
Modeling the Behavior of Malware
Affecting the Integrity of Raspberry

Pis

Ülkü Karagöz
Zurich, Switzerland

Student ID: 17-729-039

Supervisor: Dr. Alberto Huertas Celdrán, Eder John Scheid
Date of Submission: August 2, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Die zunehmende Anzahl an IoT-Geräten führt zu neuen und disruptiven Anwendungs-
szenarien und Paradigmen. Diese Situation zeigt sich in Crowdsensing-Plattformen wie
ElectroSense, wo IoT-Sensoren Spektraldaten überwachen, die an eine Backend-Plattform
gesendet werden, wo sie verarbeitet und mit den Nutzern geteilt werden.

Mit der zunehmenden IoT-Nutzung steigt auch die Zahl der Malware, die jedes Jahr IoT-
Geräte aufgrund von Schwachstellen befällt, die auf mangelndes Wissen der Nutzer und
begrenzte Ressourcen zurückzuführen sind. Diese Schwachstellen wurden 2016 vom Bot-
netz Mirai ausgenutzt, das zeigte, wie leistungsfähig kleine Geräte wie Kameras, Fernseher
und andere mit dem Internet verbundene Geräte in Kombination sein können. Obwohl
Malware wie Viren, Würmer oder Spyware schon seit langem Computer befallen, ist die
Entwicklung hybrider Malware wie Botnetze besorgniserregend [18]. Vor allem IoT-Geräte,
für die es kaum Sicherheitsmassnahmen gibt, sind einem grossen Risiko ausgesetzt.

Um IoT-Geräte vor derartigen Angriffen zu schützen, werden Lösungen zur Malware-
Erkennung benötigt. Herrkömmliche Malware-Erkennungstechniken können zwar bekann-
te Malware erkennen, sind aber nicht in der Lage, unbekannte Angriffe zu erkennen. Da-
her sind neue Mechanismen auf der Grundlage von maschinellem und tiefem Lernen (ML
bzw. DL) von entscheidender Bedeutung, insbesondere für die Erkennung von Zero-Day-
Angriffen. Diese Algorithmen versuchen, Anomalien zu erkennen und benötigen Datensät-
ze, die aus dem internen Verhalten von IoT-Geräten bestehen, um trainiert und verbessert
zu werden. Es gibt jedoch immer noch einen Mangel an Datensätzen, die das Verhalten
von Botnetzen aus der Geräteperspektive modellieren.

Um die bisherigen Einschränkungen zu verbessern, ist das Ziel dieser Arbeit, Datensät-
ze zu erstellen, die das interne Verhalten eines ElectroSense-Spektrumsensors bestehend
aus einem Raspberry Pi enthalten, der mit den beiden bekannten Botnetzen Mirai und
Bashlite infiziert ist. Nach erfolgreicher Ausführung der Malware werden Distributed De-
nial of Service - kurz DDoS - Angriffe gestartet. Während dieser Angriffe wird das Gerät
mit einem Monitoring-Skript überwacht. In dieser Arbeit wird versucht, eine Grundla-
ge für Malware-Erkennungsalgorithmen zu schaffen, die für die Erkennung von Malware,
insbesondere Botnetzen, auf IoT-Geräten trainiert und eingesetzt werden können.

Am Ende der Arbeit werden die erstellten Datensätze ausgewertet und wichtige Ergebnisse
mitgeteilt.

i

ii

Abstract

The increasing number of IoT devices is bringing to reality new and disruptive application
scenarios and paradigms. This situation can be seen in crowdsensing platforms, like Elec-
troSense, where IoT sensors monitor spectrum data, which is sent to a backend platform
where it is processed and shared with users.

The increment in IoT usage also raises the number of malware affecting IoT devices every
year due to vulnerabilities coming from poor user knowledge and limited resource capabil-
ities. These vulnerabilties were exploited by the botnet Mirai in 2016 which demonstrated
how powerful small devices like cameras, TVs, and other internet-connected devices can
be when combined [5]. Although malware such as viruses, worms, or spyware are affecting
computers for a very long time, the evolution of hybrid malware like botnets is concerning
[18]. Especially IoT devices with almost no security measurements are at big risk.

To prevent IoT devices from such big attacks, malware detection solutions are needed.
However, traditional malware detection techniques can detect well-known malware but are
not capable of detecting unknown attacks. Therefore, it is crucial to have new mechanisms
based on Machine and Deep Learning (ML and DL, respectively), especially to detect zero-
day attacks. These algorithms try to detect anomalies and need datasets consisting of the
internal behavior of IoT devices to be trained and improved. However, there is still a lack
of datasets modeling the behavior of botnets from the device perspective.

To improve the previous limitations, the goal of this thesis is to create datasets that
contain the internal behavior of an ElectroSense spectrum sensor running on a Raspberry
Pi that is infected with the two well-known botnets Mirai and Bashlite. After executing
the malware successfully, Distributed Denial of Service (DDoS) attacks are launched.
During these attacks, the device is monitored using a monitoring script. This thesis tries
to give a basis for malware detection algorithms to be trained and used for detecting
malware, especially botnets, on IoT devices. To conclude the thesis the created datasets
are evaluated and important results are shared.

iii

iv

Acknowledgments

A big thanks goes to my supervisors Dr. Alberto Huertas Celdrán and Eder John Scheid
and to Prof. Dr. Burkhard Stiller for their support during the thesis. I want to thank Dr.
Alberto Huertas especially for being available for questions and motivation throughout
the thesis.

I also thank my friends proof-reading this thesis.

v

vi

Contents

Zusammenfassung i

Acknowledgments v

1 Introduction 1

2 Background 5

2.1 Malware . 5

2.1.1 Botnets . 6

2.2 Distributed Denial of Service . 9

3 Related Work 11

3.1 Datasets . 11

3.2 Malware Detection Algorithms . 14

4 Creation of the Datasets 17

4.1 Setup . 17

4.1.1 Devices . 17

4.1.2 Network . 18

4.2 Malware . 18

4.2.1 Mirai . 18

4.2.2 Bashlite . 22

4.3 Monitored Events . 23

4.4 Datasets Creation . 25

vii

viii CONTENTS

5 Evaluation 27

6 Summary 33

6.1 Summary and Conclusion . 33

6.2 Future Work . 34

Bibliography 34

Abbreviations 39

List of Figures 41

List of Tables 43

Listings 45

A Contents of the ZIP file 47

Chapter 1

Introduction

The Internet of Things (IoT) is defined as an ecosystem consisting of connected devices
that exchange data over the internet. The first IoT device was created in 1990 and was
a toaster that could be turned on and off using the internet. Today, these devices are
being used in various fields, such as medicine, the military, or transport. Since 2008 there
are more IoT devices than people connected to them which is also considered the ”birth”
of IoT [13]. While about 8.7 billion internet-connected devices were in use by the end
of 2020, by 2025 that number is expected to reach 16.44 billion [46]. One of the reasons
for this strong growth is the advancement in Cloud Computing and Big Data. Collected
data can be stored more cost-effectively on cloud servers such as Amazon Web Services,
Microsoft Azure and Alibaba Cloud [3][34][2] and with the help of Big Data technologies,
the organization of such data is simplified. This also enables the understanding of large
volumes of data collected by such devices [14].

The growth of IoT devices is also having a major impact on crowdsensing platforms.
Crowdsensing is an approach where users of IoT devices send data to these platforms
which are collected, processed, analyzed, and mapped by different algorithms (e.g. Google
Maps mapping traffic information). An illustration of how such a platform works is shown
in Figure 1.1. The advantage of such platforms is the ability to avoid often very expensive
sensors for the extraction of information about the weather, traffic, and air pollution.
Instead, everyday devices like smartphones can come in place of these sensors.

Since IoT devices have a big range of use, they can be used as low-cost sensors by crowd-
sensing platforms and serve for data collection. While Google Maps gathers data using
mostly smartphones, the crowdsensing platform ElectroSense makes use of Raspberry Pis
which are small single-board computers. The goal of this platform is to use low-cost
sensors and to have a flexible backend at the same time that can scan in real-time and
measure large amounts of spectrum data with low latency [42]. The ElectroSense architec-
ture consists of three components: The sensors, the backend, and the controller which is
illustrated in Figure 1.2. The analyzed data is displayed to the users via the ElectroSense
website [11].

Since Raspberry Pis and IoT devices, in general, are cheap, the resources on them are
limited. This makes it impossible to install well-developed security measurements. Addi-
tionally, users often are not aware of threats that come with default credentials or the lack

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Crowdsensing

Figure 1.2: ElectroSense Architecture

of updates on devices. This leads to the devices having a lot of weaknesses that can be
exploited by attackers. The growth of IoT devices also increases the number of malware
attacks on them. The list of malicious software is long and there are various types of
malware such as viruses, worms, botnets, spyware, and many more [18]. While some of
them are only there to annoy the users, others can cause great damage. There are several
reasons why IoT devices can be easy victims of malware. While users often do not change
the default login credentials, they are also not being updated regularly. One of the most
exploited vulnerabilities is weak and guessable passwords of which the Botnets Mirai [5]
and Bashlite [30] profit. In 2014, Mirai showed how big of an impact such weaknesses can
have on the economy and it is, therefore, crucial to make the users aware of such problems
[5].

The detection of such malware is not always easy since malicious software is being pro-
grammed more and more to stay hidden. Therefore, malware detection algorithms based
on ML and DL come into use. In contrary to traditional malware detection methods they
are even able to spot hidden malware. These algorithms can be trained to detect anoma-
lies and get better the more datasets are used while training them. These datasets consist
of a device’s internal behavior to improve the detection of anomalies. However, there is
still a lack of datasets modeling the behavior of devices infected with botnets from their
own perspective and the impact they have on crowdsensing platforms.

To fill this gap, in this thesis, an ElectoSense sensor running on a Raspberry Pi is moni-
tored to create datsets with its normal behavior and its behavior after being infected with
two botnets: Mirai and Bashlite. The behavioral fingerprinting is made after creating a

3

script to monitor aspects like usage of file systems, CPU, memory, and network of the
device. The monitored data can be used to identify botnets at an early stage in the future
and minimize the damage coming from malicious programs.

The structure of this thesis is as follows: Chapter 2 describes the background knowledge
about malware. The botnets Mirai and Bashlite are explained in detail in Section 2.1.
Chapter 3 provides insight into previous work around the topic of datasets and malware
detection. Chapter 4, explains the setup of the devices being used and the implementation
of both botnets. In section 4.3 and 4.4, the selection of the monitoring events and the
creation of the dataset is presented. In Chapter 5 the collected data is analyzed and at
the end, in Chapter 6, the whole work is summarized.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter gives an understanding of the definition of malware and a detailed explana-
tion of what botnets are. At the end of this chapter, the two well-known botnets Mirai and
Bashlite are described and Distributed Denial of Service (DDoS) attacks are explained.

2.1 Malware

Malware is malicious software implemented to harm devices. There are many malware
types that all show different spreading and malicious behaviors. While some (e.g. Adware)
only annoy users, others (e.g. Worms, Botnets) manipulate files on the device or try to
attack servers through (Distributed)-DoS attacks [18]. Figure 2.1 lists the malware types
and shows their relation to certain behaviors [38]. This bachelor thesis focuses on botnets
and their behaviors on a Raspberry Pi sensor.

Figure 2.1: Malware type and behavior relation

5

6 CHAPTER 2. BACKGROUND

2.1.1 Botnets

One type of malware that is affecting more and more IoT devices like surveillance cameras,
routers, and Raspberry Pis is botnets. The increase in IoT usage leads also to a higher
number of malware attacks on such devices.

Botnets are multiple connected IoT devices running bots - sometimes also referred to as
zombies - controlled by an attacker called botmaster. The botmaster controls the bots
over a Command and Control (C&C) server and uses them mainly to launch DDoS attacks
against servers with the goal of overwhelming them with fake requests. However, they can
also be used to steal data on the device, consume resources, e.g. to mine cryptocurrency,
and send spam. Botmasters even offered botnets with up to 400’000 bot devices for rent
which allowed customers to launch powerful DDoS attacks against servers [28].

The C&C is the most notable feature on a botnet. After being infected, the devices
connect to a C&C server. That way, the botmaster is able to run commands on the
bots. These commands can consist of launching DDoS attacks, installing crypto-mining
software, sending spam, and much more. The bots are not only command runners, but
they also have the functionality to search for new vulnerable devices. After logging into a
new host successfully, they communicate this information to a report server. The device
is then registered by the server and the loader runs the architecture-specific bot which is
compiled for many different device architectures, including the Raspberry Pi architecture
ARM. After that, the bot is ready to be controlled by the botmaster. The structure
of such a botnet is illustrated in Figure 2.2 with the Mirai botnet as an example [26].
Devices are infected by exploiting vulnerabilities. When the malware is executed on the
devices, they connect to a C&C server which is controlled by the botmaster. Now, either
the botmaster or another user who rented the botnet can control the zombies over the
C&C server. Then, the bots are used to launch DDoS attacks to specified victims and
simultaneously scan the internet for more vulnerable devices to infect. After a new device
is found, it is reported to the report server and the malware is executed on the device.

Users of infected devices usually do not know that they are contributing to cybercrime
since botnets are programmed to stay hidden. They also can have long sleeping phases
which in consequence leads to the fact that they are hard to detect.

2.1.1.1 Mirai

In 2016, several organizations were victim of a big amount of DDoS attacks. These attacks
came from thousands of IoT devices that were controlled by a new botnet named after
the Japanese word for ”future” - the Mirai botnet. At its peak, Mirai consisted of 600’000
bots causing severe damage to Krebs on Security, OVH, and Dyn [5].

To spread, Mirai first sends TCP SYN requests to randomly chosen IPv4 addresses on
Telnet or SSH ports (22, 23, 2323). There is a list in the source code containing IPv4
addresses that should not be scanned, probably to not attract attention from these or-
ganizations. If Mirai finds a potentially vulnerable device, it tries to create a Telnet
connection with default credentials as listed in Table 2.1. After logging in successfully,

2.1. MALWARE 7

Figure 2.2: The Mirai botnet structure

the malware sends the IP address of the device to a report server. The vulnerable de-
vices then are infected by the loader script which first logs into the host and identifies
the architecture and then executes the bot module. To hide, Mirai deletes the executed
script. Consequently, this results in Mirai not being present on the device after a reboot.
However, if the vulnerability is still not fixed, it can be easily reinfected. Furthermore,
Mirai kills other processes that could be in its way and waits for attack commands from
the C&C server to execute DDoS attacks. Mirai installs the tool zmap on the device to
Simultaneously scan further vulnerable devices and tries to connect to them again using
the default credentials [5].

After the source code of Mirai was published online in October 2016, the number of
variants increased strongly, thus increasing the number of zombie devices as well [35].

2.1.1.2 Bashlite

Bashlite, also known as Lizkebab, Gafgyt, or Qbot was first detected in 2014 where it
made use of a vulnerability on devices running BusyBox [33]. Its source code was leaked
in 2015, which lead to the creation of a big amount of Bashlite variants infecting IoT
devices [49].

Bashlite represents a predecessor of Mirai. Like Mirai, it belongs to a DDoS launching
malware family that infected Linux devices by using default credentials. While Mirai
has a dictionary with 62 credentials, Bashlite uses only 14 username and password pairs
as shown in Listing 2.1. The additional credentials help Mirai to have a wider range of
infectable devices [5]. The IoT-botnet Bashlite has very similar behavior to Mirai. The
scanner module first finds vulnerable devices then the malware tries to log in with the
default credentials. Once successfully logged in, the malware is executed and the bot is

8 CHAPTER 2. BACKGROUND

Table 2.1: Hard-coded default credentials used by Mirai

username password
admin (none)
admin 1111
admin 1111111
admin 1234
admin 12345
admin 123456
admin 54321
admin 7ujMko0admin
admin admin
admin admin1234
admin meinsm
admin pass
admin password
admin smcadmin
admin1 password

administrator 1234
Administrator admin

guest 12345
guest guest

mother fucker
root (none)
root 00000000
root 1111
root 1234
root 12345
root 123456
root 54321
root 666666
root 7ujMko0admin
root 7ujMko0vizxv

username password
root 888888
root admin
root anko
root default
root dreambox
root hi3518
root ikwb
root juantech
root jvbzd
root klv123
root klv1234
root pass
root password
root realtek
root root
root system
root user
root vizxv
root xc3511
root xmhdipc
root zlxx.
root Zte521

service service
supervisor supervisor
support support

tech tech
ubnt ubnt
user user

666666 666666
888888 888888

connected to the C&C server. After this process, the botmaster is able to send commands
to the bot and launch DDoS attacks onto servers [30].

In 2016, it was reported that up to 1 million IoT devices were infected with Bashlite
worldwide [7].

char ∗usernames [] = { ”root \0 ” , ”\0 ” , ”admin\0 ” , ”user \0 ” , ” l o g i n \0 ” , ”guest
\0 ”} ;

char ∗passwords [] = { ”root \0 ” , ”\0 ” , ”toor \0 ” , ”admin\0 ” , ”user \0 ” , ”guest
\0 ” , ” l o g i n \0 ” , ”changeme\0 ” , ”1234\0 ” , ”12345\0 ” , ”123456\0 ” , ”d e f au l t
\0 ” , ”pass \0 ” , ”password \0 ”} ;

Listing 2.1: Default username and password pairs used by Bashlite

2.2. DISTRIBUTED DENIAL OF SERVICE 9

2.2 Distributed Denial of Service

A Denial of Service (DoS) attack is a form of denying service from a user. In combination
with a DDoS attack, the damage made can get very expensive. The goal of these flooding
attacks is to overwhelm a server by sending large amounts of data. On the network/trans-
port level, these attacks include UDP Flood, TCP Flood, DNS Flood, and GRE Flood
which overuse the resources of the victim server by abusing certain vulnerabilities. The
HTTP flooding attack is on the application level and interrupts legitimate requests by
using the resources of the victim excessively [19].

There are several attack types used by the botnets Mirai and Bashlite which will be
elaborated on in Section 4.4. The most important ones for this thesis are listed below:

• TCP SYN: Normally, when a client wants to connect to a server, they exchange
messages. This exchange is called a three-way handshake which is illustrated in
Figure 2.3. During a Transmission Control Protocol (TCP) attack, the attacker
sends a high number of Synchronization (SYN) packets. Since the server thinks
that these are legitimate requests, it sends SYN-ACK packets back but does not
receive an awaited (Acknowledgement) ACK packet from the client. Hence, the
server waits for a specific time for an answer. But before it can close the started
connection, another SYN packet arrives which leads to many open connections.
When no resources are available, the victim cannot connect to legitimate clients
anymore and denies service [48].

Figure 2.3: A three-way handshake process between a client and a server.

10 CHAPTER 2. BACKGROUND

• TCP ACK: An ACK flood works in a similar way to a SYN flood. The attacker
sends ACK packets in a large amount and thus slows down the server which then
denies service to clients [48].

• UDP: During a User Datagram Protocol (UDP) attack, the attacker floods several
ports of the target server with UDP packets. The victim checks if the port is used
and then sends an Internet Control Message Protocol (ICMP) packet to tell the
client that the destination is unreachable. If the number of such UDP requests is
large, the server denies service to clients [48].

Chapter 3

Related Work

In this chapter, related work is introduced that deals with malware detection algorithms.
Furthermore, for the training of such algorithms, some of the most relevant datasets
focusing on IoT devices are introduced.

3.1 Datasets

The creation of datasets is the most crucial step in the process of detecting malware.
Hence, it is important to choose the most informative data to monitor. When it comes to
botnets, network traffic is the most used data source to indicate the infection of a device
since bots communicate with the C&C server of the malware or send network packets in
form of DDoS attacks.

The dataset InvesAndMal2019 [47] consists of both static and dynamic data from mobile
devices infected with Android malware. The goal of this dataset is to detect malware
on devices running Android. Every year new Android malware analyzer frameworks are
proposed by researchers who need datasets to evaluate and train their analyzers. BE-
HACOM [43] is another dataset that focuses on the behavior of users using a computer.
With this dataset, it is possible for ML and DL-based algorithms to detect anomalies on
devices running Windows and Linux OS. The dataset NGIDS-DS is generated for future
intrusion detection systems for the detection of botnets in [21]. It contains normal as
well as abnormal behavior of critical infrastructures. The creation of datasets can be a
difficult task since IoT devices have complex services. That is why ML-based algorithms
can be used to create datasets for the detection of anomalies. The authors of [40] present
such an algorithm that also considers the limited resources of IoT devices. The datasets
proposed in [32], [27], [41], and [20] consist of raw capture files with normal and anomalous
behavior of common IoT devices. The goal is to teach ML-based anomaly detectors what
normal behavior means and optimize the results with the dataset modeling the infected
behavior. The dataset offered in [8] models not only the network traffic but also other
system resources of the device and focuses on IoT devices affected by botnets.

11

12 CHAPTER 3. RELATED WORK

In Table 3.1, selected datasets are presented. The table lists the used device types and
the data sources during the monitoring phase and also states if the data is from a static
or dynamic data source. Data that remains the same after its collection is named static
while dynamic data refers to data that changes continuously [45]. Static data includes
logs while resource usage and network traffic is part of dynamic data. As seen in the
table, datasets modeling the behavior of botnets are based on dynamic data, especially
focusing on network traffic.

Table 3.1: Relevant datasets with the used malware types and the generated data with
their data source. The last column states if the monitored data is static or dynamic.

Dataset Year
Device
Type

Malware
Data

Source
Data

Static/
Dynamic

InvesAnd
Mal2019 [47]

2019
Mobile
Devices

Android
Malware

System
Logs
and

Network

Processed
Logs and
Features

Both

BEHACOM [43] 2019
General

Computers
-

Resource
Usage

CPU and
Memory
Statistics

Dynamic

NGIDS-DS [21] 2017
Critical

Infra
structures

Botnet
Network

and System
Logs

Raw
Network
Packets

and Audit
Logs

Dynamic

DS2OS [40] 2018
IoT

Devices
Botnet

Network
Communi

cation

Application
Traces

Dynamic

N-BaIoT [32] 2018
IoT

Devices
Botnet Network

Processed
Features

Dynamic

USNW
IoT Benign
and Attack
Traces [23]

2019
IoT

Devices
Botnet Network

Raw
Captures

and
Processed
Features

Dynamic

IoT
Network
Intrusion

Dataset [27]

2019
IoT

Devices
Botnet Network

Raw
Captures

Dynamic

IoT-23 [41] 2020
IoT

Devices
Botnet,
Trojan

Network
Raw

Captures
Dynamic

IoT-
KEEPER

Dataset [20]
2020

IoT
Devices

Botnet Network
Raw

Captures
Dynamic

3.1. DATASETS 13

Dataset Year
Device
Type

Malware
Data

Source
Data

Static/
Dynamic

IoT Host-
Based

Dataset [8]
2018

IoT
Devices

Botnet
Network,
System

Resources

Raw
Captures,
CPU and
Memory
Statistics

Dynamic

However, there is still a lack of datasets consisting of the behavioral fingerprinting of IoT
devices affected by botnets, especially from the device’s perspective as well as considering
crowdsensing platforms. To fill this gap, this thesis offers new datasets with the internal
behavior of a spectrum sensor affected by botnets.

14 CHAPTER 3. RELATED WORK

3.2 Malware Detection Algorithms

The vulnerabilities on IoT devices are big malware attractors. Therefore, malware detec-
tion algorithms are needed more than ever, and with the enormous growth of IoT, will
be needed even more in the future. Botnets can remain completely undetected on innu-
merable IoT devices. That is why it is necessary to train malware detection algorithms,
especially with IoT-based datasets. The detection of such malware is difficult but can be
improved by using datasets consisting of the internal behavior of different IoT devices.
One approach is to train the algorithms to classify certain types of devices by analyzing
their behavior. This can be done by adding different types of IoT devices into a white list
that should be recognized by the algorithm. Devices not contained in the list should be
marked as unknown. This approach is used in [31] and [39]. The goal of device classifi-
cation is to detect new devices in a network quickly and to recognize suspicious behavior
at an early stage. Other algorithms classifying IoT devices are [15], [4], [22], [24], [9], and
[6] which use datasets with the network behavior of several devices. The most accurate
algorithms in the classification of devices and anomalies are BotFP [9], RF, and ANN [24]
with accuracies of 92% .

It is also possible to detect the malware by analyzing their behavior. Using different ML
and DL based algorithms, they can be distinguished from one another and even unknown
malware can be detected. Such malware detection algorithms try to identify anomalies
on a device which is done by [17], [50], [23], [36], [44], [1], and [25]. The most outstanding
anomaly detection algorithms are RPNI and RANSAC [50] using neural networks .

Table 3.2 summarizes some important aspects of the most relevant malware detection
algorithms. The main goal of these algorithms is to classify malware or detect anomalous
behavior (approaches C and AD, respectively) based on network traffic or hardware events.
In addition to the analyzed device types, the accuracies of the chosen algorithms are listed.
Most importantly, it is shown which monitored behavior type and what type of attack or
malware is used by the algorithm.

3.2. MALWARE DETECTION ALGORITHMS 15

Table 3.2: Malware detection algorithms and their used approaches and analyzed behav-
iors listed by the publishing year of the work. Two different approaches are mentioned
where C stands for Classification and AD for Anomaly Detection.

Work Year
IoT

Device
Type

Behavior
Source

Attack
Type/

Malware

App
roach

Algorithms
Accu
racy

[31] 2017

Monitor,
Sensor,

Refrigerator,
Camera,

TV,
Watch

Network
untargeted/

targeted
attacks

C RF 94%-99%

[15] 2017
Not

Indicated
Network

unusual
changes

and attacks
C

ARIMA
Euclidean
distance

Not
Indicated

[4] 2018
Cooja

Simulator
Network

Traffic
anomalies

C
DT, Linear
Regression

Not
Indicated

[39] 2018 Sensors Network
common/
network
attacks

C
Euclidean
Distance

98%

[17] 2018

Smart
Cameras,

Smart
Light

Hardware
Events

Adversarial
attacks

AD EMM
Not

Indicated

[50] 2019

Router,
Switches,
Camera,

DVR,
Smart Light,
Fire Alarm

Network
IoT

anomalies
AD

RPNI,
RANSAC

99.99%

[23] 2019

Switch,
Motion
Sensor,
Camera,
Lights

Network
DDoS/
Botnets

AD IF 94%

[22] 2019
Camera,
Switch,
Sensor

Network
Attack

prevention
C RF 91%

[24] 2019
HP

Laptop
Network

DoS, control,
scan

C
SVM, RF,
DT, ANN,

LR
98%

[36] 2019
Camera,
Light,
Sensor

Network IoT attacks AD GRU 95.6%

16 CHAPTER 3. RELATED WORK

Work Year
IoT

Device
Type

Behavior
Source

Attack
Type/

Malware

App
roach

Algorithms
Perfor
mance

[44] 2019

Switch,
Camera,
Printer,
Light

Network
Network
attacks

AD
PCA

k-means
94%

[1] 2019
Not

Indicated
Network

DDoS
attacks

AD
Neural

Network
99.2%

[9] 2020
Not

Indicated
Network

Botnet
detection

C BotFP 98%

[25] 2020 IIoT 1 Software
signatures

Software
modification

AD
Hash

equality
checking

Not
Indicated

1Industrial Internet of Things

Chapter 4

Creation of the Datasets

This chapter explains the analyzed malware and their execution on the device. It summa-
rizes the adaptations that had to be made to the source codes of Mirai and Bashlite. At
the end of the chapter, an understanding of the implementation of the Monitoring-Script
and the creation of the datasets is given.

4.1 Setup

In this section, the devices used during the thesis and their network connection are de-
scribed.

4.1.1 Devices

The goal of this thesis is to create datasets to be able to detect malware attacks on IoT
devices serving as crowdsensing sensors. Raspberry Pis are being used as spectrum sensors
by ElectroSense. Therefore, the device used during this thesis runs the ElectroSense
software on it. A Software Defined Radio (SDR) is connected over a USB port to the
Raspberry Pi which is necessary for the collection of spectrum data such as radio protocols.
The device also communicates with the backend of the ElectroSense platform and sends
data for processing. The processed data is available on the website [11]. Therefore, the
Raspberry Pi indicates a certain behavior receiving data from the SDR and sending this
information to the backend. To model the infected behavior, the device becomes a bot
controlled by a C&C server and launches attacks against hosts. The created datasets are a
collection of different internal parameters of the Raspberry Pi. As a malware-protection-
method Secure Shell (SSH) is disabled on the Raspberry Pi per default and has to be
enabled manually. After enabling SSH, it is important to change the default password to
prevent the device from malware infection. SSH is used to access the device.

To simulate the C&C server, a Virtual Machine (VM) running on a Windows-Laptop is
created. Table 4.1 lists the specifications of the selected devices along with the used static
IP addresses.

17

18 CHAPTER 4. CREATION OF THE DATASETS

Table 4.1: Device Specifications

Raspberry Pi 3 VM
Operating System Raspbian Stretch Kali Linux

IP Address 10.8.0.2 10.8.0.3
Architecture ARMv7 i686
CPU Core 4 1

RAM 1 GB 2 GB
CPU Clock 1.2 GHz 2.7 GHz

4.1.2 Network

Since the botnets spread over the internet, both the C&C server and the Raspberry Pi
have to be connected to a network. This is done by connecting both devices to a sub-
network in a private network by a single router. The sub-network is necessary to prevent
the malware from spreading to other vulnerable devices uncontrollably. The network
topology is illustrated in Figure 4.1.

Figure 4.1: Network Setup

4.2 Malware

This section describes the changes made to the source codes of Mirai and Bashlite to
execute them on the ElectroSense sensor.

4.2.1 Mirai

The Mirai source code used for this thesis is made available by Jerry Gamblin on the
platform GitHub [16]. To be able to get the source code to work, a few changes have to
be made. Some bugs are solved by [37], others are fixed during the implementation and
explained further in this chapter.

4.2. MALWARE 19

4.2.1.1 Fixed Bugs

Mirai uses several tables to write and receive data. A null pointer exception occurs when
Mirai tries to access the table TABLE_KILLER_STATUS in the killer.c module placed in
the folder mirai/bot. This error can be fixed by first unlocking and then locking the
table as demonstrated in Listing 4.1.

// Here the tab l e i s unlocked
t ab l e un l o ck va l (TABLE KILLER PROC) ;
t ab l e un l o ck va l (TABLE KILLER STATUS) ;
t ab l e un l o ck va l (TABLE KILLER EXE) ;
// The tab l e i s locked again
t a b l e l o c k v a l (TABLE KILLER PROC) ;
t a b l e l o c k v a l (TABLE KILLER STATUS) ;
t a b l e l o c k v a l (TABLE KILLER EXE) ;

Listing 4.1: Locking and unlocking table TABLE KILLER STATUS

4.2.1.2 Bot

The connection between the bot and the other elements showed in the next subsections
is visualized in Figure 2.2. Since the source code does not support architecture ARMv7
of the Raspberry Pi 3, the bot also has to be compiled on the IoT device itself. For
that, the command in Listing 4.2 is used which creates the mirai.arm7 file in the folder
mirai/release ready to be run. This command has to be executed in the mirai folder.

gcc −std=c99 −DMIRAI TELNET −DKILLER REBIND SSH −s t a t i c bot /∗ . c−O3 −fomit−
frame−po in t e r −fdata−s e c t i o n s −f f unc t i on−s e c t i o n s −Wl,−−gc−s e c t i o n s −o
r e l e a s e /mira i . arm7 −DMIRAI BOT ARCH=\””armv7l ”\ ”

Listing 4.2: Compiling the bot on the Raspberry Pi

4.2.1.3 C&C Server

The source code contains entries with the IP address of the C&C server which have to be
changed for the bot to connect. Since the VM acts as the C&C server, the IP address used
is 10.8.0.3. Listings 4.3 and 4.4 show the adaptations made in the Loader and ScanListen
modules located in loader/src/main.c and mirai/tools/scanListen.go.

addrs [0] = ine t addr (” 1 0 . 8 . 0 . 3 ”) ; // Address to bind to
addrs [1] = ine t addr (” 1 0 . 8 . 0 . 3 ”) ; // Address to bind to

Listing 4.3: IP address change in the Loader

func main () {
l , e r r := net . L i s t en (”tcp ” , ”1 0 . 8 . 0 . 3 : 4 8 1 0 1 ”)

}
Listing 4.4: IP address change in ScanListen

20 CHAPTER 4. CREATION OF THE DATASETS

4.2.1.4 Database

The C&C module has to be connected to the MySQL database in order to write and
read data. Examples of database entries include user and attack history. Since both the
C&C and the database run on the same computer, they also share the same IP address.
The adaptation and the general database information can be seen in Listing 4.5 of the
file main.go located in the folder mirai/cnc. After setting up the database, three tables
have to be created: history, users and whitelist. Then a user with the credentials ”admin”
/ ”password” is added to the user table. This user is later used to connect to the C&C
server. The SQL command to add the user looks like demonstrated in Listing 4.6.

const DatabaseAddr s t r i n g = ”1 2 7 . 0 . 0 . 1 ”
const DatabaseUser s t r i n g = ”root ”
const DatabasePass s t r i n g = ”password ”
const DatabaseTable s t r i n g = ”mira i ”

func main () {
t e l , e r r := net . L i s t en (”tcp ” , ” 1 0 . 8 . 0 . 3 : 2 3 ”)

api , e r r := net . L i s t en (”tcp ” , ” 1 0 . 8 . 0 . 3 : 1 0 1 ”)

}

Listing 4.5: Setting up the database

INSERT INTO use r s VALUES (NULL, ’ admin ’ , ’ password ’ , 0 , 0 , 0 , 0 ,
−1, 1 , 30 , ’ ’) ;

Listing 4.6: SQL Command for creating a new C&C user

After all these adaptations, Mirai is ready to be built with the following command:
./build.sh release telnet. It is important to execute it in the mirai folder. After the
execution is finished a new folder named /release containing the files cnc, scanListen
and several bot scripts compatible for different architecture types is created. Running
the file cnc starts the C&C server which listens to port 23. Through Teletype Network
(Telnet), registered users can connect to the server and send attacks to all connected bots
after entering their credentials. Figure 4.2 shows the terminal after a successful Telnet
connection to the C&C server.

The available attacks can be displayed by entering the command ? into the terminal.
They are listed in Table 4.2 in detail and also demonstrated in Figure 4.3. An example
of a full command for executing a UDP-attack looks like demonstrated in Listing 4.7.
Additionally, every attack has its specific flag list which is shown in Figure 4.4 presenting
the flag list of the UDP command.

udp 192 . 168 . 1 . 2 20 10 l en=100

Listing 4.7: UDP-attack command on Mirai

4.2. MALWARE 21

Figure 4.2: Terminal showing a successful connection to the Mirai C&C server.

Table 4.2: Available attack types with Mirai and the corresponding commands

Attack Type Command
ACK Flood ack

DNS Resolver Flood dns

GRE Ethernet Flood greeth

GRE IP Flood greip

HTTP Flood http

SYN Flood syn

TCP Stomp Flood stomp

UDP Flood
udpplain

or udp

Figure 4.3: Mirai terminal showing all available attack types

22 CHAPTER 4. CREATION OF THE DATASETS

Figure 4.4: Flags of the UDP-attack listed on the Mirai-C&C terminal

4.2.2 Bashlite

The source code of Bashlite used for this thesis is made available by Fei Ding on Github
[12]. A few small adaptions have to be made to the code to be able to run the botnet.

4.2.2.1 Client

The source code of Bashlite consists of the files client.c and server.c. For the bot to
properly connect to the C&C server, the IP address in client.c has to be changed to
the address of the VM. This is demonstrated in Listing 4.8.

unsigned char ∗commServer [] =
{

” 1 0 . 8 . 0 . 3 ” //This i s the IP o f
// the command s e rv e r (you ’ l l need to change t h i s)

} ;

Listing 4.8: Changing the IP address of the Bashlite C&C server

4.2.2.2 Server

To connect to the C&C server, a Telnet connection on port 8888 is needed with the correct
management password. Listing 4.9 shows how both can be changed in server.c.

#de f i n e MYMGMPASS ”password ”
#de f i n e MYMGMPORT 8888

Listing 4.9: Management Bashlite

4.3. MONITORED EVENTS 23

After compiling and executing the server, the attacker can connect through Telnet us-
ing the specified IP address and Management-Port: telnet 10.8.0.3 8888. Figure 4.5
shows the terminal after a successful login to the C&C server.

Figure 4.5: Bashlite C&C server terminal after a successful connection

The attacker is now ready to send attack commands to the bots. The chosen variant of
Bashlite supports four attack types which are listed in Table 4.3 with the right command
syntax.

Table 4.3: Available attack types with Bashlite and the corresponding commands

Attack Type Command
Hold Flood ! HOLD {ip_address} {port} {time}

Junk Flood ! JUNK {ip_address} {port} {time}

TCP Flood
! TCP {target} {port} {time} {netmask}

{flags (syn, ack, psh, rst, fin, all) {packet size} {time poll interval}

UDP Flood
! UDP {target} {port} {time} {netmask} {packet size}

time poll interval}

The Bashlite source code also has some commands to check the connection to the bot or
to interrupt already started attacks:

- ! PING to check the connection to the bot

- ! GETLOCALIP to receive the IP address of the bot

- ! SCANNER ON/OFF to turn the scanner on/off

- ! KILLATTK to interrupt an ongoing attack

- ! LOLNOGTFO to stop the bot

4.3 Monitored Events

As already explained in Chapter 2, the main goal of botnets is to launch DDoS attacks
and consequently overwhelm chosen servers. Several different protocols can be used for

24 CHAPTER 4. CREATION OF THE DATASETS

such an attack. A bot creates network traffic by sending protocol packets to the victim.
Hence, monitoring the network traffic is one of the most crucial methods to determine if
a device is being used by a botmaster. Apart from that, botnets can also have an impact
on the CPU and memory consumption. Since a script is executed on the IoT device,
there can also be changes to system reads and writes. All these resource families can be
analyzed to detect anomalies on a device at an early stage.

For the monitoring of the sensor, the bash script create_sample_dataset.sh was created.
The script executes a Perf command to monitor chosen events on the device. Perf is a
monitoring tool for Linux devices and has a wide range of events that can be monitored
[29]. During the execution of the script, a sample was created every 5 seconds, converted
to CSV format, and written into a file. Since botnets can affect different resources on a
device, events belonging to the families CPU and memory usage, network, file systems,
and the scheduler were selected to be monitored. In Table 4.4 these events are listed
grouped by their family.

Table 4.4: All monitored Perf events grouped by resource families.

Family Perf Events
Network fib:fib table lookup

udp:udp fail queue rcv skb
qdisc:qdisc dequeue
net:net dev queue
net:netif rx
net:net dev xmit

sock:inet sock set state
tcp:tcp destroy sock
tcp:tcp probe
skb:kfree skb
skb:consume skb
skb:skb copy datagram iovec

Memory

page-faults
pagemap:mm lru insertion
kmem:kfree
kmem:kmalloc
kmem:mm page free

kmem:kmem cache alloc
kmem:kmem cache free
kmem:mm page alloc zone locked
kmem:mm page pcpu drain
kmem:mm page alloc

File Systems jbd2:jbd2 handle start
jbd2:jbd2 start commit
filemap:mm filemap add to page cache
block:block dirty buffer
block:block bio backmerge
block:block bio remap
block:block unplug
block:block touch buffer
block:block getrq
cachefiles:cachefiles create
cachefiles:cachefiles lookup
cachefiles:cachefiles mark active

writeback:wbc writepage
writeback:writeback dirty inode
writeback:writeback pages written
writeback:writeback single inode
writeback:writeback dirty page
writeback:writeback write inode
writeback:writeback mark inode dirty
writeback:writeback dirty inode enqueue
writeback:writeback written
writeback:global dirty state
writeback:sb clear inode writeback

CPU
clk:clk set rate
ipi:ipi raise

rpm:rpm resume
rpm:rpm suspend

Scheduler

cs
cpu-migrations
signal:signal deliver
signal:signal generate
alarmtimer:alarmtimer fired
alarmtimer:alarmtimer start

task:task newtask
sched:sched process exec
sched:sched process free
sched:sched process wait
sched:sched switch
sched:sched wakeup

4.4. DATASETS CREATION 25

4.4 Datasets Creation

Creating datasets with the internal behavior of IoT devices is the first step to be able
to detect malware. This section describes how the datasets were created looking at the
internal behavior of a Raspberry Pi 3 acting as an ElectroSense spectrum sensor.

One malware-detection approach is the detection of anomalies in the resource usage of
a device. Anomalies caused by botnets are described in Section 4.3. An algorithm pro-
grammed to detect malicious software on a machine needs to understand what is con-
sidered normal to be able to distinguish anomalous behavior from normal behavior. The
datasets created during these thesis allow future researchers to train ML and DL based
algorithms and enable the detection of known as well as unknown malware on IoT devices.

For the creation of the datasets, the monitoring script explained in Section 4.3 was used.
The Raspberry Pi has a specific normal behavior since it communicates with ElectroSense
and receives spectrum data. First, this normal behavior of the device was monitored.
While monitoring, the device continued receiving spectrum data and sending it to the
ElectroSense backend which makes mostly use of resources like CPU and network usage
[10]. The normal behavior was monitored twice, first during two days and later during
one day.

After monitoring the normal behavior, the device was infected with Mirai. From all
attacks available on Mirai listed in Table 4.2, UDP, TCP Stomp, TCP SYN, and TCP
ACK were chosen to be monitored since the most common DDoS attacks are made using
the protocols TCP and UDP. During the attacks, the Raspberry Pi sensor sent network
packets to devices in the same network to overwhelm them by overusing their resources.
The DDoS attack types are explained in more detail in Section 2.2. Each attack was
monitored two times for approximately two hours each. The victims of the attacks were
randomly chosen devices connected to the same network. Since the bot program does only
stay in memory, rebooting the Raspberry Pi was enough to remove the malware in order
to infect it again with Bashlite. It was important to remove the first malware from the
device to make sure that they would not interfere with each other. Infected with Bashlite,
all four attacks shown in Table 4.3 were monitored but the focus was laid on UDP and
TCP attacks. Each attack was monitored two times between one and two hours each.
During all attacks, the sensor was communicating with ElectroSense while also launching
attacks against defined devices which increased the network traffic and other resources.

Table 4.5 lists all created datasets modeling the behavior of the ElectroSense sensor
grouped by the behavior of the device.

26 CHAPTER 4. CREATION OF THE DATASETS

Table 4.5: All created datasets grouped by the behavior. The column Monitoring refers
to the first and second monitoring of the same behavior.

Dataset
Behavior

Monitoring
Malware Attack

1 - Normal 1
2 - Normal 2
3 Mirai UDP 1
4 Mirai UDP 2
5 Mirai TCP Stomp 1
6 Mirai TCP Stomp 2
7 Mirai TCP SYN 1
8 Mirai TCP SYN 2
9 Mirai TCP ACK 1
10 Mirai TCP ACK 2
11 Bashlite UDP 1
12 Bashlite UDP 2
13 Bashlite TCP 1
14 Bashlite TCP 2
15 Bashlite HOLD 1
16 Bashlite HOLD 2
17 Bashlite JUNK 1
18 Bashlite JUNK 2

Chapter 5

Evaluation

This chapter evaluates the datasets created in Chapter 4 and demonstrates the differences
between normal and infected behavior. The datasets containing the malware behavior
show significant changes compared to the normal behavior and help to train malware
detection algorithms.

The first step in the evaluation of the datasets was to get rid of events that were not
stable during monitoring. For this, the mean values of each of the normal behavior
datasets 1 and 2 were calculated. Then, the values of each event in dataset 2 were
subtracted from the values in dataset 1. To see the fluctuations of each event during
the normal behavior in relation to each other, the difference values were divided by the
values of dataset 1. The result of this is shown in Figure 5.1. Since the internal be-
havior of a sensor can fluctuate due to sensing information and communication with the
backend, events showing strong differences were considered unstable. These events were
block:block dirty buffer, block:block touch buffer, filemap:mm filemap add to page cache,
jbd2:jbd2 handle start, and writeback:writeback dirty page and were excluded from all fur-
ther analysis. This shows that resources belonging to the file systems family fluctuated
strongly in the normal behavior of an ElectroSense sensor are therefore not good indica-
tors of malicious behavior. The exclusion of the unstable events helped to spot events
that changed through the malware instead of through natural fluctuation. That way, re-
sources on the sensor affected by botnets could be identified. Figure 5.2 illustrates again
the differences between the datasets 1 and 2 but without the unstable events. In further
analysis, only the stable events were considered for the detection of variation between
normal and infected behavior.

In the next step, the differences between the normal behavior and the infected behav-
ior were analyzed. This was done by calculating the mean values of the datasets and
subtracting the values of each malware dataset from the normal behavior. For direct
comparison, attacks using the UDP and TCP protocols were chosen to visualize both
botnets. Figure 5.3 demonstrates the most significant events during UDP and TCP at-
tacks with Mirai. As seen in Figure 5.3a and Figure 5.3b, during both monitored UDP
attacks, the outstanding events were fib:fib table lookup, skb:skb copy datagram iovec, and
tcp:tcp destroy sock. In general, dataset 3 presented a higher variation of the events than
dataset 4 and had some additional significant events belonging to the network family. The

27

28 CHAPTER 5. EVALUATION

UDP attack also changed the CPU usage which is illustrated by rpm:rpm resume. From
this emerges that network events are good signifiers in the detection of the Mirai botnet.
For better visualization, only the events with the most extrem differences are displayed
in the figures.

Figure 5.1: Differences between two normal behavior datasets (datasets 1 and 2) of an
ElectroSense sensor in percentage. Events standing out are considered as unstable.

29

Figure 5.2: Differences between two normal behavior datasets (datasets 1 and 2) of an
ElectroSense sensor in percentage without unstable events. Only stable events are con-
sidered in the identification of possible malware anomalies.

30 CHAPTER 5. EVALUATION

The most extrem events of the TCP attacks visualized in Figure 5.3c and Figure 5.3d were
the same events as during UDP attacks and the figures show that similar changes occurred
during both monitoring phases. In contrast to UDP attacks, also some significant events
belonging to the memory usage and file systems family were present with differences being
more than 100%.

(a) Normal versus UDP behavior of Mirai
(dataset 3)

(b) Normal versus UDP behavior of Mirai
(dataset 4)

(c) Normal versus TCP behavior of Mirai
(dataset 5)

(d) Normal versus TCP behavior of Mirai
(dataset 6)

Figure 5.3: Differences between the normal behavior and the behavior during Mirai’s UDP
and TCP attacks of the sensor. The y-axis represents the difference in percentage.

31

The same behavior could be spotted again during UDP and TCP attacks with Bashlite. In
this sense, Figure 5.4 shows that the outstanding events were from the network family as
already discovered during the Mirai attacks. However, the differences during the Bashlite
attacks surpassed the differences during the Mirai attacks to a large extent. That is why,
to have a more readable visualization, the y-axes of the figures are log-scaled. This showed
how a machine infected with Bashlite would have much more significant indicators than
one infected with Mirai. Additionally, some events belonging to the file systems family
were present. Bashlite also showed some changes in the CPU usage of the device which
is illustrated by the event rpm:rpm resume.

(a) Normal versus UDP behavior of Bashlite
(dataset 11)

(b) Normal versus UDP behavior of Bashlite
(dataset 12)

(c) Normal versus TCP behavior of Bashlite
(dataset 13)

(d) Normal versus TCP behavior of Bashlite
(dataset 14)

Figure 5.4: Differences between the normal behavior and the behavior during Bashlite’s
UDP and TCP attacks of the sensor. The y-axis represents the difference in percentage
in log-scale.

32 CHAPTER 5. EVALUATION

Furthermore, other Mirai and Bashlite attacks were evaluated. The summary of them is
found in Table 5.1. The table demonstrates the top few events that stood out during the
attacks and confirms the already observed aspects of both botnets since the events belong
mostly to the network family.

Table 5.1: The difference of the significant events between normal and infected behavior
in percentage. The relevant datasets and attack types along with the malware are given.
Column ”Difference” describes the values in the datasets listed in column ”Datasets”.

Malware
Attack
Type

Events
Data
sets

Difference

Mirai

TCP
ACK

fib:fib table lookup
9, 10

192%, 132%
skb:skb copy datagram iovec 334%, 256%

TCP
SYN

fib:fib table lookup
7, 8

1’542%, 167%
skb:skb copy datagram iovec 391%, 257%
writeback:writeback mark inode dirty 312%, 105%

Bashlite

HOLD
tcp:tcp destroy sock

15, 16
25’488%, 435%

sock:inet sock set state 10’316%, 120%
fib:fib table lookup 2’662%, 117%

JUNK
tcp:tcp destroy sock

17, 18
32’087%, 42’135%

sock:inet sock set state 12’716%, 16’415%
fib:fib table lookup 5’323%, 6’684%

Although Bashlite showed higher variation in resource usage, similar mannerisms were
detected with both Mirai and Bashlite. This is unsurprising and only confirms that
malware related to other malware show similar behavior and implies that, with collecting
data from known botnets, malware detection algorithms can be trained to be able to
detect not yet known botnets.

In conclusion, the most significant indicator of the spectrum sensor being connected to a
botnet was network traffic. These datasets are a good step in the direction of being capable
of detecting botnets on IoT devices used by crowdsensing platforms as well as IoT devices
running Linux OS in general. Since there were visible changes in the internal behavior of
the used device, the datasets can be of use to train malware detection algorithms.

Chapter 6

Summary

6.1 Summary and Conclusion

The goal of this thesis was to create datasets with the normal and the Mirai- and Bashlite-
infected behavior of a Raspberry Pi acting as an ElectroSense spectrum sensor as a first
step towards the detection of botnet-activity on an IoT device. During the modeling of the
behavior, network traffic, CPU and memory usage, and file systems data were collected.

In order to achieve this goal, an ElectroSense sensor had to be set up by registering the
device on the website, adding a static IP address, and opening ports 22 and 23 for SSH
and Telnet. In the next step, both botnets had to be executed on the sensor. For the
C&C server of both malware, a VM running Kali-Linux was created and the Raspberry
Pi was used as a bot. This gave the basis for launching attacks starting from the zombie
device and creating datasets with the internal behavior of the sensor.

After the implementation of the monitoring script, the behavior of the sensor was modeled.
In total, 18 datasets were created consisting of the normal behavior and the behavior after
the infection with botnets. Every dataset contains data about network traffic, file systems
and CPU and memory usage. The datasets show how these resources increased during
botnet attacks and lay a foundation for the training and deployment of malware detection
algorithms.

In the evaluation of these datasets, the changes in the behavior were made visible by
plotting the relative difference values between the means of the normal behavior and the
behavior during the execution of several attacks. Some events stood out that showed
botnet activity which mostly belonged to network traffic but also to file systems and CPU
usage. Both botnets showed big differences, mostly on the same events. This showed
that by analyzing already known botnets, even the detection of unknown botnets using
malware detection algorithms is possible.

Generally, the goal of this thesis could be achieved by creating the relevant datasets. This
successfully shows that malware detection algorithms can be trained to detect anomalies
in the behavior of crowdsensing sensors using these datasets and analyzing the data.

33

34 CHAPTER 6. SUMMARY

6.2 Future Work

This thesis focused on the two botnets Mirai and Bashlite which are only a small fraction
of numerous Linux-Botnets infecting devices. One device was used as a bot and an
additional one was created to serve as a C&C server. In general, the source codes of both
botnets are available online for everyone and can be analyzed using techniques such as
reverse engineering. For future work, a bigger number of botnets affecting Linux devices
could be considered to create larger datasets for training malware detection algorithms.
Especially, collecting data from several crowdsensing sensors over a longer period could
give even more meaningful results. Monitoring not only the bots launching DDoS attacks
but also the connection to the C&C server could yield interesting insights as well and
contribute to more secure IoT devices.

Bibliography

[1] Jawad Ali et al. “Towards a secure behavior modeling for IoT networks using
Blockchain”. In: arXiv preprint arXiv:2001.01841 (2020).

[2] AlibabaCloud. url: https://eu.alibabacloud.com (visited on July 30, 2021).
[3] Amazon Web Services. url: https://aws.amazon.com/ (visited on July 30, 2021).
[4] Amar Amouri, Vishwa T Alaparthy, and Salvatore D Morgera. “Cross layer-based

intrusion detection based on network behavior for IoT”. In: 2018 IEEE 19th Wireless
and Microwave Technology Conference (WAMICON). IEEE. 2018, pp. 1–4.

[5] Manos Antonakakis et al. “Understanding the mirai botnet”. In: 26th {USENIX}
security symposium ({USENIX} Security 17). 2017, pp. 1093–1110.

[6] Amin Azmoodeh, Ali Dehghantanha, and Kim-Kwang Raymond Choo. “Robust
malware detection for internet of (battlefield) things devices using deep eigenspace
learning”. In: IEEE transactions on sustainable computing 4.1 (2018), pp. 88–95.

[7] BASHLITE botnets Ensnare 1 Million iot devices. 2016. url: https : / / www .

securityweek.com/bashlite-botnets-ensnare-1-million-iot-devices (vis-
ited on July 14, 2021).

[8] Vitor Hugo Bezerra et al. “Providing IoT host-based datasets for intrusion detection
research”. In: Anais do XVIII Simpósio Brasileiro de Segurança da Informação e de
Sistemas Computacionais. SBC. 2018, pp. 15–28.

[9] Agathe Blaise et al. “BotFP: Fingerprints clustering for bot detection”. In: NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE.
2020, pp. 1–7.

[10] Roberto Calvo-Palomino et al. “Electrosense+: Crowdsourcing radio spectrum de-
coding using IoT receivers”. In: Computer Networks 174 (2020), p. 107231.

[11] Collaborative spectrum Monitoring. url: https://electrosense.org/#!/ (visited
on July 13, 2021).

[12] Fei Ding. Bashlite-Source-Code. 2017. url: https://github.com/ifding/iot-
malware/tree/master/BASHLITE.

[13] Dave Evans. “The internet of things: How the next evolution of the internet is
changing everything”. In: CISCO white paper 1.2011 (2011), pp. 1–11.

[14] Evolution of internet of things (iot): Past, present and future. 2021. url: https:
//www.techaheadcorp.com/knowledge-center/evolution-of-iot/ (visited on
July 13, 2021).

[15] Roman Ferrando and Paul Stacey. “Classification of device behaviour in internet of
things infrastructures: towards distinguishing the abnormal from security threats”.
In: Proceedings of the 1st International Conference on Internet of Things and Ma-
chine Learning. 2017, pp. 1–7.

35

36 BIBLIOGRAPHY

[16] Jerry Gamblin. Mirai-Source-Code. 2017. url: https://github.com/jgamblin/
Mirai-Source-Code.

[17] Tomer Golomb, Yisroel Mirsky, and Yuval Elovici.“CIoTA: Collaborative IoT anomaly
detection via blockchain”. In: arXiv preprint arXiv:1803.03807 (2018).

[18] Roger A. Grimes. 9 types of malware and how to recognize them. 2020. url: https:
//www.csoonline.com/article/2615925/security-your-quick-guide-to-

malware-types.html (visited on July 13, 2021).
[19] Brij B. Gupta and Amrita Dahiya. “Ddos attacks on various platforms”. In: Dis-

tributed Denial of Service (DDoS) Attacks (2021), pp. 75–98.
[20] Ibbad Hafeez et al. “IoT-KEEPER: Detecting malicious IoT network activity using

online traffic analysis at the edge”. In: IEEE Transactions on Network and Service
Management 17.1 (2020), pp. 45–59.

[21] Waqas Haider et al. “Generating realistic intrusion detection system dataset based
on fuzzy qualitative modeling”. In: Journal of Network and Computer Applications
87 (2017), pp. 185–192.

[22] Salma Abdalla Hamad et al. “IoT device identification via network-flow based fin-
gerprinting and learning”. In: 2019 18th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE.
2019, pp. 103–111.

[23] Ayyoob Hamza et al. “Detecting volumetric attacks on lot devices via sdn-based
monitoring of mud activity”. In: Proceedings of the 2019 ACM Symposium on SDN
Research. 2019, pp. 36–48.

[24] Mahmudul Hasan et al. “Attack and anomaly detection in IoT sensors in IoT sites
using machine learning approaches”. In: Internet of Things 7 (2019), p. 100059.

[25] Sen He et al. “BoSMoS: A blockchain-based status monitoring system for defending
against unauthorized software updating in industrial Internet of Things”. In: IEEE
Internet of Things Journal 7.2 (2019), pp. 948–959.

[26] Imperva. Mirai DDoS Attack Explained. 2017. url: https://www.imperva.com/
blog/how- to- identify- a- mirai- style- ddos- attack/ (visited on July 14,
2021).

[27] Hyunjae Kang et al. “IoT network intrusion dataset”. In: IEEE Dataport (2019).
[28] Constantinos Kolias et al.“DDoS in the IoT: Mirai and other botnets”. In: Computer

50.7 (2017), pp. 80–84.
[29] Main page. url: https://perf.wiki.kernel.org/index.php/Main_Page (visited

on July 19, 2021).
[30] Artur Marzano et al.“The evolution of bashlite and mirai iot botnets”. In: 2018 IEEE

Symposium on Computers and Communications (ISCC). IEEE. 2018, pp. 00813–
00818.

[31] Yair Meidan et al. “Detection of unauthorized IoT devices using machine learning
techniques”. In: arXiv preprint arXiv:1709.04647 (2017).

[32] Yair Meidan et al.“N-baiot-network-based detection of iot botnet attacks using deep
autoencoders”. In: IEEE Pervasive Computing 17.3 (2018), pp. 12–22.

[33] Trend Micro. BASHLITE affects devices running on busybox. 2014. url: https:
//www.trendmicro.com/en_us/research/14/k/bashlite-affects-devices-

running-on-busybox.html.
[34] Microsoft Azure. url: https://azure.microsoft.com/ (visited on July 30, 2021).

BIBLIOGRAPHY 37

[35] Mirai source code release leads to huge increase in botnet. 2017. url: https://www.
pindrop.com/blog/mirai-source-code-release-leads-to-huge-increase-

in-botnet/ (visited on July 14, 2021).
[36] Thien Duc Nguyen et al. “DÏoT: A federated self-learning anomaly detection system

for IoT”. In: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2019, pp. 756–767.

[37] Maria Fernanda Ojeda Adan. “Designing an Internet of Things Attack Simulator”.
In: (2019).

[38] Ori Or-Meir et al. “Dynamic Malware Analysis in the Modern Era-A State of the
Art Survey”. In: ACM Comput. Surv. 52.5 (Sept. 2019).

[39] Jesus Pacheco and Salim Hariri. “Anomaly behavior analysis for IoT sensors”. In:
Transactions on Emerging Telecommunications Technologies 29.4 (2018), e3188.

[40] Marc-Oliver Pahl and François-Xavier Aubet. “All eyes on you: Distributed Multi-
Dimensional IoT microservice anomaly detection”. In: 2018 14th International Con-
ference on Network and Service Management (CNSM). IEEE. 2018, pp. 72–80.

[41] A Parmisano, S Garcia, and MJ Erquiaga. “Aposemat IoT-23: A labeled dataset
with malicious and benign IoT network traffic”. In: Accessed: Jul 31 (2020), p. 2020.

[42] Sreeraj Rajendran et al. “Electrosense: Open and big spectrum data”. In: IEEE
Communications Magazine 56.1 (2017), pp. 210–217.

[43] Pedro M Sánchez Sánchez et al. “BEHACOM-a dataset modelling users’ behaviour
in computers”. In: Data in brief 31 (2020), p. 105767.

[44] Arunan Sivanathan, Hassan Habibi Gharakheili, and Vijay Sivaraman. “Detecting
behavioral change of IoT devices using clustering-based network traffic modeling”.
In: IEEE Internet of Things Journal 7.8 (2020), pp. 7295–7309.

[45] Static data vs. dynamic data: Why companies must transition. 2018. url: https:
//blog.zoominfo.com/dynamic-data/ (visited on July 19, 2021).

[46] RD Statista. “Internet of Things-Number of connected devices worldwide 2019-
2030”. In: Statista Research Department (2019).

[47] Laya Taheri, Andi Fitriah Abdul Kadir, and Arash Habibi Lashkari. “Extensi-
ble android malware detection and family classification using network-flows and
API-calls”. In: 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE. 2019, pp. 1–8.

[48] KS Vanitha, SV Uma, and SK Mahidhar. “Distributed denial of service: Attack
techniques and mitigation”. In: 2017 International Conference on Circuits, Controls,
and Communications (CCUBE). IEEE. 2017, pp. 226–231.

[49] Waqas. BASHLITE malware turning millions of Linux Based iot devices into DDoS
botnet. 2018. url: https://www.hackread.com/bashlite-malware-linux-iot-
ddos-botnet/ (visited on July 19, 2021).

[50] Tianlong Yu et al. RADAR: A robust behavioral anomaly detection for IoT devices
in enterprise networks. Tech. rep. Tech. rep., CMU CyLab, 2019. 103, 2019.

38 BIBLIOGRAPHY

Abbreviations

ACK Acknowledgement
AD Anomaly Detection
C Classification
CPU Central Processing Unit
C&C Command and Control
DDoS Distributed Denial of Service
DL Deep Learning
DNS Domain Name Server
DoS Denial of Service
GB Gigabyte
GHz Gigahertz
GRE Generic Routing Encapsulation
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IIoT Industrial Internet of Things
IP Internet Protocol
IPv4 Internet Protocol Version 4
ML Machine Learning
OS Operating System
RAM Random Access Memory
SDR Software Defined Radio
SSH Secure Shell
SYN Synchronisation
TCP Transmission Control Protocol
Telnet Teletype Network
UDP User Datagram Protocol
VM Virtual Machine

39

40 ABBREVIATONS

List of Figures

1.1 Crowdsensing . 2

1.2 ElectroSense Architecture . 2

2.1 Malware type and behavior relation . 5

2.2 The Mirai botnet structure . 7

2.3 A three-way handshake process between a client and a server. 9

4.1 Network Setup . 18

4.2 Terminal showing a successful connection to the Mirai C&C server. 21

4.3 Mirai terminal showing all available attack types 21

4.4 Flags of the UDP-attack listed on the Mirai-C&C terminal 22

4.5 Bashlite C&C server terminal after a successful connection 23

5.1 Differences between two normal behavior datasets (datasets 1 and 2) of an
ElectroSense sensor in percentage. Events standing out are considered as
unstable. 28

5.2 Differences between two normal behavior datasets (datasets 1 and 2) of
an ElectroSense sensor in percentage without unstable events. Only stable
events are considered in the identification of possible malware anomalies. . 29

5.3 Differences between the normal behavior and the behavior during Mirai’s
UDP and TCP attacks of the sensor. The y-axis represents the difference
in percentage. 30

5.4 Differences between the normal behavior and the behavior during Bashlite’s
UDP and TCP attacks of the sensor. The y-axis represents the difference
in percentage in log-scale. 31

41

42 LIST OF FIGURES

List of Tables

2.1 Hard-coded default credentials used by Mirai 8

3.1 Relevant datasets with the used malware types and the generated data with
their data source. The last column states if the monitored data is static or
dynamic. 12

3.2 Malware detection algorithms and their used approaches and analyzed be-
haviors listed by the publishing year of the work. Two different approaches
are mentioned where C stands for Classification and AD for Anomaly De-
tection. 15

4.1 Device Specifications . 18

4.2 Available attack types with Mirai and the corresponding commands 21

4.3 Available attack types with Bashlite and the corresponding commands . . 23

4.4 All monitored Perf events grouped by resource families. 24

4.5 All created datasets grouped by the behavior. The column Monitoring
refers to the first and second monitoring of the same behavior. 26

5.1 The difference of the significant events between normal and infected be-
havior in percentage. The relevant datasets and attack types along with
the malware are given. Column ”Difference” describes the values in the
datasets listed in column ”Datasets”. 32

43

44 LIST OF TABLES

Listings

2.1 Default username and password pairs used by Bashlite 8
4.1 Locking and unlocking table TABLE KILLER STATUS 19
4.2 Compiling the bot on the Raspberry Pi . 19
4.3 IP address change in the Loader . 19
4.4 IP address change in ScanListen . 19
4.5 Setting up the database . 20
4.6 SQL Command for creating a new C&C user 20
4.7 UDP-attack command on Mirai . 20
4.8 Changing the IP address of the Bashlite C&C server 22
4.9 Management Bashlite . 22

45

46 LISTINGS

Appendix A

Contents of the ZIP file

The following files are contained in the ZIP file.

Documentation

- Thesis as a PDF file

- Thesis as a .tex file (Latex)

- Midterm presentation as PPTX

Code

- Mirai source code

- Bashlite source code

- Monitoring script create_sample_dataset.sh

Datasets

The datasets are in CSV format.

- Datasets 1 and 2 containing the normal behavior

- Datasets 3 and 4 containing the behavior during a UDP attack with Mirai

- Datasets 5 and 6 containing the behavior during a TCP attack with Mirai

- Datasets 7 and 8 containing the behavior during a TCP SYN attack with Mirai

- Datasets 9 and 10 containing the behavior during a TCP ACK attack with Mirai

- Datasets 11 and 12 containing the behavior during a UDP attack with Bashlite

- Datasets 13 and 14 containing the behavior during a TCP attack with Bashlite

- Datasets 15 and 16 containing the behavior during a HOLD attack with Bashlite

- Datasets 17 and 18 containing the behavior during a JUNK attack with Bashlite

47

