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Abstract

Honeybees are one of the most important pollinators in our world and are there-
fore vital to biodiversity and economy. Over the past decades, bee populations
have been dwindling. Although the causes are known, the exact impact of each
cause is still unclear. The BeeLivingSensor project aims to shed light on this in-
tricate question by aggregating data around bees in an automated, non-invasive
fashion.

The goal of this thesis was to integrate two pollen metrics into our web-based
platform that serve as an indicator for biodiversity and bee health: the number of
pollen and the floral diversity of the pollen. For the first metric, we constructed
a fully scalable end-to-end system for tracking pollen using existing computer
vision solutions. For the second metric, we developed an algorithm for match-
ing plants that bloom in a certain area at a given time. We evaluated both met-
rics in terms of accuracy, showing that the pollen counting mechanism needs im-
provement, whereas the plant-matching already delivers usable results. We also
measured the speed for computing the pollen counts, demonstrating that we can
process the daily amount of data of two hives on a strong GPU machine.

Zusammenfassung

Honigbienen gehören zu den wichtigsten Bestäubern auf unserer Welt und sind
deshalb unverzichtbar für die Biodiversität und die Wirtschaft. In den vergange-
nen Jahrzehnten haben die Bienenpopulationen abgenommen. Obwohl die Ursa-
chen bekannt sind, sind die Auswirkungen jeder Ursache noch unklar. Das BeeLi-
vingSensor-Projekt beabsichtigt Aufschluss über diese komplexe Frage zu geben,
indem es Daten rundum Bienen auf automatisierte, nicht-invasive Weise aggre-
giert.

Das Ziel dieser Arbeit war zwei Pollenkennzahlen in unsere webbasierte Platt-
form zu integrieren, die als Indikator für Biodiversität und Bienengesundheit fun-
gieren: die Pollenanzahl und die florale Vielfalt der Pollen. Für die erste Kennzahl
haben wir zur Verfolgung des Pollen ein voll skalierbares End-zu-End System kon-
struiert unter Verwendung von Computervisionslösungen. Für die zweite Kenn-
zahl haben wir einen Algorithmus entwickelt, der Pflanzen zu einem gegebenen
Zeitpunkt in der Gegend abgleicht.Wir haben beide Kennzahlen hinsichtlich ihrer
Genauigkeit evaluiert. Dabei konnten wir zeigen, dass der Pollenzählmechanism
noch verbesserungswürdig ist, während der Pflanzenabgleich schon verwertba-
re Resultate liefert. Überdies haben wir die Geschwindigkeit zur Berechnung der
Pollenanzahl gemessen. Hier konnten wir darlegen, dass wir die täglichen Da-
tenmengen von zwei Bienenstöcken auf einer starken GPU Maschine verarbeiten
können.
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1 Introduction 1

1 Introduction

Over the past decades, the amount of flying insect biomass has dramatically de-
creased [33]. Many, primarily human-induced, causes have been identified [79],
but how large their individual impact is and how they interrelate is still an open
research question due to the large number of parameters involved and the sparse-
ness of the data [85]. Honeybees, which belong to the flying insects, are major
pollinators and vital for our ecosystem and economy. Therefore, it is important
to understand what leads to their massive death.

BeeLivingSensor (BLS) is an ongoing citizen-science project led by the In-
formatics and Sustainability Research Group at the University of Zurich (UZH)
and the Institute of Molecular Systems Biology at the Eidgenössische Technische
Hochschule (ETH). Its goal is to understand how various factors such as biodiver-
sity, weather, diseases, agriculture and other human activities influence the life
and well-being of honeybee colonies. The main outcome of the BLS project will
be an open, web-based platform where different stakeholders such as beekeepers,
farmers and schools can help aggregate data about bees in a non-invasive manner.
Cameras placed around beehives form the main source of data. They capture the
movements and the interactions of bees and the pollen carried into the hive, which
is correlated with data from the beehive itself (e.g. temperature, sound, weight,
etc.) and with data from weather stations, agriculture and drones/satellites. The
collected data will serve as a basis for researching the complex interplay of various
parameters and taking effective measures based on these results.

1.1 ResearchQuestion

Biodiversity around a beehive is essential for the health of the bees. Good metrics
for biodiversity are the pollen amount and variety. A typical bee colony requires
approximately 17-34 kg pollen per year [19, 44] and a mixed pollen diet has been
linked to improved bee health [3, 23, 22, 43]. Traditionally, pollen is collected with
pollen traps or directly extracted from honey, which is counted and then analyzed
under microscopes. However, this process is manual and expensive since only
skilled experts can perform an exact analysis. Recently, automated approaches for
counting pollen have been proposed [50]. The presented approaches, however, are
typically intrusive in that they constrain the natural behaviour and movements of
the bees. Furthermore, to the best of our knowledge, no automated systems have
been presented and evaluated in the literature that capture the pollen diversity.

In this work, we describe a fully non-invasive system that records these pollen
metrics (count and diversity) in an automated fashion, using video and flora data.
The video footage serves for counting the pollen and capturing the pollen colors
at the hive entrance, using a combination of Artificial Intelligence (AI) and heuris-
tics. Since the botanical origin of a pollen usually cannot be determined based on
its color alone, we leverage flora data to narrow down the possible plants from
which the pollen may derive, allowing us to estimate the pollen diversity. For
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example, knowing when plants flower and in which places they do so, allows us
to determine whether the bees from a given hive pollinate a specific plant. In a
nutshell, we aim to answer the following research questions:

• RQ1: How can the pollen count and diversity be recorded in a best possible
automated, non-invasive way?

– RQ1a: What is the performance of the fully end-to-end pipeline for
counting pollen?

– RQ1b: Which systems provide flora data that help capture the pollen
diversity?

– RQ1c: How can flora data be leveraged to measure pollen diversity?

For RQ1a, we construct a fully modularized and scalable end-to-end pipeline
for counting pollen. To this end, we use existing code for most of the components
of the pipeline that previous contributors have delivered to the BLS project [24,
25, 1]. On top of that, we implement two separate pollen counting algorithms. We
then evaluate the performance of this final pipeline at two different levels: firstly,
on a computational level by measuring the processing speed of the pipeline and
secondly, on a qualitative level by testing how accurate the reported pollen counts
are.

RQ1b and RQ1c, on the other hand, concern the pollen diversity, for which
flora data sources form the basis. For RQ1b, we first perform a comparison of
systems providing different flora data sources, using a set of evaluation criteria.
The outcome of this comparison is a decision on which data sources to integrate
into the BLS platform. For RQ1c, we describe an algorithm for matching plants
based on time and location by leveraging these data sources. To evaluate the
accuracy of this plant-matching algorithm, we compare its results to the outcome
of a microscopy analysis.

2 Background

In this section, we introduce key terms in biology relevant for this master thesis
and explain the role of bees and pollen. Afterwards, we present the BLS project,
describing its goals.

2.1 Botanic Basics

Our earth is home to many living organisms. These organisms can be classified
into taxonomic ranks according to shared traits. Figure 1 shows the taxonomy
ranks with two example species based on the nomenclature codes International
Code of Nomenclature for algae, fungi, and plants [84] and International Code of
Zoological Nomenclature [73]. The highest rank is the domainwhich distinguishes
between Archaea, Bacteria and Eukarya [92]. The lowest rank forms the species
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Domain (Woese et al., 1990)

Kingdom

Phylum

Class

Order

Family

Genus

Species

Plantae

Tracheophyta

Magnoliopsida

Asterales

Asteraceae

Cichorium

Cichorium intybus

EukaryaEukarya

Animalia

Arthropoda

Insecta

Hymenoptera

Apidae

Apis

Apis mellifera
Source: Daniel Boschung

Nomenclature codes based on:
International Code of Zoological Nomenclature (1999)

International Code of Nomenclature for algae, fungi, and plants (2018)

Figure 1: Taxonomic rankswith two example speciesApismellifera andCichorium
intybus.

and it is on that rank where our object of interest lies: the honeybee (Apis mellif-
era),1 which feeds on plants such as Cichorium intybus.

The term biodiversity denotes the biological variation or variability of life on
earth. This variation can be measured on different levels: within species, across
species or across habitats. Biodiversity is important as it affects the services that
an ecosystem provides to humanity such as crop yield and disease prevalence.
Every species plays its role in an ecosystem and interacts with other species in
complex ways. The pollination of plants represents a major part in this interplay.

Pollen is a powdery substance that seed plants such as trees, flowers and
grasses produce to fertilize other plants of their kind. Wind and animals, espe-
cially insects and birds, help spread the pollen and therefore ensure the thriving
of many plant species. Honeybees represent the most important pollinators. They
fly from plant to plant to collect the pollen and thereby pollinate the plants along
the way. Plants in turn provide fruits for birds and other animals. The pollination
work of bees has a high economic value. One third of the plant products produced
by agriculture relies on the pollination of the bees. According to [30], the value
of pollination services is estimated at €153 billion.

The bees feed on pollen since they contain proteins which are required both
for the production of royal jelly which they feed to the queen, larvae, drones and
other bee workers [20], and their venom [49]. The nutritional composition of
pollen differs greatly across plant species [75], both in terms of amino acids con-
tained within the protein but also regarding lipids and vitamins. Thus, the nutri-
tional value of the pollen is not purely defined by its protein content [21, 18, 59].
‘Unbalanced’ pollen diets, e.g. when bees forage on certain monocultures [53],

1Henceforth, whenever we refer to ‘bees’, we mean the honeybee.
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have been linked to a reduction of weight gain, longevity, royal jelly and venom
[47, 93, 76, 12, 49, 59]. Noteworthy is that a mixed pollen diet is not necessar-
ily superior to a monofloral diet. For example, a study found that a monofloral
pollen diet comprised of Asparagus sp. or Castanea sp. stimulates the develop-
ment of hypopharyngeal glands, which produce the royal jelly, just as well as a
mixed pollen diet [59]. Nevertheless, a highly diverse diet is generally considered
as more beneficial for bee health than monofloral diets [3, 23, 22, 43].

Many researchers have investigated how far bees fly to collect pollen, coming
to different results. According to them, the mean foraging area of bees may range
between 1km and 6km [88, 90, 8]. In this thesis, we assume a mean foraging
distance of 3km for all our algorithms and analyses.

In summary, the bees benefit from a biodiverse environment and vice-versa
contribute to more biodiversity.

2.2 BeeLivingSensor Project

BLS is an on-going citizen-science project led by the Institute of Molecular Sys-
tems Biology from the ETH and the Informatics and Sustainability ResearchGroup
at the UZH. The core idea of the project is to use the 30’000 to 50’000 honeybees
from a colony as living sensors to track the biodiversity in the area as well as to
measure the health of the colony.

News about the death of bee colonies have brought awareness about the im-
portance of biodiversity to the general public. Over the past 30 years, the amount
of flying insect biomass has declined by 75 percent in protected areas [33]. A mul-
titude of factors have been identified that are held responsible for bee population
losses and Colony Collapse Disorder (CCD) [79]:

• Shortage of high-quality food (pollen and nectar): This may be caused by
urbanization [29], inappropriate agricultural practices (e.g. monocultures
[45] and pesticides [31, 34, 26]) and weather/climate [80].

• Pathogenes: This includes parasitic infestations such as Varroa [74], bacte-
rial infections such as foulbrood [28] and fungal infections such as nosemo-
sis [63].

• Mismanagement of apiaries: inadequate feeding or incorrect pathogen con-
trol [41].

However, the exact impact of each individual factor and how these factors
correlate and interplay is still unknown because it is difficult to conduct repro-
ducible studies due to the number of factors that have to be controlled for and the
sparseness of the data [85].

The BLS project aims to shed light on this intricate question by building a web-
based platform that aggregates data from different sources in an automated, non-
invasive fashion. The main data source form the cameras placed at the entrances
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of beehives which capture the in- and outgoing bees. Using AI, we envision to
detect bees, pollen and diseases in these videos. This enables us to automatically
monitor bee traffic, foraging behavior and bee health. A second data source is the
environmental data. This includes flora data which allow us to narrow down the
potential plants that a pollen may derive from and compute the biodiversity and
food supply around the hive. Furthermore, weather (temperature, humidity, etc.),
hive sensor (weight, sound, etc.) and agricultural data (land use, pesticides, etc.)
complete the picture. Thus, the platform has the following functions:

• The collection of data that serves as a basis for investigating the complex
interrelationships of parameters (bee count, pollen input, weather, agricul-
tural activities, etc.). This is why we place particular emphasis on data ac-
cessibility bymaking everything publicly available from the code to the raw
data.

• The monitoring of beehives which allows beekeepers to track the biodiver-
sity, food supply and the health of their bee colonies, and to take appropri-
ate action when they decline.

• The connection of different stakeholders. For the installation of cameras
and hive sensors, we need the cooperation of beekeepers. The creation of
AI models requires enough labeled data which we obtain through the help
of schools and citizen scientists. The same stakeholders also help gather
plant observation data that botanists curate. Farmers can provide us data
on their agricultural activities. Finally, researchers analyze the data.

Figure 2 shows an overview of the data that the platform plans to aggregate,
the stakeholders that are involved in this and the required equipment.

We strive to make the data acquisition as automated as possible. However,
some of the data is crowd-sourced and is therefore manual in nature, for instance,
the labeling of images for the creation of new AI models or, currently, the observa-
tion of plants. The rest of the data can be gathered in an automated fashion, such
as fetching weather station and hive sensor data from Application Programming
Interfaces (APIs) as well as counting the bees and pollen flown into the hive (once
models have been trained).

Furthermore, all ourmethods are non-invasive. Being a keystone species, bees
have been extensively studied for a long time. Most of this research is performed
in laboratories on individual bees or in the context of beekeeping. However, all
too often, it is forgotten that bees live in colonies and that they adapt to the in-
terventions of beekeepers. Therefore, the studied bees are often not behaving
naturally. In an initial phase, BLS will also collect data from managed bee hives.
However, the future vision is to monitor bees in a natural setting such as in tree
cavities, using affordable technology like solar-powered cameras and 5G for the
data transfer.
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Computers
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- mowing
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- location
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- pollen color
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Figure 2: Data being aggregated by the platform. The green circles are the stake-
holders, the blue polygons are the equipment (including software and hardware)
and the red rectangles are the data.
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3 Previous Technical Contributions to BeeLivingSensor

In total, four separate student groups have worked on the project over the past
years, three of them on the creation of AI models and trackers [24, 25, 1], and one
building the platform itself [42].

3.1 AI Models & Trackers

BLS leverages AI to automate the counting of bees and pollen. To begin with,
this requires bee and pollen detection models which, graphically speaking, draw
rectangles (‘bounding boxes’) over bees and pollen in images as shown in Figure
3.

(a) Bee annotations [25, 1] (b) Pollen annotations [24]

Figure 3: Annotations over bees and pollen

A video is a sequence of images (‘frames’) and the same bee typically appears
in several images. To trace the movements of an individual bee, tracking algo-
rithms assign IDs to bees to associate the same bees across multiple images using
metrics such as Euclidean distance or Intersection over Union (IoU).The complete
flow of steps is shown in Figure 4.

Figure 4: Steps for tracking bees [25]

Finally, to count the in- and outgoing bees, we observe whether a bee dis-
appears within or outside the hive entrance by checking whether the bee center
point lies inside or outside the entrance’s area (point-in-polygon test).

A first stab at detecting and counting bees and pollen in video images was
undertaken by a student group from ETH in the summer of 2019 [24]. They built
an end-to-end pipeline that accepts a video and outputs the bee and pollen counts.
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They used the TensoRFlow Object Detection API [35] in combination with the
Faster-RCNNmodel [70] to train a bee detection model. For detecting pollen, they
trained a custom convolutional network using the PyToRch framework [62]. They
evaluated their models on four different beehives. The bee models were evaluated
with the IoU score metric, achieving performances between 63% and 80%. For the
pollen models, they used the f1-score as an evaluation metric, achieving 84% and
88% in performance. For recording the bee traffic, they implemented a bee tracker
using the IoU metric, defining the hive entrance as a region of pixels to decide
whether a bee flies in or out.

In February 2020, a student group from the UZH continued this work [25].
Their main contributions were to experiment with other bee model algorithms
and evaluate the models under different settings such lower image resolutions,
light conditions and camera angle views. Furthermore, they labeled an additional
3000 images. They used the YOLO framework [69] for training the bee models,
which is known to be faster than other frameworks. In total, they evaluated their
bee models on ten hives using precision and recall as an evaluation metric. They
reached a precision and recall score of over 90% in nine of the hives for the top
models, which were either trained on the complete set of hive images or on im-
ages from a cluster of hives (e.g. according to entrance shape). Moreover, they
implemented a bee tracker combining the IoU and Euclidean distance for match-
ing bees in images. The pollen detection and counting mechanism of the previous
group was not integrated.

In September 2020, another group from the ETH took up the work from the
previous two groups. They trained a unified bee model using the same model ar-
chitecture as the previous group, but using both enhanced train and dev set images
for the training. This way, they outperformed all previous models, except for one
(on average by 5% percent). For the pollen models, they labeled more bee images
with pollen. They also trained the models with the YOLO framework, reaching a
mean Average Precision (mAP) of up to 88%. Another contribution was to test out
different model and image input sizes to assess the trade-off between processing
speed and accuracy. For the pollen detection, they experimented with two dif-
ferent model sizes, the smaller model reaching a Frames Per Second (FPS) that is
ten times higher than that of the larger model and a mAP that is only marginally
worse (-2.64%). For the bee detection, they experimented with three different
image input dimensions (224x224, 416x416, 608x608). The medium model only
performed slightly worse (-1.56%) having a 30% faster inference time, while the
small model was significantly worse (-10.64%). For tracking the bees, they used
the Simple Online and Realtime Tracking (SORT) algorithm [10], achieving a bet-
ter MOTA [9] score on the enhanced image material (+1.6%), and a worse score
on the original image material (-0.9%). The bee and pollen counting mechanism
itself was not implemented.
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3.2 First Prototype of Platform

In June 2020, another group started building the actual web-based platform [42]
which is hosted on AzuRe. Since the platform processes big data (~64GB of video
per hive per day), it runs on a KubeRnetes cluster to ensure scalability. The full
architecture is shown in Figure 5.

Figure 5: Architecture of first platform prototype [42]

The data is stored in two ways:

• Cloud Storage: This contains binary files such as videos, images and model
weights.

• Relational Database: The remaining data is stored in a PostGIS database.

The platform consists of four services

• Webapp: Main service which is responsible for Create, Read, Update and
Delete (CRUD) operations in the PostGIS database as well as the User Inter-
face (UI). Most of the functionality is implemented there.

• Model-SeRvice: Performs the media (image and video) processing such as
the extraction of images, the pass through the AI models and the tracking.
At this point, only the bee detection from the second group [25] was inte-
grated. Pollen detection as well as bee counting were missing as this work
was still in progress by the other two AI groups [25, 1].

• Static-SeRvice: Serves static files like JavaScRipt andCascading Style Sheets
(CSS) files.

• RetRaining-SeRvice: for training new AI models. Due to the high costs
of Graphics Processing Units (GPUs), this service is manually started up by
the admins and shut down when the training is finished.
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The platform offers user, group, apiary, hive and sensor management with
the usual CRUD operations. It allows the upload of media for a hive which are
processed by the Model-SeRvice. It also features a labeling tool for annotating
new images and retrieves weather data from an external API.

4 Performance of Pollen Counting

This section answers RQ1a:

What is the performance of the fully end-to-end pipeline for counting pollen?

As described in Section 3.1, several groups have contributed to the detection and
tracking of bee and pollen, using a variety of frameworks and techniques. As
the groups produced different artifacts for different components, the first task
was to find out which artifacts for which component to use. Figure 6 shows the
most important components of the pipeline and who made the corresponding
contribution.

Bee Detection Code Pollen Detection Code

Bee Tracking Code

Engeli & López (2021) Abstreiter et al. (2021)Contributions: Ours

Pollen Tracking Code

Pollen ModelBee Model

Inference Pipeline

Video Pollen counts

Model-Service

Tracking Pipeline

Figure 6: Components of the Model-SeRvice

The second task was then to modularize each component and connect them to
each other, placing the data in appropriate data structures. For the last component
in the chain – the pollen tracking – we devised two algorithms for testing pollen
counting. This fully end-to-end pipeline then runs as part of a service, called the
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Model-SeRvice, which accepts a video as an input and produces pollen counts
(along with the detected pollen colors) as an output. Thus, the first contribution
of this work was to establish this fully end-to-end pipeline in the first place.

The second contribution was to optimize the Model-SeRvice and ensure its
scalability, with the overall goal of making it process videos faster. For this, we
applied multithreading andmultiprocessing mechanisms, and leveraged GPU pro-
cessing. To achieve scalability, we dockerized the Model-SeRvice and created con-
figurations for it to be run on a KubeRnetes cluster.

Finally, we evaluated the Model-SeRvice, firstly, by comparing its reported
pollen counts with those from a manual counting and secondly, by measuring its
processing speed across several machine types.

4.1 Related Work

Automated bee monitoring systems have been in existence for a couple of years.
They leverage a variety of techniques to monitor bees:

• apic.ai [50] use a camera attached to the hive entrance to capture bee traffic,
as seen in Figure 7a. Bee detection models and trackers are run on edge
devices which compute the number of bees returning and leaving a hive
[81]. The cropped bee images are then transferred to the cloud and analyzed
for health-related insights using a multitask convolutional neural network.
The model recognizes genus (bees, wasps, bumblebees and hornets), pollen,
pose and bee type (Worker bees with pollen, worker bees without pollen,
drones and dead bees), as shown in Figure 26b. Their devices have been
deployed on ~50 beehives.

(a) Hive entrance [81]
(b) Detection and classification of
bees [50]

Figure 7: System of apic.ai

• [5] also use video footage to detect bees and pollen. They designed a box
with an integrated camera (Figure 8a) and an edge device that is mounted
on the front side of the beehive. The edge device detects bees and classifies
them into whether they bear pollen or not (Figure 8b), using background
subtraction and nearest mean classifiers based on color features. To reduce
the adverse effects of shadows, bees are filmed inside the box using only
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the light that emanates from the beehive opening. In the box, bees have
to crawl a distance of 11 cm. Bee and pollen counting algorithms have not
been implemented.

(a) Camera view [5] (b) Bee with pollen detection [5]

Figure 8: System of [5]

• Easy Bee CounteR [36] created gates in front of the entrance in which the
bees are led through. In these gates, LEDs emit infrared light. If a bee is
present, this light is reflected back to a sensor which triggers. When the
bee is not present, the light is absorbed into the black surface. Figure 9
shows the gates in which the bees go in and out. Pollen counting is not
implemented.

Figure 9: Bee counting with optical sensors [36]

• Eyesonhives [83] set up cameras in front of the hive like our system. Video
material is analyzed on an edge device which computes the average number
of bees per second. This way, the number of bees flying in and out is not
explicitly counted, but it allows for swarming and robbing detection. The
count data along with highlight videos are uploaded to the cloud. Pollen
detection is not implemented.

Except for Eyesonhives, the systems differ from our proposed system in that
they are intrusive and therefore disturb the natural behavior of bees. They per-
form modifications to the beehive [50, 5, 36] which itself can be considered an
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interference as the bees have to get accustomed to the new entrance. More inva-
sive are the creation of channels in which the bees can only go into one direction
[50, 36], or the usage of artificial lighting [50].

A side-effect of our non-invasive approach is that our system can be deployed
on all types of hives, including natural housing such as tree cavities, since no
modifications to the beehive are necessary. This is not true for all aforementioned
systems, e.g. the system of apic.ai only works on ZandeR beehives. Furthermore,
our system requires only commonly available equipment such as a solar-powered
camera and a communication device that any beekeeper can install. Thus, no
installation of special edge-devices or other hardware is required.

Except for apic.ai, the other systems also do not observe foraging activity, and
none of them capture the pollen diversity.

4.2 Implementation

The first prototype of the platform already featured a Model-SeRvice [42]. This
initial version only extracted images from videos and ran a bee model over the
images. Thus, no pollen detection nor bee and pollen trackingwas included. More-
over, theModel-SeRvice had low performance as posting a handful of small videos
would already render the service unresponsive. In the following, we explain how
we modified and extended the service and how we made it more performant as
well as scalable. Thereafter, we describe how we evaluated the performance of
this end-to-end pipeline, both in terms of speed and accuracy.

4.2.1 Model-Service Abstractions

The previous version of the Model-SeRvice consisted of a range of methods and
global variables polluting the global namespace. To add encapsulation and infor-
mation hiding, we devised abstractions and packed methods and data into corre-
sponding classes. We defined classes for processing media like images and videos
(MediaProcessor), for models that create annotations (ObjectDetector) and for
trackers for the number of bees that fly in and out (BeeTracker) as well as the
number of pollen (PollenTracker). The detector classes can be extended in the
future to allow for new types of model architectures.2 Furthermore, we defined
data classes, as shown in Figure 10, for storing the output of models and trackers,
which we will reference throughout the next sections.

4.2.2 Media Data Flow

A second change was made to the way the Model-SeRvice interacts with the We-
bapp. To understand why this change was necessary is to note that in the future,
every hive will upload a day’s worth of video material. A 15-minute video, for
instance, is often more than one GB large, generating up to half a million images,

2At the moment, we only provide a detector with YOLO [69] models.



4 Performance of Pollen Counting 14

Video

fps: int
width: int
height: int
image_count: int
size: int

object_id: int
direction: Enum{in|out}
pollen: List[Tuple[int, int, int]]

TrackerEvent

pk: int
path: str
local_path: str
annotations_path: str

Media

width: int
height: int
channels: int
type: str
raw: numpy.array

Image

Annotation

x_min: int
y_min: int
x_max: int
y_max: int
confidence: float
object_id: int
color: Tuple[int, int, int]

model_pk: int
annotation_type: str

AnnotationSet

1..*

0..*

0..*

0..*
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Figure 10: Class diagram for the data in the Model-SeRvice.

and therefore its processing can take hours depending on the GPU machine. Pre-
viously, the Webapp would send a request to the Model-SeRvice, waiting for its
response which both contained the images along with the annotations. The We-
bapp would then take care of uploading the images to the cloud storage as well as
committing the annotation data to the database. This approach had serious flaws:

• Two uploads are necessary, first from the Model-SeRvice to the Webapp and
then from the Webapp to the cloud storage, which increases total upload
time as well as bandwidth demands.

• Most servers have a time-out limit, i.e. the server will abort the processing
of a request from a client after a given time. This is to prevent a client from
waiting endlessly for the server to respond, blocking Input/Output (I/O)
along the way. The servers of the Model-SeRvice and Webapp also time out
after a few minutes per default, which in both cases, was too short. The
Model-SeRvice undertakes heavy image processing on the GPU which can
take several hours. The Webapp, on the other hand, performs many I/O
operations by inserting images and annotations into the database, which
also typically exceeds the time-out threshold.
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• Most servers also impose body size and file upload limits in requests, in-
cluding ours. By default, these limits are in the range of a couple of MB and
serve as a countermeasure against denial-of-service attacks. Again, this
does not meet our demands since the results of the Model-SeRvice can be
several hundred MB in size.

• The Webapp is generally built with less performance in mind compared to
theModel-SeRvice. It has limited disk space as well as limitedmemory, espe-
cially given that it is often scheduled on less powerful machines as opposed
to the Model-SeRvice that runs on GPU machines with plenty of memory.

To overcome such limitations, the data flow was changed as follows, illus-
trated in Figure 11: As before, the Webapp uploads the media (video or image) to
cloud storage (1). It then sends media and model metadata, namely their primary
keys and their blob paths, to the Model-SeRvice (2). The Model-SeRvice down-
loads the media and the models from cloud storage as specified by the blob paths,
extracts the images in the case of videos and runs the models over the images (3).
Unlike the previous version, the images are directly uploaded to cloud storage (4),
rather than sent to the Webapp and then uploaded by it. When the media process-
ing is finished, the Model-SeRvice also uploads annotation data as a JavaScript
Object Notation (JSON) file to cloud storage (5). The Model-SeRvice then notifies
the Webapp about its completion, returning the blob path of this file (6). Finally,
the Webapp downloads and reads this file and adds all data contained within it to
the database. To circumvent any time-outs on servers, the processing of media is
moved into separate threads and processes.

Webapp Model-Service

Cloud Storage

Send annotations path

Send model & media paths

Download media & models

Upload images

Upload media

1

2

3
4

Upload annotations

5

6

Figure 11: Media data flow
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4.2.3 Media Process Scheduler

Previously, theModel-SeRvicewould become unresponsivewhen toomany videos
are sent to it. This is because the processing of a single video requires at least 2
GB of memory. Since videos are typically sent in chunks of 5-15 minutes, 100-300
requests per hive and per day are common but will lead to a denial of service,
especially when all videos are uploaded at the same time. To handle the memory
consumption, several solutions are possible. On the infrastructure level, one can
increase the memory capacity of a Virtual Machine (VM). However, assuming that
10 hives regularly upload videos, we arrive at 1000-3000 requests per day. This
would require 2000-6000 GB of memory, if all videos were to be uploaded at the
same time.

On the application level, one can control how many requests are processed
concurrently. Thismethod has the advantage that it is infrastructure-independent,
i.e. the processing of media will work on any kind of computer (as long as this
computer has a minimum of 2 GB memory). However, this comes at the price
of longer processing times. As the CeleRy framework is used within the Model-
SeRvice (cf. Section 4.2.9), the number of Central Processing Units (CPUs) de-
termines how many videos may be processed in parallel. Strictly speaking, this
approach may still lead to memory exhaustion when the ratio of memory size
and number of CPUs falls below a specific threshold. However, given that almost
all GPU machines have a memory size that is a multiple of the number of CPUs,
this scenario is unlikely to surface. Using a queue as a data structure, the media
are processed according to a fairness principle: media processes waiting for the
longest time are chosen first.

4.2.4 Model Inference Pipeline

Themodel inference pipeline is illustrated in Figure 12 and works as follows: first,
we split the video into hive images (1), which we run through the bee model,
giving us annotations of bees (2). Then, we crop the bees out of the hive image,
using the bee annotations to obtain bee images (3). The last step is to run the
pollen model over all the bee images to obtain the pollen annotations (4).

For the model inference (bee and pollen detection), we used the code from the
second AI group [25] as this code was already integrated into the first prototype
of the platform [42]. Furthermore, their code was written in Python which is also
the language of the platform, while the inference code of the third group [1] was
available as shell scripts. For the image cropping, we used the code from the third
group [1]. The three steps – bee detection, cropping and pollen detection – were
not properly connected to each other and therefore, we implemented an end-to-
end pipeline which takes an hive image as an input and outputs annotations for
bee and pollen in one go. For this purpose, we adapted the code of the AI groups,
removing hard-coded values such as paths, extracting the steps into functions of
the media processors and placing output annotation data in data classes.
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Figure 12: Model Inference Pipeline

4.2.5 Pollen Color Extraction

The variety of pollen colors is already a good approximation of the biodiversity
around a hive. Determining the true color of pollen on images is, however, chal-
lenging due to different lighting conditions caused by shadows, weather, daytime
and the camera settings. To alleviate this problem, we can place a grey card in
the camera view and correct all colors of the image using the known color of the
card as a reference, as shown in Figure 13.

Figure 13: Grey card at the hive entrance for color correction [1]. Source: Daniel
Boschung

The third AI group experimented with this kind of color balancing [1]. They
used hierarchical clustering to group the pollen colors and found that color correc-
tion does not increase the homogeneity score significantly (94% vs. 96.6%), i.e. in
both cases, almost all extracted colors can be assigned to exactly one color group.
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A limitation of their work is that most of the pollen colors were simulated with
pins rather than real pollen. Generally, it is to be assumed that the extraction of
colors will never be precise with this technique. As shown in Figure 13, the card
itself has different colors ranging from white to grey, which adds an additional
layer of uncertainty. Moreover, adopting this approach implies a greater imple-
mentation effort because the location of the card in the image has to be known.
At the moment, the coordinates are hard-coded and must be manually changed
in the code. To fully automate this, we either need models that can detect such
cards or we have to ask beekeepers to annotate them in sample images.

For these reasons, we kept the color extraction algorithm simple: First, the
pollen image is cropped based on the pollen annotation coordinates. An addi-
tional 40% is then removed from this pollen image so that no background is visible
(given that pollen is not rectangular). Finally, the average color in this cropped
image is computed and stored as an RGB value.

4.2.6 Bee Tracking

As already mentioned in Section 3.1, three AI groups created three different bee
trackers. Based on the reports and the code, we decided to use the bee tracker
of the second group [25] as they performed more extensive experiments with the
trackers than the other two groups, including the counting mechanisms which
the third group did not implement.

Like the model inference code (cf. Section 4.2.4), we also modularized the
tracking code, storing the output in data classes. We stored the information in
the following way: Firstly, the tracker allocates IDs to the bees and accordingly
each bee Annotation object stores the ID of the bee (object_id). Secondly, bees
move across images, and the tracker can register certain key movements which
are stored as TrackerEvent objects. At the moment, only two types of events are
recognized: bees flying into and out of the hive which we codified as a direction
variable in the TrackerEvent class.

To determine flight direction, the entrance coordinates have to be known in
advance. In the original code, these coordinates were hard-coded and had to be
manually changed for each hive. To make the coordinates configurable, we added
an additional parameter for entrance coordinates to the endpoint accepting media
process requests. The previous code supported coordinates of rectangles and cir-
cles. We extended this to support coordinates of polygons. Frequently, rectangles
cannot be drawn precisely around the entrance, especially when footage is taken
from a side angle, and therefore polygon shapes are better suited in this case. Fur-
thermore, we added an parameter to offset the coordinates by some value as this
influences the tracking, too (cf. Section 4.3).

In the Webapp, we created a new annotation type entrance so that users can
also label entrances in images. Whenever a beekeeper creates a new hive, a label-
ing task for the entrance is automatically opened. When new videos are uploaded,
the coordinates of these labels are automatically passed. In case none are available
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yet, the Model-SeRvice generates coordinates by using one fourth of the image as
the entrance.

There are some remaining issues with the bee tracker. Firstly, the tracker
does not scale well. The speed for processing images steadily decreases with the
number of images being processed. Secondly, the tracker crashes when there
are no annotations. As we do not understand the bee tracker in all its details,
we produced a workaround for both cases by occasionally resetting the tracker
during the processing.

4.2.7 Pollen Tracking

So far, we know how many bees enter and leave the hive. However, we also want
know the number of pollen that is brought into the hive. The easiest strategy to
count pollen is to use the last image in which an entering bee was detected and
check whether pollen was detected on that image as well. However, this approach
is less robust as the bee or pollen detection might exactly fail in this very image,
for example when the bee is positioned in a way that the pollen is not visible.

For this reason, we implemented two different algorithms for evaluation. The
first algorithm works as follows:

1. For each bee that flies in, extract its ID.

2. Get all images in which this bee was seen (using its ID).

3. Extract the number of pollen detected in the images.

4. Compute the average number and color of the pollen detected across all
images in which the bee occurs.

This approach is very similar to the one described by the first AI group [24].
They checked whether half of the images for a specific bee contain (at least one)
pollen. In our algorithm, we average the pollen counts over all images, which
in most cases leads to the same result. The main difference is that they classify
images as bearing pollen or not, while our algorithm precisely counts the pollen
(0, 1 or 2) and also extracts pollen colors for them. As already noted by the group,
this strategy has its pitfalls. Generally, the pollen counts reported by the Model-
SeRvice were low at this point. This is because the bee tracker has a tendency to
confuse bees when bees walk over each other as is often the case when there are
many bees present at the entrance. This can cause the tracker to assign the ID to
the wrong bee, possibly to one that does not carry pollen and therefore skewing
the number of images where pollen was detected. To alleviate this problem, the
first group proposed to use pose detection to recognize in which direction bees
face.

Training a newmodel for detecting bee pose was out of the scope of this thesis.
Instead, we came up with an alternative algorithm for counting bees. The main
assumptions of it are:
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• Bees with pollen eventually fly inside the hive3

• Bee ID switches typically happen when bees are bunched together, which
is usually the case right before the entrance opening, i.e. when the bee is
about to enter the hive.

The algorithm works as follows:

1. For each unique bee (i.e. unique bee ID), count the number of images in
which the bee occurs and in which pollen was also detected.

2. If pollen was detected in a sufficient number of images (as defined by some
threshold), the unique bee is marked as bearing pollen.

3. Average pollen counts and colors for this marked bee.

This algorithm reacts less sensitive to bee ID switches because when a bee
with pollen enters the hive and a bee ID switch happens right before entering,
the pollen is still counted as the pollen was recorded in sufficient numbers with
the previous ID. This algorithm obviously fails when the same bee was registered
with pollen in sufficient images for more than one ID. In this case, toomany pollen
pellets are counted.

4.2.8 GPU Processing on Kubernetes

The previous model inference code only supported image processing with CPUs.
Since GPUs can accelerate this process by a large margin, we deployed our model-
seRvice on GPU machines.

Switching to GPU machines required only minor changes on the inference
code itself, namely instructing the model to use CUDA [54] and selecting a ran-
dom GPU device so as to distribute the work when there are multiple GPUs on
a machine. However, they required major adjustments on the machine and con-
tainer configuration. Firstly, the GPU node has to be configured by installing
CUDA drivers and NVIDIA DocKeR [58]. These dependencies are the prerequisite
for running the NVIDIA DocKeR images [55] which allow us to leverage GPUs
within containers. Using the base image of NVIDIA, we had to completely revamp
our original Dockerfile which used the FastAPI [67] image as a base image which
in turn used other base images (like GunicoRn’s [16] and Python’s). To include
the same functionality as before, we manually copy-pasted the layers from these
FastAPI images into the new Dockerfile. Furthermore, we removed the instal-
lation of OpenCV [60] via pip as the binaries are shipped without GPU support.
Instead, OpenCV is built from source with CUDA, cuDNN [56] and Python bind-
ings.

3In practice, bees may come out of an entrance with pollen again, but this only happens occa-
sionally.
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To make the GPU accessible from within pods in KubeRnetes, further addi-
tions were necessary. Firstly, it must be noted that support for GPU access from
containers is quite recent. The --gpu flag in DocKeR was introduced in 2019 in
version 19.03.0. DocKeR Compose followed suit in early 2021 with version v1.28.0+
enabling access to GPUs. However, managing GPUs within KubeRnetes is still
an experimental feature [46]. Currently, the way to access them is to use device
plugins which are vendor-specific (AMD or NVIDIA). We used the NVIDIA plugin
[57] which is a Daemonset, configuring the runtime accordingly. There are some
limitations when using these plugins. While pods can request one or more GPUs,
they cannot share them with other pods, or request a fraction of it as in the case
of CPUs. This also means that when only one GPU is available, new versions of
the Model-SeRvice cannot be rolled out gradually but the old deployment has to
be deleted first before the new version can be deployed.

4.2.9 Parallelization with Threads and Celery

Typically, the FPS reported for models only refers to the inference duration of
an image [32], i.e. running the image through the model. However, between
inferences, there are intermediate steps such as downloading videos from cloud
storage, reading images from disk into memory, uploading images to cloud stor-
age, saving annotations in data structures, converting data and cropping images,
which in their entirety increase processing time substantially.

For example, including image reads decreases FPS by almost 60% (=19 frames)
for the bee models on a NVIDIA Tesla P100 machine. For the pollen models, this
effect was much lower (~-10%) because the image size is small. To avoid unnec-
essary image reads, we keep the image in memory for the complete duration of
its processing rather than writing the image to disk as in the previous version.
Another optimization was to load the model only once rather than for each image
separately in the video. Most bee models are around 200MB in size and loading
them takes some time.

As the processing speed was still unsatisfactory at this point, despite those
optimizations, we used the pyinstRument [72] profiler for tracking down which
methods took the longest for processing. This revealed the following insights
evident from Figure 14.

• Uploading images (save_image) consumes almost 3/4 of the total processing
time.

• Parsing the output of the network (parse_network_output) adds at least an
equal amount of processing time as running the image through the model
itself (pass_through_network)

• Annotating pollen (add_pollen_annotation_set) consumes almost asmuch
time as annotating bees (add_bee_annotation_set).
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Figure 14: First profiling of Model-SeRvice. Functions are highlighted in blue and
numbers left to them denote the cumulative runtimes.

In the first version of the Model-SeRvice, all steps were executed sequentially.
However, we can make use of multithreading and multiprocessing to execute
the steps in parallel. This parallelism is possible when we have several CPUs
at our disposal as well as when there is a mix of I/O and CPU-bound operations.
Conveniently, the Model-SeRvice has parts that are I/O-bound such as the image
reads/writes and the downloads/uploads, but also parts that are CPU-bound such
as parsing the output of the model.

Python offers several modules for controlling concurrency and parallelism
such as multipRocessing, thReading and asyncio. Because of the Global Inter-
preter Lock, asyncio and thReading can only run on a single CPU and therefore
are only suitable when the program spends considerable time performing I/O op-
erations.

As the upload is the major bottleneck, we moved the uploads into separate
threads which may run at the same time as the CPU-bound computations. This
yielded a significant improvement as shown in Figure 15.

As can be seen, the Model-SeRvice does not spend time waiting for uploads
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Figure 15: Second profiling of Model-SeRvice

anymore, reducing total processing by ~75%. However, the upload threads have
visible side-effects: calling the blobFromImage() function for hive images now
takes considerably more time than before. This is because this is also an I/O-
bound operation that accordingly contends with the upload operations for I/O.

Another bottleneck, albeit a smaller one than the upload, represents the pars-
ing of network outputs which now accounts for ~40% of the processing time. Since
this is a CPU-bound operation, it cannot be optimized through threading. There-
fore, we tried to parallelize the parsing across multiple processes. However, the
runtime became much worse through this. Presumably, the creation of processes
creates an overhead such that it cancels out the benefits of distributing the work.

Another possible way of optimization is to parallelize the processing of each
hive image. However, multithreading and multiprocessing generally have the dis-
advantage of making the code less readable and less maintainable as the code is
more prone to race conditions which are hard to debug. For example, paralleliz-
ing the hive image processing required a lock on accessing the model as well as
control over when images may be deleted (it may not be deleted during the upload
but also not during its processing). We experimented with multiple threads and
processes. Predictably, multithreading not only deteriorated runtime, it also oblit-
erated profiling information, only showing that most time is spent on acquiring
locks. On the other hand, multi-processing using the ProcessPoolExecutor from
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the concuRRentmodule4 did not work as it raised an error stating that OpenCV ob-
jects cannot be pickled. This error has been reported on Q&A channels but does
not appear to have a fix [6, 78]. For this reason, we could not perform further
optimizations on the pipeline itself.

However, on the service level, we can achieve additional parallelism. We im-
plemented the Model-SeRvice with the FastAPI framework [67] which in turn
uses GunicoRn [16] as a server. By default, GunicoRn starts up the same number
of workers (aka processes) as there are number of CPUs. This means that multi-
ple requests may be handled across different CPUs, i.e. multiple media processes
may run in parallel. However, there is no guarantee that GunicoRn distributes
requests across multiple workers because the load balancer might schedule sev-
eral requests on the same worker process, which practically happened more often
than not. Presumably, the load balancer serves for evenly distributing the amount
of requests rather than distributing them based on CPU/GPU workloads. For this
reason, we decided to use the CeleRy framework [15] for explicitly scheduling
media processes across CPUs. Figure displays how the media processing is or-
chestrated in CeleRy.
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Send media requests

Node

Node with GPU

Enqueue as tasks

Get results
Get results
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Figure 16: Distributed parallel processing with CeleRy

Firstly, we have the client that sends multiple media requests to the Model-
SeRvice (1). The FastAPI service accepts these requests and dispatches them as
tasks to the Redis service, which puts the tasks in a queue (2). This way, older
tasks are processed first, following the First-In-First-Out (FIFO) principle. CeleRy
workers constantly monitor this queue for new tasks. When a worker is deployed,
it spawns a certain number of child processes (defaulting to the number of CPUs).
Each such child process can process media. When a child process is idle – either

4The concuRRent module internally uses the multipRocessing module within the
ProcessPoolExecutor.
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because it has not processed media yet or it has finished processing media – the
worker dequeues a task from Redis (3) and starts that task in the child process
(4). The task that they execute is the whole pipeline that we have outlined in the
previous sections. Finally, the results of the process are again stored on Redis
(5). The client can retrieve this result from the FastAPI service (6) which in turn
requests it from Redis (7).

Using CeleRy gives us high scalability as we can not only distribute tasks
across CPUs on the same machine, but also on different machines. Hence, if we
add more hives, we only need to spin up more GPU machines and start a CeleRy
worker instance on each of them. For example, in Figure 16, we have two ma-
chines with 4 and 3 CPUs, respectively. Each machine has a GPU which the CPU
processes can access (not explicitly shown here) and a worker being deployed on
it. This means, on the first machine 4 media can be processed in parallel, while
on machine two, 3 of them can be. Hence, in total 7 media can be processed in
parallel.

4.3 Accuracy Evaluation

In this section, we evaluate whether the pollen tracker of theModel-SeRvice deliv-
ers accurate pollen counts. We identified the following factors that may influence
the counting mechanism:

• FPS: As noted by the second AI group [25], the bee trackers for counting
bees work more precisely on videos that have a higher FPS. However, a
higher FPS also translates into longer runtimes. Thus, a good trade-off be-
tween speed and accuracy has to be established.

• Camera angle: We noticed in pre-test video material that one common
problem is that the trackers get confused when bees repeatedly fly in- and
outside the camera viewwithout (immediately) entering the hive, especially
when these bees fall within the pixel area of the entrance opening. Another
problem is that the pollen is not always visible in the images due to the bee’s
position. Therefore, we tried out different camera angles to see whether this
makes a difference.

• Entrance coordinates: The entrance area is defined as a set of coordinates
of some shape (rectangle, polygon, circle). In pre-tests, we observed that
the bee tracker is also influenced by how generously we draw the entrance
area, i.e. how much padding we give around the opening.

To find out the best combination of variables, we set up three different cameras
at a hive with different FPS: 50, 100 and 200. All cameras had the same resolution
but came from different vendors. We positioned them from three different angles:
front, side and vertical down as shown in Figure 17.

We rotated the positions of the camera. For each rotation, we took two takes
of 5 minutes. To synchronize the cameras, we used a piece of paper that we held
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Figure 17: Camera setup. We used the videomaterial from the three black cameras
for evaluation. The white camera surveils the hive permanently and its footage
was not included in the evaluation. Source: Daniel Boschung

in the camera view at the start of a take. In total, we gathered 6 takes and 18
videos. Given that we could not start all cameras at the same time, we tried to cut
the lengths of the videos such that they show the same sequence. Here, it turned
out that from the 6 takes, only 2 were usable because of synchronization issues
in the others. Owing to the time-consuming nature of the evaluation, we only
considered one take from the two for evaluation in the end.

We manually counted the three videos of this take. Due to the long opening
of the hive that creates a large area of where bees can enter, we decided to crop
the videos in two halves, counting the halves separately. To assess the counting
agreement, two people counted the videos separately. Initially, we had larger
deviations in the pollen counts for some of the videos. Firstly, the FPS of the video
influenced how many pollen pellets we caught or missed. Therefore, we slowed
down all videos to a FPS of around 200. Secondly, we did not define whether
only the pollen with high certainty or also the disputed cases of pollen should be
counted. Uncertain cases are especially those where bees bring in a small-sized
pellet or one that is partially obscured due to lighting conditions and the bee’s
position. Eventually, we decided to only consider the pollen with high certainty.
Thirdly, it was not always clear whether a bee that enters in the middle of the
video should be counted to the first or second crop of the video. Finally, some
bees came out of the hive again with pollen in which case the pollen count could
be decremented or not. We decided to not decrement the count. In the end, it took
us several renditions to establish a consistent way of counting. Table 1 shows the
final pollen counts of the two counters for the three videos of the take.
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Camera Position FPS # 1st person # 2nd person # Avg

Gopro Hero 7 Vertical down 200 184 193 188.5
Sony Side 100 176 180 178.0
Canon Front 50 213 212 212.5

Table 1: Set-up and counts of video take used for accuracy evaluation of Model-
SeRvice.

In general, the disagreement between the counters is not significant and we
decided to take the average as the gold standard against which we compare the
Model-SeRvice’s computed pollen counts. More noticeable were the differences in
the pollen counts between different camera angles. This was a surprising outcome
for us as this already suggests that pollen is best visible from the front angle. Nev-
ertheless, we evaluated the pollen trackers on all angles against the correspond-
ing manual counts of the respective angle. In future, evaluation on further takes
should be performed to exclude the possibility that the superiority of the front
angle is a chance result.

4.3.1 Results

The first pollen counting algorithm performed very poorly. Almost no pollen
pellets were recognized for all three video angles. Changing the entrance coordi-
nates and the FPS did not improve this. On the other hand, the second algorithm
reached more reasonable pollen counts as shown in Table 2. For the front angle
at a FPS of 25, it computed the most accurate counts with only a deviation of 9%
from the manual counts. Increasing the FPS, however, makes the pollen tracker
overestimate the pollen counts by 97%. For the other two angles, the accuracy of
the pollen counts was generally low, but increased with a higher FPS.

Angle FPS Pollen count Deviation

Front 25 193 -9%
Front 50 419 +97%
Side 25 16 -91%
Side 50 43 -76%
Side 100 99 -44%
Down 25 10 -95%
Down 50 19 -90%
Down 100 35 -81%
Down 200 51 -73%

Table 2: Accuracy of pollen counts from the second pollen tracking algorithm.
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4.3.2 Discussion

While the first pollen tracking algorithm generally detected in-going bees that
had pollen in certain images, the criteria that this must be the case in half of the
images in which the bee occurs was almost never met, especially given that many
bees occurred in a large number of images. The second pollen tracking algorithm,
on the other hand, has less restrictive criteria. Firstly, the bees bearing pollen do
not have to be registered to be flying in by the bee tracker. Secondly, theminimum
number of images where a bee must be detected with pollen is much lower. For
the evaluation, it was set to 4. As a result, these weaker assumptions lead to
higher pollen counts for the second pollen tracking algorithm. To understand the
differences in the pollen counts better, we inspected a short portion of each video,
visualized with annotation and tracking data. This revealed issues both in bee
detection and bee tracking. Since the pollen tracker depends on the bee tracker
and the pollen detection and the bee tracker and pollen detection, in turn, depend
on the bee detection, errors in bee detection, pollen detection and/or bee tracking
propagate into the pollen tracking.

Bee detection appeared to be accurate for front angle images, while for side
and vertical down angles, the bee detection module missed many bees. This is
probably due to the fact that the bee model was mostly trained on front angle im-
ages. Given that the bee tracker strongly relies on the bee detection, its accuracy
could only be assessed for the front angle where it performed very poorly based
on a preliminary manual counting. The main reason appears to be that bees often
switch IDs, especially when they overlap each other in the image. Unfortunately,
such bee overlaps are rather frequent in our evaluation set, thereby distorting
both the bee and pollen counts. Nevertheless, when the camera is positioned at
a front angle view and set to 25 FPS, the pollen count was close to the manual
counts. In all other settings, however, the pollen counts substantially diverged
from the manual counts. This might be due to the fact that we only tested and
tuned the second pollen tracking algorithm on a short video from a front angle at
25 FPS.

That being said, the best performance from the front angle/25 FPS setting
could also be a coincidence. In general, a much more extensive and balanced eval-
uation set should be created in the future, encompassing a mix of hives, filmed
at various times of the day and under different camera angles. Due to time con-
straints, our current evaluation set only consisted of one take comprising videos
of three different angles for one single hive. It is noteworthy that our small evalua-
tion set tests the pollen tracking undermore difficult conditions. Firstly, we filmed
at midday where we had high bee traffic, and more bees create more overlaps be-
tween them, confusing the bee trackers more often. Secondly, the entrance of this
particular hive had a light wooden color which greatly resembles the highly preva-
lent pollen colors of orange and yellow, and was also partially cast in shadow.
Therefore, the pollen was challenging to see, even in the manual counting.

Meanwhile, the manual counting itself should be performed in a more rig-
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orous way. We had larger deviations in the counting initially which we tried
to minimise by following similar counting procedures. For future reference, we
recommend to additionally record every counted pollen and resolve any disputed
cases. This could be done, for instance, by recording the times at which a pollen is
counted, extract those pollen instances where only one person counted them and
double-check them with the person that did not count them. Another possibility
is to count the videos in pairs, analogous to pair programming.

In summary, the second pollen counting algorithm was more robust against
mistakes in the bee detection and tracking than the first one. Nevertheless, due
to the poor performance of the bee detection and tracking, we could not deter-
mine the accuracy of the pollen tracking adequately. Thus, apart from creating a
precise and balanced evaluation set, the following future work should be under-
taken: Firstly, the bee models (and perhaps also the pollen models) have to gen-
eralize better to perform well under different camera angles. Secondly, the bee
tracker requires considerable improvement, especially under high bee load. Once
these two things have been fixed, the two pollen tracking algorithms should be
re-evaluated again.

4.4 Speed Evaluation

The runtime of a bee monitoring is an important metric as it heavily influences
the operational costs. Furthermore, it is also in the interest of beekeepers to pro-
vide them up-to-date information on their bees’ activities. For this reason, we
subjected the Model-SeRvice to a stress test, measuring its processing speed on a
larger set of videos in parallel.

We compiled video material from one hive on one day in June. For each hour
of the day, we randomly selected one 5-minute video at a FPS of 30. Thus, we used
24 videos with a total length of 2 hours, which we ran through the Model-SeRvice
at the same time. We repeated this experiment on different GPU machines on
AzuRe, each having 4 GPUs and 24 CPUs. The runtime that we measure encom-
passes – apart from the processing – the download of the video and models from
cloud storage as well as the upload of the images and the annotation result file to
cloud storage. It does not include the upload of the video to cloud storage.

4.4.1 Results

Table 3 shows the average speed for the different GPU machines for processing
the 24 videos. For each machine, also the fastest and slowest processing time of a
video is given. Furthermore, the costs per month in Swiss francs are stated for a
regular instance as well as for a spot instance.5 The fastest one was the NC24s_v2
machine which processes 5-minute videos in 54 minutes on average, while for
machine NC24 and NV24 the average duration was around 3 hours and 1.5 hours,
respectively.

5https://azure.microsoft.com/de-de/services/virtual-machines/spot/

https://azure.microsoft.com/de-de/services/virtual-machines/spot/
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Machine Costs/month (Spot) GPU avg min max

NC24 2586.21 (337.69) NVIDIA Tesla K80 03:08 01:29 05:38
NV24 3275.87 (550.56) NVIDIA Tesla M60 01:26 00:59 02:33
NC24s_v2 5948.29 (776.11) NVIDIA Tesla P100 00:54 00:38 01:39

Table 3: Average, minimum and maximum speeds for processing 5-minute videos
on three different GPU machines from AzuRe.

4.4.2 Discussion

There is great variability both between machines and between the videos. Not
surprisingly, the strongest machine (NC24s_v2) was more than three times faster
(3.5x) than the weakest machine (NC24), being also two times as expensive (2.3x).
Compared to the NV24 machine, the NC24s_v2 machine was also 1.6x faster, but
1.8x more expensive. Thus, the best cost and speed ratio comes with the NV24
machine. Since all videos are processed in parallel, 2 hours of video material can
generally be processed in the stated average speeds of the given machines. Thus,
the NC24s_v2 machine can handle the daily video material of two hives, the NV24
machine one hive, while the NC24 machine cannot cope with the amount of data
of a single hive.

In general, videos that had many bees in the images were the slowest to pro-
cess. This makes sense as more bees translates into more pollen model inferences
as well as image crops and uploads. Figure 18 shows the profiling results of one
video processed on the NC24s_v2 machine with an average runtime.

It is noteworthy that the runtime was lower when running this video on its
own compared to running it along with other videos (00:40 vs. 00:52). In a parallel
setting, there are still resources that processes have to share. For example, in
our case, six video processes were competing for access to the GPU. All profiling
described hereinafter was performed in a sequential setting to avoid skews due to
resource contention.

As in the pre-testing phase (cf. Section 4.2.9), parsing the model network
outputs (parse_network_output) took an unreasonable amount of time, namely
54% of the total processing time. The vast remainder of the runtime (30% of the
total runtime) is consumed by running the image through the model network
(pass_through_network). We obtained an inference time (dnn_Net.forward) of
~35.7 FPS on themedium beemodel. This is faster than the reported FPS of 26 from
the second AI group, who also tested on a NVIDIA Tesla P100 [1]. This difference
might be due to the fact that our inference code usesOpenCV [60] while the second
AI group used DaRKnet [69] for inference. In fact, others have also reported such
a benchmark gap for different frameworks [68]. Nevertheless, this gap could also
be explained through different video material used for testing. Indeed, when we
profiled the Model-SeRvice on the video that took the longest to process, the FPS
dropped to 14.7. Profiling the video with the shortest runtime again yielded 35.5
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Figure 18: Profiling of Model-SeRvice on a 5-minute video.

FPS. Thus, the only explanation for longer inference times is the number of bees
that an image contains.

Therewas also substantial variance in the runtimes of obtaining bee (add_bee_
annotation_set) and pollen annotations (add_pollen_annotation_set). In the
pre-testing phase, these were almost equally matched. In the evaluation, creating
bee annotations took longer than creating pollen annotations on average (1.6x).
The situation flips when many bees are in the images. For the longest running
video, generating pollen annotations lasts 1.8 times longer than for bee annota-
tions.

In summary, the costs for monitoring a single hive around the clock amount
to around 3000.- CHF per month when using a regular machine. These costs can
be cut by up to 90% using a spot instance. Spot instances may be evicted occa-
sionally, though, unlike regular instances that guarantee high availability. Since
the Model-SeRvice is tolerant towards interruptions as CeleRy features a retry
configuration to re-run tasks when they are stopped, spot instances are a viable
alternative. In this case, the costs are around CHF 400.- per hive. Note that these
costs only apply for this particular hive and for the specific recording time (mid
June). Consequently, a more extensive evaluation has to be performed in the fu-
ture to precisely estimate the expenses, comprising video material from around
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the year and for a mix of hives. That being said, CHF 400.- is a very high price that
beekeepers are most likely not willing to pay for. Thus, to reduce the operational
costs, we need to decrease the runtime of videos. We see two ways of doing so:

• Optimize code: First and foremost, a more efficient algorithm for parsing
the model network outputs should be devised. Perhaps, it might also help
to run this portion of code on the GPU instead of the CPU. Furthermore,
training a unified model that detects both bees and pollen at the same time
could also help shorten the processing time, especially in the case where
many bees appear in an image. This would also reduce the complexity of
the code substantially. Moreover, this unified model could also detect other
things such as the entrance for the bee tracker or the grey card for color
correction.

• Reduce data: It might not be necessary to analyze all the data that cameras
produce. Instead, it could be that a fracture of the video material, carefully
sampled across the day, suffices for reaching the same results as when all
video material is processed.

5 Systems Providing Flora Data

This section answers RQ1b:

Which systems provide flora data that help capture the pollen diversity?

In this section, we turn our attention to the pollen diversity metric, which denotes
the number of different plants that bees pollinate. The pollen diversity shows us
the biodiversity around a beehive, but also how balanced the diet of the bees is.
Together with the pollen counts (cf. Section 4), we can compute the food supply
for a beehive.

Our cameras capture the colors of the pollen that bees fly into the hive. Pollen
can come in a variety of colors, providing a first clue as to which plants may
have produced them. However, determining a pollen’s botanical origin based on
its color alone is usually not accurate enough since many plants produce pollen
with similar colors. Furthermore, different lighting conditions make the color
matching very challenging.

Amore robust strategy for computing pollen diversity is to use the knowledge
of which plants release pollen at a specific point of time and place. The basis of
this plant-matching is sufficient data on flora. In the following, we present a set
of flora data sources that we considered for integration into our platform.

5.1 Methodology

Since various platforms provide flora data sources, we only selected the most suit-
able ones for our needs. We defined the following evaluation criteria:
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• User-Friendliness: How easy is it to contribute data, especially by laymen,
e.g. is there help with the identification? How much is manual or auto-
mated? Is there a mobile app to make contributions more convenient in the
field? Furthermore, are there incentives for making continuous contribu-
tions, e.g. gamification and community-support?

• Data Accessibility: Whether the data can be easily retrieved and parsed
and whether it is publicly available. This also includes a stable API that
does not have too restrictive rate limits and ideally does not cost anything.
Moreover, the data should be updated in real-time and kept up-to-date.

• Coverage: Whether there is enough data available and/or whether users
will deliver enough data in the future. The following dimensions are of
interest:

– Plant coverage: The number of plant species for which we have data.
– Temporal coverage: Data should be available for every time of the day

and throughout the year.
– Spatial coverage: Data should be available in all regions of Switzer-

land, ideally nearby the hives on our platforms.

• Accuracy: Whether the data is correct and precise e.g. regarding species
identification, location, time and phenology data.

• Integration effort: How much implementation effort it takes to interface
with the system in question or how easy it is to extract and parse the data.

• Maturity: Whether the system as a whole runs stable and is maintained.
The BLS project is a long-term project and ideally depends on systems that
also have a long-term vision so as to decrease the maintenance effort. This
is only relevant when we regularly pull live data from the system. Some
of the data (like pollen colors and pollen quality) may also be static and
therefore maturity does not play a role there.

We did not evaluate every system as there are a great number of them. We
excluded the following:

• Systems offered by businesses rather than research-oriented projects since
they typically do not share data for free.

• Systems with a small user base as determined, for instance, via the number
of downloads6 as this affects coverage as well as maturity.

• Systems that mostly produce data outside of Switzerland since our beehives
will stand in Switzerland.

6The threshold was set at <5000 downloads on Google Play.
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• Data sources that cannot be shared on all operating systems (both iOS or
Android for mobile apps or/and a web-based platform).

In the following sections, we describe the systems that we considered and how
strongly they meet the evaluation criteria. The sections are structured around
what kind of data the systems provide:

• Plant observation: Where plants are observed to flower.

• Pollen color: The colors of the pollen that plants produce.

• Pollen abundance: How much pollen plants release for bees.

5.2 Plant Observation

Plants have been observed for centuries. Historically, observational data was col-
lected manually, typically by botanists who also had the knowledge of correctly
identifying the plants. With the rise of the internet, this paradigm changed: citi-
zen scientist platforms sprang up and allowed anyone to share observations, the
plant identification being supported both by the community as well as AI.

A plant observation delivers us two pieces of information that are beneficial
for our platform:

• Plant occurrence: Plants do not grow everywhere. Certain plants may only
grow at certain altitudes or in certain regions (e.g. alpine flora). Bees have
a foraging area of approximately 3km around a hive. Therefore, obtaining
spatially precise data is important so as to know on which plants the bees
forage.

• Plant phenology: A plant undergoes various phases throughout the year
such as budding, leaf development, flowering, fruiting, leaf coloration and
fall. Since bees can only collect pollen from plants when they flower, ob-
servational data should be annotated with phenology traits. To obtain the
onset and end of a flowering phase for plants, temporal coverage is crucial.

Ideally, we obtain such observational data ‘live’ because whether plants cur-
rently flower in some place depends on more factors than just the time and place.
For example diseases, weather and agricultural activities also have an impact on
plant thriving. As the spatial and temporal coverage of such data varies across
plant species and is often sparse, we also considered historical data which can
give us a range of when plants may potentially flower and in which regions this
is likely the case.

5.2.1 BeeKeepr

BeeKeepR [7] is an app from the PlanBee-Project, founded in 2018 and supported by
the University of Passau. It provides tools and information for managing beehives
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such as a beekeeper diary, information on varroa and bee weather, a flowering
calendar showing when plants flower and the quality of pollen they produce as
well as a pollen color directory. Moreover, they provide an image detection mod-
ule that serves for building up an extensive database of pollen colors with the help
of their users.

• User-friendliness: BeeKeepR is available as an app. The user uploads an im-
age, ideally with bees sitting on them collecting pollen, which (s)he can crop.
An AImodule analyzes the image for plant and bee species, and pollen color.
The user may then agree and disagree with those predictions and suggest
other species and pollen colors. The identification process is not supported
by a community as one’s data is not visible to other users. Coordinates
and time are automatically extracted. Generally, we found taking images
of bees with pollen on flowers challenging with a mobile phone. The cre-
ation procedure in the app is intuitive. However, no feedback is given after
submission and the history of uploaded images is not visible which might
be demotivating to users.

• Data accessibility Data cannot be downloaded from the app and is also not
retrievable via an API.

• Coverage The exact number of observations is unknown. As the project is
young and does not have a large user base yet, it can be assumed that the
number is low.

• Accuracy: Plant, bee and pollen detection is based on AI and is confirmed
or rejected by the user. There are no second opinions by other people. Loca-
tion and time are automatically extracted, but cannot be edited by the user
(and are also not visible in the app).

• Integration effort: The team offered us to transfer all the images and anno-
tations that we upload to our servers. This would require a medium imple-
mentation effort as one side has to open up an API endpoint.

• Maturity: The app was deployed in February 2020 and has around 5000
downloads.

5.2.2 Flora Incognita

FloRa Incognita [82] is a project carried out by the Technical University of Ilme-
nau and the Max Planck Institute for Biogeochemistry, and since 2014 funded by
several federal ministries and agencies in Germany. The project provides an app
for determining plants using AI.

• User-friendliness: FloRa Incognita is available as an app. A user takes
images of different parts of the plant and based on these, an AI module sug-
gests the best matches from which the user can choose from. Coordinates
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and time are automatically extracted. The identification process is not sup-
ported by a community as one’s data is not visible to other users.

• Data accessibility Generally, data of other users are not visible. Although
it is possible to download one’s own data, there is currently no (public) API
to retrieve the data of other users.

• Coverage: The app is specialized on plants from Central Europe contain-
ing around 4800 species and has a focus on Germany. As there is no API,
we cannot determine how many observations are available in Switzerland.
According to the website their database contains 15’000 observations from
Germany.

• Accuracy: Plant determination is based on AI and what the user chooses.
Location and time are automatically extracted, but cannot be edited by the
user. There are no second opinions by other people.

• Integration effort: As there is no API, the only way to obtain the data of
other users would be to ask them to export images and identifications, and
submit them on our platform. This would not only imply a high implemen-
tation effort but also many manual steps.

• Maturity: The app has been in operation for around three years and has
around 1 million downloads.

5.2.3 iNaturalist

iNatuRalist [39] is a social network platform for sharing sightings of organisms.
The project began back in 2008 and became a joint initiative between the Califor-
nia Academy of Sciences and the National Geographic Society in 2017.

• User-friendliness: iNatuRalist is available as an app and as a web version.
The user takes or uploads images of a species and may then propose what
kind of species (s)he observed. This identification is supported by AI as well
as the community that may agree or disagree with such an identification
afterwards. Furthermore, the user can add an annotation for the phenology
(flowering budding, flowering, fruiting) which the community can confirm
as well.

• Data accessibility: iNatuRalist provides a public and free Representational
State Transfer (REST) API with rate limits of 10’000 requests per day.

• Coverage: iNatuRalist contains ~24 million plant observations world-wide
from ~115’000 species and ~62’000 observations ofAngiospermae/Pinopsida7

7This is an approximation for plants that deliver pollen.
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plants in Switzerland from ~2’200 species contributed by ~4000 users. Ob-
servational data is shared across the year, but peaks in the summer time as
illustrates Figure 19. Figure 19 also shows that the number of observations
trends upwards with ~24’000 Angiospermae/Pinopsida plants observations
shared by the community last year.

Figure 19: History of plant observations in Switzerland on iNatuRalist [39]

The spatial coverage of Angiospermae/Pinopsida plants in Switzerland is vi-
sualized in Figure 20. As can be seen, there are gaps in certain regions
of Switzerland, for example in the region of Emmental-Oberaargau and
Luzerner Hinterland. When looking at a concrete species, in Figure 21
showing Bellis Perennis as an example, the sparseness is evident.
As previously mentioned, blooming status is also available, although the
vast majority of observations have no phenology annotation. Nevertheless,
the temporal coverage is sufficient for more common plants to deduce onset
and end of flowering. For example Figure 22 shows the phenology course
of Bellis Perennis and Corylus Avellana.

• Accuracy: Time and location are automatically extracted and can be man-
ually edited. iNatuRalist assigns quality labels to observations. An obser-
vation can have three quality grades: hobby, needs ID and research grade.
Research grade is allocated when at least two people have identified the
plant species and when image, coordinates and date of the observation are
available. As we only consider observations with research grade, the data
can be considered as very accurate. Only the phenology annotation does
not enter into the research grade. However, as seen in Figure 22, the phenol-
ogy appears to be accurate for common plants. There are only two phases
for flowering (flowering budding, flowering). The end of flowering is not
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Figure 20: Spatial coverage of Angiospermae/Pinopsida plants in Switzerland on
iNatuRalist [39]. Red squares denote areas with observations and stronger red
shades indicate more observations in the area.

Figure 21: Spatial coverage of Bellis perennis in Switzerland on iNatuRalist [39]

explicitly annotated which means that the end of the blooming cannot be
computed precisely.

• Integration Effort: As there is a REST API with many filter functions, the
implementation effort is low.
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Figure 22: Phenology data for Bellis Perennis (left) and Corylus Avellana (right) on
iNatuRalist [39]. The colors of the curves denote the following: red → flowering,
grey → no annotation, blue → fruiting, orange → flowering budding, green → no
evidence.

• Maturity: The platform has 1.8 million registered users around the world
and has been in operation for more than 10 years. The app was deployed in
2011 and has 1 million downloads on Google Play.

5.2.4 Info Flora

Info FloRa [40] is a private, non-profit organization founded by the city of Geneva,
Pro Natura, the Swiss Botanical Society and the Swiss Academy of Natural Sci-
ences, and supported by the Federal Office for the Environment. The foundation
provides information on wild plants in Switzerland and promotes their conserva-
tion. It maintains a database of Swiss flora observations which are documented
in maps.

• User-friendliness: Info FloRa provides an app. The user first selects or
enters a species name (scientific or common name), then specifies location
and time and optionally adds images and other metadata such as abundance,
habitat, phenology and more. Thus, a good level of flora knowledge is as-
sumed when adding observations. Therefore, the app is not suitable for
botany beginners, especially given that the identification process is also
not supported by a community.

• Data accessibility: There is a free and public REST API. The data is avail-
able at different accuracy levels, such as 5kmx5km,8 1kmx1km or as individ-
ual observation records. The usage of more precise data is more restrictive
(written approval by data centers, no deposition in repository, etc.) for data
privacy and plant protection reasons.

• Coverage: Info FloRa’s database covers all wild-growing plants from Switzer-
land (i.e. no cultivated plants). The temporal and spatial coverage is high as

8Data is handed out ‘summarized’, i.e. for a 5km area, we obtain a list of plant species that have
been observed there.
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there is a large amount of observational data available from different places
which can date back to the 19th century. For example, Figure 23 shows
the spatial coverage of Bellis Perennis. Moreover, there is detailed informa-
tion on plants such as flowering period, habitats and ecological indicators.
In the past years, ~700’000-800’000 observations were registered, a number
that tends to rise every year.

Figure 23: Spatial coverage of Bellis Perennis on Info FloRa [40]. Green circles
denote validated observations, while the purple ones are not validated yet.

• Accuracy: The app works without an AI module. The target group are
people who know plants well. Moreover, outliers or problematic data points
are double-checked by the Info FloRa team. Time and location aremanually
added. Thus, there is a margin of error in precision. Nine phenology phases
are available to select from, five of them concerning the flowering status
(not flowering, with flowering buds, start of flowering, full flowering, end of
flowering).

• Integration effort: The integration effort is low as there is a REST API.

• Maturity: The foundation has existed since 2004. The app was launched in
2016 and has 5’000 downloads.

5.2.5 PhaenoNet

PhaenoNet [86] is a network of schools and scientists that documents the phe-
nology of a selected few plants throughout the year. The network is supported
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by GLOBE Switzerland, the Federal Office for the Environment, MeteoSchweiz,
ETH, Science et Cité, the Plant Science Center and the Botanic Garden of the Uni-
versity of Bern. Part of the data stems from MeteoSchweiz [52], while the rest of
the data is collected by PhaenoNet itself via a web-application. Not only the phe-
nology phases are documented, but also the attributes that affect the phenology
of plants such as weather, exposition and environment. This allows researchers
to investigate the interplay of phenology and other factors. Recently, PhaenoNet
has started collaborating with Swisscom on the deployment of Internet of Things
(IoT) devices, measuring weather parameters in trees and in the roots of plants.

• User-friendliness: There is only a web-based version. Users specify loca-
tion, plant species, phenology stage and some other attributes affecting phe-
nology such as environment and exposition. For the identification process,
there is no AI module nor a community that can support this. Thus, the
app is more difficult to use for novices in botany. However, given that only
knowledge about 15 plants is required, the learning effort is not too high.

• Data accessibility: There is a free and public REST API to retrieve the data.

• Coverage: PhaenoNet covers 15 carefully-chosen plant species fromwhich
the phenology of most other plants can be deduced. ~8’000 data points are
delivered every year, a number that is rising. The temporal coverage is high
as the plants are observed regularly. The spatial coverage is medium as the
weather stations from MeteoSchweiz are more or less evenly distributed.
Observation density is naturally high around schools collecting the data.
On the other hand, there are gaps in certain areas such as in the mountains.
Figure 24 shows the phenology observations of Corylus avellana in the year
of 2021 in Switzerland.

• Accuracy: Observations fromMeteoSchweiz are added by semi-professional
people. The internal data is contributed by schools where teachers instruct
the students on how to determine plants and their phenology phases. In
terms of accuracy, there are only minor differences (max. 5% deviation) be-
tween the two data sources. The phenology data is precise as phenology is
expressed through the BBCH-scale. Time and location are manually added.
Thus, there is a margin of error in precision.

• Integration effort: The integration effort is low as there is a REST API.

• Maturity: The web platform has been in operation for several years.

5.2.6 Pl@ntNet

Pl@ntNet [64] is a citizen-science platform for plant identification in images. The
project was launched in 2009 by a group of scientists from various French insti-
tutes.
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Figure 24: Phenology observations of Corylus avellana in the year of 2021 on
PhaenoNet [86]. Observations denoted as Hs are directly from PhaenoNet, the
others are from MeteoSchweiz. Yellow observations denote flowering status.

• User-friendliness: The project provides both a mobile and a web-based ver-
sion. To share a plant observation, users provide an image of the plant and
select what part of the plant they photographed (e.g. leaf, flower, fruit, etc.).
AnAImodule analyzes the image and suggests the bestmatches fromwhich
the user can confirm one. Furthermore, the community can confirm every
identification.

• Data accessibility: There is a REST API that allows users to submit images
and have them analyzed for identification. 200 requests per day are free
of charge for research purposes. There are no endpoints to get the obser-
vations produced by the community. However, Pl@ntNet annually shares
image data and has released the observations from the years 2017-2018 in
the French territory and Corsica. There is an option to export one’s own
observations to comma-separated values (CSV).

• Coverage: Pl@ntNet’s database contains around 4 million observations
from West Europe. We could not determine the number of observations of
plants in Switzerland.

• Accuracy: Users identify plants supported by AI and the community. Time
and location are automatically extracted from the image’s metadata which,
however, cannot be edited by the user manually.

• Integration effort: As the observations made by the community are not
accessible via an API (and the observations from France are not relevant),
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the only way to integrate with Pl@ntNet would be to add an observation
sharing page on our platform. Users would upload images of plants there
that are forwarded to Pl@ntNet to obtain a plant identification. However,
this would be a high integration effort.

• Maturity: The app was published in 2014 and has 10 millions downloads.

5.2.7 Discussion

Based on the evaluation criteria, we opted for the data of iNatuRalist, Info FloRa
and PhaenoNet to be integrated into our platform. All three systems have a strong
open-access philosophy making (almost) all data publicly available with useful fil-
tering functions. The other investigated systems score lowly on data accessibility
and therefore the integration of their data would entail a greater implementation
effort.

In terms of user-friendliness, iNatuRalist convinced us the most. There is
a strong sense of community because (most) observations are publicly visible
and users help each other to identify species. In this regard, Pl@ntNet also
scores highly. Indeed, if Pl@ntNet were to release endpoints for retrieving ob-
servation data, it might win over iNatuRalist.9 The other systems, on the other
hand, are more ‘closed ecosystems’. We think that an open, helpful community
keeps people motivated to share more observations. Furthermore, Info FloRa and
PhaenoNet require some level of plant knowledge because there is no AI module
aiding the identification process. Therefore, we decided to use iNatuRalist as our
main platform for our citizen scientists to share new observations.

Regarding coverage, we could not adequately compare the systems as the ob-
servation, species and user counts were not always available, in particular for
Switzerland. The download count itself is a vague estimation for howmany obser-
vations users will potentially contribute to in the future. In this regard, Pl@ntNet
has an edge over the other systems with 10 million downloads. However, to ob-
tain fair comparisonmetrics between the systems, wewould require the counts for
plant observations made in Switzerland in the recent years. Among the systems
for which we have numbers, Info FloRa was the strongest with almost 800’000
observations contributed every year - a number that is most likely not surpassed
by the other systems for which we do not have the counts. Therefore, we con-
sider Info FloRa as the best source for retrieving spatial coverage of plant species.
However, as the observations are summarized in 5km regions (i.e. they are not
available as individual data points), a spatial precision of less than 5km is not
possible and has to be complemented by data from a different system (e.g. iNatu-
Ralist). With respect to phenology data, PhaenoNet captures the exact onset and
end of flowering phases in the most systematic way. They record environmental
parameters (e.g. the temperature) together with phenology metrics, which allows

9In fact, this feature is planned in future versions according to the FAQ.
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us to more accurately deduce whether other plants in other locations with similar
environmental values also flower.

Regarding plant identification accuracy, Info FloRa and PhaenoNet rely on
the user’s knowledge, BeeKeepR and FloRa Incognita additionally on AI, while
Pl@ntNet and iNatuRalist additionally involve the community to confirm the
identifications. We consider identifications supported by AI and approved by the
community as the most accurate. As we can filter observations based on that
on iNatuRalist (setting quality to research grade), this data will be very accurate.
Moreover, iNatuRalist allows users to edit location and time of observations un-
like the other systems, which increases the accuracy of the data further as mobile
phones do not always register the location correctly.

In conclusion, data accessibility was a key differentiator between the systems.
BeeKeepR generally scores lower on all evaluation dimensions. However, it is the
only system that would not only deliver us the basic plant data (identification,
coordinates, time), but also the pollen color selected by the user. This would help
us build up a database of pollen colors. Nevertheless, we did not pursue a collab-
oration as the implementation effort is higher and interfacing with a system that
is rather young poses a risk.

5.3 Pollen Color

Every plant species produces pollen in specific colors. TheModel-SeRvice (cf. Sec-
tion 4) also extracts the colors of the pollen, whichwe canmatch against the pollen
colors of a plant species. For this reason, we strove for a pollen database that cov-
ers as many plant species as possible and is encoded in a format that allows for
similarity measurements (e.g. as a RGB triplet or in hexadecimal format). Finding
an extensive and well-parsable database of pollen colors proved challenging. We
found several sources containing information on pollen color but the color infor-
mationwas not easy to extract. For example, [2] published a booklet that describes
plants in a non-tabular format, the pollen color shown as an image. Therefore, we
searched for tabular-encoded pollen color sources on the internet. We found four
such tables:

• Akesi Farms [87]: ~50 plants common in North America, some of which are
stated with their scientific names and others only with their English trivial
names. The table is available as an HyperText Markup Language (HTML)
file.

• Honigbörse [37]: ~120 plants common in Germany which are only stated
with their German trivial names. We found identical tables also on other
beekeeper websites (e.g. [38], [27]). The table is available as an HTML file.

• Schulbiologiezentrum Hannover [77]: ~130 plants common in Germany
which are stated with their scientific names. The table is available as an
Excel file.
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• Wikipedia [91]: ~80 plants which are stated with their scientific names. The
table is available as an HTML file.

The color information is easier to parse inHTMLfiles as the colors are encoded
in RGB or hexadecimal format in the style attributes of elements. In the case of the
Excel table, custom functions have to be written to extract the background color
via a custom function. However, in general, parsing HTML is more complex than
Excel tables (which can be exported to CSV).

We decided to use the SchulbiologiezentrumHannover table as it has the largest
plant coverage. Moreover, all plants are listed with their scientific names which
eases the plant matching.

5.4 Food Abundance

Plant species differ in howmuch food they provide in the form of pollen and nectar
for bees [66]. This is interesting for us this also gives us an estimation of how
likely a bee brings pollen from that particular plant species. There are data sources
providing information about this food abundance. The largest, most reliable and
accessible source we found is the Pritsch table that is based on [66]. It contains
the nutritional values of 220 plants common in Germany. Each plant receives a
score between 0 and 4 for nectar and pollen separately and a total score computed
from the nectar and pollen values. The higher the score is, the more abundant the
food is. We also found other sources containing nutritional values, for example
two pollen color tables described in Section 5.3 also list nutritional values [91, 37].
However, both of them have a lower plant coverage and the Wikipedia table does
not distinguish between pollen and nectar.

6 Plant-Matching Algorithm

This section answers RQ1c:

How can flora data be leveraged to measure pollen diversity?

In the previous section, we selected the flora data sources suitable for integration
into the BLS platform. These data sources provide information on current and
potential plant occurrence, phenology, pollen color and food abundance, which
allow us to estimate the pollen diversity. The module for computing this metric
is called the BeeFoodChecKeR. Its heart is the plant-matching algorithm which
returns a set of plants that (may) grow and flower at a given point of time and
location as evidenced by the flora data. Each plant is ranked according to a score
calculated from various matching criteria. Counting the plants from the upper
ranks, we have a measure for pollen diversity.
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6.1 Related Work

Assessing the pollen diversity can be done in manual or automated ways. To ob-
tain reliable and accurate results, pollen is typically collected and analyzed based
on colors and shapes. Since this is a manual process, it is more expensive and time-
consuming. On the other hand, automated systems overcome this shortcoming
but might be less accurate.

6.1.1 Palynology

Palynology is the scientific term for pollen analysis. To analyze pollen, the pollen
has to be collected first, which can be done in the following ways:

• Pollen trap: A pollen trap is an apparatus placed at the entrance of a hive
[59, 13]. The opening of a trap is so small that bees have to crawl through to
enter the hive. During this passage, bees lose some of the pollen, typically
30-70% of the pellets depending on the size of the opening and the pellets
[14].

• Melissopalynology: One can also collect pollen from the honey. The pollen
usually stems from plants visited by bees, but may also come from wind-
pollinated plants or algae and fungal spores [89]. Melissopalynology is not
only performed to determine the biodiversity around a beehive, but also to
detect incorrect labeling of honey.

Once pollen is collected, it can be analyzed using the following techniques:

• Naked eye: The simplest way of determining pollen diversity is to count
the number of different pollen colors and shapes as seen by the naked eye.
For instance, [17] evaluated the correlation between color diversity and real
floral diversity, coming up with a formula for calculating the floral diversity
from the color diversity. As noted by the authors, this only yields a rough
measure because the number of different colors does not equal the number
of different plants. Indeed, many plants produce pollen in the same col-
ors and some plant species produce different pollen colors. Furthermore,
they point out that individual pollen colors can map to a different number
of plant species (e.g. many plants produce yellow pollen, but only a few
produce blue pollen).

• Light microscopy: Using a light microscopy is the most common method
of pollen analysis [59, 13]. It is also more precise than an analysis by the
naked eye because the pollen can be determined up to the species level.
However, since existing databases of reference pollen forms are incomplete,
researchers are sometimes still unable to assign a pollen grain to a specific
plant species [13], in which case the pollen grain can only be categorized
into a higher taxonomic rank.
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• Metabarcoding A more recent and more accurate method is to use DNA-
based identification [65, 71].

6.1.2 Data-Driven Approach

Pollen traps are invasive and do not retain every pollen pellet. Moreover, the
collection of pollen samples and their analysis is expensive and time-consuming.
Therefore, pollen data is often temporally and spatially limited, meaning pollen
data is only available in specific locations, e.g. in agricultural or more urban areas,
and at specific times of the year [13]. Using a citizen science approach, the tem-
poral and spatial coverage can be increased [13]. However, using a purely com-
putational, data-driven approach, pollen data can be gathered in a non-invasive
way with low human intervention and with as little temporal and spatial ‘gaps’
as possible.

As outlined at the beginning in this thesis, we leverage flora data to determine
pollen diversity. Such an approach is not entirely new as there are already web-
sites that also exploit flora data, albeit in more rudimentary forms. For example,
[4] provide a tool for matching plants based on pollen colors and flowering time,
supplying information on pollen abundance for each matched plant. Another ex-
ample is [11], which matches plants based on flowering time and planting place
(balcony, garden, field, forest, trail, meadow). It also shows the pollen abundance
and the total food availability for a given month. However, both tools do not not
consider regional deviations nor fluctuations in the flowering periods due to envi-
ronmental differences. The algorithm that we present in the ensuing section also
takes into account such other variables.

6.2 Implementation

In Section 5, we decided to integrate the observational data from iNatuRalist, Info
FloRa and PhaenoNet, the pollen color data of SchulbiologiezentRum HannoveR
and the pollen abundance data of PRitsch. These data sources are the foundation
for the plant-matching algorithm and therefore we describe their integration into
the BLS platform first.10 Thereupon, we present an algorithm that leverages all
these data sources to establish the pollen diversity in a certain area at a given
point of time. The performance of this algorithm is then evaluated against the
results of a microscopy analysis of two pollen samples.

6.2.1 Database Schema

Integrating the data sources into our platform means to import their data points
into our PostGIS database. To do so, we first devised a database schema which is
shown in Figure 25. The plant model forms the center of the schema and stands

10Due to time reasons, PhaenoNet is the only data source that could not be integrated as part
of the thesis. Instead, flowering information is taken from iNatuRalist and PRisch for the time
being (cf. Section 6.2.6).
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for a taxon within the plant (Plantae) kingdom. It specifies basics such as its
scientific name (name) and taxonomic rank (rank) as well as more bee specific
attributes such as the general abundance value (nutrition_grade) and the color
(pollen_color) of the pollen. A plant taxon may belong to a plant taxon of higher
rank (e.g. the species Bellis perennis belongs to the genus Bellis) which is realized
via a foreign key to itself. As taxa can have several scientific names as well as
trivial names in different languages, a model CommonName was created. The data
of this particular table proved useful for mapping plant names since the differ-
ent data sources designated the plants with various scientific and trivial names.
For the observational data, we created two separate models: Observation and
PlantOccurrence . The former literally encodes an observation of a plantwith pre-
cise location (location), time (observed_on) and phenology status (flowering).
The latter, on the other hand, is employed when observations are summarized
within a region (as in the case of Info FloRa), i.e. it only species that a plant
occurs in that region (region) with a corresponding observation count (obs_nb).
Finally, there is a Nutrition table that gives more fine-grained information as to
how much (value) pollen and nectar (food) a plant delivers at a given point of
time (month, start_day, end_day).

Observation

inaturalist_id: int
observation_url: URL
image_url: URL
image_attribution: str
user: str
created_at: DateTime
observed_on: DateTime
location: Point
place_guess: str
flowering: boolean

food: str
value: str
month: int
start_day: int
end_day: int

Nutrition

inaturalist_id: int
name: str
rank: str
info_url: URL
image_url: URL
image_attribution: str
nutrition_grade: str
pollen_color: str

Plant

region: Point
obs_nb: int
doubt: int
year_min: int
year_max: int

PlantOccurrence

CommonName

language: str
name: str

0..*
0..*

0..*

0..*

1 1

1

11

0..*

Figure 25: Database schema for the BeeFoodChecKeR

6.2.2 iNaturalist Integration

For iNatuRalist, we decided to import the complete Angiospermae/Pinopsida taxa
data and the Swiss observational data with research quality. Taxa and observa-
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tional data are served by two different endpoints in iNatuRalist’s REST API. We
pulled down the data by iteratively sending requests to the endpoints and storing
the output in JSON files.11

Both dumps (taxa and observations) are then uploaded to cloud storage due
to their massive size (~9 GB) so that we can repeatedly re-import the data into
the database without having to run the time-consuming API requests. From both
dumps, we then populate the tables Plant, CommonName and Observation. From
the taxa dump, which contains more than 250’000 taxa, we only insert taxa on
or above species rank and ignore species with less than 50 observations for per-
formance reasons. Finally, we created a cRon job that retrieves new observations
from iNatuRalist daily. Figure 26 shows how the data is visually displayed on
our platform.

6.2.3 InfoFlora Integration

For Info FloRa, we pulled down data from the taxa and atlas endpoints as the
observation endpoint is not public and has restrictive uses. The atlas endpoint
provides us occurrence data for a single taxon at a precision of 5km, whose out-
put is also stored as a JSON file. The whole dump is around 300 MB in size and
is therefore also uploaded to cloud storage. From the dump, we populate the
table PlantOccurrence. Occurrence data is visually shown on a map from Open-
StReetMap [61] as seen in Figure 27.

6.2.4 Pollen Color Integration

The pollen color table from SchulbiologiezentRum HannoveR is an Excel file. The
table is structured by blooming time phases. To make the pollen color easier to
parse, we reduced the table to two columns, one for the plant name and the other
one for the color information, and exported it to CSV. Plants specified as hybrid
were removed from the table. From this CSV, the pollen_color attribute of the
plants is populated.

6.2.5 Pollen Abundance Integration

The PRitsch table is available as an Excel file which we exported to CSV. Each row
gives nutritional values of a plant for both nectar and pollen and for both the first
and second half of a month. The data in these rows is then used to populate the
table Nutrition. Figure 28 shows how the data is visualized on our platform.

6.2.6 Plant-Matching Algorithm

We define pollen diversity as the number of distinct species plants from which
bees collect pollen. Thus, to compute this floral diversity, we must match the

11The API has a page limit size, restricting the output of an endpoint response to a maximum of
200 data points. Therefore, we have to pull the data in chunks of 200.
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(a) Web page listing plants

(b) Web page listing observations

Figure 26: Data of iNatuRalist visually displayed on our platform

plants that are most likely to grow and flower in a particular area and at a specific
moment of time, using the available flora data that we have integrated previously.
To this end, we defined a set of criteria for matching plants and assigned a score to
each one of them. As shown in Table 4, not every criterion receives equal weight.

Plants that potentially occur within a radius of 5km of the specified location
(Occ.) and that potentially flower at the specified time (Flow.) are given the high-
est weight of 10. Occurrence data derives from Info FloRa, while flowering data
comes from both iNatuRalist and PRitsch. If either of those (or both) mark the
plant as flowering, this criterion is matched. The reason we combine both sources
is that they complement each other. In general, iNatuRalist covers more plants
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Figure 27: Plant occurrence for Hepatica nobilis displayed on a map from Open-
StReetMap [61] on our platform. Each yellow square stands for a 5km x 5km
region in which the plant occurs.

Figure 28: Food abundance for Trifolium repens as shown on our platform.

with flowering status, but lacks them for some common trees producing pollen
which in turn PRitsch includes, for instance Fagus sylvatica (European beech).

Additional scores are attributed when a plant was observed in the vicinity of
3km of the specified place (Obsv.), especially when discovered within the previous
and following 7 days of the specified month and day in any year (Obsv./time), in
the same year (Obsv./year), within the previous and following 7 days of the spec-
ified month and day in that year (Obsv./year/time) and when explicitly annotated
as flowering (Obsv./year/time/flow.). All this information stems from iNatuRalist.

Finally, we also award scores when the plant has a pollen nutrition value or
color specified. The rationale behind this is that these are themore common plants
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Criterion Score

Occurring (Occ.) 10
Flowering (Flow.) 10
Observed (Obsv.) 1
Observed around this time (Obsv./time) 1
Observed in this year (Obsv./year) 1
Observed in this year around this time (Obsv./year/time) 1
Observed in this year around this time flowering (Obsv./year/time/flow.) 1
Pollen nutrition grade (Grade) 2
Pollen color (Color) 2

Table 4: Plant matching criteria with their scores. Abbreviations for the criteria
are put in parentheses.

known to produce pollen for bees. Note that our plant database also contains rare
plants that are accordingly less likely to be visited by bees, but also plants that
honey bees do not pollinate at all. To give such plants not too much weight when
they are observed, a match for Grade and/or Color is worth a score of 2.

The scores of the matched criteria for a plant are summed up to a total score,
which indicates the potential of bees bringing pollen from this plant into the hive
in that particular area at the given time. These total scores then serve as ranking
for the plants where plants with equal total scores are subsumed under the same
rank.

Figure 29 shows how the ranking is represented on the platform. As can be
seen in Figure 29a, the user has the possibility to tweak several parameters, the
most important ones being the location and the time, but also the radius and the
acceptable time range for matching observations.

6.3 Evaluation

To verify how accurate the plant-matching algorithm is, we collected pollen from
the same hive at Döttingen on two different warm and dry days. As bee traffic
varies and plants deliver pollen at different times of the day [51], we collected
the pollen throughout the day (between 9am-4pm). We also experimented with
different collection lengths (2h, 1h, 15min, 5min, 1min) as bee traffic may strongly
fluctuate, even within a quarter of an hour.

For retaining the pollen, we used a hive that was equipped with a pollen trap.
At the start of a collection session, we inserted the empty pollen container into
the hive. When the time was up, we pulled out the pollen container and tipped
the contents into cans, labeling them with the start and end time. We dried (and
froze) the pollen samples for several days. To keep the costs for analysis at bay,
we drew one pollen sample from each collection day. We then sent both pollen
samples to a palynology specialist for analysis. In total, 364 pollen pellets were
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(a) Search parameters for plant matching. Location is indicated on a map from Open-
StReetMap [61].

(b) Results of plant matching.

Figure 29: Plant matching visualized on platform.

analyzed. Most pollen pellets could not be mapped to a plant species, but only
to higher taxonomic ranks such as genus or family. Henceforth, we call such a
mapping – be it to a plant species, genus or some other rank – a plant type. There
were also some cases of doubts where the palynology expert declared two plant
types. In those cases, we tried to assign them to the next higher rank. Plant types
above family rank were discarded, however, as this would match too many plants.
Table 5 summarizes the two samples.
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Date Time Pellets Plant
types Species Genera Families

4th May 2021 13:10-13:25 195 15 3 9 3
1st June 2021 13:30-13:35 169 20 5 11 4

Total 364 35 8 20 7

Table 5: The two analyzed pollen samples

On each collection day, we also took images of plants in the surrounding area
of the hive and added the observations to iNatuRalist. As the foraging area of
bees is around 3km and only two of us observed the area, we could not cover the
whole area. However, we observed plants from different biotopes. In the case of
the hive in Döttingen, we took images on (agricultural) fields, in the forest and
at the river in a nature protection area, assuming that different plants potentially
grow in different biotopes. In total, we made 56 and 84 observations on the first
and second day, covering 33 and 45 species, respectively.

To test the performance of the plant-matching algorithm, we used recall, preci-
sion and f1-score as evaluation metrics. As our plant-matching algorithm returns
a list of plant species (unlike the pollen analysis that often classifies pollen into
higher taxonomic ranks), we proceeded as follows: For each plant type found in
the pollen analysis, we checked whether our algorithm found a species that is a
descendant of or equal to the plant type (recall). Vice versa, for each matched
plant species, we verified whether the pollen analysis yielded a plant type that is
an ancestor of or equal to the plant species.

6.3.1 Results

Figures 30 and 31 show the results for the first and second pollen sample, re-
spectively. For each sample, we computed the evaluation metrics for different
minimum total scores to assess the best trade-off between precision and recall.

For pollen sample 1, the best f1-score was 56.9% when setting the minimum to-
tal score to 24 for the plant-matching, while for pollen sample 2, it was 25, achiev-
ing a f1-score of 65.3%. In both cases, recall drops the more restrictive the plant-
matching is (i.e. the greater the minimum total score), whereas precision tends
to rise. The plant-matching algorithm generally performed better on the second
pollen sample than the first one (+8.4%) due to higher precision values.

6.3.2 Discussion

Our plant-matching achieves an average f1-score of 61.1% across both samples.
Table 6 shows the plants missed by the algorithm for the best minimum total
score of both pollen samples.
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Figure 30: Results for pollen sample 1.

Figure 31: Results for pollen sample 2.

When we photographed the area with iNatuRalist, we apparently missed
some of the plants found in the pollen samples (Ligustrum, Rubus, Lonicera, Vi-
ola, Helianthemum and Campanula). The simplest explanation of why we missed
them is that we could not cover the whole area. For instance, many plants also
grew in nearby private gardens that we could not enter. Furthermore, we most
likely overlooked some of the plants. This was, for example, the case for Ligus-
trum which we did not observe on the first collection day, but on the second. Our
palynology specialist also found pellets of plants that are rarely observed in gen-
eral, e.g. there are only 120 observations of Helianthemum in Switzerland with
research grade.

For the rest of the false negative cases, we observed the plant in question, but
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Sample(s) Rank Name

1 Genus Ligustrum
1 Species Sanguisorba minor
1 Species Ranunculus acris
1/2 Genus Lonicera
2 Genus Rosa
2 Genus Rubus
2 Genus Viola
2 Genus Helianthemum
2 Genus Campanula
2 Species Brassica napus

Table 6: False negatives of the plant-matching algorithm.

it did not enter into our database because the observation did not obtain research
grade. Plants that are annotated as cultivated (e.g. Brassica napus) or were iden-
tified by less than two people (e.g. Sanguisorba minor) are not awarded research
grade in iNatuRalist. We also observed many plants of genus Ranunculus. Since
they have a great number of species with similar features, they are difficult to
identify and are left on genus level, in which case the observation also does not
receive research grade. This is clearly one point to improve upon. Instead of fil-
tering out all observations without research grade, we could still include these
observations in our database, possibly attaching a weight to those in doubt.

Regarding precision, it must be noted that, firstly, there is a degree of un-
certainty added through the pollen collection and analysis itself. Not all pollen
pellets are retained by pollen traps, and of those that are retained, not all were anal-
ysed under the microscope. Therefore, our plant algorithm might have matched
some plant types, whose pollen were actually brought in by the bees, but were
not found in the pollen analysis. As an example, our palynology expert noted
down two other plant types whose pellets were not sorted out for analysis, but
were found in traces on other pellets of different plant types. We plan to back up
the microscope analysis through an additional DNA analysis of the same pollen
samples in the future.

Secondly, our two pollen samples are not representative for the whole day.
We only collected pollen for a period of 5 and 15 minutes. There is, however,
great variability in the pollen intake throughout the day. Firstly, different plants
release pollen at different times of day. There are plants serving pollen in the
morning (e.g. Papaver rhoeas), in the afternoon (e.g. Vicia faba), during the night
(e.g. pumpkins) or also throughout the day (e.g. fruit trees) [51]. Furthermore,
the release duration also differs, with some plants emptying their pollen supply
gradually and others in a very short time (sometimes within 10-30 minutes) [51].
Lastly, plants react to weather stimuli. For example, pines produce less pollen at
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low temperatures [51].
Currently, the plant-matching algorithm does not consider such factors as we

do not have the data for it yet. As it stands, the plant-matchingworks best at a day-
level precision without making differences within the times of a day. Therefore,
it would have been more ideal to compare the plant-matching algorithm against
pollen samples gathered from a whole day. There are two reasons why we aban-
doned this idea in the first place. Firstly, analyzing a daily pollen sample costs
considerably more. Secondly, we also wanted to combine the plant data with the
video data. Each pollen sample was collected under video surveillance. The ini-
tial goal was to match the colors seen in the camera with the colors in the plant
database to quantify how much pollen of which plant is brought into the hive,
and evaluate this against our analyzed pollen sample. Due to the limited scope
of this work, this was not pursued in the end. Nevertheless, the color matching
is a promising future work, albeit a demanding one. Before we sent the pollen
sample to the palynology expert, one of us attempted to sort them by colors. As
it turned out, our expert disagreed with the sorting by a substantial margin. This
suggests that even for humans it is difficult to discern pollen colors consistently
and that chromatic assessment as put forward by [17] may fail due to perceptual
differences or different lighting conditions. It remains to be seen whether this
also applies for computers.

That being said, a highly interesting avenue for future research is to systemat-
ically record from which plants at which times of the day bees collect pollen. This
could be realized, for instance, through a citizen approach where people report
for an observation made on iNatuRalist whether bees collected pollen. This way,
we can also establish which plants are actually pollinated by bees. Currently, our
system only knows for a few hundred plants from PRitsch and Schulbiologiezen-
tRum HannoveR) that they produce pollen for bees. However, our plant database
also contains plants that are pollinated by wind and are therefore erroneously
considered by the plant-matching algorithm as well.

In conclusion, there is still much potential for improving the plant-matching
algorithm. We did not perform extensive experiments with the plant-matching al-
gorithm in general. For example, we did not run the evaluation against different
weights for the various criteria. Furthermore, the algorithm also relies on obser-
vations made with iNatuRalist at a given place and time, and was also evaluated
under such conditions. As such, there is a manual element involved to obtain
accurate results with our algorithm. Furthermore, observations may have an in-
herent skew. In discussion with the Info FloRa team, they mentioned that people
have a tendency to observe more rare plants than the more common ones. This is
problematic for us as bees are more likely to bring home pollen from plants that
occur in abundance.

The future vision is that our plant-matching algorithm also works reasonably
well when no one makes observations for a specific place and time. Instead, this
should be deduced based on observations made in other areas with similar envi-
ronmental conditions. One first step towards this is to integrate more data on
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plant flowering status. Blooming phases are heavily influenced through various
variables such as location, time and weather. This is also strongly reflected in
the fact that different works of reference disagree in the exact flowering phase of
plants. For instance for Onobrychis viciifolia, PRitsch specifies a flowering phase
from May to July and FloRa Helvetica from May to August [48], while on iNatu-
Ralist the earliest observation in Switzerland is in April and the latest in October.
Although, iNatuRalist may provide us the exact flowering status of a plant for a
place, the coverage is generally too low. Integrating the data of PhaenoNetwhich
also correlates phenology with weather and other environmental parameters al-
lows us to deduce the flowering status of a particular place even if that plant has
not been explicitly observed there.

7 Conclusion & Outlook

In this thesis, two pollen metrics were integrated into the BeeLivingSensoR plat-
form that act as an indicator for biodiversity and bee health. As it stands, the
pollen count metric does not deliver precise results yet. This is mostly due to
the poor performance of the bee detection and bee tracking on which the pollen
tracker relies. On the other hand, we could show that the pipeline for comput-
ing the pollen counts runs stable, distributing the processing work evenly across
CPUs and GPUs. However, the speed for computing these is still too slow, incur-
ring high operational costs. One way to address this in the future is to reduce the
amount of data to be processed as well as optimizing the code and models.

In comparison, the pollen diversity metric already produces acceptable results.
Deviations from the microscopy analysis were mostly due to the lack of data, es-
pecially regarding the time of when plants release pollen. Fortunately, data on
plants is fast increasing, strongly aided by the citizen science community, and
therefore we expect our plant-matching algorithm to get stronger on its own.

Apart from more data on plants, other kinds of data sources shall be incor-
porated into the platform in the future, in particular data from hive sensors and
agriculture. Furthermore, we plan to enhance the visualization of the data on our
platform, providing first insights into the influence of certain parameters on the
life of bee colonies.
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Glossary

AI Artificial Intelligence

API Application Programming Interface

BLS BeeLivingSensor

CCD Colony Collapse Disorder

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

CSV comma-separated values

ETH Eidgenössische Technische Hochschule

FIFO First-In-First-Out

FPS Frames Per Second

GPU Graphics Processing Unit

HTML HyperText Markup Language

I/O Input/Output

IoT Internet of Things

IoU Intersection over Union

JSON JavaScript Object Notation

mAP mean Average Precision

REST Representational State Transfer

SORT Simple Online and Realtime Tracking

UI User Interface

UZH University of Zurich

VM Virtual Machine
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