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Abstract

Modern day machine learning models are becoming omnipresent and are required to handle
progressively more complex environments in their tasks. In classification problems, an increas-
ingly popular scenario is called Open Set Recognition, which does not require the model to have
complete knowledge of the world and during which unknown classes can be submitted to the
algorithm while testing. This thesis tackles the challenge to correctly handle and reject these un-
known inputs by performing adversarial training on our classification model. Furthermore, we
analyze the difference in performance of several state-of-the-art adversarial attacks used in our
adversarial training. The experiments show that our approach effectively deals with unknown
inputs and delivers very promising results. To our knowledge, there has been no prior work that
used adversarial training for Open Set Recognition like in our approach.





Zusammenfassung

Moderne Modelle für maschinelles Lernen sind heutzutage omnipräsent und betreuen immer
komplexer werdende Aufgaben. Bei Klassifikationsproblemen gewinnt das sogenannte "Open
Set Recognition" Szenario an Beliebtheit, bei dem die Modelle keine perfekte Information ihres
Umfelds benötigen, sondern auch in unbekannten Situationen brauchbar sind. Diese Arbeit geht
die Herausforderung an, mit Hilfe von Adversarial Training mit unbekannten Umgebungen ko-
rrekt umzugehen. Zusätzlich vergleichen wir verschiedene moderne Methoden, um sogenannte
Adversarial Examples zu erzeugen. Unsere Experimente zeigen, dass die Methode höchst effek-
tiv in unbekannten Situationen ist und auch korrekt mit ihnen umgehen kann. Unseres Wissens
nach gibt es noch keine Arbeit, die zuvor Adversarial Training im Open Set Recognition Szenario
angewendet hat.
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Chapter 1

Introduction

Deep Learning is one of the fastest evolving fields in computer science, with various applications
in machine vision, reinforcement learning and many more. One very popular task in deep learn-
ing is classification, since deep neural networks are well-known to be able to learn how to classify
the content of images based on examples of the classes. Here, the network try to predict a class
for each sample it is given. This task is solved by many state-of-the-art approaches, yet most of
these approaches have one thing in common: All these networks are trained to only distinguish
the classes they are shown during training. This is called Closed Set Recognition, where the train-
ing and testing data is drawn from the same label and feature distribution. When a previously
unseen sample of the training classes is shown to the network, it is able to predict the correct class
with a high level of accuracy and confidence. However, during Open Set Recognition, if you feed
the network with samples not from the classes it is trained on, it delivers poor results, since the
network has no other choice than classifying it as one of the known classes. Unfortunately, this
usually happens with rather high confidence, such that simply thresholding on confidence and
rejecting samples below the threshold as unknown is not a feasible solution. To prevent this, there
have been attempts to include unknown samples in the training set to further improve the ability
to recognize and reject unknown input. However, this would only work for unknown samples
that are related to the ones shown in the training set. Therefore, to completely cover the space of
all possible unknowns, it would require an immense amount of data and there is no reasonable
way to fit all this data into the training set. This means there will always be unknown samples that
have nothing in common with the ones the network has seen while training. Since the possibility
is very small that the network will only encounter unknown samples from its training set, this
approach has remarkable disadvantages. This thesis proposes an approach to tackle the Open
Set Recognition scenario, where incomplete knowledge of the world exists at training time, re-
quiring classifiers to not only accurately classify the known classes, but also effectively deal with
unknown ones. More specifically, it examines the effects of adversarial training on the ability of
neural networks to reject unknown input.

Adversarial training is done with so-called adversarial examples, which are carefully con-
structed input samples for a network that seem very similar to normal inputs but produce com-
pletely different outputs. These adversarial examples have such minor differences to their original
image that a human is not able to distinguish between them. However, these seemingly equiva-
lent samples produce two totally different outputs when given to a specific neural network, lead-
ing to undesired model behaviour. This suggests that adversarial examples expose fundamental
blind spots in neural networks. Since the discovery of adversarial examples, dozens of methods
for their generation have been proposed, so-called adversarial attacks. The most prominent ones
are discussed in this thesis.
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So how do these malicious attacks help our network recognize and differentiate known from
unknown input? In order to better understand the problem, we use a categorization of samples
proposed by Dhamija et al. (2018). Let us assume Y ⊂ N be the infinite label space of all classes,
which can be broadly categorized into:

• C = {1, ..., C} ⊂ Y : The known classes that the network shall identify.

• U = Y \ C: The unknown classes containing all types of classes the network needs to reject.
Since Y is infinite and C is finite, U is also infinite. The set U can further be divided into:

1. B ⊂ U : The background or known unknown classes. Since U is infinitely large, during
training only a small subset B can be used.

2. A = U \ B = Y \ (C ∪ B): The unknown unknown classes, which represent the rest of the
infinite space U , samples from which are not available during training, but only occur
at test time.

As previously stated, one approach to improve the performance is to include samples of as
many different unknowns as possible in the training set, such that the network will recognize any
similar input and will be able to reject it. A major trend observed in this approach is that increas-
ing the similarity of the known unknowns B and the known examples C also increases the ability
to reject unknown samples (Dhamija et al., 2018). Since adversarial examples are intentionally
constructed to differ as little as possible to their original samples, yet still get misclassified by the
networks, they present a perfect candidate for B.

Our approach performs adversarial training with adversarial examples that are generated on
the fly while training the network. Contrary to the usual adversarial training, we do not label the
adversarial examples with the class they depict, but we do intentionally label them as unknown.
In the following chapters we will look into the effects of adversarial training in the open set sce-
nario and its impact on performance of classification networks. Our experiments then show the
effectiveness of our method on the ability to reject unknown inputs.



Chapter 2

Background and Related Work

This chapter yields a brief introduction to the literature this thesis is based on. After presenting
a high level overview of the Open Set Recognition (OSR) scenario and the field of adversarial
examples, it proceeds to dive further into the specific adversarial attacks used in our approach.
Additionally, it examines some background information about the problem setting and advances
in Open Set Recognition.

2.1 The Open Set Problem
When doing Open Set Recognition, incomplete knowledge of the world exists at training time,
requiring the classifiers to not only accurately classify the known classes, but also effectively deal
with unknown ones (Geng et al., 2020). So the challenge here is to correctly classify samples from
C, which the network is trained on, but also detect samples from U (some of which the network
has never seen before) and handle them correctly. A visualization of the training and testing
environments is shown in Figure 2.1. So how would one handle unknown samples U , or more
specifically, A; the ones which the network has not seen during training?

2.1.1 Open Set Approaches
Traditionally, machine learning models always operated on a closed set of data, so-called Closed
Set Recognition (CSR). This also meant that the test and training dataset were from the same dis-
tribution and have the same classes. When applying this in practice however, finding such an
enclosed environment can be very challenging. This then gave rise to Open Set Recognition. Ini-
tially, the major question when doing Open Set Recognition is what methods are best in this kind
of scenario. Original approaches often considered to use binary classifiers to distinguish C from
U , which gave rise to SVM-based methods. One example would be an extensions of a binary SVM
proposed by Scheirer et al. (2013). Following this, there have also been approaches constructing
new classifiers for Open Set Recognition (Rudd et al., 2017).

More recent approaches often tend towards using deep neural networks, which are also used
in our approach. Even though basic neural networks are known to classify samples from an
unknown class as a known class with rather high confidence, there have been many modern
methods to assess these problems. An example for this would be the OpenMax model by Bendale
and Boult (2016), which proposed a first solution towards open set deep networks. They intro-
duced an OpenMax layer, which resulted in a model optimized for Open Set Recognition that
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Figure 2.1: CLOSED SET RECOGNITION. Depicted in blue is the Closed Set scenario. The extension to
the Open Set scenario is further depicted in black.

significantly outperformed basic deep networks. Another more modern approach using neural
networks is PROSPER (Zhou et al., 2021), which also uses a background class B in a similar way
than we do. Our approach uses deep neural networks in combination with adversarial training
to tackle the open set problem.

Following these approaches, there has also emerged an extension to the Open Set Recognition
problem, called Open World Recognition, proposed by Bendale and Boult (2015). Additional to
the tasks of Open Set Recognition, they further want to include the unknowns encountered during
inference in the training set (Boult et al., 2019). This way unknown samples can be converted
into additional known classes. However, this thesis only focuses on the problem of Open Set
Recognition.

2.1.2 Handling Unknowns in Deep Learning
This section further investigates the problem of distinguishing C from U when using neural net-
works for Open Set Recognition. Deep neural networks usually output a probability for each
class it is trained on. One solution to the problem would now be to simply threshold the proba-
bility scores and assign all samples that did not reach a certain value to the unknown class (Matan
et al., 1990; Geng et al., 2020). While samples from a class which the network is not trained on
usually do have lower probability scores on average, this solution brings up the problem on how
to cleanly isolate these samples. Since the probability scores may have high variance, this can
lead to the rejection of many known samples and misclassification of many unknown samples.
Even when including unknown samples in the training set, so-called known unknowns (Scheirer
et al., 2014), the performance would only increase towards unknown samples related to those
in the training set. Simply thresholding on the output probability can be considered as rejecting
uncertain predictions, rather than rejecting unknown classes. Therefore, such an approach often
calls for a clever training strategy, which adjusts the probability scores accordingly.

Another approach would be adding an additional class, to which the network would assign
all the samples which it predicts as unknown. This class is often referred to as the "garbage" class
(Linden and Kindermann, 1989). When classifying a dataset, one would simply add an addi-
tional class for all the unknowns encountered in the testing set. The "garbage" class solution often
is more effective than simply thresholding the output probabilities. However, this approach runs
into similar problems: the features of all unknown samples are heavily mixed with the known
samples, which leads to inaccurate separations.
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To fix this issue, Dhamija et al. (2018) proposed a novel loss function called Entropic Open Set
loss, which does not need to introduce an additional "garbage" class for the unknowns. This loss
is designed to maximize the entropy of unknown samples and thus achieves a better separation
in the deep feature space. This will be discussed in Section 3.2.1 in greater detail.
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2.2 Adversarial Machine Learning
The main objective of this thesis is studying the results of adversarial training with different ad-
versarial attacks in the OSR scenario. In this section, we dive into what exactly adversarial exam-
ples are and review the most important of the many procedures to generate them.

2.2.1 Adversarial Examples
The notion of adversarial training gained a lot of traction in 2014, when Ian Goodfellow published
his paper on adversarial samples. Goodfellow et al. (2015) describes them as inputs with small
but intentionally worst-case perturbations to samples from the dataset, such that the perturbed
input results in the model outputting an incorrect answer with high confidence. This will now be
further elaborated in this section. Let us start with an example depicted in Figure 2.2, where a net-
work is trained to classify pictures of different entities. On the left, there is an image of a panda.
If we give this picture to the network as input, it tells us with a certain confidence (here 57.7%)
that this is indeed a panda. Looking at the middle of the figure, there is a noise image which has
been artificially generated. We can now modify the original image, which in this example is done
by adding small values of this noise image, resulting in the image on the right. For the human
eye, both images are identical and, when asked, it is apparent that both images depict a panda
bear. However, if we present the new image to our network, it now tells us with almost no doubt
(99.3% confidence) that this is a gibbon. We now have our first instance of an adversarial example.
Pictures like this expose a fundamental blindspot of the network, and hint that in general, these
networks do not truly learn the underlying concepts of the images they are given to classify.

Figure 2.2: ADVERSARIAL EXAMPLE. A demonstration of an adversarial example with its predicted
classes and confidences replicated from Goodfellow et al. (2015). Adding the perturbation depicted in the
middle to the original image on the left will produce the adversarial example on the right.

There are several ways to generate these malicious images (Goodfellow et al., 2015; Madry
et al., 2018; Carlini and Wagner, 2017; Rozsa et al., 2017), so-called adversarial attacks. An adver-
sarial attack also generated the noise image used in our example. These attacks however will be
discussed in greater detail in Section 2.3. While we can generate them, the origin of adversarial
examples and why they exist in the first place is still a mystery that has not yet been fully solved.
There have been many theories on why inputs like these cause such abnormal behaviour, but all
of them have been shown to be false. Intuitively, one can think of an adversarial example as a
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benign sample with a perturbation added to it. An adversarial example could then be described
as x̃ = x+α, where α is the perturbation and x the original sample. The goal is to keep α as small
as possible while still provoking large changes to the output.

2.2.2 Adversarial Training and Robustness
With the help of these methods to generate adversarial examples, we can now perform adver-
sarial training. This is done by including adversarial examples in the training set. Adversarial
training is closely related with adversarial robustness, since this is its most popular use case. Sim-
ply said, increasing the adversarial robustness of a network results in less vulnerability against
adversarial examples.

However, when doing Open Set Recognition, one focuses on increasing robustness against un-
known input and not adversarial examples. This is important to note, since they are two different
topics. When training for adversarial robustness, a very simple approach would be to label the
adversarial example as the class it depicts. In Figure 2.2, one would now include the generated
adversarial example of the panda bear that the network classified as a gibbon in the training set.
Now it would be labeled with the class "panda", such that the network can also learn to classify
it correctly. There exists a lot of work on trying to increase adversarial robustness (Wang et al.,
2019). In our approach however, we use adversarial training to correctly recognize unknown
inputs. This means that the label of the adversarial examples are not the label of the class they
depict, but instead they get labeled as unknown.

2.2.3 Adversarial Metrics
One very important aspect of adversarial examples is the similarity to their original input. This
section introduces statistical norms, which are the most popular metrics to measure similarity
between adversarial examples and their respective original images. Statistical norms are used to
measure the length or magnitude of vectors. Here, they measure the pixel value differences of the
original input and the generated adversarial example. In other words, statistical norms quantify
the magnitude of the perturbation α by looking at each pixel individually and sum over all pixel
differences. The most popular norms used are the L1-, L2- and L∞-norms.

The L1-norm is calculated by the sum of absolute differences: ‖α‖1 = |α1| + |α2| + ... + |αn|.
Intuitively, this just adds the difference of every pixel value of the images, which is then used as
a metric of change in the image.

The L2-norm, also commonly referred as Euclidean norm, usually represents the length of a
vector: ‖α‖2 =

√
α2
1 + α2

2 + ...+ α2
n. Contrary to the L1-norm, the metric here is the square root

of the sum of the squared differences. Both however focus on adding the pixel-wise differences of
two images or samples.

The L∞-norm, also called max-norm, has a different approach. It takes only the maximum
value of the vector: ‖α‖∞ = max(|α1|, |α2|, ..., |αn|). This is also the norm which is going to be
used the most in our attacks. Intuitively, the only pixel that matters here is the one that is most
different to the original image. Basically, it compares how all the pixels have changed in their
values and takes the largest difference as the metric.
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Figure 2.3: STATISTICAL NORMS. unit circles of different p-norms in R2

One can summarize these norms and their variations using the p-norm notation, commonly
denoted as Lp. Lp is defined as:

‖α‖p =

(
n∑

i=1

|αi|p
)1/p

(2.1)

If one now, for example, substitutes p = 1 or p = 2, we get the L1-norm and L2-norm respec-
tively. A very important and elegant fact is that one can define and visualize these Lp-norms as
Lp-spaces. Figure 2.3 depicts the unit circles in the two-dimensional space for different Lp-norms.
Every vector from the origin to the unit circle has a length of one, the length being calculated with
the formula of the corresponding p. Notice how the shape changes as p grows larger.

Lp-norms are not only used to classify adversarial examples, but also adversarial attacks
(Goodfellow et al., 2015; Madry et al., 2018; Carlini and Wagner, 2017; Rozsa et al., 2017): If an
attack uses an Lp-norm as its metric, it is called `p-bounded. How this metric gets applied in
adversarial attacks will be explained in more detail in the next section.
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2.3 Adversarial Attacks
This section focuses on the generation of adversarial examples and describe the attacks we used
on our network for adversarial training in greater detail. As previously mentioned, the goal of an
adversarial attack is creating input samples for a specific network, that have as little difference to
the original data as possible but cause as much damage to the output of the network as possible.
Most often this is done by finding the perturbation α to the original image that does this best.

A major task in adversarial attacks is to quantify the magnitude of perturbation α. One pop-
ular way to do this is by enforcing that the largest value of α is not allowed to be greater than
a predefined value ε. This is a very important detail and is denoted as ‖α‖∞, the L∞-norm or
max-norm constraint. Since ‖α‖∞ yields the maximum value of α, the max-norm constraint is
then defined as ‖α‖∞ < ε. This is also equivalent to being `∞-bounded. This can further be
generalized into attacks having the Lp-norm constraint and being `p-bounded.

2.3.1 Taxonomy of Adversarial Attacks
Depending on the knowledge level of the attacker, adversarial attacks can be classified as either
white-box or black-box attacks. In the scenario of a white-box attack, the attacker has complete
knowledge of the network, including its architecture, weights and other parameters (Carlini and
Wagner, 2017). This is also the approach we tackle in our experiments. When performing a
black-box attack however, the attacker only knows the output of model, which means there is no
knowledge about any underlying structure of the network. Yet even in the black-box scenario,
adversarial attacks can still be highly effective, which makes them a dangerous tool in the wrong
hands.

Aside from the black- and white-box taxonomy, adversarial attacks can be subdivided further
into targeted and untargeted attacks. When performing a targeted attack, given an input x and
a target class t, the goal is to find an adversarial example that is still similar to the input but gets
classified as as the target class t. Formally, this attack generates x̃ such that C(x̃) 6= C(x) with
C(x̃) = t (Carlini and Wagner, 2017). On the other hand, untargeted attacks, which are strictly
less powerful, simply focus on finding an adversarial example that will get classified with a dif-
ferent class C(x̃) 6= C(x). For our experiments we both use targeted and untargeted attacks and
all the attack methods listed in Section 2.3 are white-box attacks.

2.3.2 Fast Gradient Sign Method
With the introduction of adversarial examples in 2013 by Szegedy et al. (2014), Goodfellow et al.
(2015) shortly after proposed a simple and fast untargeted attack, which he called the fast gradient
sign method (FGSM). We can now define θ as the parameters of a model, x as the input to the
model and y as the targets associated with x. The loss function to train the neural network can
then be denoted as J(θ, x, y). To find the best magnitude for the perturbations, Goodfellow uses
the additional parameter ε. We can use the max-norm constraint ‖α‖∞ < ε and define our formula
for the perturbation as (Goodfellow et al., 2015)

α = ε sign(∇xJ(θ, x, y)) (2.2)

which then results in the adversarial example

x̃ = x+ ε sign(∇xJ(θ, x, y)) (2.3)
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The original image is altered by adding or subtracting ε to each pixel. Whether we add or sub-
tract ε depends on whether the sign of the gradient of the loss for the respective pixel is positive
or negative. Since we are stepping in the direction of the sign of the gradient, the loss itself will
usually get bigger, ultimately leading to misclassification of the sample.

This fast gradient sign method derives the optimal perturbation which is constrained by the
max-norm ‖α‖∞. Since the perturbation is constrained by the max-norm, it is therefore a `∞-
bounded attack. The main focus is now optimizing over the parameter ε. The adversarial example
in Figure 2.2 is generated using FGSM with ε = 0.007. Varying the max-norm constraint by
changing ε results in adversarial examples potentially having larger impact on the output but
also affects similarity to the original sample.

2.3.3 Projected Gradient Descent
A few years after the introduction of the fast gradient sign method, researchers Madry et al. (2018)
at MIT found an even mightier attack based on Goodfellow’s initial work. As the fast gradient
sign method just takes one step in the direction of the sign of the gradient, this new attack would
attempt to take multiple. Therefore, it can be seen as a sort of multi-step variant of FGSM. This
attack is essentially performing projected gradient descent (PGD) on the loss function

xi+1 = Πx+S (xi + η sign(∇xJ(θ, xi, y)) (2.4)

where η is the learning rate and Πx+S performs a projection back into the space of allowed
perturbations S (Madry et al., 2018). Since we focus on `∞-bounded attacks, the set of allowed
perturbation S is adjusted accordingly. Just like FGSM, the PGD attack is also a constrained opti-
mization problem and an untargeted attack. It attempts to find the perturbation α that maximises
the loss of a model on a particular input while keeping the size of α smaller than a specified
amount ε. The process is further visualized in Figure 2.4

Figure 2.4: SAMPLE DISTRIBUTION SPACE. Visualization of an iterative PGD attack (Knagg, 2019)

In this example figure, an `2-bounded attack is performed for illustration purposes, since the
L2-norm yields a nice circle. How the boundary changes for other norms can be seen in Figure 2.3.
Figure 2.4 depicts the possible distribution space for all pixel values. This means every possible
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image is found in this distribution space and every point in this space would give us a sample of
an image. The figure also depicts an L2-ball, with its center being the original sample. The radius
is dependent on what value ε is assigned to. More specifically, all the samples that are on the
radius of an Lp-ball have exactly ‖α‖p = ε, all samples outside of the circle have ‖α‖p > ε and all
samples inside of the circle have ‖α‖p < ε. Since our perturbation are bounded by the constraint
‖α‖p < ε, we only consider samples inside of the circle for our adversarial examples. So how do
we know which sample is best? As described already, the goal of the method is to maximize the
loss function, so we want to find the sample inside of the `p-ball that produces the highest loss.
We can achieve this using a slight variation of gradient descent: projected gradient descent.

Therefore, Figure 2.4 also has a heat map for the loss, indicating where the samples with a high
loss are. This is where we want to end up when searching for possible adversarial examples. With
PGD we start at a random location inside of the `p-ball and take a fixed size gradient step in the
direction of the greatest loss. We can repeat this for an arbitrary number of times or until we reach
a local optimum. However, it is possible that the PGD update step would overshoot the `p-ball
with its gradient step. Since we are not allowed to leave the `p-ball it simply gets projected back
to the nearest point inside of it. One can now repeat the whole procedure, starting at a different
random location and hoping to find a better optimum. In Figure 2.4 we can see two full PGD
iterations that both converged in different optima.

2.3.4 Carlini and Wagner
The heaviest and most extreme attack used in our approach is developed by Carlini and Wag-
ner (2017) and appropriately named Carlini and Wagner (CnW) attack. Again, their first goal
is finding a perturbation α that would minimize the difference between original sample x and
adversarial example x̃ = x + α. Secondly, the adversarial example x̃ should get classified as the
target class t, which means their attack is targeted. The difference between x and x̃ is again mea-
sured using Lp-norms. They also point out a major flaw in PGD: when projecting the coordinates
onto the `p-ball, the input for the next iteration of the algorithm is unexpectedly changed and this
can result in bad and unwanted behaviour. To fix this problem, they use a trick which they call
Change of variables. Instead of optimizing over α, they introduce a new variable w and optimize
over w instead (Carlini and Wagner, 2017):

αi =
1

2
(tanh (wi) + 1)− xi (2.5)

This now automatically enforces the gradient step to always be inside of the `p-ball. With this
new formula they propose attacks for the L0-, L2- and L∞-norm, of which the L∞-attack provides
the worst results. This attack does not get used extensively in our approach, since it requires a
lot more computational power than other attacks. Therefore, it will not be discussed in greater
detail.

2.3.5 Layerwise Origin-Target Synthesis
The last adversarial attack used in our approach is called Layerwise Origin-Target Synthesis
(LOTS) proposed by Rozsa et al. (2017). This attack differs from the others since it has its main fo-
cus on the deep features of the sample instead of mostly focusing on the last layer of the network.
Other than the output, deep features are the activation of nodes and layers inside of the model.
More specifically, LOTS in our approach focuses on the penultimate layer of the network. The
attack perturbs samples such that their deep feature representations mimic the ones of a selected
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target, making it another targeted attack.

To define this properly, let us consider a network f with layers z(l), l = 1, ..., L. The internal
representation of a given input x at layer l can be defined as (Rozsa et al., 2017):

f (l)(x) = z(l)
(
z(l−1)

(
...
(
z(1)(x)

)
...
))

(2.6)

We can visualize this in a similar way as projected gradient descent in Figure 2.4. Since we
use the feature representation of the penultimate layer in our approach, we will do the same in
this example. Instead of using the possible distribution space for all pixel values as in PGD, we
now use the distribution space of the deep features. We can map the original input on the internal
representation to its corresponding place. This point is also called the origin. Additionally, in the
same feature space we can also map the target t. In other targeted attacks, t usually represents
the target class. In LOTS however, the target t is a deep feature representation that can be chosen
arbitrarily. Now, starting from the origin, we can iteratively get closer to the target t. The closer
the sample gets to t, the more similar its features will become and the more it will mimic it. The
iterative approach is done in a similar way as in PGD with step wise updates. However, here we
specifically use the Mean Squared Error loss between target t and the feature representation, in-
stead of maximizing the loss between the adversarial example and its original sample. Therefore,
when doing targeted attacks we step in the direction of the negative gradient. Instead of using the
sign of the gradient, it uses a scaled version of it for the updates. This can be repeated until the
sample reaches the origin or the distance between the sample and the target t is smaller than a
predefined threshold value.



Chapter 3

Approach

This chapter examines our approach of tackling classification in the Open Set scenario. We use
adversarial training to accurately classify the known classes C, but also effectively deal with the
unknown examples in U . Before diving into the specifics of the approach, this section first gives
a high level overview to the thought process. We then grant a detailed description of the entire
approach, ranging from the used data to network architectures and visualizations. Lastly, we
examine the main concepts used in our approach in greater detail.

3.1 Architecture
This section presents the whole project architecture, what it is based on and how it was built. We
also dive into the model architecture and the specifics of feature extractions and visualization.

3.1.1 Data
For simplicity and generality, we exclusively use the MNIST dataset for our known class C.
MNIST, being one of the most iconic datasets in all of machine learning, consists of 60’000 hand-
written and labeled digits. Due to its iconic status and it being an easy benchmark for classi-
fication networks, we have decided that this dataset would be the best fit for our experiments.
Having chosen C, we now need to decide what dataset best represents the unknown class U ,
more specifically, we need to represent the known unknowns B in the training set and the un-
known unknowns A in the testing set. Since we perform adversarial training, the set B of known
unknowns consists of adversarial examples generated from the original data C. This means, B is
a dataset full of adversarial examples of digits, which are generated by us during training. Some
examples are depicted in Figure 3.1.

Lastly we need to construct the setA, the unknown unknown samples. These are the unknown
samples the network is presented with during testing time, which it has not seen before. Ideally,
these samples would include pictures of any kind of objects the world has to offer. However,
for simplicity’s sake, we initially take the set of hand-written letters from the EMNIST dataset
(Cohen et al., 2017). This has turned out to be a good educated guess, since it has shown that if
the network performs well on rejecting letters, it does even better on rejecting more complex and
less related samples, such as pictures of cars or clothes. Despite using EMNIST letters in most of
our experiments, we also use datasets like FashionMNIST (Xiao et al., 2017) for A, to observe the
change in performance.
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Figure 3.1: MNIST ADVERSARIAL EXAMPLES. Top row: Example pictures of MNIST, which define our
class C. Bottom row: Adversarial examples from the pictures in the top row, which define our class B. The
adversarial Examples are generated using LOTS with ε = 0.2.

3.1.2 Model Architecture
For our network model architecture, we use the model presented by Wen et al. (2016) called
LeNet++, which is based on the famous model LeNet proposed by Lecun et al. (1998). It is a
convolutional neural network consisting of 3 convolutional blocks, followed by fully connected
linear layers. The whole architecture can be seen in Figure 3.2. The convolutional blocks all consist
of two cascaded convolutional layers with 32 filters. The first layer only has one input channel,
since the MNIST dataset is in gray scale. All filters are of size 5x5, have a stride of 1 and a padding
of 2. At the end of each convolutional block, a batch norm (Ioffe and Szegedy, 2015) gets applied
on the output of the convolutions. This batch norm plays an important role in our experiments
and will further be discussed in the experiments in Section 4.1 and the discussion in Chapter 5.

Additionally, wrapped around every convolutional block, there is a max-pooling layer with a
grid of 2×2, where the stride and padding are 2 and 0 respectively. Lastly, every block is activated
by a Parametric Rectified Linear Unit (He et al., 2015) as the activation function. After the convo-
lution there are two final fully connected layers. These represent a kind of bottleneck architecture.
The first layer maps the input to a 2-dimensional output, where the feature extraction for the la-
tent 2D feature space happens. These outputs are also used for visualization purposes. The last
one maps the 2D space to a 10-dimensional output, containing the logit for each respective digit.

The most notable aspect is that the model outputs two items: The first one is the output of the
last layer, which represents the logits. They can be used to calculate the probabilities which the
network attributes to each class for a sample. The second item is the output of the penultimate
layer, which gives us the two-dimensional feature representation for the sample. This can be used
to visualize the network classifications, which will be discussed in the next subsection.
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Figure 3.2: LENET++. Model architecture in our experiments. The feature extraction takes place in the
penultimate layer, which is two-dimensional. It then gets mapped to a 10-dimensional layer (one dimension
for each digit)

3.1.3 Feature Visualization
To visualize the network’s latent feature space, we can use its inner representation of the second to
last layer for a mapping. With the penultimate layer only having two output dimensions, we can
plot this onto a simple two-dimensional plane. Intuitively, we present an image to the network
and extract its 2D-representation produced by the penultimate layer. This can now be considered
as coordinates for a specific point in a 2D space. We plot this point with a specific color, each
corresponding to the label of the image. Finally, we select all images from the test set and repeat
this, obtaining a scatter plot as shown in Figure 3.3(a). This allows us to have a very elegant visu-
alization of the features the network attributed to each sample.

Considering each sample on the plot, we can extract information by looking where the sam-
ples are plotted. When examining Figure 3.3(a), the relative orientation to the center tells us which
class the sample got assigned to, while the magnitude of the features tells us how certain the net-
work is that such a sample belongs to the respective class. In the case of MNIST, a mapping of a
typical classifier would resemble a flower with 10 petals, each representing one class. The further
away the samples are from the center, the more certain the network is with its classification.

Since our approach takes place in an Open Set scenario, we distinguish samples from the
known class C from samples from the unknown class U . In our plots, samples from C are always
depicted in color, while samples from U are depicted in black. For example, when using MNIST,
every digit has its own color in the feature plot. In combination with the unknowns U , the plot
should now optimally still resemble a flower. However, as seen in Figure 3.3(b), when simply
adding unknowns to a closed-set model this is not the case. Using this visualization, we can now
redefine our objective: The idea is to have all samples of U as close to the center as possible, while
having all samples of C as far away as possible. More specifically, we want the confidence of the
predictions for U to be as low as possible for all classes, while the confidence for C is as high as
possible for its respective class. This then allows us to draw a clean threshold on the confidence
to separate the known from the unknown samples.
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(a) MNIST only (b) MNIST and EMNIST
letters
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Figure 3.3: FEATURE VISUALISATION. (a) and (b) depict the feature visualization of the Closed Set
scenario with only MNIST in the testing set and the Open Set scenario with added unknowns in the testing
set respectively. (c) depicts the histogram of the feature magnitudes of (b).

To further visualize and depict the magnitudes of the features we also use histograms as
shown in Figure 3.3(c). To measure the deep feature magnitudes, we take the Euclidean length of
the deep representations. These histograms are normalized and plot the deep feature magnitudes
of the unknown samples from U and the known samples from C. The histograms visualize the
separation of features very well and give an additional perspective on the problem. Figure 3.3(c)
depicts the histogram of Figure 3.3(b). One can see the clear overlap of the known samples C in
green and the unknown samples U in red.
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3.2 Conceptualizations
This section takes a look at the core ideas and concepts used in our approach. To do this, we need
to use the extended classification of samples proposed by Dhamija et al. (2018). This can be seen
as an addition to the categorization shown in the introduction Chapter 1. Let the samples seen
during training belonging to B be depicted as D′b and the ones seen during testing depicted as
Db. Similarly, the samples seen during testing belonging toA are represented asD′a. The samples
belonging to the known classes of interest C, seen during training and testing are represented as
D′c and Dc respectively. Finally, we call the unknown test samples Du = Db ∪ Da.

3.2.1 Entropic Open Set Loss
In our experiment we exclusively use the Entropic Open Set (EOS) loss function proposed by
Dhamija et al. (2018). The loss function enforces the output probabilities of the unknown samples
drawn from U for every class in C to be as low as possible. So instead of letting the network make
confident predictions about the unknowns, which might be wrong, it tries to minimize this confi-
dence. This corresponds exactly with our desired feature behavior. This section further examines
how this is achieved using this loss function.

The Entropic Open Set loss is based on the combination of the softmax activation function
and the categorical cross-entropy loss, as the name entropic would suggest. The combination of
the softmax activation and the cross-entropy loss is also commonly referred as the softmax loss.
The key point in EOS is that the softmax loss calculation for samples of D′c is left untouched
and the loss calculation for samples of D′b is introduced. D′b are the known unknowns that
get seen during training, which in our approach are the adversarial examples. So the known
samples from MNIST and the adversrial examples from MNIST get treated differently by the loss
function during training. As stated above, one goal of the approach is to get all the unknowns
as close to the center of the feature space as possible, since the center represents the point with
the least confidence. The intuition here is that we have no information about unknown inputs
and therefore want the maximum entropy distribution of uniform probabilities over the known
classes. Let Sc be the softmax score, the Entropic Open Set Loss JE is defined as (Dhamija et al.,
2018)

JE(x) =

{
− logSc(x) if x ∈ D′c is from class c
− 1

C

∑C
c=1 logSc(x) if x ∈ D′b

(3.1)

where C is the number of classes. If the sample is from a known class, the loss is the negative
logarithm of the softmax score, if the sample is from an unknown class, we take the mean of the
logarithms of the softmax scores. This way, the loss JE gets minimized when all softmax scores
are equal. More specifically, the loss for the unknown samples achieves its minimum when the
softmax scores are exactly 1

C . We can consider a dataset with 10 classes in C as an example. In the
best case scenario, if a network using EOS would get an unknown sample as an input, it would
assign every class in C a probability of 0.1. Therefore, the Entropic Open Set loss has no need to
introduce an additional class to classify unknown samples from U .

During training, the known samples drift further away from the center with higher accuracy,
while the unknown samples get pulled towards the middle. So the feature magnitudes of the
unknowns becomes smaller and the ones of the knowns grow larger. This is the main reason
why we chose this loss function over the softmax loss. The difference is further shown in Figure
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(a) softmax loss (b) Entropic Open Set loss

Figure 3.4: FEATURE HISTOGRAMS. Normalized histograms of the feature magnitudes of the softmax
loss in (a) and Entropic Open Set loss in (b) constructed by Dhamija et al. (2018). Known samples are de-
picted in green, unknown samples in red. As these histograms are describing other datasets, they are not
comparable to later results and solely serve the purpose of comparing the two loss functions.

3.4, where the feature magnitudes are compared between the softmax and the Entropic Open
Set loss. The softmax loss struggles to make a clean separation since it does not make use of
D′b. On the other hand, the Entropic Open Set loss maximizes the entropy for unknown samples
while minimizing it for the known samples. Thus we can clearly separate the knowns from the
unknowns.

3.2.2 Filtering
Next to the basic adversarial training, we also experiment with several extensions to further in-
crease performance and have a greater variety in our experiments. These variations mainly focus
on filtering the adversarial examples that would be added to the training set. More specifically,
we filter the samples in B to try and achieve better performance. This results in introducing the
network to the adversarial examples in a more sophisticated way instead of presenting them all
at once at the start of training.

The first filter method generates adversarial examples of those samples that got correctly clas-
sified previously during training. Therefore, the number of adversarial examples in the training
set is low at first, such that the network has a chance to initially focus on classifying the known
samples before getting confronted with unknown classes. This way, the network only starts to
encounter samples from B if it starts classifying samples from C correctly. This also allows having
progressively more samples from B in the training set while training.

The second filter method only allows the generation of adversarial examples from samples
that are correctly classified over a specified confidence. More specifically, the softmax probability
of the correct class needs to be over a certain threshold. This threshold can of course be defined
dynamically. For example, with a threshold of 0.7, only samples that are correctly classified with
a softmax probability of 70% or greater would qualify for the adversarial training. Using these
two filter methods we further improve the ability of the network to reject unknown inputs in our
experiments which will be discussed in Section 4.3 in more detail.



3.3 Evaluation Metrics 19

3.3 Evaluation Metrics
The main challenge regarding evaluation metrics is to capture the ability to reject unknown input.
For this problem we use three different metrics: A confidence metric, an Area-Under-the-Curve
metric, and an OSCR-curve, which all are explained in this section. Additionally, we also track
other usual metrics like accuracy of the known samples and loss values.

3.3.1 Confidence
The first metric used in our experiments is confidence, which measures how confident the net-
work is in its individual predictions. Since the confidence for knowns and unknowns are two
different things, the calculation is again different for U and C. The confidence for the known class
C is the softmax probability of the class the sample belongs to. For example, if the network gets
the digit 2 as an input, it assigns a probability to every known class. We now only look at the prob-
ability the network assigned to the class 2 and take this for the confidence. The confidence for the
unknowns can not be calculated in the same way, since we do not have an explicit "garbage" class
for unknowns with a respective probability for U . Being confident in rejecting an input means
that the probabilities should be low for every class. The confidence is defined as

conf(x) =

{
Sc∗(x) if x ∈ C
1 + 1

C −maxc(Sc(x)) if x ∈ U
(3.2)

Here, Sc(x) are again the softmax probabilities the network assigns to each class, C is the num-
ber of classes and c∗ the true label of the respective sample. 1

C describes the probability that gets
assigned to each class when the network is truly indecisive. In the case of MNIST it would result
in 0.1, since there are 10 classes and each class gets assigned a probability of 10%. So, if the maxi-
mum probability of the classes is equal to 1

C , the network rejects the sample with 100% confidence.

3.3.2 Area Under the Curve
Since this is a classification problem, it is also convenient to calculate an Area Under the Curve
(AUC). Our AUC however gets computed slightly different than the standard AUC-ROC curve.
We now briefly introduce the AUC-ROC curve and then show the adjustments we made for our
own metric. AUC-ROC is one of the most important evaluation metrics for checking the capabil-
ity of binary classification models and a widely used metric for tasks like these, since it measures
the performance of classifiers in various settings. Receiver operating characteristic (ROC) is a
graphical plot that measures the performance of a binary classifier. The ROC curve plots the True
Positive Rate (TPR) against the False Positive Rate (FPR). The TPR in our example would be the
knowns C that are also correctly identified as knowns. The FPR on the other hand would be the
unknowns U that are incorrectly identified as known. These two values are then plotted at vari-
ous threshold settings for the probabilities.

For plotting the ROC curve one needs the labels of all the samples and network predictions re-
spectively. However, in our approach, since we do not not have an explicit class for the unknowns
U , the network itself does not explicitly assign a probability to a sample belonging to U . If our
model had an additional "garbage" class for unknowns, when encountering a sample that it classi-
fies as unknown with maximum confidence, it can simply set the probabilities of all other classes
to 0. However, in our model, a classification as unknown with maximum confidence would result
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(a) Receiver Operating Characteristic curve (b) Open-Set Classificatioin Rate curve

Figure 3.5: ROC AND OSCR PLOTS. Subfigure (a) depicts different ROC curves while Subfigure (b)
depicts different OSCR curves. For both graphs the Area Under the Curve can be calculated additionally.

in every class having a probability of 1
C . Since we do not have an explicit probability for unknown

prediction, our curve does not exactly correspond with the ROC. For the unknowns U we use the
highest probability score of all the classes and use this to calculate the TPR and FPR. This then
yields us a new AUC metric, which is a very useful indicator for when to stop the training process.

Using the ROC graph, one can now calculate the AUC of it. This represents the degree of sep-
arability with a single value. It estimates the model’s capability to distinguish between classes.
In our experiments, we use it to measure how well it is able to separate the knowns from the
unknowns. The higher the AUC, the better the model is at predicting if a sample belongs to the
known class C or the unknown class U . An excellent model has an AUC near 1, which means
it has the best measure of separability. An AUC of 0.5 would mean that the model has no class
separation capability whatsoever, which would be the same as randomly guessing what class the
samples belong to.

3.3.3 Open-Set Classification Rate
Finally, we also use the Open-Set Classification Rate (OSCR) curve proposed by Dhamija et al.
(2018). It works in a similar manner as the previously defined ROC, however the OSCR plots the
Correct Classification Rate (CCR) against the FPR. If we let τ be the threshold, we can calculate
the two values as follows (Dhamija et al., 2018)

FPR(τ) =
|{x | x ∈ Da ∧maxc P (c | x) ≥ τ}|

|Da|
(3.3)

CCR(τ) =
|{x | x ∈ Dc ∧ arg maxc P (c | x) = c∗ ∧ P (c∗ | x) ≥ τ}|

|Dc|
(3.4)

Here, the samples are split into known classes Dc and unknown classes Da. The CCR for Dc is
the fraction of the samples where the correct class c∗ has maximum probability and is greater than
the threshold τ . The FPR gets calculated from unknown samples fromDu of which the prediction
probability of any class is higher than the threshold τ .
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Finding a metric to describe the performance in such a scenario is rather difficult and since
there is no generally used metric, we always also present the feature plots to further support our
measurements and claims. Furthermore, the previously seen histograms will be used, since they
yield additional visualization of the feature magnitudes of both C and U .





Chapter 4

Experiments

This chapter discusses our experiments and show their results. We clearly demonstrate the ef-
fect of adversarial training in the Open Set Recognition scenario using the previously described
adversarial attacks. All our main experiments use letters from EMINST or images of clothing
from the FashionMNIST dataset for the unknown class A in the testing set. Most evaluations use
handwritten letters from the EMNIST dataset and all evaluations are done on the testing set.

4.1 Implementation Details
Here we list a detailed description of the implementation to give further insight into our exper-
iments. The whole code is written in Python using the Pytorch framework (Paszke et al., 2019).
The model architecture is implemented just as described in Section 3.1.2, with the batch norm lay-
ers having track_running_stats set to False. This minor detail will further be part of the discussion
in Chapter 5 and is therefore left unexplained for now. The network is trained for 100 epochs
every attempt, with a learning rate of 0.01 and a batch size of 128. We use stochastic gradient
descent with a momentum of 0.9 as our optimizer. The loss function in use is exclusively the En-
tropic Open Set loss function. During evaluation, we check for the AUC and confidence metrics
and take these as a guideline for network performance. We additionally check and compare the
OSCR curves. To further reduce variance in our results, we run every attempt with three different
seeds, of which we then take the average of the metrics as the respective results.

The generation of the adversarial samples is done on the fly during training. For some of the
attacks we use the Advertorch framework (Ding et al., 2019). In other words, for every sample that
is passed through the training loop, an adversarial example is generated and added to the training
set. After generating the sample, it also gets passed through the training loop with the label -1,
which represents samples from the background class B. For LOTS, we have chosen the target t for
a sample to be the deep feature representation of another sample that does not belong to the same
class. There are several options to choose from when generating adversarial examples. The first
one would be determining which attack method to use. Next to the adversarial attacks mentioned
in Section 2.3, we have additionally implemented a method that adds random noise in a specified
interval to the image. This allows for a clean comparison in performance and underlines the
benefits of adversarial training. Additionally, one can specify the desired filter methods described
in Section 3.2.2 and its respective parameters. Finally, the last important parameter to tweak for
adversarial attacks is ε. This is also the parameter that has been the focus of our hyperparameter
search and will be discussed in greater detail in the next section.
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4.2 Epsilon Search

Confidence
FGSM PGD CnW LOTS

ε = 0.1 0.5651 0.5876 0.7070 0.5627
ε = 0.2 0.5575 0.5620 0.7051 0.5770
ε = 0.3 0.5672 0.5348 0.7052 0.5727
ε = 0.4 0.5662 0.5468 0.7052 0.6102
ε = 0.5 0.5574 0.6059 0.7054 0.6044

(a) Confidence table

Area Under the Curve
FGSM PGD CnW LOTS

ε = 0.1 0.9537 0.8390 0.8977 0.9271
ε = 0.2 0.9527 0.9595 0.8999 0.9450
ε = 0.3 0.9536 0.9576 0.9036 0.9453
ε = 0.4 0.9535 0.9580 0.9026 0.9459
ε = 0.5 0.9527 0.9601 0.9040 0.9447

(b) Area Under the Curve table

Table 4.1: METRIC EVALUATION TABLES. Table (a) shows values for our confidence metric of different
attacks evalutated for different values for ε after 100 epochs. Table (b) shows the AUC values respectively.
For each row, the best value is underlined.

In our experiments we try to fine-tune the attacks in a way that would maximize our metrics
and therefore provide the best results and performance. Additionally, to compare the different
adversarial attacks, we also experiment with different settings for the same attack. The one major
hyperparameter that is experimented with is ε. As previously stated, when looking at the ad-
versarial attacks, ε can be seen as the maximum allowed perturbation of the pixel values in the
images. Therefore, it also represents the radius of the `p-ball in the distribution space. In iterative
attacks like Projected Gradient Descent, an additional parameter εiter can be tweaked. This hy-
perparameter can be seen as the step size when doing the update steps. However, since iterative
attacks take considerably more time when doing multiple iterations, we have decided to do only
one iteration and set ε = εiter. This way we also have a uniform way to compare the non-iterative
with the iterative attacks. To find the best epsilon, we set an initial educated guess for the interval
[0.1, 0.5]. Having a fixed range of possible values for ε, we then track all of our metrics over all
epochs during training. Examples for the variation over time can be seen in Figure 4.1.

(a) Confidence graphs (b) AUC graphs

Figure 4.1: EPSILON GRAPHS. Subfigures (a) and (b) show the progression of the confidence and AUC
metrics respectively. The metrics are computed every epoch for a total of 100 epochs on the testing set.
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One main objective of the experiments is to find the best values for ε for every attack and
then compare the attacks with each other. The tables 4.1(a) and 4.1(b) show the different adver-
sarial attacks when evaluated on confidence and AUC metrics respectively. All the attacks show
significant improvements over training without adversarial examples.

4.3 Adversarial Training with Filter Methods
This section shows the results when using our filter methods from Section 3.2.2 additional to the
basic adversarial training done in Section 4.2.

(a) No adversarial training (b) Basic adversarial training (c) Adversarial training using filters

Figure 4.2: FILTERING. Here we can see the step wise improvements of our approach. Subfigure (a)
shows the features when the model is trained without adversarial training. Subfigure (b) shows the results
with basic adversarial training and (c) shows the adversarial training using filter methods. The adversarial
examples are generated using LOTS with ε = 0.4 and the filter threshold was 0.9.

Having established solid baselines with basic adversarial training depicted in Figure 4.1, we
can additionally extend our experiments using the filter methods proposed in Section 3.2.2. Us-
ing these methods, we achieve even greater improvements depicted in Table 4.2. Furthmermore,
Figure 4.2 further demonstrates the effectiveness of our approach. Looking at the pictures, one
can see that using the filter methods yet again results in major improvements over the previously
shown adversarial training. The corresponding OSCR plots can be found in Figure 4.4.

As we see the results of our initial experiments having EMNIST letters as unknowns in the
testing set, we can now proceed to use other datasets for A. Figure 4.3 depicts the feature plots
when using the FashionMNIST dataset as our unknown unknowns. FashionMNIST includes
grey-scale pictures of clothing and is therefore expected to produce different results. This would
also allow comparisons of datasets for A as seen in Figure 4.3.
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(a) EMNIST letters
without adversarial

training

(b) EMNIST letters with
adversarial training

(c) FashionMNIST
without adversarial

training

(d) FashionMNIST with
adversarial training

Figure 4.3: RESULTS. Here we can see the difference in results when using our approach. (a) and (c)
show the features when the model is only trained with MNIST with no adversarial training. The black dots
represent the samples in the testing set of EMNIST letters and FashionMNIST respectively. (b) and (d) show
the results in the same setting but using our approach with adversarial training using LOTS with ε = 0.4
and our second filter method with a threshold of 0.9.

As one can see, the model performs even better on the FashionMNIST dataset than on EM-
NIST letters. This is understood to be due to the reason that pictures of digits and clothing are
perceivably very different, making it easier to distinguish between the two. This claim is addi-
tionally supported when comparing results without adversarial training. Even when the network
is only trained to classify digits, it is better at rejecting FashionMNIST than EMNIST. Therefore,
we have decided that letters would pose the larger challenge and would have more room for im-
provement when training with adversarial examples.

(a) OSCR no adversarial
training

(b) OSCR noise training
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(c) OSCR basic
adversarial training
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(d) OSCR adversarial
training using filters

Figure 4.4: OSCR RESULTS. Here, we can see the OSCR curves of the different training stages. (a) shows
the plot when the model is trained without adversarial training while (b) shows the curve when using images
with randomly added noise as the background class. (c) shows the results with basic adversarial training
and (d) shows the adversarial training using filter methods. The adversarial examples are generated using
LOTS with ε = 0.4 and the filter threshold was 0.9.

The immense boost in performance with the help of our filter methods can further be seen in
Table 4.2. Here, we compare the best achieved values from our experiments using our final ap-
proach. Next to the basic adversarial training done in Section 4.2, we additionally filter our sam-
ples using the methods described in Section 3.2.2. Furthermore, we compare these results to other
methods not using any adversarial training. The first method uses samples for B that are slightly
perturbed with noise and labeled as unknown. This should show that the results achieved with
adversarial perturbation cannot be achieved using random perturbation of the original samples.
Lastly, we also train our model without any background class B to compare the performance.
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FGSM PGD CnW LOTS NOISE WITHOUT B

Confidence 0.6383 0.6960 0.7962 0.7246 0.6175 0.4905
AUC 0.9163 0.9697 0.9206 0.9712 0.8984 0.8901
Accuracy 0.9803 0.9902 0.9873 0.9825 0.9743 0.9645

Table 4.2: FINAL RESULTS. This table shows the best achieved results of our adversarial training done
with different adversarial attacks using our filter methods. It further compares these methods with ap-
proaches that did not use adversarial training or a background class.

This shows the performance of a network that is trained in a Closed Set Recognition scenario and
encounters unknowns during testing.

When comparing Table 4.2 and Table 4.1, one can clearly see the additional improvements our
filter methods achieves. While the AUC increases slightly for all attacks, the confidence has a
larger overall growth. The PGD, CnW and LOTS attack show comparable performances, even
tough the CnW attack achieves the highest confidence values by a large margin and LOTS per-
forms best in the AUC metric. Furthermore, there is an immense difference in performance when
comparing the approach to the method that has no known unknowns or uses a background class
with randomly perturbed images. The accuracy of the known samples C also remains high and
consistent for all the different attacks used. As one can see, our approach shows promising results
and a remarkable increase in the capability of the network to reject unknown input.





Chapter 5

Discussion

The main topic in our discussion focuses on the batch norm in the Open Set Recognition scenario.
This is also related to the reason why track_running_stats is set to False for the batch norm layers
in our implementation. This causes the batch norm layers to not keep running estimates of mean
and standard deviation, and instead use batch statistics during evaluation time as well. This mi-
nor change results in our approach not being fully reproducible, but also significantly boosts the
performance. The reason for this is the Open Set Recognition scenario, which will now be dis-
cussed in more detail. When using batch norm in the closed set scenario, where the training set
and the testing set are drawn from the same distribution of samples, batch norm keeps a running
estimate of the mean and standard deviation of the batches during training. The goal is to ap-
proximate the mean and standard deviation of the whole distribution the training set was drawn
from. These values constantly get updated during training and when switching to the testing set
in evaluation mode, they get frozen. Now, instead of taking the values of the individual batches
as done in training, the previously computed values are used for every batch in the testing set.
This works well in the closed set scenario since the training and the testing set came from the
same or at least similar sample distributions.

However, this is not the case when doing Open Set Recognition. As previously explained, in
the Open Set Recognition scenario, the training set and the testing set can be very different and
can come from completely different distributions. Therefore, the values for mean and standard
deviation for the testing and the training set can be completely incompatible. So, when using
the values calculated during training while testing, the batch norm skews the values which leads
to bad results. This occurs only when doing Open Set Recognition. To fix this problem, we at-
tempted to train the network without batch norm, which did not deliver equivalent results. We
assume that the batch norm is particularly required due to the bottleneck architecture in our net-
work. Other network topologies might no be as dependant on the batch norm. We also attempted
to use Instance norm (Ulyanov et al., 2016) instead of batch norm, which also generated a worse
outcome. For a quick solution, we decided to use the batch statistics of every batch individually
during testing, just as we did in training. This results in very clean separations. Other possible
alternatives would require to calculate batch statistics for every layer, which would all go beyond
the scope of this thesis, but could lead to the results being reproducible.

Despite our experiments achieving good results, they have their limitations. We only exper-
imented with fixed epsilon values and it is possible that iterative attacks like PGD would have
outperformed other attacks if we allowed multiple iterations. Additionally, the experiments were
mostly done on one single dataset with the same network topology. Changing these architectures
or using other training methods might change the results. To achieve generality, these factors
would need to be taken into consideration.
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Conclusion

Our experimental evidence supports the theory that sample similarity in C and B can significantly
improve the ability for networks to reject unknown input in the Open Set Recognition scenario
and therefore adversarial training represents a valid approach to do so. In combination with the
Entropic Open Set loss, we are able to improve the ability to reject unknown inputs by a large
margin. In our experiments we have also shown the difference in performance of several state of
the art adversarial attacks, which all were previously fine-tuned on an individual level to deliver
the best results. Furthermore, we have extended our approach by testing on different unknown
classes, which often lead to even better results. Our experiments have shown that adversarial
training is highly effective in rejecting unknown input in the Open Set Recognition scenario.

This also suggests that more research should be dedicated to this field in the future. Future
work should mostly focus on exploring alternatives for batch norm layers as mentioned in the
discussion. Furthermore it should focus on expanding the generality by using different network
topologies and datasets. As the results are comparably good for most adversarial attacks in our
setting, future work might also extend to a wider range of epsilons or even have decreasing ep-
silons during training. Additionally, it shall perform higher levels of filtering and data augmen-
tation in both C and B, to possibly achieve even better results.
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