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Abstract

As software projects increase in complexity, testing becomes increasingly important. It is essential
that tests can be built to ensure that a test failure reliably indicates problems in production code,
which can then easily be fixed. Because modern software systems have become inherently non-
deterministic, intermittent test failures are also becoming more frequent, in what is known as
flaky tests. Existing techniques to remedy this problem focus on efficient detection of flaky tests
without identifying the root causes of their intermittent behaviour, or are specific to certain root
causes. Other approaches rely on instrumentation of the production code, which may affect test
outcomes.

In this thesis, we present a prototype implementation of an architecture to induce test flakiness
by executing tests under various circumstances, called execution scenarios. Our prototype allows
for flexible implementation of these scenarios and provides an API to be used in various environ-
ments, such as continuous integration pipelines. We find that it can reproduce known flaky test
behaviour, and that in some cases, our prototype execution scenarios can exhibit different failure
rates for certain test cases. We also propose future enhancements to continue development on the
prototype.





Zusammenfassung

Da Softwareprojekte zunehmend komplexer werden, wird das Testen ebenfalls immer wichtiger.
Es ist essentiell, dass Tests so konstruiert werden können, dass sie im Falle eines Versagens zuver-
lässig Probleme im Produktions-Code indizieren, die dann einfach behoben werden können. Da
moderne Softwaresysteme aber zunehmend undeterministisches Verhalten zeigen, können Test-
fälle intermittierend fehlschlagen. Dieses Phänomen ist als “Flaky Test” bekannt. Aktuelle Tech-
niken um dieses Problem zu beheben, konzentrieren sich vor allem auf effiziente Entdeckung
der Flaky Tests, ohne ihre Ursachen zu identifizieren, oder können nur spezifische Ursachen ent-
decken. Weitere Ansätze verlassen sich auf Instrumentierung des Produktionscodes, was Testre-
sultate beeinflussen kann.

In dieser Arbeit präsentieren wir eine Prototyp-Implementierung einer Architektur, die gezielt
“Test Flakiness” hervorrufen soll, indem die Tests unter verschiedenen Bedingungen, genannt
“Execution scenario”, ausgeführt werden. Unser Prototyp erlaubt eine flexible Implementierung
dieser Szenarios und stellt eine API zur Verfügung, die in verschiedenen Umgebungen benutzt
werden kann, zum Beispiel in Continuous Integration Pipelines. Wir zeigen, dass unser Prototyp
bekannte Flaky Tests reproduzieren kann, und dass unsere Execution scenarios in einigen Fällen
unterschiedliches Verhalten zeigen. Desweiteren zeigen wir verschiedene zukünftige Erweiterun-
gen auf, um unseren Prototyp weiterzuentwickeln.
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Chapter 1

Introduction

Software systems are constantly evolving and growing in complexity. They are being moved to
the cloud, expanded to make use of increasing CPU core counts, and distributed across many
nodes in diverse geographical locations. Modern software behaviour has become increasingly
non-deterministic as a result of this development. This non-deterministic behaviour can lead to
intermittent test failures, in so-called "Flaky Tests". Flaky tests are test cases that neither fail nor
pass all the time. They can cause failures in continuous integration pipelines which are hard to
debug, since the developers may not be easily able to reproduce the behaviour or discern the
reasons why their tests suddenly fail. If the intermittent test results are caused by issues in the
production code, rather than the test implementation itself, they also highlight issues that may
occur in production.

Flaky tests have been shown to be caused by specific types of weaknesses in either the test code
or the production code itself. These types of weaknesses are called “root causes”, and specific
typical root causes have already been identified [1].

This has been noted as an open challenge for the field of software testing [2, 3]. So far, ap-
proaches focused mainly on increasing efficiency in the detection of flaky tests, but there is a lack
of methods to find the root causes of flaky tests. Identifying root causes quickly can speed up the
developer’s response to sudden flakiness in their tests, preventing the erosion of trust that can
occur when flaky tests show up [2, 4].

Terragni et al. [2] have proposed an infrastructure for targeted execution of flaky tests under
different environments, called "execution scenario". These scenarios vary the environment the
tests are executed within, with each corresponding to a common root cause of flaky tests. In order
to determine the most likely root cause, each scenario is compared to a baseline. This information
can then be used to quickly identify and fix weaknesses in tests.

According to their proposal, the tests are to be run inside software containers, which can be
executed dynamically with different environment configurations, and in which so-called "fuzzy
loaders" create different scenarios, such as high CPU load, high network usage, concurrent database
operations, etc. A functioning implementation of this proposal allows for a detailed root cause
analysis of flaky test behaviour.

The main challenges for this implementation are as follows:

• the environment for the containers to run in needs to be isolated as much as possible in order
to exclude external influences on test results. Multiple test containers should be allowed to
run in parallel to speed up data gathering of test behaviour;

• the containers need to be as platform-agnostic as possible. The software that needs to
be tested might come in various programming languages and frameworks, and the same
should be possible for the fuzzy loaders;
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• the results need to be collected and sent out for analysis in a way that creates as little over-
head as possible for running the tests;

Terragni et al. [2] envision this infrastructure to be used in two main use cases:

1. as part of a continuous integration pipeline, for detection and root-cause analysis [2];

2. after continuous integration, when flaky tests have been detected, for more targeted analysis
[2];

Our contribution in this work is to lay out an ideal approach for this infrastructure, from now
on referred to in this thesis as "flakiness inducer infrastructure", and to show that the approach is
feasible to implement. To this end, we have created a prototype, which we will describe in further
detail. Finally, we show a preliminary evaluation of the prototype and lay out future work on the
project.

This thesis is structured as follows: In chapter 2, we show the current state of the art in research
into flaky tests, and identify the gaps that our approach intends to fill. In chapter 3, we provide
background on the concrete tools used to implement the prototype. The requirements for our
infrastructure, an ideal approach and our concrete implementation are all described in detail in
chapter 4. Chapter 5 details the approaches we used to validate our prototype implementation,
with the results in chapter 6. We draw a conclusion of our contribution in chapter 7 and elaborate
on future work in chapter 8.



Chapter 2

Related work

Research into intermittent test behaviour is still fairly young, but recently, interest in flaky tests
has increased. Earlier research by Bell et al. [5] focused mainly on efficient identification of flaky
tests, for example through monitoring code changes, and marking tests as flaky when they fail
without changes in the executed production code.

For this work, research into root-cause analysis of flaky tests is of particular interest. Zheng et
al. [6] have identified several current approaches:

2.1 Code instrumentation and log analysis
Some approaches to detecting flaky tests and finding their root causes include code instrumen-
tation. Lam et al. [7] have put forward an end-to-end framework to detect flaky tests and find
their root causes. They add log statements to test code and relevant passages in the production
code, and then analyze these logs to identify root causes. A similar method recently proposed by
Ziftci et al. [8] also instruments code, and then detects the points of divergence between passing
and failing executions. The information thus obtained is then provided to developers, requiring
manual root-cause analysis. Both of these approaches also face the challenge that flakiness may
only occur on non-instrumented versions of the code.

2.2 Direct root-causing of flaky tests
Other approaches attempt to directly cause specific types of intermittent test behaviour. Since
many common root causes of flaky tests are known [1], these approaches try to directly affect test
outcomes by executing them in specific ways.

Test dependency analysis. There are several approaches to detecting state pollution and re-
sulting test order dependencies, which is one common root cause of flaky tests [1]. Recent ap-
proaches include the PRADET tool, created by Gambi et al. [9], and the iDFlakies tool by Lam et
al. [4], which both classify flaky tests that are caused by test execution order.

Concurrency-related analysis. Silva et al. [10] have proposed SHAKER, a tool to execute tests
in parallel with stressor tasks that load CPU and memory. They have found promising results,
detecting more flaky tests with higher failure rates than by simply re-running the tests in hopes
of randomly causing test failures.
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2.3 Containerized infrastructure for root-causing
Terragni et al. [2] have proposed a method to execute flaky tests under various execution scenar-
ios, each corresponding to a specific root cause. They envision that by executing a flaky test under
a scenario that corresponds to its specific root cause, they can impact its failure rate and detect
a deviation from a base scenario, which represents a typical execution environment. The exe-
cution scenarios in their proposal can also contain so-called "fuzzy loaders", which dynamically
load resources to affect test execution. This approach has some similarities to other approaches
to root-cause flaky tests, but differs in its concrete implementation. Instead of focusing on spe-
cific root causes, the method put forward by Terragni et al. [2] focuses on providing a scalable
infrastructure in which tests can be executed under many different scenarios, and they elaborate
on specific ones for the most common root causes:

Multi-threaded execution scenario. This scenario “explores the non-deterministic interleaving
space of concurrent executions” [2]. It root-causes test failures related to concurrency by executing
tests with different amounts of cores, and with fuzzy loaders that load the CPU with dummy
operations. The approach is similar to the one by Silva et al. [10], but also varies CPU core count
in addition to stressor tasks.

Network execution scenario. This scenario “explores the non-deterministic space of the net-
work latency and response time” [2]. It executes the tests together with fuzzy loaders that create
network loads, finding test failures that occur due to slow or failed network connections.

I/O execution scenario. This scenario “explores the non-determinism of I/O operations” [2].
It varies disk space allocations for tests and loads the disk with fuzzy loaders that read and write
files randomly to contest for file system resources.

Test order execution scenario. This scenario “explores the non-determinism caused by test
dependencies” [2]. By altering the test execution order randomly, flaky tests that are caused by
state corruption will be identified.

Platform scenario. This scenario “explores the non-determinism caused by different execution
platforms” [2]. Some flaky tests exhibit failures primarily with specific versions of frameworks
or libraries, or on different operating systems. By varying these parameters, those types of flaky
tests can be identified.

Root-cause analysis. According to the proposal by Terragni et al. [2], for identification of flaky
test root causes, the tests are executed on the base scenario as well as all the desired other execu-
tion scenarios. They define the failure rate of a test case t on a specific scenario εk as:

λkt =

∑N
i=1 execi(εk, t)

N
∈ [0; 1] (2.1)

execi(εk, t) denotes the outcome of the ith execution of the test case t under execution scenario
εk, which is either zero, if the test passed, or one, if it failed. According to Terragni et al. [2], the
most likely root cause is given by the scenario with the highest deviation in failure rate from the
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base scenario. If the test does not fail on the base scenario, this is just maxk λ
k
t . If the test does fail

on the base scenario, it is maxk |λkt − λ0t |, where λ0t is the failure rate on the base scenario.
In this thesis, we discuss a prototype implementation of the infrastructure envisioned by Ter-

ragni et al. [2]. This prototype provides an interface for various frontend applications to interact
with, such as graphical user interfaces for data analysis, or applications that implement it in a
continuous integration process. These frontends are expected to exist.





Chapter 3

Background

In our prototype implementation, we relied on many other technologies related to container or-
chestration. Here, we provide a brief overview of essential concepts.

3.1 Container orchestration
For container orchestration, we rely on Kubernetes1. Kubernetes is a widespread tool to facilitate
deployment of containerized applications. Since our entire application stack is designed to run
within a Kubernetes cluster, we have made use of Kubernetes services and deployments for the
implementation.

For the containers in which the tests are executed, we make use of Kubernetes’ well-documented
API to create them as Pods.

3.1.1 Resource limits
For some of the execution scenarios proposed by Terragni et al. [2], we rely on Kubernetes’ ability
to manage resources for containers [11]. Since our system depends on minimal interference by
factors we do not actively control as part of the scenarios themselves, we also use its static CPU
assignment policy [12] to isolate our containers from each other, as well as any other processes
running on the nodes which execute them. This policy assigns containers to specific CPU cores.
Under the hood, these limits and assignment policies use the cgroups feature of the Linux kernel.

3.1.2 Container building within containers
In our implementaiton, we wrap the tested software together with our custom test executors and
fuzzy loaders in a container image. We build these using Google’s Kaniko [13], which allows us to
use the Kubernetes cluster which our tools run in to also build these images. Kaniko does not rely
on Docker to build images, which simplifies this process, since running Docker within Docker,
the typical approach for building container images within containers, requires elevated access for
that container [14].

1https://kubernetes.io
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3.1.3 RabbitMQ
Since we implemented the prototype in a microservice architecture and aim to provide a flexi-
ble API, we are using a message queue for both the API provided by our infrastructure as well
as internal communication between the services. This allows for easy scaling of the infrastruc-
ture, adding more pods to the deployments for heavily loaded services. In particular, we used
RabbitMQ2.

2https://www.rabbitmq.com



Chapter 4

Approach

In this chapter, we outline the requirements and specific challenges for our infrastructure. We
continue by proposing a model of an ideal system, followed by a description of our concrete pro-
totype implementation. We elaborate on the specific technologies and architectures we have used,
and describe the implementation of the execution scenarios we have included in this prototype.

4.1 Requirements

4.1.1 General software requirements
For the flakiness inducer infrastructure, we have the following specific requirements:

1. container images need to be built on-demand for different projects with different program-
ming languages and test frameworks. They need to include all the necessary components
to execute software tests together with the required fuzzy loaders. They also need to be able
to report the test results to the data management component;

2. containers for the various execution scenarios need to be defined, launched and tracked
efficiently during their execution. During their execution, they must be isolated as much as
possible from each other and any outside influence;

3. a flexible interface needs to be provided to allow for dynamic configuration of execution
scenarios. This also allows adding more of them later without large changes to other com-
ponents;

4. data about users, applications and test runs must be stored and made accessible;

5. an API needs to be provided for various frontend options to access and modify the data, as
well as start and monitor test runs;

4.1.2 Isolation
As mentioned in the introduction, the isolation of the testing environment is one of the main chal-
lenges in this approach. When executing tests under different execution scenarios, the confidence
in our root-cause analysis is dictated by how well we can control the parameters which we do not
actively vary between them. Therefore, outside influence on test execution must be ruled out as
far as possible. There are two main aspects to this:
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1. the system(s) on which the test containers are executed must be isolated from the rest of the
software stack as much as possible. Other software executed on these systems must be kept
to a minimum, and must be kept separate from the container execution;

2. it is desirable to run multiple test containers in parallel in order to speed up test run execu-
tion. In that case, the containers must also be isolated from each other;

4.2 Model of ideal system
For an ideal implementation of the infrastructure, there are three important components:

• Data management component: This component deals with data storage and user interac-
tion, as well as with configuration of the execution scenarios. Ideally, it provides a flexible
API for an arbitrary amount of different frontends. Also, it should allow an administrator
to configure execution scenarios and add more of them, without changes to the underlying
code;

• Isolated system: This component symbolizes the isolated systems on which the tests are
executed. Ideally, it should be easy to add more systems, they should be completely inde-
pendent from both each other and the management component, and they should perfectly
fulfil the isolation criteria listed under the requirements section;

• Test container: This component executes the tests on the software to be examined in a soft-
ware container. Fuzzy loaders, as defined by Terragni et al. [2], can be run in the same
containers to generate dynamic load scenarios. The test results are then reported to the
management component in a way that creates as little overhead as possible, in order to
avoid interference with other test containers running in parallel on the isolated system;
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In figure 4.1, we have drawn up a schematic depiction of the ideal system. The execution
containers are shown as colored boxes, with each color referring to an execution scenario. When
a test run is started, each of the scenarios creates a specified number of containers to be run on
the isolated system. These can be managed by a common container orchestration tool, such as
Kubernetes, Docker Swarm, OpenShift, Nomad, etc. The containers, when finished, still have to
report the results of the execution to the data management component, so steps must be taken to
ensure that this interferes with test execution in the other containers as little as possible.

Figure 4.1: Schematic of the ideal architecture

4.3 Actual implementation
For our actual implementation, we have chosen Kubernetes as a container orchestration platform.
Kubernetes is widely adopted and has excellent SDK support [15], which we require to interact
directly with its API from within our tools. It also provides out-of-the-box features to restrict
container access to CPU and memory resources [11]. For restricting access to other resources,
plugins can be added, for example for the available bandwidth each container receives [16].
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For the concrete installation, we have selected k3s [17], which is a Kubernetes distribution that
can be installed as a single, light-weight binary on each of the nodes. This distribution is designed
for minimal resource usage on weak systems, and should therefore have a minimal impact on our
test flakiness evaluations.

4.3.1 Microservice architecture
The proposed ideal architecture should provide a lot of flexibility in the implementation - for
example, it should be possible to add execution scenarios dynamically. Therefore, we have im-
plemented the services as microservices. Microservices provide several key characteristics [18].
For our use case, modularity is particularly important. The execution scenarios can be imple-
mented by the developers themselves or by a platform administrator (someone who provides the
software platform for others) in any programming language they are familiar with. They only
need to conform to a common API.

In addition to the execution scenarios, the management component can also be split up into
smaller services, allowing each to deal with a specific aspect of the system, and keeping individual
components simple and easy to understand.
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4.3.2 Implementation overview
In figure 4.2, we provide an overview over our actual implementation. Everything runs within
the same kubernetes cluster, in a single namespace.

Figure 4.2: Schematic of our prototype implementation

• Core backend: The core backend deals with all user interactions and database storage. It
fulfils the functionality of the management component defined in the ideal implementation.
It also handles building of the test containers, using Google’s Kaniko container build tool
[13].

• Test executor: The test executor calls the execution scenario configurators to generate Ku-
bernetes pod specifications, and executes those via the test task queue. The queue is setup
so that not all pods are created in Kubernetes at once, reducing load on the Kubernetes API.

• Execution scenario configurators: These configurators provide an API for the test executor
to call, and generate resource limit and environment variable distributions for the requested
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amount of executions for their specific execution scenario. We have implemented an ex-
ample configurator for the "concurrency" scenario proposed by Terragni et al. [2], which
generates a distribution of CPU core limits around a value defined by the amount of cores
available in the test-runner nodes.

• Test-runner node: The test runner node corresponds to the isolated system in the ideal
architecture. It executes the test containers in an isolated environment, which we elaborate
on in section 4.3.4.

• Test container: The test containers are implemented on a per-framework basis. In our pro-
totype, we only support Java projects with the Gradle build agent. A Python control script
manages the execution of both the tests and the fuzzy loaders. When the tests are com-
plete, the fuzzy loaders are stopped, and the results are reported directly via the RabbitMQ
instance to the core backend.

• RabbitMQ instance: The RabbitMQ instance provides APIs for frontend applications, as
well as the test results. An arbitrary amount of different frontend applications can com-
municate with the core backend, and receive notifications on test run status from the core
backend.

The core backend, test executor and existing example execution scenario configurator are im-
plemented in Java, using the Spring Boot framework, and interact with the Kubernetes API via
the Fabric8 Java client [19]. All the applications and databases within the "Application Microser-
vices" section in figure 4.2 are run on arbitrary Kubernetes nodes within the same cluster, but
not on the test-runner nodes. These applications are all designed to be stateless, and can thus be
easily scaled according to the Kubernetes principles.
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4.3.3 Test run flow through the application

Figure 4.3: Schematic of test run flow through the application

In figure 4.3, we show what happens in order when a test run is started.

1. When a valid user request for a test run on a new application version comes in, the applica-
tion source code is already expected to be stored on an NFS (network file system) server1.

2. This directory is mounted, together with the scripts running in the test container, in a Kaniko
build pod in order to build the test container. The container image is stored on a private
docker registry.

3. When the build is finished, the test run definition is passed to the test executor, together
with the image path on the docker registry.

4. For each execution scenario, the corresponding configurator is called to provide a distribu-
tion of resource requirements and environment variables. For each test run execution, there
will be one dynamically determined set of both resource requirements and environment
variables.

5. When the configurations are complete, the test tasks for each scenario are created, and a
dynamically determined amount2 of them is queued. Whenever a test task is finished, a new
one is queued, in order of creation, until the queue is empty. Note that which containers
are actually running at any given time is determined by Kubernetes itself, based on their
resource requirements. The test executor merely provides a selection for Kubernetes to pick
from.

6. In any given test run, there may be thousands of test containers that need to be executed.
For each individual test container, when Kubernetes allocates it to a test-runner node, the
control script starts both the fuzzy loaders3 and the software tests. It executes each test case
specification in order, or all tests, if no individual test cases were specified by the user.

1This is because in order to build the application in the Kaniko build container, its source code needs to be made
available to that container. This can be done as file system mounts inside the Kaniko container

2based on the number of available CPU cores on all test-runner nodes
3configured via the environment variables provided by the execution scenario configurators
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7. When the tests in this particular container are finished, the results 4 are collected by a "results
crawler"5, and reported back to the Core backend via RabbitMQ. Kubernetes detects that the
container has finished and triggers an event, which the test executor listens to in order to
queue another task.

8. The core backend sends a notification about the new test result to a fanout exchange on the
RabbitMQ instance, which an arbitrary amount of frontends may be listening to. It is up to
these frontends to distribute the notifications to the correct users.

9. Finally, when the test run is finished (not shown in figure 4.3), another status update is sent
to the fanout, to notify the listeners that the test run is complete.

4.3.4 Isolation of the test-runner nodes and test containers
The test runner nodes need to conform to the ideal isolated system definition as well as possible.
Therefore, they were implemented in our prototype as bare-metal systems, running a bare Ubuntu
Server 21.04 installation with no additional services, apart from the Kubernetes agent.

Kubernetes allows for nodes to be labelled and tainted. This permits fine control over which
pods get scheduled on which nodes. Therefore, the test-runner nodes can easily be configured to
run only the pods that are essential to Kubernetes’ inner workings. On top of that, Kubernetes
provides several useful configuration options to achieve isolation of the pods from each other,
as well as the other running system processes. Terragni et al. [2] have identified the number of
cores, network bandwidth and disk size as critical resources that might affect overall test flakiness.
Kubernetes provides some resource management out-of-the-box [11].

Static CPU assignment

In Kubernetes, the kubelet can be configured to use a static CPU assignment policy [12]. Under
this policy, specific CPU cores can be reserved for Kubernetes tasks. Some Linux distributions,
such as CentOS, also allow restriction of system tasks to specific CPU cores [20], but we have not
implemented this feature in our prototype.

Kubernetes pods can have CPU and memory limits and requests, by default. If values for both
CPU and memory are provided, and they are equal for limits and requests, the pods fall into the
"guaranteed quality of service class" [12]. When using the static policy, these pods are assigned
specific CPU cores for execution, provided that the CPU core request is an integer value. In the-
ory, this should provide perfect computation isolation between the test containers. In practice,
there will always be some degree of interference. CPU core speed is changed dynamically, influ-
enced for example by current CPU power usage and thermals, which will affect test execution.
Also, CPU cores are not always equally performant, so the specific cores allocated to a test con-
tainer may also have an impact on the observed test flakiness. By keeping these interferences to a
minimum, we can increase the confidence in our root-cause analysis.

Memory limits

The memory limits set for the pods are not implemented as hard limits. Instead, we have observed
that a pod will consume physical system memory up to its limit, and then switch to system swap
memory. This should replicate the same dynamic as if the tests were running on a bare metal
system with total physical memory size equal to the memory limit the pod has specified. This

4test case name, passed/failed, and a stack trace in case of failure
5specific to the test framework that the software tests use
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could also provide interesting avenues for further execution scenarios. We envision a scenario
where containers are configured with different memory limits, which would effectively reduce
memory speed past the limit due to switching to slower system swap memory. Fuzzy loaders
which dynamically allocate system memory to contend with the tested software could be added
to this scenario to increase the effect.

Other resources

Kubernetes also provides a plugin interface to restrict additional resources, such as network band-
width limits [16]. For other resources, further investigation is necessary.

4.3.5 Implemented execution scenarios
As an example, we have implemented the following execution scenarios, according to the pro-
posal by Terragni et al. [2]:

• Base: The base execution scenario is implemented as test containers with equal resource
limits and environment variables, with no fuzzy loaders running. It provides a baseline to
compare the other execution scenarios to, to allow for root-cause analysis as postulated by
Terragni et al. [2].

• CPU load: This execution scenario adds a fuzzy loader to the base scenario, which dy-
namically loads the available CPU cores according to a base load percentage defined via
an environment variable in the container. It changes the load at a specific interval to use
different amounts of cores and load them to changing percentages.

• Concurrency/CPU load: This execution scenario expands on the pure CPU load variant
by also changing the CPU core limit on the test containers dynamically. This corresponds
directly to the "Multi-threaded execution cluster" defined by Terragni et al. [2].

• Concurrency: This is the same execution scenario as the concurrency/CPU load scenario,
minus the CPU load. Since our architecture allows an administrator to configure each exe-
cution scenario with different fuzzy loaders, we have also designed this one to test with.

The fuzzy loaders are configured via the environment variables on the test containers. Each
of them needs a name and a load percentage, around which the fuzzy loaders will load each
resource. The current CPU load example is implemented as a Python script that is executed by
the control script, and other loaders could be implemented the same way, with the interface that
is in place to control them. However, the control script can also easily be modified to launch more
processes to run in parallel, which can be implemented in any language. These scripts are all built
into the test containers at build time, and will be executed only if specified via their corresponding
environment variable.





Chapter 5

Evaluation

We will answer the following research questions:

• RQ 1: How well is our isolation concept implemented?

• RQ 2: How well does the implemented prototype show test flakiness, for both known test
cases as well as in general?

• RQ 3: How do the implemented prototype execution scenarios affect test execution, i.e. do
they affect overall failure rates?

5.1 Isolation between test containers
For the isolation between test containers, we are relying on the concept of cgroups in the Linux
kernel. In order to validate this, we have run single tests with a benchmark script (listing 5.1) and
checked their CPU assignment, as well as compared the execution of single test containers with
multiple containers running in parallel.
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def test_performance():

results = []

thread_start_time = time.time_ns()

while len(results) < 2000000:

random_characters = []

for _ in range(random.randint(1, 60)):

random_characters.append(random.choice(string.ascii_letters))

random_string = ’’.join(random_characters)

results.append(random_string)

thread_end_time = time.time_ns()

print("Thread took", thread_end_time - thread_start_time, "ns")

if __name__ == ’__main__’:

processes = []

for i in range(8):

processes.append(Process(target=test_performance))

start_time = time.time_ns()

for process in processes:

process.start()

for process in processes:

process.join()

end_time = time.time_ns()

print("Total: took", end_time - start_time, "ns")

Listing 5.1: Python benchmark script

5.2 Test runs on projects with flaky tests
To answer our research questions, we have executed test runs on two projects with known flaky
tests, as well as a project where we found additional flaky tests under specific circumstances:

• Project 1: RxJava, commit ID dde2c0e7b0435b4195d02699ef4c8f8d666480e2. In this project,
flaky tests were identified by Silva et al. with the "Shaker" tool [10].

• Project 2: Apple Servicetalk, commit ID f9f6f76f25de59f667ae4ad36aef2d304c34f550. In this
project, flaky tests were identified via GitHub issues 1

• Project 3: Spring Boot, commit ID f81921c005fed703572faeb43f1a284ade2994f1. In this project,
we found new flaky tests during our evaluations.

We have executed the test runs under all our prototype execution scenarios in order to deter-
mine whether they could be a suitable tool to explore the non-deterministic space and find the
root cause of test flakiness. Additionally, we have varied other parameters of the execution, such
as the OS on the test-runner node, and whether multiple containers are allowed to run in paral-
lel. At this state, the goal of these evaluations is merely to validate our prototype and to show
whether flakiness is affected by our proposed execution scenarios, not to determine actual root
causes.

1https://github.com/apple/servicetalk/issues/920, https://github.com/apple/servicetalk/
pull/1393
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Results

To answer our research questions, we used a system with the following specifications as the single
test-runner node for evaluation, unless otherwise specified:

• OS: Ubuntu 21.04 with kernel version 5.11, no additional virtualization

• CPU: AMD Ryzen R9 5950X 16 Core/32 Thread processor

• Memory: 32 GB 3600 MT/s DDR4

6.1 Isolation testing results (RQ 1)
During the execution of single test containers, the following behaviour can be observed in the
prototype test-runner node:

• The containers are assigned to specific CPU cores as configured via Kubernetes, as can be
seen in figure 6.1

• When multiple containers use the CPU at the same time, the reserved CPU cores are not
assigned: Figure 6.2. In this case, CPU core #3 was configured for system/Kubernetes usage.

• During a typical test run with only a few test cases, the overhead by the test result reporting
is minimal, on the order of a few KBit/s. However, when large amounts of test cases are
executed and stack traces of test failures are included, the reports can grow to quite a large
size. In some cases, when many failures occurred (resulting in many long stack traces), they
grew up to several hundred MB. This may, in the prototype’s current state, impact other
running pods, if the test cases rely on network connectivity. The impact of this needs to be
reduced in order to improve test container isolation.

Figure 6.1: CPU & Memory usage when executing a single container
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Test Test run time [s]
1 56.8701
2 55.5201
3 55.9577
4 56.9129
5 56.4600
6 56.7677
7 57.2827
8 56.3920
9 56.3632
10 57.1106
Average 56.5637
Standard deviation 0.5390

Table 6.1: Execution times in seconds for single execution of one container, 10 runs

Test Container 1 run time [s] Container 2 run time [s] Container 3 run time [s]
1 61.0826 71.1977 61.6736
2 61.9905 62.5855 61.3351
3 61.2887 72.5240 61.1602
4 61.7860 61.4694 61.6556
5 61.1651 71.7297 60.9568
6 61.4791 61.9351 61.8776
7 62.3008 67.2255 61.4669
8 61.5881 62.2681 62.3870
9 61.5575 73.7961 61.1472
10 62.0044 62.4657 62.0383
Average 61.6243 66.7197 61.5698
Standard deviation 0.3950 5.1060 0.4460

Table 6.2: Execution times in seconds for parallel execution of 3 containers, 10 runs

We have repeated the CPU core assignment test with the Python benchmark script (listing 5.1).
This script generates two million random strings of random length and saves them in memory.
Executing this function 8 times in parallel, it measures the time it took for each of the threads to
finish, as well as the overall execution time.

Running the script in listing 5.1 with 8 available CPU threads (one per execution thread in the
script), we have compared the results of a single container execution, seen in table 6.1 with the
execution of three containers in parallel, seen in table 6.2. This preliminary evaluation shows the
following interesting behaviour:

• When containers are run in parallel, they take longer to execute overall, probably because
the CPU cores are likely not running as fast as when more of them are loaded at the same
time.

• Container 1 and container 3 have very consistent execution times across test runs, compara-
ble with single container execution.

• Container 2 usually behaves the same as container 1 and container 3, but sometimes experi-
ences execution times increased by 10s (about 16% higher). In those cases, one or two of the
threads in the script finished much faster than the others, and one or two took a lot longer.
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Figure 6.2: CPU & Memory usage when executing three containers concurrently

This could have many reasons. For example, the specific architecture of the processor used
to run these evaluations has two core complexes of eight cores each. If the container CPU
assignment done by Kubernetes is consistent, and container 2 always ended up on the same
CPU cores, it could be that those were split between the two core complexes, resulting in
higher latency and more cache misses. However, many other reasons are possible, for ex-
ample, the specific behaviour of the pseudo-random generator in Python’s random library
or other implementation details of the benchmark script.

These investigations show that we have already achieved a certain degree of isolation be-
tween the test containers. With respect to CPU and memory usage, we have a clear picture of the
resource isolation between containers, but we have found some issues with certain specific core
assignments. Further experiments will need to be conducted in order to estimate the cause of this
and the effect on test execution.

What cannot be estimated yet is the degree of isolation of our test system we have achieved.
The most likely impact we can expect at the moment is the reporting of the test results, which will
need further work to evaluate impact on test flakiness.
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6.2 Test flakiness experiments (RQ 2 & 3)

6.2.1 RxJava
On the RxJava project, we evaluated flaky tests previously identified by Silva et al. [10]. We
executed one test run with all four execution scenarios, with 400 evaluations per scenario.

Test Run - d5432d79-b49f-4d9d-8a86-1866c84c6922

Test case scenario Failure rate
synchronizationOfMultipleSequencesLoop Total 12/1600 (0.75%)

Base 3/400 (0.75%)
CPU Load 2/400 (0.5%)
Concurrency / CPU Load 4/400 (1%)
Concurrency 3/400 (0.75%)

connectUnsubscribeRaceConditionLoop Total 1/1600 (0.06%)
Base 0/400 (0%)
CPU Load 1/400 (0.25%)
Concurrency / CPU Load 0/400 (0%)
Concurrency 0/400 (0%)

Table 6.3: RxJava - Test Run results

In this case, as shown in table 6.3, our tool was able to reproduce the flakiness found by Silva
et al. [10]. They found one failure each in 12 reruns, which is not enough for us to compare to.
There are slight differences between the execution scenarios.

6.2.2 Servicetalk
On the Servicetalk project, we executed two test runs of interest. According to the original issue,
we expected to find several flaky tests in the "io.servicetalk.http.netty.FlushStrategyOnServerTest"
test package. These tests are parameterized, and so, we executed them with all parameters.

Test Run #1 - 84c9292b-3bd4-44be-a13b-23f086d0ef13 - Baseline

Test case Scenario Failure rate
streamingAndThenAggregatedResponse[1: strategy = DEFAULT] Base 2/100 (2%)
aggregatedAndThenStreamingResponse[1: strategy = DEFAULT] Base 1/100 (1%)
twoStreamingResponsesFlushOnEach[1: strategy = DEFAULT] Base 1/100 (1%)
srvQueryResolutionResult Base 1/100 (1%)
aggregatedAndThenStreamingResponse[2: strategy = OFFLOAD_ALL] Base 1/100 (1%)
twoAggregatedResponsesFlushOnEnd[2: strategy = OFFLOAD_ALL] Base 1/100 (1%)

Table 6.4: Servicetalk - Test Run #1 results
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To establish a baseline, we executed all tests in the repository under the base execution sce-
nario 100 times, for a total of 939’600 test executions. As shown in table 6.4, we found six flaky
tests, including all the flaky tests identified in the original issue, however, not always with the
same parameters. We also identified an additional flaky test, "srvQueryResolutionResult" in the
"DnsServiceDiscovererObserverTest" class.

Test Run #2 - 18f905e2-7978-4599-8a32-768b3f8b0639 - all execution sce-
narios

Test case Scenario Failure Rate
twoStreamingResponsesFlushOnEach[2:
strategy = OFFLOAD_ALL]

Total 75/12000 (0.63%)

Base 25/3000 (0.83%)
CPU Load 13/3000 (0.43%)
Concurrency / CPU Load 11/3000 (0.37%)
Concurrency 26/3000 (0.87%)

aggregatedAndThenStreamingResponse[1:
strategy = DEFAULT]

Total 48/12000 (0.4%)

Base 18/3000 (0.6%)
CPU Load 7/3000 (0.23%)
Concurrency / CPU Load 8/3000 (0.27%)
Concurrency 15/3000 (0.5%)

aggregatedAndThenStreamingResponse[2:
strategy = OFFLOAD_ALL]

Total 57/12000 (0.48%)

Base 20/3000 (0.67%)
CPU Load 11/3000 (0.37%)
Concurrency / CPU Load 6/3000 (0.2%)
Concurrency 20/3000 (0.67%)

streamingAndThenAggregatedResponse[2:
strategy = OFFLOAD_ALL]

Total 56/12000 (0.47%)

Base 27/3000 (0.9%)
CPU Load 7/3000 (0.23%)
Concurrency / CPU Load 12/3000 (0.4%)
Concurrency 10/3000 (0.33%)

Table 6.5: Servicetalk - Test Run #2 results

For test run #2, we executed the test cases we found to be flaky under each execution scenario,
3000 times per scenario. In table 6.5, we show the results for a selection of the flaky tests. Although
failure rates are very low overall, there are some promising differences between the execution
scenarios in some cases.

6.2.3 Spring Boot
On the Spring Boot project, there are three interesting test runs:

1. Test-runner node on older OS (Ubuntu 20.04 with Linux kernel 5.4), parallel test execution

2. Test-runner node on newer OS (Ubuntu 21.04 as specified above), non-parallel test execution
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3. Test-runner node on newer OS, parallel test execution

As can be seen, two parameters of the system were varied from test run #1 to #2. Test run #3
was executed in order to identify which of these parameters affected the test runs more. Test run
#2 was executed with only one test container running at a time on the node, in order to check if
parallel execution drastically changes the results, which could indicate a failure in the isolation
between test containers.

Test Run #1 - e31410c1-5f9a-4437-b960-026cd09a068d - Ubuntu 20.04, par-
allel execution

In the results in table 6.6, we can see very high failure rates in four of the test cases. For the test case
"smoketest.websocket.tomcat.echo.CustomContainerWebSocketsApplicationTests.reverseEndpoint()",
there are also notable differences between the base execution scenario and the scenarios where the
CPU fuzzy loader was running, with lower failure rates in the latter cases.

Test Run #2 - 3afe0405-f24b-4af1-a0b0-9dd1db9830e7 - Ubuntu 21.04, non-
parallel execution

As we can see in table 6.7, no test failures occurred under the conditions specified above for test
run #2 at all.

Test Run #3 - 8371be78-55d5-421b-805d-fb5285bdfe79 - Ubuntu 21.04, par-
allel execution

Test run #3 (results shown in figure 6.8) mostly repeats the results from run #2, apart from one
test case, which exhibited flakiness with low failure rates (around 5%).

Discussion of Spring Boot results

Our test runs on the Spring Boot projects showed massive differences when varying execution
parameters. Since the comparison between parallel and non-parallel execution on Ubuntu 21.04
showed minor differences, we can deduce that the isolation between test containers did not have
a major effect on execution, although some impact can still be observed. This indicates that our
isolation concept still needs improvement.

More interestingly, it appears that the switch from Ubuntu 20.04 to Ubuntu 21.04 caused all
flaky behaviour to disappear, when failure rates were previously high (approximately 70-90%).
This could have interesting implications for further execution scenarios, since one of the scenarios
proposed by Terragni et al. [2] varies the OSes that tests are executed on. This scenario was not
directly implemented as part of this prototype, but we envision that it could be implemented with
either more bare-metal test-runner nodes, or perhaps also virtual machines, with different OSes.
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6.2.4 Discussion
With regards to our research questions, our preliminary evaluations on projects with flaky tests
suggest the following answers:

• RQ 2: How well does the implemented prototype show test flakiness, for both known test
cases as well as in general?

Our prototype has shown test flakiness in projects where we evaluated previously known
flaky test cases (RxJava and Servicetalk). In both cases, we could limit our test run execution
to only execute these test cases, so that test run execution could be sped up when compared to
executing the full suite of tests. We also successfully used the prototype to execute a test run for
the entire test suite in the Servicetalk project, although with a low number of executions. In this
case, most of the flaky tests with higher failure rates (as shown in the targeted executions of those
cases) were also identified. In addition to that, we also found new flaky test cases in the Spring
Boot project in the case where we executed the tests on an older OS version.

The prototype provides configurable options for test runs with regards to the executed test
cases, the specific execution scenarios, and the total number of executions. Due to this, it has
worked well both in a typical continuous integration environment, where entire projects can be
evaluated for test flakiness, and more targeted execution of single test cases, which saves a lot of
time and computational resources.

• RQ 3: How do the implemented prototype execution scenarios affect test execution, i.e., do
they affect overall failure rates?

In our test runs, we have found the prototype scenarios to result in different failure rates. In
particular, one of the tests evaluated in the Spring Boot project shows some difference between the
base scenario and the concurrency scenarios. These preliminary evaluations are not statistically
significant though, and much more stringent evaluations need to be made, with more scenarios
and many more projects. Also, the concrete configuration and implementation of the individual
scenarios must be further refined, in order to achieve the best possible results.

Since we do not know the root causes of the flaky tests in the projects we evaluated, and only
a few execution scenarios were implemented, we also cannot judge whether the differences we
observed between the scenarios are merely random, or actually indicate root causes. Therefore,
we cannot answer this research question at the moment.
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Test case Scenario Failure Rate
smoketest.websocket.tomcat. SampleWeb-
SocketsApplicationTests.reverseEndpoint()

Total 1637/2000 (82%)

Base 431/500 (86%)
CPU Load 402/500 (80%)
Concurrency / CPU Load 383/500 (77%)
Concurrency 421/500 (84%)

smoketest.websocket.tomcat.echo. Cus-
tomContainerWebSocketsApplication-
Tests.reverseEndpoint()

Total 1542/2000 (77%)

Base 419/500 (84%)
CPU Load 365/500 (73%)
Concurrency / CPU Load 345/500 (69%)
Concurrency 413/500 (83%)

org.springframework.boot.actuate.hazelcast.
HazelcastHealthIndicatorTests.hazelcastUp()

Total 24/2000 (1%)

Base 3/500 (0.6%)
CPU Load 10/500 (2%)
Concurrency / CPU Load 6/500 (1%)
Concurrency 5/500 (1%)

org.springframework.boot.actuate.hazelcast.
HazelcastHealthIndica-
torTests.hazelcastDown()

Total 0/2000 (0%)

Base 0/500 (0%)
CPU Load 0/500 (0%)
Concurrency / CPU Load 0/500 (0%)
Concurrency 0/500 (0%)

smoketest.websocket.tomcat.echo. Cus-
tomContainerWebSocketsApplication-
Tests.echoEndpoint()

Total 1828/2000 (91%)

Base 465/500 (93%)
CPU Load 460/500 (92%)
Concurrency / CPU Load 444/500 (89%)
Concurrency 459/500 (92%)

smoketest.websocket.tomcat. SampleWeb-
SocketsApplicationTests.echoEndpoint()

Total 1861/2000 (93%)

Base 466/500 (93%)
CPU Load 463/500 (93%)
Concurrency / CPU Load 463/500 (93%)
Concurrency 469/500 (94%)

Table 6.6: Spring Boot - Test Run #1 results
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Test case Scenario Failure Rate
smoketest.websocket.tomcat. SampleWeb-
SocketsApplicationTests.reverseEndpoint()

Total 0/2000 (0%)

smoketest.websocket.tomcat.echo. Cus-
tomContainerWebSocketsApplication-
Tests.reverseEndpoint()

Total 0/2000 (0%)

org.springframework.boot.actuate.hazelcast.
HazelcastHealthIndicatorTests.hazelcastUp()

Total 0/2000 (0%)

org.springframework.boot.actuate.hazelcast.
HazelcastHealthIndica-
torTests.hazelcastDown()

Total 0/2000 (0%)

smoketest.websocket.tomcat.echo. Cus-
tomContainerWebSocketsApplication-
Tests.echoEndpoint()

Total 0/2000 (0%)

smoketest.websocket.tomcat. SampleWeb-
SocketsApplicationTests.echoEndpoint()

Total 0/2000 (0%)

Table 6.7: Spring Boot - Test Run #2 results

Test case Scenario Failure Rate
smoketest.websocket.tomcat. SampleWeb-
SocketsApplicationTests.reverseEndpoint()

Total 0/2000 (0%)

smoketest.websocket.tomcat.echo. Cus-
tomContainerWebSocketsApplication-
Tests.reverseEndpoint()

Total 0/2000 (0%)

org.springframework.boot.actuate.hazelcast.
HazelcastHealthIndicatorTests.hazelcastUp()

Total 93/2000 (5%)

Base 24/500 (5%)
CPU Load 25/500 (5%)
Concurrency / CPU Load 27/500 (5%)
Concurrency 17/500 (3%)

org.springframework.boot.actuate.hazelcast.
HazelcastHealthIndica-
torTests.hazelcastDown()

Total 0/2000 (0%)

smoketest.websocket.tomcat.echo. Cus-
tomContainerWebSocketsApplication-
Tests.echoEndpoint()

Total 0/2000 (0%)

smoketest.websocket.tomcat. SampleWeb-
SocketsApplicationTests.echoEndpoint()

Total 0/2000 (0%)

Table 6.8: Spring Boot - Test Run #3 results
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Conclusion

In this project, we implemented a prototype for an architecture for inducing flaky test behaviour
proposed by Terragni et al. [2]. Overall, we have shown that we were able to identify both pre-
viously known and new flaky tests with our prototype. Applications written in Java with the
Gradle build tool can be built into our custom test containers, and test runs are automatically
executed, with a simple API provided to frontend applications. At its core, the prototype system
simply provides an API to build software containers and execute them repeatedly under different
conditions.

In the introduction to this thesis, we mention several key challenges with regards to test sys-
tem and container isolation, platform-independence for the tested software, and collection of test
results. Our implementation has made use of several methods for isolation of both the isolated
systems and the individual containers, although our preliminary evaluation shows that more
work is to be done there to determine the impact on test flakiness that imperfect isolation could
have. Thanks to its flexible architecture, our system can easily be extended to support more pro-
gramming languages and testing frameworks, but we have not identified a completely platform-
agnostic way to execute software tests. It is likely that such a way simply does not exist. Concern-
ing the collection of test results, different methods to ensure minimal overhead for the running
tests will have to be evaluated.

With regards to the system’s effectiveness in showing root causes of flaky tests, we cannot yet
make a conclusion. However, the system is highly configurable, and the prototype can be used to
further evaluate this approach.
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Future work

For further development of the flakiness inducer infrastructure on the basis of the implemented
project, there are two main categories of enhancements. On the one hand, general enhancements
are required to transform this prototype into a stable platform. On the other hand, our core
approached will have to be improved with further investigation into the isolation concept and
the execution scenarios.

8.1 General enhancements
In the implementation of our prototype, we have adhered to general software development prac-
tices in order to provide a stable platform for enhancement. Nevertheless, the platform as a whole
will still require a lot of work to eventually provide a stable solution.

8.1.1 Security

User management

Currently, users can register and login via API endpoints. Spring Boot security is used to safely
store their passwords in conformance with current industry standards. However, they are cur-
rently neither authenticated nor authorized within the system, only identified via their unique ID.
A service needs to be implemented that authenticates users via tokens that also provide autho-
rization information to allow or deny access to specific resources. In the same vein, organizations
could also be implemented, with several users who have different levels of access to the resources.

The authentication system should also support various platforms for continuous integration,
for example via GitHub OAuth tokens.

Test container security

In our system, we execute arbitrary user-supplied software and user-defined test cases, and by
default, processes in containers run with root privileges. Therefore, the containers that they run
in need to be secured in a way that does not interfere with typical test cases, but also prevents
malicious attacks on the infrastructure or other user’s information. This should be possible, since
Kubernetes provides various ways to sandbox pods, such as namespaces and security policies.
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8.1.2 Administrator interface
Since we use a microservice-based approach in our prototype, and we envision further execu-
tion scenarios and fuzzy loaders to be supplied dynamically, a management system could be
implemented, for administrator users to upload new versions of scenario configurators or fuzzy
loaders, or register entirely new ones. This would also allow organizations to customize the in-
frastructure to fit their needs, on top of a standard configuration that would be supplied.

8.1.3 Test software support
Currently, the prototype only supports Java / Gradle-based projects. An enhancement to support
Maven-based Java projects should be simple, but there is no general interface with which more
programming languages and testing frameworks could be supported. Instead, supporting more
software for flaky test evaluation will therefore likely be an ongoing task in the further develop-
ment of the system.

8.1.4 Execution speed
While the ability of our prototype to show test flakiness looks promising, the test runs can take
a long time and consume a lot of computational resources. Test execution will have to be opti-
mized in order to incur a lower overhead. This can be done on a framework-specific basis, as we
have done with Gradle testing, where we identify the specific Gradle subtasks which include the
desired test cases in a multi-project software design. Container startup should also be sped up,
since it can in some situations incur a large overhead, particularly when only few test cases are
executed.

Other existing approaches to speed up flaky test re-running, such as the one used in the DE-
FLAKER tool put forward by Bell et al. [5], could also be included, to reduce the amount of tests
that need to be examined in the first place.

8.1.5 Scalability
The architecture we have used to implement the major components of the system allows us to
scale these as we wish. During further evaluation, the scalability of the other components will
have to be investigated, and upgraded where necessary. For example, the NFS-based approach to
the software builds is not as scalable, and there are better options (such as GlusterFS) which will
provide scalability in that dimension.

8.2 Core approach enhancements

8.2.1 Test system isolation
We have already identified several methods to isolate the testing systems from the rest of the en-
vironment and the testing containers from each other. More investigation is necessary into the
effects of allocation to specific CPU cores, perhaps also experimenting with different CPU models
and disabling Hyperthreading, for example. To improve isolation between containers, further re-
source restrictions, for example network speed, will also have to be implemented. This may solve
another problem, where the gathering and reporting of test results can have an impact on other
tests. Other approaches to this particular challenge may include saving the results to the disks
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for later gathering, or synchronizing containers to suspend result reports until all concurrently
running containers have finished execution. No matter which approach is chosen, there will of
course always be some overhead. The goal of future work will be to evaluate which approach, or
combination of appraoches, yields the best results.

8.2.2 Execution scenarios
With regards to the core approach of different execution scenarios for root-cause analysis of flaky
tests, the prototype provides a configurable platform for their implementation. In the future, more
execution scenarios should be implemented, in order to better evaluate them for their usefulness
in root-causing flaky tests. The prototype’s interface currently supports varying resource restric-
tions, which are applied to the Kubernetes pods at execution time, as well as environment vari-
ables, which can be used by additional scripts (fuzzy loaders) running inside the test-container.
This already allows for scenarios that explore CPU and memory restrictions, and any scenarios
that can be purely implemented as fuzzy loaders. For example, a scenario to explore the impact
of memory speeds could be implemented via varying memory restrictions and a fuzzy loader
dynamically allocating and freeing memory, forcing the software under inspection to use slower
swap memory. A fuzzy loader that writes random data to the disk could also be implemented, in
order to evaluate root causes related to I/O speeds.

The prototype can also be extended to support other forms of variations. For example, pods
could be restricted to run on specific test-runner nodes, which run different OSes, to explore the
OS-related non-deterministic dimension.

In order to vary test run order execution, another scenario proposed by Terragni et al. [2],
more investigation needs to be done into the test framework specifics. For Gradle, the build tool
we support in our prototype, there are existing plugins1 which allow control over test case order.
For other frameworks, more individual solutions like that will likely be necessary.

Together with custom plugins to enhance Kubernetes’ native resource limits, it should be pos-
sible to implement all of the scenarios proposed by Terragni et al. [2].

1https://github.com/gradle/gradle/issues/8520#issuecomment-493790187
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