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Abstract

Remote Electronic Voting (REV) becomes an increasing topic of interest since citicens
are used to complete many other tasks online. But REV systems need to provide a very
high level of security, hindering deployment of adequate solutions. The Communication
Systems Group at the university of Zurich implements the REV system provotum.

This thesis explores deployment of a USB dongle in the Remote Electronic Voting (REV)
system Provotum to improve security. This work proposes a design centered around a set
of 6 – mostly mutually exclusive – functions running on a USB dongle that provide addi-
tional protection against theft and selling of private keys, as well as against manipulation
by malware on the voter’s computer. A USB dongle is selected and all functions are im-
plemented in a firmware running on that dongle, as well as additional system components
to constitute a Proof–of–Concept that demonstrates end–to–end integration of the func-
tionality. All finite–field cryptography of the Provotum system (except RSA signatures)
is changed to Elliptic Curve Cryptography (ECC) to achieve better firmware runtime per-
formance. The implementation overcomes several challenges that are documented in this
work and achieves to offer a strong baseline codebase that facilitates future development
of further dongle–enabled Provotum functionality. Additionally, since all proposed dongle
functions are implemented in firmware, varying levels of a tradeoff between security and
usability can be controlled in the system.
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Zusammenfassung

Weltweit wird das Thema Online-Voting mehr und mehr präsent, da Bürger es gewohnt
sich, allerlei Geschäfte online zu erledigen. Doch Online-Voting-Systeme müssen einen sehr
hohen Grad an Sicherheit bieten, mit dem sich bis heute viele Systeme schwertun. Die
Communication Systems Group an der Universität Zürich entwickelt das Online–Voting–
System (Remote Electronic Voting (REV)) Provotum.

Diese Masterarbeit untersucht die Nutzung eines USB Dongles im REV System Provotum,
um die Sicherheit zu erhöhen. Eine Lösung wird vorgeschlagen, die 6 – einzeln ansteuer-
bare und sich in Funktionalität teilweise überschneidende – Funktionen auf dem Dongle
implementiert, die zusätzlichen Schutz gegen den Diebstahl und Verkauf von privaten
Schlüsseln, sowie gegen Manipulation durch Malware auf dem Computer des Stimmenden
bietet. Ein USB Dongle wird ausgewählt und alle Funktionen werden in einer Firmware
für diesen Dongle implementiert. Zusätzliche Systemkomponenten werden entwickelt oder
modifiziert, um einen Proof–of–Concept zu erlangen, der die End–to–End–Integration
der Funktionalität zeigt. Alle Verwendungen von “Finite–Field”–Kryptographie werden
durch “Elliptic Curve Cryptography (ECC)” ersetzt, um die Laufzeit von Kryptographi-
schen Funktionen auf dem Dongle zu verbessern. Die Implementierung der Lösung muss
mit einigen Schwierigkeiten kämpfen, die in dieser Arbeit dokumentiert werden, und er-
reicht am Schluss einen Stand, der als solide Basis für zukünftige Weiterentwicklungen von
Dongle-Hardware-unterstützten Funktionen in Provotum. Die Tatsache, dass alle vorge-
schlagenen Dongle-Funktionen in der Firmware implementiert sind, erlaubt ausserdem
durch die kontrolliete Wahl der verwendeten Funktion eine Balance zwischen Nutzbarkeit
und Sicherheit.
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Chapter 1

Introduction

Multiple democracies worldwide are introducing or at least testing Remote Electronic
Voting (REV) systems in which voters can cast their vote over the Internet from their
own personal computer. While in Switzerland mail-in voting is still the standard way of
casting votes, REV might reduce cost over traditional voting [1, 2, 3], as well as reduce
the work involved for the voter, which could increase voter turnout [2, 4, 5, 3]. This is
especially important as the mobility of persons keeps increasing and traditional voting
binds voters geographically. On the other hand, since all voting systems used in practice
have to provide stringent security and privacy guarantees, widespread introduction of
REV systems has not yet occurred in most countries. Ballots must be kept secret to
avoid revealing how voters voted. Additionally, an honest and correct tally of the votes
must be verifiable and guaranteed even in presence of malicious actors. Another problem
is that personal computers on which voters vote in an REV setting are easily infected by
malware that might compromise privacy or even alter a voter’s vote.

External hardware, such as USB dongles, has long been used in other use cases for adding
protection to online interactions against theft of private keys and manipulation by mal-
ware. The most prominent example is online banking, but USB dongle powered 2-factor
authentication has been adopted by many other websites and online services. Using such
hardware for REV might appear to be a straightforward way to achieve similar security
gains. But veryfiability requirements in online voting directly oppose privacy requirements
and achieving the optimal balance is hard even with the use of USB dongles. Addition-
ally, an REV system requires cooperation of many different actors, none of which trust
each other. In contrast, online banking has a simpler setup in that the users trust the
bank and its IT infractructure. An additional difficulty in using USB dongles for REV is
that dongles are resource constrained and have limited capabilities in processor speed and
memory. The runtime of functions must not be too long so that the burden on the us-
ability of the system is too high, while the required algorithms are more computationally
expensive than those required for online banking.

Provotum [6, 7, 8, 9] is a remote electronic voting system developed by CGS@Ifi. Provotum
uses a public permissioned Blockchain (BC) to store the encrypted ballots and final tally.
This distributed ledger allows only authorized parties to add data, but everybody can read
the data. Data stored in the ledger is immutable and cannot be removed. Provotum-RF
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2 CHAPTER 1. INTRODUCTION

is already a pretty solid REV. Under reasonable assumptions, the system provides ballot
secrecy (non-everlasting), receipt-freeness, individual- and universal verifiability, as well
as recorded-as-cast and counted-as-recorded verifiability. A parallel thesis to this one has
the goal of improving cast-as-intended verifiability. The baseline version of Provotum for
this work is Provotum-RF [8].

This master thesis has the goal of offloading some cryptographic operations of the system
to an external USB dongle with processing capabilities in order to improve the system’s
security. Security benefits include improved protection against theft of keys and situations
where voters are coerced or offered money to vote a certain way. Achieving a system that
is resistant to such manipulation attempts is a topic of academic study, but all systems
implementing solutions also have drawbacks, if only poor usability.

1.1 Project Goals and Contribution

This work starts with outlining the cryptographic operations on which the system is
based. A literature study compares similarities of other REV and places special focus on
systems that achieve or claim to achieve coercion-resistance, as well as REV that make
use of a hardware dongle or similar device. Multiple potential uses of the USB dongle in
the Provotum system are discussed. Some of the proposed mechanisms, despite having
clear security benefits, have a potential negative impact on the usability of the system.
Other mechanisms don’t provide sufficient security improvements to warrant adoption
into Provotum. Support for all the identified mechanisms is implemented in the firmware
(FW) of the USB dongle, allowing multiple experimental versions of Provotum to test all
the features without large modifications to the dongle firmware, and serving as a base-
line firmware. The baseline firmware can in the future be extended with more features,
modified for improved performance or be ported to different, more secure hardware. Ad-
ditional Provotum system components are modified to obtain a Proof-of-Concept (PoC)
system that demonstrates an end-to-end implementation of the proposed design. Finally,
the dongle firmware is evaluated from a performance view, challenges during develop-
ment documented and future optimization opportunities for the firmware discussed. The
discussion also covers the performance impact on the Provotum system as a whole.



Chapter 2

Background and Cryptographic
Primitives

First, let’s recall cryptographic primitives and algorithms used in the Provotum system.
Like all REV Provotum bases its functionality on strong cryptographic algorithms in order
to achieve proper functioning of the system with little trust requirements in the individual
parts. In the end, this chapter also gives a brief overview over other background topics
relevant for this work, namely the USB interface and Blockchain systems.

2.1 Random Numbers

Many cryptographic algorithms require random numbers. [10] gives a good natural lan-
guage overview on the topic and [11] and [12] give more formal definitions. True random
numbers can be generated by physical processes, including coin tossing. Digital appli-
cations can draw a stream of true random numbers from specialized hardware drawing
randomness from thermal noise or radioactive decay. True random numbers follow no
pattern and contain no statistically discernible bias. For many software purposes no true
random number generator is available or does not produce output at the required rate.
Pseudorandom Number Generators (PRNG) are required. They generate a stream of
apparently random numbers deterministically in software. A cryptographic PRNG must
satisfy two properties. First, a stream of random numbers or random bytes must be in-
distinguishable from true random data, i.e. contain no bias nor patterns. Second, it must
be infeasible for an attacker to recreate the output stream. Since a PRNG is completely
deterministic, the future output depends only on internal state. The input required to
construct the initial internal state is called the seed. A seed must be sufficiently large and
truly random so that an attacker cannot guess it. Additionally information about the
internal state must not be leaked to an attacker via the output or other channel.

Note that manipulated PRNGs can be very hard to discover but can completely break
encryption: if the random parameters used in some encryption schemes are reproducible
by an attacker, obtining the plaintext is straightforward. Hence, accidental or deliberate
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4 CHAPTER 2. BACKGROUND AND CRYPTOGRAPHIC PRIMITIVES

weaknesses or backdoors in a PRNG can be fatal. A key derivation function (see below),
for example, outputs bytes that are indistinguishable from random without knowledge of
the key, but with knowledge of the input key and the parameters, the output stream can
be trivially recreated.

2.2 Bounded Attacker

The difficulty assumptions of the following algorithms are based on the assumption that an
attacker is computationally bounded in both time and storage, i.e. that the attacker can
only successfully solve problems for which a polynomial time and space algorithm exists
[13, 12, 14]. If something is claimed to be infeasible, it means that no polynomial time
algorithm exists (or has been found to date) that solves the given problem [13, 12, 14].

2.3 Cryptographic Hash Functions

A cryptographic hash function is a deterministic function that takes an arbitrary binary
input and outputs a digest of a defined size, for example 256 bits for SHA-256. [15] gives
a good overview and [11] a detailed formalized definition. The hash function must be de-
signed so that a small change in the input leads to a large change in the output. Obviously,
the image of the function is much smaller than the domain, leading to collisions: multiple
inputs exist that produce the same output. However, it must be infeasible for anyone to
find two inputs leading to a collision. Additionally, cryptographic hash functions should
behave as one-way functions (i.e., informally, given a hash, it should be infeasible to find
a message that produces a given hash). This is formalized in the following requirements
[15, 11]:

Preimage resistance: given a hash H(m) of a message m it is infeasible without knowledge
of m to find m.

Second preimage resistance: given a message m, it is infeasible to find another message
m′ with the same hash, that is H(m) = H(m′).

Collision resistance: it is infeasible to find any two messages m and m′ with the same
hash (H(m) = H(m′)).

Furthermore, due to the aforementioned properties, the output of hash functions is not
distinguishable from random data if the input is not known.

2.4 Key Derivation Functions

Key Derivation Functions (KDF) do not form a central part in this work but are mentioned
a few times. A key derivation function is a deterministic function that takes a secret key
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and some additional input and outputs data of a configurable size that is intended to be
used as a cryptographic key. [10] gives a natural language overview and [11] a formal
definition. The additional input could be a string describing the purpose of the to-be-
generated key. Common usage is to use one input key to produce one or multiple output
keys that appear to be unrelated. Even with knowledge of all input data except the secret
key the output of a KDF must be indistinguishable from random. A commonly used KDF
is the Hash-Based KDF (HKDF).

2.5 ECC

Elliptic Curve Cryptography (ECC) uses operations defined on the points of an Elliptic
Curve (EC). This document uses the definitions and notation from [11]. Under modular
arithmetic and a carefully chosen curve, the points on the curve form a group. The group
operation is addition of curve points. By extension, multiplication of points with a scalar
value is also defined (i.e. adding a point to itself multiple times). Analogous to finite field
cryptography at least one generator element exists, which for ECC is the point G. Some
elliptic curves use a generator that generates a subgroup that is smaller than the number
of elements in the group, i.e. the order of the subgroup n is less than the order of the full
group |E(Fp)|. The resulting cofactor h = 1

n
|E(Fp)| should be small.

The big advantage of ECC is that the size of scalars and point coordinates required to
achieve equivalent security is much smaller than the scalars used in finite-field cryptogra-
phy. A 256 bit ECC cryptosystem is equivalent to a finite-field cryptography key larger
than 2048 bits [16]. Hence, the cost of computation and transmission is reduced when
compared to finite-field cryptography.

Frequently, upper case letters are used to denote points on the curve and lower case
letters are used to denote scalars. This work will adhere to the same format. Unless
noted otherwise, all following formulas are defined as calculations in the EC group if they
involve points. Operations on scalars are implicitly defined as operations modulo n.

Different encodings exist for storage of points in computer memory for efficient compu-
tations. For example, Ristretto [17] stores only the x coordinate and exposes a view on
the curve where scalars are divided by the cofactor of the curve in order to prevent subtle
security weaknesses where unaware applications assume the curve order to be prime.

2.6 ElGamal Cryptosystem

ElGamal is a public-key cryptosystem. Most sources such as [11, 13, 15] give definitions
for the finite-field variant of the algorithm. Most finite-field-based algorithms can be
transformed into an EC variant by replacing exponentiation with point-scalar multiplica-
tion and replacing multiplication with addition. [18] uses this transformation to transform
zero-knowledge proofs (including some used in this work) to an EC variant. We use the
EC notation from [18] and attribute the basic theory of ElGamal to the original paper
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[19]. A user generates a key pair consisting of a private and a public key. The user can
distribute the public key freely but must keep the private key secret. Anyone with the
public key can then encrypt data for that user by using the public key. Only the user in
possession of the private key can decrypt the data. An ElGamal private key x is simply
a random number drawn from Zn and the calculation of the public key Y is given in
Equation 2.1.

Y = xG (2.1)

Encryption of a message m requires first mapping the message to a point M (see also
Section 2.8). Encryption is then given by Equation 2.2 where r is a random number (that
must be different for each encryption) drawn from Zn and the tuple (C,D) is the resulting
ciphertext.

(C,D) = (rG, rY + M) (2.2)

Decryption then follows Equation 2.3.

M = D − Cx (2.3)

Applying the decryption from Equation 2.3 yields M . Depending on the mapping of m
to M recovery of m is straightforward or non-trivial.

Usage of a parameter r in the encryption makes ElGamal a probabilistic encryption system:
many ciphertexts are possible for a given message m and public key Y .

2.7 Difficulty Assumptions

The security of the ElGamal cryptosystem (and others) is based on the difficulty assump-
tion of the following three problems [11, 15]:

Elliptic Curve Discrete Logarithm (ECDL): given an appropriately sized elliptic curve
group, generator G and Gx it is infeasible to find x.

Elliptic Curve Computational Diffie-Hellman (ECCDH): given an appropriately sized el-
liptic curve group and generator G, given aG and bG for randomly selected elements
a and b ∈ Zn, it is infeasible to find abG.

Elliptic Curve Decisional Diffie-Hellman (ECDDH): given an appropriately sized ellip-
tic curve group and generator G, given (aG, bG, cG), it is infeasible to determine if
cG = abG.

For appropriately chosen elliptic curves, the three problems are all computationally infeasi-
ble to solve. With bilinear pairings [11], curves exist where the Decisional Diffie-Hellman
problem becomes easy while the Computational Diffie-Hellman problem remains hard.
Pairing based cryptography uses different, specific curves and for the curves widely used
for regular ECC, ECDDH remains hard.
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2.8 Homomorphic Properties

ElGamal has homomorphic properties that are very useful for REV. In a homomorphic
encryption system a relation exists on ciphertexts that corresponds to a relation on plain-
texts (see Equation 2.4) [13, 15]. We define the notation for encryption of message m
under key k resulting in ciphertext c as Ek(m) = c.

Ek(a)⊕ Ek(b) = Ek(a⊕ b) (2.4)

The decryption of a sum of ElGamal ciphertexts yields the sum of their plaintexts. While
the finite-field variant of ElGamal has only multiplicative homomorphic properties and a
variant called Exponential ElGamal is required to obtain additive homomorphic proper-
ties, the EC variant of ElGamal has additive homomorphic properties without modifica-
tion.

Since we map a message m to a point on the curve M during encryption, this mapping
needs homomorphic properties as well [20, 21], i.e. given two messages m1 and m2 and
their mappings M1 and M2, the sum M1 + M2 must equal the mapping of m1 + m2.
Multiplying messages with the generator point G has these homomorphic properties.
But based on the hardness of the ECDL problem, recovery of m from M = mG is not
straightforward. If the range of possible values of m is small, as is the case with Provotum,
m can be brute-forced from mG.

2.8.1 Re-Encryption

The homomorphic property of EC ElGamal makes it possible to obtain a different cipher-
text (C ′, D′) from (C,D) by adding an encryption of 0 under the same public key, as is
given in Equation 2.5. We define the notation for encryption of message m under key k
with random parameter r resulting in ciphertext c as Ek(m, r) = c.

Ek(m, r)⊗ Ek(0, s) = Ek(m, r′) (2.5)

2.9 Digital Signatures

A digital signature scheme, like public-key encryption, uses a pair of related keys: a public
and a private key. It allows using the private key to generate a signature for a message
that can be verified with the public key [10]. The verification function takes the public
key, a message and a signature and returns a boolean value. A signature is only valid for
a given message and key pair. Hence, a signature protects the integrity of the message
and it ties it to the identity of the signer (or rather the possession of the private key).
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2.9.1 Sr25519

The signature scheme used by the Substrate Blockchain used in Provotum is Sr25519
[22, 23], which is a Schnorr signature (directly derived from the Schnorr Proof in Section
2.10.1) on the Curve25519 curve. Points and scalars are encoded in the Ristretto format
[17]. The aggregation of values-to-be-hashed and the hash function are defined as a Merlin
transcript [24], which is defined as operations on the Strobe protocol framework [25], which
internally uses a variant of the Keccak hash function family [26].

The main implementation of Sr25519, which is also used by the Substrate Blockchain,
is the Rust project Schnorrkel [23]. Schnorrkel makes major breaking changes to the
transcript around version 0.3. While it is now at version 0.9.1, the Substrate version used
in Provotum-RF and Provotum-HW still uses version 0.1.0.

2.9.2 Blind Signatures

The concept of blind signatures was introduced by Chaum [27]. The goal is that a sender
can have some data signed by a third party, the signer, without the signer learning the
data. The party verifying the signature is called the verifier. Usually the sender applies
a transformation to the data to be signed: he blinds the data. The signer applies the
signature to the blinded data and returns it to the sender. The sender then applies a
reverse transformation on the signature to obtain a signature that is valid for the unblinded
data. A blinded variant of the RSA scheme is used for Provotum [8]. Many other systems
exist, including [28, 29, 30, 31, 32], which might have an application in future work on
Provotum in order to overcome problems with identity provisioning in conjunction with
panic passwords.

2.10 Zero Knowledge Proofs

Zero Knowledge Proofs (ZKP) play a central role in most REV. Informally, a zero knowl-
edge proof allows one party, the prover, to prove a statement to another party, the verifyer,
without revealing any additional information about the statement. Sources on the theory
include [11, 13, 15]. For example, a person can prove knowledge of a private key related to
a given public key without revealing the private key. Zero knowledge proofs must satisfy
the following requirements:

Completeness: if the statement to be proven is true, the prover can convince the verifier.

Soundness: if the statement to be proven is false, the prover fails to convince the verifier
with overwhelming probability.

Zero knowledge the verifier learns nothing beyond the fact that the statement is true.
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The last requirement is typically proven by construction of a simulator. A simulator fakes
the transcript of a normal prover-verifier interaction. If such a transcript can easily be
manufactured, this implies that a normal prover-verifier interaction conveys no informa-
tion apart from the truthiness of the statement to be proven. Furthermore, if a transcript
can easily be faked, the proof will only convince the verifier directly participating in the
protocol but nobody else.

2.10.1 Sigma Protocols

Sigma Protocols – also frequently spelled Σ-Protocols – are a class of ZKP that are
comparatively computationally inexpensive and allow proving statements around discrete
logarithms [11, 13, 15]. Provotum exclusively uses Sigma Protocols as ZKP.

The simplest Sigma Protocol (see Figure 2.1) is due to Schnorr [33] and allows proving
knowledge of the (EC) discrete logarithm of a number. It is easy to ascertain completeness
of the protocol in that the honest prover, in possession of x, can easily calculate z so that
the verifying equation holds. Soundness is due to the difficulty of the ECDL problem. A
malicious prover, not in possession of x, cannot easily find a z that will convince a verifier.
Of course, a malicious prover can hope to anticipate the challenge c sent by the verifier
and pre-compute A = zG − cY for some randomly chosen z. Hence, a malicious prover
can convince the verifier with small probability. A full transcript can be faked in the same
way (by randomly drawing c and z and computing A). Hence, since a simulator exists,
the honest execution of the protocol is zero-knowledge.

Prover Verifier

knows x knows Y = xG

r←$Zn

A = rG

c←$Zn

c

z = r + cx

zG
!
= A+ cY

Figure 2.1: Schnorr Proof

Note that this proof is zero-knowledge only under the assumption of an honest verifier.
If the verifier maliciously selects c to have some relation to A, the verifier can gain an
advantage. Mitigations are having the verifier commit to a value c before the protocol
starts (commitment schemes are not covered in this chapter and the reader is referred, for
example, to [15]) or using the Fiat-Shamir heuristic (described below).
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Figure 2.2 gives a Sigma Protocol due to Chaum and Pedersen [34] that allows to prove
the equivalence of two (EC) discrete logarithms xG and xH with different bases.

Prover Verifier

knows x knows Y = xG,Z = xH

r←$Zn

A = rG,B = rH

c←$Zn

c

z = r + cx

zG
!
= A+ cY

zH
!
= B + cZ

Figure 2.2: Chaum-Pedersen Proof

Note that these protocols are interactive.

2.10.2 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a modification of interactive ZKP due to Fiat and Shamir [35]
that allows making interactive protocols non-interactive. Instead of receiving a challenge
c from the verifier, the prover computes a challenge by hashing the publicly known values
and his commitment (e.g. H(G||Y = xG||A = rG) for the Schnorr Proof where || denotes
concatenation). Due to the unpredictable nature of hash function outputs it is unfeasible
for a malicious prover to find a c = H(G||Y ||A) that satisfies the verification equation.
Note that A is an input into the hash function to derive c and hence, a malicious prover
cannot solve the verification equation for A: changing A changes c.

Two variants of the Fiat-Shamir heuristic exist. One, the weak Fiat-Shamir heuristic
only hashes the commitments. The strong Fiat-Shamir heuristic additionally hashes all
publicly known parameters of the statement to be proven. The weak Fiat-Shamir heuristic
alloes malicious provers to produce unsound proofs in some cases [36].

2.10.3 Disjunction

Sigma Protocols can be aggregated to prove a conjuction or disjunction of statements.
Disjunction is much more important in the context of Provotum. Figure 2.3 gives a
disjunctive Schnorr proof proving knowledge of (at least) one discrete logaritm out of two
[13, 15]. This is achieved by dividing the challenge sent by the verifier into a sum of two



2.10. ZERO KNOWLEDGE PROOFS 11

challenges. Faking the transcript for one of the statements with a random sub-challenge
c2 fixes the other sub-challenge to c1 = c− c2. Note that in Figure 2.3 neither the prover
nor verifier knows y.

Prover Verifier

knows x knowsX = xG, Y = yG

r←$Zn

c2←$Zn

z2←$Zn

B = z2G− c2Y

A = rG,B

c←$Zn

c

c1 = c− c2

z1 = r + c1x, z2, c1, c2

z1G
!
= A+ c1X

z2G
!
= B + c2Y

c
!
= c1 + c2

Figure 2.3: Disjunctive Schnorr Proof

2.10.4 Designated Verifier Proofs

Interactive proofs convince only the verifier participating in the proof. This is due to
the fakeability of the transcript. Non-interactive proofs, such as with the Fiat-Shamir
heuristic, convince any verifier reading the transcript as long as the hash function is
not broken. Designated Verifier (DV) proofs are a variant of non-interactive proofs that
only convince a determined verifier [37]. This is achieved by adding a disjunctive clause
proving the knowledge of the private key of the intended verifier. As long as the verifier is
convinced that the prover does not possess the private key, he can be sure that the other
disjunctive clause must be true. Since the designated verifier, however, can fake the proof
with possession of his private key any other verifier cannot be sure which clause is true.

2.10.5 Divertible Proofs

Divertible proofs are discussed in [38]. Some proof transcripts are malleable and can be
transformed to form another proof transcript that proves a related statement. Of course,
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divertible proofs can be a security weakness, but can also be used on purpose for a given
use case. Provotum-RF makes use of divertible proofs [8] to cooperatively construct a
proof of ballot validity for a ballot that is randomized (re-encrypted with a secret nonce)
by a third party.

2.11 Threshold Encryption and Distributed Key Genera-

tion

Threshold encryptions schemes are a modification of a public-key encryption system so
that no single party holds the key for decryption. A good overview can be found in
[15]. Concretely, during key generation each of the participants obtains a private key
share. For decryption, each holder of a key share applies a decryption operation to the
ciphertext using his key share, yielding a decryption share. Once all the decryption shares
are available, they can be combined to form the decryption of the ciphertext.

The terms threshold encryption, distributed key generation, decentralized key generation
and secret sharing are all used for related and overlapping concepts. Secret sharing does
not necessarily only apply to cryptographic keys and some schemes are only aimed at
reconstruction of the secret directly. With threshold encryption, after distribution of
the key shares, the secret key is never recombined itself. Instead, distributed decryption
operations allow reconstruction of a decrypted ciphertext.

In an n-of-n scheme, all private key shares are required to decrypt the ciphertext. This
gives the highest protection of the ciphertext, but prevents decryption if one holder of a
key share does not participate in decryption. In a t-of-n scheme, only a defined number t
out of all n private key shares are required to decrypt the ciphertext. Here, the protection
of the ciphertext is slightly weakened, but guarantees decryption is possible as long as
t share holders participate in decryption. Provotum-RF uses an n-of-n distributed key
generation scheme, which is defined in [8].

t-of-n schemes are often based on Shamir secret sharing [39]. In its basic form, the a
private key is generated in a centralized setting, split into n shares and distributed to
participants. The centralized private key can then be deleted. Of course, this setup is
suboptimal since for some time a single party holds the private key allowing non-shared
decryption. Additionally, if the participating parties do not trust each other, they have
no method of detecting malicious behavior of the other parties.

The Feldman Verifiable Secret Sharing (VSS) scheme [40] still requires a central dealer
who needs to be trusted to properly delete the original secret, but the protocol allows
participants to check that the dealer generated and distributed the shares correctly.

Pedersen VSS [41] in a fully distributed setting. Each participant takes the role of dealer
once in a Feldman VSS. The sum of the polynomials of all the rounds forms the secret
sharing polynomial of the protocol. If the Feldman VSS in an individual round reveals a
dishonest dealer, the dealer is disqualified and excluded from the protocol. It is evident,
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however, that this protocol requires each participant to exchange messages with each other
participant in each round of the protocol.

Gennaro et al. [42] show some weaknesses in the aforementioned VSS and propose an
improvement. However, all these protocols assume a broadcast channel [43]. If individual
channels to each participant are used to broadcast values, malicious actors could send
different messages on different channels. In their paper, Kate and Goldberg show a VSS
that works over the Internet witout broadcast channels [43] and supply a ready-to-use
implementation. Another solution to obtain a broadcast channel is the use of a Blockchain.
Values pushed to a Blockchain can be seen by all network participants and not modified
retrospectively. Additionally, this reduces the number of individual messages that need
to be sent and could be included in Provotum in future work.

2.12 USB

Universal Serial Bus (USB) is a very widely used communication interface standard [44].
Provotum-HW’s dongle uses USB to connect to a voter’s or sealer’s computer. On the ap-
plication layer, USB defines multiple standard device classes that most operating systems
support without installation of additional drivers. These include [44]:

Human Interface Device (HID): this device class allows sending and receiving commu-
nication packets in both directions. It is frequently used for keyboards and mice,
whose device classes are a subtype of this.

Communication Device Class (CDC): this class allows sending and receiving an unde-
limited stream of bytes via a virtual COM port.

Audio Device: for audio devices.

Mass Storage Device: implements an interface to abstract mass storage devices such as
flash drives.

Provotum-HW uses the CDC to communicate with the USB dongle. Both streaming out
of logs and exchange of command and response payloads are implemented over the same
CDC channel (see Section 6.1.4). Some devices support multiple device classes over a
single physical interface, but the USB software stack the dongle uses does not allow it.
Otherwise, the HID class would be better suited for exchange of command and response
packets.

2.13 Blockchain

The concept of Blockchain was introduced in [45]. It was first popularized by Bitcoin
[46] to implement a cryptocurrency. Blockchain platforms are based on an append-only,
immutable data structure: the blockchain, and a consensus algorithm, allowing network
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participants reach consensus on a state without requiring trust from each single partic-
ipant. As long as the majority of participants is honest, consensus on a honest system
state is reached. The subject to achieve consensus on can be distribution of coins – as
with cryptocurrencies, such as [46] – or results of computation – as with, for example,
Ethereum [47].

The immutability property of Blockchain data structures comes from the fact that discrete
pieces of data, the blocks, are hashed and include the hash of the previous block, forming
a chain of blocks [10]. Additionally, the network agrees on the longest chain to form
the current system state [46]. Modifying data in a past block requires recomputing the
chain of hashes from that point onwards and catching up with the network, which ideally
consists of thousands of nodes contributing processing power.

Most REV require an entity called bulletin board where the ballots are pushed and im-
mutably stored. A Blockchain platform is perfectly suited for this use case due to the
append-only, immutable storage guarantees.

Blockchain systems come with different types of access rights, including:

Private BC: data can only be read and written by authorized parties.

Public BC: data can be read and written by everyone. Trust is achieved due to the
consensus algorithm and the immutability property of past blocks.

Public Permissioned BC: data can be read by everyone but only written by authorized
parties.

Provotum uses the Substrate BC [48] in a public permissioned mode as a distributed
ledger so that authorized parties can push ballots, cryptographic keys and proofs and
partially decrypted tallies and everybody can read the state and verify the process and
outcome of the elections.



Chapter 3

Related Work

This chapter discusses previous work on REV systems. First, the privacy requirements of
REV that are frequently used in literature are introduced. Then, multiple REV systems
that claim coercion-resistance are discussed. Finally, REV systems that make use of
additional low-power devices (such as USB dongles) are presented.

3.1 Privacy Requirements

In literature a number of terms are frequently used to name privacy requirements for
electronic voting systems. Unfortunately, the exact definition of the terms varies slightly
between papers. A few authors define and use a formal, mathematical definition (e.g. [4]),
which helps in security proofs of proposed systems but is unwieldy for general purpose
use.

Ballot Secrecy is the first and most central requirement in a REV. A system that satisfies
ballot secrecy guarantees that no one can learn how any voter voted from public infor-
mation (of course, the voter could tell them personally). Ballot secrecy is a fundamental
property of any voting system and must be satisfied in all REV.

Three terms name requirements in the Verifiability of elections conducted on REV, i.e.
that auditors and the general public can verify that votes have been properly cast and
tallied. Namely, Cast-as-Intended Verifiability is satisfied if a voter can verify the ballot
they are casting correctly represents their intended vote. Recorded-as-Cast Verifiability
is satisfied if a voter can verify if their ballot was correctly accepted by the voting system.
Finally, Counted-as-Recorded Verifiability is satisfied if anyone can verify that the elec-
tion result corresponds to the aggregated votes in the cast ballots. If all three verifiability
requirements are satisfied, the term End-to-End Verifiability is used.

Coercion Resistance is a requirement in REV that prevents a coercer to force a voter
to vote a certain way. This is a hard requirement to satisfy since the voters of an REV
are not in a controlled voting booth environment, but using their own personal computer
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from home or a similar uncontrolled place. A less stringent requirement is Receipt-
Freeness, which requires that the system does not at any point contain or produce a
proof of how the voter voted. Since voters can simply share their voting credentials with
a coercer or vote buyer while remaining passive themselves, this requirement is not strong
enough to prevent coercion or vote buying that might arise in real-life elections. Coercion-
Resistance, informally stated, is satisfied if a voter cannot be forced to abstain from the
election nor to cast a random, possibly invalid, ballot, nor to allow the coercer to vote on
their behalf.

In many systems, coercion-resistance is achieved by the voter being able to cast multiple
ballots (called revoting). Only the last ballot is counted [49, 50] or the ballots of each
voter are summed up before tallying [51, 52]. These solutions are problematic in Swiss
law, because it forbids the casting of multiple ballots by the same voter (article 27b of
the federal ordinance on political rights).

Another solution is the use of panic passwords (e.g. [53]). Such systems allow registration
of multiple passwords, only one of which can be used to cast a valid ballot. Usage of
the other credentials casts a ballot that is apparently valid (to any system observer) but
can be filtered out during tallying. Since ballots cast using a panic password will never
be counted as valid by the tallying process, such systems might not fall under the Swiss
law forbidding the casting of multiple ballots. A variant [54] for two-candidate elections
uses a tuple of tokens, one of which marks a valid vote and the other doesn’t. A vote
for both candidates is cast simultaneously and the assignment of the tokens marks which
candidate receives the valid vote.

Backes et al. involve a voter’s mobile phone in the process and require the voter to encrypt
the vote using a human-computable one-time pad (just a modular addition) [55]. This
approach is coercion-resistant as long as either the mobile phone or the voter’s computer
cannot be observed by the coercer. Similarly, Wen and Buckland also have the voter apply
a mask to his ballot which the voter can change if she is under coercion [56].

3.2 Voting Systems

Hirt and Sako [57] use homomorphic encryption and a randomizer entity that re-encrypts
ballots before voters can cast them in order to achieve receipt-freeness. This forms the
basis of the approach with which Provotum-RF achieves the same. Belenios-RF [58] uses
a similar approach. A number of systems has been proposed that attempt to go further
and achieve coercion resistance.

Juels et al. are the first to introduce the concept of coercion resistance [59] and propose
a system, often referred to as JCJ, that they claim is coercion resistant. A coerced voter
can use fake credentials to cast a vote. The biggest drawback is that the tallying amounts
to quadratic work in the number of ballots. Smith [60] and Weber et al. [1] both propose
improvements over JCJ that reduce the quadratic work factor to linear. Both systems, as
well as the original JCJ were later shown to have weaknesses [61, 62, 3].
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Clarkson et al. implement a variant of JCJ that they call Civitas [62]. Civitas uses the
same concepts as JCJ to achieve coersion-resistance, but has some efficiency improve-
ments.

Another variant of JCJ was introduced by Arajúo et al. [3] – AFT. They included a formal
proof of the coercion-resistance. As with other improvements of JCJ, the efficiency was
improved to support real-world elections.

Meng et al. [63] introduce a coercion-resistant REV that is based on a deniable encryption
scheme. The voter can disclose to a coercer parameters used in the encryption that
correspond to the real message m and the ciphertext c, but also craft different parameters
that correspond to a different message m′ and ciphertext c. The coercer has no way of
distinguishing an honest opening of the encryption from a dishonest one.

Lueks et al. propose VoteAgain [50] a coercion-resistant voting system based on the
revoting paradigm that is efficient for large elections. All cast ballots are hidden among
a set of dummy ballots. Weaknesses have been discovered for the system [64] including
high trust requirements in the central voting authority.

Selections [53] uses panic passwords to achieve coercion-resistance. A voter can register
one password and multiple panic passwords during the registration phase. Ballots cast us-
ing panic passwords are filtered out during the final tally. For privacy-preserving tallying,
a mixnet is employed.

3.3 Hardware Tokens Used in E–Voting

Using external hardware with a limited interface and running a very limited software
stack can be beneficial in REV because it provides protection against malware on the
voter’s computer. Furthermore it can aid in coercion-resistance by managing the voter’s
credentials, making vote selling more difficult, and simplifying a voter’s counter-strategies
to be used under coercion.

Another concept offering protection against malware on a voter’s computer that needs to
be mentioned is code voting (e.g. [65]). The voter receives a mapping of candidate names
to numerical codes following a random statistical distribution. The voter then enters
the code representing her preferred candidate into the computer, whereby the computer
cannot learn which candidate the voter voted for nor is able to modify the vote because
the codes for the other candidate(s) are not known. Prepared code sheets that are mailed
to the voter require trust in the authority preparing the code sheets. Combination with
hardware tokens on the voter’s side can yield systems that generate codes in a verifiable
manner and provide the same protection against malware.

Grewal et al. propose a voting system “Du-Vote” that works under the assumption of
voter’s PCs by use of a hardware token [66]. The token is equipped with a keyboard
and a display and is able to perform cryptographic calculations. The scheme requires the
voter to copy codes displayed on her computer via the device’s keypad into the device and
a result code back into her computer. Usability seems somewhat limited. Furthermore,
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Kremer and Rønne discovered several attacks on the scheme [67]. Some attacks can be
mitigated, but at the cost of decreased usability for the voter.

Lee and Kim [68] extend the system proposed by Hirt and Sako [57] with a hardware token
performing the function of the randomizer. As such, since Provotum uses a randomizer
setup very similar to [57], [68] is very similar to this work. But the trust Lee and Kim’s
system places in the randomizer token is greater. Also they make no attempt at achieving
coercion-resistance with the proposed system.

Haenni and Koenig [69] propose a hardware-token-aided REV that makes use of an optical
scanner. Voting codes for all candidates are displayed as barcodes on the voter’s PC, which
might be infected with malware. By scanning her candidate’s barcode the voter makes
the selection. Since the optical channel of barcode-scanning is one-way, no information
about the selected candidate can be leaked onto the PC.

Neumann and Volkamer [70] propose a variant of Civitas which uses a smart card to
manage the voter’s credentials. However the interactions with the smart card are com-
plicated because the smart card participates in the interactive protocol of registration.
They assume a smart card with custom firmware and a smart card reader attached to the
voter’s PC to interact with it. In contrast, this work uses a USB dongle which is directly
attached to the PC. Additionally, the protocol is designed to minimize participation of
the dongle in interactive protocols.



Chapter 4

System Architecture of Provotum-RF

This work builds on top of Provotum-RF [8]. Figure 4.1 shows the distinct applications
used in the system. The Blockchain used is Substrate [48]. Substrate provides a modular
Blockchain platform that allows combining several prototypical building blocks for typical
tasks such as consensus finding. Alternatively, the building blocks can be provided in an
own custom implementation. The mode of operation is a public permissioned BC, so that
only eligible voters can push their encrypted ballots to the BC, but everybody can read
the data and verify the associated zero knowledge proofs. Furthermore, Substrate does
not need a smart contract to implement custom logic for the Provotum system since the
code is directly included in the nodes running the Substrate BC.

Figure 4.1: Provotum-RF Architecture Diagram [8]

The following is a high level summary of the Provotum-RF system architecture. [8]
describes the architecture in high detail. The nodes that make up the distributed ledger
of the public bulletin board are run on the voting authority and sealer machines. The
voting authority can create elections, as well as moving them to the tallying phase.
Sealers use the DKG algorithm from Section 2.11 to each create a private key share for
an election and post the corresponding public key to the BC. The encryption algorithm
used is Exponential ElGamal [8]. The voting authority can then initiate the BC to
combine the public keys to form an election’s public key. Voters have to register with the
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identity provider in order to receive credentials that allow them to push their ballot to the
BC. Concretely, they create a key pair and send the blinded public key (using RSA blind
signatures as detailed in Section 2.9.2) along with some identity documentation proving
their eligibility for the election to the identity provider. If the voter eligibility is confirmed,
the identity provider signs the blinded public key, which enables the corresponding private
key to sign a BC transaction with a ballot. Ballots are encrypted using the election’s public
key that can be fetched from the BC. In order to provide receipt-freeness, voters have to
send their ballots to the randomizer, which reencrypts the ballot (see Section 2.8.1) with
a new secret parameter. The randomizer also signs the reencrypted ballot in order to
prevent voters from forgoing randomization. Once the voting period is over, the voting
authority moves the election to the tallying phase. The sealers each download all the
encrypted ballots, homomorphically add them (see Section 2.8), decrypt their share of
the final tally and post the result back to the BC. Once all the sealers have submitted
their share, the decryption shares can be combined to produce the final decrypted tally.

Table 4.1: Cryptographic Algorithms in Provotum-RF

Algorithm Purpose Definition

Exponential ElGamal Encrypt ballots Section 2.8

N-of-n DKG Decentralization of ballot de-
cryption

[8]

Schnorr Proof Proof of possession of private
key

Section 2.10

Exponential ElGamal Re-encryption of ballots Section 2.8

Re-Encryption Proof (Designated verifier) proof of
ballot re-encryption

Section 2.10, [8]

Disjunctive Chaum-Pedersen Proof Proof of ballot validity Section 2.10

ElGamal Threshold Decryption Decentralized decryption of
final tally

Section 2.11, [8]

Chaum-Pedersen Proof Proof of correct decryption Section 2.10

RSA Blind Signature Blind signing of voter creden-
tials

Section 2.9.2, [8]

Sr25519 Signature Signing of BC Tx Section 2.9.1, [48]

The above paragraph glosses over the zero knowledge proofs used in the system. Table
4.1 lists the cryptographic operations used in Provotum-RF. During the DKG phase of
election setup, the sealers each generate a NIZKP that they are in possession of the
corrseponding private key of the published public key. When re-encrypting a voter’s
ballot, the randomizer generates a designated-verifier proof or re-encryption for the voter.
Note that the proof is designated-verifier because otherwise, the proof together with the
original ballot and parameters used by the voter would constitute a receipt of the vote,
breaking receipt-freeness. The voter and randomizer jointly generate a proof of ballot
validity for the re-encrypted ballot (i.e. proving to the system and anyone inspecting the
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PBB that the ballot encrypts a 0 or a 1). When the sealers decrypt their share of the
final tally, they post a proof of correct decryption to the PBB. Ballot secrecy is granted
as long as at least one sealer remains honest. Note that the identiy provider cannot link
ballots and users because it only signs blinded public keys. However, if a voter shares the
blinding factor, the identity provider can identify the voter’s ballots.

Note that the randomizer can be a bottleneck to the system since all voters must ran-
domize their vote. Multiple randomizers can be deployed, but with a growing number
of randomizers the probability increases that some randomizers are corrupted. Collusion
between a randomizer and voter breaks receipt-freeness of the system. Using USB don-
gles for randomization alleviates this problem completely since each voter has their ballot
randomized locally by their own dongle.
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Chapter 5

Design of Provotum-HW

Provotum-HW introduces a USB dongle with its own CPU into the system. This provides
an opportunity to perform cryptographic operations on a separate system that is resistant
to malware infection. Storage and use of private keys can be delegated to the USB dongle,
potentially yielding safer key storage. Since the dongle is low-cost it can be used at many
distinct locations of the system.

This section discusses ways to modify Provotum-RF where using a USB dongle could
improve the security. At the core of these modifications is the dongle, for which 6 functions
are defined that offer varying security improvements but sometimes also usability tradeoffs.
All functionality is intended to be implemented at the same time in dongle firmware
so that different builds of the Provotum system can explore different choices of dongle
functionality and their security and usability tradeoffs. It is even feasible to implement
a system that uses different dongle functions for different elections in the same system
depending on their importance and sensitivity, for example. Support for one proposed
feature, panic passwords, although implemented in the dongle firmware, requires future
work to find a solution to a cryptographic problem before end-to-end implementation can
proceed.

We start this chapter by discussing the assumptions about an attacker’s capabilities and
the system running Provotum that motivate all the decisions in the subsequent evaluation
of Provotum-HW features.

5.1 Assumptions

In general, we assume that attackers are computationally bounded and that common
hardness assumptions, on which the used cryptographic algorithms are built, hold. Table
5.1 lists the assumptions upon which we construct the design of Provotum-HW.

We assume that the election is sufficiently big, so that multiple voters vote for each
candidate. Otherwise it is trivial to deduct how some voters voted.
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Table 5.1: Assumptions for Provotum-HW Design

Assumption Description

Sufficiently big election Number of voters

Coercion-resistance Basic demographic assumptions required
for CR definition

Duration of coercion Coercion-free period exists

Capabilities of the coercer Control of voter PC

Anonymity of the voter’s communication
channel

No matching of IP addresses

Impenetrability of the USB dongle No extraction of secrets from dongle
hardware

Trust in dongle FW No trust in dongle software required

The problem with REV systems that provide receipt-freeness is that it is easy for a voter
willing to sell her vote by just giving up her voting credentials and remaining passive while
the vote buyer casts a vote. This is hard to prevent completely. A system can, however,
improve over receipt-freeness according to the following argumentation. Vote sellers can
be split into two categories:

1. A vote seller that sells their vote and doesn’t care to cast their own vote in the
election

2. A vote seller that sells their vote, but will override the ballot cast by the vote buyer
and cast their own vote, if the system permits it

If the system permits voters of the second category to override a vote buyer’s ballot, the
price of a vote goes toward zero because a vote buyer won’t know if he is dealing with
a voter of the first or second category. This makes vote buying unattractive. Note also
that coerced voters mostly belong to the second category because they are not giving up
their vote on their own free will. Some coerced voters might belong to the first category
due to fear of repercussions from a coercer and mistrust in the REV system, although
a well-designed coercion-resistant REV system should protect the coerced voter in their
counter-strategy. Coercion-resistance can only be attempted if a sufficient number of
second category voters exist in the vote seller population.

It is a standard assumption in most literature that a coerced voter or vote seller is not
observed by the coercer or vote buyer at all times, i.e. the duration of coercion is limited.
Specifically, we assume that a time frame exists where a voter can cast their overriding
ballot before the voting period ends. We also assume that the registration phase of an
election is free from coercion (this is an important assumption of our suggested solution
of using panic passwords). This is also a standard assumption in most literature.

We assume the coercer has the capability to take full control over the voter’s computer.
For example, the coercer can make the voter install an alternate voting software, which
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can read the original voter software’s local storage and make arbitrary requests to the rest
of the system.

The data that a voter sends to the Internet does not identify a voter. However, with panic
passwords and schemes that allow to interact with the voting system multiple times, for
example matching of IP addressess can identify voters who interact with the system mul-
tiple times. We assume that a voter will use a virtual private network (VPN) connection
or other measure to achieve anonymity in the face of network observers.

The USB dongle used to implement Provotum-HW is only equiped with a general purpose
microcontroller unit (MCU) (see Section 5.5). We assume, however, that it is impene-
trable by attack methods that exist for hardware, such as probing and decapping. We
also assume that the firmware of the USB dongle cannot be infected by malware. Hence,
private keys stored on the USB dongle are protected from theft and cryptographic opera-
tions are not vulnerable to side-channel attacks. Given the USB interface and application
layer communication protocol between the hosts and the USB dongles, it is easy to imple-
ment equivalent functionality on specially hardened hardware or a dongle incorporating a
Hardware Security Module (HSM). We further assume that modifying the firmware of the
dongle is only possible after erasing all data stored on the dongle, including private keys
representing voter and dongle identity. Flash memory protection like this is very common
in MCUs.

We assume that the voter does not trust the firmware running on the dongle and that
the dongle must provide proofs of correctness for all operations it performs. But we
assume that the voter can be convinced, e.g. by inspecting the dongle hardware, that
the dongle’s only communication interface is the USB port (i.e. there is no hidden SIM
card and antenna on the dongle, allowing the dongle to send a copy of the voter’s data
somewhere else). Otherwise, the same trust assumptions as with Provotum-RF hold (i.e.
that no part of the system should trust any other) but that at least one sealer is honest.

5.2 Overview over Proposed Modifications

The most promising use case for deployment of a USB dongle is key management on
dongles instead of voter clients. Keeping voter client private keys on USB dongles adds a
strong protection against selling of credentials. Furthermore, if we pair this with the con-
cept panic passwords, protection against coercion is added, albeit with a negative impact
on usability and a yet-to-be-solved problem with identity provisioning. We also discuss
the variant of the dongle encrypting the voter’s plaintext vote instead of re-encrypting
an already encrypted ballot. The USB dongle can also be used to manage sealer private
keys. The usefulness of this is discussed below.

Another modification is to make the voter enter their vote directly into the USB dongle.
This prevents man-in-the-middle attacks by malware on the voter’s computer.
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5.2.1 Managing Voter Credentials on the USB Dongle

Managing a voter’s private key with which she signs the ballot’s BC transaction on the
USB dongle is a measure that adds protection against the selling of the voter’s credential.
Obviously, the voter can still sell the whole USB dongle, but this might prevent the
voter from voting in many future elections, depending on the way dongles are distributed
to voters and how replacements can be ordered. Additionally, selling credentials is a
punishable offense in most jurisdictions and selling a dongle leaves more evidence than
selling a purely digital copy of a private key. The BC transaction with the ballot must
then be signed by the USB dongle while the voter still manages the task of broadcasting
the transaction into the BC network. In order to register for an election with the identity
provider, the voter just forwards communications between the USB dongle and identity
provider, while the general flow of signing a blinded public key remains the same as with
Provotum-RF. Note that the USB dongle needs to sign the encrypted ballot with some
private key unknown to voters, just like the randomizer in Provotum-RF, in order to
ensure that the voter really uses a dongle instead of managing credentials herself.

5.2.2 Managing Voter Credentials on the USB Dongle with Panic Pass-
words

The introduction of the general concept of panic passwords, as introduced by [71], used
by Selections [53] (we also describe panic passwords in Section 3.1) allows adding coercion
resistance to the system. The design of Selections [53] differs greatly from Provotum and
their use of panic passwords is not directly applicable to Provotum. Instead, we attempt
to define a basic design of panic passwords that can integrate with Provotum. Note that
the design is not complete since challenges with identity provisioning were not tackled in
this work. Instead, the panic passwords design attempts to derive the functionality that
needs to be implemented on the dongle. We derive the design as follows:

• Since a coercer could observe the PBB after coercion for ballots cast by the same
voter identity, a different keypair must be used for each panic or non-panic password.
All keypairs must be registered with the identity provider (in a blinded fashion).

• Only the holder of the election’s private key (i.e the sealers in a distributed manner)
should be able to distinguish between panic ballots and normal ones. One way to
achieve this is by definition of a panic token which is an encryption of a 0 or 1, as
a boolean indicator whether a panic situation is present, with the public key of the
election. When casting a ballot, a panic token is added to the transaction. The
voter should possess exactly one panic token encrypting a 0 and the PBB should
accept each token at most once, otherwise the voter could cast multiple valid votes.

• The voter must be able to register an arbitrary number of panic credentials. This
allows her to pass an arbitrary subset of them to the coercer without a coercer being
able to prove or disprove if the non-panic password is among them.
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• A a protection against malware, the voter client software and USB dongle firmware
should not need to track which panic token corresponds to a 0 or 1. Instead, a
distinct password or PIN should be mapped to each token and the knowledge which
PIN corresponds to the non-panic token should only be kept inside the voter’s head.

The usage workflow of such a system would be as follows:

• The voter can request that the dongle create a given number of key pairs and return
the respective public keys.

• The voter registers a number of public keys and an equal number of encrypted panic
tokens with the identity provider. She must present a proof that exactly one panic
token encrypts a 0. The identity provider signs the public keys and panic tokens
individually. In order to maintain voter anonymity in front of the identity provider,
blind signatures must be used like with Provotum-RF.

• After the registration phase, which we consider coercion-free, public keys and panic
tokens are mapped as pairs against a PIN each and stored this way on the dongle.
The pairing is necessary to prevent randomization attacks, which are defined to be
among the attacks corercion-resistance must protect against.

• A voter selects the credentials to be used by entry of a PIN into the dongle. A voter
that distrusts the dongle can keep a copy of the mapping of PINs to public keys and
panic tokens and check that the dongle used the correct credentials for preparing
the BC transaction. This can be achieved in a way that does not leak the number
of PINs registered on the dongle, e.g. by hiding a list of hashes of mappings among
additional random numbers with the same bit length as the hashes.

• To cast a non-panic ballot, the voter enters the non-panic PIN, to cast a panic ballot,
the voter enters any of the panic PINs. The PIN and the parameters of the ballot
are forwarded to the USB dongle. The dongle returns a signed BC transaction that
can be broadcast to the network.

• The PBB rejects transactions that reuse any previously used public key or panic
token.

Since we declared the assumption that the voter is not under coercion during the reg-
istration step, we might require that the voter show up personally at a city office for
registration. Ideally, during the registration phase, the voter should not be required to
bring anything more than the USB dongle and identity documents. This facilitates the
assumption of a coercion-free registration phase over the alternative of the voter bringing
an Internet-connected and potentially malware-infected personal computer.

5.2.3 Integration of Panic Passwords into Provotum

Discarding of ballots containing a panic token is easy if a mixnet is used because after
mixing panic tokens are indistinguishable to their previous form before mixing. Then,
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all ballots can be decrypted individually and those with panic tokens discarded. The use
of panic tokens without a mixnet is limited. Obviously, if individual panic tokens are
decrypted by cooperating sealers, it is easy to find out if a coerced voter posted a panic
ballot. On the other hand, adding up the panic and non-panic tokens homomorphically
and then decrypting the sum preserves the voters’ privacy. Hence, one can find out if the
number of panic ballots cast is less than the margin of the winning candidate. If that
were the case, the election result would still be valid, regardless of how the coerced voters
voted.

A problem exists with proving to the identity provider that only one encrypted panic token
encrypts a 0, while using a blind signature scheme. The sigma protocol ZKP don’t work
directly with RSA blinded ElGamal ciphertexts (to prove a property of the unblinded
plaintext). As mentioned in Section 2.9.2, many blind signature schemes exist and this
problem might be solved with little protocol modifications in future work.

Additionally, such an implementation of panic PINs has a strongly negative impact on
the usability of the system from the voter’s perspective. Forcing the voter to remember
multiple PINs is tedious for the voter and brings the risk of the voter forgetting them.
Hence, due to the strong impact on usability and the unsolved problem with the ZKP
during registration, end-to-end implementation of this feature in Provotum is neither
possible nor desirable. Implementing support on the USB dongle firmware is not very
difficult and allows future adoption of the feature without modification of the dongle FW.

5.2.4 Encrypting the Ballot on the Dongle

In Provotum-RF the ballot is encrypted on the voter client. The randomizer re-encrypts
the ballot and together, the voter client and randomizer generate a proof of ballot validity:
that the re-encrypted ballot encrypts a plaintext of 0 or 1, forming a valid vote. If the
voter and randomizer cooperate, a receipt of the vote can be made.

This section describes a modification to the system so that the USB dongle receives a
voter’s plaintext vote and encrypts it. This simplifies the proof of ballot validity since
the dongle alone holds all the random parameters used to encrypt the ballot. Concretely,
the divertible proof generated interactively between the voter and randomizer can be
replaced by a normal disjunctive Chaum Pedersen proof. Further, for the Provotum
addition proposed in Section 5.2.6: entering a vote directly into the dongle, encryption of
the plaintext vote must by definition be performed on the dongle.

Note that encryption of plaintext votes on the dongle is only possible because the dongle
is directly connected to the voter’s computer’s USB port and we assume that the voter
can ascertain for himself that the dongle is not equipped with some other communication
interface (such as a cellular mobile connection) to leak the voter’s plaintext vote to the
Internet. With an online service like the randomizer in Provotum-RF this is not possible.

The protocol needs to ensure that the dongle uses a properly random parameter r to
encrypt the ballot (see Section 2.1). If the dongle can choose r arbitrarily, a malicious
dongle can easily select the parameter r in a way that allows a malicious party to obtain
the same r and decrypt the ballot.
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Process

The voter sends the plaintext vote to the randomizer for encryption. The randomizer
encrypts the vote using a random parameter r that it doesn’t disclose to the voter. The
randomizer generates a ballot validity proof for the PBB, proving that the ballot encrypts
a 0 for a no-vote OR a 1 for a yes-vote. The randomizer also generates a designated-verifier
proof for the voter, proving that the plaintext given by the voter was correctly encrypted.
Further, the randomizer generates a signature over the encrypted ballot to prevent the
voter from generating a valid ballot by herself. The (DV) proof of correct encryption is
given in Figure 5.1.

Randomizer Voter

knowsM, (C,D), Y knowsM, (C,D) = (rG, rY +M)

knowsQ, the voter′s public key knows r, Y, x,Q = xG

s, z0, C0←$Zn

A = z0G− c0Q,

B = sG,E = sY

c←$Zn

c

c1 = c− c0

z0, z1 = s+ c1r, c0, c1

c
!
= c0 + c1

z0G
!
= A+ c0Q

z1G
!
= B + c1C

z1Y
!
= E + (D −M)c1

Figure 5.1: Designated-verifier proof of correct encryption

Prevention Malicious Choice of Parameter r

We can force the dongle to encrypt the vote with a pseudorandom r using a similar ap-
proach as the Fiat-Shamir heuristic (see Section 2.10.2). First, the dongle encrypts the
ballot with an arbitrary parameter r to obtain (C,D). Then the dongle hashes the en-
crypted ballot together with a nonce chosen by the voter to obtain another pseudorandom
parameter r′. The dongle re-encrypts the ballot with r′ to obtain (C ′, D′). This yields
an equivalent ciphertext as if the dongle had encrypted the ballot with parameter rr′.
The dongle returns the ballot (C,D) to the voter from which the voter can easily obtain
(C ′, D′) through the same process as the dongle and at the same time ensure that the
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“randomization” step is properly applied to the ballot. The voter then broadcasts (C ′, D′)
to the PBB. Note that the ballot validity proof created by the dongle and later broadcast
to the PBB must target (C ′, D′).

Note that even if a malicious party knows the way the dongle chose r, dividing C ′ by
r yields r′G, from which r′ still cannot be retrieved due to the difficulty of the ECDL
problem. Additionally, this scheme prevents the voter from getting a receipt of the vote,
equivalently to the Provotum-RF randomizer, since the voter doesn’t learn the random
parameter used in the encryption of the ballot. Note that the voter nonce is crucial in
this construction. If the ballot were hashed without the voter nonce, the parameter r′

would still solely depend on r and the raw ballot, which could easily be reconstructed by
a malicious party. This makes the voter nonce a sensitive piece of data that an honest
voter should delete as soon as the ballot encryption process is complete. If the voter and
randomizer dongle collude to leak the voter nonce and r respectively, a receipt of the vote
can be formed, similarly to Provotum-RF.

Note that a similar heuristic has to be applied to all random data the dongle uses in
publicly pushed values rG – i.e. also random parameters for challenges in ZKP, etc. This
is the price to pay for entrusting the dongle with a plaintext vote under the assumption
that the dongle cannot be trusted. One way to leak a vote to a malicious party in a ZKP
challenge rG would be for the dongle to use a KDF keyed with some parameters to derive
r in case the vote is a no–vote and use a KDF keyed with different parameters in case of
a yes–vote. A malicious party knowing both KDF keys and their meaning could easily
discover the leaked information.

Discussion

The security guarantees provided by this variant match those of Provotum-RF. The voter
does not need to trust the dongle since she receives a proof that the dongle performed
the encryption correctly. With this variant alone, vote selling is easily possible since the
voter manages her own credentials (i.e. constructs the BC transaction). Even though
the dongle handles a voter’s plaintext vote, it cannot leak it since it has no additional
communication interfaces beyond the USB port.

5.2.5 Managing Sealer Credentials on the Dongle

If a malicious party steals all the sealers’ secret keys, it can decrypt non-homomorphically-
added individual votes. Privacy of the votes is hereby lost. It cannot, however, modify
the final tally, since it has to provide a decryption proof. The decryption proof cannot
be faked despite knowledge of the private key. Publishing the decrypted votes of all
voters would, however, greatly undermine trust in the voting system for future elections,
require a costly rerun of the compromised election and potentially put some voters in
uncomfortable or dangerous situations (for example, if a high pressure to vote a certain
way is present from their peer group, political party, employer or other group they are
affiliated with).
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Since the sealers are not run by private individuals, care can be taken that they only
run on hardened and properly administered machines, making theft of all keys unlikely.
Additionally, an air gap could even be used for highly sensitive elections. (The private
key would be generated on an offline machine, the corresponding public key transferred
to an online machine. After the election the homomorphically-added ballots would be
transferred to the offline machine for decryption and the decrypted share and proof back
to the online machine for publication on the PBB). Since key generation and tallying only
need to be done once per election, this could be an acceptable overhead for some elections.

Nevertheless, it is easy to implement the cryptogaphic algorithms that use the sealer’s
private keys to run on the USB dongle. Then, theft of all keys requires theft of all
dongles, as well as extracting the private keys from the dongles, which we assume is
impossible. Note that even though decryption of the tally requires a brute-force portion
(because exponential ElGamal is used), that part does not need to be run on an USB
dongle. Sealers decrypt the homomorphic sum of ballots to partial decryption shares on
their dongles. The shares are posted to the PBB, from where the voting authority can
reconstruct the final tally. Since implementing sealer operation analogous to Provotum-
RF on the dongle is easy, it has still been added to the feature set of the dongle in
Provotum-RF.

The problem that a single sealer can block decryption of the election tally can be miti-
gated by moving to a t-of-n DKG scheme. However, such schemes have a high message
overhead as discussed in Section 2.11, making them an unfit candidate to implement on
the USB dongles. Since moving the sealer operation to USB dongles provides no real ben-
efits, keeping sealer operations on powerful machines with optional air gaps and instead
implementing t-of-n DKG on those is preferable.

5.2.6 Entering Votes Directly into the Dongle

Votes could directly be entered into the USB dongle. The concrete dongle used for this
work has a button, as well as a Near-Field Communication (NFC) antenna. Using the
button, votes could be entered via some button-pressing pattern. Entering votes via NFC
requires an NFC-compatible smartphone or other device and an app running on that
phone.

Entering votes directly into the dongle prevents malware on the voter’s computer from
changing the vote before sending it to the dongle for randomization or encryption. Since
high-profile elections attract government-level adversaries, malware designed to change an
election outcome is not quite unthinkable. Note that denial-of-service attacks by malware
are still possible since the only way to send the ballot to the PBB is via a the voter’s PC’s
Internet connection.

To ensure that a voter doesn’t have to trust the dongle, a designated-verifier proof of the
correct encryption should still be verified on the voter’s computer (this implies transmit-
ting the plaintext vote from the dongle to the voter’ computer, verifying the proof and
asking the user if she really wanted to cast the presented vote). Doing that allows malware
to find out how the voter voted, but not to modify the ballot’s content.
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Note also that if a voter mistakenly enters the incorrect vote into the dongle and repeats
the process for the correct vote, potential malware on the voter’s computer is now in
possession of a ballot for both vote answers and can cast either as it sees fit. This
could be mitigated in future work although any mitigation approach might further reduce
usability.

5.2.7 Randomization

The dongle still implements randomization analogous to Provotum-RF. While this func-
tionality is superseded by the alternatives described in this section, it was still implemented
on the dongle for reference. Note that while [8] claims that using the strong Fiat-Shamir
heuristic is impossible in its interaction with the randomizer, this is not the true. The
dongle implements randomization using the strong Fiat-Shamir heuristic by caching the
randomized ballot and generating the challenge in the divertible proof protocol based on
the randomized ballot. Of course, the voter computes her response to the challenge based
on the encrypted, non-randomized ballot. But the voter doesn’t care how the challenge
is generated. From the view of the voter, the challenge is only a pseudorandom number
sent by the randomizer. When the final proof is generated and diverted to the random-
ized ballot, the randomized ballot to be hashed in the strong Fiat-Shamir heuristic proof
verification matches the ballot hashed during proof generation.



5.3. DECISION ON THE PROVOTUM-HW FEATURE SET 33

5.3 Decision on the Provotum-HW Feature Set

I have presented a number of possible features for Provotum-HW. Table 5.2 shows a sum-
mary of these from a voter’s perspective – i.e. how a voter’s interaction with the system
changes if a feature is used in the system. Table 5.3 shows advantages and drawbacks of
each feature. Since some carry a negative usability impact or unsolved problems, expo-
sure of all features on the dongle is the best way of achieving a flexible system in which
the non-dongle system components can selectively target a specific dongle functionality.
The only exception is ECC which is the only cryptography implemented in the dongle
firmware.

Table 5.2: Usage of Provotum-HW Features from a Voter’s Perspective

Feature Usage by the Voter

Encrypting ballot on dongle No difference in usage flow. Dongle has to
be present to vote

Voter credentials on dongle No difference in usage flow. Dongle has to
be present to vote

Panic passwords Dongle has to be present during
registration and to vote. Define PINs
during registration phase, enter non-panic
PIN for voting, panic PIN in coercion
situation

Sealer credentials on dongle Dongle must be plugged into sealer
machine

Entering votes directly into dongle Dongle has to be present to vote. Votes
are entered into the dongle by button
press
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Table 5.3: Assessment of Provotum-HW Features

Feature Advantages (over
Provotum-RF)

Disadvantages Notes

Encrypting ballot
on dongle

Faster than
Randomization on
dongle, simpler
ZKP, no direct
security advantage
over Provotum-RF,
required for
“entering votes
directly into
dongle” (Section
5.2.6)

Care required so
that dongle chooses
proper parameters
r

Voter credentials
on dongle

Vote selling
requires selling the
dongle or
over–the–shoulder
cooperation with a
coercer

Panic passwords Coercion-resistance Negative impact on
usability, requires
mixnet

ZKP of panic token
validity over
blinded ciphertext
not solved

Sealer credentials
on dongle

Protection of
private keys
delegated to dongle
hardware

Protection of
private keys
delegated to dongle
hardware

Entering votes
directly into dongle

Protection against
malware MITM

Impact on usability

Switch to ECC Higher performance Requires
modification of
entire system
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5.4 Modified Decryption Proof

The decryption proof as defined by Provotum-RF contains 4 fields: d, u, v and s where
d is the decrypted share. Hence, d should not be part of the proof, but part of the
data required as input into the verification function. This modification was adopted in
Provotum-HW, leaving the decryption proof with fields: a, b and z (corresponding directly
to previous fields u, v and s).

5.5 Selection of the USB Token

Multiple options exist for a hardware token in an REV. A token has to be inexpensive
so that wide deployment is economically feasible. Further, the token should be easy to
develop for and easy for a voter to use. For a real-world deployment, protection of the
cryptographic secrets stored in the hardware is very important and has to be prioritized
higher than easy development and cost. In this work, the security requirement has been
somewhat relaxed in order to facilitate quick development of a proof-of-concept. Table
5.4 gives an overview over the evaluated hardware platforms.

When it comes to secure, inexpensive end-user hardware, smart cards are probably the
first such devices that existed. Smart cards are ubiquitous in the form of credit cards
and SIM cards, but are also used for other authentication tasks such as access control to
buildings and rooms. The typical physical interface of a smart card requires a smart card
reader to interact with it. Earlier smart cards were programmed directly with firmware
developed in assembly language, but more recently Java Card has enabled smart cards
that are programmable with applications developed in a subset of Java. The Java Card
operating system remains on the card and handles management of applications, such
as adding and removing them. Of course, cards can be locked before shipping to the
end-user to prevent any further modification. Unfortunately, closed-source proprietary
software and Non-Disclosure Agreements (NDAs) imposed by distributors often pose a
challenge for deployment of smart cards in academic projects.

Another class of end-user security hardware is the 2-factor-authentication token. Such a
token is designed to add additional protection to logins by representing a second factor
in addition to passwords. Ideally, login is not possible without physical possession of the
token. For this use case, the universal 2-factor authentication (U2F) and FIDO2 (the
name derives from “Fast IDentity Online”) standards have emerged [72]. 2FA dongles are
almost always implemented as USB keys and as such are much more easily deployed by
end-users. Some of them are equipped with a HSM to securely store secrets and accel-
erate cryptographic operations, but others simply use a general-purpose microcontroller.
Depending on the thread model and benefit/cost ratio for an attacker, a general-purpose
MCU is well-suited for the use case. Available options for 2FA dongles include the Yu-
bikey and Solokey. Yubikey does publish the source code of some of the applications in
their ecosystem but not all. Additionally, Yubikey has started to employ HSMs in their
product, further moving them away from open source due to NDAs and other contracts.
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Solokey is fully open source for both hardware and software. It employs a general-purpose
32-bit ARM MCU.

The Nitrokey is a hybrid solution between a 2FA token and additional custom crypto-
graphic applications. Beyond 2FA logins, it implements e-mail encryption, encrypted
storage on the Nitrokey, file-encryption for storage off the Nitrokey and management of
cryptographic keys and certificates. It is open source for both hardware and software.
Some Nitrokeys are fitted with an HSM where the HSM is specified to be an OpenPGP
[73] card fitted to a SIM-card slot on the board. Hence, even the firmware on the smart
card adheres to an open interface, although, since it is connected as an external SIM-card,
it is not considered to be a direct part of the open-source Nitrokey system. The internal
implementation of the OpenPGP card might contain closed-source code.

With Solokey being fully open source with an ARM MCU, the option arises to simply
use a development kit for any one of the many 32-bit ARM MCUs. The development
process would certainly be very similar if not a bit easier due to physical rails providing
easy access to most pins of the MCU. Additionally, most development kits are already
equipped with a debug chip, voiding the need for an external debug probe. On the other
hand, the form factor and design centered around the USB port are arguments in favor
of the Solokey.

The final choice of dongle for this project fell on the Solokey.

Table 5.4: Overview over USB Dongles

Dongle Advantages Disadvantages

Smart Card Secure hardware Closed-source & NDA,
smart-card reader required

Yubikey Secure hardware Closed-source & NDA

Solokey Open source No HSM

Nitrokey Open source, HSM support
in some models

HSM only in some models
and HSM needs to be
bought separately

U2F Zero Superseded by Solokey

General-purpose MCU
dev-kit

Easy development, pin
access, on-board debug
chip

No HSM, less compact



Chapter 6

Implementation

This chapter gives an overview over the implementation decisions of Provotum-HW and
documents the most important aspects. The implementation covers the Solokey firmware
and modifications to other parts of the Provotum system. Additionally, parts of the
Solokey development setup are described allow future work to reproduce it and to provide
a basis for subsequent discussion.

6.1 Solokey Firmware

All Solokeys come with pre-flashed firmware whose feature set specifically covers the U2F
and FIDO2 specifications. Since these standards are only concerned with authentication
and data signing and does not cover ZKP, for example, the existing Solokey firmware
cannot be used to cover the Provotum use case.

The Solokey’s full software stack is made up of two components. The firmware and a boot-
loader. The default firmware allows booting into the bootloader via a special command
sent via USB (the solo-python Python package is usually used for that). The bootloader
can then accept new firmware images via USB and allows updating the firmware on the
Solokey. With the normal Solokey variant firmware images need to be signed, but with
the “hacker” variant unsigned images are accepted. During development of the Provotum
dongle firmware, an attempt was made to keep the firmware compatible with the Solokey
bootloader and Solokey tooling to update the firmware, but no satisfactory solution could
be achieved. Appendix B discusses the reasons and options for future development.

The MCU on the Solokey is an STM32L432KC manufactured by ST Microelectronics. It
is an 80MHz MCU implementing the ARM Cortex-M4 architecture.

ARM Cortex-M4 microcontrollers can all be debugged using the serial wire debug (SWD)
interface. The SWD interface requires connection of 4 pins to an external debug probe:
SWDIO (the bidirectional data pin), SWDCLK (the clock), GND (ground) and VTREF
(a target voltage reference so that the debug probe knows which voltage represents a logic
1 on the target chip). The Solokey hardware layout exposes these 4 pins nicely on the

37
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bottom as test points, to which wires can easily be soldered. Debug probes exist from
many manufacturers. I used a Segger debug probe in my setup and Segger Ozone as the
debug application. The debug interface allows stepping through code and stopping at
breakpoints, as well as read and write access to all of the MCU’s memory, allowing easy
reflashing of firmware (see Appendix A).

I decided against building the Provotum-HW firmware on top of the open source Solokey
firmware and opted to use mbed-os [74] (which is also open source) as a base instead.
mbed-os comes with support for a large number of ARM Cortext microcontrollers, includ-
ing Solokey’s STM32L432KC. It further comes with many hardware drivers and libraries,
allowing rapid development of custom embedded firmware (at the cost of higher flash
memory and RAM consumption). Specifically, the abstraction level of the USB drivers
and libraries on mbed-os is higher than using the STM32 software development kit (SDK)
directly or building on top of the default Solokey firmware. Figure 6.1 gives an overview
over the relationship of used components.

Figure 6.1: Relationship of Used Components of MbedOs

The Provotum-HW Solokey firmware implements USB communication over the USB com-
munication device class (CDC) [44], one of the standardized device classes that work
plug-any-play without installing any drivers on most platforms. USB CDC implements a
bidirectional stream connection so that both nodes can send arbitrary unstructured bytes
over the connection. Communication with the client and sending log messages to the host
system are both implemented over the USB connection. Unfortunately, mbed-os doesn’t
support implementation of two USB device classes over a single USB port. Hence, log-
ging and client communication are multiplexed over the same data channel. Details are
documented in Section 6.1.4.

Table 6.1 shows the external libraries used for the dongle firmware. The application
draws random numbers from the mbedtls CTR-DRBG random number generator imple-
mentation, which follows the NIST SP 800-90A standard. The mbedtls implementation
instantiates an entropy pool by drawing high-quality random numbers from the hardware
random number generator included in the MCU. The driver for the RNG is provided
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Table 6.1: External Libraries Used in the Dongle Firmware

Name Description

mbed-os Real-time operating system, used for device drivers and higher level ab-
stractions thereof, especially USB

mbedtls Used for (secp256k1) EC point and big integer operations, SHA-512 and
the entropy pool

libsodium Used for EC operations on Curve25519 elements and encoding in the
Ristretto format

strobe Implementation of the Strobe protocol framework

tinycbor Used to de- and encode the CBOR payloads of dongle messages

STL Used for std::vector, std::array, std::shared ptr, std::string and some func-
tions from <algorithm>

by mbed-os. The entropy pool is reseeded at regular intervals from the hardware RNG.
Libsodium’s internal function for random numbers is rewired to draw random numbers
from mbedtls CTR-DRBG. If the random numbers provided by the RNG hardware in the
MCU are truly high-quality, the software entropy pool is not necessary. However, they can
improve throughput because not every random byte is drawn from hardware and protect
against cases where the hardware RNG returns biased or partially predictable bytes.

6.1.1 Flash Layout

Table 6.2 shows the flash memory layout of the Solokey as they are distributed by the
manufacturer. The page size of the chip is 2048 Bytes. In order to support reflashig
with different application firmware from the bootloader, the bootloader and bootloader
data sections have to be preserved in flash and the application has to fit completely into
the flash pages designated for the application (because the bootloader refuses to write to
other pages during FW update). Theoretically, a small modification to the bootloader
can enable flashing of applications that also make use of the application data pages for
code, leaving 234 KB of flash usable for the application. Concrete attempts to make the
Provotum dongle firmware cooperate with the Solokey bootloader have failed and options
are discussed in Appendix B. Nevertheless the dongle firmware was configured to make
use of 232 of the aforementioned 234 KB of flash. The last page of the flash memory is
reserved for storage of public keys, panic tokens and signatures thereof.

6.1.2 Development Approach

The vast majority of embedded firmware projects are mostly written in C and some
parts in assembly. C++ is sometimes used. Advantages of C++ are nicer abstractions
and proper object oriented programming, such as constructors and destructors that are
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Table 6.2: Solokey Flash Layout

Section Size (in Pages) Start Address, End Address

Bootloader 10 0x8000000–0x8005000

Application 98 (- 8 Bytes at the end) 0x8005000–0x8035FF8

Bootloader Data 1 (- 8 Bytes at the beginning) 0x8035FF8–0x8036800

Application Data 19 0x8036800–0x8040000

automatically called when objects are constructed or destroyed. Many features, such as
exceptions, templates and the standard template library have high cost (mostly in binary
code size footprint, sometimes in RAM usage and runtime cost). They should at most be
used sparingly. Disadvantages of C++ include difficulties in ensuring that really only a
subset of the language is used. For example, if a decision is taken not to use exceptions, all
statically linked-in code must be checked that it doesn’t use exceptions and some libraries
cannot be used. Alternatives, such as templated result classes cannot be used due to their
code size footprint. Rust is a new option where cross compilers exist, but it hasn’t yet
reached a maturity nor popularity level where major firmware developments are started
in Rust.

The dongle firmware, including all dongle functions, was written in C++, since the mbed-
os platform used also makes heavy use of C++. Dongle functions were first compiled
natively for the x64 Windows platform of the author and tested in unit tests using the
Googletest framework. This allowed for faster development since repeated flashing of
the dongle was not required and dongle functions could be tested without reliance on
the USB transport. Additionally, profiling could be achieved in a simple manner on the
native platform. In contrast, profiling on an embedded platform is complex and requires
high software overhead in the firmware or additional hardware. Additionally, the runtime
of the dongle functions is much lower on the native platform, leading to less time spent
waiting during tests. An additional advantage was that the implementation could be
compared directly to other, already existing, implementations of the same functionality.
For example, the Sr25519 signature scheme used by Substrate did not have a pure C
or C++ implementation available. The most mature implementation is the Schnorrkel
project also used by Substrate, which is implemented in Rust. Linking a static library
build of Schnorrkel into the native dongle functions test environment allowed signing
arbitrary data in Schnorrkel and verifying it in the own custom C++ implementation and
vice versa. Some of the unit tests were later also run on the dongle using a custom test
runner consisting of only a few lines of code.

For the development of the dongle firmware, it was decided to make use of some limited
parts of the C++ standard template library (STL) to facilitate rapid development. The
STL is not optimized for embedded software and makes heavy use of dynamic memory.
Frequently in embedded software projects, heap memory is not used at all due to com-
plications such as running out of memory non-deterministically, heap fragmentation and
non-deterministic allocation times for heap memory. This is especially so in safety criti-
cal applications. However, many implementations of cryptographic algorithms, including
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those in mbedtls, make use of heap memory to allocate space for big numbers and to parse
nested structures. Operations on big integers would be cumbersome to implement and
use without dynamic memory. Shared pointers were used extensively to reference-count
instances of big integers and elliptic curve points. This decision favored rapid development
over minimizing the memory footprint, but as discussed in Section 7.2 the overhead on
the runtime is negligible. Additionally, templated types from the STL were carefully used
with few or only one concretization to minimize the already considerable impact on the
flash memory footprint.

6.1.3 End-to-End Integration of Cryptographic Operations

End-to-end compatibility of all the components of the Provotum system requires that all
system components use the same cryptographic algorithms, the same group on which op-
erations are performed, the same elliptic curve (in case of ECC), the same hash functions,
etc. The dongle firmware was originally developed with the same underlying cryptographic
groups as Provotum-RF, but the performance was too poor on the dongle (see Chapter
7). Hence, modifications were required in all other system components for end-to-end
compatibility. Generally, ECC operations used in the system are implemented in the
repositories evote-crypto-ts and evote-crypto-rs, providing equivalent functionality
in Typescript and Rust. While, in theory, only modification of these two repositories
is required to achieve full systemwide integration of ECC cryptography, in practice the
codebase of most components of the system has to be modified because, for example, the
field holding the finite-field parameters accociated with each election in Provotum-RF and
distributed during communication has been dropped. The only cryptographic context is
derived from the used curve and that is fixed for the whole system.

For ECC, the secp256k1 curve is used because it is among those supported by the elliptic
Javascript library used to implement the required functionality on the client side, as well
as the no std-compatible Rust library libsecp256k1 used to implement the functionality
in Rust. For digital signatures (of BC transactions and artifacts created by the dongle)
Sr25519 is used, which uses the Curve25519 curve, because this was already the default
for BC transaction signing in Provotum-RF.

6.1.4 USB Command Set

USB commands are sent by encoding the full command and payload in Base64, prepend-
ing it with a dash ‘-’ (ASCII character 45), terminating it with a newline character (ASCII
character 10) and sending it over the serial channel of the USB CDC. Command responses
are also Base64 encoded, dash-prepended and newline terminated. In contrast, log state-
ments do not start with a dash and are not Base64 encoded. Therefore, each line is clearly
distinguishable as a command or log statement and log statements are human-readable
directly by observing the channel. CBOR [75] is used to serialize the payloads over USB
(before the binary CBOR message is Base64-encoded). Payloads are (nested) structs
of EC points and/or scalars. All nested structs are flattened all the points and scalars
sequentially added to a CBOR message.
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Table 6.3 lists the USB commands implemented in the dongle firmware. The table and
rest of this section group the commands by the use case they are designed to cover.

Table 6.3: Provotum-HW Dongle USB Commands

Name Use Case Design
Section

Utility

Reboot Bootloader Reboot into the bootloader for reflashing

Ballot Randomization

Randomize Initiate Ballot re-encryption analogous
Provotum-RF

Randomize Finalize Ballot re-encryption analogous
Provotum-RF

Encrypting Vote on Dongle

Encrypt Plaintext Vote Create ballot to be embedded in a BC
transaction by the voting client

5.2.4

Creating Tx on Dongle

Create Wallets Create key pairs to create BC tranactions 5.2.1 /
5.2.2

Get Public Key for PIN Obtain the public key for a previously
generated key pair

Store Signatures Store identity provider signatures for key
pairs already stored on the dongle

Create Ballot Tx Create ballot and embed in BC
transaction, sign TX

5.2.1 /
5.2.2

Sealer Operation

Generate Sealer Key Pair Generate keypair for election 5.2.5

Sealer Partial Decryption Partially decrypt final tally 5.2.5

Vote on Dongle (With
Ballot Encryption Only)

Vote on Dongle and Encrypt
Ballot

Expect user vote by key press & encrypt
ballot

5.2.6, 5.2.4

Vote on Dongle (Full Tx
Generation)

Vote on Dongle, Create and
Sign Tx

Expect user vote by key press & prepare
signed ballot

5.2.6, 5.2.1
/ 5.2.2
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Ballot Randomization

The Randomize Initiate (see Figure 6.3) and Randomize Finalize (see Figure 6.4) com-
mand provide Provotum-RF functionality on the Solokey. Ballots are encrypted by the
voting client and re-encrypted on the Solokey. The difference to Provotum-RF is the use
of ECC and the use of the strong Fiat-Shamir heuristic. Figure 6.2 shows the messages
exchanged in this variant when casting a vote.

Figure 6.2: Message Sequence Chart for the Randomize Functionality
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1 // Request payload

2 {

3 encryptedBallot ,

4 bcPublicKey , // key of voter ’s BC account

5 ballotValidityProof ,

6 electionPublicKey ,

7 voterCommitments ,

8 voterPublicKey

9 }

10

11 // Response payload

12 {

13 challenge ,

14 blindCommitments

15 }

Figure 6.3: Randomize Initiate Com-
mand

1 // Request payload

2 {

3 proofResponse

4 }

5

6 // Response payload

7 {

8 reEncryptedBallot ,

9 designatedVerifierProofOfReEncryption ,

10 divertibleBallotValidityProof ,

11 ballotSignature

12 }

Figure 6.4: Randomize Finalize Com-
mand

Encrypting Vote on Dongle

The Encrypt Plaintext Vote command (see Figure 6.6) is used to encrypt a ballot on the
Solokey. The result is an encrypted ballot (and several proofs) that has to be embedded
into a BC transaction and broadcast by the voting client. This corresponds to the variant
from Section 5.2.4. Figure 6.5 shows the messages exchanged in this variant when casting
a vote.

Figure 6.5: Message Sequence Chart for the Encrypt Vote on Dongle Functionality
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1 // Request payload

2 {

3 vote ,

4 electionPublicKey ,

5 bcPublicKey , // key of voter ’s BC account

6 voterNonce ,

7 voterPublicKey

8 }

9

10 // Response payload

11 {

12 encryptedBallot ,

13 designatedVerifierProofOfCorrectEncryption ,

14 proofOfBallotValidity ,

15 ballotSignature

16 }

Figure 6.6: Encrypt Plaintext Vote Command

Creating Tx on Dongle

Creating a BC transaction on the dongle that embeds an encrypted vote is realized through
the Create Wallets, Create Ballot Tx, Get Public Key for PIN and Store Signatures
commands. Figure 6.7 shows the messages exchanged in this variant when casting a vote.

Figure 6.8 lists the payloads of the wallet management commands. This covers the features
from Sections 5.2.1 and 5.2.2. If a voting client wants to implement a single credential
managed on the Solokey without the use of panic passwords, analogous to Section 5.2.1,
the voting client should just use a single default pin such as 0000. If pins contains a list
of PINs, a keypair is created for each PIN, allowing an implementation of panic passwords
coercion resistance. The implementation of panic passwords in the dongle firmware only
requires proper passing of the “panicTokenFeatureUsed” when storing identity provider
signatures and panic tokens, as well as embedding of a panic token in the BC transaction
if the feature is used (as denoted by the flag stored together with the key pair and identity
provider signatures).

Figure 6.9 shows the payloads of the Create Ballot Tx command and its response. Hence,
a signed transaction for the PBB containing a ballot that encrypts the voter’s given
plaintext vote is obtained. If a voting client not implementing panic passwords registered
a single credential using a default PIN, it should pass the same pin in the corresponding
parameter. Note that the voting client can and should verify that the correct private key
was used to sign the transaction by keeping its own mapping of PINs to public keys.
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Figure 6.7: Message Sequence Chart for the Create Ballot Tx Functionality

1 // Create public keys request

2 {

3 pins: number []

4 }

5

6 // Create public keys response

7 {

8 "success" / "fail"

9 }

10

11 // Erase public keys request

12 {

13 // empty , erases all keys

14 }

15

16 // Get public key for PIN request

17 {

18 pin

19 }

20

21 // Get public key for PIN response

22 {

23 publicKey ,

24 panicTokenFeatureUsed : boolean ,

25 panicToken , // can be empty

26 publicKeySignature ,

27 panicTokenSignature

28 }

29

30 // Store public key signatures request

31 // implemented on dongle , integration test

32 // required

Figure 6.8: Wallet Management Com-
mands

1 // Request payload

2 {

3 vote ,

4 electionPublicKey ,

5 voterNonce ,

6 pin , // can be 0000

7 voterPublicKey ,

8 usePanicTokenFeature: boolean ,

9 txPrototypePart1 ,

10 txPrototypePart2 ,

11 electionId ,

12 txPrototypePart3

13 }

14

15 // Response payload

16 {

17 intermediateBallot ,

18 proofOfBallotValidity ,

19 designatedVerifierProofOfCorrectEncryption ,

20 ballotSignature ,

21 ballotTx ,

22 ballotTxSignature

23 }

Figure 6.9: Create Ballot Tx Command
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Sealer Operation

The Generate Sealer Key Pair and Sealer Partial Decryption command are used for sealer
operation. Figure 6.10 shows the messages exchanged in this variant when casting a vote.

The Generate Sealer Key Pair command 6.11 is used to generate a key pair for an election
if the Solokey is attached to a sealer. This corresponds to the feature in Section 5.2.5.

Figure 6.10: Message Sequence Chart for the Sealer Functionality

The Sealer Partial Decryption command 6.12 is used partially decrypt the final tally on
a Solokey attached to a sealer.
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1 // Request payload

2 {

3 voterNonce ,

4 bcPublicKey // key of sealer ’s BC account

5 }

6

7 // Response payload

8 {

9 publicKey ,

10 proofOfPossessionOfPrivateKey

11 }

Figure 6.11: Generate Sealer Key Pair
Command

1 // Request payload

2 {

3 encryptedTally ,

4 bcPublicKey // key of sealer ’s BC account

5 }

6

7 // Response payload

8 {

9 partiallyDecryptedTally ,

10 decryptionProof

11 }

Figure 6.12: Sealer Partial Decryption
Command

Vote on Dongle (With Ballot Encryption Only)

The Vote on Dongle and Encrypt Ballot command (see Figure 6.14) is used to allow the
voter to enter a vote directly into the Solokey and receive the encrypted ballot. Once the
command is received, the dongle waits for a user button interaction for 90 seconds. Short
button presses alternate between setting a yes– and a no–vote, indicated by the LED. A
long button press confirms the vote and initiates encryption thereof. This corresponds
to the combined variant from Sections 5.2.4 and 5.2.6. Figure 6.13 shows the messages
exchanged in this variant when casting a vote.

Figure 6.13: Message Sequence Chart for the Vote on Dongle and Encrypt Functionality
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1 // Request payload

2 {

3 electionPublicKey ,

4 bcPublicKey , // key of voter ’s BC account

5 voterNonce ,

6 voterPublicKey

7 }

8 // Response payload

9 {

10 encryptedBallot ,

11 designatedVerifierProofOfCorrectEncryption ,

12 proofOfBallotValidity ,

13 ballotSignature

14 }

Figure 6.14: Vote on Dongle and Encrypt Ballot Command

Vote on Dongle (Full Tx Generation)

The Vote on Dongle, Create and Sign Tx command (see Figure 6.15) is used to allow
the voter to enter a vote directly into the Solokey and obtian a signed transaction for
broadcasting to the Substrate network. Once the command is received, the dongle waits
for a user button interaction for 90 seconds. Short button presses alternate between setting
a yes– and a no–vote, indicated by the LED. A long button press confirms the vote and
initiates encryption thereof. This corresponds to the combined variant from Sections 5.2.4
and 5.2.1 or 5.2.2. Figure 6.16 shows the messages exchanged in this variant when casting
a vote.

1 {

2 electionPublicKey ,

3 voterNonce ,

4 pin , // can be 0000

5 voterPublicKey ,

6 usePanicTokenFeature: boolean ,

7 txPrototypePart1 ,

8 txPrototypePart2 ,

9 electionId ,

10 txPrototypePart3

11 }

12

13 // Response payload

14 {

15 intermediateBallot ,

16 proofOfBallotValidity ,

17 designatedVerifierProofOfCorrectEncryption ,

18 ballotSignature ,

19 ballotTx ,

20 ballotTxSignature

21 }

Figure 6.15: Vote on Dongle, Create and Sign Tx Command
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Figure 6.16: Message Sequence Chart for the Vote on Dongle and Create Tx Functionality

6.2 Integration of Provotum Components

Besides the dongle firmware, the Rust Provotum cryptography library and the Provotum
Substrate chain codebase were modified to accept the new ECC-based ZKP. The fields of
the proofs do not differ from Provotum-RF except that they contain EC points or 256-
bit scalars instead of 2048-bit scalars. One exception is the proof of decryption, whose
number of fields was decreased from 4 to 3 (see Section 5.4). Hence, the functionality of
the modified component remains the same and only the inner workings change. A build
of this system component successfully accepts dongle-signed transactions and successfully
verifies the proofs of the submitted data, achieving an implementation of end-to-end
integration of Provotum-HW features. A Node-JS-based “client” application was used as
the link between the dongle and the Substrate BC. It implements its functionality in the
form of integration tests, uses the serialport library to communicate with the dongle
over the CDC interface, exercises all dongle functions and interacts with the Substrate
BC, hence offering a fast way to validate dongle functionality and check for regressions
during development.

It was decided to consider integration into the codebase of the other Provotum components
(i.e. the sealer, identity provider, voting authority and voter web-application) as out of
scope for this project since the amount of implemented code was already high and to focus
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instead on documentation of pitfalls encountered during this work so that future work can
extend on it with less effort. Additionally, since the “client” (integration test) application
contains all the necessary code for dongle interaction, it can be used as a template for
further integration.

Table 6.4 lists the dongle functions, the required integration modifications to the remaining
components of Provotum for full production integration, as well as the level of interaction
implemented in the end-to-end PoC.

Table 6.4: Integration Overview of Provotum Components

Use Case / Function Integration Required Integration Completeness

Randomize Ballots • USB communication
with the dongle must be
implemented in the voting
client. • The voting client
must be adapted to stop
using the randomizer web
service and use the dongle
instead. • Some minor
modifications to the
messages passed. • The
divertible proof must now
make use of the strong
Fiat-Shamir heuristic.

Complete in standalone
client demonstrator.

Encrypt Votes on Dongle • USB communication
with the dongle must be
implemented in the voting
client. • The voting client
must be adapted to stop
using the randomizer web
service and let the dongle
encrypt votes instead.

• Verification of correct
dongle behavior must be
implemented.

Complete in standalone
client demonstrator.

Create Ballot Tx on
Dongle

• USB communication
with the dongle must be
implemented in the voting
client. • The voting client
must be adapted to stop
managing its own BC key
pair and signing its own
transaction. • Verification
of correct dongle behavior
must be implemented.

Complete in standalone
client demonstrator. Txs
(signed on the dongle) are
accepted by the PBB and
all proof verifications pass.
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Panic Passwords • The Identity Provider
needs to verify the validity
of panic tokens, sign all
public keys and tokens and
fix the pairing of tokens
and public keys. • The
Substrate transaction
verification mechanism
needs to prevent panic
token reuse. • A mixnet
should be employed for
tallying.

No implementation
attempted beyond support
in the dongle firmware.

Dongle Signs Artifacts it
Produces

• The PBB should verify
the signature and reject
unsigned artifacts.

Implemented in dongle
firmware. The standalone
client demonstrator
deserializes and verifies the
signature from the dongle
response. The PBB code
does not check the
signature.

Sealer Cryptography on
Dongle

• USB communication
with the dongle must be
implemented in the sealer
application. • The sealer
application must be
adapted to stop managing
its own key pair and defer
these operations to the
dongle instead.

Complete in standalone
client demonstrator.

Entering Votes Directly
into Dongle

Same as “Encrypting Votes
on Dongle” and “Create
Ballot Tx on Dongle”.

Complete in standalone
client demonstrator. If a
dongle-signed tx is
returned, it is accepted by
the PBB and all proof
verifications pass.
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ECC • All system components
must be switched to ECC.

Implemented in dongle
firmware. The
evote-crypto-ts repository
has been extended by all
required operations based
on ECC. The standalone
client demonstrator makes
use of the new
implementations in
evote-crypto-ts and is fully
ECC–compatible. The
evote-crypto-rs repository
has been extended and all
operations used by the
PBB have an ECC
implementation. The PBB
implementation makes use
of the new implementation
and is fully
ECC–compatible.
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Chapter 7

Evaluation

This chapter describes the evaluation performed on Provotum-HW. The evaluation focuses
purely on the operation of the dongle and its ability to offer the required functionality.
Since the dongle is a very resource-constrained device (it has 256 KB of flash memory, 64
KB of RAM and an 80 MHz CPU), operations that may run efficiently on other Provotum
system components may run unacceptably slowly on the dongle. On the other hand, if
an operation runs sufficiently efficiently on the dongle, it is generally guaranteed that it
will also perform well on other system components. Since – excluding switching to ECC –
Provotum-HW does not make any fundamental changes to the provotum system (such as
switching to a mixnet), the performance of the remaining system components beside the
dongle is generally equivalent to Provotum-RF. Table 7.1 lists the evaluation activities
performed on Provotum-HW.

Table 7.1: Evaluation Activities on Provotum-HW

Activity Goal

Timing the runtime of
dongle functions

Assess agreeability with potential usage by voters. In
conjunction with profiling: assess optimization poten-
tial/success

Profiling Identify longest running functions and assess optimiza-
tion potential

Discovery of large functions Identify largest functions to assess largest-gain optimiza-
tion opportunities to reduce flash-memory footprint

Regularly printing the
maximum stack usage of
each task

Identify the risk of stack overflows, identify the RAM
requirements of the firmware

Regularly printing the
maximum heap usage

Identify the RAM requirements of the firmware

55
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7.1 Timing the Runtime of Functions

A very basic evaluation consists of timing the runtime of dongle functions, such as encrypt-
ing or randomizing a ballot. Of course, this does not provide a high level of granularity,
i.e., it does not reveal exactly what subfunctions use a lot of time. Profiling is used for
higher granularity. Nevertheless, timing the function runtime gives a quick idea whether
the total runtime of a function is within a range that would be acceptable for most users.

Table 7.2: Runtime of Dongle Function Unit Tests

Test Runtime with FF
Cryptography (ms)

Runtime with ECC
(ms)

Randomize 134308 69080

Encrypt Ballot 45913 28665

Create Ballot Tx 46022 28686

Table 7.2 shows the runtime of the dongle function unit tests running on the dongle. Note
that the reported runtimes include the functionality that is supposed to run on the dongle,
as well as the verification of the produced artifacts (which usually runs on the client or in
the PBB nodes), roughly doubling the runtime of each test. But even with all runtimes
halved, this data reveals that the functions run unacceptably slowly if finite field crypto is
used. Profiling (see Section 7.2) revealed that no optimization could bring this within an
acceptable range, hence motivating the change to ECC. The runtimes with ECC, while
still long, are more in an acceptable range for voters using the dongle. It is interesting
to note that randomizing a ballot takes 69 seconds while encrypting a plaintext vote and
even creating a ballot Tx each take only 29 seconds. Since these functions provide other
advantages, such as protection against malware MITM attacks and vote selling, it only
follows that their usage is highly recommended.

Equivalent unit tests were also written in Typescript (see Table 7.3) that exercise all dongle
functions, as well as the USB transport and verify the produced artifacts in Typescript
code. This ensures that both the dongle and client implementation are correct, that the
transport and serialization of parameters works and offers a better measurement of the
runtime of dongle functions on the dongle since the verification part is not run on the
dongle but in Typescript where the runtime is negligible compared to the dongle.

Table 7.3: Runtime of Dongle Functions Exercised by the JS Test Client

Test Runtime with ECC
(ms)

Randomize 41739

Encrypt Ballot 12462

Create Ballot Tx 12696
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7.2 Profiling

Profiling was achieved using gprof, the GNU Profiler, on a native build of the dongle
functions (see Section 6.1.2). Table 7.4 shows the most expensive functions when using
finite-field cryptography sorted in descending order.

Table 7.4: Most Expensive Functions with FF Cryptography

Function Runtime (Percent) Runtime (s)

mpi mul hlp 51.4 1.1

mpi montmul 6.07 0.13

mbedtls mpi shift r 5.61 0.12

mpi sub hlp 3.74 0.08

mbedtls mpi add abs 2.8 0.06

This data shows that with finite field cryptography, the combined execution of all dongle
functions spends 51% of the time in the mpi mul hlp function. This function is part of
mbedtls and is used in the multiplication of big integers. The next two functions belong to
the profiling framework itself. The next most expensive function of the dongle functions
only runs for 6% of the time and also belongs in the domain of big integer multiplication
in mbedtls. This indicates that little potential for optimization exists since the mbedtls
implementation is quite optimized already and the big integer multiplications are required
for the dongle functionality. Code review revealed no way to drastically reduce the number
of executed multiplications. This motivates switching to ECC as the best way of achieving
acceptable runtime performance.

Table 7.5: Most Expensive Functions with ECC

Function Runtime (Percent) Runtime (s)

mcount private 46.15 0.36

fentry 15.38 0.12

mbedtls mpi mul mpi 8.97 0.07

mbedtls mpi cmp mpi 7.69 0.06

mpi mul hlp 5.13 0.04

mbedtls mpi copy 3.85 0.03

myFree 3.85 0.03

Table 7.5 shows the runtime of ECC dongle functions sorted in descending order. Here,
the most expensive functions are from the profiling framework itself and all other functions
contribute to under 10% of the runtime each. The first 3, again, correspond to big integer
multiplication. Among the next few functions are functions related to copying data and
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memory allocation. Optimizing in that domain could yield some improvement, but the
profiling numbers suggest a potential for optimization under 10%. As discussed in Section
7.5, other optimizations, such as switching to a different elliptic curve, have a higher
potential for large performance improvements. Even though shared pointers were used,
profiling reveals that the runtime impact of reference counting is at a rounded 0% of total
runtime, making the switch to another memory model not a worthwhile optimization.

7.3 Discovery of Large Functions

The flash memory footprint of the dongle firmware is very high. During development,
versions of the firmware started exceeding the 234 KB limit of flash memory usable for
the application (see Section 6.1.1). Large functions were identified from the firmware
binary using nm and puncover. The analysis revealed that most dongle functions were
among the largest functions due to instructions from inlined C++ STL library functions.
Stripping the STL from the firmware was considered but rejected as a first-line solution
because it was unclear, what other factors were contributing to the large binary size and
it would have slowed development considerably. Compiling the binary with the -fno-inline
compiler flag, which prevents the compiler from inlining functions, yielded a significantly
smaller binary (i.e. around 130KB instead of 280KB at the time of the measurement) that
also fit well into the available flash memory. After disabling inlining, the first 7 largest
functions were in cryptography 3rd party libraries. Only in the 8th place was a function
developed by me, which used 1980 Bytes of flash, or 0.8% of the available flash memory.
Further optimization was hence stopped. Not using inlining has a negative impact on the
runtime performance of the application and a future attempt at reenabling it should be
made. Concrete steps are discussed in Section 7.5.

7.4 Regularly Printing Maximum Stack and Heap Usage

To evaluate the RAM consumption of the application, regular print outs of the maximum
used stack memory per task and the maximum used heap memory were added to the
firmware. These reveal that the firmware is well within the limits of RAM on the MCU.
The maximum stack usage stats were used to size the stacks for each task optimally (i.e.
including a small safety margin, but not too much). Heap analysis revealed that more
than 25 KB of heap memory remain free at all times.

7.5 Evaluation and Optimization Discussion

In summary, due to flash memory constraints, inlining was disabled, yielding a runtime
performance penalty, but allowing the firmware to fit into flash. Switching to ECC brought
the runtime of the dongle functions into an acceptable range. Many optimizations can be
attempted in future work to reduce the runtime.
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In order to be able to re-enable inlining, the flash memory requirement of the whole
firmware has to be reduced. Purging the STL from the firmware is a first step in achiev-
ing that. Mbed-os also has a high flash footprint and could be removed. The dongle
functionality is single-threaded except for the USB driver and library. Hence, the only
considerable part of porting would be the switch to a different USB software stack. It
might be a good idea, however, to keep the mbed-os implementation of SharedPtr and use
that instead of STL’s shared ptr. The mbed implementation has a lower flash footprint
and has no hard-to-remove dependencies on other mbed functionality. Switching to man-
ual memory management offers no useful performance benefit as indicated by profiling.

Switching to a different elliptic curve (currently secp256k1 is used) might provide fur-
ther performance and flash footprint improvements. If the libsodium implementation of
Ristretto encoded points on the Curve25519 curve were used, the dependency on mbedtls
could be dropped and libsodium used as the main cryptography library, freeing up the
flash used by mbedtls. Unfortunately, libsodium is also not very lean, including 30KB
of curve constants. But another mature C implementation of Curve25519 operations
with Ristretto points does not seem to exist. As a benefit, Curve25519 is considered
to offer higher performance than other curves of the same security level (e.g. [76]). Of
course, switching the elliptic curve used, requires the same modification to all parts of
the Provotum system. Dropping mbed-os and mbedtls also requires manual integration
of the MCU’s hardware random number generator peripheral into libsodium.
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Chapter 8

Summary and Conclusions

The goal of this thesis was to explore the use of a USB dongle in Provotum, given a
baseline version of Provotum-RF, and try to achieve security improvements. This goal
was formulated broadly on purpose to allow for an exploratory work that uncovers the
potential of the USB dongle in the Provotum system. This work started off with a review of
related work. Initial review revealed that the best security improvement achievable by use
of a USB dongle might be coercion resistance and that most works using hardware dongles
in REV systems do so to increase protection against malware interference and attempt to
achieve coercion resistance. It also revealed that most works claiming coercion resistance
were later shown to have weaknesses or to not have achieved full CR. Additionally, work
related to to hardware dongles frequently proposes systems whose usability is poorer than
systems without hardware dongles.

Next, a comparison of external hardware for use in this project was conducted. Adverse
factors that spoke against some of the most secure options included lack of open-source
and legal restrictions through NDAs. Hence, a simple device, the Solokey, was chosen for
a Proof-of-Concept (POC). The idea of the POC is to provide a baseline implementation
of a hardware-enabled version of Provotum to demonstrate feasibility, explore the devel-
opment approach, the available tooling, discover pitfalls and to define an interface and
function set that can be based upon in future work, both from an academic and develop-
ment perspective. From an academic perspective, the formulated thoughts and concepts
can serve as a map of already explored areas and areas with most promising exploration
left open. From a development perspective, the integration tests and Provotum system
integration can serve as regression tests while porting the dongle functionality to a more
secure device or optimizing the firmware on the same device. Additionally, documenta-
tion of tooling around this work’s development can serve to accelerate future work and
documentation of pitfalls can serve to avoid similar problems in the future.

Definition of the design of the PoC involved getting a good enough understanding of the
system’s underlying cryptography and ZKP to allow formulation of own variants of the
common Sigma Protocol proofs and ability to propose improvements to the randomization
protocol and ZKP used in Provotum-RF. Additionally, algorithms for t-of-n DKG were
evaluated during this phase, but it was decided against their use due to the high message
overhead of the algorithms.
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Concrete implementation followed a brief evaluation of platforms and programming lan-
guages, from which mbed-os and C++ were selected for dongle firmware development due
to the ability to focus on development of functionality over writing a lot of boilerplate
code to bring up the platform. In the course of development, all ElGamal encryptions
and ZKP were modified from finite-field cryptography to ECC since it became quickly
apparent that the runtime of the algorithms used by Provotum on the dongle is too high
if finite-field cryptography is used.

A number of challenges presented themselves during implementation (see Section 8.1),
but despite all these challenges and with the help of profiling and multiple analysis tools
run on the firmware binary, a firmware binary was obtained that fits into the available
flash memory (although just barely), has an acceptable runtime and implements all 6
dongle use cases discovered during the design phase of this project: ballot randomization,
encrypting a vote on the dongle, creating a BC transaction on the dongle, voting on
the dongle and obtaining an encrypted ballot, voting on the dongle and obtaining a
BC transaction and, finally, sealer operation (key management and partial decryption of
tallies). These dongle functions provide security advantages over Provotum-RF ranging
from increased protection of private keys against theft and protection against intentional
selling of private keys to protection against malware on the voter’s computer. End-to-
end integration was achieved by providing the necessary modifications to the Provotum
cryptography libraries (both the one in Typescript and the one in Rust) and the Provotum
Substrate chain codebase. An integration test proves that the BC accepts dongle-signed
transactions and successfully verifies the contained ZKP.

A proposed feature that needs to be specially mentioned is panic passwords. During
the study of related work for this thesis the concept of using panic passwords to achieve
coercion resistance in REV systems was discovered. This work includes a proposal of
how panic passwords can be integrated into the Provotum system that does not require
modification to the high-level architecture (i.e. the system components involved and their
interaction) and is compatible with the Provotum ballot format. Completion of the feature
requires a way of proving to the identity provider the validity of a set of panic passwords in
their blinded form. Future work should attempt to find a solution to this since that would
achieve coercion resistance. The existing codebase of the dongle firmware and system
integration should provide a formidable baseline for this future work.

8.1 Challenges Encountered During Development

The development part of this work covered a number of different systems, all of which
come with their own tooling and require sligthly different development skillsets, some of
which I already had and some of which I had to acquire.

I am frustrated, for example, that I didn’t achieve proper integration of the dongle
firmware with the Solokey bootloader (see Appendix B), but the development of the
dongle firmware required acquiring an in-depth understanding of parts of the Solokey’s
hardware and firmware. This includes understanding of the memory model of ARM Cor-
tex processors, the SWD debug interface, debugging practices for microcontrollers, the
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boot procedure of ARM Cortex processors and how a bootloader can chainload an appli-
cation, clock tree configuration of the concrete MCU used and usage of some peripherals
of the MCU. Additionally an in-depth understanding of the gcc compiler and linker for
embedded development was required including the use of linker files to control alloca-
tion of memory for compiled symbols and control of their exact location and reading the
linker-generated map-file to verify symbol placement. Gcc-related tooling such as gprof
and nm were used to debug problems with the binary size and firmware runtime.

On the Solokey side required knowledge included how the bootloader and application
communicate, how the tooling (i.e. solo-python) interacts with the system and reading
the hardware schematic to identify the way of electrical attachment of the button and
RGB LED to the MCU.

Of course, the some of the used platforms and libraries such as mbed-os also required
some effort to famliarize oneself with their architecture and APIs.

Fortunately, a deep understanding of the Substrate architecture was not required for the
PBB modifications, but the Rust programming language required some effort to learn,
although it was less than initially expected. Some required information around the Sub-
strate ecosystem was only sparsely documented. Implementation of signatures over Sub-
state transactions, for example, required reading and debugging the Polkadot source code
to obtain the exact data that needs to be passed into the signature algorithm and the
required configuration of the signature and hashing algorithm. An additional difficulty
was the number of breaking changes that some dependencies, such as Substrate and its
transitive dependencies, have made in the last year. One example is the Sr25519 (whose
definition is exposed in form of its main implementation, the Schnorrkel library), which
made breaking changes around version 0.3. Multiple phased-out repositories still hosted
on the Paritytech Github link to Schnorrkel v0.1.0 while more recent repositories link to
version 0.9.1. Identifying which repositories could safely be used against the Substrate
version used in Provotum-RF involved hitting a few pitfalls. Additionally, just getting
the Provotum Substrate chain binary to build involved a lot of effort because since its
last release some maintainers of transitive dependencies broke the contract of semantic
versioning, and a lock–file was not available in the Provotum chain codebase.

Concerning lock–files, figuring out how to handle problems with transitive dependencies
and trying to use tooling such as cargo tree to visualize dependency trees was challenging
in general since in the embedded projects I usually work on all dependencies and transitive
dependencies are usually fixed and rarely ever changed.

Another painful experience in implementation was also to disover how much the decision
to use C++ and parts of the STL impacted the binary size of the firmware (as discussed
in Chapter 7).

Given the challenges faced I think that the codebase developed in the course of this work
is a sizeable achievement. The dongle firmware provides a solid foundation for future work
for the reasons previously discussed and the lessons I learned from this project will prove
highly valuable in future embedded development projects of mine.
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8.2 Summary

In summary, this work explores the use of a USB dongle in the Provotum system and
presents a PoC system – Provotum-HW – that implements 6 dongle functions that im-
prove security over Provotum-RF. The codebase and outwards interface of the dongle
firmware serve as a baseline for future implementation and potentially achieving coercion
resistance with panic passwords. The integration tests and Provotum system integration
allow testing for regressions while porting the dongle functionality to a more secure device
or optimizing the firmware on the same device. Additionally, the documentation accumu-
lated in this work can serve as a basis to accelerate the start of future projects based on
this work and help avoid pitfalls during development.

8.3 Future Work

Provotum-HW identifies and implements options to improve security of Provotum by
means of an additional hardware dongle, but at the same time discovers new open chal-
lenges for future work.

8.3.1 Dongle with Display

If an external (USB other interface) device with a display is employed, it is possible to offer
better usability for the vote-on-the-dongle use case. Hence, protection against malware
can be combined with almost equal usability to voting on the voter’s PC. Additionally,
the system can support more complex votes (beyond yes– and no–votes) entered directly
into the dongle with equal protection against malware. Alternatively, an the use of a
smartphone application communicating with the Solokey via its NFC interface could be
explored.

8.3.2 Integration of Panic Passwords

As outlined in Section 5.2.3, panic passwords still require solutions to some problems
during identity provisioning. Ideally, no modifictaion to the dongle firmware is required
and integration can proceed according to the integration steps detailed in Table 6.4.

8.3.3 Non Malleable Encoding of Transcripts and Hashed Data

Currently, whenever data is hashed, it is just concatenated and fed into the hashing
algorithm. A constructed case where this could be a problem is when, given the bitstrings
A=01, B=00, C=010, D=0, the hashes H(A||B) and H(C||D) are equal (where || denotes
concatenation). While concrete attacks on this might not exist in the context of Provotum,
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best practices usually require hashed data to be serialized in some canonical form that
uniquely determines the elements added to the hashed data, their order and their length.
The Strobe protocol framework [25] or Merlin transcripts [24] could be used for that since
they are already used for the same purpose in the Sr25519 signature algorithm used by
the Substrate BC.

8.3.4 Certificate / Trust Chain Structure for Dongle Keys

Currently, all dongles sign the artifacts they generate with the same, hardcoded key. Ide-
ally, each dongle has a different key and a certificate chain is in place to allow verification
of a dongle key back to a single root of trust. Additionally, revocation of dongle keys
should be checked so that the manufacturer can revoke the certificates of dongles with
discovered security vulnerabilities. Equipping each dongle with a different private key
requires definition of a process by which the key is injected into the dongle during man-
ufacturing or generated at the first boot and by which a certificate can be issued for the
associated public key.

8.3.5 Securing Deployment of Firmware

Currently, the Solokeys are equiped with the “hacker” bootloader, which allows flashing of
unsigned firmware images. By flashing the non-hacker variant of the Solokey bootloader
and installing a public key on the dongle, only firmware images can be flashed via the
bootloader that are signed with the corresponding private key. Enabling the flash memory
protection and debug interface lockout, external access to the dongle’s memory and debug
capabilities is prevented unless the dongle’s memory is fully erased.

8.3.6 Firmware Performance Optimization

Section 7.5 lists a number of potential optimizations by which the performance of dongle
functionality could be improved, wait times for voters reduced during ballot preparation
and additional flash memory freed for implementation of other future features in the
dongle firmware.
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Appendix A

Installation Instructions

This appendix details the required steps to build and run the software components pro-
duced or modified in this work.

A.1 Dongle Firmware

You need Python on your system. You also need an ARM cross-compiler, i.e. a compiler
produces a binary for ARM Cortex-M processors even though the compiler runs, for exam-
ple, on an x64 architecture. You can get arm-none-eabi-gcc at https://developer.arm.
com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/

gnu-rm/downloads.

Clone the git repository recursively

1 git clone --recurse -submodules git@github.com:provotum/dongle_fw.git

Then you need to install the mbed command line tools. I recommend installing these in
a Python virtual environment to avoid cluttering up the global modules:

1 python3 -m venv env

2 source env/bin/activate

Then

1 python3 -m pip install mbed -cli

2 cd dongle_fw

3 python3 -m pip install -r mbed -os/requirements.txt

Set the GCC ARM PATH or MBED GCC ARM PATH according to Mbed documenta-
tion as an environment variable or within the mbed toolchain config to the path of your
ARM cross-compiler installation.

Compile the firmware with

1 mbed compile -t GCC_ARM -m SOLOKEY --profile develop
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The firmware is then located in BUILD/SOLOKEY/GCC ARM-DEVELOP/mbed.bin
(or mbed.elf) for loading into a debug application. A hex file can be obtained by running

1 arm -none -eabi -objcopy -O ihex /path/to/mbed.elf /target/path/mbed.hex

Flashing the firmware can currently only be achieved over the debug interface since the
dongle firmware cannot be properly flashed nor booted by the Solokey bootloader (see
Appendix B).

A.1.1 Flashing via the Debug Interface

Solder wires to the Solokey test points on the bottom labeled with GND1, 3V1, SWDIO1
and SWCLK1. Connect the wires to debug probe according to the debug probe’s manual.
The pin assignment for Segger debug probes is documented at https://www.segger.

com/products/debug-probes/j-link/technology/interface-description/. Figure
A.1 shows the connection to a Segger debug probe. Use a debug application compatible
with the given debug probe. For Segger probes, Segger Ozone can be and has been used
in this work. Note that the dongle still needs to be plugged into the USB port for power
and communication with the application client.

Figure A.1: Solokey Debug Wire Attachment

A.2 Native Build of Dongle Functions

You need cmake, make or ninja and gcc/g++.

Clone the git repository recursively

1 git clone --recurse -submodules git@github.com:provotum/dongle_native_tests.git

Then build with cmake
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1 cd dongle_native_tests

2 mkdir build

3 cd build

4 cmake ..

5 make

Then run the test executable
1 ./test

A.3 Client Dongle Tests

You need node (tested with version 14), npm, typescript.

Clone the git repository
1 git clone --recurse -submodules git@github.com:provotum/pv-hw-client.git

2 cd pv-hw-client

Install dependencies
1 npm i

Make sure the dongle is plugged in and identify onto which serial port device the CDC
interface is mapped. Set an environment variable with the port path, for example

1 export PROVOTUM_SERIAL_PORT =/dev/ttyACM0

Depending on your setup, you also have to ensure proper access rights of your user to the
serial device. Then compile and run the tests

1 tsc -b

2 npm test

A.4 Provotum Chain Binary

Install the Rust compiler with a compatible nightly build. The following version worked
for me (installation instructions assume Ubuntu or Debian):

1 sudo apt -get install clang libclang -dev

2 curl https ://sh.rustup.rs -sSf | sh -s -- -y

3 source $HOME/.cargo/env

4 rustup install nightly -2021 -02 -11

5 rustup default nightly -2021 -02 -11

6 rustup uninstall stable

Clone the git repository
1 git clone --recurse -submodules git@github.com:provotum/ProvotumChain.git

2 cd pv-hw-client

To run the unit tests, run
1 cargo test -- --nocapture

To build the chain binary, run
1 cargo build
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Appendix B

Fixing Flashing of the Firmware

Flashing of the dongle firmware is currently not possible using the Solokey bootloader.
Since this affects the possibility to flash and test the dongle firmware by oneself, this
section documents the attempted solutions and proposes future fixes to resolve the issue.

Care was taken that the application does not occupy flash regions occupied by the boot-
loader. But the application is too big to fit completely into the application flash section
of the Solokey flash layout and the bootloader refuses to write those parts of the applica-
tion that are mapped to the application data flash section (refer to Section 6.1.1 for an
overview over the flash layout).

Flashing was attempted using a modified bootloader that does not perform range checks
on the written flash pages, but the bootloader crashed during the writing of the new
firmware binary indicating some other yet unidentified problem is present. Debugging
this was not yet attempted but requires a debug probe attached to the Solokey.

Another approach is to use DFU mode to flash a firmware. The Solokey documentation
describes how to enter DFU mode on a fresh Solokey and use it to flash a firmware binary.
DFU erases the full memory before flashing, thus requiring flashing of the bootloader and
application at the same time. The Python tool intelhex can, for example, be used to
merge an application and bootloader hex file. However, the Provotum dongle firmware
has no implementation to enter DFU mode after Provotum firmware is flashed, preventing
repeated reflashing with other firmware. Further, an attempt of doing this did not yield
a properly booting configuration.

One simple fix is to simply slim down the Provotum firmware first until it fits completely
into the application section of the Solokey flash layout and then attempt flashing using
the unmodified Solokey bootloader. However, a debug probe is still required for flashing
to allow testing during the slimming–down efforts.

Alternatively, a different bootloader – such as mcuboot – could be employed. Divisioning
of flash memory could then be arbitrarily chosen and a combined binary of the new appli-
cation and bootloader flashed once using DFU mode. Subsequent firmware updates could
then be achieved via the new bootloader. But the learning curve of the new bootloader
might equally steep as for the Solokey bootloader.
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If no firmware updates are to be supported the appliation can simply be compiled to take
up the entire flash memory. Flashing it once to a fresh Solokey could be achieved via
DFU mode. The application might even implement a function allowing reboot into DFU
mode for subsequent reflashing.

Another alternative is to simply port the functionality away from the Solokey onto a HSM–
enabled device or the STM NUCLEO-L432KC Dev-Kit, equipped with the same processor
but with an onboard debugger. Since this new device does not ship with the Solokey
bootloader anway, no attempt at integration has to be made and the full flash memory of
the device is available for application code. Reflashing is fairly simple for everyone due to
the onboard debugger (STM tooling will have to be installed for reflashing).



Appendix C

Contents of the CD

The contents of the CD are all aggregated in a single ZIP archive. Inside the archive the
following directory tree exists:

/

thesis.pdf .........................................The thesis in PDF format
midterm.pdf ...................The midterm presentation slides in PDF format
dongle_fw....................................The dongle firmware source code

mbed-os......................................A copy of the mbed-os RTOS
external.........................Copies of external libraries depended upon

dongle_native_tests......The native source code of dongle functions and tests
external.........................Copies of external libraries depended upon

evote-crypto-ts...................The crypto library used by Typescript code
evote-crypto-rs.........................The crypto library used by Rust code
pv-hw-client..............The Node client interacting with the dongle and BC
ProvotumChain...............The Provotum Substrate chain binary source code

All codebases are also pushed to Provotum’s Github.
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