
Bachelor Thesis

Multipoint Incremental Fourier
Transformation

Author:
Dimitri Degkwitz
ID number:
13-928-734

Supervisors:
Muhammad Saad

Prof. Michael H. Böhlen

Department of Economics
University of Zurich

May 16, 2021

Acknowledgements

I would like to thank my supervisor Muhammad Saad who took
time to guide me threw the process of writing this Thesis.

I would like to thank Prof. Michael H. Böhlen and the Institut für
Informatik for making this thesis possible.

I would like to thank Jana Cslovjecsek for helping me plan and
structure this thesis.

I would like to thank Michael Dohmen, Geethan Karunaratne,
Michael, Lucia and Claudia Degkwitz for proofreading this thesis.

I would like to thank Selina Reich for freeing up time on my behalf,
so I could focus on this thesis.

i

Abstract

In radio astronomy the discrete Fourier Transformation is crucial
for evaluating telescope data. An increased interest in a streaming
approach to the Fourier Transformation has led to the development
of the Single Point Incremental Fourier Transformation (SPIFT), by
Saad et al. [3]. SPIFT only handles one datapoint at a time. We
developed two new algorithms which evaluate data points in batches.
The first algorithm groups datapoints with similar characteristics into
a dictionary before SPIFT is applied. The main focus of this report
is on the second algorithm, that uses dictionaries and an algorithm
we named Doublestep. Doublestep uses symmetries in SPIFT to re-
duce the necessary number of complex additions. In theory MPIFT
with dictionaries and Doublestep reduces the asymptotic complexity
of SPIFT by O(N

logN) for batches of smaller sizes. Our implementa-
tions confirmed that they reduced the complexity significantly.

ii

Zusasmmenfassung

In der Radioastronomie spielt die diskrete Fourier Transforma-
tion eine zentrale Rolle bei der Auswertung von Teleskopdaten. Ein
erhöhtes Interesse an kontinuierlichen Auswertungen der Daten führte
Saad et al. [3] dazu, den Single Point Incremental Fourier Transfor-
mation (SPIFT) Algorithmus zu entwickeln. SPIFT wertet Daten-
punkte einzeln aus. Wir entwickelten zwei neue Algorithmen zur
Auswertung von Datenpünkten in Bündeln. Der erste gruppiert Daten-
punkte zuerst basierend auf gemeinsamen Charakteristika in Zuord-
nungstabellen, bevor SPIFT durchgeführt wird. Der Fokus dieser
Arbeit ist auf dem zweiten Algorithmus, der neben Zuordnungsta-
bellen auch einen von uns entiwckelten Algorithmus den wir Dou-
blestep genannt haben, benutzt. Doublestep nutzt Symetrien in SPIFT
um die notwendige Anzahl komplexen Additionen zu reduzieren. The-
oretisch reduziert Doublestep die asymptotische Komplexität umO(N

logN)
für kleinere Bündel. Unsere Implementationen haben bestätigt, dass
sie die Laufzeit siginifikant reduzieren.

iii

Contents

1 Introduction 2

2 Main Body 4
2.1 Problem definition . 4
2.2 SPIFT . 5
2.3 SPIFT with batch . 6

2.3.1 Naive MPIFT . 8
2.3.2 MPIFT with Shift-Dictionary 9
2.3.3 Example Shift-Dictionary 12

2.4 Doublestep . 15
2.4.1 Idea . 15
2.4.2 MPIFT with dictionaries and Doublestep algorithm . . 17
2.4.3 Complexity . 17
2.4.4 Example . 20

2.5 Multiprocessing MPIFT with dictionaries and Doublestep . . . 22
2.5.1 MPIFT with dictionaries and row-Doublestep 24
2.5.2 MPIFT with dictionaries and column-Doublestep . . . 27
2.5.3 Complexity . 30

2.6 Comparing . 32
2.7 Experiment . 33

2.7.1 Setup . 33
2.7.2 Result . 34

3 Conclusion 39

4 Appendix 41

1

1 Introduction

In radio astronomy, there has been a shift away from large parabolic
dishes and towards fields of antennas [1]. This increases the precision, but
also leads to an increase in the amount of data that needs to be evaluated.
Planned telescopes often will produce over 100 terabyte of Data per day [4].

The data from such telescopes needs to be processed before researchers
can derive meaning from it. A common operation that is needed is the Dis-
crete Fourier Transformation. Traditional telescopes wait until the end of
the measurements and only then apply the Fourier Transformation on the
collected data, usually using the Fast Fourier Transformation (FFT) [2]. In
view of the volume of storage required for storing the data of the new tele-
scopes, researchers have investigated methods to perform the Fourier Trans-
formation directly on the produced data in a streaming fashion [1]. This
method requires less storage capacity and has the bonus, that researchers
can start evaluating the data already during the measurements.

In 2020, Saad et al. [3] developed the Single Point Incremental Fourier
Transformation (SPIFT) algorithms. It allows to update the image matrix
produced by the Fourier Transformation, as new data points come in. It is
intended to be used in a streaming pipeline with radio astronomy telescopes.
If a telescope collects data on a raster of size N × N , then SPIFT takes
N2 complex additions and N complex multiplications to update the image
matrix. To reduce the time required, SPIFT uses multiprocessing, in order
to distribute the complex additions over multiple processes.

In this report we analyze the possibility of handling batches of data
points to increase throughput while staying true to the streaming idea. Our
algorithm, Multipoint Incremental Fourier Transformation (MPIFT) using
dictionaries and Doublestep, decreases computational cost by using shared
memory to compute the Fourier Transformation of a batch more efficiently.
It combines data points with similar properties and it uses symmetries in the
computation of SPIFT to reduce the necessary additions. By doing this, we
were able to reduce the computational time by

O(
N

logN
)

for an image-matrix of size N ×N .

2

On tests we performed with MPIFT with dictionaries and Doublestep
and a Naive MPIFT implementation, the former outperformed the latter
with a ratio of 1

243
, for N=8192 and a batch-size of 42642. When MPIFT

just combined datapoints with similar properties, an implementation using
Doublestep still outperformed it with a ratio of 1

85
.

In Section 2.1 we define the problem we are trying to solve. Then in
Section 2.2 we explain how the existing SPIFT algorithm functions.

In Section 2.3 we explain what batch-handling entails and introduce the
three implementations we will compare in this report. In Subsection 2.3.1
we introduce the naive way of applying SPIFT to batches. In Section 2.3.2
we explain how similar data points can be bundled and we show an example
in Section 2.3.3.

Section 2.4 introduces Doublestep. In Subsection 2.4.1 we explain the
basic idea behind the concept and in Subsection 2.4.2 how Doublestep works
algorithmically. Subsection 2.4.3 calculates the complexity of Doublestep
and Subsection 2.4.4 gives a working example of Doublestep.

In Section 2.5 we expand Doublestep to work with multiple processes.
Subsection 2.5.1 explains how to use Doublestep with multiple processes and
row-shiftable visibilities that were introduced in Section 2.2. Subsection 2.5.2
does the same for column-shiftable visibilities. 2.5.3 discusses the complexity
of using Doublestep with multiple processes.

In Section 2.6 we compare the three implementations of MPIFT we in-
troduced.

In Section 2.7 we describe the experiments we ran on our implementations.
Subsection 2.7.1 describes the setup we used and Subsection 2.7.2 shows and
explains the results obtained.

In Section 3 we discuss the results of our findings and give suggestions
for possible future research.

3

2 Main Body

2.1 Problem definition

SPIFT (Single Point Incremental Fourier Transform) is an algorithm de-
veloped by Saad et all [3]. It takes a stream of incoming Datapoint u,v,vis,
where (u, v) are discrete 2D coordinates, and vis is the complex value mea-
sured at (u, v). As the name implies, SPIFT performs a incremental Fourier
Transformation on this data stream. This means that preliminary results of
the Fourier-Transformation are always available, leading to an image matrix
It, that represents the result of the Fourier-Transformation after visibility
(ut, vt, vist) has been taken into account.

SPIFT achieves this more efficiently than the traditional Discrete Fourier
Transformation (DFT) by doing two things. For one, it uses symmetries in
the computation of DFT to reduce the number of complex operations. But
it also uses multiprocessing, to distribute the work and increase efficiency.
SPIFT only works for matrices of a size that is a prime numbers or a powers
of two. In this report, ω will denote how many machines are available to an
algorithm, and λ how many processes can run on each machine in parallel.
Further, φ = ω · λ denotes the total number of processes available. Since φ
should divide N , we will restrict our self to N and φ that are powers of two.
Consequently ω and λ are powers of two as well.

SPIFT can still be too slow for practical use. The idea of this report
is to try to improve the efficiency of SPIFT further, by considering batch-
processing. In this report we introduce the MPIFT, that calculates the next
image-matrix for a batch of visibilities at once. Since it works on multiple
points, we call it Multipoint Incremental Fourier Transformation (MPIFT).
The amount of points per batch is denoted by β in this report. Table 1 shows
the notations we will use.

4

Notation Description

N Amount of rows and columns in Image-matrix
log the logarithm of base two
n log(N)
β batch size
λ number of local processes
ω number of machines

φ = λ · ω total degree of parallelism

Table 1: Notation used in this report

2.2 SPIFT

The Discrete Fourier Transformation updates the value of the Image-
Matrix when a new visibility comes in, in the following way:

It = It−1 + vist ·L(u,v)

where:

L(u,v) =

l0,0 l0,1 ... l0,N−1

l1,0 l1,1 ... l1,N−1

...
lN−1,0 lN−1,1 ... lN−1,N−1

 with lj,k = (e
i·2·π
N)u·j+v·k.

and

I0 =

0 0 ... 0
0 0 ... 0
...
0 0 ... 0

 a N ×N matrix.

The variables lj,k are called twiddle factors. Saad et al used the fact that
for a fixed N, the twiddle factors can only have N distinct values. They found
that for values of N that are prime or power of two, they could compute the
image matrix much more efficiently. Under those conditions, every visibil-
ity can be column-shifted or row-shifted. Column-shifted means, that all
columns are the same as the first one, except that they are shifted in regards

5

to the previous one by a fixed amount. Figure 1 shows L(1,2) for N = 4, which
is column-shift-able and has shift-index 2. As we can see the values of the
first column repeat in the same order in every column. The only difference
is, that they are moved down by two with respect to the previous column.
Row-shift works analogous. Algorithm 1 show, how to check if a visibility
is column-shift-able and how to calculate the shift-index using the greatest
common divisor (gcd).

1 −1 1 −1
i −i i −i
−1 1 −1 1
−i i −i i

Figure 1: L(1,2) for N = 4

After knowing shift-type and shift-index of a visibility, SPIFT calculates
it’s shift-vector. This is simply the first column or first row, depending on
type, of Lu,v, multiplied with the visibility. By multiplying the visibility be-
forehand only N complex multiplications are required, instead of the N2 ones
that would happen, if it was multiplied with the computed L(u,v) afterwards.

When using SPIFT, the image-matrix gets divided into φ slices. This can
be done by row or by column, either creating

N

ω · λ
×N or N × N

φ

image-matrix slices. Each process gets one slice assigned. When performing
SPIFT, each process updates its slice by shifting the shift-vector over it. Al-
gorithm 3 shows how SPIFT is executed on one process using Algorithm 2
that updates it’s image matrix when processing a visibility. In this example
the image-matrix is sliced into sub-matrices of size N

φ
× N and the variable

key ∈ {0, 1, . . . , φ− 1} indicates the process.

2.3 SPIFT with batch

In this section, we will present three different version of MPIFT, that
extend SPIFT to handle batch visibilities of batch-size β. The first Subsec-

6

Algorithm 1 CalculatingShiftIndex(u,v)

1: isCS ← (v = 0) or (u%2 = 1 and v%2 = 0) or
(v%2 = 0 and gcd(u,N) < gcd(v,N))

2: if u = 0 or v = 0 then
3: shiftIndex← 0
4: else
5: if isCS then
6: for j ← 0 to N do
7: if v = j · u%N then
8: shiftIndex← j

9: else
10: for j ← 0 to N do
11: if u = j · v%N then
12: shiftIndex← j

13: return (isCS, shiftIndex)

Algorithm 2 CalculatingSPIFTnode(It−1,key, isCS, shiftIndex, shiftV ector, key)

1: rows← N/(φ)
2: if isCS then
3: for k ← 0 to N do
4: startIdx← ((key · rows) + (shiftIndex · k))%N
5: for j ← 0 to rows do
6: idx← (startIdx+ j)%N
7: It,key[j, k]← It−1,key[j, k] + shiftV ector[idx]

8: else
9: for j ← 0 to rows do

10: startIdx← (shiftIndex · (j + key · rows))%N
11: for k ← 0 to N do
12: idx← (startIdx+ k)%N
13: It,key[j, k]← It−1,key[j, k] + shiftV ector[idx]

7

Algorithm 3 SPIFT(visibility, key)

1: isCS, shiftIndex =
CalculatingShiftIndex(visibilities.u, visibilities.v)

2: vis, u, v ← visibility.vis, visibility.u, visibility.v
3: shiftV ector ← emptyvector(N)
4: for k ← 0 to N do
5: if (isCS) then
6: shiftV ector[k]← vis ·W (k·u)%N

7: else
8: shiftV ector[k]← vis ·W (k·v)%N

9: CalculatingSPIFTnode(It−1,key, isCS, shiftIndex, shiftV ector, key)

tion (2.3.1) presents a naive approach, that runs every visibility in a batch
through plain SPIFT. We call this naive MPIFT. The second Subsection
(2.3.2) combines visibilities with the same shift-type and shift-index before
performing SPIFT. We call this MPIFT with dictionaries. In the last Section
(2.5) we use symmetries in addition of shift-vectors to reduce the amount of
complex additions that are needed. We call this MPIFT with dictionaries
and Doublestep.

2.3.1 Naive MPIFT

A naive approach to handle batch-processing using SPIFT would be to
simply feed every visibility in a batch to SPIFT and have it calculate the new
image-matrices. Algorithm 4 implements this idea. The key ∈ {0, 1, . . . , ω−
1} refers to the process. This is intuitively a bad approach, but we will use
it as a benchmark to compare the other approaches to. Figure 2 shows the
flow of naive MPIFT.

Calculating one visibility with SPIFT takes N complex multiplications
to calculate the shift-vector, and N2

φ
complex additions per process to add it

to the image matrix. So handling the full batch would lead to N · β complex
multiplications and N2·β

φ
complex multiplications.

Algorithm 4 naiveMPIFT(visibilitiest, key)

1: for visibility in visibilitiest do
2: SPIFT(visibility, key)

8

Stream
Source

partition

loop
over
batch

update
image-
slice

loop
over
batch

update
image-
slice

loop
over
batch

update
image-
slice

loop
over
batch

update
image-
slice

calculate
shift-
types

calculate
shift-
indexes

calculate
shift-
vector

calculate
shift-
vector

calculate
shift-
vector

calculate
shift-
vector

Figure 2: Flow chart of naive MPIFT using one master node that does initial
calculation and passes it to φ = 4 processes

2.3.2 MPIFT with Shift-Dictionary

Consider two visibilities in the same batch, visibility1 and visibility2. If
they both have the same shift-type and shift-index, then we can add their
shift-vectors together and handle it as one thing. This saves N2

φ
complex

additions and costs Ncomplex multiplications. If we consider that:

φ divides N =⇒ φ ≤ N =⇒ N ≤ N2

φ
.

So combining the two visibilities is at leas as efficient as handling them sep-
arately.

The idea of shift-dictionaries is to create a row-shift-dictionary and a
column-shift-dictionary. These dictionaries contain the N combined shift-
vectors for the N shift-indices. Algorithm 5 shows how to compute the

9

shift-dictionary.

Since communications-costs between different machines is high, it is ineffi-
cient to compute the shift-vectors on the master-node and then send them to
each process. But on a physical machine, processes can use shared memory,
basically eliminating the communications-costs.

The intuitive way to do this, is to divide the visbilities among the local
processes, to ensure everyone does the same amount of work. But this could
lead to a situation where two processes are handling two visibilities with the
same shift-type and shift-index at the same time. They would both access the
same part of the shift-dictionary at the same time, leading to simultaneous
access and possible loss of data. This could be solved by locks, but this
would increase the amount of computational overhead, and would defeat the
purpose of every process taking the same amount of time, since processes
would need to wait for memory access.

Instead, we can order the visibilities by shift-type and shift-index in the
master-node before sending them. This doesn’t increase the communication-
costs. Then we divide the possible shift-types and shift-indices among the
processes, and have them each compute an equal part of the shift-dictionary.
If the visibilities in the batch are well distributed, this would lead to an
acceptable distribution of work. Figure 3 shows the flow of creating the dic-
tionaries and calculating MPIFT.

The first entry-addition of a shift-vector into a shift-dictionary doesn’t
need to be added, all following ones do. So in the worst case, all visibilities
have the same shift-type and shift-index. This would mean that one process
has to calculate N · (β − 1) complex additions and all β · N complex mul-
tiplications. In the best case the visibilities are evenly distributed among
the shift-types and -indices. This leads to β·N

λ
complex multiplications and

N · β−N
λ

complex additions. Since β usually is large, the average case is much
closer to the best case than to the worst case.

10

Algorithm 5 CalculatingShiftDictionary(visibilitiest, N)

1: dRow = new dic
2: dCol = new dic
3: for (ut, vt, vist) in visibilitiest do
4: isCS, si =CalculatingShiftIndex(ut, vt)
5: sv ← emptyvector(N)
6: for k ← 0 to N do
7: if (isCS) then
8: sv[k]← vis ·W (k·u)%N

9: else
10: sv[k]← vis ·W (k·v)%N

11: if isCS then
12: if dCol contains si then
13: dCol[si]← dCol[si] + sv
14: else
15: dCol[si]← sv

16: else
17: if rCol contains si then
18: rCol[si]← rCol[si] + sv
19: else
20: rCol[si]← sv

return (dRowt, dColt)

11

stream
source

calculate
shift-
types

calculate
shift-
indexes

update
image-
slice

partialy
calculate
row-shift-
dictionary

partialy
calculate
col-shift-
dictionary

loop over
row-shift-
dictionary

update
image-
slice

loop over
col-shift-
dictionary

update
image-
slice

partialy
calculate
row-shift-
dictionary

partialy
calculate
col-shift-
dictionary

loop over
row-shift-
dictionary

update
image-
slice

loop over
col-shift-
dictionary

update
image-
slice

partialy
calculate
row-shift-
dictionary

partialy
calculate
col-shift-
dictionary

loop over
row-shift-
dictionary

update
image-
slice

loop over
col-shift-
dictionary

update
image-
slice

partialy
calculate
row-shift-
dictionary

partialy
calculate
col-shift-
dictionary

loop over
row-shift-
dictionary

update
image-
slice

loop over
col-shift-
dictionary

local
parti-
tion

local
parti-
tion

local memory

local memory

sort
batch

partition

Figure 3: Flow chart of MPIFT with shift-dictionaries. One master node
does initial calculation and sorts the batch and passes it to ω = 2 machines
running λ = 2 processes each. Each machine has local memory that is shared
between processes of that machine.

2.3.3 Example Shift-Dictionary

In this section we will give a small example how to calculate a shift-
dictionary. We will consider measurements on N = 4 with an incoming
batch of size β = 12, shown in Table 2. To keep it simple, we ignore that the
visibilities would be sorted and handled by multiple processes.

We first create an empty row-shift dictionary and an empty column-shift
dictionary. The first three values can simply be added to them, since they

12

Number u v vis isCS shift-index shift-vector

1 1 2 1 + 0i true 2 (1+0i,0+1i,-1+0i,0-1i)
2 0 2 2 + 0i false 0 (2+0i,-2+0i,2+0i,-2+0i)
3 2 1 3 + 0i false 2 (3+0i,0+3i,-3+0i,0-3i)
4 0 3 0 + 4i false 0 (0+4i,4+0i,0-4j,-4+0j)
5 3 1 5 + 0i false 3 (5+0i,0+5i,-5+0i,0-5i)
6 1 0 0 + 6i true 0 (0+6i,-6+0i,0-6i,6+0i)
7 3 3 7 + 7i false 1 (7+7i,7-7i,-7-7i,-7+7i)
8 1 1 8 + 0i false 1 (8+0i,0+8i,-8+0i,0-8i)
9 0 3 0 + 9i false 0 (0+9i,9+0,0-9i,-9+0i)
10 2 1 10 + 10i false 2 (10+10i,-10+10i,-10-10i,10-10i)
11 3 3 11 + 0i false 1 (11+0i,0-11i,-11+0i,0+11i)
12 2 0 0 + 12i true 0 (0+12i,0-12i,0+12i,0-12i)

Table 2: Example Batch for a 4× 4 image matrix

differ in shift-index and shift-type. Table 3 shows what the shift-dictionaries
would look like after this.

The fourth visibility is row-shiftable and has a shift-index of 0. The
dictionary already has an entry for this, so the shift-vector gets added to the
existing one. This is shown in Table 4. The other visibilities then get added
in the same fashion. Table 5 shows what the shift-dictionary looks like after
all 12 values have been added.

13

column-shift-dictionary

0 2

− 1 + 0i
− 0 + 1i
− −1 + 0i
− 0− 1i ”

row-shift-dictionary

0 1 2 3
2 + 0i − 3 + 0i −
−2 + 0i − 0 + 3i −
2 + 0i − −3 + 0i −
−2 + 0i − 0− 3i −

Table 3: Shift Dictionaries after first 3 visibilities from Table 2 have been
added

column-shift-dictionary

0 2

− 1 + 0i
− 0 + 1i
− −1 + 0i
− 0− 1i ”

row-shift-dictionary

0 1 2 3
2 + 4i − 3 + 0i −
2 + 0i − 0 + 3i −
2− 4i − −3 + 0i −
−6 + 0i − 0− 3i −

Table 4: Shift Dictionaries after first four value from batch in Table 2 was
added to Table 3

14

column-shift-dictionary

0 2

0 + 18i 1 + 0i
−6− 12i 0 + 1i

0 + 6i −1 + 0i
6− 12i 0− 1i ”

row-shift-dictionary

0 1 2 3
2 + 13i 26 + 7i 13 + 10i 5 + 0i
11 + 0i 7− 10i −10 + 13i 0 + 5i
2− 13i −26− 7i −13− 10i −5 + 0i
−15 + 0i −7 + 10i 10− 13i 0− 5i

Table 5: Shift Dictionaries after adding all visibilities from Table 2

2.4 Doublestep

Doublestep is an algorithm that we have developed to reduce the number
of complex additions when updating the image matrix. In this section we
will discuss how Doublestep works, not considering multiple processes. In
Section 2.5 we will extend the algorithm to work with multiple processes and
shared memory.

2.4.1 Idea

Consider two shift-vectors a1 and a2 with shift-index s1 and s2 where
s2 = s1 + N

2
which are both row-shiftable. In the first row, ~a1 and ~a2 are

added
(a0

1 + a0
2).

The superscript denotes by how much the vector is shifted. On the next row,
we get

(as11 + as22).

On the third row, it is

a2·s1
1 + a2·s2

2 = a2·s1
1 + a

2·s1+2·N
2

2 = a2·s1
1 + a2·s1

2 = (a0
1 + a0

2)2·s1 ,

15

and on the forth

a3·s1
1 + a3·s2

2 = a3·s1
1 + a

3·s1+N
2

2 = (as11 + a
s1+N

2
2)2·s1

If we continue this line of thought, we get (a0
1 + a0

2)4·s1 for the fifth and

(as11 + a
s1+N

2
2)4·s1 for the sixth row.

As we can see, we only need to perform two vector-additions, a0
1 + a0

2 and
as11 + as22 . These two rows form a 2×N -matrix. If we shift this matrix by a
multiple of 2 · s1, it corresponds to the shifted addition of a1 and a2. We will
call this matrix m2

2·s1 , where the subscript denotes the shift-index of the shift-
matrix, and the superscript denotes the number of rows. We can do this with
all shift-vector-pairs to get N

2
shift-matrices, that all have an even shift-index.

Consider now two shift-matrices m2
s and m2

s+N
2

. In the first two rows of

the image matrix the two matrices are added together:

(m2,0
s +m2,0

s+N
2

).

The second superfix denotes the shift. In the third and fourth row, they both
get shifted by s and s+ N

2
respectively

(m2,s
s +m

2,s+N
2

s+N
2

).

The fifth and sixth row are again just the result from the first two rows,
shifted by 2 · s,

(m2,2·s
s +m

2,2·s+2·N
2

s+N
2

) = (m2,0
s +m2,0

s+N
2

)2·s.

Similarly, the seventh and eight row are simply the third and fourth, shifted
by 2 · s, (

m2,3·s
s +m

2,3·s+3·N
2

s+N
2

)
=
(
m2,s
s +m

2,s+N
2

s+N
2

)2·s
.

As we see, we can use the same method as before to calculate 4 × N shift-
matrices. We then use the same method to calculate the shift-matrices of
size 8 × N . We call the calculation of a new set of shift-matrices a step of
Doublestep.

In the i-th step of Doublestep, we calculate 2n−i matrices of size k × N ,
k = 2i. Since the shift-matrices of step i must have shift-indices that are

16

twice the shift-index of a matrix of step i-1, all shift-matrices of step i are
multiples of k. The shift-matrices of the step i can be calculated with using
equation (1), where k = 2i and s is a multiple of k that is smaller than N. ×
denotes the concatenation of two matrices. Figure 4 shows how shift-matrices
combine to make shift-matrices of a higher degree.

[h]mk
s = (m

k
2
,0

s
2

+ m
k
2
,0

s+N
2

)× (m
k
2
, s
2

s
2

+ m
k
2
, s+N

2
s+N
2

) (1)

At the nth step of Doublestep, we get just one N ×N matrix with shift-
index 0, mN

0 . Adding this matrix to the old image-matrix is equivalent to
updating it with all visibilities from the batch.

2.4.2 MPIFT with dictionaries and Doublestep algorithm

Algorithm 6 performs MPIFT with dictionaries and Doublestep, which
consists of three phases. In the first phase, the shift-dictionary is calculated.
This happens in the same way as in the MPIFT with dictionary algorithm
(Algorithm 5). In the second phase, the steps of Doublestep are performed
for row- and column-shifts, to calculate the two shift-matrices mN

0,row and
mN

0,col. This is shown in Algorithm 7. In the third and final step, the two
shift-matrices are added to the existing image matrix.

Algorithm 6 MPIFTwithDictionariesAndDoublestep(visibilitiest, N, It)

1: dRowt, dCol = CalculatingShiftDictionary(visibilitiest, N)
2: (mN

0,row,m
N
0,col) = Doublestep(dRowt, dColt, N)

3: It+1 ← It +mN
0,row +mN

0,col

4: return It+1

2.4.3 Complexity

Calculating a single shift-vector implies N complex multiplications. This
means that N · β complex multiplications are required for the full shift-
dictionary. The first shift-vector for each shift-index does not need to be
added to anything. But each subsequent shift-vector with the same shift-
index must be added to the existing one. Each vector-addition needs N

17

m1
0 m1

4 m1
2 m1

6 m1
1 m1

5 m1
3 m1

7

m2
0 m2

4 m2
2 m2

6

m4
0 m4

4

m8
0

Shift-Dictionary

Step 1

Step 2

Step 3

Figure 4: Illustration on how Doublestep combines smaller shift-matrices to
build bigger ones for column-shift and N = 8

18

Algorithm 7 Doublestep(dRowt, dColt, N)

1: for i ← 0 to N do
2: m1

i,row = dRow[i]
3: m1

i,col = dCol[i]

4: for i← 1 to log(N) do
5: k = 2i

6: for s← 0, k, 2k to N − k do

7: mk
s,row ← (m

k
2
,0

s
2
,row +m

k
2
,0

s+N
2
,row

)× (m
k
2
, s
2

s
2
,row +m

k
2
, s+N

2
s+N
2
,row

)

8: mk
s,col ← (m

k
2
,0

s
2
,col +m

k
2
,0

s+N
2
,col

)× (m
k
2
, s
2

s
2
,col +m

k
2
, s+N

2
s+N
2
,col

)

return (mN
0,row,m

N
0,col)

complex additions. So, in the best case, there is a visibility for every shift-
index, and N · (β− 3N

2
) complex additions are required. In the worst case, all

visibilities have the same shift-index, and N · (β − 1) complex additions are
required. With large buffer-size, it does not matter and we can approximate
and say it requires N · β complex additions.

In each step of Doublestep, N
2i

= N
k

shift-matrices of size k ×N or N × k
need to be calculated. Each requires k · N complex additions, so one step
requires

k ·N · N
k

= N2

complex additions.
Doublestep has n steps for row- and n steps for column-shift. In total,

we therefore get
2 · n ·N2 = 2 · log(N) ·N2

complex additions

The two final shift-matrices mN
0 for row- and column-shift are added to

the existing image-matrix. Both have size N ×N . Accordingly, 2 ·N2 com-
plex additions are required for this step.

Complex multiplications only appear in the calculation of the shift-dictionary.
Consequently

N · β

19

complex additions are required. Complex additions are required in for the
shift-dictionary and Doublestep.

N · β + 2 · log(N) ·N2 + 2 ·N2

complex additions are therefore approximately needed to perform MPIFT
with dictionaries and Doublestep, which means it has an asymptotic com-
plexity of

O(Nβ)

complex multiplications and

O(Nβ +N2 log(N))

complex additions.

2.4.4 Example

This section shows an example of how Doublestep works. We will continue
using the example from Sections 2.3.3, and compute Doublestep on the row-
shift-dictionary from Figure 3. From that section we know that N = 4.
Since the row-shift-dictionary is already computed, we already have all shift-
matrices of size 1 × 4. Each matrix corresponds to the entry in the shift-
dictionary with the same shift-index, as shown in Figure 5.

m1
0 =

(
(2 + 13i) (11 + 0i) (2− 13i) (−15 + 0i)

)
m1

1 =
(
(26 + 7i) (7− 10i) (−26− 7i) (−7 + 10i)

)
m1

2 =
(
(13 + 10i) (−10− 13i) (−13− 10i) (10− 13i)

)
m1

1 =
(
(5 + 0i) (0 + 5i) (−5 + 0i) (0− 5i)

)
Figure 5: Doublestep example step 0

Since N = 4, we know that n = 2, so we need to compute 2 steps. First,
we will calculate m2

0 and m2
2. To calculate m2

0, we need

m
2
2
0
2

= m1
0 and m

2
2
0+4
2

%4
= m1

2.

20

The first row of m2
0 is m1

0 and m2
0 added together without any shift. For the

next row, both m1
0 and m1

2 are shifted by their shift-index. In the case of m1
0

this means that it is shifted by 0, i.e. not actually shifted.
For m2

2 we need

m
2
2
2
2

= m1
1 and m

2
2
2+4
2

%4
= m1

3.

Again, the first row is just the two rows without any shift happening. In
the second row both vectors get shifted by their shift-index, so 1 and 3. The
result can be seen in Figure 6.

Note that the rule is not, that the first row is not shifted, and the second
is. For a shift-matrix md

i , the first d
2

rows are not shifted. In step one this is
just one row.

m2
0 =

(
(15 + 23i) (1− 13i) (−11− 23i) (−5− 13i)
(−11− 3i) (22− 13i) (15− 3i) (−25− 13i)

)
m2

2 =

(
(31 + 7i) (7− 5i) (−31− 7i) (−7− 5i)

(−7 + 15i) (21 + 7i) (7− 15i) (−21− 7i)

)

Figure 6: Doublestep example step 1

In step 2 we calculate one shift-matrix m4
0. It is composed of

m
4
2
0
2

= m2
0 and m

4
2
0+4
2

%4
= m2

2.

For the first two rows, we just add the values of m2
0 and m2

2. For the third
and fourth row, we shift m2

0 by 0 (which is again the same as not shifting),
and m2

2 by 2, before adding them together. This is shown in Figure 7. Thus
we have calculated the final shift-matrix. Adding this to the existing image-
matrix will be equivalent to performing SPIFT on all twelve visibilities of
Table 2.

21

m4
0 =

(46 + 30i) (8− 18i) (−42− 30i) (−12− 18i)

(−18 + 12i) (43− 6i) (22− 18i) (−46− 20i)
(16 + 16i) (−6− 18i) (20− 16i) (2− 18i)
(−4− 18i) (1− 20i) (8 + 12i) (−4− 6i)

Figure 7: Doublestep example step 2

2.5 Multiprocessing MPIFT with dictionaries and Dou-
blestep

In Section 2.4 we only used one process. MPIFT can be improved by using
multiple processes to calculate the shift-dictionaries and Doublestep. For the
processes to cooperate in performing Doublestep, they need to share a lot of
data. In practice, this is only feasible if the processes run on the same phys-
ical machine, otherwise the communication costs become too large. When
performing MPIFT with dictionaries and Doublestep in parallel, we divide
the image matrix into sub-grids. Unlike naive MPIFT, not every process gets
its own sub-matrix. Rather, all processes on the same machine work together
to calculate one sub-matrix. So, we end up with ω sub-matrices. Figure 8
shows the flow of MPIFT with dictionaries and Doublestep.

When slicing the image-matrix into sub-matrices, we can either slice with
the rows or with the columns. If we slice with the rows we get sub-matrices
of size D×N , if we slice with columns they are of size N ×D, where D = N

ω
.

The choice is arbitrary. In this report, we assume that we sliced with the
rows.

After having decided if we slice with rows or columns, some vector-shifts
will go with the slice, and others against it. Here the row-shift goes with and
column-shift against the slice. This has ramifications on how Doublestep is
performed. We need to compute row-Doublestep differently then column-
Doublestep.

22

Stream
Source

calculate
shift-
types

calculate
shift-
indexes

local
parti-
tion

sort
batch

partialy
calculate
row-shift-
dictionary

loop
1 to
log(Nω)

parallel
Double-
step

update
image
slice

loop
1 to
log(N)

perpend.
Double-
step

update
image
slice

partialy
calculate
row-shift-
dictionary

loop
1 to
log(Nω)

parallel
Double-
step

update
image
slice

l
o
c
a
l
m
e
m
o
r
y

partialy
calculate
col-shift-
dictionary

loop
1 to
log(N)

perpend.
Double-
step

update
image
slice

partialy
calculate
col-shift-
dictionary

local
parti-
tion

partialy
calculate
row-shift-
dictionary

loop
1 to
log(Nω)

parallel
Double-
step

update
image
slice

loop
1 to
log(N)

perpend.
Double-
step

update
image
slice

partialy
calculate
row-shift-
dictionary

loop
1 to
log(Nω)

parallel
Double-
step

update
image
slice

l
o
c
a
l
m
e
m
o
r
y

partialy
calculate
col-shift-
dictionary

loop
1 to
log(N)

perpend.
Double-
step

update
image
slice

partialy
calculate
col-shift-
dictionary

partition

Figure 8: Flow chart of MPIFT with dictionaries and Doublestep. One
master node does initial calculations, sorts the batch and passes it to ω = 2
machines running λ = 2 processes each. Each machine has local memory
that is shared between processes of that machine.

23

2.5.1 MPIFT with dictionaries and row-Doublestep

In the row-shift case, a machine first receives a dictionary containing
all visibilities with row-shift, organized by shift-index. Since all row-shift-
vectors are needed in every slice, each machine needs to calculate the full
shift-dictionary first. All processes can work together on this, using shared
memory. This is done the same way as in Section 2.3.2.

N shift-vectors need to be calculated and each machine has λ local pro-
cesses to do so. Each process has to calculate r row-shift-vectors and store
them in the row-shift-dictionary, where r = N

λ
. Since N > λ and both N

and λ are powers of two, this is always possible. Each process can look up
the visibilities it needs to calculate its shift-vectors. Since it is possible that
a shift-index has more visibilities associated with it, some processes will take
longer than others. The processes cannot work together to share the work
more evenly, because this would mean that multiple process must write to
the same part of memory in the shift-dictionary, leading to multithreading
problems.

After having calculated the row-shift-dictionary, row-Doublestep needs to
be performed. Since in the end, only a D×N , with D = N

ω
, slice of the image-

matrix needs to be calculated, it is more efficient to only use Doublestep until
a shift-matrix size of D × N is reached. Since N and β are powers of two,
there will always be a set of shift-matrices with exactly this size. They are
the shift-matrices mD

i·D, with i ∈ {0, 1, ..., N
D
− 1}.

The processes can calculate each step of Doublestep together. Since every
row of every shift-matrix is only dependent of the shift-matrices of the previ-
ous step, we can just distribute all the rows of all the shift-matrices that need
to be calculated in each step evenly among all processes. This means that
early on a process will calculate one or multiple shift-matrices alone. In later
steps, the rows of a single shift-matrix will be calculated by different pro-
cesses. Figure 9 shows how the shift-matrices calculation of row-Doublestep
would be divided among four processes. As we see in the last step multiple
processes calculate one shift-matrix together.

24

m1
0

m1
4

m1
2

m1
6

m1
1

m1
5

m1
3

m1
7

m2
0

m2
4

m2
2

m2
6

m4
0

m4
4

1 2 3 4

Figure 9: Calculation of row-dictionary and row-Doublestep performed by
4 processes. The color in each step shows, which section gets performed by
which process. N = 8, ω = 2, λ = 4.

In the end, the shift-matrices mD
i·D need to be added to the image-matrix-

slice. The rows of the slice can be distributed evenly to the processes, so each
updates the same number of rows. When adding the values of mD

i·D to the
slice, each shift-matrix needs to be shifted by rank · (i · D), where rank is
the rank of the machine that is hosting the sub-matrix-slice.

Figure 9 shows how λ = 4 processes calculate row-Doublestep together
on one of two machines ω = 2.

Before they can start with Doublestep, they need to construct the row-
shift-dictionary together. Every process has a list of all visibilities. Process
one calculates all shift-vector for visibilities with shift-index zero and build
their combined shift-vector. It then stores it into shared machine-memory,
that is accessible by all processes. It then does the same for shift-index one.
The second process calculates the shift-dictionary entries for shift-indices two
and three. Process three does shift-indices four and five, and process four

25

calculates for shift-index six and seven. These corresponds to the colored
1×N -sections in Figure 9.

Once all processes have calculated their part of the dictionary and stored
it into shared machine-memory, they can calculate the first step of row-
Doublestep. Since four shift-matrices need to be calculated and the machine
is using four processes, every process calculates exactly one shift-matrix.
Process one calculates m2

0. To do so, it needs to read two entries from the
shift-dictionary, m1

0 and m1
4. Since both have been written to shared machine-

memory, process one can access them both. Process one adds m1
0 and m1

4

together to form the first row of m2
0. It then shifts m1

0 and m1
4 by their

shift-index before adding them together again to get the second row of m2
0.

It then writes m2
0 to shared machine-memory. Process two does the same for

m2
4. Process two was not involved in calculating the shift-dictionary entries

it needs, m1
2 and m1

6. This does not matter, since the whole shift-dictionary
is stored in shared machine-memory, so process two can read them. Process
three calculates and stores m2

2 and process four m2
6.

In the second step, there are more processes then shift-matrices. So mul-
tiple processes have to calculate one matrix. Process one and two calculate
shift-matrix m4

0 together. Process one will calculate the first two rows and
process two the second two. Both will need access to m2

0 and m2
4. Since both

these shift-matrices are stored in shared machine-memory, both processes can
access them. And since they only need to read the values, they can access
them simultaneously. Process one adds together m4

0 and m4
4 to geth the first

two rows of m4
0. Process two shifts m4

0 and m4
4 by their shift-index before

adding them together to get the third and fourth row of m4
0. They both

write there results to the same shift-matrix m4
0 in shared machine-memory.

Since they write to different sections, there is no danger in them accessing
the shift-matrix simultaneously, as long as an architecture has been chosen,
that allows the change of one value without affecting the other ones. Pro-
cesses three and four calculate the shift-matrix m4

4 in the same fashion, by
accessing m2

2 and m2
6 from shared machine-memory.

The amount of machines used in this example is ω = 2. Row-Doublestep
only needs to be performed, until we get shift-matrices of size N

ω
×N = 4×8.

Since this is reached after step two of row-Doublestep, there is no third step.
Both shift-matrices m4

0 and m4
4 can now be used to update the image-matrix.

26

2.5.2 MPIFT with dictionaries and column-Doublestep

When we consider column-shift, we see that not every row of each shift-
matrix will appear in the final image-slice. Take for example the column-
shift-matrix m4

0. Since it has shift-index 0, only the rows that correspond to
the image-slice being calculated appear in the final image-slice. Figure 10
shows which lines would be needed to calculate the sub-matrix of a 8 × 8
image-matrix by machine 2 of ω = 4.

Before we calculate Perpendicular Doublestep, we need to find out, which
rows of which shift-matrices are even needed. An intuitive way of doing this,
is to look what lines are needed from mN

0 , and calculate recursively, what
lines are needed on shift-matrices of earlier steps to compute this matrix.
This can be seen in Algorithm 8. Note that in reality, an iterative approach
tends to be faster, than a recursive one.

Algorithm 8 NeededLinesColumnDoublestepRec(N,D, lines)

1: if D = 1 then
2: return {(D,lines)}
3: neededLns = {}
4: for (l, si) in lines do
5: neededLns ← neededLns ∪ {(l, si

2
), ((l + si

2
)%N, si

2
)}

6: neededLns ← neededLns ∪ {(l, si+N
2

%N), ((l + si+N
2

)%N, si+N
2

%N)}
7: return {(D, lines)}∪NeededLinesPerpendicularRec(N, D

2
, neededLns)

The recursive functions calculated the lines needed from every shift-
matrix. Since the shift-matrices of size N × 1 are the entries of the shift-
matrix, we can use this to only calculate the parts of each shift-vector that
are actually needed, saving some complex operations.

Then the processes can go on and calculate the steps of Doublestep. Since
different matrices will have different amounts of required lines, we cannot just
distribute the shift-matrices in each step to different processes. Instead, we
evenly distribute the set of all required lines among the processes. Each line
of each shift-matrix is only dependent on the shift-matrices in the previous
step, so there are no problems with simultaneous write access. Algorithm 9
implements column-Doublestep computation. Figure 11 shows an example
of how the lines to calculate are divided among processes.

27

m8
0

m4
0

m2
0

m1
0

m4
4

m2
4

m1
4 m1

2 m1
6 m1

1 m1
5 m1

3 m1
7

m2
2 m2

6

Figure 10: Required Lines for column-Doublestep. N = 8, ω = 4, rank = 2.
Red marks the lines that need to be calculated for each shift-matrix.

28

m8
0

m4
0

m2
0

m1
0

m4
4

m2
4

m1
4 m1

2 m1
6 m1

1 m1
5 m1

3 m1
7

m2
2 m2

6

1

2

3

4

Figure 11: Column Doublestep performed by 4 processes. The color in each
step shows, which section gets performed by which process. N = 8, ω = 2,
rank = 2, λ = 4.

29

Algorithm 9 StepOfColumnDoublestep(N, step, lines, λ, key)

1: δ = lines.size
λ

2: D = 2step

3: for i← 0 to δ do
4: (l, si) = lines[δ · key + i]
5: if l < D

2
then

6: mD
si[l]← m

D
2
si
2

[l] +m
D
2
si+N

2
%N

[l]

7: else

8: mD
si[l]← m

D
2
si
2

[(l + si
2

)%N] +m
D
2
si+N

2
%N

[(l + si+N
2

)%]

To update the image-matrix-slice, the processes need to add the final
shift-matrix mN

0 . We can again distribute the rows to the different processes
evenly, as we did with parallel Doublestep. The only difference is that there
is just one shift-matrix to add. How to update the image matrix for Perpen-
dicular Doublestep is shown in Algorithm 10. The key ∈ {0, 1, . . . , ω − 1}
refers to the machine.

Algorithm 10 UpdateImagePerpendicular(N,mN
0 , λ, key)

1: ∆ = N
ω

2: δ = ∆
λ

3: for l← δ · key to δ · (key + 1) do
4: It ← It[∆ + l] +mN

0 [∆ + l]

2.5.3 Complexity

Since Multiprocessing Doublestep consists of a row- and a column part,
we will discuss the complexity of these two parts separately.

The relevant parts of the complexity of MPIFT with dictionaries and
row-Doublestep have been discussed before. Calculating a full row-shift dic-
tionary takes

N · β
λ

30

complex multiplication per kernel and

(β −N) ·N
λ

complex multiplication per kernel. Doublestep takes N2 complex additions
per step, as seen in Section 2.4.3. For row-Doublestep, we only perform log N

ω

steps, so it requires

log
N

ω
·N2

complex additions. Calculating the image-matrix-slice means adding ω N
ω
×N

matrices to the image matrix. This takes

ω · N
ω
·N = N2

complex additions.

For MPIFT with dictionaries and column-Doublestep the calculations are
more complicated. Equation (2) shows how many values are needed in the
column-shift-dictionary. Unless ω = 1 this is smaller than N2, but for small
ω it’s asymptotic complexity still is N2. So we need

O(β ·N2)

complex additions and multiplications.

N2 −N · ω − N

ω
+

2(ω2 − 1)

3 · ω
(2)

Equation (3) shows how many complex additions are needed for column-
Doublestpe. Like row-Doublestep, this has an asymptotic complexity of

O(N2 · logN)

complex addtions.

2 · N
ω
· (N − 1)−

4 · (N
ω
− 1)((N

ω
)2 −N2)

3 · N
ω

+

2

3
· (2 · (N

ω
)
2

− 3 · N
2

ω
+N2)− 2 ·N2 · N − ω

N
+N2 · (n− log(ω))

(3)

31

MPIFT with dictionaries and Doublestep gets performed by λ processes
working together. After distributing the work, every process performs

O(
log (N) ·N2

λ
)

complex additions.

2.6 Comparing

In this section, we will compare, how efficient the three algorithms naive
MPIFT, MPIFT with dictionaries and MPIFT with dictionaries and Dou-
blestep are. Table 6 shows how many complex multiplications and complex
addition these different approaches take. Since the differences are big enough,
we will use the asymptotic complexity to compare. The amount of machines
ω is not expected to be big, so we will assume ω = 1 for these comparisons.

Both approaches that use shift-dictionaries do a lot better when it comes
to complex multiplications. This has nothing to do with the shift-dictionaries
themselves, and only with the fact that they use shared memory, and can
therefore distribute all the shift-vector calculations over multiple machines.

The only case where naive MPIFT has less complex additions is when
β ≤ N . In all other cases, MPIFT with dictionaries and Doublestep has
the fastest asymptotic complexity, when it comes to complex additions. If
β < N2, the asymptotic complexity for MPIFT with dictionary is the same
as naive MPIFT, regardless of the distribution of processes.

MPIFT Algorithm complex multiplications complex additions

naive O(β ·N) O(β·N
2

φ
)

with dictionary O(β·N
λ

) O(β·N
λ

+ N3

φ
)

with dictionary
textbfand Doublestep O(β·N

λ
) O(β·N

λ
+ N2·logN

λ
)

Table 6: Comparing theoretical asymptotic complexity of different MPIFT
algorithms. All values are per process

Table 7 shows the ratios for the three approaches regarding the same mea-
surements. When using MPIFT with dictionary we can reduce the amount

32

of complex additions needed by β
N

. The improvement gets better when we
additionally use Doublestep, which will reduce it further by N

logN
to a total

of β
logN

.
By using shift-dictionaries The amount of complex multiplications only

gets reduced by λ. Additional using Doublestep doesn’t impact it signifi-
cantly. This means that the efficiency increase we get is dependent on the
physical infrastructure available and does not scale with N . In cases where
λ is limited, we foresee a new computational bottleneck.

MPIFT
Algorithm 1

MPIFT
Algorithm 2

complex
mulltiplication

ratio

complex
additions

ratio

naive with Dictionary λ
1

β
N

naive
with dictionary
and Doublestep λ

1
β

logN

with Dictionary
with dictionary

textbfand Doublestep 1 N
logN

Table 7: Comparing ratio of significant measures per process between
MPIFT-implementations. We assume β << N2.

2.7 Experiment

2.7.1 Setup

To test the three Algorithms, we implemented them in C++, using MPI
(Message Passing Interface) to communicate between nodes and to enable
shared memory. The paper from Saad et al. used Apache Flink. We did not
use this, since Apache Flink doesn’t offer possibilities so share local memory.
We used the Open MPI library, that implements MPI for C++.

We used two servers, provided by the institute for computer science of the
University of Zurich. Each of them has 48 cores, and 188 GB of memory using
Intel Xeon Silver 4214 Processors. In order to record the measured time, each
implementation wrote to the file-system at fixed point in its program.

Naive MPIFT only recorded the total time elapsed to handle one batch.
We did this, because the constant writing that would result from writing after

33

each single visibility would slow down the system and the overall elapsed time
would be less precise. Also since naive MPIFT is the only one that handles
visibilities one by one, we would have nothing to compare the time for a
single visibility to.

For MPIFT with dictionary we measured the overall elapsed time, the
time it took to calculate each dictionary and the time to run SPIFT on all
values of all dictionaries. This way, we can compare the total time elapsed for
the naive approach, and the time to calculate the dictionaries with MPIFT
with dictionaries and Doublestep.

For MPIFT with dictionaries and Doublestep we measured the time to
calculate each dictionary and the time it took to calculate row- and column-
Doublestep. This way, we can see if the bottleneck is more with column-
Doublestep, as we would expect. We can also compare the row- and shift-
dictionary creation with the previous approach. We are calculating the row-
dictionary the same way, so the times should be more or less the same. The
column-dictionary is calculated differently, and it will be interesting to see if
the times are significantly different.

We used a constant N = 213 = 8192 for all experiments. We started by
using two machines ω = 2 with λ = 16 processes each. After that we varied
the amount of processors per machine λ = 8, λ = 32. Initially we used a
batch-size of β = 42642. Later we also used β = 170568 and β = 340992, to
confirm that only the calculation of the shift-dictionary and the whole of the
naive approach would suffer under this.

2.7.2 Result

Figure 12 shows how fast the three implementations were per batch.
Naive MPIFT with a speed of 2’500 seconds was clearly the slowest. In-
cluding shift-dictionaries made it almost three times as fast with an average
of 890 seconds per batch. MPIFT with dictionaries and Doublestep took an
average of 10.5 seconds and was by far the fastest, 240 times faster than the
naive approach and 80 times faster than only with shift-dictionaries.

34

	10

	100

	1000

	10000

naive	MPIFT MPIFT	with	dictionaries MPIFT	with	dictionaries
	and	Doublestep

tim
e[
s]

implementations

total	time

Figure 12: Total time required by naive MPIFT, MPIFT with dictionaries
and MPIFT with dictionaries and Doublestep with N = 8192, φ = 64, ω = 2,
λ = 32, β = 42642

Figure 13 compares the times that MPIFT with dictionaries and MPIFT
with dictionaries and Doublestep need to update the image-matrix after hav-
ing calculated the shift-dictionaries. With 1.7 seconds, Doublestep is 90 times
faster than SPIFT to add the row-shift-dictionary, and with 4.9 seconds
55 times faster with the column-shift dictionary. Both row- and column-
Doublestep have the same asymptotic complexity, but column-Doublestep
requires more complex additions. This explains why the ratio for column-
shift is smaller than for row-shift.

It is also of note that for MPIFT with dictionaries and Doublestep, row-
shift is significantly faster than column-shift. This is on one hand because
column-Doublestep requires more complex additions, and on the other hand
because column-Doublestep calculates more steps of Doublestep and there-
fore has a larger computational overhead. For MPIFT with dictionary,

35

column-shift is also slower. This is because in our implementation, we it-
erated over the rows and then over the columns, leading to a loss of time
because of poor memory access.

	1

	10

	100

	1000

row-shift column-shifts

tim
e[
s]

calculation	step

MPIFT	with	dictionaries
MPIFT	with	dictionaries	and	Doublestep

Figure 13: Time required to update the image matrix after having calculated
the shift-dictionaries by MPIFT with dictionaries and Doublestep, N = 8192,
φ = 64, ω = 2, λ = 32, β = 42642

Figure 14 shows a breakdown of the times for MPIFT with dictionaries
and Doublestep for different degrees of parallelism λ ∈ {8, 16, 32}. When
the amount of kernel increases, the computational time goes down, but it
doesn’t go down as much as hoped. The amount of complex additions is
halved when the amount of processes is doubled. We expected that the time
for row- and column-Doublestep would be close to halved, but we don’t see
that. We assume this is because we implemented Doublestep without any
optimizations for multi-threading. So threads are created and destroyed more
often than needed, leading to an increased overhead that gets very noticeable
when times get as low as they are here.

36

	0

	2

	4

	6

	8

	10

	12

	14

	16

8 16 32

Ti
m
e	
[s
]

Amount	of	kernels	per	machine

total	time
row-dictionary

column-dictionary
row-Doublestep

column-Doublestep

Figure 14: Breakdown of MPIFT with dictionaries and Doublestep with
varying amounts of local processes λ, N = 8192, β = 42642

Figure 15 shows how Doublestep deals with different batch-sizes β ∈
{43643, 170568, 340992}.As expected, the time for row- and column-Doublestep
do not change. This is because they work only on shift-dictionaries and not
directly on the batch.

We also see for the parallel dictionary that the jump between β = 42642
to β = 170568 is bigger than from β = 170568 to β = 340992. This is
because for smaller batch-sizes, there are still shift-indices that only have
one visibility, therefore saving on complex additions. When the batch sizes
increases, this effect becomes increasingly unlikely.

We also see that calculating the column-shift-dictionary takes signifi-
cantly longer than the row-dictionary. When calculating the column-shift-
dictionary, we only calculated the rows for each shift-vector, that were needed
to perform column-Doublestep. This decreases the amount of complex op-
erations needed to compute the shift-dictionary, but again at the cost of

37

computational overhead. This is why initially the difference between row-
and column-dictionary computation is big, but decreases when the batch-
size increases, since the saved operations become more important than the
computational overhead. But the column-shift dictionary only has half as
many visibilities and is even for bigger batch-sizes only as efficient as calcu-
lating the row-shift dictionary. This is an indication that the optimization
here is not worth the effort and it would be faster to simply compute the full
shift-dictionary as normal.

	0

	2

	4

	6

	8

	10

	12

	14

	16

	18

	20

	22

42642 170568 340992

Ti
m
e	
[s
]

Batch-size

total	time
row-dictionary

column-dictionary
row-Doublestep

column-Doublestep

Figure 15: Breakdown of MPIFT with dictionaries and Doublestep with
varying batch size β, N = 8192, φ = 64.

38

3 Conclusion

MPIFT with dictionaries and Doublestep is significantly faster than the
naive approach or only using dictionaries, both in theory and in an ex-
perimental setting. We couldn’t reach the full theoretical improvement of
O(N

logN
) in an experimental setting. Presumably this is because of the com-

putational overhead our implementation of Doublestep introduced. MPIFT
with dictionaries and Doublestep scales better than both other MPIFT vari-
ants.

With Doublestep, updating the image-matrix becomes more efficient and
the amount of complex additions is reduced. Introducing a shift-dictionary
can further reduce the amount of complex additions. But neither of these
methods can reduce the amount of complex multiplications significantly. The
creation of the shift-dictionary and the complex multiplications needed for
it become the new computational bottleneck.

Since this report build on the work of Saad et al. [3], its main focus are
applications in radio-astronomy. But as with SPIFT, Doublestep could proof
useful in other fields that use Discrete Fourier Transformation as well.

Further research could go into increasing the efficiency of Doublestep
by reducing the computational overhead and optimizing threading. Since
Doublestep mostly requires complex additions and shared memory it could
be a worthwhile endeavor to analyze if it runs efficiently on a graphic card.

39

References

[1] A. Biem, B. Elmegreen, O. Verscheure, D. Turaga, H. Andrade, and
T. Cornwell. A streaming approach to radio astronomy imaging. In 2010
IEEE International Conference on Acoustics, Speech and Signal Process-
ing, pages 1654–1657. IEEE, 2010.

[2] A. Richard Thompson, J. M. Moran, and G. W. Swenson Jr. Interferom-
etry and synthesis in radio astronomy. Springer Nature, 2017.

[3] M. Saad, M. H. Böhlen, A. Bernstein, and D. Dell’ Aglio. Single point
incremental fourier transform on 2d data streams. In 37th IEEE Inter-
national Conference on Data Engineering, Chania, Greece, 2021. IEEE.

[4] R. V. van Nieuwpoort and J. W. Romein. Correlating radio astronomy
signals with many-core hardware. International journal of parallel pro-
gramming, 39(1):88–114, 2011.

40

4 Appendix

The complete source code used for testing is accessible on Github at
https://github.com/degenwitz/SPIFT Thesis.

41

