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Abstract

Applying data augmentation on test images can improve facial attribute classifications. The
Alignment-Free Facial Attribute Classification Technique (AFFAT) shows that performing 162
transformations on test images can improve the prediction of facial attributes on the CelebA
dataset. However, this process costs a substantial amount of time, and the effectiveness of each
transformation is not considered. This research aims to find the best combination of transforma-
tions that will be applied as test-time data augmentation, such that the prediction results of the
AFFACT model can be improved. Genetic algorithms are employed for the optimization task. As
a result, even though the overall prediction accuracy does not improve, the number of transfor-
mations applied as test-time data augmentation has been decreased dramatically.
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Chapter 1

Introduction

The task of facial attribute classification is to predict the attributes of a face, such as gender and
whether having beard. It can be further employed in other applications such as image search
(Kumar et al., 2011) and retrieval (Siddiquie et al., 2011). After Liu et al. (2015) introduced a
large-scale benchmark dataset for this problem - CelebFaces Attributes (CelebA), facial attribute
classification using deep learning methods have been improved.

Günther et al. (2017) propose Alignment-Free Facial Attribute Classification Technique (AF-
FACT) which has achieved state-of-the-art results on non-aligned faces. They pretrained a ResNet-
50 network on the ImageNet dataset and add a fully connected layer before the model is fine-
tuned on the CelebA dataset. Perturbations (shifts, scaling, horizontal flip and blurring) are ap-
plied to training images, and it results in the AFFACT network. The best prediction accuracy
is obtained when 162 transformations are applied to detected bounding boxes as test-time data
augmentation.

Compared with the commonly used test-time data augmentation technique, ten-crops (Krizhevsky
et al., 2012; He et al., 2016), which yields only shifts to images, the 162 transformations employed
in the AFFACT paper include shifts, rotation, scaling and horizontal flip.

However, to obtain the prediction results of a single image, the technique requires the DCNNs
to make predictions on that image 162 times, which is a drawback. On the one hand, the running
time of 162-transformations is much longer than that of ten-crops. The effectiveness of each trans-
formation, on the other hand, is not taken into consideration. The transformations are assigned
with equal weight. Some transformations may play a more important role while some are trivial,
which means some transformations applied to images may not be necessary.

The main goal of this work is to build an optimization algorithm to search for a combination
of transformations whose

• number of transformations is far smaller than that applied in the AFFACT paper i.e. 162 and
• the performance is better, or at least not much worse than the baseline.

I define the search space of the problem-domain of the optimization as all combinations of 162
transformations and the objective is to obtain the best prediction results of the AFFACT model on
the CelebA dataset. Images may be better represented by transformations that do not belong to
162 AFFACT transformations. This paper also investigates a larger search space.

An immediate approach is to search the whole search space using brute-force methods. But
the attempt to exhaust all combinations of 162 transformations in accepted time is destined to
fail, given the fact that the number of all combinations of 162 transformations is an astronomical
figure, let alone the larger search space. Therefore, I either implement brute-force search on a
subset of the search space or employ a more efficient and faster searching mechanism.
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An evolutionary algorithm (EA) is a feasible optimization approach. It mimics the natural
process of evolution, based on ’Survival of the fittest’ from Darwinian evolutionary theory. The
candidate solution i.e. a combination of transformations, to the problem of optimization, is de-
noted as an individual and its quality is assessed by a fitness function. An EA begins with a
randomly initialized population. Offspring are generated by the way of recombination between
selected individuals (crossover), alternation of elements of individuals (mutation). Then a pro-
portion of the fittest individuals form a new population that replaces the old one and is used in
the next iteration of the EA. The process is repeated until the termination criteria are met. In the
end, the solution to the optimization will emerge.

A combination of transformations can be easily encoded into a string. Therefore, genetic algo-
rithm (GA) (Goldberg, 1988; Holland, 1975), a subclass of EA is used in this paper. An individual
taking part in a GA is a string that represents parameters from the problem-domain. The num-
ber of transformations is an undefined value. So the length of a genetic string is not fixed. It is
adaptive instead.

To achieve the research goal, this paper implements GAs with different hyperparameters. GAs
will be evaluated in terms of the performance of the AFFACT model on images processed by the
best transformations they discover.

It is shown that while the overall prediction accuracy is not improved, the GAs have discov-
ered better solutions on several attributes. Additionally, the solutions have far less transforma-
tions compared to the 162 transformations used in the AFFACT paper.



Chapter 2

Related Work

2.1 Facial Attribute Classification
The problem of facial attribute classification was introduced to the computer vision community
by Kumar et al. (2008). They trained Support Vector Machines(SVMs) on a collection of low-level
features to build a face search engine FaceTracer that involved facial attributes. Ehrlich et al. (2016)
utilized a Restricted Boltzmann Machine(RBM) that served the objective of multitask learning.

Researchers have developed many deep learning models based on Deep Convolutional Neu-
ral Networks (DCNNs) after Liu et al. (2015) introduced a large-scale benchmark, CelebA. CelebA
contains more than 200k images with 40 attributes attached to each image. Along with the
datasets, Liu et al. (2015) presented three networks, two Localization Networks(LNets) and At-
tribute Network(ANet). LNets were built based on AlexNet and were used for locating faces. The
ANet was built on Alexnet architecture as well. It was pretrained on the ImageNet dataset and
then fine-tuned on the CelebA benchmark. The facial attribute classifications were obtained from
SVMs. Wang et al. (2016) pretrained their DCNNs on external data obtained from body cameras
and fine-tuned the model on CelebA before they employed SVMs to make the final prediction
of attributes. These works required a single model to be learned for each attribute, which was
inefficient.

Rudd et al. (2016) addressed this issue and they introduced the Mixed Objective Optimization
Network(MOON) that was able to learn all attributes at once. They also handled the label imbal-
ance during training. MOON was built on VGG-16 architecture (Simonyan and Zisserman, 2014).
As a result, MOON outperformed all previously mentioned models.

The research of Günther et al. (2017) is the first to combine data augmentation techniques
with unaligned faces. They applied perturbations to images during training phase and used data
augmentation on test images as well. They have achieved the highest classification accuracy on
the CelebA dataset to date.

2.2 Test-time Data Augmentation
Research shows that the performance of NN models on images can be improved by augment-
ing data at test-time. Test-time data augmentation is analogous to ensemble learning techniques
(Shorten and Khoshgoftaar, 2019). It is denoted as data distillation that ensembles predictions to
get a better representation of an image (Radosavovic et al., 2018).

AlexNet (Krizhevsky et al., 2012), which is CNNs trained on the ImageNet dataset, can obtain
higher prediction accuracy from the average of outputs of CNNs of ten cropped patches. These
ten crops are center crop, four corner crops as well as those of the horizontally flipped image.
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The same ten-crop technique is used in the evaluation of Residual Networks (He et al., 2016) on
ImageNet and CIFAR-10. Huang et al. (2017) compare the validation error of DenseNets using
ten-crops with that using single-crop. Ten-crops is reported to outperform single-crop.

While ten-crops yield only shifts to images, other augmentation techniques can help with the
prediction. Günther et al. (2017) train DCNNs on the CelebA dataset. During the test phase, they
apply 162 transformations on test images and obtain state of the art from the average of CNN
outputs. The 162 transformations are all combinations of rotation, shifts ∈ {−10, 0, 10}, scaling ∈
{0.9, 1.0, 1.1} and horizontal flip. Perez et al. (2018) investigate the effectiveness of augmentation
techniques including geometric transformations, elastic mixing and color transformations on the
skin lesion classification task.

Test-time data augmentation is not heavily explored. As pointed out in Shorten and Khoshgof-
taar (2019), assigning weight to each augmented prediction is likely to improve the performance
of prediction on augmented images.

2.3 Genetic Algorithms For Optimization
Genetic algorithm (GA) (Goldberg, 1988; Holland, 1975) is a search-based optimization mecha-
nism. It is one of the variants of EA. The entity that plays a role in a vanilla GA is formulated by
a fixed-length numeric string that represents variables and parameters. This characteristic makes
GAs suitable for optimization problems where they are plenty of parameters. It has been shown
that GAs can handle problem-domain with millions of parameters (Whitley et al., 2019).

The population is randomly initialized, and it evolves more and more towards the better re-
gion of the search space. The individuals in the population are evaluated by an objective function
that maps an individual to a real number. After selection, the selected individuals will give birth
to children via genetic operators i.e. crossover and mutation.

Selection is the process to pick individuals out of the population and then to send them to the
next phases of evolution. Researchers have developed several selection strategies, such as rank-
ing selection, roulette wheel selection (Zhong et al., 2005), linear ranking selection (Baker, 1985)
and tournament selection (Miller and Goldberg, 1995). Ranking selection is the simplest imple-
mentation where the individuals are ranked according to their fitness and the individuals with
higher rankings are selected. Roulette wheel selection and linear ranking selection are similar. In-
dividuals are assigned with probabilities to be selected based on their fitness and the total fitness
of the population. In a tournament selection, pairs of individuals are picked out and compete
with each other and the winners are selected. It is observed that tournament selection is the best
among these selection strategies in terms of convergence rate and time complexity (Shukla et al.,
2015).

Hasançebi and Erbatur (2000) summarize commonly used crossover approaches to two cate-
gories. One is performing crossover between subelements of two individuals. An element that
represents an individual is divided into multiple subelements and crossover is performed locally
on corresponding subelements of two elements. The other category does not concern partition.
Elements or subelements can be divided by a single point or multiple points.

Mutation is the crucial process to restore lost genetic information. Crossover is a recombina-
tion of information and it does not bring new information into the population. After the initial-
ization of a population, new parameters are introduced only through mutation.

Typical configurations of GAs use high crossover rate and low mutation rate (De Jong and
Spears, 1990). But the choice of optimal control hyperparameters is an open issue. It involves
the trade-offs between different perspectives of the quality of GAs. For example, increasing the
mutation rate helps with restoring genetic information but it introduces a lot of randomness to
the search process (Srinivas and Patnaik, 1994).
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A healthy population with high diversity is believed to be important for discovering a good
solution (Simon, 2013). This can be achieved by introducing great amount of variations to the
individuals in a population or using local selection schemes under which evolution happens at
different rates across individuals. Tournament selection is one of the local selection schemes.

To ensure the quality of the solution emerging does not drop over iterations, selection with
elitism (Baluja and Caruana, 1995) is introduced. The new population consists of a proportion of
children and parents.





Chapter 3

Approach

In this chapter, I describe the manipulation of the dataset, the image preprocessing procedure,
and the genetic algorithm implementation.

3.1 Dataset, general optimization procedure

3.1.1 Dataset
The experiments were conducted on the CelebA dataset (Liu et al., 2015). CelebA consists of more
than 200k images of celebrities with 19,867 images in the validation set and 19,962 in the test set.
There are 40 binary codes representing attributes attached to each image. And each image is also
labeled with five landmarks which can be used for alignment.

3.1.2 Optimization and evaluation procedure
In this paper, GAs with different hyperparamters are implemented. The optimizers firstly run
separately for each attribute as well as the overall metric on the validation set in order to find the
best combination of transformations that lead to the best prediction performance. Subsequently,
the discovered best combination of transformations is applied to the test images before a predic-
tion is made on the test set. Therefore, there are 41 independent results for each GA.

3.2 Image Preprocessing Pipeline
The CelebA dataset provides hand-labeled coordinates of five landmarks, both eyes, left and right
mouth corners and the nose tips. These hand-labeled landmarks are used to calculate estimated
bounding boxes of faces using the same approach in the AFFACT paper (Günther et al., 2017).

Specifically, the center of eyes ~te and the center of mouth ~tm are calculated given the labels of
both eyes ~tel , ~ter and both mouth corners ~tml

, ~tmr
respectively.

~te =
~tel + ~ter

2
, ~tm =

~tml
+ ~tmr

2
(3.1)

Then the mouth-eye-distance d is obtained: d = ||~te−~tm||. The width w and the height h of the
bounding box are estimated based on the distance d : w = h = 5.5 ·d . Finally, the four coordinates
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(left xl, right xr, top yt, bottom yb) of the bounding box are computed:

xl = xe − 0.5 · w xr = xe + 0.5 · w
yt = ye − 0.45 · h yb = ye + 0.55 · h

(3.2)

The original rotation angle α0 is calculated from eye coordinates and the scaling factor r0 is
drawn. W and H represent the resolution of the image after transformation.

α0 = arc tan
yer − yel
xer − xel

r0 =
W

w
=
H

h
(3.3)

A transformation is marked by five different geometric manipulations of an image. For a
transformation, its parameters, rotation angle α , shifts on x- and y-axis x, y and scaling factor s,
are added to the coordinates. Additionally, the image is horizontally flipped if the flip indicator
is True. In this paper, a transformation is represented by (α, x, y, s, f).

x̃l = xl + x x̃r = xr + x

ỹt = yt + y ỹb = yb + y

α̃ = α0 + α s̃ = s0 + s

(3.4)

Using these formulas, the image is loaded, transformed and cropped into an image with res-
olution W = H = 224, before extrapolation using nearest neighbor technique is performed on
each color channel of the image. Only invalid pixels i.e. pixels lay outside the original bound are
extrapolated.

Image transformations are handled by Bob1 (Anjos et al., 2012). To speed up this process, I use
multiprocessing.Pool2 to parallelize the image preprocessing on the CPU.

An image is processed with a combination of multiple transformations. The AFFACT model
makes attribute predictions on each transformed image. Then a final prediction is made based on
the weighted average of the outputs of the AFFACT model (see Figure 3.1).

1https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html
2https://docs.python.org/3.8/library/multiprocessing.html

https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html
https://docs.python.org/3.8/library/multiprocessing.html
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Figure 3.1: AN EXAMPLE OF IMAGE TRANSFORMATION. The image is processed with k transfor-
mations. Each transformation is assigned with a weight. The AFFACT mode makes predictions on k trans-
formed images. Then the weighted average of DCNNs outputs is obtained. The average score is thresholded
at 0 to take final prediction on attributes.
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transformation parameter search space 1 search space 2
rotation α ∈ {−10, 0, 10} [−20, 20] ∩ Z
shifts x, y ∈ {−10, 0, 10} [−20, 20] ∩ Z
scaling s ∈ {0.9, 1.0, 1.1} {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}
flip f ∈ {0,1} {0,1}
weight w ∈ N+ ∪ 0 N+ ∪ 0

Table 3.1: SEARCH SPACE. The ranges of transformation parameters and weight in two search spaces.
During mutation, the parameters are bounded.

3.3 Genetic Algorithms For Searching The Best Com-
bination of Transformations

GAs are employed to search for the best combination of transformations per attribute well as the
overall. In the beginning, the population is initialized with n individuals. And it evolves via se-
lection, crossover, gene-level mutation, individual-level mutation and survival in each generation
until the termination criteria are met.

An individual is decided by the expression of its genes combined and assigned with a fitness.
A gene represents a set of five single transformations together with a weight (weigh w, rotation
angle α, x-axis shift x, y-axis shift y, scaling factor s, flip f ). An individual is a weighted combi-
nation of transformations. In this paper, a combination refers to multiple transformations.

One of the purposes of the research is to lower down the number of transformations per-
formed as test-time augmentation. Therefore, a length constraint is applied, which forces the
number of genes in an individual to be no greater than twenty at any time during optimization.

3.3.1 Search space

GAs implemented in this paper perform optimization on two search spaces respectively. One is
all combinations of 162 transformations used in the AFFACT paper (search space 1). The other
one is a much larger space (search space 2). In detail, parameters in a transformation can vary in
the ranges shown in Table 3.1.

Using search space 1, the results of optimization can be compared with the 162 AFFACT trans-
formations. And the DCNNs output for each transformation is able to be easily stored, which ac-
celerate processing. Search space 2 contains more genetic variations but it requires more time for
the optimization to converge, and it is impractical to cache DCNNs output for all transformations.

3.3.2 Initialization

The population is initialized with n individuals. In all implementations of GA, the population
size is set to 100. An individual has k genes with k ∈ [2, 7], k ∈ N. The weight of each gene is
set to be an integer between 2 and 5. For GAs running on search space 1, a gene randomly picks
a transformation from the pool of 162 transformations. For the GA running on search space 2,
transformation parameters are randomly generated in the range shown in Table 3.1.



3.3 Genetic Algorithms For Searching The Best Combination of Transformations 11

Algorithm 1 Fitness function
Input: an individual p = (gene1, · · · , genek) with genei = (wi, αi, xi, yi, si, fi)

attribute attr, a dataset of Q images
1: avg_output← 0Q×40

2: W ←
∑
w

3: for each gene in p do
4: λ← w/W
5: if λ > 0 then
6: load images
7: transformed_images←transform(images, α, x, y, s, f )
8: outputQ×40 ← AFFACT_model(transformed_images)
9: avg_output← λ · output+ avg_output

10: prediction← threshold(avg_output, τ = 0)
11: obtain accuracy1×40

12: if attr is overall then
13: fitness← average(accuracy)
14: else
15: fitness← accuracy[attr]
16: return fitness

3.3.3 Fitness function
An individual is evaluated by a fitness function, which takes the genes of an individual, the
attribute for which the optimization is carried out as input, and outputs the prediction accuracy
of the AFFACT model on the transformed images from the validation set (Algorithm 1). Given
an individual with k genes, for each gene, the AFFACT model makes predictions on images that
are transformed corresponding to the parameters in it. It results in k DCNNs outputs. Then the
weighted average of the k outputs is calculated. The averaged score is thresholded at 0 to take the
final prediction. The prediction accuracy of the input attribute or the overall prediction accuracy
is assigned as the fitness to the individual. I use the AFFACT model trained with euclidean loss.

After optimization, the solutions found out by GAs are evaluated on the test set.

avg_outputQ×40 =

k∑
i=1

wi ·AFFACT_model(transformed_images)

with w refers to the weight of a transformation
prediction = θ(avg_output, τ = 0)

where θ(x, τ) =

{
1 if x > τ

−1 if x ≤ τ

(3.5)

3.3.4 Genetic operations
The population will undergo tournament selection, crossover, parameter-level mutation and gene-
level adaptive length mutation to create offspring. At the end of each iteration, a proportion of
the parent population and the offspring will be selected to form the new population that goes to
the next iteration.
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Algorithm 2 tournament selection and crossover
Input: population P = {p1, p2, ..., pn}, Fitness function F (·), Offspring OS
1: Winner ← ∅
2: for i← 0 to n/2 do
3: randomly pick ps, pt ∈ P
4: if F (ps) > F (pt) then
5: Winner ←Winner ∪ ps
6: else
7: Winner ←Winner ∪ pt
8: for i← 0 to ‖Winner‖/2 do
9: randomly pick pa, pb ∈Winner

10: if pa 6= pb then
11: child← crossover(pa, pb)
12: OS ← OS ∪ child

tournament

Tournament (Miller and Goldberg, 1995) is designed to select individuals out of the parents and
these selected individuals will mate and give birth to new individuals through crossover. In a
tournament, individuals with higher fitness have a higher probability to be selected.

Two random individuals are picked and compared with each other. The one with higher
fitness is regarded as the winner. This process is repeated n

2 times and results in n
2 winners (see

Algorithm 2).
In a tournament crossover, not only the individuals with high fitness can have offspring but

also the individuals with low fitness. It preserves the diversity of the population, which is argued
to be very important for discovering good solutions (Simon, 2013).

crossover

Crossover is a recombination of elements,i.e. genes between two parent individuals. A modified
one-point crossover is performed. In a canonical one-point crossover, cut points of two individ-
uals are at the same location. Because individuals do not have fixed lengths, the cut point is
randomly drawn for each individual separately.

Two parents are randomly selected from winners. A parent is divided into two parts given a
cut point, so as the mating partner. Then elements are swapped to form two children (Figure 3.2).
A spawned individual is discarded if the number of its genes exceeds the limit, twenty. The
crossover between two parents is repeated until at least one child is acceptable.

Crossover is performed on individual-level. A cut point lies between genes and it does not
disrupt the structure of a gene.

mutation

All individuals within the parent population will mutate on parameter-level (Figure 3.3). For GAs
optimizing on search space 1, a gene that represents a transformation in 162-transformations will
be altered nominally to a random transformation and the weight score will change as well.

For GAs optimizing on search space 2, parameters including the weight in a gene will be
altered numerically by a randomly generated value. Parameters are bounded according to Ta-
ble 3.1. A mask is randomly drawn for each gene. It gates the mutation process. Only parameters
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Figure 3.2: CROSSOVER. A child is accepted if its length does not exceed twenty

(a) Search space 1 (b) Search space 2

Figure 3.3: THE MUTATION OF A GENE. Parameters are randomly altered.

whose corresponding values in the mask are True will change by a random value x following the
discrete uniform distribution over the set:

{−1, 1} if the parameter is w
([5, 0) ∩ (0, 5]) ∪ Z if the parameter is α, x, y
{−0.1, 0.1} if the parameter is s

For horizontal flip f , if f = 0, then it is mutated to be 1. Otherwise, f changes to 0.
For GAs that do not assign weights to genes, the weighting factors are set to be 1 constantly.
The mutated genes are regarded as newborn children.

Algorithm 3 parameter-level mutation on search space 2
Input: population P = {p1, p2, ..., pn}, offspring OS

for i← 0 to n do
child =copy(pi)
for j ← 0 to ‖child‖ do

gene← child[j]
mask := gene→ {0, 1}6
for k ← 0 to 6 do

if mask[k]>0 then
gene[k]← gene[k] + x . x is a random number

OS ← OS ∪ child
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gene-level adaptive length mutation

In addition to the commonly used genetic operations, a proportion of parents will mutate on
the gene-level. An individual will be either added a randomly drawn gene to it or be deleted one
gene from it. If the individual has twenty genes, it will not expand. The random gene is generated
using the same approach in initialization.

ranking selection

Not all parents are discarded. Instead, the fittest parents from the old population are carried over
to the next. This method refers to elitism (Baluja and Caruana, 1995). It guarantees the solution
obtained by a GA does not decrease over generations.

After the reproduction of offspring, the best 0.3n individuals from the parents and the best
0.7n individuals from the offspring are picked out to form a new population, which replaces the
old one. All the other individuals are discarded. The survival mechanism drives the population
to evolve towards the better direction.

Termination of GA

In some GA implementations, optimization terminates when the highest fitness of offspring is not
greater than that of the parent. Because the search space is enormous, it is of high possibility that
the highest fitness does increase in several consecutive generations. The early stopping is likely
to take place in the very beginning. In this paper, the algorithms do not stop until the maximum
generation is reached.

3.3.5 Dataset split
As a result of optimization with GA, the combination of transformations with highest fitness
(lowest predict error) on the whole validation set is selected as the best individual. Thanks to the
nature of GAs, the population becomes more and more adaptive to the data (the whole validation
set) as the optimization goes. Therefore, the algorithm will always pick the best individual from
the last survived generation. And this individual is the fittest one, which means it may have low
generalizability. The prediction performance of the AFFACT model on the test set may suffer
from overfitting.

To mitigate the potential problem of overfitting during optimization, I implement modified
GAs with a different picking strategy in experiment 3 and 4. I simply expose the GAs to only
half of the data and make another half unavailable. The validation set is randomly split into two
parts, the seen set and the unseen set. The optimization is carried out on the seen set. Then the
best individual from last several generation is selected and compared with each other. Because
the population in the beginning may not be adaptive to the data, they are not considered. The
algorithms pick the individual whose prediction accuracy is the highest on the unseen set (see
Figure 3.4). Hopefully, the dataset-splitting strategy will select an individual whose fitness is
among the best as well as the generalizability. Experiments (experiment 3 and 4) that employed
this strategy share the same dataset partition.
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Figure 3.4: GA OPTIMIZATION ON THE SPLIT VALIDATION SET. After optimization, the best indi-
viduals from last several generations are compared with each other on the unseen set.





Chapter 4

Experiment

4.1 Baseline
Two baselines are established in this paper. One baseline is obtained after performing 162 trans-
formations on test images from the CelebA datatset. It is denoted as baseline-T. Since this paper
does not use an automatic bounding box detector as it does in the AFFACT paper, prediction er-
rors of the baseline are not comparable to those reported in the AFFACT paper. The other one is
the attribute classification results on aligned faces and it is denoted as baseline-A.

4.2 Experiment 1: Brute-force search
The research starts with a brute-force search to investigate the effectiveness of all transformations
that are used in AFFACT paper (162-transformations). I design an that optimization for all com-
binations of k transformations with k ∈ [1, 20], k ∈ N separately. The search is performed on the
validation set and then the discovered solutions are evaluated on the test set.

The running time increases dramatically as the number of transformations k increases. The
time complexity of the brute-force search algorithm is O(nk). For this reason, exhaustive search
is only employed for optimization on the overall metric (average prediction of 40 attributes), not
per attribute. (

n

k

)
=

n!

k!(n− k)!
=

(n− k + 1) · (n− k + 2) · · ·n
k!

T (n, k) = T (
n!

k!(n− k)!
) = O(nk), with k << n

Nevertheless, it is still hardly feasible to perform a greedy search for all k. By the time I submit-
ted the paper, results of k = 1, 2, 3, 4 were obtained. It is shown that none of the best combinations
of 1,2,3,4 transformations led to a better prediction performance with respect to the baseline. As
the number of transformations k increases, the prediction result gets better (Table 4.1). The results
indicate that to get better overall prediction performance, the number of transformations applied
on an image should not be smaller than 4.

Table 4.2 shows the best combinations for k = 3, 4. It is observed that the aligned transforma-
tion (no additional transformation is applied to the aligned faces) is included in the solutions for
neither k = 3 nor k = 4.
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baseline-T baseline-A k = 1 k = 2 k = 3 k = 4
OVERALL error rate 8.098 8.251 8.211 8.156 8.168 8.142

Table 4.1: Results of brute-force search for best combinations of transformations

The best combination of transformations
k = 3 (-10, -10, 10, 1.0, 1), (0, -10, 10, 1.1, 0), (10, 10, 0, 1.0, 1)
k = 4 (-10, -10, 10, 1.1, 1), (0, 0, 0, 1.1, 0), (0, 10, 0, 0.9, 1), (10, 10, 10, 0.9, 0)

Table 4.2: The solutions found out by the brute-force approach

4.3 Experiment 2: Genetic optimization on the whole
validation set

The brute-force-search-based optimization can not complete the task. It is necessary to implement
GAs, which do not exhaust all the possible combinations and run faster and more efficiently. The
running time is solely dependent on the population size instead of the size of the searching space.

The first GA (GA1) proposed in this paper serves the same purpose as the brute-force search. It
aims to find the best combination from 162-transformations without considering the importance
of each transformation.

In addition, the paper investigates the effectiveness of each set of transformations. On the
basis of GA1, GA2 assigns weights to transformations.

In this experiment, the search space is the combinations of 162-transformations.

4.3.1 setup
GA2 assigns weights to genes in an individual, while GA1 does not. The size of the population
of all algorithms is 100. The GAs terminate when they reach maximum generation. The whole
validation set is used during optimization.

The maximum generation of GA1 is thirty (GA1-30). I run GA2 two times with maximum
generation to be thirty and a hundred respectively(GA2-30, GA2-100). For all GAs, the parameter-
level mutation rate is 1.0 and the adaptive length mutation rate is 0.2.

Temporary storage caches the DCNNs output of each set of transformations. Since the opti-
mization is carried out in search space 1, there are at maximum 162 entries stored in the cache.
Before the AFFACT model makes a prediction, the GAs firstly check whether there is a corre-
sponding entry to the set of transformations in the gene. If so, the DCNNs output will be obtained
directly, and the step of model prediction will be skipped.

The implementation of cache allows the algorithms not to run DCNNs model repeatedly and
therefore running time can be decreased.

4.3.2 results
prediction error rates

On overall error rate, GA1-30 (8.098%) outperformed the other two GAs and GA2-30(8.107%) was
better than GA2-100 (8.110%). However, the differences were minimal. GA1-30 was the only one
that obtained no worse overall classification result with respect to the baseline (see Table 4.3).
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Out of forty attributes and the overall metric, GA1-30 performed no worse on 9 (22%) com-
pared to the baseline. The numbers of GA2-30 and GA2-100 are 14 (34%) and 11 (27%).

All three GAs obtained better prediction results compared to baseline-A on nearly all at-
tributes.

Independent T-tests were carried out to check whether there were significant differences be-
tween the error rates of baselines and the results of GAs. Overall error rates were not included in
the t-test. Because the overall error rate of the baseline is the average of the error rates of 40 at-
tributes while the overall error rates were obtained independently by GAs. The statistical analysis
showed that none of the three GAs was significantly different from the baseline-T or baseline-A
(all p-value>0.05).

While GA1-30 achieved the lowest overall prediction error rate, it was beaten by GA2-30 in
terms of the number of improved attributes.

number of transformations

The solution discovered by GA1-30 on the overall classification result has eighteen different trans-
formations (Table A.1). The numbers of GA2-30 and GA2-100 are 18 and 14 respectively. The
dominant transformation in the solution of GA2-30 ((α, x, y, s, f) = (−10,−10, 10, 1.0, 1)) con-
tributed 11.3% to the prediction (Table A.2) while the heaviest transformation in the solution of
GA2-100 ((10, 10, 0, 0.9, 0)) had a weighting factor of 14.6% (Table A.3).

The genes in the solutions of GA1-30 are not necessarily to be different from each other, be-
cause crossover may cause duplicates in an individual. There were duplicate transformations in
the solutions for all forty attributes. Surprisingly, the solution for the overall metric was the only
one that did not contain repeated transformations. This helps explain why the overall error rate
of GA1-30 was lower than GA2-30 while GA1-30 was outperformed by GA2-30 in terms of the
number of improved attributes.

convergence and overfitting

Convergence and overfitting are two major issues concerned with GAs. Figure 4.1 shows the
variations of the overall error rates of the best individual over iterations for three GAs on the
validation set. The population of three GA2 was initialized to have poor quality. After few gener-
ations, they evolved into a better region. And the best solution kept improving as the optimization
went on. This was a result of combining high reproduction rates (mutation and crossover) and
elitism. High reproduction rates introduced a great amount of new genetic information into the
population and elitism led to the non-decreasing quality of the best solution.

On the validation set where optimization took place, the quality of the solution found by GA2-
100 was better than those discovered by the other two. Since GA2-100 had more generations, the
population had more chance to evolve and therefore more adaptive to the validation set.

However, results were opposite on the test set where GA2-100 was outperformed by both
GA1-30 and GA2-30. As stated in section 3.1.1, GA2-100 suffered from overfitting. During op-
timization, the population evolved within the environment pictured by the validation set. An
individual that is extremely fit on this environment is likely to not be adaptive to a new environ-
ment. Experiment 3 addressed this issue.

Not only a large number of generations incurred overfitting, but also the usage of the weight-
ing factor. On the validation set, the solution of GA1-30 had the poorest quality. But GA1-30
achieved the best overall result on the test set. The only difference between GA1-30 and GA2-30
was the presence of weights. There are three transformations with heavy weight (>10%) in the
solution of GA2-30.
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Attribute baseline-A baseline-T GA1-30 GA2-30 GA2-100 GA3 GA4
5 o Clock Shadow 5.245 5.130 5.110 5.100 5.115 5.085 5.170
Arched Eyebrows 15.695 14.989 15.364 15.189 15.239 15.209 15.334
Attractive 17.012 16.772 16.877 16.907 16.862 16.917 16.862
Bags Under Eyes 14.713 14.633 14.427 14.467 14.498 14.462 14.518
Bald 0.957 0.917 0.937 0.952 0.952 0.907 0.917
Bangs 3.847 3.792 3.827 3.857 3.927 3.832 3.827
Big Lips 27.192 27.207 27.342 27.362 27.292 27.437 27.397
Big Nose 15.630 15.514 15.555 15.600 15.645 15.740 15.509
Black Hair 9.568 9.378 9.423 9.398 9.453 9.408 9.358
Blond Hair 3.917 3.807 3.877 3.822 3.872 3.817 3.837
Blurry 3.572 3.537 3.492 3.482 3.487 3.517 3.487
Brown Hair 10.605 10.209 10.295 10.470 10.360 10.310 10.405
Bushy Eyebrows 7.159 6.908 6.913 6.968 6.918 7.028 6.943
Chubby 4.323 4.338 4.428 4.318 4.288 4.368 4.368
Double Chin 3.447 3.502 3.517 3.437 3.487 3.547 3.577
Eyeglasses 0.361 0.311 0.306 0.321 0.346 0.331 0.336
Goatee 2.405 2.425 2.425 2.470 2.400 2.440 2.425
Gray Hair 1.738 1.648 1.688 1.728 1.723 1.718 1.688
Heavy Makeup 8.145 7.900 7.805 7.950 7.795 7.875 7.850
High Cheekbones 11.853 11.832 11.848 11.802 11.918 11.898 11.832
Male 1.483 1.302 1.333 1.323 1.312 1.318 1.338
Mouth Slightly Open 5.901 5.646 5.691 5.646 5.751 5.631 5.646
Mustache 2.845 2.655 2.705 2.730 2.745 2.700 2.685
Narrow Eyes 12.233 12.148 12.293 12.198 12.163 12.178 12.158
No Beard 3.577 3.587 3.527 3.557 3.582 3.562 3.507
Oval Face 23.059 22.778 22.809 22.873 22.939 22.808 22.793
Pale Skin 2.820 2.680 2.820 2.745 2.735 2.770 2.700
Pointy Nose 22.252 21.932 21.967 21.967 22.077 22.012 22.027
Receding Hairline 5.966 5.936 5.871 5.891 5.961 6.021 5.936
Rosy Cheeks 4.764 4.614 4.629 4.709 4.629 4.664 4.599
Sideburns 2.239 2.104 2.119 2.089 2.134 2.109 2.094
Smiling 6.818 6.442 6.618 6.467 6.512 6.547 6.512
Straight Hair 14.528 14.272 14.357 14.427 14.387 14.427 14.427
Wavy Hair 13.556 13.260 13.491 13.295 13.290 13.355 13.051
Wearing Earrings 9.142 8.822 8.967 8.912 8.882 8.847 8.962
Wearing Hat 0.822 0.812 0.837 0.827 0.837 0.842 0.822
Wearing Lipstick 6.132 5.996 6.006 6.077 6.036 6.117 6.127
Wearing Necklace 10.715 10.640 10.194 10.114 10.144 10.159 10.194
Wearing Necktie 2.705 2.670 2.695 2.645 2.655 2.605 2.640
Young 11.081 10.871 10.891 10.785 10.971 10.851 10.846
OVERALL 8.251 8.098 8.098 8.107 8.110 8.113 8.104
Number of attributes on
which the error rate is not 10 11 9 11 17
higher than the baseline

Table 4.3: ATTRIBUTE CLASSIFICATION ERROR RATES. The numbers are error rates in percentage.
Underlined numbers refer to the lowest error rates among GAs.
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Figure 4.1: OVERALL Error Rate of The Best Individual Over Iterations

4.4 Experiment 3: Use split data to mitigate overfit-
ting

It is observed that the population gets overfit as it evolves in experiment 2. To alleviate this prob-
lem, the data-splitting strategy is used in the optimization with a genetic algorithm (GA3). The
validation set is randomly split into the seen set and the unseen set. I firstly perform optimization
with GA3 on the seen set with 100 iterations. Secondly, the best individuals from the last eighty
generations are picked out and their fitness on the unseen set. Finally, the individual with the
highest fitness on the unseen set is selected as the best one.

If two individuals have the same error rate on the unseen set, the one with a lower error rate
on the seen set will be picked.

Results of experiment 2 also show that applying weights to genes slightly impaired the overall
prediction result. In this experiment, I implement a genetic algorithm (GA4) optimizing on the
split validation set without applying weights.

4.4.1 setup

The search space is the same as experiment 2, the combinations of 162-transformations. In this
way, the effectiveness of data-splitting can be evaluated. In GA3, transformations are assigned
with weights. The population size is 100, the parameter-level mutation rate is 1.0, the individual-
level length mutation rate is 0.2. GA4 is identical to GA3 except that GA4 does not apply weights.

As in GA1 and GA2, cache is implemented in GA3 and GA4.
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4.4.2 results
prediction error rates

GA3 was slightly outperformed by GA2-100 on the overall error rate. GA3 achieved an overall
error rate of 8.113%, higher than GA2-100 (8.110%) with the difference to be 0.003%. While the
overall error rate was still higher than the baseline, GA3 had lower error rates on 11 attributes.

Figure 4.2 shows the variations of the error rates over iterations. For GA3, the lowest error rate
on the unseen set is achieved at the very beginning. However, the best individuals from the first
twenty generations are not taken into consideration because the population has hardly evolved
and the individuals are not adaptive to the environment. This is evidenced by the high error rates
on the seen set of the first few generations. The best individual is picked from the 46th epoch
(from the 46th to the 53rd epoch, the best individual does not change).

The overfitting problem emerged in the last 50 generations of GA3. After the 50th epoch, as
the error rate on the seen set decreased, the error rate on the unseen set went in the opposite
direction. This pattern can be observed in the late stages of optimizations for all 40 attributes.
GA4 showed a similar pattern (Figure 4.2b) besides the drop of error rate on the unseen set at
the very end. It indicates that the data-splitting strategy can mitigate overfitting and therefore
improve the quality of the solution obtained by the GAs.

GA4 obtained better overall prediction than GA3 (Table 4.3). Although the overall error rate
of GA4 (8.104%) was slightly higher than GA1-30, it had most number of improved attributes (17)
among GAs.

However, the independent t-tests did not show significant differences between GA3 and the
baseline-T, or between GA4 and the baseline-T (all p-value>0.05).

number of transformations

For optimization on the overall metric, the best combination discovered by GA3 contains 17 dif-
ferent transformations, which is the larger than any other attribute. The heaviest transformation
((α, x, y, s, f) = (10, 10, 0, 0.9, 0)) contributes 13.6% to the average DCNNs output (see TableA.4).
Apart from this transformation, the weights of other transformations are very close to each other.

In general, the number of the best combination of transformations per attribute ranges from
2 to 16. The average number is 8.25 (± 3.22). The solution for Bald has the minimum number of
transformations, 2. However, the classification result of it (0.907%) on the test images was better
than the baseline. It may result from the high performance of the AFFACT model on predicting
Bald. The error rate of the baseline is already very low. And the evaluation metric could not tell
big differences from the individuals. Evolution did not happen to a great extend as it is shown in
Figure 4.3. This is similar to the natural world where all individuals enjoy themselves in a good
environment.

The solutions discovered by for forty attributes and the overall metric cover 102 different
transformations. And the number becomes 62 if the solutions that are worse than the baseline are
excluded.

As mentioned above, the GAs not applying weights still attached weights to transformations
by producing duplicates in an individual. As a result of GA4, duplicates were observed in the
solutions for 27 attributes and the overall metric. Out of the solutions for 17 improved attributes,
duplicated are found in 13 solutions. In the best combination of transformations for the overall
error rate, there was a transformation occurred twice which corresponds to a weighting factor of
11.7% (see Table A.5). Hence, it is hardly confident to say applying weights is harmful for the
optimization.

In total, GA4 covers 104 different transformations in the solutions. Only regarding the solu-
tions for the improved attributes, there are 76 transformations. It shows that at least 47% of the
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(a) GA3

(b) GA4

Figure 4.2: THE VARIATION OF OVERALL ERROR RATE OF GA3 AND GA4. The blue line represents
the error rate on the unseen set and the green line is the error rate on the seen set.

162 AFFACT transformations are effective in improving the classifications.

diversity of the population

In this experiment, I track the diversity of the population by measuring the standard deviation
of fitness as well as the fitness of the worst individual of GA3 (Figure 4.4). The initial population
had the highest variance. The variance immediately dropped to a low point after the initialization
and then, it showed a tendency to increase as the optimization carried on.

Since the population is totally randomly initialized, it is not surprising that the variance of the
first population is the highest one. Then selection took place and the individuals with low quality
were discarded, which led to the immediate decrease of variance in the first few generations.
As the process of evolution went on, more and more genetic information was introduced to the
population by mutation. Therefore, the variance of the population rose.

It is hard to predict the behavior of the variance if the optimization keeps running indefinitely.
From the observation that the quality of the worst individual did not deteriorate, the variance is
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Figure 4.3: THE VARIATION OF ERROR RATE ON Bald OF GA3.

likely to have an upper bound. This was a result of elitism.

4.5 Experiment 4:Optimization on a larger search
space

Previous GAs did not improve the overall classification performance compared to baseline-T. It
is possible that the best combination of transformations has transformation parameters that lay
outside the range of 162 AFFACT transformations. In experiment 4, the genetic algorithm (GA5)
runs on a larger search space.

4.5.1 setup
GA5 performs optimization on search space 2. The data-splitting strategy is employed. Using
only the seen set for optimization can not only avoid overfitting but also reduce running time.
Weight is applied in GA5 for the purpose of investigating the effectiveness of each transformation.
From another perspective, there is no good reason to abandon the usage of weight because GAs
not applying weight still assign weights to transformations by producing duplicates.

Unlike previous GAs, GA5 does not use temporary storage to record DCNNs outputs of all
transformations. Instead, the cache has a limited size. If the cache is full, the oldest entry will be
deleted before new entries are written into the cache.

To reduce processing time, the maximum generation is twenty. And the mutation rates are the
same as previous GAs.

4.5.2 results
Because GA5 is time-consuming, only the optimization for 5 o Clock Shadow, Arched Eyebrows and
overall metric have completed. GA5 achieved an overall error rate of 8.099%, which outper-
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Figure 4.4: ERROR RATES AND STANDARD DEVIATION. Two error rates are given in the figure. One
belongs to the best individual from each generation (green) and the other one belongs to the worst (blue).

attribute baseline-A baseline-T GA5
5 o Clock Shadow 5.245 5.130 5.030
Arched Eyebrows 15.695 14.989 15.019
OVERALL error rate 8.251 8.098 8.099

Table 4.4: ERROR RATES OF GA5. Only error rates on two attributes and the overall error rate are given.

formed all the other GAs except GA1-30. And the difference between GA5 and the baseline-T is
only 0.001%. The prediction on 5 o Clock Shadow was better than the baseline-T.

Figure 4.5 shows the variation of overall error rate. After the ninth generation, the error rate
of the best individual did not change. The optimization might fall into a local optima. Or the
optimization did not converge because insufficient number of generations was provided. Even
so, GA5 has obtained almost the best classification results.

The solution for overall metric contains 11 different transformations and the weighting factor
of the heavies one is 14.7%. The number of transformations of the solution discovered by GA5 is
the lowest among GAs.
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Figure 4.5: THE VARIATION OF OVERALL ERROR RATE OF GA5 .
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Discussion

analysis of GAs on search space 1

None of the GA shows statistical differences from the baseline-T or baseline-A. It exhibits the ro-
bustness of the AFFACT model. Some researchers believe that the impact of test-time augmenta-
tion on classification is a measurement of the robustness of a classifier (Shorten and Khoshgoftaar,
2019). The predictions of a robust model should not be greatly affected by augmentations.

Moreover, the high performance of the AFFACT model on the CelebA dataset makes it dif-
ficult for the GAs to outperform the baseline. In fact, the AFFACT model has achieved highest
accuracy among studies. The environment in which the population evolves is good enough, and
the differences in gene codes are played down when they express themselves in such environ-
ment. The performance on the CelebA dataset has been in plateau (Thom and Hand, 2020). Since
the introduction the benchmark, only 4% improvement in accuracy has been achieved on average.
The baseline can be imagined as Mount Everest on the Tibetan Plateau.

GA1-30 has discovered the best solution on the overall classification results. But the number
of improved attributes of GA1–30 is the lowest among all GAs. The most probable explanation
for this observation is that GA1-30 found the best combination of transformations for the overall
metric by chance. GAs rely on guided stochastic processes, which means the paths taken are non-
deterministic and unrepeatable (Sloss and Gustafson, 2019). In the meanwhile, I introduce a lot of
randomness to the algorithms. For example, the changes to the parameters are randomly drawn
during mutation. The nature of randomness of GAs makes it difficult to explain some results.
Nevertheless, since the task is to discover a solution of high quality, how the GA paves the way
for this solution is not concerned and is not able to be explored.

The overall error rate of GA1-30 is equivalent to the baseline-T. It is concluded that the solution
of GA1-30 is better than the ensemble of 162 transformation because it decreases the number of
transformations applied to images from 162 to 18 (-89%). Based on the same reasoning, the results
of this research is satisfactory. All GAs deliver better results on several attributes (9 - 17).

In terms of the number of improved attributes, GA4 outperformed other GAs. Despite the
arguable usage of weight, the optimization process benefit from both data-splitting strategy and
not applying weight.

analysis of GA5

Even though GA5 ran for only twenty generations, it has achieved almost the best overall clas-
sification results. The solution on overall metric found out by GA5 contains fewest number of
transformations. The results show that large search space is somehow an advantage for opti-
mization. GA5 brings more genetic variations and therefore may increase the diversity of the
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population. Unfortunately, the results for all forty attributes are not able to be presented in this
paper.

Some parameters of the solution on overall metric lay outside the range of search space 1. An
interesting finding is that none of the rotation angles of the transformations is 0, which means
titled images may be desirable for the AFFACT model.

problems with the CelebA dataset

In addition to plateauing, the CelebA dataset have imbalance in its labels. This problem is ad-
dressed in the work of Rudd et al. (2016). Optimization with GAs showed imbalance across at-
tributes as well. Some attributes improved in all GAs (e.g. 5_o_Clock_Shadow, Wearing_Necklace,
Bags_Under_Eyes ), while some did not improve at all (e.g. Arches_Eyebrows, Attractive, Big_Lips).

Moreover, there are mislabeled images in the dataset, which may hinder the improvement of
classifications.

control parameters, settings and the health of GAs

The configurations of GAs are trade-offs between different perspectives.
A diverse population is vital for delivering good solutions. To serve this goal, I use a large

population size,100 and high mutation rates. Expanding the population size will indeed increase
the diversity of the population and in the meanwhile decrease the chance to fall into local optima.
But it will also increase the converge time. Using high mutation rates helps with introducing new
genetic information to the population. Figure 4.4 indicates that the diversity of the population is
preserved even in the end of evolution.

Elitism ensures the optimization good solutions. It enlarges the problem of overfitting as it
keeps the most adaptive individuals alive in the population. However, overfitting can be allevi-
ated by using data-split strategy as it is shown in experiment 3.

all-at-once optimization

In this paper, the GAs perform optimization separately for each attribute as well as the overall
metric. In another word, the fitness function serves a single objective. The process is cumbersome.
Like 162 transformations and ten-crops, a universal augmentation technique for all attributes is
desirable.

The key is to build a multi-objective fitness function. The overall error rate, i.e. the arithmetic
mean of error rates on 40 attributes, captures general performance of the facial attribute classi-
fications but it does not consider the imbalance of labelse. Including information of weight of
attributes in the genetic codes is a feasible approach.

data splitting strategy

The data splitting strategy implemented in this paper effectively mitigates the problem of over-
fitting. By selecting the individual with the best quality on the unseen set, the generalizability of
the solution is improved. However, the GA with this strategy did not show better classifications
on test images. This is either due to the population’s less adaptive to the data or the imbalance
of the CelebA dataset. The former possibility is ruled out because the overall validation error of
the solution of GA3 was lower than GA2-100. A better optimization solution might be achieved
if external data were used.
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aggregation of predictions

Even though the usage of weight does not lead to better overall predictions of facial attributes,
it can be used in applications to allow faster processing by aggregating predictions of different
transformations one by one. For example, a confident prediction can be obtained firstly on aligned
faces and presented to users immediately. While the users are using the application, the back-
end model updates the prediction by adding augmentation techniques according to the order of
weights. This is another motivation to use weight in GA5.
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Conclusion and Future Works

6.1 Conclusion
In this paper, I implemented five genetic algorithms to search for the best combination of trans-
formations from 162 AFFACT transformations that lead to better classification results. While the
overall prediction is not improved, the solutions discovered by GAs have achieved lower error
rates on many attributes. More importantly, the solutions have considerably lower number of
transformations compared to the 162 transformations used in the AFFACT paper.

In addition, a GA is employed to perform optimization on a larger search space. Although the
solutions do not show any improvement, it decreases the number of transformations

6.2 Future works
GA5 did not complete search for all attributes because of the lengthy processing time. If given
more time, GA5 might have obtained better results.

During optimization, weights will be assigned to transformations by producing duplicates
through crossover, even if the GA does not attach a weighting factor to a transformation. It is
worth to research on how the optimization will behave if duplicate transformations are removed.

In this research, bounding boxes are estimated based on hand-labeled. Differently, automatic
bounding box detector is used in the AFFACT paper. This is the reason why the baseline-T in
this paper is not comparable to the baseline reported in the AFFACT paper. Results might be
improved if bounding box detector is used in the optimization.
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Attachements

The best combination of transformations

transformation
(-10, 0, 10, 1.0, 0)
(0, 10, 10, 1.1, 0)

(-10, -10, 10, 1.0, 1)
(-10, 10, 0, 0.9, 0)

(0, 10, 0, 0.9, 0)
(-10, -10, 10, 1.1, 0)

(10, 10, 0, 1.1, 1)
(10 ,10, 10, 0.9, 1)

(10, 0, 10, 0.9, 1)
(0, -10, 10, 0.9, 0)
(10, 10, 0, 0.9, 1)
(0, 0, 10, 1.1, 0)

(0, -10, 0, 1.1, 0)
(-10, 0, 10, 0.9, 1)

(-10, 0, 0, 1.0, 1)
(-10, -10, 0, 0.9, 1)
(10, -10, 10, 0.9, 0)
(-10, -10, 0, 1.1, 0)

Table A.1: SOLUTION OF GA1 ON OVERALL METRIC.
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weight transformation
11.3% (-10, -10, 10, 1.0, 1)

9.9% (-10, 10, 0, 0.9, 0)
7.0% (-10, 0, 10, 0.9, 1)
7.0% (0, 0, 1.0, 0.9, 1)
5.6% (-10, -10, 0, 1.0, 1)
5.6% (10, -10, 10, 1.0, 0)
5.6% (-10, 0, 0, 0.9, 1)
5.6% (0, 10, 0, 1.1, 0)
5.6% (0, -10, 0, 0.9, 0)
5.6% (-10, 0, 0, 0.9, 0)
5.6% (-10, 0, 0, 1.1, 0)
4.2% (-10, -10, 10, 1.1, 1)
4.2% (10, 0, 0, 0.9, 1)
4.2% (0, -10, 10, 1.0, 0)
4.2% (0, 10, 10, 1.0, 0)
2.8% (0, 10, 10, 1.1, 0)
2.8% (10, -10, 0, 0.9, 1)
2.8% (10, -10, 10, 1.0, 1)

Table A.2: SOLUTION OF GA2-30 ON OVERALL METRIC. Weights are translated into ratio in percent-
age.

weight transformation
14.6% (10, 10, 0, 0.9, 0)
12.5% (-10, 0, 0, 0.9, 1)
12.5% (0, 10, 0, 1.1, 0)

8.3% (0, 0, 0, 0.9, 1)
8.3% (-10, 0, 10, 1.1, 0)
6.2% (0, 10, 10, 1.0, 1)
6.2% (-10, -10, 10, 1.0, 1)
6.2% (0, -10, 10, 1.0, 1)
6.2% (-10, 10, 0, 1.1, 0)
4.2% (10, 10, 0, 1.0, 1)
4.2% (10, -10, 0, 1.1, 1)
4.2% (10, 10, 0, 0.9, 1)
4.2% (10, 10, 10, 0.9, 0)
2.1% (10, 0, 0, 0.9, 1)

Table A.3: SOLUTION OF GA2-100 ON OVERALL METRIC. Weights are translated into ratio in per-
centage.
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weight transformation
13.6% (10, 10, 0, 0.9, 0)

6.8& (10, 0, 0, 1.1, 1)
6.8% (10, 10, 10, 1.1, 1)
6.8% (0, 10, 10, 1.1, 1)
6.8% (10, 0, 0, 1.0, 1)
6.8% (10, 10, 0, 1.1, 1)
6.8% (-10, 10, 0, 0.9, 0)
5.1% (10, 10, 10, 1.1, 0)
5.1% (-10, 0, 0, 1.0, 1)
5.1% (0, -10, 10, 1.0, 0)
5.1% (0, -10, 10, 1.0, 1)
5.1% (-10, 0, 10, 1.0, 0)
5.1% (0, ,0, 0, 1.1, 0)
5.1% (10, 0, 10, 0.9, 1)
3.4% (0 ,0 ,10, 1.1, 0)
3.4% (-10, 0, 0, 0.9, 1)
3.4% (10, 10, 10, 1.0 ,1)

Table A.4: SOLUTION OF GA3 ON OVERALL METRIC. Weights are translated into ratio in percentage.

transformation
(0, 0, 10, 1.1, 1)
(0, 10, 0, 1.1, 0)

(0, -10, 10, 1.0, 0)∗

(0, -10, 10, 1.0, 0)∗

(-10, 10, 10, 1.1, 1)
(-10, 10, 10, 1.0, 1)

(-10, 10, 0, 0.9, 1)
(-10, 10, 0, 0.9, 0)
(-10, 10, 0, 1.1, 1)
(10, 10, 10, 1.0, 1)
(10, 10, 10, 1.0, 0)

(10, -10, 10, 0.9, 0)
(10, -10, 0, 0.9, 1)

(10, 0 ,0, 1.0, 0)
(-10, 10, 0, 1.0, 1)
(-10, 0, 0, 0.9, 1)
(-10, 0, 0, 0.9, 0)

Table A.5: SOLUTION OF GA4 ON OVERALL METRIC. The starred transformations refer to duplicates
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weight transformation
14.7% (-16, -3, -15, 1.3, 0)
11.8% (9, 4, -19, 0.9, 0)
11.8% (-15, -10, 0, 1.0, 0)

8.8% (6,-8,-6, 0.7,1)
8.8% (16, -3, -20, 1.2, 1)
8.8% (-2, 15, -17, 1.0, 0)
8.8% (9, -1, -19, 1.3, 1)
8.8% (7, -11, 10, 0.8, 1)
5.9% (-20, -8, -15, 1.1, 0)
5.9% (-15, -6, 14, 1.2, 0)
5.9% (20, -7, 20, 0.7, 0)

Table A.6: SOLUTION OF GA5 ON OVERALL METRIC. Weights are translated into ratio in percentage.
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