Bachelor

D

University of
Zurich™

July 20, 2021

Continuous

Deep Learning

An in-depth investigation of
the deep learning workflow

Janosch Baltensperger

of Brltten, Zirich, Schweiz (15-915-085)

supervised by

Prof. Dr. Harald C. Gall
Dr. Pasquale Salza

sAeAaAIA
‘ volution & archite

Bachelor

Continuous
Deep Learning

An in-depth investigation of
the deep learning workflow

Janosch Baltensperger

University of S.€.d. IA
Zu riC hUZH ‘software evolution & architecture lab

Bachelor

Author: Janosch Baltensperger, janosch.baltensperger@uzh.ch
URL: https://github.com/janousy/CDL

Project period: 25.01.2021 - 24.07.2021

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First, | would like to thank Dr. Pasquale Salza for supervising my thesis. During regular meetings,
he provided valuable inputs and critical feedback to keep me on the right track. Further, | would
like to thank Prof. Dr. Gall for allowing me to write my thesis at the department of software
evolution and architecture (s.e.a.l).

In addition, | would like to thank my girlfriend Sara Costa Fernandes and my fellow student
Jonas Zircher for proofreading my thesis.

Finally, | would like to thank the MLOps Community for valuable insights into the application of
machine learning and interesting discussions on Slack about best practices.

Abstract

Deep learning has gained immense attraction with the emergence of big data and advanced
computing power. Through the use of arti cial neural networks, various breakthroughs were
achieved in elds such as language understanding and image recognition. Nevertheless, it has
soon become clear that deep learning and machine learning in general impose various additional
challenges besides building an accurate model. Researchers have been highly active to investigate
the classical machine learning work ow and integrate best practices from the software engineer-
ing lifecycle. However, deep learning exhibits deviations which are not yet covered in this con-
ceptual development process. This includes the requirement of dedicated hardware, dispensable
feature engineering, extensive hyperparameter optimization, large-scale data management and
model compression to reduce size and inference latency. Individual problems of deep learning
are under thorough examination, and numerous concepts and implementations have gained trac-
tion. However, the complete end-to-end development process still remains unspeci ed. In this
thesis, we de ned a detailed deep learning work ow that incorporates the aforementioned char-
acteristics on the baseline of the classical machine learning work ow. We further transferred the
conceptual idea into practice by building a prototypic deep learning system using the latest tech-
nologies on the market. To examine the feasibility of the work ow, two use cases were applied
to the prototype. The rst use case represented a text classi cation problem, while the second
use case focused on image processing. We thereby successfully demonstrated the application of
the work ow on distinct examples. In summary, it becomes apparent that the deep learning life-
cycle compromises a large set of steps and involves various roles. With our de ned work ow,
we present a profound guideline for the deep learning development process. Moreover, we con-
clude that the technologies currently available on the market are not fully mature. Great effort
is required to manage all deep learning artifacts and keep versions aligned within continuous
iterations over the lifecycle.

Zusammenfassung

Deep Learning hat mit dem Aufkommen von Big Data und fortschrittlicher Rechenleistung im-
menses Interesse gewonnen. Durch den Einsatz von kunstlichen neuronalen Netzwerken wur-
den verschiedene Durchbriiche in Gebieten wie Sprachverstandnis und Bilderkennung erzielt.
Dennoch wurde schnell klar, dass Deep Learning und Machine Learning im Allgemeinen neben
der Erstellung eines akkuraten Modells verschiedene zusatzliche Herausforderungen mit sich
bringen. Forscher waren sehr aktiv, um den klassischen Work ow des maschinellen Lernens
zu untersuchen und Best Practices aus dem Lebenszyklus der Softwareentwicklung zu integri-
eren. Deep Learning weist jedoch Abweichungen auf, die in diesem konzeptionellen Entwick-
lungsprozess noch nicht bertcksichtigt sind. Dazu gehdren die Notwendigkeit dedizierter Hard-
ware, entbehrliches Feature-Engineering, aufwendige Hyperparameter-Optimierung, umfangre-
iches Datenmanagement und Modellkompression zur Reduzierung der Grésse und Latenz. Die
einzelnen Probleme von Deep Learning werden bis heute grundlich untersucht, und zahlre-
iche Konzepte und Implementierungen haben an Zugkraft gewonnen. Der komplette Entwick-
lungsprozess ist jedoch noch immer nicht spezi ziert. In dieser Arbeit haben wir einen detail-
lierten Deep-Learning-Work ow de niert, der die oben genannten Eigenschaften auf der Basis
des klassischen Machine-Learning-Work ows einbezieht. Des Weiteren haben wir die konzep-
tionelle Idee in die Praxis Ubertragen, indem wir ein prototypisches Deep-Learning-System unter
Verwendung der neuesten Technologien auf dem Markt entwickelt haben. Um die Anwend-
barkeit des Work ows zu untersuchen, wurden zwei Beispiele auf den Prototyp angewendet.
Der erste Anwendungsfall stellte ein Textklassi zierungsproblem dar, wahrend sich der zweite
Anwendungsfall auf die Bildverarbeitung konzentrierte. Damit konnten wir die Anwendung
des Work ows an unterschiedlichen Beispielen erfolgreich demonstrieren. Zusammenfassend
wird deutlich, dass der Deep-Learning-Lebenszyklus eine grosse Anzahl von Aktivitaten um-
fasst und verschiedene Rollen involviert. Mit unserem de nierten Work ow stellen wir einen
fundierten Leitfaden fur den Deep-Learning-Entwicklungsprozess vor. Darlber hinaus kommen
wir zu dem Schluss, dass die derzeit auf dem Markt verfiigbaren Technologien nicht vollstandig
ausgereift sind. Es ist ein grosser Aufwand erforderlich, um alle Deep-Learning-Artefakte zu ver-
walten und die Versionen innerhalb kontinuierlicher Iterationen tGber den Lebenszyklus hinweg
abzustimmen.

Contents

Introduction 1
Background 3
2.1 Classical Machine LearningWorkow 3
2.2 RolesinMachinelLearning 4
2.3 Work ow Critical Aspectsof DeepLearning 5
Related Work 7
De nition of the Deep Learning Work ow 9
4.1 AHighLevelOverview e 9
4.2 DataPipeline e 11
4.3 Model Pipeline e 13
4.4 DeploymentPipeline 15
Prototype Implementation 17
5.1 Technologiesof Choice e 17
5.1.1 Hardware and Infrastructure o 17
5.1.2 WorkowTooIs e 18
5.2 Mapping Abstraction and Implementation 19
5.2.1 Data Pipeline Implementation 19
5.2.2 Model Pipeline Implementation 21
5.2.3 Deployment Pipeline Implementation 23
Use Cases 25
6.1 NewsClassication 25
6.1.1 DataPipeline 25
6.1.2 Model Pipeline 27
6.1.3 DeploymentPipeline 27
6.2 FashionClassication. e 28
6.2.1 DataPipeline 28
6.2.2 ModelPipeline 29
6.2.3 DeploymentPipeline 29
Discussion 31

Conclusion 33

viii Contents

List of Figures

2.1 The classical machine learning work ow by Amershi etal.[6] 4
4.1 High-level overview of the deep learningworkow 10
4.2 De nition of the abstract data pipeline L. 12
4.3 De nition of the abstract model pipeline o oL 14
4.4 De nition of the abstract deployment pipeline 16
5.1 Implementation of the data pipeline, with the selected technologies mapped to the

owchart. e 20
5.2 Implementation of the model pipeline, with the selected technologies mapped to

the owchart. 22
5.3 Implementation of the deployment pipeline, with the selected technologies mapped

tothe owchart. 24
6.1 The data pipeline of news classi cationusecase 26

List of Tables

5.1 Technologies used to implement the deep learning work ow, not including under-
lying infrastructure. L 18

Chapter 1

Introduction

With the rise of big data, cloud computing and other topics of the digital age, arti cial intelligence
(Al) has emerged as a promising eld to harness the potential of the tremendous information
growth. Al enables humanity to teach machines how to solve problems that may be intuitive, but
dif cult to describe formally, i.e, feel automatic to human individuals [16]. There are numerous
active research topics in Al, and many ndings have been successfully adopted in practice. One
of these topics is deep learning — a subset of machine learning — which is applied in domains such
as image processing, speech recognition, or autonomous driving [21]. The core concept of deep
learning is based on biomimicry of interconnected human neurons, so-called neural networks.
Neural networks form a computational model composed of multiple processing layers to learn
the representation of data and predict the output of raw input [34].

Together with the emergence of various new data-centric elds, the role of a data scientist was in-
troduced in the early 20th century. Their main responsibility is to transform data into insights [31].
By today, as more software applications tend to include Al features, data scientists are often in-
corporated into software engineering teams to facilitate multidisciplinary development [30]. This
incorporation requires software engineers to learn how to work with data science specialists [6].
On one hand, developing Al software requires pro ciency in data analysis and statistics, e.g, for
neural network design and evaluation. On the other hand, additional engineering aspects are also
demanded, such as the con guration of the application environment and deployment solution to
facilitate a continuous development lifecycle [21].

The traditional software engineering lifecycle is usually maintained through continuous integra-
tion (Cl) and continuous delivery (CD) to enable planning, development and deployment of a
software artifact. Moreover, DevOps — which stands for development and operations — has man-
ifested as a practice (and even as a culture) to merge continuous lifecycle management into a
single set of processes. Although the machine learning lifecycle is different from traditional
software development [6], a similar framework named MLOps has been introduced, i.e, ma-
chine learning operations. In this process setting, data scientists create the development environ-
ment, while software/operation engineers are responsible for the setup of the production envi-
ronment [28].

Problem Domain. In general, machine learning lifecycles require sophisticated pipelines, that
facilitate data management, training, deployment and model integration into the corresponding
product. A previous case study at Microsoft [6] was conducted to describe the current concept
of machine learning development and proposed an abstract work ow reaching from model re-
quirements up to model monitoring in production. In general, a work ow consists of an ordered

2 Chapter 1. Introduction

sequence of activities required to achieve one or multiple goals [1]. An activity is de ned as a task
contributing to the de ned objective, which can be performed either automatically or manually
by a determined individual. Regarding information technology, a work ow provides systematic
organization and reproducibility to the development process, while reducing costs and increasing
productivity [11].

However, in the context of deep learning, there is still lack of guidance when it comes to inte-
grating it into the software development process. Such a work ow may deviate from the one
proposed by Microsoft. For example, while conventional machine learning is based on manual
feature engineering, deep learning is based on an end-to-end approach, i.e, features are learned
automatically [38]. Moreover, high performance graphical processing units (GPU) are recom-
mended to be able to train a neural network in reasonable time, since the training process is
computationally expensive [3]. Several of these problems speci ¢ to deep learning have been
addressed in past research. For instance, advanced algorithms have been proposed to accelerate
the process of nding the optimal parameters and new platforms have been introduced to make
GPU training more accessible to researches and practitioners [26, 44]. However, the concepts and
technologies presented are still relatively new and not yet fully mature [22]. Additionally, these
individual solutions have not yet been assembled to an end-to-end development process for deep
learning. A conceptual representation of the complete work ow and a corresponding implemen-
tation still remains unde ned.

Contribution. To overcome the above stated knowledge gap, the aim of this thesis is to inves-
tigate the current development work ow of deep learning in the context of machine learning
lifecycle management. The goal is to specify best-practice guidelines from model development
to deployment and execution, i.e, bringing deep learning models into production. Therefore,
lifecycle critical differences to conventional machine learning are collected and integrated into an
extended work ow for the deep learning lifecycle. Additionally, a prototype will be implemented

to demonstrate the practicability of the de ned work ow. Overall, this thesis will summarize the
current state of research focused on the deep learning work ow and investigate the applicability
into practice. We will demonstrate that our abstract de nition of the work ow can be successfully
utilized in common deep learning applications. Moreover, despite the construction of an effec-
tive prototype, we indicate that the technologies currently available on the market are not fully
mature.

Outline. This thesis is organized as follows. Chapter 2 summarizes the theoretical baseline for
this thesis, which includes the work ow de ned for classical machine learning, the roles involved

in a machine learning team and the decisive characteristics of deep learning. In Chapter 3 we
will describe the correlated research. We will then derive the abstract deep learning work ow
in Chapter 4, using the collected particularities of deep learning. This abstract de nition is then
implemented in a minimum viable prototype in Chapter 5, where we select a set of technologies
to facilitate end-to-end deep learning. The usage of our prototype and consequently the applica-
bility of our abstract work ow is then demonstrated on two distinct use cases in Chapter 6. Our
ndings are discussed in Chapter 7 and ultimately concluded in Chapter 8.

Chapter 2

Background

Within the following sections, we build the theoretical baseline to investigate the deep learning
work ow. Therefore, the classical machine learning work ow is outlined together with the roles
involved in a machine learning team. Most importantly, we discuss the distinct characteristics of
deep learning that have an in uence on the work ow.

2.1 Classical Machine Learning Work ow

Although many software engineering principles can be transferred to machine learning develop-
ment, various new challenges have to be solved [36]. In comparison, machine learning projects ex-
hibit many critical differences. For example, development is data-centric instead of code-centric,
individual modules are hard to isolate, and the project team is more divers in terms of the re-
quired skill-set [6]. Maintenance is more dif cult and costly than development, as a model needs
to be continuously improved and adopted to a changing environment [55]. This leads to more fre-
quent iterations over the work ow compared to classical software engineering. Due to the non-
deterministic behavior, machine learning becomes a highly experimental process, which brings
up the need for reproducibility [62].

Thus, researchers have been actively investigating the machine learning work ow. Despite minor
differences, the current literature has agreed on a converging conceptual idea of the work ow [6,7,
33,37]. In the context of this thesis, we rely on the work ow de nition of Amershi et al.[6], which
is composed of the nine steps illustrated in Figure 2.1. As deep learning is a subset of machine
learning, all the de ned steps can be incorporated into the deep learning work ow. However, the
embedded steps will be extended and expressed in more detail to meet the requirements of deep
learning. We thus take their work ow de nition as a starting point.

The steps de ned by Amershi et al. can brie y be summarized as follows: the rst stage of the
work ow, model requirementgocuses on the problem analysis from the business perspective and
corresponding solutions [6]. The following steps of data collectioncleaningand labelingare tar-
geted towards providing the necessary datasets to train and test a model [33]. The fth work ow
component called feature engineeringcludes the selection and transformation of informative ele-
ments of the raw data into an appropriate form for model inputs [66]. During model training a set
of algorithms then learns from the selected features and is subsequently tested during model eval-
uation. Such that the produced model can be used by applications or end-users, model deployment
compromises the tasks to serve a model for inference [6]. As a nal stage, the main purpose of

4 Chapter 2. Background

model monitorings detecting the moment where a model no longer ts its purpose and therefore
is required to be revised [33].

Figure 2.1 : The classical machine learning work ow by Amershi et al. [6]

Although these steps are theoretically executed in sequence, the machine learning work ow is not
necessarily tied to a linear timeline. The work ow involves several feedback loops, illustrated by
backward arrows in Figure 2.1. For example, model monitoringnay uncover a distribution shift of
the data, which indicates that the training and/or testing data needs to be updated. On the other
hand, the stage of model evaluatiomay reveal insuf cient performance and compel a return to
previous steps of the work ow. Because of these feedback loops, the machine learning lifecycle
exhibits higher complexity than traditional software engineering [55].

2.2 Roles in Machine Learning

There are many actors involved in the machine learning lifecycle, each having various and possi-
bly overlapping responsibilities. Machine learning is a fast changing eld, thus the engaged roles
and their corresponding tasks are not absolutely well-de ned [54]. In the context of this thesis, we
de ne six important roles based on the current literature [7, 33, 37]. These roles are later matched
to the deep learning work ow based on their responsibilities.

Data Engineer. The main essential responsibility of a data engineer — in the context of machine
learning — is to provide the required data to build a model. To do so, they construct scalable
pipelines that acquire, prepare and store data securely [33]. Data engineers should also be able
to help continuously train and deploy existing models [5]. Thus, they work in close collaboration
with data scientists.

Data Labeler. Semi-supervised and supervised machine learning approaches require labeled
data to train and evaluate a model. Most often, human effort is necessary to provide labels for
the datasets prepared by the data engineer. Thereby, it is essential to have a highly accurate
ground-truth for a model to become performant [5]. Labeling data is thus a crucial step within
the machine learning work ow. The role of a data labeler can be lled internally, e.g, by data
engineers or domain experts, or externally through crowd-sourcing [5].

DevOps Engineer. In general, a DevOps Engineer supports machine learning by introducing
and maintaining processes, tools, and methodologies [52]. They set up the initial infrastructure
that will be used by other roles during the machine learning work ow. Moreover, they support
model deployment and monitoring. Depending on the project environment, a DevOps Engineer
is not necessarily part of the machine learning team but still involved in the work ow [52].

2.3 Work ow Critical Aspects of Deep Learning 5

Data Scientist. When it comes to data analysis, exploration, feature engineering and model
building, the data scientist serves as the central role [33]. They are responsible for prototyping a
machine learning model, commonly in an experimental environment such as a notebook. Besides
statistical and mathematical knowledge, data scientists are further required to possess domain
knowledge for their model to create business value [7].

Software Engineer. Within the machine learning team, software engineers (or developers) with
the appropriate machine learning knowledge help productionizing a model. As data scientists

often only build prototypes within an experimental environment, their work needs to be put into

a deployable form [33]. This includes for example tasks such as API design for effective prediction
requests.

Model Validator. Also referred to as the data science manager, a model validator takes respon-
sibility of the project. They possess knowledge from both eld — machine learning and software
engineering — and additionally bring domain expertise to ensure the business requirements are
accomplished [12].

2.3 Work ow Critical Aspects of Deep Learning

In this thesis, we focus on supervised deep learning. Nevertheless, unsupervised approaches
have been proposed in research, such as clustering analysis, sample speci city analysis, self-
supervised learning and generative models [25]. The following sections introduce the charac-

teristics of deep learning that have an impact on the development process. These will later be

used to derive the deep learning work ow.

Data Management. A decisive property of deep learning is the ability to automatically learn
multiple levels of data representations and abstract information, which diminishes the need for
manual feature engineering [16]. This advantage in turn increases the necessity of having high-
quality data to train a model on. Moreover, deep learning algorithms often rely on large amounts
of data to make accurate predictions [42]. Therefore, data management at scale is crucial within
the deep learning work ow. This, however, imposes the need for data pipelines to reduce hu-
man effort and automate the process of handling batch or streaming data [41]. Such pipelines
should ingest the collected data into an appropriate storage solution, which can handle structure
or unstructured objects together with their metadata [7]. In case of regulated industries or sen-
sitive data in general, a secure storage location is required [42]. Furthermore, data needs to be
continuously updated as the model environment changes. One common problem is concept drift,
where the relationship between model input and output changes. This occurs for example due to
a cultural transformation, which results in altered user behavior [29].

Computing Resources and Scalability. Machine learning algorithms in general are very re-
source demanding, which is especially true for deep learning [64]. When it comes to massive
datasets and complex models, appropriate hardware is indispensable to stay within reasonable
training periods. On that account, researchers and practitioners often resort to GPUs for paral-
lelization and distributed training [3]. Several frameworks and platforms have evolved to sim-
plify the use of GPUs [43]. However, specialized hardware may not only be required when train-
ing or optimizing a model. Other steps within the deep learning work ow can become compu-
tationally intensive as well, such as large-scale data preparation or model serving when response

6 Chapter 2. Background

time performance is critical [17]. Thus, various roles involved in the work ow should be able to
access compute resources on demand and at scale.

Hyperparameter Optimization. Deep learning algorithms require the con guration of numer-
ous hyperparameters, for example the number of hidden layers and nodes, a learning rate and
an activation function [26]. These variables are set in advance of training and can have great
in uence on model performance [51]. Thus, there is a need for optimization. However, as the
model performance can only be validated during training, hyperparameter optimization can be-
come costly in terms of time and compute resources. Over the years, various frameworks have
emerged in the context of AutoML to reduce costs and accelerate this processe.g, through early
stopping of unpromising con gurations or automated neural architecture search. While building

a model, a data scientist should therefore have access to such a platform or framework to auto-
mate and simplify the process of hyperparameter tuning. Moreover, it should be comprehensible
how the optimal con guration was deduced.

Model Compression. There are various ways to deploy and serve machine learning models.
Depending on the use case, a model can be restricted by its environment in production. For
example, when deploying to edge devices, memory and processing power is limited [48]. On the
other hand, latency is crucial when a model serves in real-time [23]. As existing deep learning
models tend to be large and resource intensive, various approaches have evolved to overcome
these restrictions. In general, the techniques applied to compress a model and reduce resource
requirements include: pruning and quantization, low-rank factorization, convolutional lters and
knowledge distillation [9]. The methods of choice usually depend on the application domain,
accuracy requirements, type of model and dataset size. While some methods can be applied to
pretrained models, others do require a training from scratch.

Chapter 3

Related Work

While algorithms and frameworks to build machine learning models evolved quickly, other stages
of the work ow have been neglected for a long time. However, to integrate machine learning into
the current software applications, a need for a conceptual development process emerged.

Therefore, Amershi and his colleagues [6] investigated the development of machine learning ap-
plications at Microsoft. Through a case study, a high-level concept of the machine learning work-
ow composed of nine steps was deduced. Furthermore, they highlighted the current challenges
imposed during the machine learning development and introduced a model to measure the ma-
chine learning process maturity.

Salama and his collaborators [53] took the machine learning work ow a step further. From a more
practical perspective, they presented a conceptual representation of a fully integrated machine
learning system targeted towards continuous adaption to the business environment. Within their
work, it is illustrated what artifacts are produced during the work ow and how data is moved
and transformed between stages.

Garciaet al.[14] argue that a crucial piece currently missing in the machine learning work ow was
context. Unstructured and offhand transitions between stages — and consequently between roles
— could impair productivity and reproducibility. Therefore, artifacts produced by an individual
role should not appear as a black-box to other team members.

Furthermore, within the work of Haakman and his colleagues [22], it is argued that several steps
within the machine learning lifecycle had been neglected up to now. The authors interviewed 17
machine learning practitioners at ING, a company which operates in the ntech industry. These
interviews revealed that many existing work ow models do not compromise crucial steps such
as data collection, feasibility study, documentation, risk assessment, model evaluation and mon-
itoring. They stress that the machine learning development process should not only focus on
algorithms, but the complete lifecycle. Additionally, it is stated that the existing tools for machine
learning were not mature enough. Many practitioners would still rely on manual solutions, de-
spite the existence of automating technologies. Indeed, there is a broad set of tools available on
the market, with many still being in their early development phases [40,59]. Moreover, very few
are speci cally targeted towards deep learning.

Regarding the deep learning lifecycle, Miau et al.[38] addressed the issue of managing models
and their corresponding artifacts. They built a lifecycle management system for versioning mod-
els and a domain-speci ¢ language to query created deep learning models. Thereby, users can
explore and compare hyperparameter tuning experiments using external frameworks and pub-
lish models.

8 Chapter 3. Related Work

Zhang et al.[64] conducted an empirical study concerning common challenges within deep learn-
ing development. By collecting questions and answers on Stack Over owand building a classi ca-
tion model, they concluded ve categories of common issues: API misuse, incorrect hyperparam-
eter selection, GPU computation, static graph computation and limited debugging and pro ling
support. It is further stated that the current tool chain was not fully mature.

Moreover, Guo et al.[21] examined the in uence of platforms and frameworks on deep learning
development. Findings showed that a model suffers from diminishing accuracy when convert-
ing to another deep learning framework. They resulted to the conclusion that there would be
a demand for a universal deep learning platform. Additionally, various practical guidelines are
presented regarding stability and robustness of existing frameworks.

In summary, we argue that no investigation has yet been conducted on the complete work ow
speci cally for deep learning. Most research focuses on either a high-level abstraction of classical
machine learning or the implementation of speci c stages of the deep learning work ow.

Chapter 4

De nition of the Deep Learning
Work ow

In this thesis, we want to deduce the work ow required to perform end-to-end deep learning

and demonstrate the usage of the work ow through a minimal viable prototype. Therefore, this

chapter outlines the abstract deep learning work ow which complies with the requirements listed

in Chapter 2. First, we give a high-level overview of the components and roles required. Within
further sections, we provide a more detailed illustrations of all activities and interactions.

4.1 A High Level Overview

We describe the deep learning work ow as a ow chart which de nes the order of all activities
and the corresponding roles to take responsibility. Furthermore, the ow chart demonstrates what
data and operations may be involved at each step. The complete overview ow chartis visualized
in Figure 4.1. It is important to mention that some steps described in this abstract work ow can
be optional. We de ne the responsibility based on the general de nition of a role in a data science
team, as listed in Section 2.2. However, the allocation vastly depends on the project setting, the
roles responsible for a speci ¢ activity are therefore not xed.

Within the work ow, we distinguish between work ow steps and persistence entities, which
store data produced by a work ow step. We de ne the following types of persistence enti-
ties:

Code Repository stores source code within version control and allows sharing.

ML Data holds versioned testing and training data prepared by a data engineer, including
the corresponding metadata and labels.

Transformation Registry stores preprocessed data speci ¢ to a model, produced by a data
scientist for faster and more convenient access.

Experiment Registry tracks con guration, metrics and results from an experiment con-
ducted by a data scientist.

Model Registry holds model artifacts of all models registered. This includes model de ni-
tion (source code), con guration (hyperparameters, environment, etc.), metadata (version,
creator, time, etc.), dependencies €.g, software packages, les), and most importantly the
serialized model, i.e, the trained weights in binary format.

10 Chapter 4. De nition of the Deep Learning Work ow

Figure 4.1 : High-level overview of the deep learning work ow

4.2 Data Pipeline 11

Scoring Data stores prediction requests and results for analysis and monitoring.

Our work ow initially only allows one starting point, namely the “Project Start”. Moreover, there

is no point of termination as deep learning — as well as classical machine learning — is a cyclic pro-
cess due to continuous model improvements and adaptions to a possibly changing environment.
Upon further iterations of the lifecycle, various roles have the option to step in at almost any stage
of the work ow, either due to feedback loops or individual initiative.

At the beginning of every deep learning project, the requirements need to be de ned. This is usu-
ally an interdisciplinary activity, involving business, research and engineering [37]. After coming
to an agreement, a DevOps engineer is responsible for the initial setup. This includes the version-
controlled code repository and other technical infrastructure. The code repository represents a
central location to store, version and share source code, such that the complete work ow remains
reproducible. Once the setup is complete, other team members can start with their implementa-
tions.

Theoretically, the deep learning work ow compromises three fundamental pipelines, namely the
data, model and deployment pipeline, which are explicitly discussed in their respective section.
All pipelines share the requirement of high-performance computing (HPC) requests, involve a
subset of roles and interact with the de ned persistence entities. These pipelines are not necessar-
ily tied to a speci c order on a linear timeline and can be executed independently. Nevertheless,
the objective is to derive to a model in production. Once a model is deployed for inference, the
nal step of a work ow iteration, the “Model Maintenance”, is determining when and where to
re-enter the work ow. This can occur at various stages, illustrated by feedback loops on the ow
chart.

4.2 Data Pipeline

The data pipeline, displayed as a ow chart in Figure 4.2, is the fundamental element of the deep
learning work ow, as a deep learning model directly depends on the supplied data [42]. There
are essentially two roles present within the data pipeline: the data engineer and the data labeler,
whereas the latter is solely responsible for labeling data, as the name suggests.

The rst step in the data pipeline — “Data Collection” — is de ning the external sources for the
data. If the test and training set do not have different origins, the data engineer divides the
collected data in a reproducible manner at the subsequent step of “Data Splitting”. This step may
not be required on further iterations if the two datasets are updated independently. Once the
sources for the training and test data are de ned, the “Data Ingestion” step is targeted towards
loading the external data into a suitable storage option, illustrated as “Machine Learning (ML)
Data” in Figure 4.2. “Data Versioning” is indispensable and critical for data lineage [33] and
thus performed directly after data ingestion, presumably in an automated fashion. Afterwards,
the data engineer de nes how the ingested data is to be cleaned and validated, before deciding
whether the amount and quality of the data is suf cient for training a deep learning model. If
this is not the case, the data engineer returns to the step of “Data Collection”. Otherwise, the
prepared datasets are approved and released for “Data labeling” by the internal or external data
labeler.

The datasets generated by the data pipeline are required to be reproducible. Thus, not only the
datasets themselves require versioning, but also the process that produced these datasets. The
data engineer thus commits the de nitions of all steps performed within the data pipeline to the
version controlled code repository, initially set up by the DevOps engineer. On further iterations

of the deep learning lifecycle, when there is already a model available, one can optionally trigger

12 Chapter 4. De nition of the Deep Learning Work ow

Figure 4.2 : De nition of the abstract data pipeline

4.3 Model Pipeline 13

the execution of “Model Training” to analyze the performance with the new or updated dataset
as a form of Continuous Integration

When working with large and/or complex data, various steps within the data pipeline such as
“Data Ingestion”, “Data Cleaning” and “Data Validation” become resource demanding. There-
fore, a data engineer should be able to request computing resources on demand within the steps
of the pipeline.

4.3 Model Pipeline

Similar to the data pipeline, the model pipeline abstracted in the overview ow chart is de ned

in detail in Figure 4.3. There are two main actors within the model pipeline: the data scientist,
with the aim to build a performant model, and the model validator, with the role of reviewing the
model created by the data scientist. Similar to the data pipeline, a data scientist can request high-
performance computing resources on demand throughout the course of all steps of the model
pipeline.

Initially, an experiment is created by either modifying an existing version of the “Code Repos-
itory” or creating an experiment from scratch. As a rst step of the pipeline, the data scientist
analyzes the provided training data, whereby sensitive information may be hidden or masked.
Direct access to the testing data may as well not be granted, e.g, due to privacy reasons. Af-
ter the “Data Analysis”, the data is preprocessed to be compatible as model input if necessary.
At this step, the data scientist may choose to store a version of the transformed data within the
“Transformation Registry” for faster and more convenient access on further iterations. If the data
transformation changes on subsequent iterations, the data needs to be stored again, otherwise
it can simply be loaded into the experimentation environment. As a next step, the data is split
into a training and validation set, before the data scientist starts building a model. In contrast to
the “Data Splitting” step of the data pipeline, this step further divides the training data and is
not relevant to other pipelines. As opposed to the test dataset, the validation set is not further
used.

Upon “Model Building”, one has the option to load pretrained models from the model registry.
Within the ow chart in Figure 4.3, the model registry is illustrated as a single persistence en-
tity. However, pretrained models can be loaded from any private or public registry. Thus, there
may be multiple registries available to the data scientist for loading pretrained models. As an op-
tional step before training a model, “Hyperparameter (HP) Optimization” helps a data scientist
nding the optimal con guration of a de ned model. Subsequently, a training job is launched,
which can optionally be distributed over computing instances, given the training is resource-
intensive.

Whenever a training or hyperparameter tuning job is executed, the corresponding metadata, met-
rics and results are stored within the “Experiment Registry”. This acts as a central location for
experimentation history, not only available to the data scientist building the current model, but
also to other data scientists and model validators for review. Thereby, the evolution of a model
remains comprehensible.

At the step of “Experiment Evaluation”, the data scientist reviews his training experiment based
on the validation results and other metrics [65]. If not satis ed, they return to previous stages
of the model pipeline. Otherwise, the model is registered on the “Model Registry” to make it
available for “Model Evaluation”. At this point, the testing data is loaded together with the model
artifacts to test the produced model. In case the testing data contains sensitive information, the
“Model Evaluation” can be conducted in a secure environment. Consequently, the test results are

14 Chapter 4. De nition of the Deep Learning Work ow

Figure 4.3 : De nition of the abstract model pipeline

4.4 Deployment Pipeline 15

stored to the metrics of the model within the registry. Based on the evaluation results, the data
scientist then decides to either submit the model for review or return to previous steps of the
model pipeline.

During the “Model Submission” step, the corresponding source code of the registered model is
submitted to the code repository, although the source code is included in the model artifacts.
However, the “Code Repository” should hold all source code required to reproduce a work ow
iteration.

After the data scientist submitted his model, the model validator reviews the registered and eval-
uated model by loading corresponding artifacts. Such a review focuses on model quality and can
include various metrics such as accuracy, sensitivity, precision, different error measures or rank-
ing methods [57]. These metrics can be compared to other produced models, possibly already
deployed to production. If the results are not satisfactory, data scientists can return to specic
steps within the model pipeline and improve the model version at the model validator's request.
Furthermore, the model validator can instruct the data engineer to collect new or more qualitative
data, as illustrated in the overview ow chart in Figure 4.1. In case of approval, the created model
is promoted to production, which triggers the deployment pipeline.

4.4 Deployment Pipeline

Once a model has been approved and promoted to production, the goal is to deploy the model.
Besides other roles involved in the deployment pipeline, the DevOps engineer is primarily re-
sponsible for bringing a model into the deployment environment. As in the data and model

pipeline, there are certain steps within the pipeline that require computing resources on demand,
such as “Model Deployment”. The deployment pipeline is illustrated in Figure 4.4.

In case the model is not yet suitable for future retraining, the source code needs to be refactored
into a performant, automation and testing friendly form. This task called “Model Implementa-
tion” is performed by a software engineer as a rst step of the deployment pipeline. A software
engineer has advanced knowledge on runtime performance and memory usage and can therefor
make the source code more ef cient for retraining. The implementation is further reviewed by
the model validator and stored to the model registry with the corresponding model.

As an optional step within the deployment pipeline, the model can be compressed to reduce size
and latency, e.g, by using the methods listed in Section 2.3: pruning and quantization, low-rank
factorization, convolutional Iters and knowledge distillation. In this case, the model needs to be
tested and compared to the initial model to prevent a signi cant decrease in accuracy. For certain
model compression techniques, retraining the model is additionally required before testing [9].
This is conducted during the stage of “Model Revision”. The model artifacts in the “Model Reg-
istry” have to be updated, if the model de nition has been refactored.

After the preceding preparation steps, the DevOps engineer packages the model into an appropri-
ate form for inference, which wraps the loaded model with an additional layer to serve prediction
requests. Subsequently, they write a manifest which de nes the deployment con guration and
nally deploy the model to production.

Once the model is deployed, a data scientist is required to monitor the model for environment
changes,e.qg, for concept drifts as described in Section 2.3. Therefore, input data from prediction
requests together with their metadata and results are stored within a database for analysis. In
case the model performance declines or other issues occur, the nal step of “Model Maintenance”
initializes the next lifecycle iteration based on the interpretation of the “scoring data”.

16 Chapter 4. De nition of the Deep Learning Work ow

Figure 4.4 : De nition of the abstract deployment pipeline

Chapter 5

Prototype Implementation

Throughout the following sections, we implement a minimum viable prototype that enables the
deep learning work ow de ned in Chapter 4. Thereby, we demonstrate the transfer of the con-
ceptual work ow into a practical implementation. To do so, we select available technologies that
ful Il the requirements given through the characteristics of deep learning listed in Section 2.3 and
our de ned work ow. Technical instructions on the prototype can be found in the associated

GitHub repository at https://github.com/janousy/CDL

5.1 Technologies of Choice

There is a relatively new, but fast-growing market for technologies that partially or completely
facilitate the machine learning work ow. At the time of this thesis, the landscape of tools avail-
able is broad and not fully mature [59]. Few are targeted towards deep learning only, as their
vendors provide generic solutions to problems of the machine learning work ow. Nevertheless,
these solutions can often be transferred to various subtypes of machine learning. There are some
emerging platforms that try to cover the complete machine learning work ow, such as Vertex Al
or Sagemakemaintained by Google and Amazon respectively. However, these solutions can intro-
duce immense costs, especially with frequent usage of GPUs [4, 18]. In behalf of reproducibility,
we restrict our selection of tools to being deployable on-premise, available for free and preferably
open-source.

5.1.1 Hardware and Infrastructure

We use the computing and storage resources provided by the ScienceCloud [58] of the University
of Zurich (UZH), which lets us provision virtual machines (VM). In fact, two VMs are used:

a large VM with 32 vCPUs, a single Nvidia Tesla T4 GPU and 128 GB of RAM;
a small VM with 2 vCPUs and 8 GB of RAM.

The speci cations of the large VM are chosen regarding the minimal resources to host all tech-
nologies required to run the deep learning work ow and meet the demands described in section
Section 2.3. A single GPU is the maximum amount available per VM on the ScienceCloud. How-
ever, to demonstrate distributed training, at least two GPUs would be required. To independently
and securely host a code repository, a second VM is introduced with near minimal speci cation
to spare resources. Both VMs run Ubuntu 18.04 as their operating system.

18 Chapter 5. Prototype Implementation

To meet the requirement of scalability within the deep learning work ow, we select Kubernetess
our infrastructure of choice. Kuberneteserves an open-source system for scalable container or-
chestration [32]. In the context of this thesis, we use Microk8s a lightweight upstream Kubernetes
with low operation costs and GPU support [8]. However, the prototype is portable to any Ku-
bernetewersion. For our use case, aMicrok8ssingle-node cluster is hosted on the large VM. As a
container technology of choice, we use Dockerdue to being widely used across the developer com-
munity. Furthermore, DockerHubserves as the container registry to push and pull images.

5.1.2 Work ow Tools

Hereinafter, the technologies that directly support the implementation of the work ow tasks and
persistence entities are described. Our selection is based on the recommendations of the MLOps
Community [40] and Visengeriyeva et al.[59]. A summary of the technologies used, their purpose
and what persistence entity they represent can be found in Table 5.1. It is important to note that
this selection is not xed and could be swapped with any tools with similar features.

Table 5.1: Technologies used to implement the deep learning work ow, not including underlying infrastruc-
ture.

Technology Purpose Persistence Entity

GitLab version control, CI/CD Code Repository

Minio object storage Model Registry

Postgres store labels and experiment data | ML Data

LabelStudio data labelling -

Pachyderm data lineage, object storage ML Data, Transformation Registry
Determined Al | model pipeline Model Registry

Seldon model deployment -

We chooseGitLab[15] as our version control system (VCS), thereby representing the “Code Repos-
itory”. GitLabcan be hosted on premise, provides mature features for CI/CD and integrates well
with Kubernetes

To achieve data lineage,i.e, data pipelines and version-controlled datasets, Pachyderni45] is se-
lected. Pachydernallows us to execute containerized tasks on a Kubernetesluster in a scalable,
parallel and distributed manner. Pachyderntan serve as a general object storage technology, thus
can be used to store unstructured datasets and as the “Transformation Registry” by the data sci-
entist to cache transformed data.

Furthermore, we use LabelStudig24] to integrate data labelling into our work ow implementa-
tion. LabelStudias compatible with various types of data, especially unstructured data commonly
used in deep learning applications such as computer vision, natural language processing and au-
dio processing [5]. The labels — together with their metadata — are stored to a PostgreSQL[50]
database for fast and convenient queries. We further refer to PostgreSQlas Postgres

For tasks related to the model pipeline, we use a cloud-native platform speci cally targeted to-
wards deep learning called Determined AI[10], further referred to as Determined This platform
addresses the need for distributed training, hyperparameter tuning and compute resource man-
agement. Determinedautomatically tracks experiments for analysis and additionally provides a

5.2 Mapping Abstraction and Implementation 19

model registry to store model artifacts. Thereby, a data scientist can focus on building and op-

timizing a model. Under the hood, a Postgresinstance represents the “Experiment Registry”,
whereas a Minio [39] bucket is con gured to store artifacts of the “Model Registry”. Minio is a
widely used, cloud-native object store.

To deploy models at scale to KubernetesSeldon[56] is used. Seldonsupports a large spectrum
of machine learning libraries and deployment con gurations. A model can be brought to pro-
duction by simply building a language wrapper around the model and specifying the container
environment. Although there are alternative technologies to deploy machine learning models on
KubernetesSeldoncurrently appears to be the most mature solution.

We do notimplement the “Scoring Data” persistence entity, as “Model Monitoring” would exceed
the scope of this thesis. Nevertheless, aPostgresiatabase holding results of requests and possibly
references to provided les stored to Pachydernwould be applicable.

5.2 Mapping Abstraction and Implementation

With the technologies selected in Section 5.1.2, we can build a deep learning system that imple-
ments our abstract work ow of Chapter 4. By mapping the technologies to tasks and persistence
entities, we demonstrate how these integrate into the deep learning work ow. For each pipeline,
we will walk through the practical utilization of the technologies.

5.2.1 Data Pipeline Implementation

Besides other tools for CI/CD, the main technologies within the data pipeline are Pachyderrmand
LabelStudioFigure 5.1 illustrates how these technologies are integrated into the data pipeline.

The data engineer de nes all steps of the pipeline with a programming language of choice, from
“Data Collection” to “Data Validation”. As mentioned in Section 4.2, the steps “Data Collection”
and “Data Splitting” are not necessarily part of the automated pipeline. In our case, the “Data
Labelling” also remains a manual step. The data engineer can de ne different sources for training
and testing data — which implicitly splits the data — and then build separate pipelines. However,

it is important that both data sets are processed the same way, i.e, the same scripts for each step
are used. Otherwise, the datasets could exhibit different characteristics, for example when the
training and testing data are validated differently.

Once all steps are de ned, the data engineer packages the scripts into a pipeline by writing a
manifest complying to the Pachydermformat, which has either JSON or YAML format. Within
this manifest, they optionally specify the resources to be used at each step, such as GPU, CPU
and memory. Additionally, one can de ne how ingested data is processed, e.g, as streams or
in batches. The data engineer further de nes the Dockercontainer, wherein the pipeline is ex-
ecuted. They then commit their work to the GitLab code repository. This triggers the build of
the Dockerimage and subsequently a push to DockerHub Moreover, the pipeline is indirectly de-
ployed to Kubernetesia Pachyderm The execution of the pipeline is initiated each time data is
ingested.

Pachydernpresents input and output repositories for each pipeline. Thus, the output of the “Data
Validation” can automatically be ingested into LabelStudio Once the data has been annotated by
the data labeler, the labels are exported in a format of choice into another Pachydernrepository.
From there, the labels are stored to aPostgresiatabase, where the testing and training data reside
in separate tables. Within a table, a row keeps information about the label, the corresponding

	Introduction
	Background
	Classical Machine Learning Workflow
	Roles in Machine Learning
	Workflow Critical Aspects of Deep Learning

	Related Work
	Definition of the Deep Learning Workflow
	A High Level Overview
	Data Pipeline
	Model Pipeline
	Deployment Pipeline

	Prototype Implementation
	Technologies of Choice
	Hardware and Infrastructure
	Workflow Tools

	Mapping Abstraction and Implementation
	Data Pipeline Implementation
	Model Pipeline Implementation
	Deployment Pipeline Implementation

	Use Cases
	News Classification
	Data Pipeline
	Model Pipeline
	Deployment Pipeline

	Fashion Classification
	Data Pipeline
	Model Pipeline
	Deployment Pipeline

	Discussion
	Conclusion

