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Abstract

In recent years, research has made tremendous progress in the classification of facial attributes
through convolutional neural networks (CNNs). Such neural networks specialize in extracting
various facial attributes from images. In this thesis, we investigate how these attributes correlate
with identity and whether such correlations can be used to improve the classification accuracy of
extractions from neural networks. We introduce a method for calculating correction terms based
on statistical metrics of each attribute of ran identity. These correction terms are then applied to
the extractions of neural networks, resulting in reweighted values which possess a lower average
error rate than the original extractions. We offer approaches for both unbalanced and balanced
CNNs. For the balanced networks, we adapt our correction terms to the domain distribution in
order to consider the imbalance of classes. We show that this approach achieves similar results
for manually annotated identity labels and identity labels that are inferred from the clustering
of features that are extracted with neural networks. Our results show that it is indeed possible
to lower the average attribute classification error rates for both neural networks based on the
correlation of these attributes with identity.





Zusammenfassung

In den letzten Jahren gab es in der Forschung enorme Fortschritte bei der Klassifizierung von
Gesichtsattributen durch Convolutional Neural Networks (CNN). Diese künstlichen neuronalen
Netze sind darauf spezialisiert, verschiedene Gesichtsattribute aus Bildern zu extrahieren. In
der vorliegenden Arbeit wird untersucht, wie solche Attribute mit der Identität korrelieren und
wie diese Korrelation benutzt werden kann, um die Klassifizierungsgenauigkeit von Extraktio-
nen neuronaler Netze zu verbessern. In dieser Arbeit wird eine Methode zur Berechnung von
Korrekturtermen für jedes Attribut einer Identität vorgestellt. Diese Korrekturterme basieren auf
statistischen Kennzahlen der Attribute einer Identität. Die Extraktionen von neuronalen Netzen
werden mit diesen Korrekturtermen neu berechnet, was zu neu gewichteten Werten führt, die
eine niedrigere durchschnittliche Fehlerrate besitzen als die Extraktionen selbst. In dieser Ar-
beit werden Ansätze für unausgewogene und ausgewogene neuronale Netze präsentiert. Beim
ausgewogen Ansatz werden die Korrekturterme an die Klassenverteilung einzelner Attribute
angepasst. Schliesslich wird gezeigt, dass der gewählte Ansatz ähnliche Resultate mit Iden-
titätsinformationen erzielt, die von menschlicher Beschriftung stammen, wie auch mit solchen
Identitätsinformationen, die durch eine Clusteranalyse von Extraktionen eines weiteren CNN
gewonnen werden.
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Chapter 1

Introduction

In recent years, the prediction and classification of facial attributes have been the subject of in-
creasing attention in the literature, due to the various and widespread uses of facial attribute
information. These attributes are not only machine detectable, but also have a semantic meaning
that is understandable by humans (Kalayeh et al., 2017). Examples of such attributes are "Big
Nose", "Bushy Eyebrows" or "Rosy Cheeks". An important driver of this research is large-scale
data sets such as the CelebA data set (Liu et al., 2015). This data set contains 202,599 images
of 10,177 identities. Each image was manually annotated with 40 binary facial attributes. The
current state-of-the-art approach consists of the usage of convolutional neural networks (CNNs)
that employ a multi-label approach to classify attributes, trained with and tested on the afore-
mentioned manual labels. Two examples of this approach are the Mixed Objective Optimization
Network (MOON) for the Recognition of Facial Attributes (Rudd et al., 2016) and the Alignment-
Free Facial Attribute Classification Technique (AFFACT) (Günther et al., 2017).

Some of the 40 binary facial attributes are independent of the person’s identity, (e.g. "Smiling",
"Mouth Slightly Open"), though most attributes are bound to the subject’s identity. In this thesis,
we explore the stability of these facial attributes across subjects’ identity and assess the predictive
quality of this stability. A high stability of an attribute indicates that the attribute is related to the
subject’s identity. For example, if a subject possesses the attribute "Male" in 9 out of 10 pictures, it
is highly likely that they will also possess the attribute in the 10th picture. While some approaches
have already successfully incorporated identity information into their CNNs (Cao et al., 2018), the
relationship between attributes and face identity remains mostly unexploited.

In the first step in this research, we identify how stable attributes are based on the ground truth
annotations provided by the CelebA data set. In a second step, we apply the findings from the
manually annotated attributes to automatically extracted annotations which are extracted using
AFFACT (Günther et al., 2017) to improve the classification accuracy. To achieve this, we calculate
correction terms for each attribute of each identity and then apply these terms to the extractions
from two CNNs. This process of reweighting has a larger effect on the stable attributes of an
identity and a smaller (or no effect at all) on the unstable ones. We conduct a small number of
experiments to identify the most fitting formula for our reweighting process.

A major challenge of machine learning is biases in data sets. In this bachelor thesis, we address
the issue of the class imbalance of attributes using two different CNNs, one that considers class
imbalance, and one that does not. The core of this issue is that there is an unbalanced distribu-
tion of the existence and absence of certain attributes. Most attributes have a majority class; for
example, the absence of a certain attribute, such as "Bushy Eyebrows", may be more common in
a data set than its existence. This unequal distribution can lead to biased classifiers that are better
at classifying attributes of the majority class, as there is a larger number of samples to learn from
(Rudd et al., 2016). Both networks are based on the aforementioned AFFACT approach; while
one CNN is optimized for maximal attribute classification accuracy, the other, balanced approach
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also considers the distribution of these attributes. This balanced approach uses a domain-adapted
loss function that combats effects related to the class imbalance of the data set. The goal of this
thesis is to reweight the extractions of these two CNNs using identity-related statistical measure-
ments, namely the mean and standard deviation of each attribute of an identity. The two CNNs
require different approaches, as we the issue of class imbalance for the balanced network must be
considered. This means that the calculated terms we apply to the extraction should also consider
class imbalance. At first, this identity-based reweighting approach uses the manually annotated
identity labels provided by the data set.

Lastly, we use another CNN that specializes in facial recognition to extract embedded fea-
tures, a representation of facial information through a vector using ArcFace (Deng et al., 2019).
By clustering these features, we gain identity labels that are automatically extracted, rather than
manually labeled to minimize the reliance on ground truth labels. We thus propose an approach
that improves the classification accuracy by exploiting attribute correlation with respect to face
identities. This approach is shown to successfully lower the average error rate for extractions
from two AFFACT CNNs. One of these neural networks employs a balanced approach and one
employs an unbalanced one. Further, we show that our approach can be applied to both man-
ually labeled identities and identities that are clustered based on automatically extracted facial
information.



Chapter 2

Related Work

2.1 Facial Attribute Classification
Facial attribute classification has received considerable attention in the field of computer vision,
due to the various real-world applications of these attributes. Facial attributes are applied in
a variety of tasks, such as face verification (Song et al., 2014), face recognition (Manyam et al.,
2011), face image retrieval (Fang and Yuan, 2018), and image searches using descriptive attributes
(Kumar et al., 2011). Facial attributes are semantically meaningful, meaning that not only ma-
chines are able to, and classify attributes, but that this classification is human understandable.
This property of human understandability allows humans to understand the results of attribute
classification easily and naturally. A key driver of progress in this field of research is large-scale
image data sets that are labeled with facial attributes, such as CelebA (Liu et al., 2015) or Labeled
Faces in the Wild (Huang et al., 2012). The CelebA data set is of particular interest in attribute pre-
diction, as faces are hand-labeled with numerous facial attributes, a process that is made possible
by the easy comprehensibility of these attributes by humans. Manually labeled data sets are a
great asset for supervised machine learning techniques, as it provides the ground truth on which
to train and test neural networks.

The use of CNNs to extract attributes is the current state-of-the-art approach to facial attribute
classification. Examples of such work are papers by Zhang et al. (2014), Liu et al. (2015), and
Günther et al. (2017). CNNs are neural networks that use a mathematical operation called con-
volution in at least one of the networks layers (Goodfellow et al., 2016) and are well-suited for
pattern recognition tasks (Valueva et al., 2020), such as the recognition and classification of facial
attributes. These networks employ key concepts that are drawn from neuroscience, which means
that their structure is somewhat similar to the human visualization process. The way CNNs clas-
sify attributes can be divided into two general approaches: Single-label and multi-label.

The single-label approach, which was employed by Kang et al. (2015) and Zhang et al. (2014),
considers the classification of each attribute as a single, independent problem and, therefore, dis-
regards the correlations between attributes. In the multi-label approach, multiple attributes are
predicted simultaneously in an end-to-end trained network. This method is well-suited for fa-
cial attribute classification tasks, as each image of a face is naturally related to multiple attributes
(Mao et al., 2020). This method has been applied by Rudd et al. (2016), Kang et al. (2015), and
Zhuang et al. (2018) and is currently the most successful approach to facial attribute classification.
However, this multi-label approach also faces challenges, such as an increased difficulty in deal-
ing with class imbalance. Class imbalance is a general problem faced by CNNs in relation facial
attribute data: Some attribute classes have many more samples than others. These classes can be
divided into majority and minority classes. Minority classes are classes with very few samples
while majority classes have many samples. Zheng et al. (2020) determined that the largest ratio
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between an attribute’s majority and minority class in the CelebA data set was 43:1. Such large
imbalance ratios lead to biased classifiers, which fail to properly evaluate features learned from
the minority class.

Rudd et al. (2016)proposed the MOON as a solution to the issues that stem from class imbal-
ance. This network seeks to simultaneously maximize the prediction accuracy for both classes
of each attribute through multi-tasked training on multi-labeled data sets, such as the CelebA
data set. This method allows for a better fitting approach for determining minority classes, as the
distribution of classes is considered, which allows for more accurate extractions for attributes of
inferior classes. Further, Rudd et al. (2016) proposed a way to measure the accuracy with inclu-
sion of the domain distribution, allowing for a balanced accuracy measurement that considers the
issue of class imbalance.

2.2 Attribute Grouping and Correlation
In recent years, several novel approaches based on attribute correlation have been introduced
to further improve facial attribute classification. These approaches involve grouping several at-
tributes under the assumption that there exist strong correlations in and between these groups.
Hand and Chellappa (2017) used a multi-task deep CNN (MCNN) that considered attribute cor-
relation on the mid-level of the neural network. This correlation is based on attribute groups,
namely nine manually determined attribute groups that categorized 40 attributes. These group-
ings are based on attribute location and semantics, which led to categories such as Nose, with the
attributes "Big Nose", "Pointy Nose" or Mouth with "Big Lips", "Smiling", "Lipstick", and "Mouth
Slightly Open". At the final layer, an auxiliary network receives the scores from the MCNN and
finalized the prediction by allowing for interaction between attributes on the score level. Cao et al.
(2018) adopted a similar approach. Like in the MCNN approach, the authors split the attributes
into groups based on location. Rather than including semantically meaningful groups they solely
focused on the attributes’ location in the image: The four groups described by them are an upper,
middle, lower and whole-image group. The authors extend the MCNN by introducing a par-
tially shared structure to allow for more interaction on the higher levels of the neural network. A
further unique element of this approach is the inclusion of identity information to the partially
shared MCNN, resulting in the incorporation of this information with local constraints, achiev-
ing a state-of-the-art error rate of just 7%. Further approaches to attribute grouping exist, such as
grouping according to holistic vs. local and nominal vs. ordinal attributes, as proposed by Han
et al. (2018) or grouping by objective and subjective attributes, as outlined Mao et al. (2020).



Chapter 3

CelebA

3.1 Data Set
This data set was created by Liu et al. (2015) with the aim of producing a large-scale data set to
train and test CNNs on. The data set consists of 10,177 identities and a total of 202,599 images.
Each of the images was manually annotated with 40 binary facial attributes and five key facial
landmarks. The five key facial landmarks are the left eye center, right eye center, tip of the nose,
left mouth corner and right mouth corner. More importantly, each image is annotated with one
identity. This identity annotation is referred to as the ground truth identity label. All 40 attributes
are provided in Table 3.1.

We refer to these manual annotations as the ground truth. The ground truth is essential for
training neural networks and subsequently for measuring their accuracy, as the ground truth de-
scribes direct observations. However, these manual annotations are not without flaws: Some of
these attribute are highly subjective, as their labeling may heavily depend on the person labeling
them, e.g., attributes such as "Attractive" or "Young". Further, some images may be labeled in-
consistently, illustrated in Figure 3.1. This is partially caused by the decision to only use binary
labels for all attributes, even though most attributes exist on a continuous range in the real world.
While this leads to a disparity between the real world and the ground truth used to train neural
networks, it increases the feasibility of creating such a large-scale data set. The images in this data
set are of celebrities. Most images are taken in a relatively controlled environment, compared with
a real-world scenario. Still, the images exhibit a large variety of poses and background clutter.

The CelebA data set is partitioned into three sets. The first and largest partition is the training
set, which contains 8,192 identities with 162,770 images. The remaining two partitions are the

Table 3.1: ATTRIBUTES OF CELEBA.

"5 o’ Clock Shadow" "Arched Eyebrows" "Attractive" "Bags Under Eyes"
"Bald" "Bangs" "Big Lips" "Big Nose"
"Black Hair" "Blond Hair" "Blurry" "Brown Hair"
"Bushy Eyebrows" "Chubby" "Double Chin" "Eyeglasses"
"Goatee" "Gray Hair" "Heavy Makeup" "High Cheekbones"
"Male" "Mouth Slightly Open" "Mustache" "Narrow Eyes"
"No Beard" "Oval Face" "Pale Skin" "Pointy Nose"
"Receding Hairline" "Rosy Cheeks" "Sideburns" "Smiling"
"Straight Hair" "Wavy Hair" "Wearing Earrings" "Wearing Hat"
"Wearing Lipstick" "Wearing Necklace" "Wearing Necktie" "Young"
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(a) Image 014378.jpg (b) Image 025802.jpg (c) Image 027499.jpg (d) Image 106131.jpg

Figure 3.1: INCONSISTENT GENDER. An example of inconsistent labeling: This person (Id 6101 in
CelebA) was labeled as "Male" in only 6 out of 10 images, which means that some images are labeled in-
correctly. In subfigures (a) and (b) the values of the attribute "Male" are 1, in (c) and (d) -1.

validation and test sets, which are both similar in size. The validation set contains 985 identities
with 19,867 images, the test set 1,000 identities with 19,962 images. Neural networks are trained
on the training set, which is also the reason why it is by far the largest partition. The validation
set is then used to optimize parts of the architecture, e.g., for selecting a loss function. Finally, the
results are then tested on the test set. This set is independent of the others, and its main purpose
is to measure performance. The reason for these partitions is to avoid overfitting and to reduce
the introduction of bias through the data set as much as possible. In this thesis, we focus on the
validation and test sets. The validation set is used to decide on specific reweighting functions and
the test set to measure how accurate the results are. Each image in the data set has a corresponding
identity. The number of images for each identity varies between 1 and 35, with the median being
19.9 images per identity. In total, 1,055 of the 10,177 identities have five or fewer images attached
to them.

3.2 Class Imbalance
A further notable property of the data set is the distribution of binary attributes. Attributes have
a value of either 1 or -1, denoting the presence or absence of said attribute. The distribution of
presence and absence of attributes in the CelebA data set is not always equal, this means that
there is a minority and a majority class for all attributes in the data set, as no attribute has the
same number of samples for both classes. Most of the time, the absence of an attribute is more
common than its presence. This imbalance is most likely intrinsic, thus a result of the nature of
the data space, as the 40 - somewhat arbitrarily chosen - attributes are most likely not distributed
evenly in the human population. However, some of the imbalance may stem from the sampling
of the data set, also known as extrinsic imbalance (He and Garcia, 2009). A possible example is the
attribute "Attractive". There may be a sample bias for this attribute, as the subjects in the CelebA
data set are celebrities, and, therefore, represent a sample of individuals that are commonly more
attractive than the general population. An issue that arises from this unequal distribution is that
of class imbalance when training CNNs on an imbalanced data set. Due to the fact that the minor-
ity class contains significantly fewer samples, neural networks tend to over-classify the majority
class, which means that members of the minority class are misclassified to be a part of the ma-
jority class (Johnson and Khoshgoftaar, 2019). For this reason, it is important to consider class
imbalance during the whole process; otherwise, the resulting approach to attribute classification
may be unable to discriminate features of the minority class.

The ratio of positive and negative labels, denoting the existence and absence of an attribute
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Figure 3.2: CLASS IMBALANCE. The ratio of positive (light) and negative (dark, hatched) classes. The
former denotes the presence of an attribute, while the latter the absence of one.

respectively, shown in Figure 3.2. The most extreme case in the CelebA data set is the attribute
"Bald", where only 2.25% of all samples are positive: This means that we can blindly classify
each instance as negative and still achieve a remarkably high accuracy of 97.75%. Such a severe
imbalance illustrates the need for an approach that not only seeks to optimize accuracy, but rather
also consider the underlying imbalance of the data set. As mentioned before, the negative class,
i.e., the absence of an attribute is more common than the positive class. Only the attributes "No
Beard" and "Young" have positive majority classes.

Class imbalance even has an impact on how attributes are learned by CNNs if the class distri-
bution is rather equal, as shown by Rudd et al. (2016).





Chapter 4

CNNs

4.1 AFFACT
Different approaches exist for the task of facial attribute classification through neural networks.
In this thesis, we use the AFFACT introduced by Günther et al. (2017). This technique employs a
residual learning framework (He et al., 2016) for training, allowing for effective training of deep
convolutional neural networks. This training results in deep Residual Networks (ResNets), which
are first trained for generic image recognition and then fine-tuned on the training partition of the
CelebA data set. Günther et al. (2017) showed that using an ensemble of three such networks out-
perform a single ResNet. A distinctive feature of AFFACT is that it is less reliant on the alignment
of images. To lower the reliance on alignment, random perturbations regarding scale, angle, shift,
and blur are added to the faces in the training set, increasing the robustness to facial misalign-
ment. This technique allows for similar performances for detected bounding boxes and detected
facial landmarks. However, in our experiments, we use bounding boxes that are determined by
manual annotations, to keep errors due to misalignment to a minimum.

4.2 Preprocessing
In our experiments we align and crop the images from the data set in the same manner as Günther
et al. (2017) using the manually annotated facial landmarks to determine a bounding box. We use
four of the five provided landmark labels: The left and right eye ter , tel and the left and right
mouth corner tmr , tml where t = (x, y)T. Using these landmarks, we calculate the eye center te,
mouth center te and consequently the eye-mouth distance d:

te =
ter + tel

2
, tm =

tmr + tml
2

, d = ‖te − tm‖ (4.1)

The eyes are then aligned on a horizontal line before the bounding box is added. These three
measures determine the size and location of the square bounding box, denoted with the top left
corner at xl, yt with the side length s = d · 5.5:

xl = xe − 0.5 · s, yt = ye − 0.45 · s (4.2)

The images are then cropped to their bounding box and resized to 224 x 224 pixels. We save
the images as PNGs, rather than in their original JPG format, to avoid lossy compression.
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4.3 Balanced vs. Unbalanced Networks
In our experiments we use two CNNs that use AFFACT to extract the attributes. The difference
between these two networks is that one considers the issue of class imbalance, while the other one
does not. If an attribute has a large majority class, the predictions of an unbalanced network are
better for this majority class and comparatively worse for the minority class. This means that the
unbalanced approach can result in a high overall accuracy, but a low accuracy score for classifying
attributes of a minority class. To address this imbalance, which is the consequence of biases in the
data set, Rudd et al. (2016) suggest a solution that utilizes a loss function that considers the distri-
bution of classified attributes: Through a mixed-objective function, domain-adapted weights are
calculated that consider the source and target distribution of each class for each attribute. This
domain adaption is then incorporated into the multi-task loss layer of the CNN, resulting in a
loss layer that can adapt the biased distribution in the training partition to a target distribution.
Such a domain-adapted multi-task loss layer can be combined with the above described AFFACT,
resulting in a balanced CNN that is well suited to dealing with class imbalance. Such balanced
approaches generally achieve lower accuracy values than their unbalanced counterparts. How-
ever, the measurement of overall accuracy fails to consider the distribution of classes. This leads
to networks that excel at classifying the majority class, but often fail to identify minority samples.

In this thesis, we consider both a balanced and an unbalanced AFFACT CNN. The balanced
network is denoted as AFFACT-B, and the unbalanced network is denoted as AFFACT-U. AFFACT-
U was published by Günther et al. (2017), while AFFACT-B was presented by same authors but
remains unpublished.

4.4 Extraction and Accuracy Evaluation
The difference between balanced and unbalanced networks means that the evaluation of the re-
sults should be approached differently. The accuracy measures the number of correct classifica-
tions in relation to the number of classified objects. However, this measurement does not consider
the issue of class imbalance, as members of a small minority class can be classified incorrectly most
of the time while still achieving a high accuracy. While we can simply evaluate the unbalanced
network AFFACT-U with the accuracy and consequently the unbalanced error rate ERu, we need
to consider the balanced error rate ERb for the balanced network AFFACT-B. These two different
approaches to accuracy have also been used by Rudd et al. (2016) and are calculated as follows
using true positives TP , false positives FP , true negatives TN and false negatives FN :

Au =
TP + TN

TP + TN + FP + FN
ERu =1−Au (4.3)

For ERb we calculate the false negative rate FNR and the false positive rate FPR. FNR
describes the relation of incorrectly classified positive values (FN ) and the total number of posi-
tives values. The FPR the number of incorrectly classified negative values (FP ) in relation to all
negative values. We take the mean of these two rates to get ERb:

FNR =
FN

TP + FN

FPR =
FP

FP + TN

ERb =
FNR+ FPR

2

(4.4)
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The CNNs then extract values on a continuous range for each of the 40 attributes from an
image. The value of each attribute indicates how the neural network evaluates the presence or
absence of an attribute in an image. The exact range of this value varies between attributes.
Figure 4.1 provides an example of how these values are distributed by visualizing the extracted
values from AFFACT-B in a box plot. The extractions of AFFACT-B and AFFACT-U are very
similar in their distribution: The vast majority of values are approximately between -2 and 2 with
very few outliers beyond this. Nearly all attributes have at least half their values between -1 and
1. However, the ground truth labels of the data are annotated binary, this means that we must
map the continuous values of the extraction to a binary space: In this thesis we simply classify all
values x as either 1 or -1, as follows:

bin(x) =

{
1 if x ≥ 0

−1 if x < 0
(4.5)

A downside of this mapping is that a binary classification of facial attributes does not neces-
sarily represent reality, as most facial attributes lie on a continuous range, just like the extractions
of our CNNs. This means that forcing all values to be binary leads to issues, especially in cases
in which the existence or absence of an attribute is ambiguous, and the output of the CNNs is
close to 0. This impacts the accuracy evaluation, as ambiguous attributes are still assigned binary
values in the manual annotations.
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Distribution of Extracted Values from AFFACT-B

Figure 4.1: DISTRIBUTION OF EXTRACTIONS. This plot depicts the distribution of values extracted with
AFFACT-B from the validation set. The blue box represents the first to the third quartile, while the orange
line indicates the median. The whiskers extend to the last data point contained within the interquartile
distance from the upper and lower quartile. Data points beyond that are considered outliers and are depicted
as circles.





Chapter 5

Approach

5.1 Stability of Ground Truth Attributes
A prerequisite to our approach is to explore the relationship between identity and the stability
of its attributes. In previsions research manual grouping has been used to divide attributes into
groups, such as the location-based groups presented by Cao et al. (2018) and Hand and Chellappa
(2017). The approach of this thesis is somewhat related to such grouping, though rather than
manually determining which attributes we consider stable for an identity, we base our approach
on statistical metrics. While this approach is more complex, it is also more versatile, as the stability
of an attribute may depend more on the identity rather than on the attribute itself. The two most
important statistical measurements used to model stability are the mean µ and standard deviation
σ. To explore the relationship between identities and attribute stability, we take the annotations
for each of the n pictures and calculate the two measurements for each attribute a from the value
of that attribute x in a single image j.

µia =
1

n

n∑
j

xj

σia =

√∑n
j (xj − µia)2

n

(5.1)

A key challenge involves the multidimensional nature of our data: The large number of iden-
tities combined with the fact that each identity has multiple attributes, makes visualizing and
consequently analyzing how our two statistical measurements correlate with their identity chal-
lenging. To explore this correlation, we employ principal component analysis (PCA). PCA is a
dimension reduction technique that utilizes the eigenvectors of the correlation matrix to calculate
the principal components (Jolliffe, 2011). In our scenario, we have m identities, we represent each
identity with a vector v containing a values, one for each of the 40 attributes. We aim to reduce
these 40 dimensions to just 2. PCA achieves this by finding linear combinations cT

1 v, c
T
2 v, ..., c

T
40v

called principal components. These 40 principal components successively have maximum vari-
ance for the data and are uncorrelated with previous ck

Tv. When we solve this maximization
problem, we find that c1, c2, ..., c40 are the eigenvectors of the covariance matrix, S, of the data
(Jolliffe, 2011) and correspond to the 40 largest eigenvalues. To gain the desired two-dimensional
model of this data, we can simply take the first two principal components cT

1 v, c
T
2 v to plot our

data points, i.e. identities, as an ellipsoid with cT
1 v, c

T
2 v as the axes. These first two principal

components explain the highest amount of variance from all 40 principal components.
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Figure 5.1: BASIC PCA PLOTS. These two plots show the first two principal components for the mean
and standard deviation of the manually labeled attributes in CelebA. Each dot represents one identity. The
axes correspond to the two principal components that explain the most variance. This allows for a two
dimensional plot that preserves a large portion of the variation of our data. Subfigure (b) shows the dis-
tribution according to standard deviation, that means dots, i.e. identities, closer to each other have similar
standard deviations for their attributes and dots further away less similar ones. Subfigure (a) depicts the
same effect, but for the mean of identities rather than the standard deviation.

For the concrete implementation of this PCA we use the scikit-learn module for PCA1. To
maintain consistency in the separation between the training, validation and test sets, we first fit
the PCA model on the training set and then apply the dimensionality reduction to the data of the
validation set. We generate two models, one for each of our statistical metrics. In the first model
we use vT = (µi1, µi2, ..., µi40) for each of our identities. This means our first PCA model uses
the mean of each attribute of each identity as a measurement. Analog to this, our second model
uses vT = (σi1, σi2, ..., σi40). This means that both models are first fitted with m = 8192, the
number of identities in the training model and then apply the dimensionality reduction to the
data of the validation set where m = 985.

The plots we generate can be seen in Figure 5.1. In these two plots we visualize how the two
measurements vary between identities. A larger distance between two dots indicates a larger
variance of the measurements, i.e. the mean and standard deviation, of attributes from an iden-
tity. The first model explains 43.1% of the variance of the mean and the second 30.0% of the
variance of the standard deviation. These values are rather low, as PCA usually aims to model a
larger amount of variance. However, the two models still allow us to analyze how the two mea-
surements relate to identity. Subfigure 5.1a depicts the first model of the mean. We can see that
there are two clusters. This indicates that both these clusters consist of attributes that have similar
values for the means of their attributes. The same goes for the our second model in Subfigre 5.1b,
however, here, the two clusters are not as well separated.

To explore how these clusters relate to specific attributes - and their stability - we generated
plots that colorize the values of both the mean and standard deviation for each attribute, resulting
in 80 plots: Two plots depicting the statistical measurements for each of the 40 attributes. This

1https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Figure 5.2: STABILITY OF ATTRIBUTE "MALE". In Subplot (a) we can see that most identities are colored
blue, indicating a low standard deviation: This means that this attribute is very stable. Subplot (b) shows
how the two clusters of the PCA of the mean heavily correlate with the mean of the attribute "Male". Copper
indicates the presence of this attribute, black the absence of it.

analysis is based on the ground truth labels provided by Liu et al. (2015) in their CelebA data set.
This allows us to analyze the human labeled attributes first, before applying the gained insights
to the data that is extracted by CNNs.

A prime example of how this visual analysis can help determine how stable certain attributes
are, is illustrated in Figures 5.2 and 5.3: The standard deviation in Subfigure 5.2(a) is consistently
low for the vast majority of identities, while the mean depicted in subfigure 5.2(b) is close to -1.00
for the vast identities in the left cluster, indicating that female subjects are in the left cluster, while
male ones are in the right cluster.

This gender specific cluster interpretation can also be applied to the PCA of the standard
deviation, the clusters for which are less visually distinct compared with those of the mean. In
this case, colorizing by the attribute "Male" does not give us any indication of whether these
two clusters are gender related, as this attribute is very stable, a fact that is expressed through
a low standard deviation for most identities. When we look at other gender related attributes
such as the attribute "No Beard" in figure 5.3(b) or "Heavy Makeup" in figure 5.3(a) there is a
clearly visible difference in the standard deviation according to cluster. In the left cluster, "Heavy
Makeup" has a high standard deviation, while "No Beard" has a consistently low one. This leads
to the interpretation that the left cluster consists of identities, which vary in their usage of makeup
but not in the absence of facial hair. This visualization shows that both measurements used in the
PCA offer insights into correlation of attributes and their identity. Our approach for reweighting is
based on a combination of both measurements: We consider the stability using standard deviation
as a measurement, which is then combined with the mean to gain an idea to which class, positive
or negative, the resulting correction term should belong to.

5.2 Reweighting of Attributes
The most challenging aspect of this thesis involved correcting the automatically extracted at-
tributes. This reweighing of attributes has two main components: The subject’s identity and
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Figure 5.3: PCA FOR GENDER RELATED ATTRIBUTES. Subplot (a) shows that in one cluster the at-
tribute "Heavy Makeup" varies to a much larger degree than in the other one. In Subplot (b) the same effect
can be observed for the attribute "No Beard", indicating that these clusters also correlate with the gender of
the identities.

the statistical measurements relating to said identity. The approach in this thesis to attribute cor-
rection is to use the subject’s identity to determine how consistent an attribute is across the same
identity. If an attribute is stable across most images of an identity, we want to correct values that
deviate from this consistency. To achieve this correction, we calculate a correction term that is
added to or subtracted from the automatically extracted values. The absolute value of this term
should be high for consistent attributes and low for inconsistent ones, as the consistency of at-
tributes indicate a strong relationship between the person’s identity and the existence or absence
of that attribute. This correction term can be positive or negative, and the sign of the term for an
attribute depends on the class of the mean. If an attribute is inconsistent across an identity, we
expect a weak or no relationship between that attribute and the person’s identity. This approach
results in 40 correction terms, one per attribute for each identity. These terms are then added to
the extracted values. Due to the fact that we measure accuracy through binary classification, only
the sign of the resulting value must be correct. This means that "over-correcting" values to be too
high or too low is an effect we can ignore. Determining the exact terms is a challenging task: On
one hand it is difficult to determine a formula for the correction terms, on the other hand the issue
of class imbalance is still something we must consider, particularly for the balanced network.

Consequently, we should consider the issue of class imbalance for our statistical measures µia
and σia. For our unbalanced CNN AFFACT-U, we calculate the mean µia and standard deviation
σia with the same formula shown in Equation 5.1, but instead of using the ground truth infor-
mation, we use the automatically extracted attribute information. Again, here we calculate the
mean and standard deviation for each attribute a for all identities i. Each i has n pictures, with an
extracted values x for each attribute in a picture j.

µUia =
1

n

n∑
j

(xj)

σUia =

√∑n
j (xj − µUia)2

n

(5.2)
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For the balanced CNN, we want to use balanced statistical measurements to calculate our
correction terms. We achieve this, by adapting the extracted values to the class distribution. To do
so, we employ the domain adaption function that was introduced by Rudd et al. (2016). The same
function was used in the architecture of AFFACT-B for the domain-adapted multi-task loss layer.
This function assigns a probability to the two classes of each attribute a. Rudd et al. (2016) first
calculate the source distribution Sa of the training set for each attribute a by counting the relative
occurrences of positive samples S+

a and negative samples S−
a and then assign the probability by

considering the binary target distribution T+
a and T−

a . As shown by Rudd et al. (2016), using
T+
a = T−

a = 0.5 as a target distribution is appropriate.

p(a|+ 1) =


1 if T+

a > S+
a

S−
a T

+
a

S+
a T

−
a

otherwise
and p(a| − 1) =


1 if T−

a > S−
a

S+
a T

−
a

S−
a T

+
a

otherwise
(5.3)

All values for this calculated probability are given in Table A.3. We integrate this probability
by multiplying the extracted value x of an attribute a of an identity i in each image j out of the n
images of that identity, giving us a mean µBia and consequently a standard deviation µBia, which is
based on balanced values of x:

µBia =
1

n

n∑
j

b(xj)

σBia =

√∑n
j (b(xj)− µBia)2

n

(5.4)

with

b(x) =

{
x · p(+1) if x ≥ 0

x · p(−1) otherwise
(5.5)

This domain adaption aimed to counteract the over-representation of the majority classes by
reducing their values with the calculated probability. In essence, this means that we lower the
values of the majority class while leaving those of the minority class unchanged. Thies yielded
a more balanced consideration of the extracted attributes, as values of the minority class appear
less frequent due to the class imbalance of the data set. However, this adaption of our statistical
measurements for reweighting only makes sense if we consequently evaluate our results after
reweighting based on the balanced error rate, since ERb considers the effect of class imbalance.
This means that we only use domain-adapted, or balanced, correction terms for extractions of
AFFACT-B, since we hypothesize that lowering ERb results in a higher ERu.

This consideration of class imbalance requires us to use two different statistical measurements
to compute our correction terms. To keep this thesis legible, we will simply refer to the mean of an
attribute for an identity as µia and the standard deviation as σia, while their calculation depends
from which CNN, AFFACT-B or AFFACT-U, they are calculated:

µia =

{
µBia if calculated from extractions from AFFACT-B

µUia if calculated from extractions from AFFACT-U
(5.6)

σia =

{
σBia if calculated from extractions from AFFACT-B

σUia if calculated from extractions from AFFACT-U
(5.7)
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Since we calculate σia from extractions, it can occur that the standard deviation is larger than
1, as the range of the extracted values goes beyond the maximum values of ground truth labels
which are either -1 or 1, as can be seen in Figure 4.1. However, effectively the values of σia are
rarely larger than 1 and when they are, they are only slightly larger: We found the highest σia
of all values from the validation set extracted with AFFACT-U, was σia = 1.21. Still, the vast
majority of σia are below 1, only a few outliers actually have values larger than 1. As described
above, the correction term for a stable positive / negative attribute should be higher / lower than
for an unstable one. This means that the correction term should be high for lower σia. We model
this with a polynomial term for 1-σia. For the previously mentioned outliers that possess a σia
larger than 1, we simply set the correction term to 0, as we consider their stability too low to
compute a proper correction term. We found the most success using either 2 or 3 as an exponent
for 1-σia, resulting in the square and cubic approaches. For the correction towards the mean, we
differentiate between directly correcting towards the mean and correcting towards the sign of the
mean. The former is an approach that uses the continuous values that we receive from the CNN
extractions. This results in an approach that corrects values of attributes with a mean closer to
zero to a lesser degree and values with more extreme means to a larger degree. In contrast, the
sign approach is a binary approach, that simply multiplies the sign of the mean with the result of
the polynomial function.

wiasquare mean =

{
0 if σia > 1

(1− σia)2 · µia otherwise

wiasquare sign =

{
0 if σia > 1

(1− σia)2 · sgn(µia) otherwise

wiacube mean =

{
0 if σia > 1

(1− σia)3 · µia otherwise

wiacube sign =

{
0 if σia > 1

(1− σia)3 · sgn(µia) otherwise

(5.8)

with

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(5.9)

This results in 40 correction terms for each identity. The correction terms for AFFACT-B con-
sider class imbalance through the modified mean µBia and standard deviation σBia, while the cor-
rection terms for AFFACT-U simply use the mean µUia and standard deviation σUia.

5.3 Identity Clustering
A central idea of this thesis is to exploit the identity of subjects to improve the prediction of at-
tributes. In early experiments images are grouped according to the ground truth identity. This
information was provided by the authors Liu et al. (2015) for their CelebA data set. However,
using this ground truth information is problematic, as in most real-life scenarios we do not know
which identity a face belongs to. Our approach to the issue of unknown identities is to acquire
identity information through a face recognition CNN. A suitable candidate for this task is Arc-
Face by Deng et al. (2019), a state-of-the-art neural network that uses Additative Angular Margin
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Figure 5.4: HISTOGRAM OF COSINE SIMILARITY. This plot shows how similar images of a sample size
of 300 identities are using cosine similarity as a score. The blue bars show the count of scores reached when
pictures of the same identity are compared to one another, orange bars show the scores of pictures from
different identities.

Loss for face recognition. ArcFace is easy to implement and only requires a low amount of com-
putational resources. Several pretrained models exist, this means that no time must be spent on
training a model. The model used in this thesis is called LResNet100E-IR,ArcFace@ms1m-refine-
v22. This CNN requires different image preprocessing than the two neural networks used for
attribute classification. The image resolution is 112 x 112 and unfortunately no instructions for
facial landmark alignment are provided. However, since samples of input images exist, we are
able to estimate the location of the eye and mouth sample, allowing for a close approximation to
the actual alignment: Both eye and mouth center are aligned to the horizontal center. The eye
center is on the 52nd pixel from the top and the mouth center on the 90th. Analog to our cropping
procedure for AFFACT described in Section 4.2, we now crop the images to be of size 112 x 112
and set the new side length as s = d · 90−52

112 , i.e. multiplying the eye mouth distance with the ratio
between eye mouth distance and image height.

The outputs for each image are embedded features as 512 dimensional vectors. These embed-
ded features are representations of the face of each image, this means that vectors of the same
identity have a high similarity, while vectors of different identities have a low one. This can be
seen in figure 5.4 where a sample size (n=300) of identities are compared with each other using
cosine similarity. In a first step we choose one identity and select one image. This image is then
compared to images of its own identity and images of a different control identity. This process
is then repeated for half of the identities in the sample size, the other half are used as control
identities. This histogram shows that images of the same identity consistently score a higher
similarity. Interestingly, there is still an overlap between scores of same and different identities.
Namely,image pairs of the same identity have low scores. These false negatives have several
reasons, the most prominent being mislabeled identities in the data set, a large amount of time
having passed between both pictures, and the face being generally obstructed. Examples of such
false negatives are given in Figure 5.5.

2https://github.com/deepinsight/insightface/wiki/Model-Zoo

https://github.com/deepinsight/insightface/wiki/Model-Zoo
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Clustering the vectors into identities is a challenging task, as there are a large number of clus-
tering algorithms, each with their own advantages and disadvantages. Most clustering algo-
rithms require a similarity or distance measurement and the number of final clusters. The cosine
similarity is an appropriate choice as a similarity measurement, as we anticipated similar scores
for the same identities. As the number of resulting clusters is unknown, at least without using
ground truth information, hierarchical clustering is a well-suited approach to the clustering prob-
lem: The most appropriate hierarchical clustering method is agglomerative clustering. In this
method, each object starts as its own cluster. These initial clusters are then successively merged,
resulting in a dendogram consisting of leaves and nodes that can be cut at any desired level. The
objects of this cut represent the clusters themselves (Rokach and Maimon, 2005), allowing us to
label each cluster as an identity. One key advantage of this method is that we can first obtain a
complete tree based on the cosine similarity and maximum linkage as a linkage criterion before
finally determining the number of clusters. Evaluating the resulting clusters is also a challenging
task: In this thesis we consider both the purity and the normalized mutual information score to
gain an idea how accurate the resulting face clusters are.
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(a) Identity 56, Image 163136.jpg (b) Identity 56, Image 177638.jpg

(c) Identity 699, Image 163949.jpg (d) Identity 699, Image 165678.jpg

(e) Identity 2277, Image 163095.jpg (f) Identity 2277, Image 171085.jpg

Figure 5.5: SAME IDENTITY, LOW SIMILARITY. Some handpicked examples where images of the same
ground truth identity have considerably low cosine similarity. The two most common reasons for this dis-
parity are either a large amount of change of the face from a person or mistakes in the labeling of the identity
of a person. We can see that in the image pair Subfigures (a) and (b) and in the pair Subfigures (e) and (f) that
despite having the same ground truth identity labels, the two images clearly belong to different identities.
In Subfigures (c) and (d) the same person is identified as two different identities, most likely due to the age
difference of the individuals in the images.





Chapter 6

Experiments

6.1 Data Set and Neural Networks
In a first step, we extract the attributes of the validation and training partition with both AFFACT-
B and AFFACT-U. This allows us to calculate the error rates of each attribute. As already men-
tioned, we focus on the balanced error rate ERb for AFFACT-B and the unbalanced error rate
ERu for AFFACT-U, as described in Equation 4.4 and Equation 4.3. It is apparent that certain
attributes are being classified substantially more accurate than others: For the attribute "Male",
AFFACT-B achieves an ERb of only 1.62%, AFFACT-U an ERu of 1.45%. This is a significant dif-
ference compared with other attributes such as "Big Lips" (AFFACT-B ERb = 31.35%, AFFACT-U
ERu = 27.17%) or "Pointy Nose" (AFFACT-B ERb = 27.62%, AFFACT-U ERu = 22.29%).

Furthermore, we can see the importance of evaluating both the AFFACT CNNs with their
corresponding error rate: While AFFACT-B achieves similar scores with both metrics, AFFACT-U
has a considerably worse balanced error rate. This is an effect that we anticipated, as this CNN
completely neglects to consider class imbalance and as a result often fails to correctly assign the
minority class. This increases the number of false negatives for positive minority classes and the
number of false positives for negative minority classes considerably, leading to a high balanced
error rate even though the unbalanced error rate is low.

6.2 ArcFace Identities
In order to automatically cluster faces into identities, we first use ArcFace to extract a feature
vector of facial information from the images and then use this facial information to cluster the
images. Our goal is to get clusters of faces that correspond to the identity. The method we use is
agglomerative hierarchical clustering with the cosine similarity as a distance metric. As a linkage
criterion we use complete linkage, which is also known as maximum linkage. This means that the
distance between two clusters is "considered equal to the longest distance from any member of
one cluster to any member of the other cluster" (Rokach and Maimon, 2005). This approach typ-
ically results in more compact clusters and more useful hierarchies compared with other linkage
criteria, such as single-linkage (Rokach and Maimon, 2005). However, agglomerative clustering
requires more similar pairs to have a lower distance, but the cosine similarity results in a higher
score for more similar pairs. Consequently, this also has an impact on maximum-linkage as a
linkage criterion. It is difficult to evaluate the impact of this factor on our clustering, but since the
implementation1 we use only has a limited number of linkage criteria, maximum-linkage still is

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
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an appropriate choice for our approach.
In a first step we calculate the entire clustering tree, but a key challenge remains: Cutting our

tree at the right level, i.e. determining the number of clusters. Two commently used approaches
to this issue are the elbow method and the silhouette score (Rousseeuw, 1987). We were unable
to determine an exact number of clusters using the elbow method2, leaving us with the silhouette
score. This method indicates how separated and cohesive clusters are. Cohesiveness describes
how similar objects are to other objects in the same cluster, while separation describes an ob-
ject’s dissimilarity to other objects in different clusters. This results in a score between -1 and 1
for each cluster, a higher value indicates more cohesiveness and better separation of that cluster
(Rousseeuw, 1987). As the number of expected clusters is rather large, manual optimizations re-
garding the number of clusters are infeasible. For this reason, we simply compute the average
silhouette score for each number of clusters and then choose the number of clusters where this
score is at its maximum. With this method we calculate the number of clusters to be 1,240 for
the validation set and 1,142 clusters for the test set. The number of hand labeled ground truth
identities for both sets are 987 and 1,000 respectively. In both cases we overestimate the number
of identities, however, this helps us to achieve a high purity. Purity is a measure of how uni-
form a cluster is regarding to its classes: In our case, we calculate the purity of a single cluster
by assigning the cluster to the most frequent ground truth identity in that cluster before count-
ing how many objects in that cluster are of that same identity. We repeat this process for each
cluster and sum up the number of correctly assigned objects and divide it by the total number of
objects (Schütze et al., 2008). For our purpose we want to achieve high purity, since we use the
clustered identities to perform identity-related reweighting of attributes. This is why we try to
avoid scenarios where there are multiple different ground truth identities in the same clusters, as
this would mean that we consider attributes from different identities too. However, it should be
noted that a high purity can be achieved by vastly overestimating the number of clusters, e.g. if
the number of clusters is equal to the number of objects, we achieve a purity of 100%. With our
silhouette score based agglomerative clustering approach we achieve a purity of 97.57% for the
test set and 98.81% for the validation partition. Purity only measures how uniform the clusters
are, but disregards clustering errors where one identity has been split into multiple clusters. A
second measurement is the normalized mutual information (NMI) score. Mutual information is
a quantification of how much information is shared between two variables: In our case the clus-
tered labels and the ground truth labels. This score shows how much information we gain of one
label by knowing about the other (Schütze et al., 2008). To calculate this score, we use a scikit-
learn module that provides us with the NMI score based on the arithemtic average.3 The NMI
scores for the training partition and validation partition are 98.88% and 99.02% respectively.

6.3 Reweighting

6.3.1 Approaches
In a first step, we apply different reweighting formulas to the validation set in order to narrow
the selection down to a number of candidates without introducing possible biases by optimizing
them on the test partition. The four most successful approaches on the validation partition are
described in Equation 5.8: wsquare mean, wsquare sign, wcube sign, wcube mean. These functions have two
components: An exponent that lowers the term for unstable attributes, i.e. attributes with a low
standard deviation and a factor that corrects the term towards the mean.

2https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_

info_score.html

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
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When we compare these two methods for reweighting attributes with the same stability factor,
the mean method results in a higher term if the mean has a higher absolute value and a lower
term if the absolute value of the mean is lower. Alternative approaches involve sigmoid and
cosine functions to model the desired effect for unstable attributes. Two examples can be found
in Appendix A.1. Still, the most successful results on the validation sets stem from one of the four
correction term formulas.

6.3.2 Reweighting with Ground Truth Identities
In a first step, we simply use the hand-labeled identities to calculate the correction terms for each
attribute of an identity. This means that we calculate the σ and µ of each attribute a for an identity
i, giving us σia and µia to which we apply all four reweighting approaches w from Equation 5.8.
For the balanced network AFFACT-B, we adapt the correction terms to our source distribution as
described in Equation 5.5, resulting in balanced correction terms. To gain meaningful insights, we
reweight the extractions from the test partition. The goal is to lower the balanced error rate ERb
for AFFACT-B and the unbalanced error rate ERu for AFFACT-U compared with the error rates
of the unperturbed, original extraction. The results in Table 6.1 show that all approaches result
in lower error rates than the uncorrected extractions. Interestingly, the best performing correc-
tion term formulas change depending on the CNN we use: For the balanced network AFFACT-B
wsquare sign with domain adaption lowers the average balanced error rate by 0.23%, a relative im-
provement of 2%. The average unbalanced error rate of the unbalanced network AFFACT-U is
lowered by the correction term function wsquare mean by 0.1%, a relative improvement of 1.2%.

Table 6.1: AVERAGE ERROR RATES USING GROUND TRUTH. Average error rates after and before
reweighting the extractions of both CNNs using the ground truth identity information.

AFFACT-B AFFACT-U
Average ERb Average ERu Average ERb AverageERu

uncorrected 11.46 12.16 17.16 8.26
square sign 11.23 12.90 18.94 8.24

square mean 11.28 12.33 18.15 8.16
cube sign 11.24 12.51 18.24 8.18

cube mean 11.33 12.25 17.79 8.17

6.3.3 Reweighting with Clustered Identities
Finally, we use the information from the facial clustering instead of the manually annotated iden-
tities. The rest of our approach remains the same, but the reweighting function now uses σ and
µ that we calculated for each attribute of each cluster, and then applies the resulting correction
term to the other object of that cluster. The results in Table 6.2 are nearly identical with those
from the reweighting with ground truth information. For the AFFACT-B, the correction term
function wsquare sign performs slightly worse, lowering the average balanced error rate by 0.21%, a
relative improvement of 1.8% on par with wcube sign. The results for AFFACT-U remain essentially
the same, wsquare mean still performs the best by lowering the average unbalanced error by 0.1%, a
relative improvement of 1.2%.
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Table 6.2: AVERAGE ERROR RATES USING CLUSTERED LABELS. Average error rates after and before
reweighting the extractions of both CNNs using the clustering of ArcFace extractions. The bold text denote
the best performance of a formula for the appropriate error rate.

AFFACT-B AFFACT-U
Average ERb Average ERu Average ERb Average ERu

unweighted 11.46 12.16 17.16 8.26
wsquare sign 11.25 12.90 18.94 8.24
wsquare mean 11.29 12.33 18.15 8.16
wcube sign 11.25 12.51 18.24 8.18
wcube mean 12.51 12.25 17.78 8.17

6.3.4 Balancing of Correction Terms
For the calculation of the average error rates, we only use balanced correction terms, i.e. terms that
consider how classes are distributed in the domain. We achieved this by adapting the statistical
measurements to the class distribution with σBia and µBia. In the experiments above, we used these
two domain-adapted measurements for AFFACT-B and the unadapted measurements σUia and
µUia for AFFACT-U. The reason why we only use the balanced correction terms that are calculated
with σBia and µBia for the extractions of AFFACT-B can be seen in Table 6.3:

When we compare the performance of balanced correction terms and unbalanced ones, we
can see that using σBia and µBia nearly always results in a lower ERb. Interestingly, this works for
extractions of both AFFACT-B and AFFACT-U, showing that our balanced correction terms are
effective at reducing the balanced error rate. The same observation can be made for unbalanced
correction terms. Using unbalanced correction terms results in a lower ERu for extractions from
both CNNs.

Table 6.3: BALANCED VS. UNBALANCED CORRECTION TERMS. Comparison of average error rates
between balanced correction terms that use σB

ia and µB
ia and the unbalanced correction terms that use σU

ia

and µU
ia with reweighting based on ground truth identities. The lower error rate is marked in bold.

Average ERb Average ERu
balanced

correction term
unbalanced

correction term
balanced

correction term
unbalanced

correction term
AFFACT-B

wsquare sign 11.23 11.38 12.90 11.36
wsquare mean 11.28 11.28 12.33 11.63
wcube sign 11.24 11.28 12.51 11.59
wcube mean 11.33 11.31 12.25 11.80

AFFACT-U
wsquare sign 16.53 18.94 8.24 8.24
wsquare mean 16.89 18.15 8.20 8.16
wcube sign 16.79 18.24 8.22 8.18
wcube mean 17.00 17.79 8.21 8.17
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Discussion

A central finding of these experiments is that we were not only able to lower the error rates with
ground truth identity labels, but also by using labels from clustered face identities. In our experi-
ments, the number of clustered identities is larger than the number of ground truth identities. This
over estimation is most likely a solid approach to automatically clustered identity labels, as it is
quite challenging to accurately determine the ground truth information from visual information
only, since facial appearance can vary greatly over time. This visual based approach to identity
may be better for the purpose of reweighting identity-related attributes, especially in cases where
images of the same identity exhibit different features over time. There are various reasons for
large changes of facial features such as aging, facial surgery, or gender-reassignment surgery. A
comparison of the relative improvements of AFFACT-U can be seen in Table ??. The difference
in the performance of ground truth and clustered identity labels is insignificant. To compare the
performance between clustered and ground truth labels for AFFACT-B, we must consider both
the false negative and false positive rate due to the balanced approach of this network. As can
be seen in Figure 7.1, the false positive and false negative rates based on which we calculate the
balanced error rate are also similar after reweighting with ground truth labels and reweighting
with clustered labels.

While our clustering method is by not perfect, as indicated by the differences in error rates
between reweighting using ground truth and clustered identities, we receive high values for both
purity and NMI. The clusters of the test set possess a purity of 97.57%. Ideally, we want this
value to be as high as possible, as mixing identities together defeats the purpose of reweighting
attributes based on their correlation with an identity. However, simply focusing on maximizing
purity is not ideal either: The purity of a cluster tends to increase the smaller the cluster becomes.
However, the smaller these clusters become, the fewer images are available to calculate the cor-
rection terms.

This is why we also introduced NMI as a measurement to evaluate our clustering. This mea-
surement considers the mutual information shared between ground truth labels and clustered
labels, which means it also considers the effect of one identity being split into multiple clusters.
The NMI score of the test set is 98.88%, a relatively high score, which indicates that the cluster-
ing in our experiments is fairly accurate. The task of accurate identity clustering is also hindered
by incorrect labels of the ground truth identities. It is difficult to estimate how large the impact
of such incorrect labels is, but they certainly influence the evaluation of our clustering method.
Generally, the performance of reweighting with ground truth identity labels and with clustered
identity labels is very similar. Especially the resulting error rates after reweighting extractions of
AFFACT-U are basically identical for both labels. In AFFACT-B we can observe a slight decrease
in performance when reweighting with the clustered labels.

Not only is determining the number of identities difficult, but also modelling the effect of
identity-related stability: One of the most challenging aspects of the approach introduced in this
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s

uncorrected ground truth labels clustered labels
ERu ERu change ERu change

5 o Clock Shadow 5.23 5.11 2.29% 5.11 2.29%
Arched Eyebrows 15.73 15.39 2.16% 15.39 2.16%

Attractive 17.02 16.76 1.53% 16.76 1.53%
Bags Under Eyes 14.76 14.34 2.85% 14.36 2.71%

Bald 0.95 0.93 2.11% 0.93 2.11%
Bangs 3.83 3.83 0.00% 3.86 -0.78%

Big Lips 27.17 27.28 -0.40% 27.30 -0.48%
Big Nose 15.67 14.90 4.91% 14.90 4.91%

Black Hair 9.57 9.44 1.36% 9.43 1.46%
Blond Hair 3.93 3.91 0.51% 3.91 0.51%

Blurry 3.61 3.77 -4.43% 3.78 -4.71%
Brown Hair 10.59 10.25 3.21% 10.24 3.31%

Bushy Eyebrows 7.14 6.94 2.80% 6.96 2.52%
Chubby 4.35 4.22 2.99% 4.22 2.99%

Double Chin 3.45 3.38 2.03% 3.38 2.03%
Eyeglasses 0.36 0.34 5.56% 0.32 11.11%

Goatee 2.41 2.32 3.73% 2.32 3.73%
Gray Hair 1.74 1.71 1.72% 1.71 1.72%

Heavy Makeup 8.16 8.06 1.23% 8.03 1.59%
High Cheekbones 11.86 11.79 0.59% 11.78 0.67%

Male 1.45 1.29 11.03% 1.31 9.66%
Mouth Slightly Open 5.90 5.86 0.68% 5.89 0.17%

Mustache 2.87 2.71 5.57% 2.72 5.23%
Narrow Eyes 12.21 12.62 -3.36% 12.59 -3.11%

No Beard 3.54 3.57 -0.85% 3.56 -0.56%
Oval Face 23.11 22.92 0.82% 22.97 0.61%
Pale Skin 2.82 2.91 -3.19% 2.92 -3.55%

Pointy Nose 22.29 22.32 -0.13% 22.27 0.09%
Receding Hairline 5.96 5.95 0.17% 5.95 0.17%

Rosy Cheeks 4.77 4.71 1.26% 4.71 1.26%
Sideburns 2.24 2.18 2.68% 2.17 3.13%

Smiling 6.83 6.72 1.61% 6.71 1.76%
Straight Hair 14.55 14.59 -0.27% 14.60 -0.34%
Wavy Hair 13.57 13.55 0.15% 13.54 0.22%

Wearing Earrings 9.17 9.05 1.31% 9.06 1.20%
Wearing Hat 0.81 0.81 0.00% 0.82 -1.23%

Wearing Lipstick 6.12 5.81 5.07% 5.78 5.56%
Wearing Necklace 10.71 10.69 0.19% 10.67 0.37%
Wearing Necktie 2.70 2.68 0.74% 2.68 0.74%

Young 11.06 10.63 3.89% 10.63 3.89%
Average 8.26 8.16 1.21% 8.16 1.21%
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thesis is the calculation of the correction terms that are added to the extractions. The four methods
of calculation that were introduced are all similar to each other: In all methods a low standard
deviation results in a significantly lower absolute value of the correction term, due to the polyno-
mial nature of our formulas. This part of the formula represents the stability of an attribute from
an identity. Attributes with a low stability are corrected to a smaller degree; attributes with a stan-
dard deviation higher than 1 are not corrected at all. A reason for this lowered consideration of
unstable attributes is to avoid changing correctly identified attributes as much as possible. How-
ever, a considerable weakness of our approach is that the standard deviation does not give us any
information about the binary classes it stems from: The standard deviation from which we infer
stability might be the same for an attribute that has values that are all below 0 as one that has half
its values below 0 and the other half above, even though the former one is stable from a binary
attribute classification view, while the latter is not. This effect is somewhat counteracted by the
second part of our correction term calculation formula which also considers the mean. Still, most
likely there is room improvement for representing stability in such formulas. Interestingly, how
we consider the mean results in different best performing reweighting formulas: For the balanced
extractions we receive better results if the correction terms only take the sign of the mean, while
the unbalanced one corrects it directly towards the mean. Furthermore, there most likely exist
formulas that model the desired effect more accurately, however, the four formulas shown in this
thesis show a first, simple and straightforward approach for calculating such terms.

All in all, there are considerable differences between the results after reweighting the extrac-
tions from our two CNNs. An example of this is the attribute "Big Lips", which has a better per-
formance after reweighting extractions from AFFACT-B but a worse performance after reweight-
ing extractions from AFFACT-U. On one hand, this is of course due to the different extraction
approach of these two neural networks, on the other hand it is also an artifact from our two
different approaches to reweighting: The correction terms for the extractions from AFFACT-B
are domain-adapted, furthermore, the best-performing reweighting formulas are two different
ones for the balanced and unbalanced approaches. We also show that by adapting our correction
terms to the domain we receive a lower average ERb for both AFFACT-B and AFFACT-U. If we
do not adapt these correction terms, we receive a lower average ERu. As we focus on lowering
ERb for AFFACT-B and ERu for AFFACT-U, we only use domain-adapted correction terms for
AFFACT-B. This difference in approaches makes comparisons between the reweighting of both
neural networks difficult, even when comparing the same apparent reweighting formulas, as we
use µBia σ

B
ia for extractions of AFFACT-B and µUia σ

U
ia for extractions of AFFACT-U.

The approach shown in this thesis uses a very pragmatic understanding of identity and the
attributes that relate to it. This is one of its biggest strengths: Rather than solely basing the
reweighting of attributes on the human understanding of attributes and their consistency, we
rely on statistical measurements of each identity to perform corrections. This allows for a more
individualistic approach rather than a global one, as different attributes may vary greatly in their
stability for different individuals. However, this approach also leads to certain issues, as the sta-
bility of attributes is always interpreted as a correlation with identity. This interpretation is not
true for all attributes, a great example of this effect leading to a worse performance can be seen
with the attributes "Blurry". We can seen this by looking at the increased false positive rate in
Figure 7.1 of the balanced network AFFACT-B and the increased ERu of AFFACT-U in Table ??.
From a human understanding it is apparent that "Blurry" is a property of the image, rather than
an identity-related facial attribute. However, since our approach only considers in how many
pictures of the same identity an attribute is present or absent, we incorrectly assume that this
attribute is stable. The attribute "Pale Skin" also increases for reweighting of both CNNs. Exam-
ples of other increases in error rates can be observed for the attributes like "Big Lips", "Blurry",
and "Narrow Eyes" for AFFACT-U and attributes like "Arched Eyebrows", "Chubby", and "Dou-
ble Chin" for AFFACT-B. Many of these attributes for which the reweighting results in a higher
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error rate than before, are attributes that are heavily imbalanced. This indicates that, despite our
efforts to consider class imbalance, the class distribution of the samples still is an obstacle for our
reweighting process.

From a purely statistical point of view, it is difficult to determine why these attributes show
a low standard deviation, but should not be reweighted. This task is even more difficult due to
labeling issues, as some attributes are of a very subjective nature. Examples for this are attributes
such as "Big Lips" or "Narrow Eyes". We expect such attributes to be highly related to the identity,
but labeling such attributes is a challenging task. This means that such attributes introduce an
inherent bias through whoever is labeling them and in which cases they consider a person to
possess these attributes.

A further issue is the available sample size for each identity. It is increasingly difficult to de-
termine whether the stability of an attribute is truly related to the identity if the number of images
of that identity is small. Our formulas are well defined for identities that occur in one image, as
the standard deviation is 0 for all attributes. In such cases, we simply correct the extracted values
toward the mean of the attributes of that identity. If that identity only has one image, then the
reweighting has no effect on the error rate, due to the binary nature of our evaluation. However,
if the number of images of an identity is small but greater than 1, then our statistical measures are
substantially less meaningful due to the small sample size.

A global consideration of the correction terms might help to solve this problem. We could
differentiate between attributes that globally correlate more often and such that correlate less of-
ten, allowing us to decrease the correction terms of attributes that show a globally low correlation
with their identity. Such an approach should also differentiate between the correlation of the ab-
sence of an attribute and its presence, as these two correlations may be substantially different for
some attributes. This would allow us exploit information of cross-correlating attributes and sub-
sequently result in a more robust reweighting approach. Another possibility would be to combine
our statistical approach with attribute grouping, a method that is widespread in related works for
to improve the performance of CNNs. However, manual attribute grouping is most likely not
an appropriate choice to calculate correction terms for attributes, as there are disparities between
the human understanding of how certain facial attributes correlate with identity and how they
actually correlate in such a data set.
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Figure 7.1: BALANCED AND UNBALANCED ERROR RATES AFFACT-B. Each attribute has three bars.
The stacked bar original shows the number of mistakes of the unweighted extractions. The stacked bars
clustered and ground truth show the error rates after being reweighted using the respective identity labels.
Both were reweighted with the correction terms calculated from wsquare sign. The blue bars show the false
positive rate, while the red bars indicate the false negative rate. The balanced error rate is the average of
these two rates.
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Conclusion

The results of our experiments show that it is indeed possible to improve the accuracy of CNN
extractions using identity-related attribute correlation. This thesis introduced a method for cal-
culating correction terms using simple statistical measurements such as the standard deviation
and mean from each identity. While there is room for improvement considering the exact formu-
las for these correction terms, the terms we calculate are able to effectively reweight extractions
from CNNs. A major issue for CNNs is the class imbalance in the data set. We address this is-
sue by using extractions from both an unbalanced and a balanced neural neural network: Both
these networks are based on the approach introduced by Günther et al. (2017). Our approach to
this issue is to modify correction terms by adapting them to the distribution of classes, resulting in
balanced correction terms, which improve the balanced accuracy rate of the balanced CNN. How-
ever, while we are able to lower the overall error rates for both networks, we fail to improve the
classification accuracy for every attribute. The main reason for this is that attributes may appear
stable, which we then interpret as correlating with identity, though this interpretation is incorrect
for some cases, leading to a lowered performance. While we are able to successfully consider the
issue of class imbalance in our reweighting approaches to a certain degree by utilizing statistical
measures that are adapted to a target domain, class imbalance may very well be the reason why
some attributes have higher error rates after reweighting.

Furthermore, we also show that this improvement can be achieved to a similar degree when
using automatically detected identities, rather than just ground truth ones. In this thesis the
identities are determined by agglomerative clustering of facial information that was extracted
using ArcFace (Deng et al., 2019). We hypothesize that it is even possible to achieve a higher
performance with automatically extracted identity labels than with ground truth ones, due to a
higher correlation between certain attributes and visual identity compared with the ground truth
one.

There is potential to further improve our approach. A major possibility for improvement is
the specific calculation of our correction terms. While we show that we can already achieve im-
provements with basic formulas, there most likely is room for improvement by utilizing formulas
that model our desired effect more accurately. Currently the reweighting approach only considers
attributes correlation with identity. It could be enhanced by not only considering how a single at-
tribute correlates with identity but also how attributes correlate with each other with respect to an
identity. Such an approach, though more complex, could significantly enhance performance. Fur-
thermore, our current approach could benefit by some sort of global consideration to reduce the
effect of reweighting apparently stable but identity unrelated attributes. Such incorrect reweight-
ing is a major obstacle for our stability-based approach, as we cannot infer whether an attribute
is identity-related or not from the standard deviation and mean especially if there are only few
sample images for our calculations.

Our results show that reweighting attributes based on their correlation to identity is possible.



34 Chapter 8. Conclusion

While the results of this thesis may seem minor, since we are only able to improve the average
error rates by a few tenths of a percent, it offers a basic approach that was tested successfully on
extractions of two neural networks, lowering the error rates for both. This basic approach has
shown significant of potential, and we hope to refine and improve it in future research.



Appendix A

Attachments

A.1 Further Approaches to Reweighting
In addition to the calculation formulas for the correction terms described in Equation 5.8, we
tested several different formulas. As most of these formulas were rather unsuccessful, we did not
describe them in detail. Here we outline two examples of formulas that were able to lower the
average balanced error rate of extractions from AFFACT-B:

wiasigmoid =

{
0 if σia > 1

sgn(µia)

1−e−10(0.5−σia) otherwise

wiacosine =

{
0 if σia > 1
cos((1−σia)·Π)+1

2 · sgn(µia) otherwise

(A.1)

These were not included in the main text, as their performance was worse than that of the four
correction term formulas using polynomials. However, this shows that there are a large number
of approaches for calculating correction terms. Some of these formulas most likely lead to a better
performance than the formulas used in this thesis. The complete results of these two formulas
can be found in Table A.2.

A.2 Additional Tables
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Table A.1: SIGMOID AND COSINE. This table shows the performance off AFFACT-B before and after
reweighting with wsigmoidandwcosine.AFFACT − BisthebalancedCNN,makingERb the relevant error rate.
The averages of the relevant error rate are marked in bold.

no reweight wsigmoid wcosine

Error rates ERb ERu ERb ERu ERb ERu
5 o Clock Shadow 8.00 9.67 7.98 12.48 8.07 12.63
Arched Eyebrows 16.84 18.41 17.49 20.89 17.52 21.04
Attractive 16.92 16.92 17.43 17.44 17.41 17.43
Bags Under Eyes 17.88 19.25 18.41 21.37 18.71 21.58
Bald 2.68 3.21 2.85 3.99 2.92 4.12
Bangs 5.04 5.40 5.03 5.50 5.00 5.48
Big Lips 31.35 30.08 28.33 30.87 28.30 30.74
Big Nose 20.67 21.68 21.10 24.68 21.06 24.54
Black Hair 11.97 13.25 12.17 14.72 12.14 14.83
Blond Hair 6.20 6.76 6.03 7.22 6.04 7.29
Blurry 9.24 12.65 9.71 14.25 9.78 14.75
Brown Hair 16.52 19.12 16.56 21.54 16.72 21.82
Bushy Eyebrows 13.85 11.25 14.26 13.26 14.17 13.45
Chubby 10.79 13.50 11.03 17.18 11.08 17.26
Double Chin 10.00 12.02 11.12 15.14 11.27 15.44
Eyeglasses 0.99 0.77 1.07 0.86 1.08 0.87
Goatee 3.72 6.11 4.07 6.97 4.03 7.00
Gray Hair 4.53 6.12 4.99 7.89 5.06 8.03
Heavy Makeup 8.25 8.32 8.37 8.79 8.36 8.85
High Cheekbones 12.32 12.24 12.39 12.32 12.48 12.41
Male 1.62 1.48 1.21 1.08 1.18 1.05
Mouth Slightly Open 5.78 5.78 5.85 5.85 5.88 5.88
Mustache 5.61 7.43 5.20 8.32 5.25 8.55
Narrow Eyes 22.02 19.14 21.67 22.57 21.71 23.40
No Beard 4.49 4.64 4.29 5.29 4.33 5.46
Oval Face 29.00 27.62 26.98 28.15 26.91 28.10
Pale Skin 9.81 14.21 10.28 16.42 10.48 17.57
Pointy Nose 27.62 26.57 27.43 29.73 27.29 29.49
Receding Hairline 12.23 12.33 11.81 13.72 11.69 13.89
Rosy Cheeks 9.31 12.50 9.70 13.95 9.90 14.50
Sideburns 4.38 6.20 4.52 6.95 4.59 7.08
Smiling 6.68 6.68 6.79 6.79 6.77 6.77
Straight Hair 18.50 21.05 18.49 23.04 18.73 23.33
Wavy Hair 14.52 13.36 14.20 13.54 14.26 13.67
Wearing Earrings 11.33 12.93 11.54 14.19 11.70 14.53
Wearing Hat 2.00 1.75 1.94 1.74 1.93 1.74
Wearing Lipstick 5.73 5.77 5.22 5.15 5.15 5.08
Wearing Necklace 19.85 20.81 20.70 29.25 20.90 30.07
Wearing Necktie 5.67 6.06 5.61 6.98 5.50 7.21
Young 14.33 13.53 12.73 13.50 12.67 13.37
Average 11.46 12.16 11.41 13.59 11.45 13.76
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Table A.2: ERROR RATES OF CNN EXTRACTIONS. This table lists both error rates for extractions of
both CNNs. AFFACT-B is the balanced CNN, making ERb the relevant error rate while ERu is relevant for
the extractions of AFFACT-U.

AFFACT-B AFFACT-U
Error rates ERb ERu ERb ERu

5 o Clock Shadow 8.00 9.67 13.59 5.23
Arched Eyebrows 16.84 18.41 19.91 15.73

Attractive 16.92 16.92 17.03 17.02
Bags Under Eyes 17.88 19.25 23.07 14.76

Bald 2.68 3.21 10.55 0.95
Bangs 5.04 5.40 7.59 3.83

Big Lips 31.35 30.08 37.58 27.17
Big Nose 20.67 21.68 24.29 15.67

Black Hair 11.97 13.25 13.15 9.57
Blond Hair 6.20 6.76 9.63 3.93

Blurry 9.24 12.65 26.41 3.61
Brown Hair 16.52 19.12 17.05 10.59

Bushy Eyebrows 13.85 11.25 19.72 7.14
Chubby 10.79 13.50 23.62 4.35

Double Chin 10.00 12.02 25.53 3.45
Eyeglasses 0.99 0.77 1.38 0.36

Goatee 3.72 6.11 10.11 2.41
Gray Hair 4.53 6.12 12.68 1.74

Heavy Makeup 8.25 8.32 8.99 8.16
High Cheekbones 12.32 12.24 11.93 11.86

Male 1.62 1.48 1.59 1.45
Mouth Slightly Open 5.78 5.78 5.90 5.90

Mustache 5.61 7.43 25.48 2.87
Narrow Eyes 22.02 19.14 36.05 12.21

No Beard 4.49 4.64 6.22 3.54
Oval Face 29.00 27.62 35.16 23.11
Pale Skin 9.81 14.21 25.09 2.82

Pointy Nose 27.62 26.57 34.01 22.29
Receding Hairline 12.23 12.33 23.85 5.96

Rosy Cheeks 9.31 12.50 20.74 4.77
Sideburns 4.38 6.20 8.27 2.24

Smiling 6.68 6.68 6.83 6.83
Straight Hair 18.50 21.05 25.33 14.55
Wavy Hair 14.52 13.36 16.31 13.57

Wearing Earrings 11.33 12.93 13.58 9.17
Wearing Hat 2.00 1.75 4.70 0.81

Wearing Lipstick 5.73 5.77 6.03 6.12
Wearing Necklace 19.85 20.81 29.71 10.71
Wearing Necktie 5.67 6.06 10.14 2.70

Young 14.33 13.53 17.64 11.06
Average 11.46 12.16 17.16 8.26
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Table A.3: CALCULATED PROBABILITY. This probability was calculated using the formula shown in 5.3
and outlined by Rudd et al. (2016).

Attributes positive negative
5 o Clock Shadow 1.0 0.13
Arched Eyebrows 1.0 0.36
Attractive 0.95 1.0
Bags Under Eyes 1.0 0.26
Bald 1.0 0.02
Bangs 1.0 0.18
Big Lips 1.0 0.32
Big Nose 1.0 0.31
Black Hair 1.0 0.31
Blond Hair 1.0 0.18
Blurry 1.0 0.05
Brown Hair 1.0 0.26
Bushy Eyebrows 1.0 0.17
Chubby 1.0 0.06
Double Chin 1.0 0.05
Eyeglasses 1.0 0.07
Goatee 1.0 0.07
Gray Hair 1.0 0.04
Heavy Makeup 1.0 0.62
High Cheekbones 1.0 0.83
Male 1.0 0.72
Mouth Slightly Open 1.0 0.93
Mustache 1.0 0.04
Narrow Eyes 1.0 0.13
No Beard 0.2 1.0
Oval Face 1.0 0.4
Pale Skin 1.0 0.04
Pointy Nose 1.0 0.38
Receding Hairline 1.0 0.09
Rosy Cheeks 1.0 0.07
Sideburns 1.0 0.06
Smiling 1.0 0.92
Straight Hair 1.0 0.26
Wavy Hair 1.0 0.47
Wearing Earrings 1.0 0.23
Wearing Hat 1.0 0.05
Wearing Lipstick 1.0 0.89
Wearing Necklace 1.0 0.14
Wearing Necktie 1.0 0.08
Young 0.28 1.0
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Table A.4: ERROR RATES AFFACT-B WITH wSQUARE SIGN. This table compares the error rates of the
uncorrected extractions to those of extractions that are reweighted with wsquare sign. The column ground truth
labels shows the results when ground truth identity labels were used for reweighting and clustered labels
when clustered labels were used. The lowest ERbs are marked in bold.

uncorrected ground truth
lables

clustered
labels

Error rates ERb ERu ERb ERu ERb ERu
5 o Clock Shadow 8.00 9.67 7.75 11.26 7.76 11.25
Arched Eyebrows 16.84 18.41 16.95 19.70 16.94 19.72
Attractive 16.92 16.92 16.84 16.85 16.82 16.83
Bags Under Eyes 17.88 19.25 18.11 20.48 18.03 20.47
Bald 2.68 3.21 2.69 3.69 2.68 3.66
Bangs 5.04 5.40 5.00 5.45 5.00 5.45
Big Lips 31.35 30.08 28.62 30.30 28.75 30.51
Big Nose 20.67 21.68 20.83 23.34 20.80 23.33
Black Hair 11.97 13.25 11.90 13.99 11.90 13.97
Blond Hair 6.20 6.76 6.04 7.02 6.05 7.01
Blurry 9.24 12.65 9.40 13.67 9.41 13.68
Brown Hair 16.52 19.12 16.20 20.42 16.25 20.49
Bushy Eyebrows 13.85 11.25 13.84 12.20 13.80 12.19
Chubby 10.79 13.50 11.13 15.85 11.03 15.83
Double Chin 10.00 12.02 10.81 13.96 10.80 13.94
Eyeglasses 0.99 0.77 1.05 0.82 1.01 0.80
Goatee 3.72 6.11 4.03 6.70 4.02 6.67
Gray Hair 4.53 6.12 4.68 7.14 4.61 7.16
Heavy Makeup 8.25 8.32 8.18 8.49 8.25 8.56
High Cheekbones 12.32 12.24 12.23 12.16 12.23 12.16
Male 1.62 1.48 1.33 1.20 1.35 1.22
Mouth Slightly Open 5.78 5.78 5.79 5.79 5.76 5.76
Mustache 5.61 7.43 5.20 7.96 5.19 7.94
Narrow Eyes 22.02 19.14 21.43 20.97 21.46 21.01
No Beard 4.49 4.64 4.25 5.02 4.24 5.01
Oval Face 29.00 27.62 26.77 26.93 27.13 27.12
Pale Skin 9.81 14.21 10.16 15.54 10.18 15.57
Pointy Nose 27.62 26.57 26.76 28.08 26.60 27.77
Receding Hairline 12.23 12.33 11.83 13.08 11.84 13.09
Rosy Cheeks 9.31 12.50 9.40 13.44 9.48 13.41
Sideburns 4.38 6.20 4.46 6.64 4.44 6.61
Smiling 6.68 6.68 6.72 6.72 6.68 6.68
Straight Hair 18.50 21.05 18.05 21.97 18.10 22.01
Wavy Hair 14.52 13.36 14.26 13.36 14.32 13.40
Wearing Earrings 11.33 12.93 11.35 13.64 11.38 13.64
Wearing Hat 2.00 1.75 1.94 1.74 1.93 1.73
Wearing Lipstick 5.73 5.77 5.17 5.14 5.18 5.15
Wearing Necklace 19.85 20.81 19.82 25.52 20.10 25.60
Wearing Necktie 5.67 6.06 5.54 6.61 5.49 6.58
Young 14.33 13.53 12.85 13.06 12.84 13.09
Average 11.46 12.16 11.23 12.90 11.25 12.90
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Table A.5: ERROR RATES AFFACT-U WITH wSQUARE MEAN. This table compares the error rates of the
uncorrected extractions to those of extractions that are reweighted with wsquare mean. The column ground truth
labels shows the results when ground truth identity labels were used for reweighting and clustered labels
when clustered labels were used. The lowest ERus are marked in bold.

uncorrected ground truth
lables

clustered
labels

Error rates ERb ERu ERb ERu ERb ERu
5 o Clock Shadow 13.59 5.23 13.92 5.11 13.94 5.11
Arched Eyebrows 19.91 15.73 20.09 15.39 20.09 15.39
Attractive 17.03 17.02 16.76 16.76 16.76 16.76
Bags Under Eyes 23.07 14.76 24.45 14.34 24.50 14.36
Bald 10.55 0.95 11.11 0.93 11.00 0.93
Bangs 7.59 3.83 8.24 3.83 8.29 3.86
Big Lips 37.58 27.17 38.61 27.28 38.63 27.30
Big Nose 24.29 15.67 24.32 14.90 24.27 14.90
Black Hair 13.15 9.57 13.31 9.44 13.31 9.43
Blond Hair 9.63 3.93 9.89 3.91 9.87 3.91
Blurry 26.41 3.61 31.89 3.77 31.89 3.78
Brown Hair 17.05 10.59 18.08 10.25 18.03 10.24
Bushy Eyebrows 19.72 7.14 20.63 6.94 20.65 6.96
Chubby 23.62 4.35 24.80 4.22 24.76 4.22
Double Chin 25.53 3.45 27.22 3.38 27.37 3.38
Eyeglasses 1.38 0.36 1.52 0.34 1.40 0.32
Goatee 10.11 2.41 10.89 2.32 10.94 2.32
Gray Hair 12.68 1.74 13.66 1.71 13.58 1.71
Heavy Makeup 8.99 8.16 8.82 8.06 8.79 8.03
High Cheekbones 11.93 11.86 11.86 11.79 11.85 11.78
Male 1.59 1.45 1.43 1.29 1.45 1.31
Mouth Slightly Open 5.90 5.90 5.86 5.86 5.89 5.89
Mustache 25.48 2.87 27.21 2.71 27.34 2.72
Narrow Eyes 36.05 12.21 39.71 12.62 39.60 12.59
No Beard 6.22 3.54 6.30 3.57 6.30 3.56
Oval Face 35.16 23.11 36.20 22.92 36.25 22.97
Pale Skin 25.09 2.82 29.52 2.91 29.52 2.92
Pointy Nose 34.01 22.29 35.16 22.32 35.10 22.27
Receding Hairline 23.85 5.96 25.74 5.95 25.69 5.95
Rosy Cheeks 20.74 4.77 23.74 4.71 23.74 4.71
Sideburns 8.27 2.24 9.00 2.18 9.00 2.17
Smiling 6.83 6.83 6.72 6.72 6.71 6.71
Straight Hair 25.33 14.55 27.07 14.59 27.10 14.60
Wavy Hair 16.31 13.57 16.52 13.55 16.52 13.54
Wearing Earrings 13.58 9.17 13.95 9.05 13.97 9.06
Wearing Hat 4.70 0.81 5.55 0.81 5.56 0.82
Wearing Lipstick 6.03 6.12 5.76 5.81 5.73 5.78
Wearing Necklace 29.71 10.71 32.04 10.69 31.98 10.67
Wearing Necktie 10.14 2.70 11.19 2.68 11.19 2.68
Young 17.64 11.06 17.38 10.63 17.36 10.63
Average 17.16 8.26 18.15 8.16 18.15 8.16
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