a file the fuzzer generated
and stored in the corpus.

5 DiIsCcuUSSION

This section will first evaluate the playground proposed in this work according to the goals set
out in Section 4.1, list the limitations, and propose further work or alternative approaches to
solving the problem.

G1 The playground is easy to run. In-fact, any reasonably modern browser can be pointed at it,
and it is ready to go. There is no need to ready any documentation, and some additional
information is provided to the user in the frontend interface. The setup time is non-existent
and the usage of the tool doesn’t require previous technical knowledge.

G2 The controls are easy to use, and the user should be able to use them quite comfortably. The
start and stop button is clear and easy to use, as is the reset button. The frontend reacts
very fast to the user’s input, therefore providing immediate feedback to the user.

The fact that the fuzzer keeps running for a bit after having pressed the stop button might
be confusing to some users, although the indicator saying Stopping... does alleviate that to
a certain degree.

G3 The playground provides a reasonable configuration to start with. This is similar to starting
fuzzing with an empty seed, which is a pretty normal configuration. The default is very
much ready to go and in case the user doesn’t want to change anything, the user can simply
press the start button and begin the fuzzing process.

G4 The indication of the fuzzer running is present in three places to clearly show that the fuzzer
is running. The first indicator of running is the changing button that changes to a stop but-
ton when the fuzzer is running. The second indicator is the small terminal which displays
the real output by the fuzzer. The third indicator is the visualization and tree, providing
simulated feedback of what is happening under the hood.

G5 The three main visualizations, the inputs tried, the features found, and the corpus indicate
what is happening under the hood and provide visualizations of what is happening. How-
ever, the current input and the tree are unfortunately not real data from the fuzzer, as the
data generated by the fuzzer is not available during execution. As such, the visualization
is here but doesn’t use the actual fuzzer. The corpus files show the corpus growing and the
different sizes that are generated quite well, but is only available for inspection when the
fuzzer is not running. The corpus files use the data generated by the fuzzer directly.

G6 There is a real fuzzing process running in the browser of the user. The chosen fuzzer, L1B-
FuzzEr is a modern fuzzer and the data and output the fuzzer produces are displayed to
the user in real-time. LIBFUZZER is generally a good fuzzer that performs reasonably well,
but other fuzzers might achieve better results in benchmarks [28].

18

5.1 Limitations

There are some limitations present in the Fuzzing PLAYGROUND. Most of these limitations stem
from the fact that the entire fuzzing process is run in the browser, and as such, some sacrifices
were made.

Without any restraints, AFL [1] would have been favored over LIBFUZZER, as AFL is generally
more popular and is thought to find more coverage quicker. As AFL doesn’t run in-process, this
was deemed not doable with the EMSCRIPTEN setup.

The fuzzer isn’t as performant as running the same fuzzer in a local machine. While the
overhead from EMSCRIPTEN is probably quite low and in theory could achieve the promised
near-native speed [30], the outputs and visualizations do produce some overhead that proba-
bly slow down the fuzzing process some more. While execution speed is not that important for
an educational tool, it is generally important when fuzzing.

Another limitation is that the user can only choose from some preselected targets and seeds.
Allowing the user to bring their target is infeasible since this would either require the ability to
compile code in the browser through the WEBAsSEMBLY virtual machine which is currently not
possible, or it would require the user to compile the target themselves which would then greatly
detract from the simplicity of the playground and would be a major barrier of entry to use the
playground.

The visualizations are still quite limited, mostly owed to the fact that the EMSCRIPTEN file sys-
tem is not available during execution, but only after. Better visualizations could perhaps further
help the understanding of the fuzzing process. An attempt was made to use the Module.print
method to extract the corpus whenever something new was found. This however slowed down
the web worker too much while the WEBASSEMBLY code was still executed at normal speed,
which lead to the outputs being mangled and unusable. In the end, this resulted in a crash of the
application.

Finally, the FuzzinG PLAYGROUND also doesn’t deal with bugs being found through the fuzzer
in the browser. This scenario is very unlikely, as the chosen targets are all extensively fuzzed
in OSS-Fuzz [59], but finding bugs and recreating the corresponding inputs nevertheless is an
important part of fuzzing.

5.2 Future work

One important aspect that the FuzziNG PLAYGROUND doesn’t address is the actual finding of bugs.
Interesting work could be done by reproducing certain high-profile bugs, such as HEARTBLEED
[5], by providing specific outdated targets for the user to choose from. This could help to illustrate
the real-world application of fuzzers to users and move fuzzing further away from a theoretical
concept to a real-world tool actively being used to find important security issues and bugs.

Many of the limitations could be addressed by moving away from in-browser execution. A
smart queue-based system, where users could enter their desired configuration into a queue and
get the corresponding data from the server, would offer the possibility to combine installation-
less fuzzing and greater access to the internal data to the fuzzer. This would, however, require
some good hardware for the server and would not scale with more people using it.

By performing a trade-off between the ease of use and interesting insights provided, one
could also try to replace the in-browser fuzzing with a simple to use DOCKER container, in which
the fuzzing and corresponding visualization could take place. This would, of course, mean trad-
ing some convenience for more data, as starting a DOCKER container is definitely more effort
than simply opening a website, but is still straightforward, especially for people with technical
experience and an interest in fuzzing. Running in Docker would provide a pretty easy setup,
with greater access to internal data and the file system in real-time. This would also allow for
usage of a non in-process fuzzer, such as AFL++ [23] or HONGFUZZ [27].

19

Rapid advances in Emscripten, WebAssembly and fuzzers could allow for more flexibility
and greater access to low-level systems in the browser. This could further allow for better visu-
alizations and more in-depth looks into the fuzzer. In fact, AFL developers are looking into the
possibility of being able to instrument WEBASSEMBLY targets [1].

Finally, comparing different fuzzers against each other, such as in FuzzBENncH [47] could
also provide interesting, albeit more advanced insights into the fuzzing process. Trying different
fuzzers or different seeds for the same fuzzer in an easy-to-use, minimal setup could help the
understanding of more advanced fuzzing users, trying to quickly compare different fuzzers and
find their strengths and weaknesses.

20

6 CONCLUSION

Fuzzing is important and widely used as a tool to find critical bugs and security issues early to
address them promptly [46]. The entry hurdle to using most fuzzers is quite high and the usability
of fuzzers, even when used by technical users, leaves a lot to be desired [57].

Advances in web technologies support a wide range of applications that can run complex
systems and tools such as a fuzzer in browser [77, 30, 74]. While advancements are quite im-
pressive and having the ability to run compiled code in the browser at fast speeds is exciting,
some low-level integration, often the ones necessary for certain types of fuzzing are not always
implemented or implementation progress varies across browsers [75].

The FuzziNG PLAYGROUND provides an easy-to-use, installation-free tool to immediately start
a fuzzing process in the user’s browser. The fuzzing process takes place on the user’s machine
entirely and runs a real, modern fuzzer: LiBFuzzer. The user can control the fuzzing configura-
tion in limited ways, but can quickly compare different configurations against each other. Users
can also discern the current state of the fuzzer as well as some additional information. Further,
the user can inspect the interesting inputs, the inputs found to provide additional coverage in
the corpus.

21

REFERENCES

[1]

(2]

(8]

AFL++ Contributors. Ideas for AFL++, 2021. URL https://github.com/AFLplusplus/
AFLplusplus/blob/stable/docs/ideas.md.

M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and M. Whittaker. Announcing OSS-
Fuzz: Continuous fuzzing for open source software, 2016. URL https://opensource.
googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html.

A. Arya and C. Neckar. Fuzzing for Security, 2012. URL https://blog.chromium.org/
2012/04/fuzzing-for-security.html.

A. Arya, O. Chang, M. Barbella, and]. Metzman. Open sourcing Cluster-
Fuzz, 2019. URL https://opensource.googleblog.com/2019/02/open-sourcing-
clusterfuzz.html.

H. Béck. How Heartbleed could’ve been found, 2015. URL https://blog.hboeck.de/
archives/868-How-Heartbleed-couldve-been-found.html.

M. Bohme and B. Falk. Fuzzing: on the exponential cost of vulnerability discovery. In
Proceedings of the 28th ACM joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 713-724, New York, NY,
USA, nov 2020. ACM. ISBN 9781450370431. doi: 10.1145/3368089.3409729. URL https:
//d1.acm.org/doi/10.1145/3368089.3409729.

M. Bohme, V. T. Pham, and A. Roychoudhury. Coverage-Based Greybox Fuzzing as Markov
Chain. IEEE Transactions on Software Engineering, 45(5):489-506, 2019. ISSN 19393520. doi:
10.1109/TSE.2017.2785841.

E. Bounimova, P. Godefroid, and D. Molnar. Billions and billions of constraints: Whitebox
fuzz testing in production. In 2013 35th International Conference on Software Engineering
(ICSE), pages 122-131. IEEE, may 2013. ISBN 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.
6606558. URL http://ieeexplore.ieee.org/document/6606558/.

C. Cadar, D. Dunbar, D. Engler, C. Cadar, and D. Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages
209-224, USA, 2008. USENIX Association. doi: 10.5555/1855741.1855756.

[10] J. Campbell and M. Walker. Microsoft announces new Project OneFuzz frame-

work, an open source developer tool to find and fix bugs at scale, 2020. URL
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-
framework-open-source-developer-tool-fix-bugs/.

M. Carney. Using Teachable Machine in the d.school classroom, 2019. URL
https://medium.com/@michellecarney/using-teachable-machine-in-the-
d-school-classroom-96belba6adf9.

M. Carney, B. Webster, I. Alvarado, K. Phillips, N. Howell, J. Griffith, J. Jongejan, A. Pitaru,
and A. Chen. Teachable Machine: Approachable Web-Based Tool for Exploring Ma-
chine Learning Classification. In Extended Abstracts of the 2020 CHI Conference on Hu-
man Factors in Computing Systems, pages 1-8, New York, NY, USA, apr 2020. ACM. ISBN
9781450368193. doi: 10.1145/3334480.3382839. URL https://dl.acm.org/doi/10.
1145/3334480.33828309.

23

https://github.com/AFLplusplus/AFLplusplus/blob/stable/docs/ideas.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/docs/ideas.md
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://dl.acm.org/doi/10.1145/3368089.3409729
https://dl.acm.org/doi/10.1145/3368089.3409729
http://ieeexplore.ieee.org/document/6606558/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://medium.com/@michellecarney/using-teachable-machine-in-the-d-school-classroom-96be1ba6a4f9
https://medium.com/@michellecarney/using-teachable-machine-in-the-d-school-classroom-96be1ba6a4f9
https://dl.acm.org/doi/10.1145/3334480.3382839
https://dl.acm.org/doi/10.1145/3334480.3382839

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

D. Christozov, J. Galletly, V. Karagiozov, and S. Bonev. Learning by Doing — the Way to
Develop Computer Science Professionals. In Informatics Education Europe II Conference,
pages 53-59, 2007.

Chromium Contributors. Clang, 2021. URL https://chromium.googlesource.com/
chromium/src/+/HEAD/docs/clang.md.

L. E. Colson and J. F. Sullivan. Hands-on Engineering: Learning by Doing in the Integrated
Teaching and Learning Program. International Journal of Engineering Education, 15(1):20—
31, 1999.

A. Deveria. WebAssembly, 2021. URL https://caniuse.com/wasm.

D. Dunbar, C. Cadar, D. Engler, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages
209-224, USA, 2008. USENIX Association. doi: 10.5555/1855741.1855756.

Emscripten Contributors. File System API, 2015. URL https://emscripten.org/docs/
api_reference/Filesystem—-API.html.

Emscripten Contributors. Module object, 2015. URL https://emscripten.org/docs/
api_reference/module.html.

Emscripten Contributors. Emscripten Compiler Frontend (emcc), 2015. URL https://
emscripten.org/docs/tools_reference/emcc.html.

Emscripten Contributors. library_idbfs.js, 2021. URL https://github.com/
emscripten-core/emscripten/blob/2.0.26/src/library_idbfs. js.

A. Fioraldi and L. P. Pileggi. FuzzSplore: Visualizing Feedback-Driven Fuzzing Techniques.
feb 2021. URL http://arxiv.org/abs/2102.02527.

A. Fioraldi, D. Maier, H. EifSfeldt, and M. Heuse. AFL++: Combining incremental steps of
fuzzing research. WOOT 2020 - 14th USENIX Workshop on Offensive Technologies, co-located
with USENIX Security 2020, 2020.

N. Gibbins. asm.js and WebAssembly. URL http://edshare.soton.ac.uk/20638/5/
03d-WebAssembly.pdf.

P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In NDSS 2008
(Network and Distributed Systems Security), pages 151-166, 2008.

Google. Teachable Machine. URL https://teachablemachine.withgoogle.com/.
Google. honggfuzz, 2021. URL https://honggfuzz.dev/.

Google. 2021-04-11 report, 2021. URL https://www.fuzzbench.com/reports/2021-
04-11/index.html.

Google. OSS-Fuzz: Continuous Fuzzing for Open Source Software, 2021. URL https:
//github.com/google/oss-fuzz.

A.Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. F. Bastien. Bringing the web up to speed with WebAssembly. ACM SIGPLAN Notices,
52(6):185-200, 2017. ISSN 15232867. doi: 10.1145/3062341.3062363.

24

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/clang.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/clang.md
https://caniuse.com/wasm
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://emscripten.org/docs/api_reference/module.html
https://emscripten.org/docs/api_reference/module.html
https://emscripten.org/docs/tools_reference/emcc.html
https://emscripten.org/docs/tools_reference/emcc.html
https://github.com/emscripten-core/emscripten/blob/2.0.26/src/library_idbfs.js
https://github.com/emscripten-core/emscripten/blob/2.0.26/src/library_idbfs.js
http://arxiv.org/abs/2102.02527
http://edshare.soton.ac.uk/20638/5/03d - Web Assembly.pdf
http://edshare.soton.ac.uk/20638/5/03d - Web Assembly.pdf
https://teachablemachine.withgoogle.com/
https://honggfuzz.dev/
https://www.fuzzbench.com/reports/2021-04-11/index.html
https://www.fuzzbench.com/reports/2021-04-11/index.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

[31]

[32]

[35]

D. Herman, L. Wagner, and A. Zakai. frequently asked questions, 2014. URL http://
asmjs.org/faq.html.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz testing. Proceedings
of the ACM Conference on Computer and Communications Security, pages 2123-2138, 2018.
ISSN 15437221. doi: 10.1145/3243734.3243804.

P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan. Code coverage and postrelease defects: A
large-scale study on open source projects. IEEE Transactions on Reliability, 66(4):1213-1228,
2017. ISSN 00189529. doi: 10.1109/TR.2017.2727062.

H. Krasner. The cost of poor quality software in the US: A 2018 report. Consortium for IT
Software Quality (CISQ), 2018.

P. LePage and T. Steiner. The File System Access API: simplifying access to local files, 2021.
URL https://web.dev/file-system-access/.

[36] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang. Fuzz testing in practice: Obstacles and

[37]

[38]

[39]

[40]

solutions. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), volume 2018-March, pages 562-566. IEEE, mar 2018. ISBN 978-1-
5386-4969-5. doi: 10.1109/SANER.2018.8330260. URL http://ieeexplore.ieee.org/
document/8330260/.

LLVM Project. libFuzzer — a library for coverage-guided fuzz testing., 2021. URL https:
//1lvm.org/docs/LibFuzzer .html.

LLVM Project. LLVM Download Page, 2021. URL https://releases.llvm.org/
download.html.

LLVM Project. SanitizerCoverage, 2021. URL 2021-09-14.

LLVM Project, LLVM Packaging Team, M. Klose, and S. Ledru. Paket: clang (1:10.0-
50~expl), 2021. URL https://packages.ubuntu.com/focal/clang.

V.J. M. Manes, H. Han, C. Han, sang kil Cha, M. Egele, E. J. Schwartz, and M. Woo. The Art,
Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering,
pages 1-20, nov 2018. ISSN 0098-5589. doi: 10.1109/TSE.2019.2946563. URL https://
ieeexplore.ieee.org/document/8863940/http://arxiv.org/abs/1812.00140.

[42]]J. Metzman. Your Browser is my Fuzzer : Fuzzing Native Applications in Web Browsers,

2019. URL https://github.com/jonathanmetzman/wasm-fuzzing-demo/blob/
master/meetup-Fuzzing-Native-Applications-in-Browsers-With-WASM.pdf.

[43]]J. Metzman. Demos From My Talk on Fuzzing Native Code in Web Browsers using WASM,

2019. URL https://github.com/jonathanmetzman/wasm-fuzzing-demo.

[44]]. Metzman. Dockerfile, 2019. URL https://github.com/jonathanmetzman/wasm-

fuzzing-demo/blob/master/Dockerfile.

[45] J. Metzman. SQLite Demo, 2019. URL https://jonathanmetzman.github.io/wasm-

fuzzing-demo/sqlite-fast/sqlite.html.

[46] J. Metzman and A. Ali. Developers are Buzzing on Fuzzing, 2021. URL https://

thenewstack.io/developers-are-buzzing-on-fuzzing/.

25

http://asmjs.org/faq.html
http://asmjs.org/faq.html
https://web.dev/file-system-access/
http://ieeexplore.ieee.org/document/8330260/
http://ieeexplore.ieee.org/document/8330260/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://releases.llvm.org/download.html
https://releases.llvm.org/download.html
2021-09-14
https://packages.ubuntu.com/focal/clang
https://ieeexplore.ieee.org/document/8863940/ http://arxiv.org/abs/1812.00140
https://ieeexplore.ieee.org/document/8863940/ http://arxiv.org/abs/1812.00140
https://github.com/jonathanmetzman/wasm-fuzzing-demo/blob/master/meetup-Fuzzing-Native-Applications-in-Browsers-With-WASM.pdf
https://github.com/jonathanmetzman/wasm-fuzzing-demo/blob/master/meetup-Fuzzing-Native-Applications-in-Browsers-With-WASM.pdf
https://github.com/jonathanmetzman/wasm-fuzzing-demo
https://github.com/jonathanmetzman/wasm-fuzzing-demo/blob/master/Dockerfile
https://github.com/jonathanmetzman/wasm-fuzzing-demo/blob/master/Dockerfile
https://jonathanmetzman.github.io/wasm-fuzzing-demo/sqlite-fast/sqlite.html
https://jonathanmetzman.github.io/wasm-fuzzing-demo/sqlite-fast/sqlite.html
https://thenewstack.io/developers-are-buzzing-on-fuzzing/
https://thenewstack.io/developers-are-buzzing-on-fuzzing/

[47]]J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya. FuzzBench: an open fuzzer

[48]

[57]

[58]

[59]

[60]

benchmarking platform and service. In Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, pages 1393-1403, New York, NY, USA, aug 2021. ACM. ISBN 9781450385626. doi:
10.1145/3468264.3473932. URL https://dl.acm.org/doi/10.1145/3468264 .3473932.

B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl. Fuzz Revisited
- A re-examination of the reliability of UNIX utilities and services. October, 1525(October
1995):1-23, 1995. URL http://www.eecs.northwestern.edu/~robby/courses/395-
495-2009-fall/fuzz-revisited.pdf.

B. Miller, M. Zhang, and E. Heymann. The Relevance of Classic Fuzz Testing: Have We
Solved This One? IEEE Transactions on Software Engineering, (February):1-11, 2020. ISSN
19393520. doi: 10.1109/TSE.2020.3047766.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities.
Communications of the ACM, 33(12):32-44, dec 1990. ISSN 0001-0782. doi: 10.1145/96267.
96279. URL https://dl.acm.org/doi/10.1145/96267.96279.

B. P. Miller, G. Cooksey, and F. Moore. An empirical study of the robustness of Ma-
cOS applications using random testing. In Proceedings of the 1st international workshop
on Random testing - RT °06, page 46, New York, New York, USA, 2006. ACM Press. ISBN
159593457X. doi: 10.1145/1145735.1145743. URL http://portal.acm.org/citation.
cfm?doid=1145735.1145743.

A. Mockus, N. Nagappan, and T. T. Dinh-Trong. Test coverage and post-verification defects:
A multiple case study. In 2009 3rd International Symposium on Empirical Software Engineer-
ing and Measurement, pages 291-301. IEEE, oct 2009. ISBN 978-1-4244-4842-5. doi: 10.1109/
ESEM.2009.5315981. URL http://ieeexplore.ieee.org/document/5315981/.

Mozilla. WebAssembly, 2021. URL https://developer.mozilla.org/en-US/docs/
WebAssembly.

Mozilla. IndexedDB APIL, 2021. URL https://developer.mozilla.org/en-US/docs/
Web/API/IndexedDB_API.

Mozilla. Web Workers API, 2021. URL https://developer.mozilla.org/en-US/docs/
Web/API/Web_Workers_API.

A. P. Norton and Y. Qi. Adversarial-Playground: A visualization suite showing how ad-
versarial examples fool deep learning. In 2017 IEEE Symposium on Visualization for Cyber
Security (VizSec), volume 2017-Octob, pages 1-4. IEEE, oct 2017. ISBN 978-1-5386-2693-
1. doi: 10.1109/VIZSEC.2017.8062202. URL http://ieeexplore.ieee.org/document/
8062202/.

S. Ploger, M. Meier, and M. Smith. A Qualitative Usability Evaluation of the Clang Static
Analyzer and libFuzzer with CS Students and CTF Players. In USENIX Symposium on Usable
Privacy and Security (SOUPS) 2021., pages 553—572, 2021. ISBN 9781939133250.

Preact Contributors. preact, 2021. URL https://preactjs.com/.

M. Rubhstaller and O. Chang. A new chapter for OSS-Fuzz, 2019. URL https://
opensource.googleblog.com/2019/01/a-new-chapter-for-oss-fuzz.html.

K. Sato. Understanding neural networks with TensorFlow Playground, 2016. URL https:
//cloud.google.com/blog/products/ai-machine-learning/understanding-
neural-networks-with-tensorflow-playground.

26

https://dl.acm.org/doi/10.1145/3468264.3473932
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/fuzz-revisited.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/fuzz-revisited.pdf
https://dl.acm.org/doi/10.1145/96267.96279
http://portal.acm.org/citation.cfm?doid=1145735.1145743
http://portal.acm.org/citation.cfm?doid=1145735.1145743
http://ieeexplore.ieee.org/document/5315981/
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
http://ieeexplore.ieee.org/document/8062202/
http://ieeexplore.ieee.org/document/8062202/
https://preactjs.com/
https://opensource.googleblog.com/2019/01/a-new-chapter-for-oss-fuzz.html
https://opensource.googleblog.com/2019/01/a-new-chapter-for-oss-fuzz.html
https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground

[61]

[62]

[65]
[66]

[67]

[68]

[69]

[70]

SCS Computing Facilities Carnegie Mellon University. Ubuntu 16.04 - End of Life, 2020.
URL https://computing.cs.cmu.edu/news/2020/eol-ubuntu-1604.

M. Silic and A. Back. The Influence of Risk Factors in Decision-Making Process for Open
Source Software Adoption. International Journal of Information Technology and Decision
Making, 15(1):151-185, 2016. ISSN 02196220. doi: 10.1142/S0219622015500364.

M. Skirpan and T. Yeh. Beyond the Flipped Classroom: Learning by Doing Through
Challenges and Hack-a-thons. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, pages 212-217, New York, NY, USA, feb 2015. ACM. ISBN
9781450329668. doi: 10.1145/2676723.2677224. URL https://dl.acm.org/doi/10.
1145/2676723.2677224.

D. Smilkov, S. Carter, D. Sculley, F. B. Viégas, and M. Wattenberg. Direct-Manipulation
Visualization of Deep Networks. 2017. URL http://arxiv.org/abs/1708.03788.

SSLab at Georgia Tech. Fuzzcoin - let’s find bug, 2020. URL https://fuzzcoin.kr/.
SSLab at Georgia Tech. Project Roadmap, 2020. URL https://fuzzcoin.kr/roadmap.

SSLab at Georgia Tech. Are you a bug hunter? Try out FuzzCoin., 2020. URL https:
//fuzzcoin.kr/readme.

M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability Discovery, volume
148. Pearson Education, Upper Saddle River, NJ, 1 edition, 2007. ISBN 0-32-144611-9.

Tao Xie, D. Marinov, and D. Notkin. Rostra: a framework for detecting redundant object-
oriented unit tests. In Proceedings. 19th International Conference on Automated Software
Engineering, 2004., pages 196—205. IEEE, 2004. ISBN 0-7695-2131-2. doi: 10.1109/ASE.2004.
1342737. URL http://ieeexplore.ieee.org/document/1342737/.

TensorFlow. A Neural Network Playground, 2021. URL https://playground.
tensorflow.org/.

[71]]. Vainio. The Use of Data Visualization in Fuzz. Master’s thesis, University of Oulu, 2014.

[72]

[73]

[75]

[76]

[77]

R. Vamosi. The Fuzzing Files: The Anatomy of a Heartbleed, 2020. URL https://
forallsecure.com/blog/the-fuzzing-files-the-anatomy-of-a-heartbleed.

L. Wagner. asm.js in Firefox Nightly, 2013. URL https://blog.mozilla.org/luke/
2013/03/21/asm-js-in-firefox-nightly/.

L. Wagner. Turbocharging the web. IEEE Spectrum, 54(12):48-53, dec 2017. ISSN
0018-9235. doi: 10.1109/MSPEC.2017.8118483. URL http://ieeexplore.ieee.org/
document/8118483/.

WebAssembly Contributors. Roadmap, 2021. URL https://webassembly.org/
roadmap/.

S. Williamson. Is Bitcoin a Waste of Resources? Review, 100(2):107-115, 2018. ISSN
00149187. doi: 10.20955/r.2018.107-15. URL https://research.stlouisfed.org/
publications/review/2018/02/13/is-bitcoin-a-waste-of-resources.

A. Zakai. Emscripten: An LLVM-to-JavaScript compiler. SPLASH’11 Compilation - Pro-
ceedings of OOPSLA’11, Onward! 2011, GPCE’11, DLS’11, and SPLASH’11 Companion, pages
301-312, 2011. doi: 10.1145/2048147.2048224.

27

https://computing.cs.cmu.edu/news/2020/eol-ubuntu-1604
https://dl.acm.org/doi/10.1145/2676723.2677224
https://dl.acm.org/doi/10.1145/2676723.2677224
http://arxiv.org/abs/1708.03788
https://fuzzcoin.kr/
https://fuzzcoin.kr/roadmap
https://fuzzcoin.kr/readme
https://fuzzcoin.kr/readme
http://ieeexplore.ieee.org/document/1342737/
https://playground.tensorflow.org/
https://playground.tensorflow.org/
https://forallsecure.com/blog/the-fuzzing-files-the-anatomy-of-a-heartbleed
https://forallsecure.com/blog/the-fuzzing-files-the-anatomy-of-a-heartbleed
https://blog.mozilla.org/luke/2013/03/21/asm-js-in-firefox-nightly/
https://blog.mozilla.org/luke/2013/03/21/asm-js-in-firefox-nightly/
http://ieeexplore.ieee.org/document/8118483/
http://ieeexplore.ieee.org/document/8118483/
https://webassembly.org/roadmap/
https://webassembly.org/roadmap/
https://research.stlouisfed.org/publications/review/2018/02/13/is-bitcoin-a-waste-of-resources
https://research.stlouisfed.org/publications/review/2018/02/13/is-bitcoin-a-waste-of-resources

(78]

[79]

[80]

M. Zalewski. american fuzzy lop (2.52b), 2017. URL https://lcamtuf.coredump.cx/
afl/.

H. Zhai, C. Casalnuovo, and P. Devanbu. Test Coverage in Python Programs. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), volume
2019-May, pages 116-120. IEEE, may 2019. ISBN 978-1-7281-3412-3. doi: 10.1109/MSR.
2019.00027. URL https://ieeexplore.ieee.org/document/8816791/.

C. Zhou, M. Wang, J. Liang, Z. Liu, C. Sun, and Y. Jiang. VisFuzz: Understanding and
intervening fuzzing with interactive visualization. Proceedings - 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2019, pages 1078-1081, 2019.
doi: 10.1109/ASE.2019.00106.

28

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://ieeexplore.ieee.org/document/8816791/

[

O 00 N N Uk W

11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

A FRONTEND CODE

A.1 Read files from INDEXEDDB

// Generate request to open indexedDB
const DBOpenRequest = window.indexedDB.open(currentDir, 21);
Emscripten

// Deal with error (hopefully not)
DBOpenRequest.onerror = function (event) {
console.log("Error loading database");

+;

// Open the database and start on transaction to fetch files

DBOpenRequest .onsuccess = async function (event) {
console.log("Database initialized");

const db = event.target.result;

// Must be more than O, otherwise no files.
if (db.objectStoreNames.length > 0) {

// 21 from

let transaction = db.transaction(db.objectStoreNames, "readwrite");
let object_store = transaction.objectStore(db.objectStoreNames [0]) ;

let request = object_store.openCursor();
request.onerror = function (event) {
console.err("error fetching data");

I

let filesNew = [];
request.onsuccess = function (event) {
let cursor = event.target.result;
if (cursor) {
const key = cursor.primaryKey;
const value = cursor.value;

// Do something
const fileName = key.split("/") [2];
if (currentFilesList.includes(fileName)) {
const file = {
filename: fileName,
timestamp: value.timestamp,
contents: value.contents,
bytelength: value.contents.bytelLength,
I
filesNew.push(file);
} else {
/* nothing */
}
cursor.continue () ;
} else {
console.log("Database finished");
setCurrentFiles (filesNew.reverse());

// Potentially restart worker
setTimeout (async () => {
if (keepRunning) {

console.log("Keep running is active, starting another run.")

const newRuns =

currentRuns * 2 > 100000 7 100000 : currentRuns * 2;

setCurrentRuns (newRuns) ;
const startedWorker = await startWorker (newRuns) ;
setWorker (startedWorker) ;

)

58
59
60
61
62
63
64
65
66

O 00 N N U W N =

e e e o =
0N Re WD =R O

NN U RN =

G W N =

setRunning (true) ;
} else {

console.log("Keep running is inactive, stopping.");

}
B

Listing 5: Code to read the files from INDEXEDDB

A.2 Generate image input visualization

let image = new Image();
visualInterval = setInterval (() => {
image.onload = function () {
glitch ({

seed: Math.floor(Math.random() * 100), // integer between 0 and 99
quality: Math.floor (Math.random() * 100), // integer between O and 99
amount: Math.floor (Math.random() * 100), // integer between O and 99
iterations: Math.floor (Math.random() * 40), // integer

b
.fromImage (image)
.toDataURL ()
.then(function (dataURL) {
setCurrentStylisedImage (dataURL) ;
b
I3

image.src = olij;
}, 1000);

Listing 6: Code that generated the image visualization

EXAMPLE LIBFUZZER OUTPUT

Recommended dictionary.

"\xfE\xEF\xEF\xfFf\xff\xff\xff\xff" # Uses:

"\xff\xff\xff\xff" # Uses: 14
"\xff\xff" # Uses: 15

"\x01\x00\x00\x00\x00\x00\x00\x00" # Uses:

"\x01\x00\x00\x00" # Uses: 14

19

13

End of recommended dictionary.

Listing 7: A example of a recommended dictionary by LIBFUZZER

C DOCKER BUILD

C.1 Dockerfile

H OH O H H

Licensed under the Apache License,

Copyright 2019 Google Inc.

30

Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

O 0 NN N

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53

54
55
56
57

it
it http://www.apache.org/licenses/LICENSE-2.0
it
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
it
it
HE#AHARFRFSH SR AR RRH AR AR R A RRBH SRS BB R BB H SRR RBH RS H SRR RRH SRR BB B SR SRS RSB HH
FROM ubuntu:20.04

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get update && \
apt-get upgrade -y && \
apt-get install -y libc6-dev binutils libgcc-7-dev && \
apt-get autoremove -y

ENV SRC /src

ENV OUT /out

ENV WORK /work

RUN mkdir $SRC $0UT $WORK

Checkout, build and install 1llvm

RUN apt-get install -y build-essential make cmake ninja-build git g++-multilib
python3 python-is-python3

RUN mkdir $SRC/chromium_tools

WORKDIR $SRC/chromium_tools

RUN git clone https://chromium.googlesource.com/chromium/src/tools/clang

ENV LLVM_SRC $SRC/llvm-project
RUN git clone https://github.com/1llvm/llvm-project.git $LLVM_SRC

RUN mkdir -p $WORK/build
RUN cd $WORK/build

ENV TARGET_TO_BUILD "host;WebAssembly"

ENV PROJECTS_TO_BUILD "compiler-rt;clang;ldd"

RUN cmake -G "Ninja" -DLIBCXX_ENABLE_SHARED=0FF -
DLIBCXX_ENABLE_STATIC_ABI_LIBRARY=0N -DLIBCXXABI_ENABLE_SHARED=0FF -
DCMAKE_BUILD_TYPE=Release -DLLVM_TARGETS_TO_BUILD="$TARGET_TO_BUILD" -
DLLVM_ENABLE_PROJECTS=$PROJECTS_TO_BUILD $LLVM_SRC/1llvm

RUN ninja install

RUN git clone https://github.com/emscripten-core/emsdk.git /src/emsdk
WORKDIR /src/emsdk

RUN apt-get install -y python

RUN ./emsdk install 2.0.26

RUN ./emsdk activate 2.0.26

RUN printf "LLVM_ROOT = '/work/build/bin'\nBINARYEN_ROOT = '/src/emsdk/upstream
'\nEMSCRIPTEN_ROOT = '/src/emsdk/upstream/emscripten'\nNODE_JS = '/src/
emsdk/node/14.15.5_64bit/bin/node '\nTEMP_DIR = '/tmp'\nCOMPILER_ENGINE =

NODE_JS\nJS_ENGINES = [NODE_JS]" > /src/.emscripten-llvm-override

Activate the emsdk and don't let it overwrite the .emscripten file we need to

point to our LLVM build.

RUN echo "/src/emsdk/emsdk activate && source /src/emsdk/emsdk_env.sh &> /dev/
null && cp /src/.emscripten-llvm-override /root/.emscripten" >> /root/.
bashrc

31

59
60
61
62
63
64
65
66
67

68
69
70

G W N =

RUN echo "PATH=$PATH:/src/emsdk:/src/emsdk/upstream/emscripten:/src/emsdk/

node/12.9.1_64bit/bin" >> /root/.bashrc

WORKDIR /src/llvm-project/compiler-rt/lib/fuzzer
COPY compile_libfuzzer.sh /src

RUN

bash /src/compile_libfuzzer.sh

#lodepng part
WORKDIR /

RUN
RUN

apt-get update && apt-get install -y make autoconf automake libtool
git clone --depth 1 https://github.com/lvandeve/lodepng.git lodepng #
or use other version control

WORKDIR lodepng
COPY lodepng_fuzzer.cpp ./
COPY build.sh

C.2

Listing 8: Dockerfile for the environment to build the fuzzing target to EMSCRIPTEN

compile_libFuzzer.sh

#! /bin/bash

source /src/emsdk/emsdk_env.sh
cd /src/llvm-project/compiler-rt/lib/fuzzer
CXX=emcc bash build.sh

C.3

emcc

Listing 9: Script to compile L1BFUzZER with EMSCRIPTEN
build.sh

-s ERROR_ON_UNDEFINED_SYMBOLS=0 -s ALLOW_MEMORY_GROWTH=1 -s EXIT_RUNTIME=1
-s TOTAL_MEMORY=1GB -02 -fsanitize-coverage=inline-8bit-counters -1lidbfs.
js lodepng.cpp lodepng_fuzzer.cpp /src/llvm-project/compiler-rt/lib/fuzzer/

libFuzzer.a -o $0UT/lodepng. js

Listing 10: Using the EMSCRIPTEN drop in command emcc to build the fuzzing target

32

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Previous work
	Web-based tools illustrative tools
	Visualizing fuzz testing
	Web based fuzzing tools

	Background
	Types of fuzzers
	Black-box fuzzer
	White-box fuzzer
	Grey-box fuzzer

	Modern coverage-guided fuzzers
	Emscripten
	Preact

	Implementation
	Goals
	Build process
	Build fuzzing targets for WebAssembly

	Layers
	Communication
	Storage

	Product
	Controls
	Fuzzing process

	Visualization
	Running indication
	Terminal
	Corpus

	Discussion
	Limitations
	Future work

	Conclusion
	References
	Frontend code
	Read files from IndexedDB
	Generate image input visualization

	Example libFuzzer output
	Docker build
	Dockerfile
	compile_libFuzzer.sh
	build.sh

