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Abstract

Deep learning has gained immense attraction with the emergence of big data and advanced
computing power. Through the use of artificial neural networks, various breakthroughs were
achieved in fields such as language understanding and image recognition. Nevertheless, it has
soon become clear that deep learning and machine learning in general impose various additional
challenges besides building an accurate model. Researchers have been highly active to investigate
the classical machine learning workflow and integrate best practices from the software engineer-
ing lifecycle. However, deep learning exhibits deviations which are not yet covered in this con-
ceptual development process. This includes the requirement of dedicated hardware, dispensable
feature engineering, extensive hyperparameter optimization, large-scale data management and
model compression to reduce size and inference latency. Individual problems of deep learning
are under thorough examination, and numerous concepts and implementations have gained trac-
tion. However, the complete end-to-end development process still remains unspecified. In this
thesis, we defined a detailed deep learning workflow that incorporates the aforementioned char-
acteristics on the baseline of the classical machine learning workflow. We further transferred the
conceptual idea into practice by building a prototypic deep learning system using the latest tech-
nologies on the market. To examine the feasibility of the workflow, two use cases were applied
to the prototype. The first use case represented a text classification problem, while the second
use case focused on image processing. We thereby successfully demonstrated the application of
the workflow on distinct examples. In summary, it becomes apparent that the deep learning life-
cycle compromises a large set of steps and involves various roles. With our defined workflow,
we present a profound guideline for the deep learning development process. Moreover, we con-
clude that the technologies currently available on the market are not fully mature. Great effort
is required to manage all deep learning artifacts and keep versions aligned within continuous
iterations over the lifecycle.





Zusammenfassung

Deep Learning hat mit dem Aufkommen von Big Data und fortschrittlicher Rechenleistung im-
menses Interesse gewonnen. Durch den Einsatz von künstlichen neuronalen Netzwerken wur-
den verschiedene Durchbrüche in Gebieten wie Sprachverständnis und Bilderkennung erzielt.
Dennoch wurde schnell klar, dass Deep Learning und Machine Learning im Allgemeinen neben
der Erstellung eines akkuraten Modells verschiedene zusätzliche Herausforderungen mit sich
bringen. Forscher waren sehr aktiv, um den klassischen Workflow des maschinellen Lernens
zu untersuchen und Best Practices aus dem Lebenszyklus der Softwareentwicklung zu integri-
eren. Deep Learning weist jedoch Abweichungen auf, die in diesem konzeptionellen Entwick-
lungsprozess noch nicht berücksichtigt sind. Dazu gehören die Notwendigkeit dedizierter Hard-
ware, entbehrliches Feature-Engineering, aufwendige Hyperparameter-Optimierung, umfangre-
iches Datenmanagement und Modellkompression zur Reduzierung der Grösse und Latenz. Die
einzelnen Probleme von Deep Learning werden bis heute gründlich untersucht, und zahlre-
iche Konzepte und Implementierungen haben an Zugkraft gewonnen. Der komplette Entwick-
lungsprozess ist jedoch noch immer nicht spezifiziert. In dieser Arbeit haben wir einen detail-
lierten Deep-Learning-Workflow definiert, der die oben genannten Eigenschaften auf der Basis
des klassischen Machine-Learning-Workflows einbezieht. Des Weiteren haben wir die konzep-
tionelle Idee in die Praxis übertragen, indem wir ein prototypisches Deep-Learning-System unter
Verwendung der neuesten Technologien auf dem Markt entwickelt haben. Um die Anwend-
barkeit des Workflows zu untersuchen, wurden zwei Beispiele auf den Prototyp angewendet.
Der erste Anwendungsfall stellte ein Textklassifizierungsproblem dar, während sich der zweite
Anwendungsfall auf die Bildverarbeitung konzentrierte. Damit konnten wir die Anwendung
des Workflows an unterschiedlichen Beispielen erfolgreich demonstrieren. Zusammenfassend
wird deutlich, dass der Deep-Learning-Lebenszyklus eine grosse Anzahl von Aktivitäten um-
fasst und verschiedene Rollen involviert. Mit unserem definierten Workflow stellen wir einen
fundierten Leitfaden für den Deep-Learning-Entwicklungsprozess vor. Darüber hinaus kommen
wir zu dem Schluss, dass die derzeit auf dem Markt verfügbaren Technologien nicht vollständig
ausgereift sind. Es ist ein grosser Aufwand erforderlich, um alle Deep-Learning-Artefakte zu ver-
walten und die Versionen innerhalb kontinuierlicher Iterationen über den Lebenszyklus hinweg
abzustimmen.
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Chapter 1

Introduction

With the rise of big data, cloud computing and other topics of the digital age, artificial intelligence
(AI) has emerged as a promising field to harness the potential of the tremendous information
growth. AI enables humanity to teach machines how to solve problems that may be intuitive, but
difficult to describe formally, i.e., feel automatic to human individuals [16]. There are numerous
active research topics in AI, and many findings have been successfully adopted in practice. One
of these topics is deep learning – a subset of machine learning – which is applied in domains such
as image processing, speech recognition, or autonomous driving [21]. The core concept of deep
learning is based on biomimicry of interconnected human neurons, so-called neural networks.
Neural networks form a computational model composed of multiple processing layers to learn
the representation of data and predict the output of raw input [34].

Together with the emergence of various new data-centric fields, the role of a data scientist was in-
troduced in the early 20th century. Their main responsibility is to transform data into insights [31].
By today, as more software applications tend to include AI features, data scientists are often in-
corporated into software engineering teams to facilitate multidisciplinary development [30]. This
incorporation requires software engineers to learn how to work with data science specialists [6].
On one hand, developing AI software requires proficiency in data analysis and statistics, e.g., for
neural network design and evaluation. On the other hand, additional engineering aspects are also
demanded, such as the configuration of the application environment and deployment solution to
facilitate a continuous development lifecycle [21].

The traditional software engineering lifecycle is usually maintained through continuous integra-
tion (CI) and continuous delivery (CD) to enable planning, development and deployment of a
software artifact. Moreover, DevOps – which stands for development and operations – has man-
ifested as a practice (and even as a culture) to merge continuous lifecycle management into a
single set of processes. Although the machine learning lifecycle is different from traditional
software development [6], a similar framework named MLOps has been introduced, i.e., ma-
chine learning operations. In this process setting, data scientists create the development environ-
ment, while software/operation engineers are responsible for the setup of the production envi-
ronment [28].

Problem Domain. In general, machine learning lifecycles require sophisticated pipelines, that
facilitate data management, training, deployment and model integration into the corresponding
product. A previous case study at Microsoft [6] was conducted to describe the current concept
of machine learning development and proposed an abstract workflow reaching from model re-
quirements up to model monitoring in production. In general, a workflow consists of an ordered



2 Chapter 1. Introduction

sequence of activities required to achieve one or multiple goals [1]. An activity is defined as a task
contributing to the defined objective, which can be performed either automatically or manually
by a determined individual. Regarding information technology, a workflow provides systematic
organization and reproducibility to the development process, while reducing costs and increasing
productivity [11].

However, in the context of deep learning, there is still lack of guidance when it comes to inte-
grating it into the software development process. Such a workflow may deviate from the one
proposed by Microsoft. For example, while conventional machine learning is based on manual
feature engineering, deep learning is based on an end-to-end approach, i.e., features are learned
automatically [38]. Moreover, high performance graphical processing units (GPU) are recom-
mended to be able to train a neural network in reasonable time, since the training process is
computationally expensive [3]. Several of these problems specific to deep learning have been
addressed in past research. For instance, advanced algorithms have been proposed to accelerate
the process of finding the optimal parameters and new platforms have been introduced to make
GPU training more accessible to researches and practitioners [26, 44]. However, the concepts and
technologies presented are still relatively new and not yet fully mature [22]. Additionally, these
individual solutions have not yet been assembled to an end-to-end development process for deep
learning. A conceptual representation of the complete workflow and a corresponding implemen-
tation still remains undefined.

Contribution. To overcome the above stated knowledge gap, the aim of this thesis is to inves-
tigate the current development workflow of deep learning in the context of machine learning
lifecycle management. The goal is to specify best-practice guidelines from model development
to deployment and execution, i.e., bringing deep learning models into production. Therefore,
lifecycle critical differences to conventional machine learning are collected and integrated into an
extended workflow for the deep learning lifecycle. Additionally, a prototype will be implemented
to demonstrate the practicability of the defined workflow. Overall, this thesis will summarize the
current state of research focused on the deep learning workflow and investigate the applicability
into practice. We will demonstrate that our abstract definition of the workflow can be successfully
utilized in common deep learning applications. Moreover, despite the construction of an effec-
tive prototype, we indicate that the technologies currently available on the market are not fully
mature.

Outline. This thesis is organized as follows. Chapter 2 summarizes the theoretical baseline for
this thesis, which includes the workflow defined for classical machine learning, the roles involved
in a machine learning team and the decisive characteristics of deep learning. In Chapter 3 we
will describe the correlated research. We will then derive the abstract deep learning workflow
in Chapter 4, using the collected particularities of deep learning. This abstract definition is then
implemented in a minimum viable prototype in Chapter 5, where we select a set of technologies
to facilitate end-to-end deep learning. The usage of our prototype and consequently the applica-
bility of our abstract workflow is then demonstrated on two distinct use cases in Chapter 6. Our
findings are discussed in Chapter 7 and ultimately concluded in Chapter 8.



Chapter 2

Background

Within the following sections, we build the theoretical baseline to investigate the deep learning
workflow. Therefore, the classical machine learning workflow is outlined together with the roles
involved in a machine learning team. Most importantly, we discuss the distinct characteristics of
deep learning that have an influence on the workflow.

2.1 Classical Machine Learning Workflow
Although many software engineering principles can be transferred to machine learning develop-
ment, various new challenges have to be solved [36]. In comparison, machine learning projects ex-
hibit many critical differences. For example, development is data-centric instead of code-centric,
individual modules are hard to isolate, and the project team is more divers in terms of the re-
quired skill-set [6]. Maintenance is more difficult and costly than development, as a model needs
to be continuously improved and adopted to a changing environment [55]. This leads to more fre-
quent iterations over the workflow compared to classical software engineering. Due to the non-
deterministic behavior, machine learning becomes a highly experimental process, which brings
up the need for reproducibility [62].

Thus, researchers have been actively investigating the machine learning workflow. Despite minor
differences, the current literature has agreed on a converging conceptual idea of the workflow [6,7,
33,37]. In the context of this thesis, we rely on the workflow definition of Amershi et al. [6], which
is composed of the nine steps illustrated in Figure 2.1. As deep learning is a subset of machine
learning, all the defined steps can be incorporated into the deep learning workflow. However, the
embedded steps will be extended and expressed in more detail to meet the requirements of deep
learning. We thus take their workflow definition as a starting point.

The steps defined by Amershi et al. can briefly be summarized as follows: the first stage of the
workflow, model requirements, focuses on the problem analysis from the business perspective and
corresponding solutions [6]. The following steps of data collection, cleaning and labeling are tar-
geted towards providing the necessary datasets to train and test a model [33]. The fifth workflow
component called feature engineering includes the selection and transformation of informative ele-
ments of the raw data into an appropriate form for model inputs [66]. During model training, a set
of algorithms then learns from the selected features and is subsequently tested during model eval-
uation. Such that the produced model can be used by applications or end-users, model deployment
compromises the tasks to serve a model for inference [6]. As a final stage, the main purpose of
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model monitoring is detecting the moment where a model no longer fits its purpose and therefore
is required to be revised [33].

Figure 2.1: The classical machine learning workflow by Amershi et al. [6]

Although these steps are theoretically executed in sequence, the machine learning workflow is not
necessarily tied to a linear timeline. The workflow involves several feedback loops, illustrated by
backward arrows in Figure 2.1. For example, model monitoring may uncover a distribution shift of
the data, which indicates that the training and/or testing data needs to be updated. On the other
hand, the stage of model evaluation may reveal insufficient performance and compel a return to
previous steps of the workflow. Because of these feedback loops, the machine learning lifecycle
exhibits higher complexity than traditional software engineering [55].

2.2 Roles in Machine Learning
There are many actors involved in the machine learning lifecycle, each having various and possi-
bly overlapping responsibilities. Machine learning is a fast changing field, thus the engaged roles
and their corresponding tasks are not absolutely well-defined [54]. In the context of this thesis, we
define six important roles based on the current literature [7, 33, 37]. These roles are later matched
to the deep learning workflow based on their responsibilities.

Data Engineer. The main essential responsibility of a data engineer – in the context of machine
learning – is to provide the required data to build a model. To do so, they construct scalable
pipelines that acquire, prepare and store data securely [33]. Data engineers should also be able
to help continuously train and deploy existing models [5]. Thus, they work in close collaboration
with data scientists.

Data Labeler. Semi-supervised and supervised machine learning approaches require labeled
data to train and evaluate a model. Most often, human effort is necessary to provide labels for
the datasets prepared by the data engineer. Thereby, it is essential to have a highly accurate
ground-truth for a model to become performant [5]. Labeling data is thus a crucial step within
the machine learning workflow. The role of a data labeler can be filled internally, e.g., by data
engineers or domain experts, or externally through crowd-sourcing [5].

DevOps Engineer. In general, a DevOps Engineer supports machine learning by introducing
and maintaining processes, tools, and methodologies [52]. They set up the initial infrastructure
that will be used by other roles during the machine learning workflow. Moreover, they support
model deployment and monitoring. Depending on the project environment, a DevOps Engineer
is not necessarily part of the machine learning team but still involved in the workflow [52].
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Data Scientist. When it comes to data analysis, exploration, feature engineering and model
building, the data scientist serves as the central role [33]. They are responsible for prototyping a
machine learning model, commonly in an experimental environment such as a notebook. Besides
statistical and mathematical knowledge, data scientists are further required to possess domain
knowledge for their model to create business value [7].

Software Engineer. Within the machine learning team, software engineers (or developers) with
the appropriate machine learning knowledge help productionizing a model. As data scientists
often only build prototypes within an experimental environment, their work needs to be put into
a deployable form [33]. This includes for example tasks such as API design for effective prediction
requests.

Model Validator. Also referred to as the data science manager, a model validator takes respon-
sibility of the project. They possess knowledge from both field – machine learning and software
engineering – and additionally bring domain expertise to ensure the business requirements are
accomplished [12].

2.3 Workflow Critical Aspects of Deep Learning
In this thesis, we focus on supervised deep learning. Nevertheless, unsupervised approaches
have been proposed in research, such as clustering analysis, sample specificity analysis, self-
supervised learning and generative models [25]. The following sections introduce the charac-
teristics of deep learning that have an impact on the development process. These will later be
used to derive the deep learning workflow.

Data Management. A decisive property of deep learning is the ability to automatically learn
multiple levels of data representations and abstract information, which diminishes the need for
manual feature engineering [16]. This advantage in turn increases the necessity of having high-
quality data to train a model on. Moreover, deep learning algorithms often rely on large amounts
of data to make accurate predictions [42]. Therefore, data management at scale is crucial within
the deep learning workflow. This, however, imposes the need for data pipelines to reduce hu-
man effort and automate the process of handling batch or streaming data [41]. Such pipelines
should ingest the collected data into an appropriate storage solution, which can handle structure
or unstructured objects together with their metadata [7]. In case of regulated industries or sen-
sitive data in general, a secure storage location is required [42]. Furthermore, data needs to be
continuously updated as the model environment changes. One common problem is concept drift,
where the relationship between model input and output changes. This occurs for example due to
a cultural transformation, which results in altered user behavior [29].

Computing Resources and Scalability. Machine learning algorithms in general are very re-
source demanding, which is especially true for deep learning [64]. When it comes to massive
datasets and complex models, appropriate hardware is indispensable to stay within reasonable
training periods. On that account, researchers and practitioners often resort to GPUs for paral-
lelization and distributed training [3]. Several frameworks and platforms have evolved to sim-
plify the use of GPUs [43]. However, specialized hardware may not only be required when train-
ing or optimizing a model. Other steps within the deep learning workflow can become compu-
tationally intensive as well, such as large-scale data preparation or model serving when response
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time performance is critical [17]. Thus, various roles involved in the workflow should be able to
access compute resources on demand and at scale.

Hyperparameter Optimization. Deep learning algorithms require the configuration of numer-
ous hyperparameters, for example the number of hidden layers and nodes, a learning rate and
an activation function [26]. These variables are set in advance of training and can have great
influence on model performance [51]. Thus, there is a need for optimization. However, as the
model performance can only be validated during training, hyperparameter optimization can be-
come costly in terms of time and compute resources. Over the years, various frameworks have
emerged in the context of AutoML to reduce costs and accelerate this process, e.g., through early
stopping of unpromising configurations or automated neural architecture search. While building
a model, a data scientist should therefore have access to such a platform or framework to auto-
mate and simplify the process of hyperparameter tuning. Moreover, it should be comprehensible
how the optimal configuration was deduced.

Model Compression. There are various ways to deploy and serve machine learning models.
Depending on the use case, a model can be restricted by its environment in production. For
example, when deploying to edge devices, memory and processing power is limited [48]. On the
other hand, latency is crucial when a model serves in real-time [23]. As existing deep learning
models tend to be large and resource intensive, various approaches have evolved to overcome
these restrictions. In general, the techniques applied to compress a model and reduce resource
requirements include: pruning and quantization, low-rank factorization, convolutional filters and
knowledge distillation [9]. The methods of choice usually depend on the application domain,
accuracy requirements, type of model and dataset size. While some methods can be applied to
pretrained models, others do require a training from scratch.



Chapter 3

Related Work

While algorithms and frameworks to build machine learning models evolved quickly, other stages
of the workflow have been neglected for a long time. However, to integrate machine learning into
the current software applications, a need for a conceptual development process emerged.

Therefore, Amershi and his colleagues [6] investigated the development of machine learning ap-
plications at Microsoft. Through a case study, a high-level concept of the machine learning work-
flow composed of nine steps was deduced. Furthermore, they highlighted the current challenges
imposed during the machine learning development and introduced a model to measure the ma-
chine learning process maturity.

Salama and his collaborators [53] took the machine learning workflow a step further. From a more
practical perspective, they presented a conceptual representation of a fully integrated machine
learning system targeted towards continuous adaption to the business environment. Within their
work, it is illustrated what artifacts are produced during the workflow and how data is moved
and transformed between stages.

Garcia et al. [14] argue that a crucial piece currently missing in the machine learning workflow was
context. Unstructured and offhand transitions between stages – and consequently between roles
– could impair productivity and reproducibility. Therefore, artifacts produced by an individual
role should not appear as a black-box to other team members.

Furthermore, within the work of Haakman and his colleagues [22], it is argued that several steps
within the machine learning lifecycle had been neglected up to now. The authors interviewed 17
machine learning practitioners at ING, a company which operates in the fintech industry. These
interviews revealed that many existing workflow models do not compromise crucial steps such
as data collection, feasibility study, documentation, risk assessment, model evaluation and mon-
itoring. They stress that the machine learning development process should not only focus on
algorithms, but the complete lifecycle. Additionally, it is stated that the existing tools for machine
learning were not mature enough. Many practitioners would still rely on manual solutions, de-
spite the existence of automating technologies. Indeed, there is a broad set of tools available on
the market, with many still being in their early development phases [40, 59]. Moreover, very few
are specifically targeted towards deep learning.

Regarding the deep learning lifecycle, Miau et al. [38] addressed the issue of managing models
and their corresponding artifacts. They built a lifecycle management system for versioning mod-
els and a domain-specific language to query created deep learning models. Thereby, users can
explore and compare hyperparameter tuning experiments using external frameworks and pub-
lish models.
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Zhang et al. [64] conducted an empirical study concerning common challenges within deep learn-
ing development. By collecting questions and answers on Stack Overflow and building a classifica-
tion model, they concluded five categories of common issues: API misuse, incorrect hyperparam-
eter selection, GPU computation, static graph computation and limited debugging and profiling
support. It is further stated that the current tool chain was not fully mature.

Moreover, Guo et al. [21] examined the influence of platforms and frameworks on deep learning
development. Findings showed that a model suffers from diminishing accuracy when convert-
ing to another deep learning framework. They resulted to the conclusion that there would be
a demand for a universal deep learning platform. Additionally, various practical guidelines are
presented regarding stability and robustness of existing frameworks.

In summary, we argue that no investigation has yet been conducted on the complete workflow
specifically for deep learning. Most research focuses on either a high-level abstraction of classical
machine learning or the implementation of specific stages of the deep learning workflow.



Chapter 4

Definition of the Deep Learning
Workflow

In this thesis, we want to deduce the workflow required to perform end-to-end deep learning
and demonstrate the usage of the workflow through a minimal viable prototype. Therefore, this
chapter outlines the abstract deep learning workflow which complies with the requirements listed
in Chapter 2. First, we give a high-level overview of the components and roles required. Within
further sections, we provide a more detailed illustrations of all activities and interactions.

4.1 A High Level Overview
We describe the deep learning workflow as a flow chart which defines the order of all activities
and the corresponding roles to take responsibility. Furthermore, the flow chart demonstrates what
data and operations may be involved at each step. The complete overview flow chart is visualized
in Figure 4.1. It is important to mention that some steps described in this abstract workflow can
be optional. We define the responsibility based on the general definition of a role in a data science
team, as listed in Section 2.2. However, the allocation vastly depends on the project setting, the
roles responsible for a specific activity are therefore not fixed.

Within the workflow, we distinguish between workflow steps and persistence entities, which
store data produced by a workflow step. We define the following types of persistence enti-
ties:

• Code Repository stores source code within version control and allows sharing.

• ML Data holds versioned testing and training data prepared by a data engineer, including
the corresponding metadata and labels.

• Transformation Registry stores preprocessed data specific to a model, produced by a data
scientist for faster and more convenient access.

• Experiment Registry tracks configuration, metrics and results from an experiment con-
ducted by a data scientist.

• Model Registry holds model artifacts of all models registered. This includes model defini-
tion (source code), configuration (hyperparameters, environment, etc.), metadata (version,
creator, time, etc.), dependencies (e.g., software packages, files), and most importantly the
serialized model, i.e., the trained weights in binary format.
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Figure 4.1: High-level overview of the deep learning workflow
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• Scoring Data stores prediction requests and results for analysis and monitoring.

Our workflow initially only allows one starting point, namely the “Project Start”. Moreover, there
is no point of termination as deep learning – as well as classical machine learning – is a cyclic pro-
cess due to continuous model improvements and adaptions to a possibly changing environment.
Upon further iterations of the lifecycle, various roles have the option to step in at almost any stage
of the workflow, either due to feedback loops or individual initiative.

At the beginning of every deep learning project, the requirements need to be defined. This is usu-
ally an interdisciplinary activity, involving business, research and engineering [37]. After coming
to an agreement, a DevOps engineer is responsible for the initial setup. This includes the version-
controlled code repository and other technical infrastructure. The code repository represents a
central location to store, version and share source code, such that the complete workflow remains
reproducible. Once the setup is complete, other team members can start with their implementa-
tions.

Theoretically, the deep learning workflow compromises three fundamental pipelines, namely the
data, model and deployment pipeline, which are explicitly discussed in their respective section.
All pipelines share the requirement of high-performance computing (HPC) requests, involve a
subset of roles and interact with the defined persistence entities. These pipelines are not necessar-
ily tied to a specific order on a linear timeline and can be executed independently. Nevertheless,
the objective is to derive to a model in production. Once a model is deployed for inference, the
final step of a workflow iteration, the “Model Maintenance”, is determining when and where to
re-enter the workflow. This can occur at various stages, illustrated by feedback loops on the flow
chart.

4.2 Data Pipeline
The data pipeline, displayed as a flow chart in Figure 4.2, is the fundamental element of the deep
learning workflow, as a deep learning model directly depends on the supplied data [42]. There
are essentially two roles present within the data pipeline: the data engineer and the data labeler,
whereas the latter is solely responsible for labeling data, as the name suggests.

The first step in the data pipeline – “Data Collection” – is defining the external sources for the
data. If the test and training set do not have different origins, the data engineer divides the
collected data in a reproducible manner at the subsequent step of “Data Splitting”. This step may
not be required on further iterations if the two datasets are updated independently. Once the
sources for the training and test data are defined, the “Data Ingestion” step is targeted towards
loading the external data into a suitable storage option, illustrated as “Machine Learning (ML)
Data” in Figure 4.2. “Data Versioning” is indispensable and critical for data lineage [33] and
thus performed directly after data ingestion, presumably in an automated fashion. Afterwards,
the data engineer defines how the ingested data is to be cleaned and validated, before deciding
whether the amount and quality of the data is sufficient for training a deep learning model. If
this is not the case, the data engineer returns to the step of “Data Collection”. Otherwise, the
prepared datasets are approved and released for “Data labeling” by the internal or external data
labeler.

The datasets generated by the data pipeline are required to be reproducible. Thus, not only the
datasets themselves require versioning, but also the process that produced these datasets. The
data engineer thus commits the definitions of all steps performed within the data pipeline to the
version controlled code repository, initially set up by the DevOps engineer. On further iterations
of the deep learning lifecycle, when there is already a model available, one can optionally trigger
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Figure 4.2: Definition of the abstract data pipeline
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the execution of “Model Training” to analyze the performance with the new or updated dataset
as a form of Continuous Integration.

When working with large and/or complex data, various steps within the data pipeline such as
“Data Ingestion”, “Data Cleaning” and “Data Validation” become resource demanding. There-
fore, a data engineer should be able to request computing resources on demand within the steps
of the pipeline.

4.3 Model Pipeline
Similar to the data pipeline, the model pipeline abstracted in the overview flow chart is defined
in detail in Figure 4.3. There are two main actors within the model pipeline: the data scientist,
with the aim to build a performant model, and the model validator, with the role of reviewing the
model created by the data scientist. Similar to the data pipeline, a data scientist can request high-
performance computing resources on demand throughout the course of all steps of the model
pipeline.

Initially, an experiment is created by either modifying an existing version of the “Code Repos-
itory” or creating an experiment from scratch. As a first step of the pipeline, the data scientist
analyzes the provided training data, whereby sensitive information may be hidden or masked.
Direct access to the testing data may as well not be granted, e.g., due to privacy reasons. Af-
ter the “Data Analysis”, the data is preprocessed to be compatible as model input if necessary.
At this step, the data scientist may choose to store a version of the transformed data within the
“Transformation Registry” for faster and more convenient access on further iterations. If the data
transformation changes on subsequent iterations, the data needs to be stored again, otherwise
it can simply be loaded into the experimentation environment. As a next step, the data is split
into a training and validation set, before the data scientist starts building a model. In contrast to
the “Data Splitting” step of the data pipeline, this step further divides the training data and is
not relevant to other pipelines. As opposed to the test dataset, the validation set is not further
used.

Upon “Model Building”, one has the option to load pretrained models from the model registry.
Within the flow chart in Figure 4.3, the model registry is illustrated as a single persistence en-
tity. However, pretrained models can be loaded from any private or public registry. Thus, there
may be multiple registries available to the data scientist for loading pretrained models. As an op-
tional step before training a model, “Hyperparameter (HP) Optimization” helps a data scientist
finding the optimal configuration of a defined model. Subsequently, a training job is launched,
which can optionally be distributed over computing instances, given the training is resource-
intensive.

Whenever a training or hyperparameter tuning job is executed, the corresponding metadata, met-
rics and results are stored within the “Experiment Registry”. This acts as a central location for
experimentation history, not only available to the data scientist building the current model, but
also to other data scientists and model validators for review. Thereby, the evolution of a model
remains comprehensible.

At the step of “Experiment Evaluation”, the data scientist reviews his training experiment based
on the validation results and other metrics [65]. If not satisfied, they return to previous stages
of the model pipeline. Otherwise, the model is registered on the “Model Registry” to make it
available for “Model Evaluation”. At this point, the testing data is loaded together with the model
artifacts to test the produced model. In case the testing data contains sensitive information, the
“Model Evaluation” can be conducted in a secure environment. Consequently, the test results are
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Figure 4.3: Definition of the abstract model pipeline
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stored to the metrics of the model within the registry. Based on the evaluation results, the data
scientist then decides to either submit the model for review or return to previous steps of the
model pipeline.

During the “Model Submission” step, the corresponding source code of the registered model is
submitted to the code repository, although the source code is included in the model artifacts.
However, the “Code Repository” should hold all source code required to reproduce a workflow
iteration.

After the data scientist submitted his model, the model validator reviews the registered and eval-
uated model by loading corresponding artifacts. Such a review focuses on model quality and can
include various metrics such as accuracy, sensitivity, precision, different error measures or rank-
ing methods [57]. These metrics can be compared to other produced models, possibly already
deployed to production. If the results are not satisfactory, data scientists can return to specific
steps within the model pipeline and improve the model version at the model validator’s request.
Furthermore, the model validator can instruct the data engineer to collect new or more qualitative
data, as illustrated in the overview flow chart in Figure 4.1. In case of approval, the created model
is promoted to production, which triggers the deployment pipeline.

4.4 Deployment Pipeline
Once a model has been approved and promoted to production, the goal is to deploy the model.
Besides other roles involved in the deployment pipeline, the DevOps engineer is primarily re-
sponsible for bringing a model into the deployment environment. As in the data and model
pipeline, there are certain steps within the pipeline that require computing resources on demand,
such as “Model Deployment”. The deployment pipeline is illustrated in Figure 4.4.

In case the model is not yet suitable for future retraining, the source code needs to be refactored
into a performant, automation and testing friendly form. This task called “Model Implementa-
tion” is performed by a software engineer as a first step of the deployment pipeline. A software
engineer has advanced knowledge on runtime performance and memory usage and can therefor
make the source code more efficient for retraining. The implementation is further reviewed by
the model validator and stored to the model registry with the corresponding model.

As an optional step within the deployment pipeline, the model can be compressed to reduce size
and latency, e.g., by using the methods listed in Section 2.3: pruning and quantization, low-rank
factorization, convolutional filters and knowledge distillation. In this case, the model needs to be
tested and compared to the initial model to prevent a significant decrease in accuracy. For certain
model compression techniques, retraining the model is additionally required before testing [9].
This is conducted during the stage of “Model Revision”. The model artifacts in the “Model Reg-
istry” have to be updated, if the model definition has been refactored.

After the preceding preparation steps, the DevOps engineer packages the model into an appropri-
ate form for inference, which wraps the loaded model with an additional layer to serve prediction
requests. Subsequently, they write a manifest which defines the deployment configuration and
finally deploy the model to production.

Once the model is deployed, a data scientist is required to monitor the model for environment
changes, e.g., for concept drifts as described in Section 2.3. Therefore, input data from prediction
requests together with their metadata and results are stored within a database for analysis. In
case the model performance declines or other issues occur, the final step of “Model Maintenance”
initializes the next lifecycle iteration based on the interpretation of the “scoring data”.
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Figure 4.4: Definition of the abstract deployment pipeline



Chapter 5

Prototype Implementation

Throughout the following sections, we implement a minimum viable prototype that enables the
deep learning workflow defined in Chapter 4. Thereby, we demonstrate the transfer of the con-
ceptual workflow into a practical implementation. To do so, we select available technologies that
fulfill the requirements given through the characteristics of deep learning listed in Section 2.3 and
our defined workflow. Technical instructions on the prototype can be found in the associated
GitHub repository at https://github.com/janousy/CDL.

5.1 Technologies of Choice
There is a relatively new, but fast-growing market for technologies that partially or completely
facilitate the machine learning workflow. At the time of this thesis, the landscape of tools avail-
able is broad and not fully mature [59]. Few are targeted towards deep learning only, as their
vendors provide generic solutions to problems of the machine learning workflow. Nevertheless,
these solutions can often be transferred to various subtypes of machine learning. There are some
emerging platforms that try to cover the complete machine learning workflow, such as Vertex AI
or Sagemaker maintained by Google and Amazon respectively. However, these solutions can intro-
duce immense costs, especially with frequent usage of GPUs [4, 18]. In behalf of reproducibility,
we restrict our selection of tools to being deployable on-premise, available for free and preferably
open-source.

5.1.1 Hardware and Infrastructure
We use the computing and storage resources provided by the ScienceCloud [58] of the University
of Zurich (UZH), which lets us provision virtual machines (VM). In fact, two VMs are used:

• a large VM with 32 vCPUs, a single Nvidia Tesla T4 GPU and 128 GB of RAM;

• a small VM with 2 vCPUs and 8 GB of RAM.

The specifications of the large VM are chosen regarding the minimal resources to host all tech-
nologies required to run the deep learning workflow and meet the demands described in section
Section 2.3. A single GPU is the maximum amount available per VM on the ScienceCloud. How-
ever, to demonstrate distributed training, at least two GPUs would be required. To independently
and securely host a code repository, a second VM is introduced with near minimal specification
to spare resources. Both VMs run Ubuntu 18.04 as their operating system.

https://github.com/janousy/CDL
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To meet the requirement of scalability within the deep learning workflow, we select Kubernetes as
our infrastructure of choice. Kubernetes serves an open-source system for scalable container or-
chestration [32]. In the context of this thesis, we use Microk8s, a lightweight upstream Kubernetes
with low operation costs and GPU support [8]. However, the prototype is portable to any Ku-
bernetes version. For our use case, a Microk8s single-node cluster is hosted on the large VM. As a
container technology of choice, we use Docker due to being widely used across the developer com-
munity. Furthermore, DockerHub serves as the container registry to push and pull images.

5.1.2 Workflow Tools
Hereinafter, the technologies that directly support the implementation of the workflow tasks and
persistence entities are described. Our selection is based on the recommendations of the MLOps
Community [40] and Visengeriyeva et al. [59]. A summary of the technologies used, their purpose
and what persistence entity they represent can be found in Table 5.1. It is important to note that
this selection is not fixed and could be swapped with any tools with similar features.

Table 5.1: Technologies used to implement the deep learning workflow, not including underlying infrastruc-
ture.

Technology Purpose Persistence Entity
GitLab version control, CI/CD Code Repository
Minio object storage Model Registry
Postgres store labels and experiment data ML Data
LabelStudio data labelling -
Pachyderm data lineage, object storage ML Data, Transformation Registry
Determined AI model pipeline Model Registry
Seldon model deployment -

We choose GitLab [15] as our version control system (VCS), thereby representing the “Code Repos-
itory”. GitLab can be hosted on premise, provides mature features for CI/CD and integrates well
with Kubernetes.

To achieve data lineage, i.e., data pipelines and version-controlled datasets, Pachyderm [45] is se-
lected. Pachyderm allows us to execute containerized tasks on a Kubernetes cluster in a scalable,
parallel and distributed manner. Pachyderm can serve as a general object storage technology, thus
can be used to store unstructured datasets and as the “Transformation Registry” by the data sci-
entist to cache transformed data.

Furthermore, we use LabelStudio [24] to integrate data labelling into our workflow implementa-
tion. LabelStudio is compatible with various types of data, especially unstructured data commonly
used in deep learning applications such as computer vision, natural language processing and au-
dio processing [5]. The labels – together with their metadata – are stored to a PostgreSQL [50]
database for fast and convenient queries. We further refer to PostgreSQL as Postgres.

For tasks related to the model pipeline, we use a cloud-native platform specifically targeted to-
wards deep learning called Determined AI [10], further referred to as Determined. This platform
addresses the need for distributed training, hyperparameter tuning and compute resource man-
agement. Determined automatically tracks experiments for analysis and additionally provides a



5.2 Mapping Abstraction and Implementation 19

model registry to store model artifacts. Thereby, a data scientist can focus on building and op-
timizing a model. Under the hood, a Postgres instance represents the “Experiment Registry”,
whereas a Minio [39] bucket is configured to store artifacts of the “Model Registry”. Minio is a
widely used, cloud-native object store.

To deploy models at scale to Kubernetes, Seldon [56] is used. Seldon supports a large spectrum
of machine learning libraries and deployment configurations. A model can be brought to pro-
duction by simply building a language wrapper around the model and specifying the container
environment. Although there are alternative technologies to deploy machine learning models on
Kubernetes, Seldon currently appears to be the most mature solution.

We do not implement the “Scoring Data” persistence entity, as “Model Monitoring” would exceed
the scope of this thesis. Nevertheless, a Postgres database holding results of requests and possibly
references to provided files stored to Pachyderm would be applicable.

5.2 Mapping Abstraction and Implementation
With the technologies selected in Section 5.1.2, we can build a deep learning system that imple-
ments our abstract workflow of Chapter 4. By mapping the technologies to tasks and persistence
entities, we demonstrate how these integrate into the deep learning workflow. For each pipeline,
we will walk through the practical utilization of the technologies.

5.2.1 Data Pipeline Implementation
Besides other tools for CI/CD, the main technologies within the data pipeline are Pachyderm and
LabelStudio. Figure 5.1 illustrates how these technologies are integrated into the data pipeline.

The data engineer defines all steps of the pipeline with a programming language of choice, from
“Data Collection” to “Data Validation”. As mentioned in Section 4.2, the steps “Data Collection”
and “Data Splitting” are not necessarily part of the automated pipeline. In our case, the “Data
Labelling” also remains a manual step. The data engineer can define different sources for training
and testing data – which implicitly splits the data – and then build separate pipelines. However,
it is important that both data sets are processed the same way, i.e., the same scripts for each step
are used. Otherwise, the datasets could exhibit different characteristics, for example when the
training and testing data are validated differently.

Once all steps are defined, the data engineer packages the scripts into a pipeline by writing a
manifest complying to the Pachyderm format, which has either JSON or YAML format. Within
this manifest, they optionally specify the resources to be used at each step, such as GPU, CPU
and memory. Additionally, one can define how ingested data is processed, e.g., as streams or
in batches. The data engineer further defines the Docker container, wherein the pipeline is ex-
ecuted. They then commit their work to the GitLab code repository. This triggers the build of
the Docker image and subsequently a push to DockerHub. Moreover, the pipeline is indirectly de-
ployed to Kubernetes via Pachyderm. The execution of the pipeline is initiated each time data is
ingested.

Pachyderm presents input and output repositories for each pipeline. Thus, the output of the “Data
Validation” can automatically be ingested into LabelStudio. Once the data has been annotated by
the data labeler, the labels are exported in a format of choice into another Pachyderm repository.
From there, the labels are stored to a Postgres database, where the testing and training data reside
in separate tables. Within a table, a row keeps information about the label, the corresponding
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Figure 5.1: Implementation of the data pipeline, with the selected technologies mapped to the flow chart.
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file path to the validated output repository and metadata such as labeler, date and dataset ver-
sion.

“Data Versioning” is automatically performed by Pachyderm in a git-like manner. Each repository,
i.e., bucket, allows branching and annotates ingested data with commit IDs. Upon further iter-
ations of the data pipeline, a data engineer can ingest on a new branch or distinguish between
dataset versions using the commit ID within the same branch. Similarly, the pipeline manifest
is versioned as well, thereby it remains fully comprehensible how a specific dataset version was
produced. Data lineage is therefore guaranteed.

5.2.2 Model Pipeline Implementation
Within the implementation of the model pipeline, a data scientist mainly interacts with Determined
and Pachyderm, as illustrated in Figure 5.2. To initiate an experiment, a new branch within GitLab
is created, either from an existing branch or from scratch. While operating locally, they can choose
to work in a notebook environment offered by Determined or directly write scripts as their source
code. However, a notebook will have to be downloaded manually and checked into version
control.

At the first step of the model pipeline, the training data is loaded from Pachyderm, analyzed and
preprocessed. The transformed data can be stored to a Pachyderm repository and accessed on
further iterations for faster development. After splitting the data into a train and validation set,
they start building the model using a Determined compatible definition. Therefor, a trial class
must be built that implements a predefined set of member functions for initialization, training,
evaluation and data loading. Through these restrictions, a data scientist does not need to take
care of logging and visualizing metrics or saving model checkpoints. Within the process of Model
Building, pretrained models can be loaded from the internal Determined model registry or any
external model registry, such as the Hugging Face transformer library [60].

Besides a model definition, Determined additionally requires a configuration file in YAML format,
which specifies hyperparameters, resource requests, data source and version, etc. The data scien-
tist can then use the same model definition with different configuration files for hyperparameter
tuning and (distributed) training. Moreover, Determined executes jobs on agents within contain-
ers scheduled by a master. A data scientist can either specify software dependencies within a
startup script or build a container image for the agent to run on. If a Docker image is used, it
is built and pushed upon a commit to GitLab and subsequently pulled by Determined on a run
execution. Within the process of “HP Optimization” and “(Distributed) Training”, data scientists
can review and compare their executed jobs on the Determined UI until they arrive at a satisfying
model.

Once a data scientist approves of the validated model, they can register a selected model check-
point through the Determined CLI. To synchronize the code repository with the latest model ver-
sion, the corresponding model definition has to be downloaded manually from the model reg-
istry before committing. At the step of “Model Evaluation”, a commit to the experiment branch
on GitHub triggers the model testing, which loads the testing data from Pachyderm and the latest
model version from the registry for evaluation. This commit is required as a model should be
evaluated remotely and GitLab cannot listen for changes in the Determined registry due to a lack
of change events. The results are then written to the model metrics and additionally presented as
a GitLab pipeline artifact to the whole team.

If a data scientist agrees with the test results, they perform a Model Submission by creating a merge
request on GitLab. The model validator then reviews the experiment. In case of approval, the
deployment pipeline is triggered.
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Figure 5.2: Implementation of the model pipeline, with the selected technologies mapped to the flow chart.
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5.2.3 Deployment Pipeline Implementation
After the model validator has approved a model, it is prepared for production. An illustration of
the implemented deployment pipeline is available in Figure 5.3. We point out that in the context
of our minimum viable prototype, we skip two steps of the deployment pipeline. First, we do
not perform “Model Compression”, as our model is deployed to Kubernetes and inference latency
is neglected. Secondly, “Model Monitoring” is omitted as this would exceed the scope of this
thesis.

First, a software engineer fetches the model definition from GitLab to refactor the source code,
which also includes the sources for data preprocessing. After the “Implementation Review”
and “Model Compression”, we retrain, evaluate and test the model for performance, e.g., model
size and inference latency, at the step of “Model Revision”. The model validator therefor loads
model artifacts from Determined, the refactored model definition from the code repository and the
datasets from Pachyderm.

Once the revision is approved, the DevOps engineer builds the model wrapper for Seldon. The
wrapper is essentially a Python class that at minimum defines how the model is loaded and how
inputs are preprocessed for prediction. Additionally, a Docker image defines the container for the
model environment at run-time. At the step of “Model Deployment”, the DevOps engineer com-
mits the deployment manifest to the main branch of the code repository to trigger the deployment.
The deployment manifest specifies what resources are available to the model. A GitLab pipeline
then builds and pushes the Docker image and deploys the packaged model to Kubernetes using
Seldon.
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Figure 5.3: Implementation of the deployment pipeline, with the selected technologies mapped to the flow
chart.



Chapter 6

Use Cases

To investigate the practicability of our implementation and the embedded pipelines established
in Chapter 5, we apply two use cases to the prototype. These use cases address common but
distinguished problems of deep learning, using different frameworks to provide variety. The
source code for each use case including the setup is available on GitHub at https://github.c
om/janousy/CDL.

6.1 News Classification
In our first use case, the goal is to address a natural language processing (NLP) problem. There-
fore, a multinomial news classification model trained and evaluated on the BBC datasets [20] is
constructed using PyTorch [46].

The BBC datasets consists of 2225 text documents that represent news articles from the years
2004 and 2005, collected from the official BBC news website [20]. The documents in English have
various length and are divided into the following categories: business, entertainment, politics,
sport and tech. The datasets are available for download in two versions [19]: a pre-processed
version, which includes stemming, stop-word removal and low term frequency count, and a raw
version which provides the unprocessed articles. To be able to demonstrate the complete data
pipeline, we use the raw version.

As a DevOps engineer, we initially set up a GitLab repository with a main folder and a GitLab
pipeline for CI/CD. The main folder includes subdirectories for data, model, deployment and test
code. The code repository has two branches, one for development (dev) and one for production
(master).

6.1.1 Data Pipeline
A visualization of the data pipeline corresponding to this use case can be found in Figure 6.1.
We assume the role of a data engineer and perform the first steps of the data pipeline manually
using Python script. By downloading the dataset locally, giving each file a unique ID, merge each
category and randomize the order, we prepare the data set for ingestion. Then, the dataset is
split into a train and test set, i.e., hold out set, using an 80-20 ratio [7]. Undoubtedly, there would
be more sophisticated approaches [33]. Simultaneously to generating the train and test set, we
automatically create labels in LabelStudio JSON format for each article, as we do not possess the
resources for manual labeling.

https://github.com/janousy/CDL
https://github.com/janousy/CDL
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Figure 6.1: The data pipeline of news classification use case

A simple Python script then defines how data is ingested, cleaned and validated. We replace
characters not being UTF-8 conform, ensure that the articles have a minimum character length
and TXT file format. Articles not corresponding to the minimum character length or file format
are invalid and therefore discarded. Valid articles are copied to the output repository defined
by Pachyderm. After the steps of “Data Ingestion”, “Data Cleaning” and “Data Validation” are
defined, we initialize two separate Pachyderm repositories for the train and test datasets. Two
pipelines for each dataset are then constructed that essentially execute the same aforementioned
script with different input paths, as illustrated in Figure 6.1. For demonstration purposes, the
validation pipeline requests one CPU and processes ingested data in batches.

We then prepare the Docker container for both pipelines to run on. The image installs the required
packages and pulls the source code defining the pipeline. In this use case, the pipeline is directly
committed to the production branch in the GitLab repository. Certainly, a more realistic appli-
cation would require review and testing of the pipeline. GitLab then automatically builds and
pushes the Docker image and deploys the pipelines to Pachyderm on Kubernetes.

Subsequently, both training and testing data can be ingested into the corresponding pipeline with
a single Pachyderm CLI command. The validated data is synchronized into LabelStudio and avail-
able for manual labeling. An additional Pachyderm pipeline facilitates the export of the labels
from LabelStudio into the respective table within the Postgres database. A single row holds the
label itself, the file path to the article in the Pachyderm repository, additional metadata about the
label and the matching Pachyderm branch for data lineage. Note that in this use case, a model is
not automatically retrained upon ingestion of new data or changes to the pipeline, although this
could be enabled using an additional GitLab pipeline stage.
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6.1.2 Model Pipeline
We take over the role of a data scientist and start the first step of “Create Experiment”. We create
a new branch within the GitLab repository, in this case from the main branch. As we are already
provided with sufficient knowledge about the BBC dataset, the step of “Data Analysis” is omitted.
Nevertheless, the labels that reside in the Postgres training table are loaded together with the
corresponding news articles from Pachyderm.

To transform the text data into a model conform input, a simple NLP approach is applied. This
includes Porter stemming [49] and token count vectorization using the feature extraction capa-
bilities of scikit-learn [47]. As a vocabulary, the one provided by Greene [19] is used. The target
classes are similarly encoded into numeric values. The preprocessed data is then again split into
a training and validation set at an 80-20 ratio [7]. In this use case, the preprocessed data is not
stored to a “Transformation Registry” for reasons of simplicity. However, the data frame could
certainly be stored and versioned in a Pachyderm repository.

During “Model Building”, we locally create the required trial class for Determined using PyTorch.
Our basic model is defined as a neural network of five linear layers with layer normalization and
dropout applied. Additionally, a separate configuration file defines the Pachyderm repository and
branch, hyperparameters such as dropout rate, hidden layer size and learning rate, and metadata
about the experiment.

To start a hyperparameter tuning job, we specify a reasonable search space for each hyperparame-
ter and then submit our configuration to the cluster using the Determined CLI. Vocabulary, classes
and a list of required software packages are automatically uploaded to the “Model Registry”.
In the context of this use case, we use the ASHA algorithm, which supports early stopping of
low performing configurations [35]. Determined then presents various visualizations and metrics
to find the optimal hyperparameter configuration. Because parameters in the configuration are
loaded during run-time, we can consequently use multiple configuration files for “HP Optimiza-
tion” and “(Distributed) Training” with the same code for preprocessing and model definition.
We thus write an additional configuration file for training using the results of the hyperparame-
ter tuning job, and again submit everything to the cluster. As our infrastructure only compromises
one GPU, we do not demonstrate distributed training. However, Determined enables networking,
data loading and fault tolerance with the specification of a single configuration argument.

When finally arriving at a satisfying performance, we select the checkpoint UUID of the pre-
ferred experiment, register the model through the Determined CLI and push our local changes to
the remote repository to trigger the GitLab pipeline and evaluate our model. Model Evaluation is
facilitated through a Python unit test, which loads the model and the test data and only passes if
a minimum accuracy threshold of 0.7 is reached. This value is set arbitrarily and usually depen-
dent on the project requirements. Within an initial iteration of the deep learning workflow, either
the data scientist himself or a DevOps engineer writes test cases. Who is responsible for testing a
model highly depends on whether the test data is confidential.

Subsequently, we can request a merge onto the development branch. The GitLab pipeline pro-
duces a text document with the test results and a list of all model versions with their correspond-
ing checkpoint UUID. Thereby, as the model validator, we can conclude the experiment within
the Determined UI. If the model is adequate for production, the merge request is accepted.

6.1.3 Deployment Pipeline
The experiment conducted in Section 6.1.2 is now approved and merged into the development
branch. As this is only a demonstration use case, we do not consider model performance. Thus,
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the steps of Model Implementation, Implementation Review and Model Revision are omitted.

We further assume the role of a DevOps engineer. To package the model for deployment, we
build a Python class that has two functions: one function initializes the model, therefor loads the
model including its artifacts by downloading from the model registry within Determined. This
includes the vocabulary and classes used during training and the registered model checkpoint.
The other function defines how a prediction is performed. In this context, the input is transformed
the same way as during model training, i.e., stemmed and tokenized using the vocabulary. The
numerical output returned from the model is resolved to the respective category using the label
encoding.

To deploy a model using Seldon, we define a Docker image that copies the model wrapper and
installs the required software dependencies. The deployment manifest is specified using a YAML
file, whereby we serve the packaged model as a REST API and specify the Docker image as the
surrounding container. At this stage, we could additionally specify resource requests such as the
number of GPUs to be used for model serving. However, as only one GPU is available, this is
omitted.

For continuous delivery of future model improvements, the steps of building and pushing the
Docker images as well as deploying to Kubernetes are automated through GitLab pipeline jobs.
These jobs are specified to be executed only on pushes to the production branch. In the context of
testing, the model could additionally be deployed to a development environment as an additional
staging process.

6.2 Fashion Classification
The second use case derives a multinomial image classification model using TensorFlow [2] and
the Fashion-MNIST dataset provided by Zalando Research [61]. Thereby, a classical computer
vision example of deep learning is tackled.

The Fashion-MNIST dataset consist of 60000 training and 10000 testing images of clothing ar-
ticles [61]. The grayscale 28x28 images are divided into ten categories: T-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot. The dataset is available for down-
load on GitHub [63] as separate binary files representing labels and images.

As in the first use case, we set up a GitLab repository which includes a GitLab pipeline and a main
folder containing the sources in subdirectories and start with two branches for development and
production.

6.2.1 Data Pipeline
As we already demonstrate a fully implemented data pipeline with unstructured data in our first
use case, the approach in this second use case is simplified. In fact, the pipeline resembles in
many aspects, but instead of storing text documents, we would store image files in the Pachyderm
repositories. To simplify this use case, we directly store the compressed binary files containing
the preprocessed fashion images and labels in a Pachyderm repository. We assume that the data
has already been cleaned and validated, thus no data pipeline is constructed.
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6.2.2 Model Pipeline
The model pipeline of this use case is very similar to the first use case in Section 6.1.2. Initially, an
experiment branch is created from the production branch. Assuming the role of a data scientist,
we load the labels and source images from the respective Pachyderm repository and decompress
them. Again, the step of “Data Analysis” is omitted as sufficient knowledge about the dataset
is already provided. To preprocess the dataset, the pixel values within a scale of 0 to 255 are
normalized to a scale of 0 to 1. Similar to the first use case, we do not store the preprocessed data
frame into a “Transformation Registry”, although Pachyderm could very well be used therefor. A
validation set is then split off at an 80-20 ratio.

To demonstrate the application of different machine learning frameworks, TensorFlow Keras is
used to build our image classification model, based on an example provided in the official doc-
umentation [13]. For “Model Building”, a sequential model is constructed composed of a flat
input layer, a dense hidden layer of variable size and a dense layer fixed at the number of output
categories. The remaining steps follow the process of the first use case: we optimize the hyperpa-
rameters, train the model, review experiments, register a model, evaluate it and finally request a
merge to the development branch in the GitLab code repository.

6.2.3 Deployment Pipeline
As in the first use case in Section 6.1.3, we omit the first four steps of the deployment pipeline.
Again, we - as DevOps engineers - build a Python class that packages, i.e., wraps the model. At
this step, only the classes defined in the model pipeline are loaded as model dependencies. We
then construct a Docker image that starts the Seldon microservice and serves the model as a REST
API. Merging the source code from the development branch onto the main production branch
ultimately triggers the build of the Docker image and finally the deployment to Kubernetes.





Chapter 7

Discussion

In this thesis, we demonstrate a detailed step-by-step deep learning workflow derived from the
high-level concepts of classical machine learning. Through a prototype, we show that it is pos-
sible to translate the conceptual idea to practice using the latest technologies available on the
market.

We split the overall workflow into three pipelines, such that each component is independently
reproducible and thereby enable fast iterations over the deep learning workflow. However, these
pipelines in turn can further include sequences of automated steps. For example, the data man-
agement pipelines constructed in Section 5.2.1 include separated downstream pipelines for prepar-
ing data and storing labels, respectively. Together with additional pipelines for CI/CD, a project
team can quickly face the challenge of “pipeline jungles” introduced by Sculley and his col-
leagues [55]. Managing these pipelines thus requires frequent knowledge exchange, versioning
and well-connected interfaces.

Considering our abstraction of the deep learning workflow derived in Chapter 4, it becomes ap-
parent that there is a dependency on various persistence entities with different functions. This
increases data management costs and complicates collaboration, as knowledge about storing and
retrieving data is required. On the contrary, these persistence entities are required to keep the
workflow reproducible. With continuous iterations of the deep learning lifecycle, it becomes im-
portant to align the related data between persistence entities. As an example, additional effort
is required to keep the registered model and the version in the code repository aligned. From
a technical perspective, both persistence entities – “Model Registry” and “Code Repository” are
crucial: On one hand, most version control system do not allow storing large artifacts such as a
deep learning model. On the other hand, a “Model Registry” cannot provide a history of code
changes and efficiently hold all source code of the deep learning workflow. An adopted version
control concept that manages machine learning data, model artifacts, workflow source code, etc.
as a single set of dependencies in a central location would facilitate the deep learning and the
machine learning workflow in general. There are certain tools such as DVC and CML [27] that fo-
cus on this concept. However, these are incompatible with the requirements of the deep learning
workflow since they do not provide scalability and compute resource orchestration.

In the context of the abstract model pipeline in Section 4.3, we decided to limit interactions with
“Code Repository” to the last step of “Model Submission”. Still, triggering hyperparameter opti-
mization or training jobs could require a commit to the “Code Repository” in case a data scientist
does not have direct access to the training platform. We argue that an interaction with the “Code
Repository” is not necessarily required in case of direct access, as the “Model Registry” already
keeps track of the model artifacts and thereby allows rollbacks to previous model versions. Most
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often, the model definition does not change drastically. Committing to the VCS with every param-
eter change would be time-consuming. Furthermore, through direct submission of optimization
or training jobs, debugging becomes less complex. As an example, we could trigger model train-
ing with Determined through a GitLab pipeline job, but then a data scientist would not have direct
access to the training logs of Determined.

Regarding our prototype, it becomes clear that a large amount of different technologies is nec-
essary to execute the complete deep learning lifecycle. Although there are all-in-one solutions
available, these technologies often suffer from vendor lock-in and are associated with high costs.
Moreover, these solutions are not directly target towards deep learning. The large technology
stack imposes the need for interfaces between tools, activities and roles. This in turn introduces
additional hazards to the implemented workflow. Taking “Data Labeling” as an example: we use
Pachyderm since it allows building scalable data pipelines and managing compute resources. As
Pachyderm does not provide any labeling features, LabelStudio is introduced. To store our labels
to a Postgres table, Pachyderm again facilitates export and import. We therefore use a complex
constellation of technologies within the data pipeline, which can become confusing and error-
prone.

A minor shortage of using Determined is that – with the current version – we do not have control
over experiment termination. It is thus not possible to notify a data scientist when training ends
or trigger subsequent downstream tasks, such as “Model Evaluation”. However, we argue that
this is crucial as HP optimization or model training can be protracted.

Within our research, we presented an in-depth transfer of the machine learning workflow to deep
learning. Through the implementation of a prototype and the application of two distinguished
use cases, we demonstrated the practicability of our workflow. However, the use cases do not rep-
resent the complexity of real-world challenges. For example, we worked with exemplary datasets
that do not require sophisticated data pipelines. Additionally, because our models in production
are not exposed to actual requests, we did not implement “Model Monitoring” in our prototype.
Thus, we cannot tackle problems such as concept drift. Therefore, further evaluation is required
to investigate the validity of the presented deep learning workflow and extend the prototype with
the not yet implemented steps. Furthermore, we restricted our investigation to supervised deep
learning. However, unsupervised approaches may exhibit a deviating development workflow
and reveal limitations.
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Conclusion

In general, the deep learning workflow follows the same high-level conceptual idea as the clas-
sical machine learning workflow. However, we summarized that deep learning exhibits many
decisive deviations that have influence on the development process, i.e., compute resource de-
mands, sophisticated data management, dispensable feature engineering, extensive hyperparam-
eter tuning and a potential need for model compression. Using these distinct characteristics and
the current research on the classical machine learning development process, we derived a detailed
deep learning workflow. Our workflow is represented as an abstract flow chart, which includes
three pipelines for data, model and deployment. Responsibilities are assigned to each task based
on the common roles in the data science team. Our flow chart additionally illustrates what data
storage and operations are performed.

To investigate the practicability of the derived workflow, we proposed a Kubernetes-native proto-
type using suitable technologies available on the market to meet the requirements of scalability
and compute resources. Through discussions with other members of the MLOps community on
Slack, we were able to consider different perspectives and evaluate advantages and disadvan-
tages of the considered tools. We demonstrated the utilization of the prototype by applying two
use cases: first, we built a text classification model using PyTorch based on the BBC dataset [20].
Second, an image classification model based on the Fashion-MNIST dataset [61] was constructed
with the use of TensorFlow.

Through the investigations of this thesis, we provide a general guideline on the deep learning
development process that helps to build deep learning models and continuously improve them
through efficient and reproducible iterations. Additionally, our recommended set of technologies
can be used as a reference for future implementations.

As our two use cases do not represent real-world problems, further evaluation is required. Future
work should therefor focus on evaluating the proposed deep learning workflow in various indus-
tries to find possible alterations, missing steps or inconsistencies. For instance, a field study could
compare the proposed workflow to the processes within companies that have already brought
deep learning into use. To do so, one could select a set of different companies – possibly with
varying cultures – and analyze their workflow with the associated data science team. By ac-
companying multiple projects and workflow iterations, all performed activities are collected and
mapped to our components to see whether each step is actually present and performed by the
defined role. Interviews with the involved developers could protocol the reasons for their ac-
tions. This procedure would ultimately highlight abundant or missing steps within the proposed
workflow of this thesis. Moreover, this field study would reveal inconsistencies in our suggested
roles and liabilities. Such an evaluation could additionally lead to the findings of more applicable
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technologies for an improved prototype. On the other hand, further research could address the
development of new tools to overcome the limitations of the current tool landscape. For example,
managing model-related data, i.e., training and testing data, large model artifacts, related source
code, etc. as a coherent set is still a major challenge. From a broader perspective, an all-in-one
solution for the deep learning workflow could resolve the limitations of loosing context due to
the high number of interfaces.
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