
Employing Machine Learning in the
Policy-based Blockchain Selection

Process

Ratanak Hy
Zürich, Switzerland

Student ID: 11-717-790

Supervisor: Eder John Scheid, Muriel Franco
Date of Submission: May 3, 2021

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

In den letzten Jahren gewann das Thema Blockchain, die zugrundeliegende Technologie
von Kryptowährungen, zunehmend an Bedeutung und Aufmerksamkeit. Seit der Erfin-
dung des Bitcoins in 2009 hat die Anzahl Kryptowährungen und verschiedener Block-
chain Plattformen drastisch zugenommen. Bei einer solchen Vielzahl von Implementie-
rungen und der daraus resultierende Unübersichtlichkeit wird es komplex, eine geeigne-
te Blockchain für einen bestimmten Anwendungsfall auszuwählen. Kürzlich wurde ein
policy-basierter Ansatz vorgeschlagen, um das Auswahlverfahren zu automatisieren, wel-
cher Blockchain Implementierungen auf Basis von Transaktionsinformationen und vorde-
finierten Policies empfielt. Dieser Auswahlprozess wird durch einen einfachen Selektions-
algorithmus gesteuert, welcher verschiedene Filter anwendet. Das Ziel dieser Arbeit ist,
neuartige Ansätze, wie maschinelles Lernen, zu erforschen und diese auf den Blockchain
Auswahlprozess anzuwenden mit dem Ziel, deren Einbindung in das Policysystem. Dazu
wurden verschiedene maschinelle Lernalgorithmen trainiert, eingesetzt und auf ihre An-
wendbarkeit im Blockchain-Auswahlprozess evaluiert. Der entwickelte Prototyp erweitert
die bestehende Lösung und bietet den Benutzern die Möglichkeit, zwischen dem herkömm-
lichen und dem auf maschinellem Lernen basierenden Algorithmus zu wählen, wobei sich
die Parameter der Policies je nach Auswahl ändern. Die Resultate der Evaluierung des
Prototyps zeigen, dass eine solche Kombination tatsächlich umsetzbar ist und genaue
Ergebnisse liefern kann. Jedoch werden dabei auch Herausforderungen und notwendige
Überlegungen hervorgehoben.

i

ii

Abstract

In recent years the blockchain topic, the underlying technology of cryptocurrencies, has
gained increasing importance and attention. Since the invention of Bitcoin in 2009, the
number of cryptocurrencies and various blockchain platforms has drastically increased.
With such a myriad of implementations and the resulting lack of transparency, it becomes
complex to select a suitable blockchain for a specific use case. Recently, a policy-based
management approach has been proposed to automate the selection process, which rec-
ommends blockchain implementations based on transaction information and pre-defined
policies. This selection process is governed by a simple algorithm, which applies straight-
forward filtering. The goal of this thesis is the research of novel approaches, such as
machine learning, and apply them to the blockchain selection process with the aim of in-
tegrating them into the existing solution. Therefore, various machine learning algorithms
were trained, deployed and evaluated on their applicability in the blockchain selection pro-
cess. The developed prototype extends the existing solution and provides users the option
to choose between the conventional and the machine learning-based selection algorithm,
with changing policy parameters depending on the selection. The results of the evaluation
show that such a combination is in fact feasible and can deliver accurate results. But it
also highlights pitfalls and necessary considerations.

iii

iv

Acknowledgments

I want to thank a number of people who have helped me throughout my work on this
thesis. This would not have been feasible without their continuous support, directly or
indirectly.

I would like to express my gratitude to my supervisor Eder John Scheid for his constant
support, valuable feedback, and experienced advice throughout the thesis. I want to
thank Prof. Dr. Burkhard Stiller for the opportunity to work on this thesis; Ivo, who was
writing his thesis in parallel and was always available for a rant about current issues; and
finally, Corina, for her encouragements.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Thesis Outline . 2

2 Background 3

2.1 Blockchain Overview . 3

2.1.1 Bitcoin . 4

2.1.2 Ethereum . 4

2.1.3 Stellar . 4

2.1.4 EOS . 5

2.1.5 IOTA . 5

2.1.6 Hyperledger Sawtooth . 5

2.1.7 Multichain . 6

2.1.8 Corda . 6

2.1.9 Stratis . 6

2.1.10 Cardano . 6

2.1.11 NEO . 7

2.1.12 Ripple . 7

vii

viii CONTENTS

2.1.13 QTUM . 8

2.1.14 ICON . 8

2.1.15 VeChain . 8

2.1.16 Wanchain . 8

2.1.17 Summary . 9

2.2 PleBeuS . 9

2.2.1 Policy-Based Network Management (PBNM) 10

2.3 Machine Learning . 11

2.3.1 Decision Tree . 12

2.3.2 Random Forest . 14

2.3.3 Näıve Bayes . 14

2.3.4 Support Vector Machines . 15

3 Related Work 17

3.1 Manual Approach . 17

3.2 Semi-automated and fully automated approach 18

3.3 Discussion . 19

4 ML-based BC Selection 21

4.1 Solution Design . 21

4.2 Features . 22

4.2.1 Popularity measure . 23

4.2.2 Platform Transaction Speed . 27

4.2.3 Other features . 29

4.3 Features Summary and Dataset . 30

CONTENTS ix

5 Implementation 33

5.1 ML Model Implementations . 33

5.1.1 Data Processing . 34

5.1.2 Model Engineering . 35

5.2 ML-based BC Selection Solution Implementation 39

5.3 Integration into PleBeuS . 43

5.3.1 Policy Management Tool . 44

5.3.2 Transaction Component . 49

6 Evaluation and Discussion 53

6.1 Comparison of ML Algorithms . 53

6.2 Use Case Scenarios . 56

6.2.1 Scenario #1 . 57

6.2.2 Scenario #2 . 57

6.3 Performance Testing . 59

6.4 Discussion . 61

6.5 ML vs Rule-Based Systems . 62

6.6 Feature Importance . 63

7 Conclusion and Future Work 65

7.1 Future Work . 66

Abbreviations 77

List of Figures 77

List of Tables 80

A Full Decision Tree Representation 83

B Algorithms Confusion Matrices 85

x CONTENTS

C Sequence Diagrams 91

D Installation Guidelines 93

D.1 ML-based BC Selection (Flask App) Installation 93

D.2 PleBeuS Installation . 94

D.2.1 Docker . 94

D.2.2 Local Installation (Alternative to Docker) 94

D.2.3 Configuration . 95

D.2.4 Run PleBeuS Server . 95

D.2.5 Usage . 95

E Contents of the CD 97

Chapter 1

Introduction

Over the past years, several Blockchain (BC) implementations were created focusing on
solving particular problems from early BC implementations, e.g., low Transactions Per
Second (TPS), lack of security, or non-sustainable consensus mechanism. The increase in
the number of these BC implementations is evident when one verifies the CoinMarketCap
website [19], where more than 4000 cryptocurrencies and BC implementations are listed.
With such a myriad of implementations, selecting the most appropriate BC based on
specific requirements is not a trivial task. Thus, there exists a need for specialized BC
selection algorithms to be created with the aid of novel techniques, such as Machine
Learning (ML).

Within the ML context, a decision tree algorithm can be trained and BC parameters re-
quired (e.g., TPS, block time, and supported data size) fit in such a tree to predict the BC
that is the most suitable with these parameters. Furthermore, given a dataset disclosing
choices of which BC to use for a given set of constraints, it is possible to define patterns
and automate the decision process. In this context, dedicated ML techniques (e.g., su-
pervised ML) can be applied given specific contexts (e.g., supply-chain, IoT transparency,
or cryptocurrencies). Additionally, clustering algorithms can be applied to form groups
of BC that share similar properties to provide a recommendation of alternative BC plat-
forms. A couple of works [5, 27, 31, 116] propose approaches to decide the best suitable
BC platform and type. However, they mostly follow a manual approach with diagrams
and flowcharts, in this sense the inclusion of a new BC platform requires the revision of
the flowchart. In contrast, with the employment of ML, the selection is automatic, and
the algorithm readjustment straightforward.

The main focus of work of this Master thesis is the research of current ML algorithms
that can be employed in the BC selection. In this context, the thesis explores a research
aspect (i) that surveys the state-of-the-art ML application to BC, with the listing of
underlying BC parameters that are crucial for the selection. The thesis further covers
the practical aspect (ii), with the implementation and integration of algorithms to an
already developed BC selection framework (i.e., PleBeuS [84]), and their evaluation to
assess the feasibility in such combination. The objectives were to implement at least two
fully functioning and in PleBeuS integrated ML algorithms that automatically select the
best suitable BC given user-defined parameters with a detailed description and reasoning

1

2 CHAPTER 1. INTRODUCTION

of the implementation decisions. Ultimately this Master thesis evaluates and discusses
the combination of technologies that cover a variety of dimensions. This also includes the
analysis of the usability of the solution, security, and overall processing time.

Following Research Questions (RQ) drive the development of the thesis:

• RQ1: Can Machine Learning be useful in the BC selection? And which algorithms
are most suitable?

• RQ2: How does a ML-based selection approach compare to a rule-based system?

• RQ3: Which features are important for the selection process?

1.1 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides information on
BC characteristics and BC implementations used for the ML algorithms. It introduces
the BC selection framework, PleBeuS, explaining the key concepts of the framework.
Moreover, it also discusses the concept of ML and the algorithms being used for the
implementation of the ML-based BC selection solution. Chapter 3 discusses state-of-
the-art BC selection approaches. The solution design of the ML-based BC selection is
presented in Chapter 4. It further describes the Data Acquisition and Feature Engineering
of the BC data and the resulting dataset that is used for the ML model training. The
implementation of the ML models and their integration into the PleBeuS framework is
discussed in Chapter 5. Chapter 6 provides an in-depth evaluation of the ML models
and presents the results of the performance testing. Furthermore, it includes a use case
analysis and provides a conclusion to the Research Questions. Finally, Chapter 7 draws
a conclusion and summarizes the most important findings and provides an outlook for
future work.

Chapter 2

Background

This chapter outlines and details the main concepts involved in this thesis. Section 2.1
provides a brief explanation of the BC technology along with a description of the BCs
included in the ML-based BC selection solution and their corresponding characteristics.
Followed by Section 2.2, which introduces the PleBeuS framework and its architectural
design. Finally, Section 2.3 presents the term ML in more detail and the ML algorithms
being tested for the BC selection process.

2.1 Blockchain Overview

The BC technology can be used in a wide variety of use cases where assets are managed
or transactions occur. Its functional characteristics that facilitate transactions through
trust, consensus and Smart Contracts (SC) can provide a secure chain of custody [98]. In
the case of Bitcoin (i.e., first BC implementation) [61], the BC is used to transparently
record a ledger of payments, but it can be used beyond payment processing and money
transfers, e.g., it allows any data to be stored in an immutable and transparent way. From
digital voting [49] and digital Identity [106] to medical records sharing [24] and supply
chain monitoring [82], the range of its application is extensive and diverse.

Fundamentally, a BC is a distributed append-only immutable ledger [61]. It is organized
as a list of ordered blocks that are immutable once they have been committed to the
chain. It is replicated across all the nodes/participants of the network, and contrarily to
traditional databases, there is no trusted central authority, allowing non-trusting nodes
to verifiably interact with each other. The data of the BC is managed in blocks, which
contain a pointer to the previous block, the transaction data, a cryptographically hashed
value of a puzzle, and a timestamp.

A consensus mechanism guarantees that each copy of the BC is identical, providing a
secure tamper-proof ledger. It ensures that a newly added block is legitimate and prevents
the network from attackers compromising and forking the chain [18]. There are various
consensus algorithms, one of them being Proof-of-Work (PoW) which was proposed by
Satoshi Nakamoto [61], where a computation-intensive cryptographic puzzle needs to be

3

4 CHAPTER 2. BACKGROUND

solved in order to add a new block to the chain. Other common consensus algorithms
are Proof-of-Stake (PoS) or Byzantine Fault Tolerance, among others [112], which have
been proposed to overcome some of the weaknesses of PoW, such as excessive power
consumption [72]. Beyond the distributed ledger functionality of the BC, implementations
can vary in their technical details as well as capabilities.

The following subsections aim to provide an overview of all BC implementations included
in the ML-based BC selection solution and their main characteristics.

2.1.1 Bitcoin

The first decentralized electronic cash system, named Bitcoin, was invented and intro-
duced by Satoshi Nakamoto in 2009. Its main proposal is to provide a means of monetary
transaction without the intervention of a Trusted Third Party, allowing two willing par-
ties to directly transact with each other [61]. The main disadvantage of Bitcoin is the
computation-intensive PoW mechanism which causes issues regarding power consump-
tion, scalability and centralization. The expected block time of Bitcoin is 10 minutes,
i.e., every ten minutes, a new block is mined, and it allows a data storage of 80 bytes per
transaction [52]. Further, Bitcoin does provide the ability to create minimal SCs tailored
for the automatic transfer of funds.

2.1.2 Ethereum

Ethereum is an open-source platform for decentralized applications and was introduced
in 2014. In contrast to Bitcoin, it is a turing-complete scripting language and enables
complex SCs. A SC is a self-enforcing agreement in the form of a coded script that
runs on top of the BC. It consists of rules under which the parties agree to interact with
each other [8]. When the rules are met, the contract is automatically enforced. Due to
these capabilities, Ethereum also allows developing distributed applications using SCs and
creating additional cryptocurrencies. To successfully perform a transaction or execute a
contract on the platform, a fee, known as Gas, is required. It can be bought with Ether,
Ethereum’s currency [13]. However, it also uses PoW as a consensus mechanism, making
it prone to the same shortcomings as Bitcoin, which is why it is planned to change to a PoS
consensus mechanism [26]. This mechanism is an efficient alternative to achieve consensus,
where holders of the coin are encouraged to stake their holdings, and the creator of the
next block is randomly selected based on the stake of coins. The expected block time of
Ethereum is 15 seconds, and it reaches a throughput of approximately 15-25 TPS [52].

2.1.3 Stellar

Stellar aims to provide a platform that connects the world’s financial systems on a single
network. It focuses on reducing the cost and time required for cross-border payments. It
uses its own consensus protocol, namely the Stellar consensus protocol, which enables a

2.1. BLOCKCHAIN OVERVIEW 5

high transaction throughput (claimed 3000+ TPS) and a block time of around 5 seconds
while having low transaction fees [54].

2.1.4 EOS

EOS has a similar vision as Ethereum. It aims at providing an infrastructure for decen-
tralized applications, calling itself the most performant BC platform.

EOS uses a combination of delegated Proof-of-Stake (dPoS) and asynchronous Byzantine
fault tolerance (aBFT) as its consensus algorithm, allowing a high transaction through-
put that has reached an all-time high of 3’996 TPS [23], as well as a block time of 0.5
seconds. Hence, it is more efficient and consumes less energy than PoW but comes with a
higher cost of centralization, introduced by dPoS with only 21 block producers (delegates)
validating and checking new transactions [25]. It allows up to 256 bytes of data storage
per transaction [84].

2.1.5 IOTA

IOTA was designed to handle transactions between machines and devices in the internet
of things ecosystem.

By definition, it is not a BC per se, but its properties are similar. Rather than using blocks,
it makes use of an acyclic directed graph, known as “tangle”, to hold the transactions.
The confirmation of transactions happens within the network by the transaction issuers.
Before being able to add a new transaction, two pre-existing transactions have to be
confirmed, which add two new edges to the graph [32]. The amount of transactions IOTA
can handle depends on the number of users; the more users, the more transactions.

IOTA has a fixed block time between 1 and 5 minutes and allows a throughput of 500-800
TPS [45]. IOTA allows a data storage size of 1300 bytes per transaction and does not
natively support smart contracts, which means it is also not turing complete [84].

2.1.6 Hyperledger Sawtooth

Hyperledger Sawtooth is an enterprise BC platform under the Hyperledger umbrella for
building private distributed ledger applications and networks. The platform is highly
modular, allowing applications to choose permission rights, transaction rules, consensus
algorithms and many more according to their needs and use cases. Moreover, Sawtooth’s
multi-language support to write SCs makes it attractive for developers [21].

With the ability to use Proof-of-Elapsed-Time (PoET), a lottery-based consensus algo-
rithm, the platform can support large production networks and improve the efficiency of
present solutions such as PoW. The consensus algorithm generates a random wait time
for each node in the network. The node with the shortest wait time will be selected and

6 CHAPTER 2. BACKGROUND

permitted to create the next block. Thus, the block time is dependent on the random
wait time, but a target waiting time can be set with a default of 20 seconds [22].

2.1.7 Multichain

Multichain aims to provide a BC platform for creating and deploying private BCs in the
financial sector. Similar to Hyperledger, it is highly configurable (e.g., different consensus,
block sizes and time, permissions for nodes can be implemented [35]). The target block
time can be customized but is set to a default value of 15 seconds [60].

2.1.8 Corda

Corda is a BC platform that has been created by a consortium lead by R3. The platform
was built to address the challenges of privacy and finality shortcomings in legacy BC
technologies by enabling private transactions with immediate finality. Participants of
the network must have verifiable identities using a public-key infrastructure. Instead of
broadcasting each transaction to the network, the data is only shared with the nodes
involved in the transaction on a “need-to-know” basis, ensuring a higher level of privacy.
Consensus is reached at a transaction level, where each transaction points to a notary,
a network service that checks the validity and uniqueness of the transaction [55]. Corda
measures between 15 and 1678 TPS [20].

2.1.9 Stratis

Stratis is a BC development platform for enterprise businesses. Stratis seeks to facilitate
the development process for creating BC applications and accelerates the development
lifecycle for BC development projects. Businesses have the ability to deploy their BC ap-
plications on Stratis as private sidechains, allowing customization and taking advantage
of the parent BC’s properties. Stratis applications can be developed in pure C# and also
make use of the Microsoft.NET framework while taking advantage of Stratis APIs and
framework. Stratis also has an ICO launch platform that allows ICO’s to be launched
quickly. It uses PoS as a consensus algorithm and has a block time of 48 seconds [97].
Arbitrary data up to 40 bytes can be stored in a transaction [96]. The maximum through-
put on the mainchain is between 33 and 67 TPS, while the maximum throughput on the
sidechain is dependant on the configuration of the sidechain creator [95].

2.1.10 Cardano

Cardano is a decentralized public BC and cryptocurrency. Like Ethereum, it is designed
as a platform on top of which SCs and decentralized applications (known as “Dapps”) can
be executed. It is based on the Ouroboros algorithm, which is the first peer-reviewed,

2.1. BLOCKCHAIN OVERVIEW 7

verifiably secure BC protocol based on PoS, that determines how consensus is achieved in
the network [48].

The protocol proceeds in epochs ; each epoch has its fixed number of units called slots,
each lasting for one second. Currently, an epoch includes 432000 slots, which corresponds
to five days. Not more than one block might be appended during every slot, also allowing
slots, where no blocks are generated. In each slot, one stakeholder, known as the slot
leader, is randomly selected from a pool of stakeholders and creates the next block. On
average, every 20 seconds, one node is nominated [14]. The average transaction data size
is around 500 bytes, which means it can reach 205 TPS [15].

2.1.11 NEO

NEO is an open-source BC platform on which decentralized applications and SCs can be
run, similar to Ethereum and Cardano. Neo is also referred to as the “Chinese Ethereum”
and was first released in 2014 under the name “Antshares”. In 2017 the project was re-
branded to “NEO”. It aims at creating a smart economy to digitize assets and automating
their management [103]. Gas is NEO’s native currency which, much like Ether, is used
to pay the fees (GAS) to utilize the platform. NEO uses a consensus algorithm known as
delegated Byzantine Fault Tolerance (dBFT), which enables large-scale participation in
consensus through proxy voting. The consensus algorithm takes up to 15 to 20 seconds
to produce a block and allows around 1000 TPS. However, it could potentially support
10000 TPS [62].

2.1.12 Ripple

Ripple refers to both the cryptocurrency XRP and to its open-source, decentralized digital
payment platform RippleNet which is widely used by a number of banks and financial in-
stitutions. The platform can settle near-instantaneous transfers of currency, independent
of their type. It allows transactions in USD, Euro, Yen, Pound, Bitcoin, Ether, Litecoin or
XRP [101]. XRP was built to act as a bridge currency that financial institutions can use
to settle cross-border payments faster and less expensive than by using the usual global
payment networks, which are slow and involve several intermediaries. Bitcoin could also
be used for a bridge currency, but XRP can settle up to 1500 TPS, and the transaction
fees are significantly lower. However, RippleNet, in practice, does not require a bridge
currency to work [66].

Ripple is not using PoW or PoS mechanism to validate its transactions but instead, its
own specific consensus protocol, which reaches consensus every 3 to 5 seconds [77]. Ripple
can be categorized as permissioned BC because the company behind XRP, Ripple (Labs)
Inc, determines who can act as a transaction validator on its network. However, the BC
itself is considered public because it can be accessed by anyone. XRP consistently handles
1500 TPS and reaches consensus every 3-5 seconds [78].

8 CHAPTER 2. BACKGROUND

2.1.13 QTUM

QTUM aims to provide a public BC platform for SC systems that are highly scalable. It
is an UTXO-based (BC design of Bitcoin) SC system with a PoS consensus model and
compatible with Bitcoin- and Ethereum ecosystems. It attempts to produce a variation
of Bitcoin with Ethereum Virtual Machine (EVM) compatibility. Thus, providing an
abstraction layer that translates the UTXO-based model to an account-based interface
for the EVM [64].

It allows around 70 TPS and the block time is approximately 144 seconds [75]. A reason-
able transaction size is 2 kb [74].

2.1.14 ICON

ICON is a BC technology, which is built to enable interoperability between independent
BCs. The network is supported through their own cryptocurrency token, called ICX
[41]. The foundation aims to provide universities, hospitals and financial institutions the
ability to interact with each other across BCs [38]. It is based on a Loop Fault Tolerance
consensus algorithm, which is an enhanced Byzantine Fault Tolerance [41].

ICON offers a transaction speed of around 500 TPS [42] and a block time of 2 seconds [39].
The maximum size of data in a transaction is 512 kb [37].

2.1.15 VeChain

VeChain, a leading public BC platform, was founded in 2015 with the goal of connect-
ing BC technology to the real world by supplying businesses with tailored blockchain
solutions based and building a trust-free and distributed business ecosystem platform for
business value [107]. VeChain makes use of two tokens, the VeChain Token (VET) and the
VeChainThorEnergy (VTHO). The former, to transfer value across VeChain’s network,
the latter to power SC transactions, which is similar to Ethereum’s Ether or NEO’s Gas.
VeChain uses a Proof of Authority consensus protocol, where only a designated number
(101 master nodes) of VET holders are given the power to validate transactions on the
network [29]. Vechain reaches 165 TPS and has an average block time of 10 seconds [114].

2.1.16 Wanchain

Wanchain is a cross-chain public BC intended for the financial industry to promote asset
transfers and host decentralized applications. Wanchain’s vision is to provide a cross-
chain DeFi platform, where assets and information will be able to flow freely and securely
between any type of BCs without any centralized third party [110]. As of now, it has
been integrated with Bitcoin, Ethereum, EOS, and other ERC-tokens. It also has its own
token called WAN and uses PoS as its consensus algorithm [57].

2.2. PLEBEUS 9

2.1.17 Summary

Table 2.1 shows the summary of the BCs used for this project, including their fundamen-
tal properties. For BCs where no information was found regarding the supported data
size (Ripple, VeChain and Wanchain), an arbitrary amount of 150 bytes was defined.
The information about BC implementations that are already supported by PleBeuS (see
Section 2.2) have been adopted from [52] for the most part.

Table 2.1: Summary of BCs and their characteristics

BC Type TPS Time (s) Data Smart Contracts Turing-complete

Bitcoin public 4 - 7 600 80 bytes No No
Ethereum public 15 - 25 15 46 kbytes Yes Yes

Stellar public 3’000 5 28 bytes Yes No
EOS public 250 - 3’996 0.5 256 bytes Yes Yes
IOTA public 500 - 800 60 1300 bytes No No

Hyperledger private variable variable 20 bytes Yes Yes
Multichain private variable variable 80 bytes No No
R3 Corda private variable variable 100 bytes Yes Yes

Stratis private variable variable 40 bytes Yes No
Neo public 1’000 15 255 bytes Yes Yes

Cardano public 205 10 500 bytes No No
Ripple public 1500 3.5 150 bytes No No
QTUM public 70 120 2 kbytes Yes Yes
ICON public 500 2 512 kbytes Yes No

VeChain public 165 10 150 bytes Yes No
Wanchain public 15 15 150 bytes Yes Yes

2.2 PleBeuS

PleBeuS is a policy-based BC selection framework that allows users to define requirements
based on their needs. These requirements are captured in the form of policies, which are
used by the framework to automatically determine the most suitable BC technology to
store incoming data. The proposed BC selection process, described in [84], first applies
basic filtering, following a divide and conquer approach and removing BCs that do not
meet the requirements. For the filtering, PleBeuS uses the previously defined policy to
reduce the input size of suitable BCs for the selection algorithm. The selection algorithm
either uses an algorithm that minimizes transaction costs or an algorithm that prioritizes
the transaction speed, which depends on the configuration of the user for the Cost Profile
in the policy. The framework allows two types of policy parameters, BC-specific and
externally driven parameters. The former includes key BC implementation characteristics
that are static and only change if a hard fork occurs. The latter contains non-static
parameters that are prone to external factors, such as the time of the day. The configurable
parameters are outlined in Table 2.2.

The framework supports seven BC implementations at the time of writing, but further

10 CHAPTER 2. BACKGROUND

Table 2.2: Policy parameters in [84]

Policy Parameters

BC-specific Public vs Private
BC Throughput
Block Time
Data Size
Turing Completeness

Externally Driven Cost Thresholds
Cost Interval
Cost Profile
Transaction Split
Time Frame
Preferred Blockchain

BC integrations are anticipated. Table 2.3 presents all available BC, including their key
characteristics.

Table 2.3: BCs and characteristics supported by PleBeuS [52]

BC Type TPS Time (s) Data Turing Fees

Bitcoin public 4 - 7 600 80 bytes No variable
Ethereum public 15 - 25 15 46 kbytes Yes variable

Stellar public 1’000 - 4’000 5 28 bytes No base fee
EOS public 250 - 3’996 0.5 256 bytes Yes variable
IOTA public 500 - 800 60 1300 bytes No none

Hyperledger private variable 20 (default) 20 bytes Yes none
Multichain private variable 15 (default) 80 bytes No none

2.2.1 Policy-Based Network Management (PBNM)

PleBeuS uses a PBNM architecture as a building block. PBNM is an already widely used
technology and provides a means to facilitate the complex task of managing networks and
distributed systems in a mostly automated fashion. It allows to manage a network or
distributed system in a flexible and simple manner by utilizing predefined policies which
govern its behavior [109]. The rules (i.e., policies) are defined in an Event-Condition-
Action format. The applicability of these principles is not only limited to a distributed
systems and network management context and can be used in other contexts too. PleBeuS
has successfully shown that these principles could be abstracted and applied in the decision
process on which BC to store data based on a set of rules [84].

The PBNM architecture is based on RCF 3060 [58] and can be divided into four compo-
nents:

2.3. MACHINE LEARNING 11

• Policy Management Tool (PMT), which is used to define and manage policies.

• Policy Repository (PR), which serves as the storage for the defined policies.

• Policy Decision Point (PDP), which retrieves policies from the repository and de-
cides which policy will be used and enforced from the next component.

• Policy Enforcement Point (PEP) is responsible for the execution of the policy that
has been chosen from the PDP.

2.3 Machine Learning

ML is about understanding and extracting knowledge from data. In its simplest sense,
ML uses algorithms that learn by analyzing input data and optimize their operations to
make predictions within an acceptable range [105]. These algorithms have a wide range
of applications, including detection of fraudulent credit card transaction, identification
of handwritten letters, medical diagnosis, customer segmentation and recommender sys-
tems [59].

One of the most promising and successful kinds of ML algorithms is supervised learning,
where the decision-making process is automated by generalizing from known data. Given
an input, which is unknown to the ML algorithm, it can generate an output without
human interaction. In general, algorithms that learn from labeled datasets are called
supervised learning. The labeled data acts as the supervisor to the algorithm, informing
them about the desired output for each input. Another type of ML algorithm is unsu-
pervised learning. In contrast to supervised learning, only the input (unlabeled data) is
given to the algorithm, and hence no supervision takes place.

Two groups of categories of algorithms come under the umbrella of supervised learning
[56]:

• Classification: This is a fundamental problem to analytics, patterns recognition and
ML. Since it categorizes data from observed samples, it is regarded as a supervised
learning technique. The samples are associated with two or more classes known
as Binary classification and Multiclass classification. The class of each instance is
determined by finding patterns and combining features from the training data. A
classification in ML is accomplished in two phases. In the first step, a classification
algorithm, such as a decision tree, is applied to the training data. Secondly, the
model is extracted and validated against a test dataset to evaluate the performance
and accuracy of the model [91].

• Regression: The data is labeled with a real value instead of a class (such as time-
series data, stock prices over time, daily sales volume, etc.). The algorithm is used
to predict continuous values.

Two main types of problems that unsupervised learning tries to solve:

12 CHAPTER 2. BACKGROUND

• Clustering: The goal is to identify different groups within the data and to sepa-
rate data into groups (clusters) according to their similarity and other measures.
Common clustering algorithms are K-means, Hierarchical Clustering and Gaussian
Clustering Model [79].

• Dimensionality Reduction: Reduces the dimensionality, number of features (columns)
present in the dataset, which decreases the model’s complexity and the chance of
overfitting [80].

With regards to the BC selection process, the task at hand is to present users with a
suitable BC that will fulfill their requirements for their use case. This problem can be
associated with a multiclass classification problem, where each sample (i.e., requirements
of BC characteristics) is exactly assigned to one BC from a set of BCs. Thus, a supervised
learning algorithm can be applied to solve this problem. Common learning algorithms
for such problems include, among others, Decision tree, Random forest, Support vector
machine and Näıve Bayes that are discussed in the following subsections.

2.3.1 Decision Tree

Decision Tree (DT) belongs to one of the few models which are straightforward to com-
prehend why a particular decision was made. It is among the most popular classification
algorithms being used in ML. Its main concept is to assist in finding the most suitable
features to split the tree into sub-parts [51]. There are different impurity metrics that are
used to determine the decision variables at each node. One of them is Entropy/Informa-
tion Gain and the other the Gini index [76]. These splitting strategies are used to build
an appropriate decision tree efficiently.

Entropy is a metric to measure disorder or unpredictability/uncertainty in a system. It is
measured between 0 and 1. It characterizes the impurity of an arbitrary collection of data
points. The data is said to be pure if there is only one class. Contrarily, the data is impure
if there is more than just one class. Thus, the impurity is the degree of randomness. So
the higher the Entropy, the higher the level of disorder, i.e., high level of impurity. If the
data is either completely pure or impure, the randomness equals zero.

The mathematical expression for the Entropy is described in Equation 2.3 [100]:

E(S) =
c∑

i=1

−pilog2pi (2.1)

where,

pi: Frequentist probability of class “i” in data
E(S): Entropy of the entire dataset

The algorithm computes the Entropy for every attribute after each split, and as the
splitting continues, it selects the best feature and starts splitting accordingly.

2.3. MACHINE LEARNING 13

The goal of this approach is to minimize the degree of uncertainty. A concept called In-
formation Gain (IG) is used. This is a metric to quantify how much a piece of information
reduces the uncertainty. It represents the decrease in Entropy after a dataset is split based
on some attribute. While creating a decision tree, it is important to find an attribute that
returns the highest IG. It decides which particular attribute should be selected as the
decision node. Formally the IG from X on Y can be described as follows [100]:

IG(Y,X) = E(Y)− E(Y |X) (2.2)

To obtain the IG of attribute X, i.e., how much did additional attribute X reduced
certainty about Y, the Entropy of Y given X is subtracted from the Entropy of Y. The
greater the IG, the more information is gained about Y from X.

However, another widely used metric to measure impurity is the Gini Index, also known
as Gini impurity. It measures how often a randomly chosen element would be incorrectly
identified, thus making an particular attribute with a lower Gini Index more preferable.
It is computationally less heavy than Entropy, because it uses simple probabilities instead
of the log base 2 of the probabilities. The Gini Index can take on values between 0 and
0.5. The mathematical notation is shown below [115].

Gini = 1−
n∑
i

p2i (2.3)

Advantages

DTs are relatively straightforward to understand and interpret compared to other ML
algorithms. The resulting DT can be visualized and inspected to comprehend why the
classifier has made a particular decision. Furthermore, DTs can be applied to both classifi-
cation and regression problems. Data preparation requires less effort during pre-processing
as multiple data types such as numeric, nominal and categorical are supported. Addition-
ally, it uses different measures such as Entropy, IG and the Gini index to find the best
split attribute [105].

Limitations

Despite being one of the most popular and useful ML algorithms, DTs have some disad-
vantages as well. DTs are less appropriate for estimation tasks where continuous values
are predicted. They can be subject to overfitting and underfitting, specifically when a
small dataset is used. This can lead to poor generalizability and robustness of the result-
ing model. Another shortcoming is that the algorithm cannot branch if some attribute
for a non-leaf node is missing [105].

14 CHAPTER 2. BACKGROUND

2.3.2 Random Forest

A Random Forest (RF) is an ensemble classifier made up of many DTs [10]. They belong
to the most popular and used ensemble methods. Ensemble methods make use of many
learners to increase the performance of any single one of them individually. It takes a
group of learners together in order to create a better, aggregated one. It combines the
simplicity of DTs with the power of an ensemble model.

Instead of using the entire dataset to train a single DT, the RF method randomly picks a
sample of the dataset to train each DT of the RF. The use of different samples for training
decreases the chance of overfitting. A single DT might be prone to overfitting, but as each
DT in the RF is trained with a different training set, the aggregated combination of the
trees can generalize better to new data [105].

Advantages

As RF ultimately consists of multiple DTs, it generally has the same advantages. More-
over, since RF takes the average value from the outcomes of its constituent DTs, the
chances of overfitting are lower compared to a single DT. Empirically this ensemble
method performed better than an individual DT. RF also scales well for large datasets
with higher dimensionality [105]. Furthermore, the model outputs the importance of
variables or attributes for the classification or regression task.

Limitations

RF is generally more complex, which makes it less interpretable than a single DT. It is
also computationally more expensive as it involves training multiple DTs and retaining the
information from these trees. Therefore, the algorithm slows down as the number of trees
increases. It might be less vulnerable to overfitting than a single DT, but nevertheless, it
can still occur [105].

2.3.3 Näıve Bayes

Näıve Bayes (NB) is another supervised ML algorithm that is widely used to solve classi-
fication problems due to its simplicity. It assumes that features are independent of each
other and that there is no correlation between them, which is rarely the case in real life.
This naive assumption is the reason for the algorithm’s name. Moreover, it is a prob-
abilistic classifier based on Bayes Theorem for calculating probabilities and conditional
probabilities [105]. It uses these probabilities to predict the class of new data instances.

Bayes theorem can be mathematically described by the following expression [81]:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
(2.4)

where,

2.3. MACHINE LEARNING 15

• P (A) is the probability of class A.

• P (A|B) is the conditional probability of class A given predictor B (features).

• P (B) is the prior probability of a predictor.

• P (B|A) is the conditional probability of predictor B given class A.

There are different types of NB Classifiers: Gaussian, which is used for classification
tasks where the features follow a normal distribution. Multinomial, which is suitable
for classification with discrete features, and Bernoulli that is a binomial model used for
feature vectors that are binary [86].

Advantages

It is a relatively fast algorithm for classification problems and requires short computational
time for training, as it only requires one scan of the training data for the probability
generation. NB can also be applied for both binary and multiclass classification problems.
It also does not require a large dataset. When the independence assumption holds, NB
performs well and better compared to other approaches [91].

Limitations

If the independence assumption does not hold, the performance of an NB model can be
very low. Moreover, it requires a vast number of records to obtain good results. For
categorical values that have not been observed during training, the model will be unable
to make a prediction [105].

2.3.4 Support Vector Machines

Support Vector Machine (SVM) is mainly applied to binary classification problems, di-
viding the data point either in 1 or 0. In the case of multiclass classification, the same
concept is used. The multiclass problem is decomposed into multiple binary classification
instances, also known as one-vs-one. Each class is compared to every other class, such that
there is a classifier for each pair of classes. Considering n classes, the number of classifiers
necessary for one-vs-one multiclass classification can be determined with the following
formula: K(K−1)

2
binary classifiers [3, 34]. With this approach, every classifier separates

points of two different classes, and comprising them, generates a multiclass classifier.

The data points are first mapped into an n-dimensional feature space, where n is the
number of features. Subsequently, the hyperplane is identified, which separates the data
points into their potential classes. This is done by maximizing the marginal distance
(distance between the hyperplane and the datapoint of the class) for both classes and
minimizing the classification errors [105]. For the minimization, a penalty term C is

16 CHAPTER 2. BACKGROUND

introduced. It is a regularization parameter that controls the magnitude of the penalty
regarding how many data points have been wrongly assigned. SVMs are also termed
kernelized SVM due to their kernel, which transforms the input data space into a higher
dimensional space. The most popular kernel functions are linear, polynomial, radial basis
and sigmoid functions [36]. In terms of the BC selection process, the SVM algorithm
would train classifiers for each pair of BCs , one to discriminate between Bitcoin and
Ethereum, another between Bitcoin and Stellar, another for Ethereum and Stellar, and
so on.

Advantages

SVM can handle multiple feature spaces, and the chance of overfitting is generally lower
than DTs [105]. SVM can also be applied for both regression and classification problems.
It has an excellent generalization capability and is robust to outliers. It also allows
a flexible selection of kernels for nonlinearity, and it has a general good generalization
ability [91].

Limitations

For large and complex datasets, the model training is computationally more expensive
than other approaches. The impact and selection of variables of the SVM algorithm are
rather difficult. Due to its complexity, the resulting model is hard to understand and
interpret compared to DTs for example [105].

Chapter 3

Related Work

Since the release of Bitcoin in 2009 [61], the popularity of BC technology has rapidly
increased. It received widespread attention from all kinds of interest groups over the last
few years. A wide variety of different BC implementations and platforms have meanwhile
emerged, making it almost impossible to maintain an overview, much less acquire knowl-
edge about all various BC technologies. Professionals struggle with the decision if a BC
should be adopted and integrated into their existing workflow. With the extreme emerg-
ing trend, various solutions came up, differing in features and configurations, ranging from
cost efficiency, performance and storage, to access restrictions and decentralization.

In this sense, it became cumbersome to choose a suitable solution for a specific use case.
Thus, it is necessary to gather domain-specific knowledge about the BC selection process
while providing the most suitable BC for a given use case. There exist quite a few decision
schemes already, all with the aim to ease the decision-making process.

This chapter provides an overview of state-of-the-art BC selection approaches. Section 3.1
presents manual approaches that propose solutions to guide users through the selection
process. Whereas Section 3.2 discusses semi or fully automated approaches, providing
solutions where a BC is automatically selected based on specific user requirements.

3.1 Manual Approach

[53] discusses the fact that there is no clear guideline in the literature that helped to
evaluate if BC technology is suitable for a particular use case. Thus, they proposed an
evaluation framework. They narrowed down the evaluation process to specific questions
that need to be answered. With this framework, one can derive if a BC would be suitable
or if a conventional database should be used instead. They further used the framework
to assess four different use cases. They concluded that supply chain management, elec-
tronic health records and identity management systems are promising areas for BC-based
applications.

In [67], a decision framework in the form of a flowchart is presented. The flowchart focuses
on whether or not to use a BC in an Internet-of-Things (IoT) setting and defines which

17

18 CHAPTER 3. RELATED WORK

setting is the most appropriate. The framework manually guides a potential user through
the decision-making process.

In [50], a framework is provided that follows a questionnaire form. It is used to evaluate
the applicability of BC technology on specific use cases. In the first step, the particular
use case is being identified. If the use case is considered suitable for BC, a use case canvas
can be applied for an in-depth analysis to gain an understanding of how it could profit
from a BC. The main limitation of these two approaches is that they only provide the
answer to whether a BC technology is suitable or not. They do not suggest what type of
BC could be appropriate.

Wüst and Gervais present a flowchart approach in [116]. The framework helps to deter-
mine if a BC makes sense for a specific application. They compare permissionless and
permissioned BCs to conventional centralized Database systems while taking the con-
sensus mechanism, throughput, latency, number of readers, number of untrusted writers
and central management into consideration. They further describe several application
use cases, such as Supply Chain Management or Interbank and International Payments,
and evaluate what implications a BC solution might have on these cases. They concluded
that BC is well suited for financial applications to ease the process of interbank payments,
which involves multiple complex steps as long transaction confirmation time and the as-
sociated costs. It additionally requires a lot of trust for the system to work. In fact, some
central banks already elaborate distributed ledger technology for interbank payments [1].

In [71], the authors developed a catalog of criteria focusing on software quality. Besides
BC specific criteria, the catalog also includes (i) software quality such as usability, main-
tainability, portability or modifiability, (ii) open-source software quality, and (iii) software
maturity.

Another flowchart based approach was proposed in [5]. It guides users through the defini-
tion of when to use BC as a technology, providing them with an answer if a BC adoption
would represent a good solution and if so, suggesting user which type of BC is the most
appropriate.

3.2 Semi-automated and fully automated approach

In [27], a decision model was designed with the help of the knowledge of domain experts
to assist decision-makers in the BC selection process. Users can prioritize BCs based on
their desired features using the Must, Should, Could, Won’t (MoSCoW) technique. The
model offers a ranked list of feasible BC platforms to the users based on their specific
preferences and requirements.

In [2], a neural network-based decision scheme is presented, which not only allows users to
set their requirements based on a fixed predefined set of answers but provide them with the
opportunity to fine-grain their preferences beyond the proposed answers. Users are allowed
to specify proportional weights according to their preferences between characteristics.

3.3. DISCUSSION 19

These two decision models can be considered semi-automated, as they automatically rec-
ommend feasible BC implementations based on user requirements. However, they do not
provide the ability to react to changes in an automated manner, such as the framework
proposed in [30], where users can define their demands based on a set of metrics and
weights which are used to calculate and automatically select an appropriate BC. More-
over, it enables a switch over to another BC at runtime and copying data from one BC to
the other. In this way, users are not being tied to one particular BC. Similarly, PleBeuS
[84], which was introduced in Section 2.2, also provides a means to automatically store,
retrieve and copy data from various BCs without requiring any changes in the application
code [84].

3.3 Discussion

As presented, most decision schemes follow a manual approach and are not automated,
forcing users to manually perform the selection process. Although [27] and [2] automati-
cally suggest appropriate BC implementations, they are not fully automated and do not
have the ability to store data on the BC or provide BC interoperability support as [30] or
[84] do.

In summary, there are various means that aim to ease the BC selection process, which
follows either a manual, a semi-automated or a fully automated approach. Table 3.1
summarizes the presented comparison of the state-of-the-art BC selection approaches.

Table 3.1: Comparison of related work

Work Approach Automated Interoperability Required Knowledge

[53] Criteria-based No No Basic
[67] Flowchart-based No No Basic
[50] Questionnare-based No No Basic
[116] Flowchart-based No No Basic
[71] Criteria-based No No Basic
[27] Experts-based Semi No Basic
[5] Flowchart-based No No Advanced
[2] Neural network based Semi No Advanced
[30] Weighted metrics-based Yes Yes Advanced

PleBeuS [84] Policy-based Yes Yes Advanced

20 CHAPTER 3. RELATED WORK

Chapter 4

ML-based BC Selection

This chapter provides a high-level view of the steps involved in the ML-based BC selection
solution and the data acquisition process that led to the final dataset. It starts with the
solution design in Section 4.1, where all steps involved in the process of model training and
deployment are illustrated. Section 4.2 contains a detailed description of all the features
included in the dataset.

4.1 Solution Design

The building process of the ML model follows the workflow depicted in Figure 4.1. It
involves two main artifacts: Data and Model, which are generated in three different phases:
Data Acquisition, Data Processing and Model Engineering. In a first step, relevant data is
gathered and integrated from various sources, such as external APIs, to fetch information
about the block time of a BC. Besides collecting raw data, the Data Acquisition phase
includes identifying and generating features, as well as data labeling. The result of this
data collection is the initial dataset, which will be the primary focus in Section 4.2. Next,
the data is further processed in an intermediate Data Processing phase, which aims at
preparing the data for model training. As raw data typically cannot be used directly for
model training, it needs to be processed and transformed into a numeric representation.
The processed data is then divided into a training and a test set. This split is necessary
to estimate the performance of the ML models because it allows to make prediction on
data that was not used to train the model. In the Model Engineering phase, different
ML algorithms are applied to the training data to obtain the final ML models for the
BC selection. Finally, in the last stage, the Deployment phase, the models are deployed
through a REST API and integrated into the PleBeuS framework, where the framework
asks the model for predictions by passing feature values through an API call.

21

22 CHAPTER 4. ML-BASED BC SELECTION

Dataset

Data Collection

Training Test

Datasplit

Data Acquisition

Data

Data Processing

Processed

Data Preparation

Model Engineering

Model Training

DT

RF

NB

Trained Model

Policy-based Blockchain
Selection Framework

POST /select

Deployment

REST API

Blockchain Selection Module

Blockchain ID

APIs

Data Processing

ApplicationSVM

Figure 4.1: Solution design

4.2 Features

A feature typically represents an individual, measurable attribute or characteristic, which
is commonly depicted by a column in a dataset. It generally represents an attribute plus
its value (e.g., “Popularity = High”). Many people use the words feature and attribute
interchangeably [34]. The features included in the dataset will be used as input to build a
ML model and predict target values on them. Thus, being the building blocks of a dataset
for model training, features are of utter importance and ultimately impact the quality of
the ML model. The BC selection process can be regarded as a classification-based task
that falls into supervised ML, as described in Section 2.3. The main goal is to predict a
suitable BC based on multiple input data that consist of different attributes or features.
This section provides an overview of the data acquisition and all features being used for
model training.

4.2. FEATURES 23

4.2.1 Popularity measure

The popularity of a BC platform can be an essential aspect and potentially a requirement
for businesses considering adopting BC technologies in their day-to-day operations. A
popularity measure could be an indicator of how technically mature a certain BC is in
terms of development and community support. To generate such a measure, various in-
formation from different sources was used. In particular, the number of Twitter followers,
number of monthly Google searches as well as the number of conference papers mentioning
the platform have been collected and collated in order to classify a platform’s popularity.

Twitter

Twitter has expeditiously increased in popularity since its launch in 2006. A prominent
example to demonstrate its reach and power was on January 15, 2019, when a Twitter
post broke the news of a flight crash faster than traditional media outlets. Twitter has
approximately 330 million monthly active users and 145 million daily users. In total,
around 1.3 billion accounts have been created, and 83% of the world's leaders have a
Twitter account [92]. Due to these remarkable statistics, Twitter seems to be a brilliant
source to get insights into how people perceive certain topics, which is why it is used as
one source to measure the popularity of a specific BC.

Following parameters were gathered through Twitter’s API [104]:

• Followers

• Friend count, i.e., number of users one is following

• Number of tweets

As the friend count and the number of tweets were insignificant compared to the number
of followers, which can be observed in Figure 4.2, these values have been neglected for the
popularity measure. Instead, the followers’ count was used solely for that purpose. The
distribution of the number of followers as a boxplot can be seen in Figure 4.3. The 33rd

and 66th percentiles are approximately 15200 and 356000 followers, respectively.

Finally, the number of followers has been grouped into three categories with an ordinal
scale: low, medium or high. A percentile-based approach has been used to categorize
them into one of these three categories. Numbers below the 33rd percentile were ranked
low, numbers between the 33rd and 66th percentiles medium, and the ones above the 66th

percentile high, which leads to the categorization shown in Table 4.1.

24 CHAPTER 4. ML-BASED BC SELECTION

Bi
tc

oi
n

Ri
pp

le

Et
he

re
um

St
el

la
r

Ca
rd

an
o

Ne
o

Ve
Ch

ai
n

Qt
um EO

S

IO
TA

St
ra

tis

IC
ON

W
an

ch
ai

n

Hy
pe

rle
dg

er

Co
rd

a

M
ul

tiC
ha

in

Blockchain

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(in
 m

illi
on

s)

2,130,037

1,503,579

973,921

509,765
435,670

382,681
278,850

232,685 212,697 174,683 155,495 135,674 117,307
69,289

9,157 3,63923,192 7,512 2,977 3,659 4,231 2,011 1,288 2,240 2,494 2,325 1,924 2,588 1,717 9,778 1,452 908

Followers
Tweets

Figure 4.2: Twitter followers and number of tweets as of April 26th 2021

Followers

0.0

0.5

1.0

1.5

2.0

(in
 m

illi
on

s)

1e6

Figure 4.3: Distribution of followers

Google Searches

The Google search engine is by far the most popular in the world, with over 90 percent
of the market share [17]. Therefore, Google search data can be very valuable in providing
insights into how the public perceives a particular topic.

Most keyword research tools provide limited statistics about search volumes. Ahrefs.com,
a common toolset for Search Engine Optimization (SEO) analysis, provides a keyword
explorer, where the global search volume (sum of searches across all countries) can be

4.2. FEATURES 25

checked for a specific keyword. The search volume represents the average number of
monthly searches on Google (12-month averages) and is an essential and frequently used
metric, especially in SEO [93]. For that reason, monthly Google searches have been
included in the final popularity score as well. The monthly search results are depicted in
Figure 4.4.

Bi
tc

oi
n

Et
he

re
um

Ve
Ch

ai
n

St
el

la
r

Ri
pp

le

Hy
pe

rle
dg

er

Qt
um Ne

o

Ca
rd

an
o

W
an

ch
ai

n

IC
ON EO

S

Co
rd

a

M
ul

tic
ha

in

IO
TA

St
ra

tis

Blockchain

0

1

2

3

4

5

6

7

8

M
on

th
ly

 a
ve

ra
ge

 se
ar

ch
es

 in
 m

illi
on

s

8,400,000

1,200,000

150,000 65,000 41,000 24,000 19,000 13,000 11,000 11,000 3,100 2,700 2,100 1,700 500 300

Figure 4.4: Monthly Google searches as of January 27th 2021

As with the Twitter followers, a percentile-based approach has been followed to categorize
the data. The 33rd and 66th percentiles for the number of monthly Google searches are
approximately 3080 and 23500, respectively. The final categorization is shown in Table
4.1.

Conference Papers

To include a metric for the popularity of a BC among academia and research, the number
of conference papers mentioning the BC was exploited. Therefore, IEEE Xplore was used
as the primary resource. IEEE Xplore is a digital library for discovering scientific and
technical content published by the Institute of Electrical and Electronics Engineers and
its partners [43]. An overview of the total number of conference papers is presented in
Figure 4.5. Equivalent to the Twitter followers and Google searches, a percentile-based
approach was used for the final categorization. The 33rd and 66th percentile conference
papers are 3 and and 12, respectively. The categorization is shown in Table 4.1.

26 CHAPTER 4. ML-BASED BC SELECTION

Bi
tc

oi
n

Et
he

re
um

Hy
pe

rle
dg

er

IO
TA

M
ul

tic
ha

in

Ri
pp

le

Ne
o

St
el

la
r

EO
S

Co
rd

a

Ve
Ch

ai
n

Ca
rd

an
o

Qt
um

St
ra

tis

IC
ON

W
an

ch
ai

n

Blockchain

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f C
on

fe
re

nc
e

Pa
pe

rs

1,453

886

374

59
24 13 8 7 7 7 3 2 2 0 0 0

Figure 4.5: Number of conference papers as of January 27th 2021

Popularity Score Calculation

The final popularity score presented in Table 4.1 is calculated using Equation 4.1. Each
variable is multiplied by an arbitrary weight ({W1,W2,W3}) defined by the user. For
example, if the user defines that Google searches impact in 50% of the score (i.e., 0.5),
then W2 = 0.5 and W1 and W3 must sum to 0.5, e.g., W1 = 0.25 and W3 = 0.25, being
25% of impact for each.

PopularityScore = Nfollow ×W1 + Gsearch ×W2 + Cpapers ×W3 (4.1)

where,

W1 + W2 + W3 = 1.0

The weights used to calculate the overall score in Table 4.1 were the following. Twitter
followers impact 15% of the score (W1 = 0.15). This factor is chosen low because private
BCs tend to have a significantly lower number of followers, but that does not mean they
are not popular among enterprises. Google searches impact 50% (W2 = 0.5) of the score
as it indicates clear popularity among regular users and developers. Finally, academic
papers have more impact than Twitter followers because they show the popularity among
academia and researchers. Therefore, its factor is set to W3 = 0.35.

4.2. FEATURES 27

Table 4.1: Final popularity score

Blockchain No of Followers Google Searches Conference Papers Overall score

Bitcoin High High High High
Ethereum High High High High

Stellar High High Medium High
EOS Medium Low Medium Medium
IOTA Medium Low High Medium

Hyperledger Low High High High
Multichain Low Low High Medium

Corda Low Low Medium Low
Stratis Medium Low Low Low
NEO High Medium Medium Medium

Cardano High Medium Low Medium
Ripple High High High High
QTUM Medium Medium Low Medium
ICON Low Medium Low Medium

VeChain Medium High Low Medium
Wanchain Low Medium Low Medium

4.2.2 Platform Transaction Speed

Another measure that is included in the feature space is the platform transaction speed.
For this measure, the block time of a BC was considered. The block time defines the time
that it takes to produce a new block in the BC network [47].

Table 4.2: Block time sources

Blockchain API Source

Bitcoin BitInfoCharts [7]
Ethereum BitInfoCharts [7]
Stellar Blockchair [9]
EOS EOS Network Monitor [23]
NEO Neoscan [63]
Cardano Blockchair [9]
Ripple Blockchair [9]
QTUM Qtum.info [73]
ICON ICON Blockchain Explorer [40]
VeChain VeChain Explorer [108]
Wanchain Wanchain Block Explorer [102]

The platform transaction speed has also been grouped into three categories with an ordinal
scale: low, medium or high. For the categorization of the public BCs into these categories,
the block time was fetched from various external APIs that provide information about the
current state of the BC. In Table 4.2, the different sources are listed with the respective

28 CHAPTER 4. ML-BASED BC SELECTION

name of the BC. Overall, 40 GET requests were sent to these endpoints, and the average
block time was computed based on these values, which are depicted in Table 4.3. Finally,
the platform transaction speed was determined based on the percentiles. Numbers below
the 33rd percentile (5.30 seconds) were assigned a high, numbers between the 33rd and 66th

percentile a medium, and numbers above the 66th percentile (19.10 seconds) a low trans-
action speed. The average block time and the corresponding percentiles are illustrated in
Figure 4.6.

Bi
tc

oi
n

QT
UM IO
TA

Ca
rd

an
o

NE
O

Et
he

re
um

Ve
Ch

ai
n

St
el

la
r

W
an

ch
ai

n

Ri
pp

le

IC
ON EO

S

Blockchain

0

100

200

300

400

500

Av
er

ag
e

Bl
oc

k
tim

e
in

 se
co

nd
s

550.7

142.14

60.0

21.66 18.18 13.2 10.0 5.48 5.0 3.63 2.0 0.5

66rd Percentile
33rd Percentile
Block time

Figure 4.6: Average block time

For private BC, such as Hyperledger, Multichain, Corda or Stratis, which are highly
configurable in terms of consensus mechanism and transactions rules, the block time can
not be determined per se, as it depends on how the consensus mechanism is configured.
But due to the limited amount of network participants in private BCs, it comes at no
surprise that they have higher throughput and can process more transactions than public
BCs. In [69], for example, a performance analysis of Ethereum and Hyperledger has been
performed, where the authors measured the execution time, latency and throughput of
both BCs in varying scenarios. They observed that Hyperledger outperformed Ethereum
across all scenarios. Therefore, all supported private BCs were assigned a high platform
transaction speed. The final classification is presented in Table 4.3.

4.2. FEATURES 29

Table 4.3: Platform Transaction Speed categorization

Blockchain Average Block Time [s] Platform Transaction Speed

Bitcoin 550.71 Low
Ethereum 13.20 Medium

Stellar 5.48 Medium
EOS 0.5 High
IOTA 60 Low

Hyperledger - High
Multichain - High

Corda - High
Stratis - High
NEO 18.18 Medium

Cardano 21.66 Low
Ripple 3.63 High
QTUM 142.14 Low
ICON 2.00 High

VeChain 10.00 Medium
Wanchain 5.00 High

4.2.3 Other features

In addition to the Popularity measure and the Platform Transaction Speed described in
previous sections, the following features were included in the dataset.

BC Type

This attribute describes the type of the BC, which can be either public or private, which
are also referred to as permissionless and permissioned, respectively. The type is classified
based on its write and read access. It determines the accessibility of the network. In public
BCs, access is not restricted and anyone can participate. They are decentralized and
completely distributed, which is why there is no single entity that controls the network.
Moreover, the data on the chain is publicly accessible and can be read by anyone. In
private BCs, only authorized entities are allowed to participate and control the network.
Consequently, they are not entirely decentralized. In the dataset, 12 public and four
private BC have been included.

Smart Contract Support

This feature indicates whether or not the BC platform supports SCs. SCs are digital self-
enforcing contracts/agreements in the form of computer code, typically deployed on and
secured by BC. This enables a tamper-proof contract, with which network participants
can agree to interact with each other without the need of a trusted third party. When the

30 CHAPTER 4. ML-BASED BC SELECTION

predefined triggering conditions of the SC are met, the contract is automatically executed
and submitted in the transaction, which is broadcasted to the network [8].

Turing Completeness

This feature specifies if the BC implementation is turing complete and supports complex
SC. Bitcoin was the first cryptocurrency that supported SCss. But its scripting language
is very limited and not turing complete, which is why complex logic cannot be designed
[8]. However, in certain use cases, users wish to implement complex SCs on the BC and
therefore require turing completeness.

Data Size

This feature indicates how much data (in Bytes) the BC supports in a single transaction.
Transaction focused BCs (such as Bitcoin) are not intended to store a large amount of
data, whereas SC-based BCs usually allow a higher amount.

4.3 Features Summary and Dataset

Table 4.4 summarizes all features, including their values and description. In addition, the
16 BCs associated with their corresponding features are presented in Table 4.5, which
further served as the dataset.

Table 4.4: Overview of model features

Feature Values Description

Type
Public
Private

The type of the BC

Smart Contracts
Yes
No

Whether the BC supports Smart
Contracts.

Turing Completeness
Yes
No

Whether the platform supports
Turing Completeness.

Platform Transaction Speed
Low
Medium
High

Indication on how fast transaction
are settled on the BC

Popularity
Low
Medium
High

The popularity of the BC platform

Data Size Data size values
Supported data size in one
transaction

4.3. FEATURES SUMMARY AND DATASET 31

Table 4.5: Dataset

Name Type Smart Contracts Turing Completeness Platform Transaction Speed Popularity Data Size (in Bytes)

Bitcoin Public No No Low High 80
Ethereum Public Yes Yes Medium High 46000

Stellar Public Yes No Medium High 28
EOS Public Yes Yes High Medium 256
IOTA Public No No Low Medium 1300

Hyperledger Private Yes Yes High High 20
Multichain Private No No High Medium 80
R3 Corda Private Yes Yes High Low 100

Stratis Private Yes No High Low 40
NEO Public Yes Yes Medium Medium 255

Cardano Public No No Low Medium 500
Ripple Public No No High High 150
QTUM Public Yes Yes Low Medium 2000
ICON Public Yes No High Medium 512000

VeChain Public Yes No Medium Medium 150
Wanchain Public Yes Yes High Medium 150

32 CHAPTER 4. ML-BASED BC SELECTION

Chapter 5

Implementation

This chapter describes all the steps necessary for the model development and deployment
as well as the integration into PleBeuS. Section 5.1 discusses the data processing and model
engineering. Section 5.2 contains a detailed description of how the models were deployed.
The integration of the ML-based BC selection solution into the different components of
PleBeuS and their joint use is described in Section 5.3.

5.1 ML Model Implementations

After the features were gathered and determined for all supported BCs (see Section 4.2),
the resulting dataset was stored within two separate relational tables in an SQLite [94]
database, named blockchains for dataset and attributes for dataset, that are connected by
an attribute called blockchain id. SQLite is an open-source SQL database engine, which
does not require a separate server to operate. It is an extremely light-weighted database
and saves the database in a single file. Additionally, SQLite is built-in as a Python
library and provides a simple and intuitive API. The models were primarily developed
with Python and Jupyter Notebook, relying on Scikit-learn [85] for the ML components.
Scikit-learn is a popular Python framework for Data Science and ML. It provides a variety
of ML algorithms covering the most essential areas of ML, such as classification, clustering,
regression. Moreover, it has an easy-to-use API, and its code design patterns have been
widely adopted [81].

Following the ML workflow described in Figure 4.1, the Data Acquisition phase was
completed with the data collection, including the identification and generation of the
features. This is followed by the Data Processing and Model Engineering stage of the
workflow, which will be explained in the following sections. Section 5.1.1 discusses the
preparation and the further processing of the dataset. The model training is discussed in
Section 5.1.2.

33

34 CHAPTER 5. IMPLEMENTATION

5.1.1 Data Processing

The initial dataset contains exactly one row for each BC, which expresses the properties
(features). There is one numeric feature in the data, which is the data size that indicates
the amount of data each BC is able to store. The DT classifier, which was trained based
on this dataset, showed up some flaws. As the data size is one of the decision nodes,
where tests on input variables are performed, this node uses relational operators (e.g.,
less than or equals) for the splitting criteria. Thus in the case of the less than or equal
operator, a suitable BC with a higher data size than specified and desired by the user will
be disregarded when the algorithm branches towards the appropriate child node.

To account for the aforementioned issue, the dataset was extended. Each BC’s data size
has been compared to the data size of all other BCs, and if the size was greater than
the size of the compared BC, the row was duplicated, and the data size of the duplicated
row was set to the lower value. Stratis, e.g., allows storing an amount of 40 bytes in a
transaction. This value is compared against all data sizes from every other BC. In this
case, it is only greater than the data size of Stellar and Hyperledger, which allow 28 bytes
and 20 bytes, respectively. Accordingly, the row which describes Stratis’ properties was
duplicated twice, and the data size was set to 28 bytes and 20 bytes, respectively, leaving
all other variables unchanged.

Following this procedure, the dataset increased from 16 to 107 rows. As a consequence,
the resulting dataset became imbalanced, and BCs with a relatively small supported data
size were underrepresented in the dataset. The class distribution is depicted in Figure 5.1.
To cope with this imbalance, an approach called Random Oversampling [33] was applied,
where minority classes are oversampled in order to rebalance the dataset. This approach
randomly duplicates examples from the minority class. This was done using Python’s
package called Imbalanced learn [44], which offers a number of re-sampling techniques.

Bi
tc

oi
n

Ca
rd

an
o

EO
S

Et
he

re
um

Hy
pe

rle
dg

er

IC
ON IO
TA

M
ul

tic
ha

in

Ne
o

QT
UM

R3
 C

or
da

Ri
pp

le

St
el

la
r

St
ra

tis

Ve
Ch

ai
n

W
an

ch
ai

n

Blockchain

0

2

4

6

8

10

12

Nu
m

be
r o

f s
am

pl
es

Figure 5.1: Distribution of classes after extension

Moreover, the data was further processed and transformed into a numeric representation,
as many ML algorithms require numeric inputs [34] and can not directly operate on

5.1. ML MODEL IMPLEMENTATIONS 35

categorical or label data. There are various techniques to encode categorical variables,
such as one-hot encoding or Integer/Label Encoding. Integer/Label Encoding replaces
categories by assigning numerical labels to each category ranging from 0 to n−1, where n
is the number of distinct categories of the variable. This was performed for the following
categorical features: Type, Smart Contracts, Turing Completeness, Platform Transaction
Speed and Popularity. For this purpose, dictionaries were created, having the category as
the key and the corresponding number for the category as the value of the dictionary, as
shown in Listing 5.1.

1 {" Private": 0, "Public": 1} => Type

2 {"No": 0, "Yes": 1} => Smart Contracts, Turing Completeness

3 {"Low": 1, "Medium": 2, "High": 3} => Platform Transaction Speed, Popularity

Listing 5.1: Dictionaries for Integer Encoding

The BC labels were encoded using the LabelEncoder provided by Scikit-learn, an efficient
tool to encode target labels [68]. Applying the LabelEncoder to BC labels led to an
assignment of values ranging from 0 to 15 to each label, which can be seen in Figure 5.2.

Figure 5.2: Encoded target values

After completing the data preparation, the resulting dataset was used for the next stage
of the workflow, the Model Engineering. The first sixteen lines of the final dataset are
presented in Figure 5.3.

5.1.2 Model Engineering

Four different ML algorithms were selected for model building: DT, RF, NB and SVM,
introduced in Section 2.3. These models have been trained for sixteen different BC im-
plementations, presented in Section 2.1.

36 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Processed dataset

In a first step, the models were trained by providing them with the relevant features and
their corresponding target labels for some observations. Followed by the assessment of the
models, where only the features were provided to the models, expecting them to predict
the respective labels. Therefore, the data was split into a training and a test set, where
the training set was used to train the model and the test set to measure the performance
of the model [34].

There are different tools provided by ML libraries, which are dedicated to split the data
into training and test sets. For example, Scikit-learn’s train_test_split method divides
the data into two parts according to a specified partitioning ratio. Another widely em-
ployed method called cross-validation separates the dataset into n splits, where n−1 split
is utilized for training and the remaining split for testing. In this approach, the model
runs n times through the complete dataset, using a different split for testing at each time.
Moreover, K-Fold is a popular method to split the data in cross-validation; it divides the
data into k groups. K-Fold cross-Validation is generally known to result in a less biased
estimate of the model than other approaches such as the train/test split [11]. For model
training the train_test_split method was used. Whereas a K-Fold cross-validation was
used as part of the model evaluation. The detailed comparison of the model performances
is discussed in Section 6.1.

Decision Tree Model Training

Building a DT can be achieved with the help of the DecisionTreeClassifier algorithm
provided by Scikit-learn [87]. After the import, the DT model is instantiated with the
default parameters, i.e., criterion parameter set to ‘gini’ and fitted (Scikit-learn’s name
for training) on the data attributes and labels. The DT can be visualized as a flow chart,
which makes the decision process easy to understand and interpret. Figure 5.4 serves as
an illustration of the trained DT classifier. Due to the large size of the DT when it is
trained on the entire feature space, the data size variable was omitted for the purpose of
this illustration. However, the complete DT can be viewed in Appendix A.

5.1. ML MODEL IMPLEMENTATIONS 37

Each node in the DT represents a test case for some attribute/feature, and each edge
descending from the node corresponds to the possible answers to the test case. The
topmost node, also referred to as the root node, is the starting point, where the DT
evaluates the variable that best splits the data. The intermediate nodes also evaluate
variables but do not represent the final nodes, so-called leave nodes, where the predictions
of the classes are made. The root node in the DT shown in Figure 5.4 starts with all
sixteen data points. In this node, the feature which best split the different classes is
the Turing Completeness. This results in two intermediate nodes, where the popularity
variable is further examined, which leads to two other children nodes for each node. This
partition process continues until no further separation is made, and eventually, a leaf node
is reached.

To classify a new example, one can move down the DT, using the features of the example
to answer the questions at all decision nodes until a leaf node is reached, where the class
will be the prediction.

Random Forest Model Training

Firstly, the RF classifier RandomForestClassifier was imported from Scikit-learn [89].
Then, the model is instantiated with the default parameters, i.e., n estimators set to hun-
dred, which defines the number of trees in the forest. Increasing the number of estimators
did not further improve the accuracy of the model. Finally, after the model is fitted on the
dataset, its performance is further analyzed and evaluated, which is discussed in Chapter
6.

Support Vector Machine Model Training

For the SVM model, the Support Vector Classification, SVC from Scikit-learn was imported
[88]. The model was built with different kernel functions, e.g., linear, polynomial, radial
and sigmoid. Additionally, the type was specified to one-versus-one. The penalty term C
was set to its default value, i.e., 1, as increasing or decreasing the value did not further
increase the performance of the algorithm. The performance measure accuracy was used
to evaluate the performances of the different kernels.

Table 5.1: Accuracy of different kernel functions

Kernel Accuracy

Linear 0.920635
Polynomial 0.031460
Radial 0.666667
Sigmoid 0.046190

The accuracy measure is depicted in Table 5.1 and revealed that the linear kernel was
the best kernel function for this dataset, which is why it has been used for the final SVM
model. Further evaluation of the model is discussed in Chapter 6.

38 CHAPTER 5. IMPLEMENTATION

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1, 0]
class = VeChain

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = ICON

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0

0, 0]
class = Stellar

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

0, 0]
class = Ripple

gini = 0.5
sam

ples = 2
value = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.0
sam

ples = 1
value = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Bitcoin

platform
_transaction_speed <= 2.5

gini = 0.5
sam

ples = 2
value = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

1, 0]
class = ICON

platform
_transaction_speed <= 2.5

gini = 0.5
sam

ples = 2
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0

0, 0]
class = Ripple

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0

0, 0]
class = Neo

gini = 0.5
sam

ples = 2
value = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1]
class = EOS

popularity <= 2.5
gini = 0.667
sam

ples = 3
value = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Bitcoin

popularity <= 2.5
gini = 0.75

sam
ples = 4

value = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
1, 0]

class = ICON

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0

0, 0]
class = QTUM

platform
_transaction_speed <= 2.5

gini = 0.667
sam

ples = 3
value = [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0

0, 1]
class = EOS

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Hyperledger

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Ethereum

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

0, 0]
class = M

ultichain

platform
_transaction_speed <= 1.5

gini = 0.857
sam

ples = 7
value = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0

1, 0]
class = Bitcoin

platform
_transaction_speed <= 1.5

gini = 0.75
sam

ples = 4
value = [0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0

0, 1]
class = EOS

type <= 0.5
gini = 0.5

sam
ples = 2

value = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0]

class = Ethereum

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

0, 0]
class = Stratis

type <= 0.5
gini = 0.875
sam

ples = 8
value = [1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0

1, 0]
class = Bitcoin

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

0, 0]
class = R3 Corda

popularity <= 2.5
gini = 0.833
sam

ples = 6
value = [0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0

0, 1]
class = EOS

popularity <= 1.5
gini = 0.889
sam

ples = 9
value = [1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1

1, 0]
class = Bitcoin

popularity <= 1.5
gini = 0.857
sam

ples = 7
value = [0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0

0, 1]
class = EOS

turing_com
plete <= 0.5

gini = 0.938
sam

ples = 16
value = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1]
class = Bitcoin

F
igu

re
5.4:

T
rain

ed
d
ecision

tree
as

a
fl
ow

ch
art

d
iagram

5.2. ML-BASED BC SELECTION SOLUTION IMPLEMENTATION 39

Näıve Bayes Model Training

For the implementation of the NB classifier, the MultinomialNB from Scikit-learn is im-
ported [90], instantiated and fitted to the data. Once the model was trained, further tests
and evaluations were performed to measure its applicability to the BC selection process,
which is described in Chapter 6.

5.2 ML-based BC Selection Solution Implementation

To utilize the trained models in the BC selection process, it is crucial to offer endpoints
that make them available to other services. Such endpoints are supported via an API
that adheres to the REST guidelines, as mentioned in Section 4.1. The API provides
predictions through the trained ML models. This enables the solution to work as a stand-
alone software component and let it interact with other software components, such as the
PleBeuS framework. The main reasoning for this decision is that it allows more flexibility
in terms of internal layout or using different programming languages and the opportunity
to re-use components and integrate them into other software.

The API is implemented using the Python web framework Flask [28] and Flask REST-
ful [12], an extension to Flask that adds support for building REST APIs. Further,
joblib [46] to save and load the models and label encoder as well as numpy [65] to handle
input and output data. Listing 5.2 shows the necessary libraries import for this project.

1 # Import required libraries

2 import os

3 from flask import Flask, jsonify, request, render_template

4 from flask_restful import Api, Resource, reqparse

5 from model.trainModels import train_models

6 import joblib

7 import numpy as np

Listing 5.2: Imports

The first step for building the Flask server was to set up an instance of a Flask app and
create an API reference using the flask restful Api. Additionally, the trained models and
the label encoder are loaded, as depicted in Listing 5.3.

1 # Instatiate flask server

2 app = Flask(__name__)

3 api = Api(app)

4
5 # Decision Tree

6 dt_model = joblib.load(‘decision-tree.model’)

7 # Random Forest

8 rf_model = joblib.load(‘random-forest.model’)

9 # Support Vector Machine

10 svm_model = joblib.load(‘decision-tree.model’)

11 # Naive Bayes

12 nb_model = joblib.load(‘naive-bayes.model’)

13
14 label_encoder = joblib.load(‘label_encoder.joblib’

Listing 5.3: Flask application

40 CHAPTER 5. IMPLEMENTATION

In a second step, the route handler had to be defined, which contains the logic and in-
teraction of receiving requests and the response/prediction that is sent back. Therefore,
the MakePrediction resource class is created, which is responsible for the prediction of
the BC. This class is shown in Listing 5.4. It is a subclass of the Flask-RESTful class
Resource, which is used to map HTTP methods to objects. The declared post method
within the class enables users to send a body with the API parameters. The body of the
request will be parsed, and the arguments are fetched using the Flask RESTful’s request
parsing interface that provides access to variables. For that, the expected arguments from
the JSON input are added with the add_argument() method and parsed into a dictio-
nary. Then, the necessary variables, i.e., model, type, smart contract, turing complete,
transaction speed, popularity and data size are taken and stored in the to_predict_list
variable, which is used as the input for the blockchain_predictor method, where the
loaded model is applied and the prediction is made. Upon receiving the prediction of the
model, a JSON response is generated and returned. Finally, the add_resource function
registers the route with the framework using the /api/predict endpoint where users will
be able to access and send requests to.

1 class MakePrediction(Resource):

2 @staticmethod

3 def post():

4 # Define parser

5 parser = reqparse.RequestParser ()

6 parser.add_argument(‘model’)

7 parser.add_argument(‘type’)

8 parser.add_argument(‘smart_contract’)

9 parser.add_argument(‘turing_complete’)

10 parser.add_argument(‘transaction_speed’)

11 parser.add_argument(‘popularity’)

12 parser.add_argument(‘data_size’)

13 # Creates dictionary

14 args = parser.parse_args ()

15 # Convert input to list

16 to_predict_list = [args[‘model’], args[‘type’], args[‘smart_contract’],

17 args[‘turing_complete’], args[‘transaction_speed’],

18 args[‘popularity’], args[‘data_size’]]

19 prediction = blockchain_predictor(to_predict_list)

20 return jsonify ({‘name’: prediction })

21
22 api.add_resource(MakePrediction, ‘/api/predict’)

Listing 5.4: Prediction endpoint

The blockchain_predictor method is shown in Listing 5.5. It takes the list with the
variables as input and converts it into numpy array to be fit into the model. The first
argument of the list defines what model was selected to be used for the prediction. De-
pendent on what this argument is, the respective model is used to predict the BC. During
training, the target values have been transformed with the Label Encoder, which assigned
an integer to each label. Consequently, the returned prediction will be an integer as
well. Therefore, the saved label encoder is used to reconvert the categorical variables
from numeric back into the respective categories, i.e., the BC name.

5.2. ML-BASED BC SELECTION SOLUTION IMPLEMENTATION 41

1 def blockchain_predictor(to_predict_list):

2 #Convert input to array

3 features = [np.array(to_predict_list[1:])]

4 #Extract chosen model

5 chosen_model = to_predict_list[0]

6 #Get prediction from chosen model

7 if chosen_model == ‘decision_tree’:

8 prediction = dt_model.predict(features)

9 elif chosen_model == ‘random_forest’:

10 prediction = rf_model.predict(features)

11 elif tchosen_model == ‘support_vector_machine’:

12 prediction = svm_model.predict(features)

13 else:

14 prediction = nb_model.predict(features)

15 #Inverse transform to get the original dependent value

16 prediction_decoded = label_encoder.inverse_transform(prediction)

17 return: prediction_decoded[0]

Listing 5.5: Blockchain predictor

When sending a post request to the prediction endpoint, it is worth noting that the
argument values that are required for the prediction need to be numeric. This is due
to the models being trained on a numerical representation of the categorical variables in
accordance with Listing 5.1. E.g., the request body shown in Listing 5.6 would correspond
to input variables shown in Listing 5.7.

1 {

2 "model": "decision_tree",

3 "type": 1,

4 "smart_contract": 1,

5 "turing_complete": 0,

6 "transaction_speed": 2,

7 "popularity": 3,

8 "data_size": 28

9 }

Listing 5.6: Example request body

1 {

2 "model": "decision_tree",

3 "type": "Public",

4 "smart_contract": "Yes",

5 "turing_complete": "No",

6 "transaction_speed": "Medium",

7 "popularity": "High",

8 "data_size": 28

9 }

Listing 5.7: Corresponding labels

In addition to the prediction endpoint, the /api/blockchains endpoint was added. It
returns all available BCs along with their corresponding characteristics. Upon receiving a
GET request, the flask server connects to the database and executes a SQL query, which
retrieves the necessary attributes from each BC and returns them as a JSON response.

A Graphical User Interface was also built on top of the REST API, which can be used to
access the ML models. It provides a form where users can input the data for prediction,
which is illustrated in Figure 5.5. The different use cases of the Flask Server can be
seen in Figure 5.6. These show two high-level usages; a user can either make use of the
ML-based selection algorithms by utilizing the provided GUI (1) or by using the PleBeuS
framework (2).

42 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Graphical User Interface

Flask Server

Web Page

user query with
desired BC features

send query to
flask server

ML models
(decision tree, random
forest, naives bayes)

request model to
 predict BC for desired

features

Get prediction

send predicted
BC to the
webpage

PleBeuS

create transaction

Blockchain Selector

send predicted
BC to BC
Selector

send defined features
in currently active

policy to flask server

response

(1)

(2)

Figure 5.6: Prototype usage

5.3. INTEGRATION INTO PLEBEUS 43

5.3 Integration into PleBeuS

This section describes the two components of the PleBeuS framework in combination with
the ML-based BC selection solution and the interaction between the different components.
First, PMT is detailed, followed by a description of the Transaction Component.

API
Request Handler

API

Database

Blockchain Selector

API

ML model

GUI

User Data

Policy Data

Blockchain
Data

Transaction
Data

Policy Decision Point

Policy Selector
Transaction
Generator

Policy Management Tool

Bi
frö

st

PEP

Policy-based Blockchain Selection Framework

Exchange Rates Transaction Costs

ML Selection

API
Request Handler

External Services

BC
BC

BC

Blockchains

Figure 5.7: Extended PleBeus architecture

The PleBeuS framework can either be used in conjunction with the Blockchain Interoper-
ability API, called Bifröst [83], or as a separate application. The API endpoint, which is
used to send data to the framework, also returns a response payload that can be used to
extract information about the transaction (shown in Listing 5.8). When the framework
is used independently, users can use the response as a suggestion of what BC to use. In
general, the framework provides a user-friendly Web interface and allows users to interact
with two separate components. It provides a GUI for the management of policies and an
API endpoint to execute transactions [84].

44 CHAPTER 5. IMPLEMENTATION

1 [

2 {

3 "username": "TestUser",

4 "blockchain": "Ethereum",

5 "dataHash": "hashed data using SHA -256"

6 "data": "the plain data",

7 "cost": 0.01,

8 "policyId": "5 ce16ca8fb2adb4b443ae2b9 ",

9 "costProfile": "performance",

10 "interval": "daily"

11 }

12]

Listing 5.8: Example of a transaction payload from PleBeuS [84]

For the integration of the ML-based BC selection solution into PleBeuS, the two core
components of the framework had to be adjusted. Firstly, the PMT had to be extended
to allow the additional features/parameters to be added to the policies that were not
yet supported by the framework. Secondly, the Transaction Component (Policy Decision
Point) had to be extended to ultimately allow the framework to use both the regular and
the ML-based selection algorithm. The architecture of PleBeuS after the integration is
depicted in Figure 5.7.

5.3.1 Policy Management Tool

The PMT is the starting point of the PleBeuS framework. It provides a GUI, where the
user can create users and manage policies. This section focuses on the interaction between
the user, the GUI and the PMT in conjunction with the ML-based BC selection solution.
For that purpose, the different steps involved in the data workflow are described and
illustrated with a sequence diagram. The diagram is divided in four sequential steps for
illustrative purposes and the sake of clarity. However, the complete sequence diagram is
presented in Appendix C. First, the user is prompted to create a user. Upon submission
of a username, the PMT checks whether the username already exists; if not, the user
is redirected to the policy configuration view, where the default policy can be defined.
Otherwise, the user will get an error message (see Figure 5.8).

alt

User

:GUI

create User

:PolicyManagement

check if username exists

username ok
[if username

does not exist
yet]

[else]

redirect to page for default
policy configuration

username not ok
error message

(1)

PleBeuS

Figure 5.8: Step 1 of PMT workflow

5.3. INTEGRATION INTO PLEBEUS 45

Upon submitting the configured default policy, the input is validated and stored in the
database along with the user when a valid input has been passed. Then, the user is
redirected to the main view, where additional policies can be created, or existing policies
can be edited or deleted. The main view also provides statistics about executed transaction
and also indicates which policy is currently active (see Figure 5.9).

alt

submit default policy
configurations

validate input

[if input valid]

[else] error message

valid input
store user
and default

policy in
database

redirect to main view

invalid input

(2)

Figure 5.9: Step 2 of PMT workflow

When the user decides to create an additional policy, the user is redirected to the configu-
ration view. A form will be provided, where the user can configure the policy (see Figure
5.10).

alt configuration view with
ML model features

configuration view for
regular selection

create policy

redirect to configuration view

(3)

[use machine
learning

selection]

[else]

Figure 5.10: Step 3 of PMT workflow

The default form allows the configuration of the policy parameters, described in Section
2.2, which can also be seen in Figure 5.11. To provide the user with the option to
choose between the regular and the ML-based selection algorithm, a button “Use ML
selection algorithm” has been added to the form. Suppose the user wishes to use the
ML-based selection algorithm. In that case, the button can be selected, and the form will
be extended with the parameters which are required for the model prediction and which
are not yet part of the form, namely the preferred ML model, Smart Contracts, Platform
Transaction Speed and Popularity. Additionally, the form will exclude parameters that
are not necessary for the ML-based selection algorithm.

46 CHAPTER 5. IMPLEMENTATION

Figure 5.11: Policy configuration view

The excluded parameters are Preferred Blockchains, Min. Transaction Per Second, Max.
Block Time, Allow Split Transaction and the Cost Profile. The rationale behind this
exclusion is the following reasons:

(a) The preferred BC parameter allows the user to select a single or multiple BCs
that should be considered for the selection. As the ML models are trained for
all BC implementations, it is not possible to narrow down the range of BCs for
consideration without training a model for every possible variation of BC set. This
would imply an increased overhead, which is avoided by using the existing selection
algorithm instead of the ML selection algorithm if the user wishes to make use of
this parameter.

(b) The Min. Transaction Per Second and Max. Block Time (in Seconds)
parameters determine the performance of a BC. There are various factors that in-
fluence the performance of a BC [16]. One factor is the transaction throughput,
representing the number of transactions a BC network can successfully process per
second. [4]. Other factors are the block time, which determines the time/interval
that is needed to append a new block on the BC and the block size, which defines
how many transactions a block can store. The transaction throughput is a function
of these other two factors. The throughput is the result of dividing the block size
by the block time. Due to the dependency of the parameters, these parameters are
replaced by a single parameter called“Platform transaction Speed”, which has been
introduced in Section 4.2.

5.3. INTEGRATION INTO PLEBEUS 47

(c) The Allow Split Transaction defines whether the data should be stored across
all valid BCs. Since the ML model will predict exactly one BC for a given input, it is
not possible to split the transaction over multiple BCs within one policy. Therefore,
this parameter was excluded as well.

(d) The Cost Profile parameter is used whenever multiple BC implementations fulfill
the criteria defined in the policy. There are two options to choose from, a perfor-
mance or an economic-based cost profile. The former would always select the most
performant BC, and the latter would select the BC with the lowest transaction costs.
As there is only one BC selected in case the ML selection algorithm is performed,
this parameter becomes obsolete, so it is also excluded.

The other policy parameters, Blockchain Type, Max. Cost, Min. Data size, Turing Com-
pleteness and the Valid Time Frame remain selectable in the new provided form. In
addition, the new configurable features, ML model, Smart Contracts, Platform Trans-
action Speed and Popularity, will become apparent. The updated view of the policy
configuration is illustrated in Figure 5.12.

Figure 5.12: ML features configuration view

As soon as the policy parameters have been configured and submitted, all information
along with the username is sent to the PMT, which checks if any policy conflicts exist. If
there are no conflicts, the user is redirected to the main view again. Otherwise, the user
receives an error message stating what the reason for the conflict was (see Figure 5.13).

48 CHAPTER 5. IMPLEMENTATION

alt

check for policy conflicts

[if no policy
conflicts]

[else]

no conflicts

redirect to updated main view
store

policy in
database

conflicts

error message

submit policy
(4)

Figure 5.13: Step 4 of PMT workflow

The following events can trigger a policy conflict:

• No BCs meet the criteria defined in the policy in case the regular selection algorithm
is selected [52].

• The Cost Threshold and Cost Interval which belong to the externally driven policy
parameters, allow users to set a maximum cost amount they are willing to spend
in a particular interval. As soon as the accumulated transaction costs exceed the
defined threshold, the currently active policy switches to the next policy with a
higher threshold. Therefore, a policy with a higher cost interval must have a higher
cost threshold, otherwise a conflict arises [52].

• The Time Frame parameter allows users to specify when a policy should be active.
An overlap of time frames within the same cost interval is not allowed and will result
in a conflict [52].

• When using the ML Service, it is required to choose a preferred type i.e., public or
private. Otherwise, when no BC type has been selected, this will also result in a
conflict.

From the main view, the user can now create additional policies or edit and delete pre-
viously defined ones. When editing policies, the PMT pulls the policy of interest from
the database and presents it to the user in the configuration view, with the existing data
already filled into the form. Deleting a policy is always possible, except in the case of the
default policy, ensuring that the user always has an active policy. Due to the partially
different parameters for the ML-based selection algorithm, the main view was updated,
as shown in Figure 5.14.

5.3. INTEGRATION INTO PLEBEUS 49

Figure 5.14: Updated main view of PMT

In particular, the updated view includes information on whether or not the ML-based
algorithm was chosen for the policy, indicated by a checkmark in the column named
Use ML. If that is the case, it provides an overview of the selected policy parameters
required for the ML selection, i.e., type, cost, currency, interval, data size, smart contracts,
turing completeness, transaction speed, popularity, time frame and the ML model. Policy
parameters that are not required for the ML selection are left blank (BC, tps, block time,
split and the cost profile). The same applies when the regular selection algorithm is
chosen, the policy parameters that are used for the ML algorithm are simply left empty
in the main view. Additionally, the policy schema was extended with the new parameters
in order for the information to reach the Transaction Component workflow.

5.3.2 Transaction Component

The main integration of the ML-based selection functionality occurred in the Transaction
Component of the PleBeuS framework. In specific, the BC selection module within the
Transaction Component was extended. Rather than using the database to retrieve the
BC that conform to the policy, a POST request to the API endpoint /api/predict of
the Flask application is executed, with the request body containing all information about
the policy parameters. The API, in turn, will use the ML model to predict a BC and
return it to the BC Selector, which is then used for further processing. Figure 5.15 shows
the extended Transaction Component. The interaction between the user, the Transaction
Component and the Flask application is explained in the following paragraphs, which is
also illustrated in the sequence diagram in Figure 5.16.

50 CHAPTER 5. IMPLEMENTATION

Request Handler

Input Validator

valid

Error Builder

false

Data
Extractor

Response Handler

API

POST
/api/transactions

response
/api/transactions

Database

Policy Selector

Blockchain Selector

store /
retrieve

true

Transaction Component

REST API

ML model

Flask Application

(1)
(2) retrieve

(3)

(4)

(10)

(8)

(11)

Cost Interval
Updater Cost Calculator

Analytical Solvers

Transaction Builder

Exchange Rates

Transaction Costs

External Services

store

retrieve

retrieve

POST

/api/predict

prediction

(4)
(5)

(6)

(7)

(9)

Figure 5.15: Extended Transaction Component workflow

Once the policies have been defined, a transaction can be sent to the /api/transactions

endpoint. Since PleBeuS focuses on the use case of cold chain monitoring, an Excel file
containing sheets with temperature data and the minimum and maximum temperature
thresholds needs to be included in the transaction. Alternatively, a string instead of
an Excel file and the temperature thresholds can be passed as well [52]. By sending a
POST request with this information along with the username in the body of the request,
the transaction workflow gets triggered. Upon receiving the request, the Transaction
Component checks whether all parameters are valid and if the user is available and already
defined at least one policy. If the parameters are valid, the Transaction Component
further processes the data. In case the Excel file has been sent, the sheets from the file
are parsed, and all the violating data, temperature below the minimum and above the
maximum threshold, are extracted from the sheets. Each sheet corresponds to a single
transaction and represents a temperature measurement of a delivery [52].

As soon as the transaction costs are calculated, each sheet’s violation data is checked step
by step. In an initial step, the policy is selected based on the cost threshold. The policy
with the lowest time interval within the time frame that has not reached the max costs yet
is selected. For a detailed explanation of these steps, refer to [52]. This policy is further
examined; if the user had opted for the ML-based selection algorithm, a POST request
is sent to the /api/predict endpoint, containing the parameters of the policy. The
endpoint parses the incoming request and based on which ML model the user has chosen
in the policy, the corresponding ML model is used to predict the BC. The API response
is then returned to the Transaction Component, where the predicted BC is used for the
transaction. If the user opted for the regular selection algorithm in the currently active
policy, a BC pool is determined, with all BCs that conform to the policy. Depending on
the cost profile of the policy, either the most performant or the cheapest is selected from
this pool [52]. Either way, all cost intervals of the user are updated with the calculated
transaction costs before the next sheet will go through the same process. If the user passes
a string, the process is almost identical, with the exception that the data is not looped
through and only one transaction is executed. Finally, for each transaction, the selected
BCs are gathered and returned to the user. If the user passes a string for the transaction

5.3. INTEGRATION INTO PLEBEUS 51

instead of an Excel file, the process is essentially the same. The only difference is, that
the data is not looped through and therefore, only one transaction is executed [52].

The transaction of the extended framework returns a slightly different response when the
ML-based selection is performed, which is shown in Listing 5.9. The ML-based selection
process does not require the user to define a Cost Profile, as discussed in the previous
section, which is why it has been omitted from the transaction payload. Instead, it
includes information about the selected ML model.

1 [

2 {

3 "username": "TestUser",

4 "blockchain": "Stellar",

5 "dataHash": "hashed data using SHA -256"

6 "data": "the plain data",

7 "cost": 0.01,

8 "policyId": "5 ce16ca8fb2adb4b443ae2b9 ",

9 "interval": "daily",

10 "mlModel": "naive_bayes"

11 }

12]

Listing 5.9: Example of a transaction payload from the PleBeuS framework when using
ML for the selection

alt
loop

alt

predicted Blockchain

features

send transaction
(username, file, minTemp, maxTemp)

User

:TransactionComponent

[if valid
parameters]

[else]

error message

get currently active
policy from database

(1)

PleBeuS

:Api :mlModel

[if machine
learning

selection]

[for each sheet in
excelsheet]

[else]

POST request (features)

prediction

Flask Application

check username and
if policy has been defined

update user costs &
create transaction

response(transaction)

use selection algorithm
from PleBeuS, update

costs & create
transaction

response(transaction)

Figure 5.16: Transaction flow

52 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation and Discussion

This chapter presents the results of the performance evaluation of the ML algorithms
as well as use case scenarios describing and evaluating the practical application of the
ML models in regards to the BC selection process. Moreover, it provides the result of
the performance testing of the prototype (i.e., the integration of the ML solution into
PleBeuS).

All the benchmarks were conducted on the same machine. The system uses an i7-6600U
CPU @ 2.60GHz and has 16 GB of RAM. The operating system is Windows 10 Pro.
PleBeuS was deployed in a docker container while the ML-based solution was running
locally without relying on virtualization.

6.1 Comparison of ML Algorithms

Different ML algorithms have been trained for this project, as described in Section 5.1.2.
For evaluation and comparison of these algorithms, several performance metrics were
considered. E.g., visualization methods such as confusion matrices were used. Confusion
matrices visualize the performance of the models in a tabular way. Each entry indicates
the number of predictions that were made and whether or not the model predicted the
correct classes. In order to calculate a confusion matrix, the dataset was split into two
sets: the training set and the test set. As the names suggest, the models were trained
using the training set and then tested against the test set. While testing, the models
are used to predict the class labels (predicted labels), which in turn are compared to the
actual labels (true labels). The confusion matrices of the models are illustrated in Figure
6.1. Due to the large size of the matrices, they were down-scaled for the purpose of this
illustration. However, the original full-sized matrices can be viewed in Appendix B. The
classes are listed in the same order in the rows as in the columns, such that the correctly
classified elements are on the main diagonal from top left to bottom right.

In Figure 6.1a, 6.1b and 6.1d, it is observable that the DT, RF and SVM correctly pre-
dicted the classes in most cases. In all these cases, some samples belonging to IOTA have

53

54 CHAPTER 6. EVALUATION AND DISCUSSION

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a)

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(b)

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(c)

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(d)

Figure 6.1: Confusion matrices. (a) DT (b) RF (c) NB (d) SVM

been predicted with Cardano or vice versa. Similarly, some EOS samples have been classi-
fied as Wanchain and vice versa. This is due to these BCs having the same characteristics.
IOTA and Cardano, as well as EOS and Wanchain, share the same properties, besides the
data size variable, which is apparent on the dataset depicted in Table 4.5 in Section 4.3.
Therefore, these classification anomalies are not surprising and ultimately not incorrect.
Overall, these models performed with a high accuracy score, which is presented in Table
6.1. The accuracy scores of DT, RF and SVM algorithms are very close to each other,
whereby the RF and the SVM models slightly outperformed the DT model by roughly
2%.

6.1. COMPARISON OF ML ALGORITHMS 55

The NB model, in contrast, has provided the worst performance. Figure 6.1c shows the
respective confusion matrix. The model misclassified the test samples in more than 30%
of the cases.

Table 6.1: Performance

ML model Accuracy Score Time Performance (Seconds)

Decision Tree 86% 0.074009
Random Forest 88% 4.767519

Naive Bayes 69% 0.079040
Support Vector Machine 88% 48.710479

A possible explanation for the poor performance of the NB model is its sensitiveness to
correlated features, as it assumes independence of all attributes, which does not hold in
this case. This is evident in the correlation matrix in Figure 6.2, which was created with
the help of seaborn’s heatmap functionality [113]. There is a high correlation between
Turing Completeness and Smart Contract Support and between the popularity of the BC
and its type. Furthermore, there is a notable negative correlation between the Transaction
Speed of a BC and its type and a positive correlation between the Transaction Speed and
the SC Support of a BC.

type smart_contract turing_complete platform_transaction_speed popularity MinArbitraryData

type

smart_contract

turing_complete

platform_transaction_speed

popularity

MinArbitraryData

-0.00058

0.0043 0.63

-0.39 0.39 0.074

0.49 -0.18 0.002 -0.14

0.044 0.077 -0.089 0.11 -0.017

0.2

0.0

0.2

0.4

0.6

Figure 6.2: Correlation matrix using a heatmap for the variables

Furthermore, the average accuracy and the distribution of model accuracies have been
computed. The algorithms have been evaluated on a consistent test harness. Each al-
gorithm was evaluated with the 10-fold cross-validation procedure, which was configured
with the same random seed to ensure that the same splits are performed on the data,
and each algorithm is being evaluated in the exact same way. The box plot in Figure 6.3
shows the spread of the accuracy scores across each cross-validation fold for each algo-
rithm. This comparison demonstrates yet again, that the DT, RF and SVM models are
almost equally accurate on average. It also shows the poor performance of the NB model
on this dataset, with a mean accuracy of only 22%.

56 CHAPTER 6. EVALUATION AND DISCUSSION

DT RF NB SVM
Algorithm

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Figure 6.3: Comparison of different ML algorithms

The performance in terms of training time was also evaluated. For this purpose, the models
have been trained thirty times on the dataset, and the respective time (in seconds) has
been measured for each algorithm. The evaluation results are depicted in Table 6.1. It
is noticeable that the DT and the NB classifiers had the fastest training time of around
80 milliseconds. It is obvious that the RF algorithm has a higher training time than a
single decision tree, as in each run, 100 decision trees are built for the RF classifier. The
SVM classifier had by far the slowest training time, which was around 48 seconds. This is
probably due to its high computational complexity. Traditional SVM requires O(n2) time
complexity, which is why it is impractical for large datasets [111]. Nonetheless, considering
that the models only have to be trained once, the training time seems to be reasonable
for all the applied algorithms.

6.2 Use Case Scenarios

For the evaluation of the ML-based BC selection solution as a separate application, two
scenarios were considered. In the first scenario, each model is provided with BC features
that exactly match an underlying BC, expecting them to return the correct BC. In the
second scenario, BC features that do not precisely correspond to a specific BC are taken
as input for the models, expecting them to predict the most appropriate BC given these
parameters. These predictions can finally be used as a suggestion and further evaluated
by the user as not all desired properties are covered by one of the supported BCs.

6.2. USE CASE SCENARIOS 57

6.2.1 Scenario #1

The results of the first scenario are presented in Table 6.2. This table illustrates the
prediction made by each of the models and whether or not the prediction of the BC of
interest was correct, indicated by a green checkmark (3), or if the prediction was wrong,
indicated by a red cross (7). It is apparent that the DT and the RF correctly predicted the
BCs in all cases, while the SVM model rightly classified the BCs for the most part, except
in the cases of Cardano and Wanchain, where it predicted IOTA and EOS, respectively.
However, as discussed in the previous section, this classification is eventually not wrong
because these BC share the same defined properties and fit the input parameters.

In contrast to the good generalization capabilities of the DT, RF and SVM model, the
NB model achieved bad results once more. It incorrectly classified the instances in half
of the cases, which was highly anticipated, considering the low accuracy score of the NB
model.

Table 6.2: Predicted BCs given Scenario 1

Blockchain
ML Models

DT RF NB SVM

Bitcoin 3 3 7 3

Ethereum 3 3 7 3

Stellar 3 3 3 3

EOS 3 3 7 3

IOTA 3 3 7 3

Hyperledger 3 3 3 3

Multichain 3 3 7 3

R3 Corda 3 3 7 3

Stratis 3 3 3 3

Neo 3 3 7 3

Cardano 3 3 IOTA IOTA
Ripple 3 3 3 3

QTUM 3 3 7 3

ICON 3 3 3 3

VeChain 3 3 3 3

Wanchain 3 3 EOS EOS

6.2.2 Scenario #2

For the second scenario, BC characteristics were chosen that do not fully meet the proper-
ties of one of the supported BCs. This was done to evaluate if the models’ predictions are
reasonable and if they finally could serve as user recommendation. It is worth mentioning
that the regular selection algorithm in PleBeuS does not offer such a flexible recommen-
dation mechanism, as the user would be prompted with an error message, stating that no
BC with provided parameters is available. For this scenario, the NB model was omitted

58 CHAPTER 6. EVALUATION AND DISCUSSION

due to its inadequacy and the poor quality of its predictions. Overall, five cases were
defined, which are then passed as input to the models, which in turn make predictions
based on these values. These test cases, along with the corresponding prediction of each
model, are illustrated in Table 6.3.

Table 6.3: Test cases for scenario 2

No. Type Smart Contracts Turing Completeness Platform Transaction Speed Popularity Data Size
Prediction

DT RF SVM

1 Public Yes Yes High High 250 EOS EOS EOS
2 Public Yes No High High 20 ICON Stellar ICON
3 Public No No Low Medium 2000 IOTA IOTA IOTA
4 Private Yes Yes High Medium 100 R3 Corda R3 Corda Wanchain
5 Private No No Medium Low 20 Multichain Multichain Stratis

In case No. 1, four different BC implementations (Ethereum, EOS, Neo and QTUM)
would be eligible if only the type, SC, turing completeness, and supported data size
variables are considered. However, none of these BCs has both a high transaction speed
and high popularity. The predicted BC was the same across all models, namely EOS,
which covers all variables except for having a medium popularity score. Neither of the
models chose Neo or QTUM because neither of them has a high transaction speed nor high
popularity. The other option would have been Ethereum, which has high popularity but
medium transaction speed. To comprehend why the models favoured EOS over Ethereum,
the feature importance of the DT and the RF model was computed, which indicates the
relative importance of each feature towards the output variable. The DT and RF model
both provide a built-in feature importances property that can be accessed to retrieve the
relative importance scores of the features, which are illustrated in Figure 6.4. It is evident
that the transaction speed is the top feature contributing to the prediction in both models,
thus favouring BCs with a matching transaction speed.

Tr
an

sa
ct

io
n

Sp
ee

d

Tu
rin

g
Co

m
pl

et
en

es
s

Sm
ar

t C
on

tra
ct

s

Po
pu

la
rit

y

ty
pe

Da
ta

 S
ize

Feature

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Im
po

rta
nc

e

(a) DT

Tr
an

sa
ct

io
n

Sp
ee

d

Po
pu

la
rit

y

Tu
rin

g
Co

m
pl

et
en

es
s

Da
ta

 S
ize ty
pe

Sm
ar

t C
on

tra
ct

s

Feature

0.00

0.05

0.10

0.15

0.20

0.25

Im
po

rta
nc

e

(b) RF

Figure 6.4: Feature Importance

In case No. 2, three BCs qualify for selection (Stellar, ICON and VeChain) when con-
sidering all parameters except the transaction speed and the popularity score. The RF

6.3. PERFORMANCE TESTING 59

model predicted Stellar, thus, this time weighting the popularity more than the transac-
tion speed, as Stellar has a high popularity but medium transaction speed. This could
be because the importance of transaction speed and popularity in the case of the RF is
almost equally high. On the other hand, the DT and the SVM models predicted ICON,
which has a high transaction speed but medium popularity. None of the models predicted
VeChain because it neither has a high transaction speed nor high popularity.

In case No. 3, the input variables are chosen in such a way that two BCs, IOTA and
Cardano, would qualify for selection except that they both don’t support 2000 bytes in
one transaction. All models returned IOTA, which is presumably due to IOTA’s higher
data size support of 1300 bytes, compared to Cardano’s 500 bytes. Generally, if the
defined input corresponds to one specific BC apart from the data size, that BC is selected
nevertheless, which might be a disadvantage in some cases, e.g., when the specified data
size is inevitable for the user.

In case No. 4 and 5, predictions of private BCs were the main focus of the analysis. The
only private BC that supports a data size of 100 bytes, as defined in case No. 4, is Corda.
However, it does have low popularity in opposition to the medium popularity specified
in the input. In this context, the DT and RF predicted Corda as the most suitable BC,
whereas the SVM returned Wanchain, which conforms with all input variables besides
the BC type. In consequence, it is possible that a model will output a public instead of
a desired private BC, which could potentially be a significant drawback, especially when
the sensitivity of the data stored on the BC is crucial to the user.

In case No. 5, all models correctly predicted a private BC. The DT and RF returned
Multichain as the most fitting BC, while the SVM forecasted Stratis. Multichain satisfies
the SC and turing completeness constraint but provides a higher transaction speed and
popularity than defined in the input values. Whereas Stratis does not fulfill the smart
contract constraint but meets the low popularity score and also offers a higher transaction
speed.

6.3 Performance Testing

For the evaluation of BC selection of the ML models compared to the regular selection
algorithm, the average response time has been measured for each ML algorithm and the
regular selection algorithm. Therefore, 1000 requests have been sent to the Transaction
Component via POST request to the /api/transactions endpoint. Each request containing
an Excel file that consists of 10 sheets, resulting in 10000 randomly generated transactions.
The policies have been configured in a way that both algorithms return the same BC for
all transactions. The specific configuration is outlined in Table 6.4, which both result in
the selection of Stellar.

60 CHAPTER 6. EVALUATION AND DISCUSSION

Table 6.4: Policy configuration

Algorithm
Policy Configuration

Type TPS Block Time Transaction Speed Data Size SC TC Popularity

ML models Public - - Medium 20 Yes No High
Regular Public 1000 5 - 20 - No -

For testing, Postman [70] was used, which is an interactive API testing tool. It provides
a user-friendly GUI for constructing requests and reading responses. Following the policy
configuration, the POST request with the required parameters was defined and executed
1000 times. The specific body of the POST request in Postman is shown in Figure 6.5.

Figure 6.5: Transaction body of POST request in Postman

Finally, the average response time was calculated for each algorithm, which is depicted in
Figure 6.6. The results show that all the ML models had a similar average response time of
approximately 1200 ms per request and 120 ms per selection. It further demonstrates that
the integrated ML solution does not produce a significant overhead in terms of response
time compared to the regular algorithm used in PleBeuS.

Per Request Per Selection
Dimension

0

200

400

600

800

1000

1200

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

DT
RF
NB
SVM
Regular

Figure 6.6: Average response time for 1000 iterations

6.4. DISCUSSION 61

6.4 Discussion

This section attempts to answer RQ 1 as described in Chapter 1 and discusses the main
findings of the evaluation.
Can ML be useful in the BC selection? And which algorithms are most suitable?

The comparison of the ML models revealed that the models can be highly accurate and
used for a multiclass classification task such as the BC selection process. It showed that
the NB algorithm is not suitable for this dataset due to its low accuracy score and bad
performance on the use case scenario in Section 6.2.1. The three other models, i.e., DT,
RF and SVM, performed significantly better than the NB models across all tests being
conducted for this evaluation, except for the evaluation of the training time, where the NB
model was the second-fastest learning algorithm. Between these three models, there was
no essential or significant difference in terms of accuracy. Their corresponding confusion
matrices, as well as their accuracy scores, demonstrated that most of the instances of the
test cases were correctly classified. In particular, if the input variables completely match
with an underlying BC, that specific BC is predicted by the models.

In cases where two different BC share the same properties, e.g., EOS and Wanchain,
and both meet the criteria defined in the parameters, only one of them is outputted by
the model. As seen in the model evaluation, this led to misclassification in some cases,
despite the models predicting one of the two possible BCs, which was also the reason
why the models did not yield a higher accuracy score. This could possibly be addressed
by including a multi-label classification algorithm, which is used to predict properties of
samples that are not mutually exclusive, i.e., each instance can be assigned simultaneously
into multiple categories instead of only one like in the case of multiclass classification.
Such an approach could also be applied to cases where the input variables do not fully
match an underlying BC implementation (discussed in Section 6.2.2), providing users
with a recommendation of multiple BCs instead of only one based on their requirements.
Scikit-multilearn is a dedicated library for multi-label classification problems, which is
built on top of Scikit-learn ecosystem [99]. Unfortunately, this approach was not further
elaborated due to time constraints and may be the subject of future work.

Section 6.2.2 has proved that the models provide good predictions when no BC entirely
covers the desired properties. However, it might give rise to certain disadvantages. As
demonstrated, there are cases where users wish to have a particular data size or BC type,
but since not all properties are covered by a single BC, it can happen that a model predicts
a BC which does not support the desired data size or does not match the type specified.
Obviously, the same can happen to all other features. To cope with this issue, a feature
importance metric could be introduced, which would allow users to define the relative
importance of their preferences that should be considered when making a prediction.

Finally, the performance testing of the ML solution in combination with the PleBeuS
framework showed that there is no significant difference in terms of response time be-
tween using the ML models and the regular selection algorithm for selection within the
framework.

62 CHAPTER 6. EVALUATION AND DISCUSSION

6.5 ML vs Rule-Based Systems

This section aims to answer RQ 2 as described in Chapter 1.
How does a ML-based selection approach compare to a rule-based system?

ML models learn inherent patterns from data to make a prediction of an output for new
data points by using the learned knowledge. Hence, there is no need for explicit hand-
coded rules or numerous if-then conditions that are usually involved in creating a decision
making/support system.

In this context, a rule-based approach would determine a suitable BC based on the re-
quired features by using a set of decision rules, such as it is the case in the selection
algorithm used for the PleBeuS framework. These rules instruct the system to use rel-
evant features of a policy that has been configured from the user to identify the most
appropriate BC. Although a rule-based system is human-comprehensible and might be
improved over time, it comes with several disadvantages. On the one hand, it requires
in-depth domain knowledge and can become a time-consuming process, especially when
the system is complex. On the other hand, it can result in poor scalability, as adding
new rules can impact existing rules. In contrast, a supervised ML approach would learn
to make these classifications based on a dataset, e.g., the dataset outlined in Section 4.3,
where no person has to explicitly define the rules. New instances or features can easily
be added to the dataset, such that new tasks can be learned from the new data without
having to code new rules explicitly.

However, the data acquisition and preparation process is a crucial part of ML and usually
involves multiple steps and essential decisions that will affect the overall model quality and
performance. This process can also become a time-consuming and tedious task that can
involve many challenges, such as lack of necessary data or unbalanced data. Moreover, the
performance of the models need to be closely evaluated to validate the models’ effectiveness
and whether or not the outcomes are acceptable and could be applied in a real-case
scenario. As shown in the case of the NB model, some models can have poor applicability
and might not be suitable for a specific use case.

In a multiclass classification task such as the BC selection process, an ML-based solution
can provide valuable recommendations to users when the input variables do not fully
match an underlying class. A rule-based algorithm, in contrast, would not be able to
make a classification (selection) in such a case. E.g., use case scenario 2 in Section 6.2.2
showed that the ML-based selection algorithm is able to make appropriate predictions
when no applicable BC implementation fits all the chosen parameters. In opposition, the
existing rule-based algorithm of PleBeuS would inform the user that there is no matching
BC implementation.

As can be seen, the question of whether ML is beneficial and suitable for a particular
use case depends on several factors that would have to be considered. But generally, ML
is better suited for cases with a large number of features and data since it is hard to
manually develop rules or identify patterns in the data. Contrarily, rule-based systems
might be more suitable for cases with a lower volume of data and for which the rules are
fairly simple to determine. Nevertheless, both approaches aim to automate the decision
process with a high degree of accuracy.

6.6. FEATURE IMPORTANCE 63

6.6 Feature Importance

This section attempts to address RQ 3 as described in Chapter 1.
Which features are important for the selection process?

The features which are used for model training and input variables were introduced in
Section 4.2. These features are very important as they are the building blocks of the
dataset and therefore directly influence the models and their results. Given new input
features, the models should forecast the output as accurately as possible.

The most common explanation technique for classification models is the feature impor-
tance score which provides insights into model behavior [6]. Feature importance describes
how important a feature was for the classification of a model. A specific feature might
be more important for one classification model than for another; this is evident when
comparing the feature importance scores of the trained DT classifier and the RF classifier
depicted in Figure 6.4. Not all the features are equally important to predict the BC, i.e.,
the target value. While the Transaction Speed feature has a relatively high importance in
both models, the other features vary in importance depending on the considered model.
However, none of the features has a zero importance on the target variable, and thus, all
features contribute to the prediction of the models.

Figure 6.2 illustrates the correlation between the features. As can be seen, there is a
considerable correlation between Turing Completeness of a BC and its SC Compatibility.
This is logical, as Turing Completeness is only available when the BC supports SC. The
Platform Transaction Speed is negatively correlated to the BC type, suggesting that
private BCs do generally have a higher transaction speed than public BCs. Its relative
high correlation to the SC feature indicates that BCs which support SCs tend to have a
higher transaction speed. Moreover, it seems that the type of a BC has an impact on the
popularity score, as they are positively correlated. But since there is no strong or perfect
correlation between any of the features (correlation score ≥ 0.9), there are no variables
that would convey redundant information and could be removed without losing valuable
information.

64 CHAPTER 6. EVALUATION AND DISCUSSION

Chapter 7

Conclusion and Future Work

As presented in this thesis, choosing a suitable BC for a particular use case is not a
trivial task and requires domain-specific knowledge. Recently, a policy-based management
approach has been applied to automate the process of the BC selection, which recommends
BC implementations based on transaction information and pre-defined policies [84]. This
process is governed by a simple selection algorithm that applies straightforward filtering.
The ML-based BC selection solution introduced in this thesis extends the existing solution
and shows that novel approaches, such as ML, could be applied to the selection process
and automatically select an appropriate BC given user-defined parameters.

In specific, four ML algorithms namely, DT, RF, SVM and NB, were trained and evaluated
on their applicability in the BC selection process. The prototypical design of the solution
involved a full integration into the policy-based selection framework, PleBeuS. For this
purpose, a dedicated dataset was generated and refined, which enabled the introduction of
new policy parameters that allow users to configure additional preferences within a policy.
It includes the definition of the ML model, the SC support, the platform transaction speed
and the popularity of the BC.

The ML-based BC selection solution was deployed as a REST API and can be used either
through a GUI, which is also a product of this thesis or in conjunction with PleBeuS. By
using the framework, users define policies via the PMT, where they have the additional
option to choose among the ML and the regular selection algorithm. When a transaction
is passed through the Transaction Component of the framework, the policies are used to
make a decision on a BC implementation.

The evaluation of the solution has uncovered several findings. The first finding is that not
all ML algorithms chosen for the solution design were equally suitable. While the DT,
RF and SVM achieved good results, the NB model turned out to be less efficient. The
performance evaluation showed that the framework works well in combination with ML
and does not add significant overhead to the existing solution. However, the evaluation
showed up flaws when making predictions with the ML models. The models generally
performed extremely well when the underlying input variables were an exact match for a
specific BC. If this was not the case, the models are still able to predict an appropriate
BC as opposed to the existing rule-based algorithm, where this would lead to a policy

65

66 CHAPTER 7. CONCLUSION AND FUTURE WORK

conflict. In some cases, this might pose a problem, e.g., when users wish to have a certain
supported data size, but the models suggest a BC that does not satisfy this requirement.
Nevertheless, these predictions can be used as a recommender system, aiding users in
choosing the most fitting BC.

7.1 Future Work

The ML-based BC selection solution presented in this thesis focuses on providing a means
to automatically select a suitable BC implementation based on desired user requirements.
The solution can be used with the PleBeuS framework, which acts as PMT and PDP.
However, the models implemented in the solution are only capable of predicting one BC
for each policy, even if there might be more than one fitting BC. As such, the functionality
of splitting transaction into multiple BCs is not possible with the ML-based selection.
Other algorithms need to be researched and examined on their applicability to enable
such a functionality. E.g., deep learning neural networks natively support multi-label
classification problems that support predicting multiple mutually non-exclusive classes.

There are additional BC implementations in the ML-based solution that are not yet
supported by PleBeuS. In order to make these BCs available for the regular selection al-
gorithm, the framework has to be extended; otherwise, they will only be available through
the ML-based selection. Such an extension would also allow the accompanied GUI to show
statistics about transaction information of the user involving these BCs. Furthermore, not
all parameters of the solution proposed in this work are supported by the original Ple-
BeuS implementation, which could also be subject to an extension. Specifically, these
parameters are SC support, the platform transaction speed and the popularity of a BC.

Another subject of discussion is the BC Costs Monitor of the framework, which computes
transaction fees that are used to make decisions regarding the user-defined Cost Threshold.
External services are being used to determine the generated transaction costs for public
BCs, which involve various calculations to convert the costs into costs per byte. These
costs are used to update the cost intervals for the current user and enabling them to
set their preferences towards their preferred Cost Profile. In the ML-based BC selection
solution, such a functionality has not been implemented as it was not the main focus
of the thesis. Instead, an arbitrary cost of 0.01 per transaction was added to each BC
implementation that is newly supported by the ML-based solution. In this context, the
framework has to be extended to support cost calculations and the true reflection of the
actual costs of transactions involving these BCs.

Bibliography

[1] MAS working with industry to apply Distributed Ledger
Technology in securities settlement and cross border pay-
ments. https://www.mas.gov.sg/news/media-releases/2017/

mas-working-with-industry-to-apply-distributed-ledger-technology

(2017)

[2] Abdo, J., Zeadally, S.: Neural network-based blockchain decision
scheme. Information Security Journal: A Global Perspective (2020).
https://doi.org/10.1080/19393555.2020.1831658, https://doi.org/10.1080/

19393555.2020.1831658

[3] Aly, M.: Survey on multiclass classification methods. Neural networks. 19, pp. 1–9
(2005)

[4] Baliga, A., Subhod, I., Kamat, P., Chatterjee, S.: Performance Evaluation of the
Quorum Blockchain Platform (2018)

[5] Belotti, M., Boz̆ić, N., Pujolle, G., Secci, S.: A Vademecum on Blockchain Tech-
nologies: When, Which, and How. IEEE Communications Surveys Tutorials 21(4),
3796–3838 (2019)

[6] Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri,
R., Moura, J.M.F., Eckersley, P.: Explainable machine learning in deployment.
In: Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-
parency. p. 648â657. FAT* ’20, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3351095.3375624, https://doi.org/10.
1145/3351095.3375624

[7] BitInfoCharts: Cryptocurrency statistics, https://bitinfocharts.com/

[8] Blockchainhub: What is a Smart Contract? Auto enforceable Code - Blockchain,
https://blockchainhub.net/smart-contracts/, (Accessed: 12/27/2020)

[9] Blockchair: Explore Blockchains, https://blockchair.com/

[10] Breiman, L.: Random Forests. Machine Learning 45, 5–32 (Jan 2001).
https://doi.org/10.1023/A:1010933404324

67

68 BIBLIOGRAPHY

[11] Brownlee, J.: A Gentle Introduction to k-fold Cross Validation, https:

//machinelearningmastery.com/k-fold-cross-validation/, (Accessed:
01/16/2021)

[12] Burke, K., Conroy, K., Horn, R., Stratton, F., Binet, G.: Flask-RESTful, https:
//flask-restful.readthedocs.io/en/latest/, (Accessed: 04/10/2021)

[13] Buterin, V.: A Next Generation Smart Contract and Decentralized Applica-
tion Platform, https://blockchainlab.com/pdf/Ethereum_white_paper-a_

next_generation_smart_contract_and_decentralized_application_

platform-vitalik-buterin.pdf, (Accessed: 12/29/2020)

[14] Cardano: Producing New Blocks, https://docs.cardano.org/en/latest/

explore-cardano/how-are-new-blocks-produced.html/, (Accessed:
12/31/2020)

[15] Cardano: What is Cardano’s block size limit?, https://forum.cardano.org/t/

what-is-cardanos-block-size-limit/25510, (Accessed: 03/24/2021)

[16] Chen, S., Zhang, J., Shi, R., Yan, J., Ke, Q.: A Comparative Testing on Per-
formance of Blockchain and Relational Database: Foundation for Applying Smart
Technology into Current Business Systems. In: Streitz, N., Konomi, S. (eds.) Dis-
tributed, Ambient and Pervasive Interactions: Understanding Humans. pp. 21–34.
Springer International Publishing, Cham (2018)

[17] Chris, A.: Top 10 Search Engines In The World (2021 Update), https:

//www.reliablesoft.net/top-10-search-engines-in-the-world/, (Accessed:
01/27/2021)

[18] Coindesk: A (Short) Guide to Blockchain Consensus Protocols (March 2017),
https://www.coindesk.com/short-guide-blockchain-consensus-protocols,
[Online; posted 04-March-2017]

[19] CoinMarketCap: CoinMarketCap Market Capitalizations. https://

coinmarketcap.com (2020)

[20] Corda: Transactions Per Second (TPS), https://www.corda.net/blog/

transactions-per-second-tps/, (Accessed: 12/28/2020)

[21] Corporporation, I.: Introduction - Sawtooth Documentation, https://sawtooth.
hyperledger.org/docs/core/releases/latest/introduction.html, (Accessed:
12/28/2020)

[22] Corporporation, I.: PoET 1.0 Specification, https://sawtooth.hyperledger.

org/docs/core/nightly/1-2/architecture/poet.html, (Accessed: 12/28/2020)

[23] CryptoLions: EOS Network Monitor, https://eosnetworkmonitor.io/, (Ac-
cessed: 12/27/2020)

BIBLIOGRAPHY 69

[24] Dubovitskaya, A., Zhigang, X., Ryu, S., Schumacher, M., Wang, F.: Secure and
trustable electronic medical records sharing using blockchain. Proceedings of the
AMIA annual symposium 2017 (CONFERENCE), 10 p. (2017), http://hesso.

tind.io/record/2896

[25] EOS: EOS.IO Technical White Paper v2, https://github.com/EOSIO/

Documentation/blob/master/TechnicalWhitePaper.md, (Accessed: 12/27/2020)

[26] Ethereum: Consensus mechanism, https://ethereum.org/en/developers/docs/
consensus-mechanisms/, (Accessed: 12/27/2020)

[27] Farshidi, S., Jansen, S., España, S., Verkleij, J.: Decision Support for Blockchain
Platform Selection: Three Industry Case Studies. IEEE Transactions on Engineering
Management pp. 1–20 (2020)

[28] Flask: Flask Homepage, https://flask.palletsprojects.com/en/1.1.x/, (Ac-
cessed: 04/10/2021)

[29] Frankenfield, J.: VeChain, https://www.investopedia.com/terms/v/vechain.

asp, (Accessed: 03/24/2021)

[30] Frauenthaler, P., Borkowski, M., Schulte, S.: A Framework for Assessing and
Selecting Blockchains at Runtime. In: 2020 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPS). pp. 106–113 (2020).
https://doi.org/10.1109/DAPPS49028.2020.00013

[31] Frauenthaler, P., Borkowski, M., Schulte, S.: A Framework for Blockchain Interop-
erability and Runtime Selection (2019)

[32] Gal., A.: The Tangle: an Illustrated Introduction, https://blog.iota.

org/the-tangle-an-illustrated-introduction-4d5eae6fe8d4/, (Accessed:
12/27/2020)

[33] Ganganwar, V.: An overview of classification algorithms for imbalanced datasets.
International Journal of Emerging Technology and Advanced Engineering 2(4), 42–
47 (2012)

[34] Géron, A.: Hands-on machine learning with Scikit-Learn and TensorFlow : con-
cepts, tools, and techniques to build intelligent systems. O’Reilly, Sebastopol, CA,
first edition edn. (2017)

[35] Greenspan, G.: MultiChain Private Blockchain - White Paper, https:

//www.multichain.com/download/MultiChain-White-Paper.pdf, (Accessed:
12/28/2020)

[36] Hucker, M.: Multiclass Classification with Support Vector Machines (SVM), Dual
Problem and Kernel Functions, https://bit.ly/2SmEzy7, (Accessed: 03/31/2021)

[37] ICON: Devportal - ICON JSON-RPC API v3 Specification, https://www.icondev.
io/docs/icon-json-rpc-v3#icx_sendtransaction, (Accessed: 03/24/2021)

70 BIBLIOGRAPHY

[38] ICON Foundation: ICON - Hyperconnect the world, https://icon.foundation/,
(Accessed: 01/19/2021)

[39] ICON Foundation: ICON Blockchain Explorer, https://tracker.icon.

foundation/, (Accessed: 03/24/2021)

[40] ICON Foundation: ICON Tracker, https://tracker.icon.foundation/

[41] ICON Foundation: ICON White Paper, https://icon.foundation/resources/

whitepaper/ICON_Whitepaper_EN.pdf, (Accessed: 01/19/2021)

[42] ICX Station: ICON, deconstructed, https://medium.com/helloiconworld/

icon-deconstructed-5eb7f99eeeb1, (Accessed: 03/24/2021)

[43] IEEE: IEEE Xplore Digital Library, https://ieeexplore.ieee.org/Xplorehelp/
overview-of-ieee-xplore/about-ieee-xplore, (Accessed: 02/09/2021)

[44] Imbalanced-learn Developers: Imbalanced Learn Documentation, https://

imbalanced-learn.org/stable/, (Accessed: 04/10/2021)

[45] IOTA Foundation: The Next Generation of Distributed Ledger Technology | IOTA,
https://www.iota.org/, (Accessed: 03/24/2021)

[46] Joblib Developers: Joblib Homepage, https://joblib.readthedocs.io/en/

latest/, (Accessed: 04/12/2021)

[47] Kenton, W.: Block Time, https://www.investopedia.com/terms/b/

block-time-cryptocurrency.asp, (Accessed: 02/25/2021)

[48] Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology – CRYPTO 2017. pp. 357–388. Springer International Publishing, Cham
(2017)

[49] Killer, C., Rodrigues, B., Scheid, E.J., Franco, M., Eck, M., Zaugg, N., Scheitlin,
A., Stiller, B.: Provotum: A Blockchain-based and End-to-end Verifiable Remote
Electronic Voting System. In: IEEE 45th Conference on Local Computer Networks
(LCN 2020). pp. 172–183. Sydney, Australia (November 2020)

[50] Klein, S., Prinz, W.: A Use Case Identification Framework and Use Case Canvas
for identifying and exploring relevant Blockchain opportunities. In: Proceedings of
1st ERCIM Blockchain Workshop 2018. European Society for Socially Embedded
Technologies (EUSSET) (2018)

[51] Kotsiantis, S.: Supervised Machine Learning: A Review of Classification Tech-
niques. Informatica (Ljubljana) 31 (10 2007)

[52] Lakic, D.: Design and Implementation of a Policy-based Blockchain Selection
Framework. Master’s thesis, Zürich, Switzerland (June 2019), https://files.ifi.
uzh.ch/CSG/staff/rodrigues/extern/theses/ma-daniel.pdf

BIBLIOGRAPHY 71

[53] Lo, S.K., Xu, X., Chiam, Y.K., Lu, Q.: Evaluating Suitability of
Applying Blockchain. In: 2017 22nd International Conference on Engi-
neering of Complex Computer Systems (ICECCS). pp. 158–161 (2017).
https://doi.org/10.1109/ICECCS.2017.26

[54] Mazières, D.: The Stellar Consensus Protocol: A Federated Model for Internet-level
Consensus, https://www.stellar.org/papers/stellar-consensus-protocol,
(Accessed: 12/27/2020)

[55] Mike Hearn, R.G.B.: Corda: A distributed ledger,
https://www.r3.com/wp-content/uploads/2019/08/

corda-technical-whitepaper-August-29-2019.pdf, (Accessed: 12/28/2020)

[56] Mohammed, M., Khan, M., Bashier, E.: Machine Learning: Algorithms and Appli-
cations. CRC Press (07 2016). https://doi.org/10.1201/9781315371658

[57] Monika, Bhatia, R.: Interoperability Solutions for Blockchain. In:
2020 International Conference on Smart Technologies in Comput-
ing, Electrical and Electronics (ICSTCEE). pp. 381–385 (2020).
https://doi.org/10.1109/ICSTCEE49637.2020.9277054

[58] Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: RFC 3060 - Policy Core
Information Model. https://tools.ietf.org/html/rfc3060 (2001)

[59] Müller, A.C., Guido, S.: Introduction to Machine Learning with Python. O’Reilly
Media Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472 (2016)

[60] MultiChain: Customizing blockchain parameters, https://www.multichain.com/
developers/blockchain-parameters/, (Accessed: 12/28/2020)

[61] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009)

[62] NEO: Neo White Paper, https://docs.neo.org/docs/en-us/basic/

whitepaper.html, (Accessed: 01/05/2021)

[63] NEOscan: NEOSCAN - Neo related blockchain information, https://neoscan.io/

[64] Norta, A., Dai, P., Mahi, N., Earls, J.: A Public, Blockchain-Based Distributed
Smart-Contract Platform Enabling Mobile Lite Wallets Using a Proof-of-Stake Con-
sensus Algorithm. In: Abramowicz, W., Paschke, A. (eds.) Business Information
Systems Workshops. pp. 368–380. Springer International Publishing, Cham (2019)

[65] NumPy: NumPy Homepage, https://numpy.org/, (Accessed: 04/12/2021)

[66] Orcutt, M.: No, Ripple Isn’t the Next Bitcoin, https://www.technologyreview.
com/2018/01/11/146252/no-ripple-isnt-the-next-bitcoin/, (Accessed:
01/03/2021)

[67] Pahl, C., El Ioini, N., Helmer, S.: A decision framework for blockchain platforms
for IoT and edge computing. International Conference on Internet of Things, Big
Data and Security (2018)

72 BIBLIOGRAPHY

[68] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

[69] Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance Analysis
of Private Blockchain Platforms in Varying Workloads. In: 2017 26th International
Conference on Computer Communication and Networks (ICCCN). pp. 1–6 (2017).
https://doi.org/10.1109/ICCCN.2017.8038517

[70] Postman: Postman Homepage, https://www.postman.com/api-platform/

api-testing/, (Accessed: 04/10/2021)

[71] Precht, H., Wunderlich, S., Gómez, J.: Applying Software Quality
Criteria to Blockchain Applications: A Criteria Catalog (01 2020).
https://doi.org/10.24251/HICSS.2020.769

[72] Puthal, D., Malik, N., Mohanty, S.P., Kougianos, E., Das, G.: Everything
You Wanted to Know About the Blockchain: Its Promise, Components, Pro-
cesses, and Problems. IEEE Consumer Electronics Magazine 7(4), 6–14 (2018).
https://doi.org/10.1109/MCE.2018.2816299

[73] Qtum: Official blockchain explorer of Qtum, https://qtum.info/

[74] Qtum: Qtum Exchange Usage Guide and Info, https://docs.qtum.site/en/

Qtum-Exchange-Usage-Guide-and-Info.html, (Accessed: 03/24/2021)

[75] Qtum: SCAR: Scalable Consensus Algorithm, https://docs.qtum.site/en/

SCAR-Consensus/, (Accessed: 01/05/2021)

[76] Raileanu, L.E., Stoffel, K.: Theoretical Comparison between the Gini Index and
Information Gain Criteria. Annals of Mathematics and Artificial Intelligence 41(1),
77–93 (2004)

[77] Ripple: The XRP Ledger Protocol - Consensus and Validation, https://xrpl.org/
consensus.html, (Accessed: 01/03/2021)

[78] Ripple: XRP: The Best Digital Asset for Global Payments, https://ripple.com/
xrp/, (Accessed: 03/24/2021)

[79] Roman, V.: Unsupervised Machine Learning: Cluster-
ing Analysis (March 2019), https://towardsdatascience.com/

unsupervised-machine-learning-clustering-analysis-d40f2b34ae7e, [On-
line; posted 6-March-2019]

[80] Roman, V.: Unsupervised Machine Learning: Dimensional-
ity Reduction (April 2019), https://towardsdatascience.com/

unsupervised-learning-dimensionality-reduction-ddb4d55e0757, [Online;
posted 17-April-2019]

BIBLIOGRAPHY 73

[81] Sarkar, D., Bali, R., Sharma, T.: Practical Machine Learning with Python: A
Problem-Solver’s Guide to Building Real-World Intelligent Systems. Apress, USA,
1st edn. (2017)

[82] Scheid, E., Rodrigues, B., Stiller, B.: Toward a Policy-based Blockchain Agnostic
Framework. In: IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM 2019). pp. 609–613. Arlington, VA, USA (April 2019)

[83] Scheid, E.J., Hegnauer, T., Rodrigues, B., Stiller, B.: Bifröst: a Modular Blockchain
Interoperability API. In: 2019 IEEE 44th Conference on Local Computer Networks
(LCN). pp. 332–339 (2019). https://doi.org/10.1109/LCN44214.2019.8990860

[84] Scheid, E.J., Lakic, D., Rodrigues, B.B., Stiller, B.: PleBeuS: a Policy-based
Blockchain Selection Framework. In: NOMS 2020 - 2020 IEEE/IFIP Network Op-
erations and Management Symposium. pp. 1–8 (2020)

[85] Scikit-Learn: Scikit-Learn Homepage, https://scikit-learn.org/stable/, (Ac-
cessed: 04/10/2021)

[86] Scikit-Learn Developers: Naive Bayes, https://scikit-learn.org/stable/

modules/naive_bayes.html, (Accessed: 04/03/2021)

[87] Scikit-Learn Developers: Scikit-Learn Decision Trees, https://scikit-learn.

org/stable/modules/tree.html, (Accessed: 04/14/2021)

[88] Scikit-Learn Developers: Scikit-Learn Naive Bayes, https://scikit-learn.org/
stable/modules/naive_bayes.html, (Accessed: 04/14/2021)

[89] Scikit-Learn Developers: Scikit-Learn Random Forest Classifier, https:

//scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html, (Accessed: 04/14/2021)

[90] Scikit-Learn Developers: Scikit-Learn Support Vector Classification, https:

//scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html, (Ac-
cessed: 04/14/2021)

[91] Singh, A., Thakur, N., Sharma, A.: A review of supervised machine learning algo-
rithms. In: 2016 3rd International Conference on Computing for Sustainable Global
Development (INDIACom). pp. 1310–1315 (2016)

[92] Smith, K.: 60 Incredible and Interesting Twitter Stats and Statistics,
https://www.brandwatch.com/blog/twitter-stats-and-statistics/, (Ac-
cessed: 01/26/2021)

[93] Soulo, T.: Keyword Search Volume: Things you didn’t know you don’t know,
https://ahrefs.com/blog/keyword-search-volume/, (Accessed: 01/27/2021)

[94] SQLite Consortium: SQLite Homepage, https://www.sqlite.org/index.html,
(Accessed: 04/10/2021)

[95] Stratis: FAQ: What is Stratis?, https://stratisfaq.com/what-is-stratis, (Ac-
cessed: 03/26/2021)

74 BIBLIOGRAPHY

[96] Stratis: Saving arbitrary data on the Stratis blockchain, https:

//stratisplatform.atlassian.net/wiki/spaces/code/pages/983321/

Saving+arbitrary+data+on+the+Stratis+blockchain, (Accessed: 03/24/2021)

[97] Stratis Developers: Stratis Homepage, https://www.stratisplatform.com/, (Ac-
cessed: 12/28/2020)

[98] Sultan, K., Ruhi, U., Lakhani, R.: Conceptualizing Blockchains: Characteristics &
Applications. CoRR abs/1806.03693 (2018), http://arxiv.org/abs/1806.03693

[99] Szymański, P., Kajdanowicz, T.: A scikit-based Python environment for performing
multi-label classification. ArXiv e-prints (Feb 2017)

[100] T, S.: Entropy: How Decision Trees Make Decisions, https://bit.ly/3xiBbUM,
(Accessed: 01/13/2021)

[101] Takashima, I.: Ripple: The Ultimate Guide to the World of Ripple XRP, Ripple
Investing, Ripple Coin, Ripple Cryptocurrency, Cryptocurrency. CreateSpace Inde-
pendent Publishing Platform, North Charleston, SC, USA (2018)

[102] Tokenview: Wanchain Explorer, https://wan.tokenview.com/

[103] Tuwiner, J.: Introduction to NEO - An Open Net-
work For Smart Economy, https://cryptoslate.com/

introduction-to-neo-an-open-network-for-smart-economy/, (Accessed:
01/05/2021)

[104] Twitter Developers: Twitter API Documentation, https://developer.twitter.
com/en/docs/twitter-api

[105] Uddin, S., Khan, A., Hossain, M.E., Moni, M.A.: Comparing different supervised
machine learning algorithms for disease prediction. BMC medical informatics and
decision making 19(1), 281 (December 2019). https://doi.org/10.1186/s12911-019-
1004-8, https://europepmc.org/articles/PMC6925840

[106] Underwood, S.: Blockchain beyond Bitcoin. Commun. ACM 59(11), 15â17 (Oct
2016). https://doi.org/10.1145/2994581, https://doi.org/10.1145/2994581

[107] VeChain Foundation: VeChain and University of Oxford Jointly Propose An Eval-
uation Framework for Blockchain Consensus Protocols, https://bit.ly/3dQ7aD2,
(Accessed: 03/24/2021)

[108] VeChain Foundation: VeChain Explorer, https://explore.vechain.org/

[109] Verma, D.C.: Simplifying network administration using policy-based management.
IEEE Network 16(2), 20–26 (2002). https://doi.org/10.1109/65.993219

[110] Wanchain: What is Wanchain?, https://www.explorewanchain.org/#/, (Ac-
cessed: 03/24/2021)

[111] Wang, S., Li, Z., Liu, C., Zhang, X., Zhang, H.: Training data reduction to speed
up SVM training. Applied intelligence 41(2), 405–420 (2014)

BIBLIOGRAPHY 75

[112] Wang, W., Hoang, D.T., Hu, P., Xiong, Z., Niyato, D., Wang, P., Wen,
Y., Kim, D.I.: A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks. IEEE Access 7, 22328–22370 (2019).
https://doi.org/10.1109/ACCESS.2019.2896108

[113] Waskom, M.: Seaborn Homepage, https://seaborn.pydata.org/index.html,
(Accessed: 04/10/2021)

[114] Wayne, J.: VeChain’s Mainnet Just Set New Records With
165 Transactions Per Second, https://thedailychain.com/

vechains-mainnet-just-set-new-records-with-165-transactions-per-second/,
(Accessed: 03/24/2021)

[115] Website, G.: Gini Impurity and Entropy in Decision Tree - ML, https://www.

geeksforgeeks.org/gini-impurity-and-entropy-in-decision-tree-ml/,
(Accessed: 01/13/2021)

[116] Wüst, K., Gervais, A.: Do you Need a Blockchain? In: 2018 Crypto Valley Confer-
ence on Blockchain Technology (CVCBT). pp. 45–54 (2018)

76 BIBLIOGRAPHY

Abbreviations

RQ Research Question
BC Blockchain
BTC Bitcoin
TPS Transaction Per Second
SC Smart Contracts
PoW Proof of Work
PoS Proof-of-Stake
dPoS delegated Proof-of-Stake
PoET Proof-of-Elapsed-Time
EVM Ethereum Virtual Machine
UTXO Unpsent Transaction Output
ML Machine Learning
DT Decision Tree
IG Information Gain
RF Random Forest
NB Näıve Bayes
SVM Support Vector Machines
IoT Internet of Things
API Application Programming Interface
GUI Graphical User Interface
PMT Policy Management Tool
PDP Policy Decision Point

77

78 ABBREVIATONS

List of Figures

4.1 Solution design . 22

4.2 Twitter followers and number of tweets as of April 26th 2021 24

4.3 Distribution of followers . 24

4.4 Monthly Google searches as of January 27th 2021 25

4.5 Number of conference papers as of January 27th 2021 26

4.6 Average block time . 28

5.1 Distribution of classes after extension . 34

5.2 Encoded target values . 35

5.3 Processed dataset . 36

5.4 Trained decision tree as a flowchart diagram 38

5.5 Graphical User Interface . 42

5.6 Prototype usage . 42

5.7 Extended PleBeus architecture . 43

5.8 Step 1 of PMT workflow . 44

5.9 Step 2 of PMT workflow . 45

5.10 Step 3 of PMT workflow . 45

5.11 Policy configuration view . 46

5.12 ML features configuration view . 47

5.13 Step 4 of PMT workflow . 48

5.14 Updated main view of PMT . 49

5.15 Extended Transaction Component workflow 50

79

80 LIST OF FIGURES

5.16 Transaction flow . 51

6.1 Confusion matrices. (a) DT (b) RF (c) NB (d) SVM 54

6.2 Correlation matrix using a heatmap for the variables 55

6.3 Comparison of different ML algorithms . 56

6.4 Feature Importance . 58

6.5 Transaction body of POST request in Postman 60

6.6 Average response time for 1000 iterations 60

A.1 Entire decision tree as a flowchart diagram 84

B.1 Decision Tree . 86

B.2 Random Forest . 87

B.3 Naive Bayes . 88

B.4 Support Vector Machine . 89

C.1 Policy Management . 92

List of Tables

2.1 Summary of BCs and their characteristics 9

2.2 Policy parameters in [84] . 10

2.3 BCs and characteristics supported by PleBeuS [52] 10

3.1 Comparison of related work . 19

4.1 Final popularity score . 27

4.2 Block time sources . 27

4.3 Platform Transaction Speed categorization 29

4.4 Overview of model features . 30

4.5 Dataset . 31

5.1 Accuracy of different kernel functions . 37

6.1 Performance . 55

6.2 Predicted BCs given Scenario 1 . 57

6.3 Test cases for scenario 2 . 58

6.4 Policy configuration . 60

81

82 LIST OF TABLES

Appendix A

Full Decision Tree Representation

83

84 APPENDIX A. FULL DECISION TREE REPRESENTATION

gini = 0.48
sam

ples = 5
value = [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 3]
class = W

anchain

gini = 0.48
sam

ples = 5
value = [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 3]
class = W

anchain

gini = 0.48
sam

ples = 5
value = [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 3]
class = W

anchain

M
inArbitraryData <= 34.0

gini = 0.48
sam

ples = 10
value = [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 6]
class = W

anchain

gini = 0.5
sam

ples = 2
value = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1]
class = EOS

gini = 0.5
sam

ples = 2
value = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1]
class = EOS

gini = 0.5
sam

ples = 2
value = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.5
sam

ples = 2
value = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

M
inArbitraryData <= 24.0

gini = 0.48
sam

ples = 15
value = [0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 9]
class = W

anchain

M
inArbitraryData <= 90.0

gini = 0.5
sam

ples = 4
value = [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 2]
class = EOS

gini = 0.444
sam

ples = 3
value = [0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = IOTA

M
inArbitraryData <= 60.0

gini = 0.5
sam

ples = 4
value = [0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

M
inArbitraryData <= 60.0

gini = 0.488
sam

ples = 19
value = [0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 11]
class = W

anchain

gini = 0.444
sam

ples = 3
value = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 2]
class = W

anchain

gini = 0.5
sam

ples = 4
value = [0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

M
inArbitraryData <= 34.0

gini = 0.49
sam

ples = 7
value = [0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = IOTA

gini = 0.444
sam

ples = 3
value = [0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.375
sam

ples = 4
value = [0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.5
sam

ples = 2
value = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.5
sam

ples = 2
value = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0

0, 0]
class = Neo

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Ethereum

M
inArbitraryData <= 125.0

gini = 0.483
sam

ples = 22
value = [0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 13]
class = W

anchain

gini = 0.0
sam

ples = 4
value = [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = EOS

M
inArbitraryData <= 24.0

gini = 0.496
sam

ples = 11
value = [0, 5, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = IOTA

gini = 0.444
sam

ples = 3
value = [0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = IOTA

M
inArbitraryData <= 202.5

gini = 0.408
sam

ples = 7
value = [0, 5, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

M
inArbitraryData <= 378.0

gini = 0.5
sam

ples = 4
value = [0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

popularity <= 2.5
gini = 0.5

sam
ples = 26

value = [0, 0, 0, 13, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0
0, 0]

class = Ethereum

M
inArbitraryData <= 202.5

gini = 0.5
sam

ples = 26
value = [0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 13]
class = EOS

M
inArbitraryData <= 90.0

gini = 0.49
sam

ples = 14
value = [0, 6, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = IOTA

M
inArbitraryData <= 255.5

gini = 0.463
sam

ples = 11
value = [0, 7, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

13, 0]
class = VeChain

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = ICON

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0

0, 0]
class = QTUM

platform
_transaction_speed <= 2.5

gini = 0.75
sam

ples = 52
value = [0, 0, 13, 13, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0

0, 13]
class = EOS

M
inArbitraryData <= 125.0

gini = 0.499
sam

ples = 25
value = [0, 13, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

gini = 0.0
sam

ples = 1
value = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = IOTA

gini = 0.0
sam

ples = 13
value = [13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Bitcoin

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0

0, 0]
class = Ripple

platform
_transaction_speed <= 2.5

gini = 0.5
sam

ples = 26
value = [0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0

13, 0]
class = ICON

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0

0, 0]
class = Stellar

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Hyperledger

platform
_transaction_speed <= 1.5

gini = 0.8
sam

ples = 65
value = [0, 0, 13, 13, 0, 0, 0, 0, 13, 13, 0, 0, 0, 0

0, 13]
class = EOS

M
inArbitraryData <= 900.0

gini = 0.5
sam

ples = 26
value = [0, 13, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0

0, 0]
class = Cardano

platform
_transaction_speed <= 2.0

gini = 0.5
sam

ples = 26
value = [13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0

0, 0]
class = Bitcoin

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13

0, 0]
class = Stratis

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0

0, 0]
class = R3 Corda

popularity <= 2.5
gini = 0.667

sam
ples = 39

value = [0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 13, 0
13, 0]

class = ICON

type <= 0.5
gini = 0.833

sam
ples = 78

value = [0, 0, 13, 13, 13, 0, 0, 0, 13, 13, 0, 0, 0
0, 0, 13]

class = EOS

gini = 0.0
sam

ples = 13
value = [0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0

0, 0]
class = M

ultichain

popularity <= 2.5
gini = 0.75

sam
ples = 52

value = [13, 13, 0, 0, 0, 0, 13, 0, 0, 0, 0, 13, 0, 0
0, 0]

class = Bitcoin

turing_com
plete <= 0.5

gini = 0.5
sam

ples = 26
value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 13

0, 0]
class = R3 Corda

turing_com
plete <= 0.5

gini = 0.889
sam

ples = 117
value = [0, 0, 13, 13, 13, 13, 0, 0, 13, 13, 0, 0, 13

0, 13, 13]
class = EOS

type <= 0.5
gini = 0.8

sam
ples = 65

value = [13, 13, 0, 0, 0, 0, 13, 13, 0, 0, 0, 13, 0
0, 0, 0]

class = Bitcoin

popularity <= 1.5
gini = 0.909

sam
ples = 143

value = [0, 0, 13, 13, 13, 13, 0, 0, 13, 13, 13, 0, 13
13, 13, 13]
class = EOS

sm
art_contract <= 0.5

gini = 0.938
sam

ples = 208
value = [13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13

13, 13, 13, 13]
class = Bitcoin

F
igu

re
A

.1:
E

n
tire

d
ecision

tree
as

a
fl
ow

ch
art

d
iagram

85

86 APPENDIX B. ALGORITHMS CONFUSION MATRICES

Appendix B

Algorithms Confusion Matrices

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure B.1: Decision Tree

87

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure B.2: Random Forest

88 APPENDIX B. ALGORITHMS CONFUSION MATRICES

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure B.3: Naive Bayes

89

Bitcoin Cardano EOS EthereumHyperledger ICON IOTA Multichain Neo QTUM R3 Corda Ripple Stellar Stratis VeChain Wanchain
Predicted label

Bitcoin

Cardano

EOS

Ethereum

Hyperledger

ICON

IOTA

Multichain

Neo

QTUM

R3 Corda

Ripple

Stellar

Stratis

VeChain

Wanchain

Tr
ue

 la
be

l

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure B.4: Support Vector Machine

90 APPENDIX B. ALGORITHMS CONFUSION MATRICES

Appendix C

Sequence Diagrams

91

92 APPENDIX C. SEQUENCE DIAGRAMS

configuration view for
regular selection

alt

alt

alt

alt

User

:GUI

create User

:PolicyManagement

check if username exists

username ok
[if username

does not exist
yet]

[else]

redirect to page for default
policy configuration

username not ok
error message

submit default policy
configurations

validate input

[if input valid]

[else] error message

valid input
store user
and default

policy in
database

redirect to main view

create policy

redirect to configuration view

check for policy conflicts

[if no policy
conflicts]

[else]

no conflicts

redirect to updated main view
store

policy in
database

invalid input

conflicts

error message

(1)

(2)

(3)

PleBeuS

[use machine
learning

selection]

[else]

configuration view with
ML model features

submit policy
(4)

Figure C.1: Policy Management

Appendix D

Installation Guidelines

The source code for the ML-based BC selection solution implemented in this thesis can
be found at https://github.com/Raybook90/ml_blockchain_selection.

The ML models are implemented and deployed in Python. To install the application,
Python version 3.6 or later is required. If Python is not yet installed on your system,
consult the official Python installation guide at https://docs.python.org/3/using/.
Then, follow the steps shown in Section D.1 to set up the Flask Application that offers
an API endpoint and a GUI to access the ML models. The GUI is accessible through
http://localhost:5000.

To make use of the ML-based BC solution in conjunction with the policy-based BC se-
lection framework (PleBeuS), the framework needs to be installed as well. The source
code of the extended version of the framework with the integrated ML functionality can
be found at https://github.com/Raybook90/PleBeuS-Integration. The GUI of the
framework is accessible through http://localhost:3000.
It can either be set up and developed with Docker or locally. Prerequisites for Docker are
a working Docker installation and Docker Compose [52]. To develop with Docker refer to
Section D.2.1. For the local installation see Section D.2.2.

D.1 ML-based BC Selection (Flask App) Installation

Clone the repository and enter the project directory:

$ git clone https:// github.com/Raybook90/ml_blockchain_selection.git

$ cd ml_blockchain_selection

Create a virtual environment:

$ python -m venv venv

Activate the virtual environment:

93

94 APPENDIX D. INSTALLATION GUIDELINES

$ venv\Scripts\activate (Windows)

or

$ source venv/bin/activate (Linux, macOS)

Install the dependencies:

(venv) $ pip install -r requirements.txt

Run the application:

(venv) $ python app.py

Deactivate the virtual environment (when you want to leave virtual environment):

(venv) $ deactivate

D.2 PleBeuS Installation

This installation guideline follows the same steps as in [52]. An additional step ensures the
successful connection to the API endpoint of the ML-based BC selection solution (refer
to Section D.2.3).

D.2.1 Docker

A working Docker installation and Docker Compose are prerequisites for a successful
Docker set up. Execute one of the following commands. based on what you need:

1 #set up docker container

2 docker -compose up

3 #set up docker container and rebuild image

4 docker -compose up --build

5 #set up docker container and start in detached mode

6 docker -compose up -d

Listing D.1: Docker Compose commands

D.2.2 Local Installation (Alternative to Docker)

For local installation, Node.js version > 10.x.x (LTS) and MongoDB need to be installed.
Additionally, the project supports hot-reloading by using Nodemon. Nodemon is a utility
that will monitor any changes in the source code and automatically restart the server.
For hot-reloading, Nodemon needs to be installed globally. The project includes a dump
of the static BC data needed for this project in foler /db-dump. Executing the commands
listed below, finalizes the installation process.

D.2. PLEBEUS INSTALLATION 95

1 #install nodemon globally

2 npm install -g nodemon

3 #install all dependencies

4 npm install

5 #load BC data into the database

6 mongorestore --nsInclude policy -framework .*

Listing D.2: Setup commands for the framework

D.2.3 Configuration

Before the framework can be used, two parameters have to be set as environment variables.
One is used for authentication towards the CoinMarketCap API and the other is the
URL for the MongoDB database. In case the provided Docker configuration is used, the
database URL corresponds to: mongodb://mongo:27017/policy-framework.
The use of the ML-based BC Selection solution requires the specification of an additional
parameter, which is used to connect to the API endpoint of the Flask application. Fill in
the IP address of your machine in the local network for a successful connection.

1 COINMARKETCAP_API_KEY= ""

2 DB_URL= ""

3 IP_address= ""

Listing D.3: Contents of the .env file

For local or docker usage, the provided .env.example file can be copied and renamed to
.env. Then, the corresponding values can be set. As long as the application is started
in development mode, the application is going to search for values set in this file. For
production usage the environment variables have to be in the environment.

D.2.4 Run PleBeuS Server

1 #start application in debug mode with nodemon

2 #running on port: 3000, remote debug port: 3001

3 npm run devstart

4 #start application in production mode

5 npm start --production

Listing D.4: Commands for running the application

D.2.5 Usage

In order to use the framework with the ML-based Selection solution, make sure the ML
application is running (refer to Section D.1).

PleBeuS consists of two different components. The GUI of the framework allows the
creation and management of user policies.

96 APPENDIX D. INSTALLATION GUIDELINES

As soon as policies have been defined, data can be passed to the
http://localhost:3000/api/transactions endpoint via HTTP POST request with the
parameters presented in Listing D.5 or D.6.

1 Header:

2
3 "Content-Type": multipart/form -data

4
5 Body:

6 {

7 "username": String,

8 "xlsxFile": File,

9 "minTemp": Integer,

10 "maxTemp": Integer

11
12 }

Listing D.5: Commands for POST request with temperature file

1 Header:

2
3 "Content-Type": multipart/form -data

4
5 Body:

6 {

7 "username": String,

8 "data": String

9 }

Listing D.6: Commands for POST request with data as a string

Appendix E

Contents of the CD

This work comes with a CD containing following items:

Code Contains the source code of the ML-based BC Selection prototype. Equivalent to
the GitHub repository found at
https://github.com/Raybook90/ml_blockchain_selection. It also includes the
source code of the extended version of the PleBeuS framework with the integrated
ML functionality, which can be found at
https://github.com/Raybook90/PleBeuS-Integration.

Data Contains the jupyter notebooks to generate the figures included in the data acqui-
sition part of the thesis (Twitter data, Google searces, Conference papers, Platform
Transaction Speed). Also contains the script used for model training and evaluation,
as well as the corresponding database file.

Presentation Contains the slides of the midterm presentation

Thesis Contains the written part of the thesis as PDF file. Also contains the latex source
code including the figures and diagrams used in this thesis.

97

