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Zusammenfassung

Durch die fortschreitende Digitalisierung, das kontinuierliche Wachstum des Online-Handels
sowie der zunehmenden Akzeptanz von mobilen und kontaktlosen Bezahlmöglichkeiten
werden Transaktionen immer häufiger mit Kredit- und Debitkarten abgewickelt. Dieses
Wachstum hat jedoch auch seine Schattenseiten. Wo viel Geld im Spiel ist, sind auch Be-
trüger nicht fern. In der Studie von [1] wird erwähnt, dass der weltweite jährliche Verlust
durch Betrug von 28 Milliarden Dollar innerhalb von 5 Jahren auf über 35 Milliarden
ansteigen wird. Um diesem Trend entgegenzuwirken, investieren Kreditkartenherausgeber
vermehrt in die Erkennung und Prävention von Kreditkartenbetrug. In der Industrie sind
aktuell hauptsächlich regelbasierte Systeme in Betrieb [2]. Der Trend zeigt aber stark in
Richtung von Machine Learning Modellen. Diese bieten eine vielzahl an Vorteilen gege-
nüber statischen Regelwerken. Ein Machine Learning Model benötigt jedoch eine umfas-
sende und anspruchsvolle Datenaufbereitung. Dies wird erschwert durch den Umstand,
dass jede Kartenbenutzung innerhalb weniger Millisekunden bewertet werden muss. Tra-
ditionelle Systeme stossen bei dieser Aufbereitungsarbeit an ihre Grenzen. Abhilfe könnte
hierbei die Streaming Technologie schaffen. Diese Arbeit beschäftigt sich entsprechend
mit dem Design und der Implementierung von Algorithmen und Heuristiken zur Optimie-
rung eines Streaming Systems zur Erkennung und Prävention von Kreditkartenbetrug.
Es werden verschiedene Optimierungsstrategien eingeführt um die Performance eines vor-
liegenden Systems zu erhöhen. Es findet dabei eine Unterteilung in State, Input/Output
(I/O) und algorithmische Optimierung statt. Nach bestem Wissen des Authors werden
mit den kaskadierenden Fensteraggregationen sowie den kontinuierlich gleitenden Fenstern
zwei neue Optimierungsmöglichkeiten eingeführt. Durch die implementierten Anpassun-
gen konnte der Durchsatz des Streamingjobs von wenigen 100 auf 40’000 Events pro
Sekunde verbessert werden. Ein verstopfen des Jobs oder aufblähen des Status findet zu-
dem nicht mehr statt. Durch die Reduzierung der benötigten Operatoren konnte zudem
die Latenz minimiert werden.
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Abstract

Due to advancing digitalization, the continuous growth of e-commerce and the increasing
acceptance of mobile and contactless payment methods, an increasing number of pur-
chases are being made with credit and debit cards [3]. However, this growth has its
downsides. Where there is a lot of money at stake, fraudsters are not far away. The
study conducted by [1] mentions that the global annual loss of 28 billion due to fraud
will rise to over 35 billion within 5 years. To counter this trend, credit card issuers are
investing heavily in credit card fraud detection and prevention systems. In the industry,
mainly rule-based systems [2] are currently in operation. There is a strong trend towards
machine learning models as they offer a number of advantages over static rules. However,
a machine learning model requires extensive and sophisticated data preparation. This is
further complicated by the fact that each card usage has to be evaluated within a few
milliseconds. Traditional systems reach their limits in this preparation task. Streaming
technology could provide a remedy. Accordingly, this thesis deals with the design and
implementation of algorithms and heuristics to optimize a streaming system for credit
card fraud detection and prevention. Different optimization strategies are introduced to
increase the performance of a given system. Thereby, a subdivision into operational state,
input/output (I/O) and algorithmic optimizations takes place. To the best of the au-
thor’s knowledge, the cascading window aggregation and the continuous sliding window
algorithm are introduced as two new optimization approaches. With the implemented
adjustments, the throughput of the streaming job could be improved from a few 100 to
40’000 events per second. Furthermore, the job is no longer clogged and the status does
not longer get bloated. By reducing the number of operators required, the latency could
also be significantly reduced.
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Chapter 1

Introduction

According to [1], the current global loss due to fraud amounts to 28 billion in 2018 and is
predicted to rise to 35 billion within 5 years. It is even forecasted to reach up to 40 billion
within 10 years. A study by [5] explains that in the US alone, the number of fraud reports
jumped from approximately 17’000 in 2015 Q1 to 45’000 in 2020 Q1. This equates to a
total increase of 164%. As stated by [3], approximately 530 million transactions have been
carried out with Swiss credit cards in 2020. Compared to 2005, the number of transactions
has increased fivefold. Furthermore, the revenue has doubled in the process to 47 billion,
and the use of mobile and contactless payments is driving growth in credit card usage even
more. When comparing the global loss to the revenue in Switzerland, it becomes obvious
why credit card fraud detection and prevention is such an important topic, and the need
for efficient fraud prevention systems is evident. Nevertheless, the implementation and
operation of such systems is a complex and demanding task. The algorithms used are
often computationally intensive and require a large amount of data or human knowledge
to work efficiently. The whole process is complicated by the fact that when a card is used,
a decision with a financial impact has to be made within a few milliseconds, whether
the use is legitimate or not. Large amounts of data in machine learning models are
increasingly being used as a basis for this decision-making. The processing of such data
volumes is in itself a great challenge which is exacerbated even more so within the given
time limits. Therefore, this thesis deals with the design and implementation of algorithms
and heuristics for the optimization of a feature generation system for fraud detection and
prevention. The next Section is used to provide an in-depth introduction to the problem
at hand.

1.1 Problem Description1

As outlined in [6], credit card issuers put considerable effort into preventing fraud in order
to minimize their losses as well as the inconvenience caused to the affected cardholders.
Systems regularly used in practice are mostly based on rules [2], which require frequent

1This thesis is a continuation of the topic addressed in the master’s project [6]. Thus, the problem
description was adopted.
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2 CHAPTER 1. INTRODUCTION

updates and constant maintenance from human operators. In recent years, issuers have
been investing in developing machine learning systems [1] that adapt to changing fraud
patterns and assist fraud analysts to identify fraud faster. The corresponding machine
learning models are often complex and attribute their success to both straightforward
and sophisticated features that need to be calculated for each incoming transaction. For
example, such features include:

• The time difference between transactions,

• The average amount spent in the past 30 days,

• The ratio between current amount and previous amount

• The number of distinct fraud cases (cards that had fraud) at an establishments point
of sale.

In contrast, sophisticated features are the ratio of the number of cards with at least one
fraud authorization at a specific establishment to the number of cards with at least one
non-fraud authorization at the same establishment in the last 30 days. Into further con-
sideration falls the ratio of the skewness of the amount spent after the current transaction
to the skewness before the current transaction in the last 30 days. The current machine
learning model implemented for the Fraud Scoring algorithm at Viseca [7], is based on
a data preparation system performed on an SQL server once every hour. The decision
to rely on SQL was made based on the existing infrastructure and has several significant
implications:

• Every time a subset of the features is calculated, regardless of the complexity of
the computation, the SQL engine has to access the same records several times. In
addition, most of the SQL queries employed on the calculation have a complexity of
O(M ∗N), where M is the number of days the training table needs to be calculated
for and N is the number of days that are considered as history for the features.

• The data preparation cannot be performed incrementally due to the need of creating
and maintaining the data state. This requires significant investments in time and
resources. Moreover, due to the sheer amount of data, maintaining this state results
in a fragile system, which must be avoided.

• The fact that it is not possible to prepare the data and score transactions in (near)
real-time significantly reduces the benefit of using a machine learning model to
prevent fraud.

However, these disadvantages of the current configuration can be mitigated if the data
preparation is performed based on a stateful streaming model. In such a model, each
of these features being calculated (even the ones based on a ”distinct” operation) can be
updated incrementally with each incoming transaction; therefore, reducing the latency
of the system and increasing its potential to prevent fraud. If potentially fraudulent
transactions in real-time are rejected, it is expected that applying such a streaming model
could prevent almost twice as much fraud, such as when the scores are calculated every
hour and only the subsequent fraudulent transactions are blocked.
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1.2 Task Description

The main goal of this thesis is to study and optimize an existing data preparation system
for fraud prevention (cf. Fig. 1.1) in terms of latency, jitter, and throughput. It is
important to note that for legal reasons, no work on customer data will be performed
for this master thesis. Instead, the test data generator developed in a previous work [6]
will be used. This data generator allows to model general interactions and statistical
correlations of production data and does not require the use of real-world data, which
avoids privacy issues. The development of the existing fraud prevention streaming system
initially started in the master project [6] and was refined before the start of this thesis.
It serves as a baseline to compare the different optimization strategies introduced herein.

Figure 1.1: Dataflow Diagram of the Existing Data Preparation System

The system depicted in Fig. 1.1 is used to calculate several hundred features from a
continuous stream of authorizations and transactions. Subsequently, they are used in a
pre-existing machine learning model to detect fraudulent card usages. Apache Flink [8]
is used as the framework for the data preparation, which has inherent constraints that
set the boundaries for this thesis. The following two points are considered important in
this context: (i) State Backends and (ii) State Primitives. The first is that Flink
only offers Java-Heap or RocksDB [9] based state backends for storing intermediate state,
where only one state backend can be used at the same time. Both backends have a
similar, yet different semantic and timing behaviour. The second is regarding to Flink’s
state management, which only offers the following so-called state primitives: single typed
values, list of typed values, and Maps from key type to value type. Therefore, the state
backends and state primitives restrict the choice of pre-existing aggregation algorithms
that can be used.

The thesis is split into four different stages. In a first stage, a literature research has
to be performed in order to list credit card fraud detection and prevention approaches.
Furthermore, algorithms and works that optimize streaming frameworks and adhere to
the aforementioned constraints have to be covered. It should be noted that algorithms to
optimize streaming frameworks exist (e.g., [10, 11]), but the solutions are not directly
applicable regarding the given constraints and data characteristics.
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In a second stage, the current implementation of the system has to be analyzed in order
to obtain reference values for the system’s performance (e.g., latency, jitter, and through-
put). A way has to be found to measure the systems performance without solely relying
on pre-defined metrics. For the evaluation, the same configurations as for the baseline
implementation should be used. This is necessary to gather reliable results.

In a third stage, the design and implementation of algorithms to optimize the current
performance of the data preparation and feature generation system are addressed. These
optimization strategies should consider the state of the art methods listed in the first
stage of this thesis. Furthermore, not only optimization algorithms, but heuristics have
to be proposed and implemented considering the existing constraints.

Finally, in the the last stage the evaluation of the optimization strategies with contrast
to the performance of the baseline implementation have to be carried out. The effects
of the different algorithms in terms of latency, jitter and throughput will be discussed as
to whether the values are appropriate for real-world use. The results will be discussed
concerning the achievement of the thesis goals.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 describes the necessary
technologies and terms employed in this thesis, offering a deepened insight into streaming
systems and the used stream processing framework Apache Flink. Afterwards, Chapter 3
discusses the state of the art methodologies on related works and concepts. Chapter 4 then
details the design of the optimization strategies and their algorithms. It is complemented
by Chapter 5, where the implementation of the optimization strategies are discussed.
Next, the evaluation of the implementation compared to the existing data preparation
system for fraud prevention is presented in Chapter 6. Finally, Chapter 7 concludes this
thesis and presents future work.



Chapter 2

Background

This Chapter provides background information on the present work. First, an insight into
credit card fraud and its prevention is given. Second, the introduction of data streaming,
stream processing as well as Apache Flink follows. Finally, the baseline implementation
of the Fraud Scoring feature calculation pipeline is explained and a look is taken at test
data generation.

2.1 Credit Card Fraud

As stated in the introduction, credit card fraud is an increasingly relevant topic in a further
digitizing world. In the Swiss criminal code, the term fraud is defined in article 146 as
follows: ”Any person who with a view to securing an unlawful gain for himself or another
wilfully induces an erroneous belief in another person by false pretences or concealment of
the truth, or wilfully reinforces an erroneous belief, and thus causes that person to act to
the prejudice of his/her or another financial interests.” This definition is further deepened
by article 148, which specifically deals with cheque and credit card fraud. The following
lines contain information that underlines the need for fraud prevention. ”Any person who
with a view to obtaining services of a financial value and although incapable of making or
unwilling to make payment uses a cheque card or credit card or similar means of payment
that has been entrusted to him by the issuer thereof and thus causes loss to the issuer, is
liable, provided the issuer and the contracting enterprise have taken reasonable measures
in order to prevent the abuse of the card.” In other words, credit card fraud is defined as
unrightful use of credit card by another entity than the owner. This use can be either
physical (e.g., theft or skimming) or online.

Of particular interest is the passage stating that the issuer and the contracting enterprise
have taken sufficient measures to counteract such a fraud. The card issuer is responsible
for card-present-authorizations (i.e., card is physically used at the payment terminal) as
well as card-not-present-authorizations usages (i.e., card is used online) with activated
two-factor authentication. However, if the card is used physically and a fraudster has
obtained the PIN through a breach of due diligence on the part of the customer, then

5



6 CHAPTER 2. BACKGROUND

the customer is liable. In case of an online transaction, where the merchant does not use
two-factor authentication, then the merchant is liable.

While there is some understanding of how a breach of due diligence can occur, it is
somewhat incomprehensible why a merchant would not rely on two-factor authentication.
The reason for this behavior is described in [1], where the introduction of the two-factored
authentication leads to a loss of revenue of up to 19%. This is due to the fact that
customers sometimes forget their password or are distracted by other things such as a
crying baby or a ringing doorbell. Thus, they do not complete the purchase. Other
reasons mentioned in [1] are bad user interfaces, which give the users the feeling of being
led to an insecure website. In addition, an overall poor user experience and the annoyance
of additional authentication are mentioned. Since merchants are interested in more sales,
it is worthwhile for larger merchants to take the risk and invest more in their own fraud
prevention systems. However, the main burden of fraud prevention lies with the issuer.
This explains the increasing interest in this area and why investments are being made in
new technologies for this field.

Subsequently, the systems currently in use and their potential successors are examined in
more detail in the following Section 2.2.

2.2 Fraud Prevention Systems in Industry

If one searches the Internet for fraud prevention and detection systems, most of the systems
listed refer to machine learning models [12, 13, 14, 15]. This is understandable due to
the long existing efficacy of such systems. It is also a selling point to keep up with the
times and offer systems that use up-to-date technologies. However, the current state-of-
art method in the industry is different. Many of the fraud prevention systems currently
in use have grown historically and the operationalization of new machine learning models
is, as so often, a difficult task. In addition, there is a time criticality of the response time.
As a customer should not wait long for the response of the fraud prevention system, a
response within a few milliseconds is prescribed by the schemes.

As stated by [2], the most common fraud prevention and detection systems today are still
rule-based engines. Such systems consist of a set of manually defined rules, which are
applied to the card usage. This means that each time a card is used, the rules are applied
and a decision is made whether to allow or deny the card usage. If a customer uses a card
in a restaurant with an amount that is within the normal range for this merchant, the
card will most likely be accepted. However, if for instance three transactions are made
with the same card at the same merchant within a short period of time, possibly with a
conspicuous value, they will be rejected.

It is apparent that a large number of these rules must exist in order to obtain a high
level of fraud coverage. This results in a large amount of personnel and manual work.
The rules need to be maintained, adjusted and new patterns discovered. Additionally,
the employees working in the fraud department are often supported by data scientists
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with reports and other insights into the data. Thus, increasing the overall costs for fraud
prevention even more.

Due to the disadvantages mentioned, the use of machine learning models is becoming
increasingly popular. The topic of credit card fraud prevention and machine learning has
been a subject in science for a long time as well as in numerous papers [12, 13, 14, 15].
These relevant works are reviewed in more detail in Chapter 3. Also, potential parallels
to this work, especially the data preparation and feature calculation, will be highlighted.

2.2.1 Fraud Prevention Prototype

One project of the cooperating company of this thesis, which dealt with the further
development of fraud prevention implemented a machine learning model with great effort.
Their internal studies have shown that the new system can detect up to 200% more
fraudulent card usages than the existing rule set. The new Fraud Scoring system assigns
a score to incoming authorizations indicating the probability of fraud. Although this
approach is promising, many challenges arise. The data preparation for the training of
the model currently requires four days for the data volume of one month. In addition,
the effective scoring can only be performed every hour where a large amount of data has
to be included for this. Thus, it is in contrast to the maximum required response time
of a few milliseconds. The data streaming technology introduced in Section 2.3 could
help to mitigate this issue. However, the requirements for the system to be implemented
are not trivial. Currently, the machine learning model is based on a feature set with
approximately 1485 attributes. This set is depicted in Fig. 2.1 and further broken down
into the following three scenarios:

Figure 2.1: Required Features for the Machine Learning Model

• Scenario 1: Aggregations are performed per card. For example, how much a card
has spent in the last 24 hours as well as the past 7, 28 or 392 days.
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• Scenario 2: Aggregations are performed per card and another key attribute. For
example, it should be calculated how often a card was used for a certain Merchant
Category Code (MCC) or how much a card has spent in a certain region. The
keys consist of tuples, which are depicted in the key column of the second scenario
in Fig. 2.1. Currently, it contains eight combinations of the card id and another
attribute. Later in this thesis, these different modes of aggregation will be called
key domains.

• Scenario 3: Aggregations are performed for keys which are prone to have a high
impact on the model, independent of the card id. These keys are defined by data
scientists as High Risk Keys (HRK), where an example would be the country of
the card usage. Interesting for the HRKs, is the further classification into fraud /
non fraud, storno / non storno and alert / non alert. For example, this allows to
differentiate how many of the card usages in a country or with a merchant were
fraudulent or not.

The three scenarios are further divided into 5 different lengths of interest. These time
frames will, from now on, be related to as windows. The windows are presented in more
detail in Section 2.4.5. In each case, the windows should be daily sliding windows of 7,
28, 182 and 392 days length. This means that every day there should be a window that
contains the data from the corresponding time span. In addition, a continuously sliding
24-hour window has to be implemented. This window contains all events of the last 24
hours at any point in time.

Finally, the nine aggregations visualized in Fig. 2.1 are performed on the windows. The
feature set is composed as presented in Table 2.1 and amounts to a total of 1485 features
which have to be calculated concurrently.

Key Domains Window Types Aggregation Functions

Scenario 1 1 5 9

Scenario 2 8 5 9

Scenario 3 (6 Classifications * 4 Keys) 5 9

Table 2.1: Number of Features to be Calculated

The goal of the envisioned system is to reduce the time needed for calculations from one
hour to just a few milliseconds per event. With traditional, relational means, this cannot
be achieved with justifiable effort. However, the streaming technology is promising to
solve this issue and subsequently, is introduced in Section 2.3.

2.3 Data Streaming and Stream Processing

Data streaming, or event stream processing, is described by [16] as the continuous flow and
processing of data from various sources. These sources send the data simultaneously and
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in small sizes. Using stream processing technology, streams can be processed, stored and
analyzed in real time. Streaming data covers a wide range of applications. For example, it
can be various logs, e-commerce purchases, in-game activities, social media information,
financial information, or in the case of this thesis, credit card transactions.

[17] provides a simple analogy to understand the term streaming. Analogous to water
flowing through a river, different streams come from different sources, at different speeds
and in different volumes. However, they eventually flow into the same continuous stream.

The data can be divided into bounded or unbounded streams according to [8], which will
be explained in the next subsection.

2.3.1 Bounded and Unbounded Data

Unbounded Data has a start, but no defined end. Thus, there is no finite data set over
which an operation (e.g., aggregation) could be performed. Therefore, events must be
processed continuously after they enter the system. By definition, it is not possible to
wait for all data to arrive to get a final result, as at no point in time will all the data
be available. In order to make statements about the completeness of the results of such
streams, these events often have to be processed in a specific order, as mentioned by [8].
For example, this order can be the time at which the event happened. An example of
such streams is depicted in Fig. 2.2.

Bounded Data has a defined start and end as visualized in Fig. 2.2. These streams
are processed by getting all the data of a set before doing any calculations. An ordered
reading is not necessary, because the data in a bounded data set can always be sorted.
The processing of bounded streams is also called batch processing.

Figure 2.2: Visualization of Bounded and Unbounded Streams [8]

Bounded and unbounded data requires different approaches for their processing and have
different use cases. [16] provides an interesting table (cf. Table 2.2), which compares the
individual characteristics.
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Bounded Data Unbounded Data

Data Scope Queries Over All Data in the Dataset Queries Over a Window

Data Size Large Batches Single Events or Micro Batches

Performance Minutes to Hours Seconds or Milliseconds

Table 2.2: Difference Between Bounded and Unbounded Streams

In summary, this represents the difference between traditional batch processing and real-
time, continuous processing of data. The following distinction can be made.

• In streaming, the arrival of new events triggers calculations independent of the
consumer of the results.

• In batching, the consumer triggers computation when results are needed and
thereby selects the end of the bounded data. The calculation can be repeated with
new intervals.

In the progressively digitalized world, data is delivered at an ever-increasing rate, in
different formats, sizes, and from different sources. Consequently, existing data processing
solutions are thus starting to reach their limits. In most cases, it is no longer sufficient to
wait until all of the data is available and process it as a group of transactions. Rather,
it is becoming increasingly important to analyze and evaluate data in real time to gain
insight into the business as quickly as possible. Also, users are no longer accustomed to
waiting minutes or days for a report, as the data must first be aggregated in the desired
batch. Thus, streaming seems to be a viable candidate for various use cases that rely on
real-time data. The next subsection will now take a look at the benefits and challenges
arising from data streaming.

2.3.2 Benefits and Challenges

As stated by [17], two main functionalities are required for applications that work with
streams: storage and processing. Storage, on the one hand, must be able to efficiently
manage a large amount of events to ensure sequentiality and consistency. Processing,
on the other hand, must be able to access the storage, consume the data, analyze it
and perform calculations on it. These requirements bring additional challenges to such a
system.

• Scalability: For example, when the number sensors added to a system increase, or
more and more online transactions are made due to digitalization, the amount of
data increases exponentially. Another scalability example pertains to the generation
of large data logs. In case of a fault, these data logs are delivered at a rate of
gigabytes instead of kilobytes per second. If the consuming streaming application
is not built to scale, it becomes slower and slower until it is no longer usable.



2.4. APACHE FLINK 11

• Ordering: In most cases, ordering is a non-trivial problem problem, resulting from
different timestamps and clocks in the generating devices. In addition, varying
receiving times complicate the process even more due to interferences in the network.
Streaming applications must therefore be aware of the assumptions of Atomicity,
Consistency, Isolation and Durability (ACID). An example for this is the difference
whether an account is funded before or after money is deducted from it.

• Consistency and Durability: This is related to issues related to accessing a
data set at any point in time, which may have already been modified in a different
location. For example, data durability issues are important when working with
streams in the cloud.

• Fault Tolerance and Data Guarantees: Here, these considerations must be
taken into account when working with any distributed system, such as a stream
processing system. It relates to how the system handles an interruption and how
operations can be resumed without losing or duplicating data.

Fortunately, frameworks exist to help with this multitude of challenges. These tools aid
users to design and build data streaming applications. One such framework is Apache
Flink, which is used in the course of this thesis and is introduced below.

2.4 Apache Flink

Apache Flink is described by [8] as a framework and distributed processing engine for
stateful computations over unbounded and bounded data streams, as discussed in the
previous Chapter.

As a distributed system, Flink requires computational resources to run the applications.
The architecture of Flink is depicted in Fig. 2.3. According to [8], Flink can be set up
with common cluster resource managers such as Hadoop [18], Apache Mesos [19] and
Kubernetes [20]. However, it is possible to run it as a stand-alone cluster. When a Flink
application is deployed, the required resources are automatically identified based on the
configuration and requested from the resource manager. In case one container fails, it
will be replaced by a new one. It is designed to run stateful streaming applications of
large scale. Flink applications are divided into a number of tasks, which are executed con-
currently in a cluster. Thus, a potentially unlimited number of CPUs, memory, disk and
network Input / Output (I/O) are supported. It features an asynchronous and incremental
Checkpointing algorithm that has minimal impact on processing latency and guarantees
exactly-once state consistency. The types of applications that a stream processing frame-
work can support are defined by three components that need to be controlled. These are
streams, state and time, which are explained in more detail in the following subsection.

2.4.1 Managing Streams, State, Time

According to [8], the types of applications that can be covered by a stream processing
framework are determined by how well each dimension’s stream, state and time is covered.
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Figure 2.3: Flink Architecture as Shown by [8]

The following paragraphs elaborate on these and explain how Flink handles them.

Streams are a basic aspect of a stream processing framework. A stream can have different
characteristics that require different processing approaches. Flink is a very flexible tool
that enables the processing of bounded and unbounded data. It is possible to process the
events in near-real-time or to access stored resources.

Any non-trivial streaming application will need to work with state at some point. For
example, intermediate results might need to be cached in order to be accessed again at
a later time. Flink provides a variety of functions to meet these requirements described
below.

• Multiple State Primitives: Flink provides different state primitives for different
application areas. These are atomic values, lists, and maps. The developer must
choose the optimal structure.

• State Backends: Intermediate state is handled by pluggable state backends. One
can choose between a Java-heap or file-based backend, as well as an implementation
of RocksDB [21]. Additionally, Flink allows for the implementation of custom state
backends.

• Exactly-Once State Consistency: By using the checkpointing and recovery al-
gorithm, it is possible to guarantee the consistency of the application in case of a
failure, if all components in use support it. Other consistency guaranties are at least
once, and none.

• Very Large State: By storing state outside of the memory and due to the asyn-
chronous checkpointing, it is possible to handle several petabytes of state (i.e., for
RocksDB state backend).

• Scalable Applications: Here, distributing state to multiple workers ensures a high
degree of scalability.

Time is considered as the third dimension. According to [8], most streams have an
inherent time pattern, as the events were generated at a specific time. In addition, many of
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the common stream computations are based on time, such as time-windowing, sessioning,
and time-based joins. In Flink, a differentiation between event and processing time is
made. Event time is the time at which the event was generated, and the processing time
is the time at which the event is processed. The time related functionalities are:

• Event-Time Mode: If the events are computed with event-time semantics, then
accurate and consistent results can be promised, regardless if recorded or real-time
events are used.

• Watermark Support: Watermarks [22] are used to make statements about the
progress of time in event-time applications. They are described as a mechanism to
find a trade-off between latency and completeness of results.

• Late Data Handling: Due to various environmental influences (e.g., different
networks), it may happen that a result is output before all relevant events have
arrived. Flink allows users to handle such late events separately, e.g., to update
side outputs or previous results.

• Processing-Time Mode: Flink also allows users to handle events based on processing-
time semantics. For example, this mode can be useful when there are strict low
latency requirements and full correctness of results is not required.

To handle these three dimensions, Flink offers a layered Application Programming Inter-
face (API) that allows different levels of abstraction. It represents a trade-off between
conciseness and expressiveness.

2.4.2 Layered APIs

Fig. 2.4 visualizes the three API levels, which are examined in more detail in the following
Section.

Figure 2.4: Layered APIs as Shown by [8]

The most expressive API level is that of the ProcessFunction. It allows one to manage
individual events from one or two input streams. Furthermore, a fine granular access
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to the state and time dimensions is possible. A ProcessFunction can modify its state
arbitrarily and register timers which trigger a callback at the given time.

The DataStream API provides primitives for a variety of common stream processing
operations. These include windowing, transformations or enriching events by querying
external data stores. Example functions are map(), reduce(), and aggregate().

At the highest level of abstraction is the SQL and Table API. Both APIs are unified
for bounded and unbounded data and return the same results. According to [8], the SQL
and Table API is designed to simplify the definition of data analytics, data pipelining and
Extract, Transform, Load (ETL) applications.

This work will mainly focus on the first two layers, as a high degree of flexibility is
needed for the planned optimizations. Flink places another important emphasis on the
operationalization of stream processing. Accordingly, the next subsection describes how
these topics have been covered.

2.4.3 Handling Operations Challenges

Many streaming applications are designed to run continuously for extended periods of
time with minimal downtime. To enable this, a streaming framework must provide error
recovery and monitoring of running jobs.

It is imperative that a distributed stream processor such as Flink can recover from
errors and failures to enable 24/7 operation. It must not happen that in case of an
error the whole history of events has to be rolled up again. It must also be ensured that the
state remains consistent. To make this possible, Flink offers the so-called Checkpoints of
application state. Since the state can potentially cover several terabytes, the Checkpoints
allow asynchronous and incremental creation. Flink enables both end-to-end exactly-once
semantics, which means that in the event of an error, data is only written out once.
Additionally, Flink integrates with the most popular cluster managers and offers a high
availability mode based on Apache ZooKeeper [23].

Another topic within streaming applications is maintenance and updating. When
bugs need to be fixed or new features are implemented, it must be ensured that the
state can be migrated. For this purpose Flink offers Savepoints, which are very similar
to Checkpoints, but are not automatically generated or deleted when the application is
stopped. A Savepoints can be used to start a state-compatible application and initialize
the state. The use cases covered by this are manifold. With the help of the Savepoints, an
application can be further developed or supplemented with fixes. A version upgrade can
be carried out, the parallelism of an application can be changed, test scenarios can be run
through or simple archiving of the Savepoints can be established. The differences between
Check- and Savepoints mentioned in [24] are presented in Table 2.4.3. Checkpoints are
mainly used as a recovery and failover mechanism for possible job failures in Apache
Flink. On the other hand, Savepoints are used as a manual backup for restarting or
continuing a Flink job. Checkpoints are automatically triggered by Flink and can be
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Checkpoint Savepoint

Size Small Large

Incremental Yes No

Periodic Yes No

Application Upgrade No Yes

Change of Parallelism No Yes

Objective Recover/Failover Mechanism Backup For Restart or Continuation

Goal Quick Restore of Data Data Portability

Table 2.3: Difference Between Check- And Savepoints

created incrementally. However, the creation of Savepoints must be forced manually by
the user.

Furthermore, an important aspect is the runtime monitoring of the Flink cluster. It
allows users to get an insight into the system and the running jobs. Flink offers a dash-
board (web User Interface (UI)) which provides functions for inspection, monitoring and
debugging of running applications. Flink also implements the SLF4J [25] logging interface
and additionally, provides an enormously powerful means to create custom metrics. The
metrics can, in turn, be exported to various reporters such as JMX [26], Prometheus [27]
or SLF4J [25]. Last but not least, Flink offers an API interface, which allows for the addi-
tion of new applications, the creation of a Savepoint and the running and termination of
applications. By now, a lot has been said about the architecture of Flink, but the actual
processing of the data is handled by so-called transformations. These will be looked at in
the next Section.

2.4.4 Transformations

Transformations allow the user of the framework to transform one or more data streams
into a new one. According to [28], a distinction is made between basic transformations
(e.g., Map, FlatMap, Filter), keyed-stream transformations (e.g., KeyBy, Reduce) and
multi-stream transformations (e.g., Union, Connect, CoMap and CoFlatMap). The most
important operators for the following chapters and the knowledge required are explained
in more detail in the following paragraphs.

The Map transformation (cf. Listing 2.1) is used to apply an operation to the single,
unrelated events of a stream. The transformation takes one input and generates one
output. The input and output type do not have to be the same.

1 va l environment = StreamExecutionEnvironment . createLocalEnvironment ( )
2 va l input : DataStream [ Int ] = environment . fromElements (1 , 2 , 3)
3 va l r e s u l t : DataStream [ St r ing ] = input .map(x => x . t oS t r i ng ( ) )

Listing 2.1: Map Transformation That Converts a Digit Into a String
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The FlatMap transformation is similar to the map functionality, but for each incoming
event, it returns zero, one or more output events. It represents a generalization of a
filter and map operation. An example that is often used according to [28] is the division
of a sentence by spaces as presented in Listing 2.2. As a result, each word is output as a
separate record.

1 va l environment = StreamExecutionEnvironment . createLocalEnvironment ( )
2 va l input : DataStream [ Int ] = environment . fromElements ( ”This i s a

sentence ” , ”This i s a l s o a sentence ”)
3 va l r e s u l t : DataStream [ St r ing ] = input . f latMap (x => x . s p l i t ( ” ”) )

Listing 2.2: FlatMap Transformation That Splits a Sentence

Filter is used to evaluate events in a stream based on a condition, followed by dropping
or forwarding the records accordingly. If the condition evaluates to false, the event will be
dropped and if true, then forwarded. Calls to the filter function return a DataStream

of the same type. This behaviour is presented in Listing 2.3.

1 va l environment = StreamExecutionEnvironment . createLocalEnvironment ( )
2 va l input : DataStream [ Int ] = environment . fromElements (1 , 2 , 3)
3 va l r e s u l t : DataStream [ Int ] = input . f i l t e r ( x => x != 2)

Listing 2.3: Filter Transformation That Filters a Stream Based on a Boolean Condition

KeyBy is used to divide a stream into logical, disjoint partitions, each containing the
records of the consistent key set. It is the basis for horizontal scaling and comparable
with group by in relational systems. The main goal is to process groups of records that
share a defined property, the key. The output of such a transformation is a KeyedStream.
State-dependent operations on a KeyedStream operate in the context of the corresponding
key. Thus, all events with the same key access the same state. Elements with the same
key are consistently processed by the same parallel subtask of the subsequent operator.
Events with different keys can also be handled by the same parallel subtask, but the keyed
state is still distinguished based on the event key. The definition of a key is shown on the
next lines.

1 va l environment = StreamExecutionEnvironment . createLocalEnvironment ( )
2 va l input : DataStream [ ( Str ing , Int ) ] = environment . fromElements ( ( ”A” ,1 ) ,

( ”B” ,2 ) , ( ”C” ,3 ) )
3 va l r e s u l t : KeyedStream [ ( Str ing , Int ) , S t r ing ] = input . keyBy (x => x . 1 )

Listing 2.4: KeyBy Transformation With Key Extraction

Reduce is used to apply a reduction function (cf. algebraic semigroup operation) to a
KeyedStream. Each incoming event is combined with the currently reduced value. The
type of the stream is not changed. The reduce function keeps a state for each processed
key. Since this state is never cleaned up, it is important to use this function only on
bounded key domains. In the example presented in Listing 2.5, the stream is keyed by
the category, and then the numbers are summed up.
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1 va l environment = StreamExecutionEnvironment . createLocalEnvironment ( )
2 va l input : DataStream [ ( Str ing , Int ) ] =

environment . fromElements ( ( ”Category1 ” ,1 ) , ( ”Category2 ” ,2 ) ,
( ”Category1 ” ,3 ) )

3 va l keyed = input . keyBy (0)
4 va l r e s u l t : DataStream [ ( Str ing , Int ) ] = keyed . reduce ( ( x , y ) => ( x . 1 , x . 2

+ y . 2 ) )

Listing 2.5: Summation of Values by Category

Union combines two or more streams of the same type and produces a new DataStream,
which contains all events of the incoming streams. No specific order of the events is
established, since the forwarding is done according to the FIFO principle. Duplicate
elimination does not take place. Everything that arrives is forwarded.

Connect, CoMap and CoFlatMap if two streams are combined that do not have the
same type, the Connect function has to be used. As a result a ConnectedStream object
is returned. This object provides a map and flatMap transformation, which requires an
implementation of the CoMap or CoFlatMap interface. These are typed on the respective
input of the first and second stream, as well as the output. The interface defines two map

(map1() and map2()) or flatMap (flatMap1() and flatMap2()) functions for the input
streams. If a record is delivered on the first or second stream, the corresponding function
is called. The order in which the functions are called cannot be controlled. The methods
are called as soon as an event is available.

In this Section, the most important transformations for the thesis at hand have been
explained. Next, the handling of time-based operators is explained.

2.4.5 Time-Based Operators

In Section 2.4, the high-level differences between event and processing time were intro-
duced. The following Section further details these concepts.

Processing time determines the current time of the data stream based on the system clock
of the executing machine. This leads to non-deterministic results as the content of the
windows depends on the speed at which the records arrive. Nevertheless, this setting
allows very low latencies as operators do not have to wait for Watermarks.

When using event time, the operators determine the current model time from the inherent
information of the events themselves. Each event has an assigned event time, which
determines when the event took place. The logical time of the system is defined by so-
called Watermarks, which indicate up to which point in time all events were received with
a high certainty. Event time guarantees deterministic results, since the result is not based
on how fast the stream was read or processed.

The third time domain is the ingestion time, which is a mixture of event and processing
time, and is called for completeness reasons. The processing time of the source operator
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is added as event time to each record read and a watermark is generated automatically.
However, this mode has no significant advantages over event time since it does not provide
deterministic results and has similar performance to event time.

In this section, Watermarks were mentioned. They indicate the current progress of time
in the system. In the following lines, this concept will be elaborated upon further.

Watermarks

As mentioned by [28], Watermarks are used to balance the latency and completeness
of the results. Specifically, they control how long to wait for events before starting a
computation. In operators based on event time, Watermarks are used to compute a point
in time when all relevant events have been ingested (with a high degree of confidence),
allowing the operator to then proceed forward. Unfortunately, this does not work perfectly
in reality. Otherwise, no delayed events could occur. Therefore, the Watermarks must
be generated based on heuristics. They help to generate an upper bound for the delay
of the events. However, heuristics always contain errors, which then lead to inaccurate
Watermarks. These, in turn, lead to delayed results or an unnecessary increase in latency.
If the Watermarks are far behind the timestamp of the processed event, the latency is
increased. In this case, a result could have been produced earlier, but it had to wait
for the watermark. Furthermore, the size of the intermediate state also increases, since
more data must be buffered. However, a high completeness of the data can be assumed.
If the Watermarks are selected very closely to the arriving events, the computations are
triggered faster. However, inaccurate results can occur because not all relevant events
have arrived. This distinction is a fundamental characteristic of streaming systems in
contrast to batch systems, which assume that all data is available. Flink offers many
ways to handle the challenges that arise from these differences, including window triggers,
process functions and the handling of late events, which will be explained in the next
sections.

Process Functions

Process functions are low-level transformations of the DataStream API. They can be
used when more control over functionality, time and Watermarks is needed. They allow
to register timers that will be triggered at a defined time in the future. In addition,
side outputs can be set up, which can emit records to different output streams. Process
functions are usually used to implement special logic when the existing windows and
transformations are not sufficient.

Flink offers eight different process function types. These are the ProcessFunction,
KeyedProcessFunction, CoProcessFunction, ProcessJoinFunction, BroadcastPro-

cessFunction, KeyedBroadcastProcessFunction, ProcessWindowFunction and Pro-

cessAllWindowFunction. As the name suggests, each of these is used in a different
context.
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This Section will mainly focus on the KeyedProcessFunction and the CoProcessFunc-

tion, as they are the most used ones in the present thesis.

The KeyedProcessFunction is applied to a keyed stream, returning zero, one or more
outputs for each input. The KeyedProcessFunction provides the user with the following
two functions (except open() for initialization, close() for cleanup, and getRuntime-

Context() for access to runtime objects such as the metric groups (cf. Section 2.4.8):

processElement(v : IN, ctx: Context, out: Collector[OUT] is called for each
incoming event. The collector then offers the possibility to emit a record further down
the stream to the next operator. The context allows the user to access the key as well as
the timer service.

onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[OUT] is the
callback that is called when a previously registered timer is due. The context again
provides the capabilities of the processElement function, but also provides access to the
time domain. Again, the collector can be used to push a record to the next operator.

CoProcessFunction

For some cases, it may be necessary to have multiple inputs to a process function. For
this purpose, Flink offers the CoProcessFunctions. Similar to a CoMapFunction, two
transformation methods are provided for each input, which are processElement1 and
processElement2. In addition, the Context object again provides access to the timer
service and, thus, the possibility to register timers. The CoProcessFunction will play an
important role in the later course of this work to achieve a common output with multiple
operators that have a different output behaviour.

Window Operators

Window operators are an essential part of a streaming application. They enable one to
perform transformations on bounded intervals (i.e., based on either count or time) of un-
bounded streams (e.g., aggregations). To create such a window operator, two components
are needed:

• A Window Assigner controls the membership of an event to an arbitrary number
of windows and produces a windowed stream.

• A Window Function is needed to process the elements which are assigned to the
window.

Listing 2.6 presents the steps needed to use a window assigner and a subsequent Window-
Function.
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1 stream
2 . keyBy ( . . . ) // op t i ona l
3 . window ( . . . ) // add window a s s i g n e r
4 . reduce ( . . . ) // aggregate ( . . . ) // p roce s s ( . . . )

Listing 2.6: Specification of a Window Assigner and Function

Window Assigners

The window assigners are used to assign events to the corresponding windows. A distinc-
tion is made between count, tumbling, sliding and session windows. The focus for this
work is on the tumbling and sliding windows, which will be examined in more detail in
the following paragraphs. Count windows contain a fixed number of events in the order
in which they arrive. A session window assigner then groups the incoming events into
non-overlapping activity windows of varying size. The intervals between the windows are
determined by periods of inactivity.

Figure 2.5: Visualization of Tumbling and Sliding Windows

Fig. 2.5 visualizes the difference between tumbling and sliding windows. Tumbling win-
dows are non-overlapping windows with a fixed size. An event is therefore always added
to exactly one window. Sliding windows are windows that have a fixed size, but slide at a
specified slide interval. If the slide interval is smaller than the size, the windows overlap
and an event can be added to one or more windows. If the slide is larger than the size, it is
possible that an event is not assigned to any window and is lost. Sliding windows provide
a smoother aggregation over the data because there is no jumping from one distinct set
of data to the next as in tumbling windows.
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Window Functions

The window functions are used to perform aggregations on a windowed stream. It is
distinguished between incremental and non incremental aggregations.

The incremental aggregations are executed directly when an event is calculated for a
window. They contain an accumulated value as window state. Therefore, they are efficient
in terms of memory. The two incremental aggregation functions are ReduceFunction

and AggregateFunction. The latter is a complication of the former and offers more
possibilities to control the aggregation. While the ReduceFunction takes two values of
the same type and combines them, the interface of the AggregateFunction determines
the input and output type, as well as the aggregator itself.

The interface of the AggregateFunction contains four different functions, which are de-
scribed in Listing 2.7.

1 pub l i c i n t e r f a c e AggregateFunction<IN , ACC, OUT> extends Function ,
S e r i a l i z a b l e {

2
3 /∗Used to c r e a t e a new accumulator , r e f l e c t i n g an empty aggregate ∗/
4 ACC createAccumulator ( ) ;
5
6 //Adds a new event to an a l ready e x i s t i n g accumulator
7 ACC add ( IN value , ACC accumulator ) ;
8
9 //Returns the r e s u l t from an accumulator

10 OUT getResu l t (ACC accumulator ) ;
11
12 //Merges two accumulators a and b and re tu rn s a combined ve r s i on o f

both
13 ACC merge (ACC a , ACC b) ;
14 }

Listing 2.7: Interface of an AggregateFunction

Sometimes it is necessary to access all elements of a window to perform more complex
operations on them. For this purpose, incremental aggregations cannot be used. The Pro-
cessWindowFunction offers a process() function that is called with the corresponding
key as well as the context and the list of elements currently associated with the window.
The context is similar to the known process functions and allows for accession of the
window’s meta data. The ProcessWindowFunction is a powerful tool, but it must be
used with caution. By keeping all events, the state becomes larger than with incremental
aggregations. If the underlying problem can be solved by an incremental aggregation, but
for some reason also access to the meta information of the window is needed, a combina-
tion of the two functions can be used. For this, the reduce or aggregate() function can be
given to the ProcessWindowFunction as a second parameter. Subsequently, each event
is aggregated incrementally and only a single value is passed to the window function.
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Trigger and Evictor

Triggers and Evictors further contribute to the customization of the windowing. A Trig-

ger is used to determine when the window is ready to be processed by a window function.
Each WindowAssigner has a default Trigger assigned. If this Trigger does not cover
all requirements, a custom one can be defined. The Trigger interface offers five different
functions.

• onElement will be called for every event that is added to a window

• onEventTime is called when an event time timer fires

• onProcessingTime is called when a processing time timer fires

• onMerge is called when a merge operation for a session window is performed. As
session windows are not used in the present work, this topic will not be covered in
more detail.

• clear is used to perform any actions when a window is removed

The first three functions are used to determine how to further proceed when called. This
is done by returning the TriggerResult, which can be one of the following:

• CONTINUE does nothing

• FIRE is used to trigger a computation

• PURGE is used to clear the elements in a window

• FIRE_AND_PURGE is used to fire the calculation and then purge the window content

Triggers have access to both state and timers. Thus, a complex logic can be set up to
determine when a trigger action has to be performed. For example, these include firing
as soon as a certain threshold has been reached or a number of events for a key have been
delivered in a predefined time frame.

Evictors are used to remove events after a Trigger and before/after the window function
is executed. The two functions evictBefore and evictAfter receive as parameters the
list of all events belonging to the window, the current number of elements in the pane,
the window itself and an EvictorContext. The EvictorContext offers the possibility
to obtain the current processing time, the current watermark and allows accession of
the metrics. In comparison to the trigger, no state or timer service is available. Two
important aspects to mention are the following: As a list is passed as a parameter, the
original order of the events cannot be inferred from their placement. Thus, removing the
first or last element from the list does not delete the first or last event of the window.
Additionally, as mentioned by [8], specifying an Evictor prevents any pre-aggregation.
This is due to the fact that all elements of a window have to be passed to the Evictor

before any calculations.



2.4. APACHE FLINK 23

Handling Late Events

Another important aspect when it comes to time management is the handling of delayed
data that arrives out-of-order or after its period of interest. For example, an event can
arrive after the calculation that it should have contributed to. This is due to the trade-off
between result completeness and latency by the Watermarks. In this case, it must be
decided how to deal with such late events. The record can either be dropped, redirected
to a separate stream or the old result can be updated and re-emitted. The default way is
to drop the events and accept the inaccuracy of the results. This is the default behavior.
By redirecting the results, they can be included again at a later time by a backfilling
process. Updating the results is certainly the most difficult option. This means that
already finished windows must be stored in the state and must be accessed again. Also
the operators further down in the flow must be able to handle updates. For the handling
of these late events the allowedLateness function is available in the event time mode.
This way, a horizon can be specified how long the window should be kept in the state.

In the last Section, the most important aspects of time-based operators for this thesis were
introduced. Thus, the next Section will focus on the next critical topic, the management
of the state.

2.4.6 State Management

Most streaming applications are considered stateful. They continuously read and write
state, which is present in form of collected events in windows, intermediate aggregations
or other data. In general, all data managed by a subtask and used to calculate the results
of a function belong to the subtask’s state. According to [8], the state can be defined as
a local or instance variable, which is consumed by the business logic of the task.

When a task receives an input, it can read and update its state during the processing of
the input and calculate the result. In Flink, a distinction is made between operator state
and keyed state, which will be discussed in the next paragraphs.

The Operator State is related to an operator subtask. This means that all records
handled by the same operator subtask can access the same state across all processed keys.
It is not possible to access this state from another task of the same or different operator.
Operator state provides the user with three state primitives:

• ListState contains the state as a list.

• UnionListState contains the state also as a list, but differs in the way it handles a
failure or a restart from a Savepoint. With the UnionListState, the complete list
is distributed to all tasks, and the tasks individually decide afterwards which part
of it they need.

• BroadcastState is needed for the special case as to when the sate of each subtask
of an operator is the same.
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The operator state will be used in this thesis for the switch between the Java-Heap and
RocksDB state backend introduced in Section 4.2.2. It enables the storage of data in-
memory, while staying able to benefit from the Check- and Savepoint algorithm.

The Keyed State is handled in the context of a key given by the input stream. This
means that all entries with the same key access the same state. Keyed State is understood
as a key value map structure that is sharded across all parallel tasks of an operator using
the key. It offers the following state primitives:

• ValueState is used to store a single value of a specific type. Complex data struc-
tures can also be stored as values.

• ListState contains a list of typed values per key.

• MapState contains a key-value map per key and maps from a key type to a value
type.

For the present work, most of the state will be handled as keyed state. Particularly, the
MapState will be of central importance due to the way it is implemented in RocksDB.

In Flink, the state is stored with a key that is divided into three levels. The first level is
the grouping by the actual key which was provided by the user in the keyBy statement.
The second level is optional and describes the namespace that reflects the windows. In this
case, the timestamp of the window is taken as the key component. The third level describes
the state primitives. For example, this includes the key of the MapState structure. Fast
access to the state is of central importance for a stream processing application. How the
state is stored, accessed and maintained is handled by the pluggable state backends. This
thesis will mainly focus on storing the state on the Java-Heap and in RocksDB. RocksDB
is a highly optimized key-value store which uses the memory for caching and the hard-disk
for long-term storage.

Using the Java-Heap state backend provides very fast access to the state. Yet, the storage
space is limited by the available Heap memory. The RocksDB state backend provides
slower access, but the state can grow extremely large. A speciality that will play an
important role for this thesis is the underlying implementation of the state primitives in
the RocksDB state backend. An inherently given characteristic of the RocksDB state
backend is that the MapState provides a canonical ordering of the stored elements. For
instance, this ordering is not given when using a Heap structure. The reason for this is
that the MapState implementation by RocksDB relies on so called column-families [29].
They can be seen as a column store index. This canonical ordering allows for retrieval
of an iterator from a MapState, and as soon as the first element is found, the following
entries are read with constant complexity. This is due to the fact that only the next
element in a sorted list needs to be returned. For the other state backends and memory
structures, this property does not hold.

Nearly all important base concepts for this thesis regarding Flink have been introduced.
With the help of the transformations, windows, triggers, evictors, various process functions
and the state management, a first pipeline can be created. However, what is still missing
is the transformation of a program into an execution plan. Accordingly, the next Section
deals with this topic.
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2.4.7 From a Program to an Execution Plan

An important aspect of the Flink job execution process is the transformation of a program
into a physical execution plan. Depending on various parameters such as the data size
or the numbers of machines in the cluster, the Flink optimizer automatically generates
an execution strategy for the job. The program passes through four different stages.
First, the program is transformed into a StreamGraph, then from a StreamGraph to a
JobGraph, from a JobGraph to an ExecutionGraph and finally to a physical execution
plan. However, describing each step in detail would go beyond the scope of this paper.
Therefore, this Section focuses on an introduction of the individual transformations which
are described by [30] and depicted in Fig. 2.6. Because of later importance, the JobGraph

and the logical execution plan will be described in more detail.

In a first step, the topologically sorted list of transformations (i.e., program) is trans-
formed into a StreamGraph. The transformation starts with the source nodes. A StreamNode

is generated from each transform operation and a StreamEdge from each connection be-
tween two StreamNodes. Together, the StreamNodes and StreamEdges form a directed
acyclic graph (DAG).

The second step involves converting a StreamGraph to a JobGraph. The conversion into a
JobGraph is concerned with combining the individual operators into tasks. The operators
are traversed from the source nodes to find those that can be nested. If operators cannot
be nested, a separate JobVertex is created for both of them. The up- and downstream
vertexes are then connected by a JobEdge to form a DAG at JobVertex level. This
nesting of the individual operators is called task chaining. To chain a task, the following
conditions shown in 2.8 must be satisfied.

1 return downStreamVertex . getInEdges ( ) . s i z e ( ) == 1
2 && outOperator != nu l l && headOperator != nu l l
3 && outOperator . getCha in ingStrategy ( ) == Chain ingStrategy .ALWAYS
4 && (
5 headOperator . getChain ingStrategy ( ) == Chain ingStrategy .HEAD
6 | | headOperator . getCha in ingStrategy ( ) == Chain ingStrategy .ALWAYS
7 )
8 && ( edge . g e tPa r t i t i o n e r ( ) i n s t an c e o f ForwardPart i t ioner )
9 && upStreamVertex . g e tPa r a l l e l i sm ( ) == downStreamVertex . g e tPa r a l l e l i sm ( )

10 && streamGraph . i sChainingEnabled ( ) ;

Listing 2.8: IsChainable Conditions

The downstream node may only have one input and the upstream and downstream node
may not be null. The downstream node needs to have the chainable policy ALWAYS and the
downstream node ALWAYS or HEAD. In addition, there must be a forward partitioner
and the upstream and downstream nodes must have the same parallelism. Finally, and
most fundamentally, chaining itself must be allowed. Chaining allows the co-location of
successive transformations in a single task. By omitting the de/serialization and sending
of data between several threads the performance can be optimized.

In a third step, the nodes are sorted starting from the source nodes. An ExecutionJob-

Vertex is created for each JobVertex and an IntermediateResult is created for each
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IntermediateDataSet of the JobVertex. This result is used to set up an upstream-
downstream dependency to form a DAG at the ExecutionJobVertex level. This DAG is
the ExecutionGraph.

Finally, the last step is to convert the ExecutionGraph into a physical execution plan,
which is then serialized in order to be transferred to the execution cluster (i.e., task
managers).

Figure 2.6: Transformation of a Program Into an Execution Plan Visualized by [30]

As visualized in Fig. 2.6, reading such a plan becomes increasingly complex with each
level. However, for a developer only a high-level overview of the individual operators
(StreamGraph) or a view on the summarised tasks (JobGraph) is important. When a
high-level overview is required, the function env.getExecutionPlan() can be called. It returns
a JavaScript Object Notation (JSON) representation of the StreamGraph, which repre-
sents the logical execution plan as depicted in Fig. 2.7. It contains the operators, their
parallelism, the links between the operators as well as the partitioners. The partitioners
distinguish between forward, hash and rebalance. Each having different properties for
processing. In the following section, the forward and hash partitioners are discussed in
more detail. These are of significant importance for the thesis.

In general, the partitioners are used to partition the incoming data and define how data
is distributed across parallel task instances. Fig. 2.8 visualizes the difference between a
hash and a forward partitioner.

• When using a forward partitioner, all data consumed by one of the parallel in-
stances of an operator is passed to the exact same parallel instance of the next
operator. Therefore, the same degree of parallelism is expected.
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Figure 2.7: Visualization of a Simple Flink Execution Plan

• When using a hash partitioner, a hash is calculated based on the key attribute
for each entry. Afterwards, the entries are divided among the available parallel
instances of the following operator. As already mentioned before, such a partitioner
is for instance generated by a keyBy.

• A rebalance partitioner is either generated by an explicit usage of rebalance,
or when the parallelism changes from one operator to the next. The data is then
rebalanced with a round-robin scheme [31]. This operation can be used to counteract
data skew.

Figure 2.8: Difference Between a Forward and Hash Partitioner

When an overview of the combined operators in the tasks is required, the web UI of Flink
can be consulted. When the job is running, a representation of the JobGraph will be
displayed. Compared to the StreamGraph, it no longer shows all operators individually,
but the tasks. Instead, the chained operators are displayed in combined form as depicted
in Fig. 2.9.

The last Section described how a Flink program is transformed into a specific physical
execution plan. Inevitably, the question arises as to how the performance of such a



28 CHAPTER 2. BACKGROUND

Figure 2.9: Job Graph of the Example Shown in 2.7

complex system can be measured. For this purpose, the metrics implemented by Flink
can be used. They allow for the integration of own measurement logic into the system.

2.4.8 Metrics

Metrics are used in Flink to get a more accurate insight into the current state of the job,
as well as the cluster. It is not realistic to analyze the task log in real time on the cluster,
which makes efficient monitoring even important. Flink offers the possibility to monitor
the current status of the system using metrics. There are four different metric types:

• A Counter is a simple counter which can be incremented or decremented using
inc() or dec() function calls.

• A Gauge stores and retrieves a value of any type.

• A Meter measures the average throughput. The markEvent function can be used
to mark the appearance of an event.

• A Histogram measures the distribution of long values.

According to [32], metrics are organized in Flink in groups of a multi-layered structure.
The metric is uniquely determined by its name and the assigned group. Furthermore,
Flink allows to create additional subgroups and thus, to extend the layered structure. A
distinction is made between the predefined system and user-defined metrics. The system
metrics include measurements of the Java Virtual Machine (JVM) on master or worker
level. For example, these include heap memory usage or buffer pool utilization. In addi-
tion, there are metrics which measure the number of active threads and garbage collector
information. The predefined metrics measure the latency of an event through the sys-
tem. In the current version, LatencyMarkers are passed through the system. When they
reach the end of the pipeline, the measured latency is reported. The problem is that the
computational steps in the operators are not considered. Only the pure I/O latency is
measured, since the LatencyMarkers are simply passed through the pipeline. Further-
more, the latency markers cannot overtake normal events, so the latency is only delayed
when events are buffered in front of an operator.
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Another system metric is the cluster monitoring. For example, it shows the timestamp
of the last Checkpoint. This is critical because if the Checkpointing is not working, a job
has to start from a state far in the past after a restart.

Lastly, the RocksDB metrics are important to mention. They allow a detailed insight into
the state backend. For example, the number of active keys can be displayed, which allows
approximate size estimations.

The user defined metrics refer to the DataStream API and allow to implement an own
measurement logic. To initialize such a metric, the RuntimeContext of a function imple-
menting the RichFunction interface must be accessed. The RuntimeContext provides
access to the metric interface. Using the getMetricGroup function, the metric group can
be obtained. By using these groups, a developer can then either add new subgroups or
define own metric types.

Now that metrics can be created, the question arises as to how they are taken up by the
monitoring systems. There are three different methods to access the metrics. They can
either be accessed in the web UI, a rest interface or the metrics reporter. The latter is
the most commonly used method, which will also be used in this thesis. The first two
methods obtain their metrics by accessing a central node, which pre-aggregates the data.
The metric reporter accesses the nodes individually. It reports raw data, which can be
processed with better performance. The non-centralized architecture is also free of the
problems that a centralized node entails (e.g., insufficient memory).

In this section, the most important components of Flink for the given context were in-
troduced. The next step is to describe the baseline, which was implemented before the
master thesis and should serve as a comparison for the elaborated optimization strategies.

2.5 Fraud Scoring Baseline Implementation

The baseline implementation implementation was a first attempt to fulfil the requirements
posed by the Fraud Scoring system. Its development started before the master thesis
and the initial goal was to calculate the required 1485 features with a latency of a few
milliseconds per event. The required throughput and latency could never be achieved.
Thus, the thesis at hand uses this baseline implementation to evaluate various optimization
strategies and guidelines to leverage the overall performance of a streaming job. The
weaknesses of the baseline implementation will be discussed in detail in the following
Section.

The general architecture of the baseline is visualized in Fig. 2.10. On an abstract level,
a subdivision is made into the individual scenarios. First, the events are distributed
into the key domains (i.e., blue boxes). Inside of the key domains, a split into the
different aggregation types is carried out. For the baseline implementation, an statistical
momentum (e.g., sum, mean, standard deviation, skewness), a unique count and an oldest
/ recent aggregate function is required. These aggregation types (i.e., red boxes) are then
again applied to the individual windows (i.e., green boxes). The following window types
are required:
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• The Continuously Sliding Windows should contain at any given point in time
the records of the last 24 hours. From now on, they will be referred to as D0 or day
zero windows

• The 7, 28, 182 and 392 days Sliding Windows should contain the data from the
given time span and slide by one day.

The different windows of the aggregation functions are then combined and joined together
across the different scenario domains(i.e., orange boxes). This join operation is carried
out using the split/join pattern [11] mentioned in Section 3.2.

Figure 2.10: Abstract Baseline Architecture

In the following sections, some aspects of the baseline implementation are discussed in
more detail. Namely the general windowing strategy and the continuously sliding windows
with their inherent performance issues. As a third point, the de/serialization overhead
between the tasks of the job will be highlighted.

2.5.1 Windowing Strategy

In general, a separate sliding window was used for each feature to be calculated. This
means that a 7-day, 28-day, 182-day, or 392-day sliding window was created for each
aggregation. What sounds logical has a variety of negative implications. This means
that, in the worst case, a new 392-day window is opened every day for each key. If
a new event comes into the pipeline, it will be stored by the window assigner into the
corresponding window. This means that per feature 392 windows are open in the current
implementation. Additionally, the events need to be stored in every window for 392-
days which leads to an O(n2) complexity. In terms of operational state, this is clearly
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not optimal. Due to the fact that with RocksDB a file based state backend is used,
state accesses have to be executed with restraint. The card id domain (i.e., scenario 1)
can be estimated by the maximum number of cards. However, the subdivision by card
and another attribute in scenario 2 complicates reliable estimations. The estimation of
scenario 3 is more evident, since an upper limit is given for the required attributes. The
following list presents the approximate expected number of keys per scenario.

• Scenario 1 The key by card id domain is certainly the one that can be most easily
covered with an upperbound estimation. The balance sheet of the company [33]
shows that 1.7 million cards were in circulation at the end of 2020. This number
will certainly increase in the next few years, which means that the number of cards
can be expected to reach around 2 millions.

• Scenario 2 For data protection reasons, no exact details about the attributes used
for the fraud model can be provided. However, these are attributes partly have a
high range of values. This range in combination with the maximum number of cards
results in a very high potential number of keys. The two most decisive categories
contain about 2.5 million and 7.5 million unique values, respectively. Furthermore,
both numbers are increasing. This gives a clear indications of the dimensions.

• Scenario 3 The upper limit can be estimated by taking the upper limit (10’000’000)
of the used attributes times the potential classifications (6). Again, no precise
information about the attributes used may be given. However, an upper limit of
approx. 60’000’000 keys is expected.

The potential first level key space which has to be covered is large. However, the key space
as well as the data for individual keys is limited by the maximum number of events per
year. The approximate number of annual transactions can be calculated by the annual
Swiss Payment Monitor [3]. According to [3], 530 million credit card transactions were
made in Switzerland in 2019. The cooperating company is one of the three big card issuer
in Switzerland. The whole market currently consists of seven players. So, roughly, it is
assumed that the three have a share of 7/8 of the market. Divided among three providers,
this makes a volume of 154 million transactions per year. The volume of cashless payments
is considered to be increasing due to the broader acceptance. It can therefore be estimated
that there will be between 150 and 200 million transactions per year. With this number,
new estimations regarding the expected key space can be made. Fig. 2.11 provides an
overview of how each scenario generates keys per incoming event. It can be seen that for
each event 9 keys are generated based on the card id and in 8 cases a second attribute.
In the third scenario, the key space is also based on the incoming events, but is capped
by other factors. For example, there are only 195 countries in the world. Therefore,
there would be only 195 potential keys for this attribute, multiplied by the number of
classifications.

By using the maximum number of cards as well as relying on the approximate number
of attributes to expect, an estimate can be made about scenario 1 and 3. Scenario 2
is difficult to estimate because of the potential combinations of cards and attributes.
Assuming each transaction of a card differs from the others in all attributes, 8 new keys
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Figure 2.11: Splitting of Key Space Depending on Input and Categorical Set

are generated per card usage. Extrapolated to the transaction volume, this results in a
number of 1.6 billion keys. Thus, the keys of scenario 1 and 3 are of minor importance
compared to the maximum number of keys in scenario 2. The challenge with a large key
space is, that with a growing number of entries also the read and write times grow. Not
only do many keys have to be stored, but for scenario 3, also the amount of data per key
becomes a problem. For example, an aggregation by region has to be performed. Lets
assume there are 20 major regions. With roughly 400’000 transactions per day, each day
20’000 events have to be processed per region. When considering windows with a length
of 392 days, the issue gets evident. This topic also applies to the continuously sliding
windows, which will be discussed in the next Section.

2.5.2 Continuously Sliding Windows

The second challenge of the baseline implementation refers to the continuously sliding
windows. These windows must always contain the aggregated values of the last ”x” hours
at any time with a millisecond precision. In the specific use case at hand, the window
must always contain the events of the last 24 hours for each key. These windows are also
known as day zero or D0 windows. This requirement implies that all records belonging
to this time frame must be buffered in the window, as the records have to be removed
from it when their validity period is exceeded. Flink offers a few ways to solve this issue.
However, the two presented variants contain some stumbling blocks regarding efficiency.
One possibility is to use triggers. First, the trigger function onEvent() fires the process
function. Then a timer is registered in the trigger which in turn fires as soon as the event
becomes invalid. The ProcessFunction is then called again with the corresponding event.
Unfortunately, the ProcessFunction lacks the knowledge whether this event was received
already and thus is to be removed, or it was sent the first time and needs to be added to
the state. This information is not passed on by the trigger. The processEvent function of
the ProcessFunction is just called again. This requires for every record that is received
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to check the state of the ProcessFunction whether the event is already present or not.
If it is present, the value must be subtracted and removed. Otherwise, it needs to be
added to the state. Thus, for each received event all stored records in the corresponding
state are queried and aggregated, which results in an O(n2) complexity, where n is the
number of events per window. Another possibility is to use an Evictor, which is used
to remove events from a window. However, the interface of the Evictor specifies that all
records are kept and passed to the ProcessFunction in a list. Due to the properties of a
list, it does not contain any actual ordering or efficient search function. If a value has to
be removed, the entire list must be iterated through. This logically also leads to the fact
that the entire list must be re-aggregated for each addition or removal operation. This
again results in an O(n2) complexity. Potential solutions to the problem are presented in
Chapter 4.

2.5.3 Combination of Different Aggregations

Another problem is the efficient merging of windows with different output behaviour due
to their window length. For instance, continuously sliding and daily sliding windows have
to be merged. The difficulty is that the continuously sliding windows have one output
per event. However, the daily sliding windows have one output per day. In addition, the
window aggregations have to be pivoted and enriched with the original event. A potential
solution for this is the split join pattern which is introduced in Section 3.2 and critically
analyzed in Chapter 4.

2.5.4 Shuffle Operations Between Operators

When looking at the execution plan of the baseline implementation, one thing that gets
noticed is the large number of shuffle operations represented by the hash partitioners.
As explained in Section 2.4.7, these shuffle operations generate I/O by exchanging data
between different machines of a cluster. Therefore, it is important to reduce the usage
of these operations as much as possible. In some cases, sending data across the network
is not necessary and only leads to computational overhead. If operations are carried out
on the same key in a pipeline, the data could stay on the same node until it is keyed by
another attribute or the parallelism changes. Additionally, the chaining of the individual
operators will play an important role in the later phase of the analysis.

The problems listed above are not exhaustive, but they are potentially responsible for a
large part of the bad performance of the streaming job. In a first phase, reliable mea-
surements have to be carried out to confirm the suspicions. Afterwards, optimization
strategies to eliminate the problems have to be proposed.

The fields for optimization can therefore be roughly divided into three distinct fields.

The first topic of interest is state management. Here, the cardinalities of the keys and
the characteristics of the state backends are examined. Possible stumbling blocks are
the access times of RocksDB or the storage capacity of the Java-Heap state backend.
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The second category is concerned with optimizations regarding the I/O. The term I/O
is used to describe the time of data transfer and how long data is buffered between the
individual steps in a streaming pipeline. For example, this includes the de/serialization
of data records between individual tasks during shuffle operations. Another possibility is
the optimization of the actual business logic and the algorithms used. Here, especially
the windowing and aggregation algorithms are of interest.

To test the baseline, it is important to have events with a similar statistic distribution
profile to production conditions. It should enable setting up tests that are as close as
possible to reality. Yet, due to data protection regulations, no real production data may
be used. The next Chapter deals accordingly with how this test data was generated.

2.6 Data Generation

Due to the data protection regulation, no data in production may be used for this work.
To remedy this problem, a data generator was implemented in the previous master project
[6]. It allows to generate test data based on statistical distributions, which were modeled
in advance. The data generator works completely deterministic and is able to export the
data either as an Avro file [34] or to write it directly into a Kafka topic. The Avro files
contain the data serialized in a compact binary format.

The generated data should be as close as possible to the statistical distributions found
in the productive systems. This is important for the validity of the tests. A streaming
system behaves differently when confronted with large amounts of data and a possible
critical state is only reached after a certain amount of data. Another important criterion is
the achievement of a steady state of the aggregations. This term describes the moment
at which values are continuously calculated to and from the windows. For a window
containing 392 days, this is logically only possible after 392-days. Once this state is
reached, the system operates in a mode that comes closest to production conditions and
thus allows to make statement about the performance of the system under real conditions.

The data generation supports two different time modes. Events can be generated either in
real-time or in full-speed mode. If the real-time mode is selected, the events are produced
at the actual speed specified by the model. If it is defined that statistically every 3 seconds
an event happens, this rate can be seen effectively in the data. In full speed mode the
events are produced as fast as possible and there is no effective delay (i.e., the model
(=event) time progresses faster than the processing time, however the rates in term of
event time are still the same). Thus, the model time progresses independently of the
time. The data generator also offers a combined mode in which the events are generated
at full speed up to a certain point. After this point the mode changes to real-time. For
the tests in this thesis the mode is set to fullspeed to generate a larger amount of data.
After a certain point, the data should be generated in real time to simulate a running
operation. In the model, 2’000’000 customers and 5’000’000 merchants will independently
carry out their transactions according to their preferences and locations. These events
are then delayed by a ProcessFunction to simulate possible network delays and to bring



2.6. DATA GENERATION 35

the events out of the correct order. Finally, the events are written to the corresponding
Kafka Topic of the Viseca Streaming Data Platform (SDP).

This Section concludes Chapter 2. It served to provide the necessary background infor-
mation for the thesis and to introduce the stream processing framework Apache Flink.
Next, related work and concepts are introduced in Chapter 3. The gathered insights are
then used to design possible optimization strategies in Chapter 4.
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Chapter 3

Related Work

A literature review was conducted to identify possible solutions to the problems motivating
this work and to highlight potential developments. The first step is to look at credit card
fraud prevention systems that use streaming systems. Especially the number of features to
be calculated and the amount of data used will be of interest. Next, the split join pattern
for Flink introduced by [11] will be looked at more closely. Another important point
discussed in this Chapter is the slicing of windows which will be used for implementing
the continuously sliding windows as well as other optimizations regarding windowing. As
a last point, the parameter tuning of RocksDB as described by [35, 4, 21] is shown.

3.1 Credit Card Fraud Prevention Approaches

In literature, various works [12, 13, 14] address credit card fraud prevention systems in
combination with machine learning. What is mostly missing is the feature engineering
process. Implementations that rely on data streaming are also rare. The following two
approaches describe fraud prevention systems that use streaming methods for their data
processing. The paper of [15] works with Apache Spark [36], whereas the paper by [11]
implements its solution by using Apache Flink [8].

3.1.1 SCARFF: A Scalable Framework For Streaming Credit
Card Fraud Detection With Spark

[15] present a realistic and scalable fraud detection system. The system is designed as an
open source platform and enables the analysis and processing of streaming data to generate
reliable fraud alerts in near real time. The work deals with 5 core topics. First, the design,
implementation and testing of an open source solution developed with state-of-the-art
components of the Apache environment is described. According to [15], the architecture
is able to handle the whole process of ingestion, streaming, feature engineering, storage
and classification. Second, a scalable learning solution is implemented which performs the
classification of the computed features. The third topic is the most interesting one for
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the present work. The design of an on-line feature engineering functionality. Fourth, an
assessment of the implemented system follows. The scalability, performance and precision
of the approach are evaluated. For the tests, 8 million transactions of 1.9 million cards are
evaluated. The last contribution of the work is the virtualization of the entire workflow
as a Docker [37] container to make the implemented solution completely reproducible.

The architecture of the envisioned solution is depicted in Fig. 3.1. Since the focus of this
work is on optimizing a feature engineering pipeline, this topic will be discussed in more
detail in the following paragraph. The areas dealing with machine learning are left to the
interested reader.

Figure 3.1: SCARFF Architecture as Introduced by [15]

For the implementation of the streaming analytics functionalities, the authors use Apache
Spark [36]. Apache Spark is an in-memory map-reduce implementation that automatically
distributes the computations among the available resources. An important key aspect of
Apache Spark is the possibility to run batch and streaming analysis on the same platform.
The data is divided into so-called Resilient Distributed Datasets (RDDs). Due to their
distributed nature, the RDDs are able to recover automatically from a node failure. By
splitting the data into RDDs, a mini batching is performed. This leads to a higher latency
compared to Flink (focus on streaming and not efficient batching) which is one reason
why the latter was chosen for the implementation in this thesis.

The streaming analytics engine is used to implement five different functionalities. First,
Spark Streaming is used to ensure the basic flow of data. Secondly, data pre-processing
is to be ensured. This step is mainly concerned with handling missing values and cod-
ing categorical values. The categorical values are converted into a numeric value. It is
used describes the predefined probability with which the category is associated with a
fraudulent transaction. These probabilities are calculated from historical data and are
stored in a dictionary. [15] refer to the good experiences of the industry partner regarding
the efficiency of such a pre-processing. The chosen method is a kind of cascade gener-
alization approach [38] in which advanced, naive classifiers are used as input for more
powerful classifiers. To counter the the possibility of concept drift in the procedure, they
suggest updating the dictionary whenever a new batch of labels is received. The third
area comprises feature engineering. Here, the required aggregates are to be calculated
using the historical data in the Cassandra database [39]. These include the maximum,
minimum, count and average of relevant numerical values such as the transaction amount.
As a reference to their strategy for aggregating the relevant features, the authors refer to
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the approach presented in [40]. Fourth, the online classification of incoming transactions
based on the latest classification model is discussed. Once the classification is done, the
system updates a dashboard that shows a priority list of transaction alerts based on the
calculated risk. Finally, the last Section of the work is dedicated to storing the data and
aggregates in a Cassandra table. This table is then periodically used for training the
machine learning engine.

The experiments were subsequently performed on a cluster of 10 machines, each with
24 cores and 80GB RAM. A data set containing transactions from the last 40 days was
used as a test. It includes slightly more than 8 million transactions from almost 2 million
cardholders. The individual records each consist of 18 descriptive features and a fraud
/ non-fraud label. The feature engineering step generates 17 additional features from
weekly windows. The Spark batch duration was set to 240 seconds and the data rate to
100 transactions per second. The tests were performed with 25, 35 and 45 Spark executors
respectively. With a batch duration of 240 seconds and a rate of 100 transactions per
second, this results in 24000 data records in one batch.

Figure 3.2: SCARFF Evaluation by [15]

An interesting characteristic is the splitting of the operations depicted in Fig. 3.2 into
an initialization and fully operational part. This approach will also play an important
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role in the present work. The streaming system first has to warm up and reach a steady
state in which not only values have to be added to the state, but also values get removed.
Up to this point, a continuous slowdown of the processing time will be noticeable, as the
overall amount of data to process increases. As can be seen from the graph in Fig. 3.2,
the processing time for 25 executors is slower than the batch time. This leads to an
accumulation of data to be processed, which in turn can lead to a failing of the application
as more and more data accumulates. When increasing the executors to 35 and 45, the
performance is increased and no pile up should occur.

However, as noted by [15], increasing the number of executors beyond a certain amount
does not significantly increase performance. As explained in the paper, this is due to the
map-reduce process, which becomes too expensive after a certain point. It is stated that
the effort of shuffling the data between the executors outweighs the gain of the divide
and conquer approach. Internal parameter tuning is mentioned as a possible optimization
approach. For example, it is possible to increase the batch duration time. However, this
can lead to two potential problems. First, the algorithm is designed in such a way that
a batch can only access the previous values at a time. If there are two transactions of
the same card in a batch, the information of the first transaction cannot be used for the
second transaction. This reduces the precision of the feature calculation. The second
problem is related to a possible delay of the alerts that are generated due to the longer
batch duration. However, this can be neglected due to the manual intervention of an
agent in the fraud case. Finally, the authors conclude that their solution has shown to
work robustly up to 200 transactions per second, which is an advance compared to the
2.4 transactions per second of the existing system. Also, the 200 transactions per second
is not a hard upper limit, it can be increased by parameter adjustment. The precision
of the classification was subsequently found to be 0.24, which means that for every 100
alerts reported, 24 were correct. The authors identified the interaction of various tools
in a platform as well as the internal parameters, which have a major influence on the
performance of the overall solution, as a problem. For the present work, processing the
live data set in batches is certainly not an optimal solution. Results have to be delivered in
a few milliseconds, which contradicts the rather large batch duration. Also, the required
calculations as well as the window lengths and data sets are much more complex and
larger in size. Thus, the performance of the presented approach is certainly improvable
and not directly applicable for the needs of the present work. Nevertheless, the separation
between a bootstrap and a live phase could be taken over as an idea for future work. This
way, the initial roll-up of the history could be done in a batch mode. Afterwards, the
results would be picked up by a live streaming job and the calculations would continue
from this initial state.

3.1.2 StreamING Machine Learning Models: How ING Adds
Fraud Detection Models at Runtime with Apache Flink

The work presented by [11] was developed in collaboration with the ING Bank [41]. The
ING Bank has over 36 million customers in over 40 countries. 9 million of these customers
are located in the Netherlands where ING handles up to 1 million transactions per day.
[11] state that fraudsters are using increasingly sophisticated strategies to obtain money.
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The emergence of such new strategies pose an increasing amount of problems for rule-
based systems. These systems only work if one knows which fraud patterns to expect
in the first place. Possible new patterns can be overlooked. An example of such an
attack is the attack of a group called Carbanak [42], which caused Automated Teller
Machines (ATM) to dispense money at a set time. The money could then be collected
by accomplices. This shows how important it is for financial institutions to have risk
systems in place that are able to react immediately to previously unknown threats. [11]
identified three goals that their application should fulfill. First, it should be possible to
support a range of machine learning models. It should support rule based alerting as well
as scoring based machine learning models. Second, the architecture should be built in
such a way that it can be deployed in different countries and departments. Even if the
underlying infrastructure differs. Finally, business users should be able to make changes
to the models and update them. No downtime or re-deployments should be necessary to
implement new rules.

The support for a range of machine learning models is achieved by separating them
into an online and offline domain. As depicted in Fig. 3.3, analysts work with tools such
as Knime [43] and Apache Spark [36] to create fraud detection models. These models are
then streamed into Flink and used to score events in real time. To transfer the models
between the off- and online environment the Persistent Model Markup Language (PMML)
[44] is used. It is described by [11] as an XML based format which allows to store machine
leaning models. It is a de-facto standard and is offered as an export format by many tools
that data scientists use for model training. In the online environment, these models are
then streamed as Kafka events into Flink control streams and broadcast to a model scoring
operator. In the scoring operator these models are parsed into objects and stored in the
state. The feature sets are then passed to the models and the result is output to a stream.

Figure 3.3: On- and Offline Environment as Shown by [11]

The support for deployment to different environments is ensured with the Kafka-in
and Kafka-out architecture which is depicted in Fig. 3.4. This means that the input comes
from various sources such as the banking website, the banking app or other applications.
These events are consumed by the Flink job and transformed into features. These features
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then serve as input for the model. The problem here is that event schemes change and the
Flink job cannot be redeployed for every change. As a solution to this problem, a second
Flink job was added. According to [11], the so-called pre-processor has three requirements
that it should cover.

• Events should be filtered out which are not needed for the feature extraction.

• Multiple raw events are aggregated. An example is the aggregation of web clicks to
a single business event.

• It consolidates events from all input topics with different schemes into a single
business event topic with a common scheme.

Figure 3.4: Decoupling of Pre-Processing and Feature Extraction as Shown by [11]

The goal of allowing instant changes without downtime is to enable normal analysts
to fix potential vulnerabilities in rule-based models without having to redeploy. However,
it is not only necessary to be able to deploy new PMML models. Feature extraction
must also be user definable. As a solution for this a Domain Specific Language (DSL)
[45] was introduced. It allows a user to describe the feature extraction process and to
deploy it together with the PMML file. The DSL offers the option to defined which
information must be stored by the event. Derived from this, it is also determined which
key is extracted. Furthermore, it enables to define how the feature is calculated based
on the key and the event and how the mapping between the feature set and the model is
established.

The last step to be clarified is the ingestion of the models and definitions into the correct
operators. [11] describes the process as follows. First, users save their files to the version
control system. Then they are pulled by a process and pushed into a specified Kafka
topic. From there they are picked up by an operator, parsed and forwarded via broadcast
to the other relevant operators.
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The approach presented includes some exciting concepts. The separation into an on
and offline environment will also be relevant for the present work at a later stage. The
decoupling of modeling and more complex development work makes sense from a business
perspective. Furthermore, the second and third topic contains important inputs to be
considered for the present project. The magnitude of the processed data is certainly
larger in the ING case, although it is not disclosed how many calculated features are
ultimately involved. However, this is to be expected due to the business secrecy. Next,
a closer look will be taken at the split join pattern also included in [11]. It will find an
immediate application in the present work.

3.2 Flink Split Join Pattern

In 2017, [41] introduced a split join pattern for Flink in the work described in 3.1.2. [11]
describes the problem that an event in Flink can potentially contain multiple foreign keys,
such as customer number, card number, or account number, which should be aggregated
independently but merged back together at the end. The same is true for different aggre-
gation or window types that are different but should form a single output record. Another
use case is the combination of the aggregated values with the initial event at the end of a
pipeline. The problem is that in Flink the so-called keyed stream is based on a single key.
Thus, information can only be enriched based on a single key. The solution elaborated by
[11] is to extract the different keys from the event and create an individual record for each
key. Based on the extracted values of the different keys they end up on the nodes which
contain the state of the corresponding keys. The problem is that the different records
of the same event are now on different nodes of the cluster. However, the desired state
would be that they are all on the same node to subsequently assemble the feature set.
[11] proposes to initially assign a random event id to each event and attach it as payload.
Once all aggregations are done on the foreign keys, the events are keyed again based on
the initially assigned event id. Since all formerly split elements of the event now end up
on the same node again, they can be combined. This process is visualized in Fig. 3.5.
When splitting, the streams are divided into different sub-streams. The subsequent join
operator then waits until a result has been received from all inputs. Finally, it forwards
the combined record as output.

The pattern works without issues for smaller areas in a job where all extracted keys
approximately have the same duration until a record is emitted. However, if the ranges
are extended, it can happen that events pile up in the subsequent join operator which
can lead to a congestion. In the present work this was especially the case when different
window types were combined. It could happen that in the worst case an event to be joined
had to wait for the maximum window length of 392 days. Another important topic for
the present work was the window slicing introduced by [10]. It introduces a two-stage
algorithm for windowing that relies on combining small slices into bigger time-frames.
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Figure 3.5: Split Join Pattern as Introduced by [11]

3.3 Window Slicing

As pointed out in the previous sections, the work of [10] and [46] highlights that overlap-
ping or concurrent aggregations of windows lead to inefficiencies due to redundant com-
putations. This has also been noted by [47, 48, 49] and corresponding issues have been
created for the Flink developers. Accordingly, this work aims to provide a general solu-
tion that not only improves performance but also improves applicability to window types,
aggregation functions, and out-of-order processing. [10] emphasize that the database
community is working on aggregation techniques for overlapping windows [50, 51]. The
focus is on calculating partial aggregations for overlapping parts and then pulling them
together. According to [10] these techniques are not widely used for two reasons. First,
the literature for streaming window aggregation is fragmented and second, each technique
has different assumptions and limitations. As a consequence, it is not clear to researchers
and practitioners under which conditions which technique can be applied.

Therefore, the envisioned solution should be applicable to different types of aggregation
workloads. At the same time, the operator should be as efficient as specific technolo-
gies that support only selected workloads. As a first contribution, the paper provides a
workload characterization of existing specialized window aggregation types. These char-
acteristics are:

• window types (e.g., sliding, session, tumbling)

• windowing measures (e.g., time or tuple-count)

• aggregate functions (e.g., associative, holistic)

• stream order

The classification of existing techniques based on their concepts and use cases is achieved
through an extensive literature research.
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The second contribution of the paper is related to stream slicing. It was first introduced by
[46] and describes the splitting of a stream into smaller parts. The so-called slices. These
partial aggregates are then shared by all queries and window types, allowing more efficient
storage and processing of windows. The general idea of the stream slicing introduced by
[46] is visualized in Fig. 3.6. It shows the division of a stream into different slices, which
are then combined into windows. Individual slices can be reused for different windows.

Figure 3.6: Stream Slicing Introduced by [46]

The general window slicing of [10] does not only provide the slicing itself. Specific work-
load character styles determine the costs of operations and how often they are executed.
Depending on the character style, either the individual tuples are cached or the number
of slices that are created, saved and recalculated are minimized. The algorithm automat-
ically decides how to handle the incoming stream most efficiently and adapts its internal
handling of slices and aggregations accordingly. The general architecture of stream slicing
is visualized in Fig. 3.7 and works as follows. Users define their queries in a high-level
language such as stream SQL or a functional API. The query translator then analyzes
the structure of the query and the characteristics of the input stream. Based on this,
the slicing technique automatically adapts to the given characteristics. It is also decided
whether individual tuples have to be cached or omitted after aggregations. Finally, when
a new query is submitted to the aggregator, a re-evaluation of the applied algorithm is
carried out.

While evaluating the solution the authors showed that their window slicing could increase
the throughput of window discretization and aggregation by an order of magnitude. A
dataset of the Grand Challenge 2013 [52], which contains sensor data generated during
a soccer match, serves as the evaluation basis. It contains about 15000 data points per
second. For a match duration of 90 minutes this results in a data volume of 80’000’000
records. As aggregation functions, a distinction is made between simple summation and
more complex, holistic aggregations such as minimum/maximum and first/last value of
a window. Another difference which must be pointed out is the difference of the data
and key characteristics. In the work of [10] mainly queries with a small key space and
extensive data sets are used. However, for the planned aggregations in the present work
(especially for scenarios 1 and 2), a large key space with sparse data is expected. As a
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Figure 3.7: General Stream Slicing Architecture Introduced by [10]

result, any performance gains from pre-aggregations are less significant. Additionally, the
implemented solution does not work with a state backend but only with an in-memory
structure. Furthermore, the Flink version used is Flink 1.3, which is outdated compared
to the current release 1.12. Therefore, a direct adoption of the library is not possible.
However, slicing itself remains an important component which is also of great relevance
for the present work. If all windows are handled individually, this leads to a huge amount
of duplicated events in the different windows with 1485 envisioned features. A window
slicing and sharing is therefore inevitable. Even though window slicing already offers
great advantages, storing all events in the memory is not suitable. Therefore, another
state backend had to be used. The performance of the RocksDB state backend was
always an important question. Parameter tuning plays a major role for optimization.
The next Section is consequently dedicated to this topic.

3.4 RocksDB Parameter Tuning

In order to understand the tuning of the RocksDB state backend, the general principle
of operation must first be known. RocksDB [21] is described by [35] as a key-value store
implemented as a log-structured merge tree (LMS-tree) [53]. When RocksDB is used as
a state backend, the state to be stored is stored as a serialized byte string either in the
off-heap memory or the local disk. [35] describes the process of adding a keyed state as
follows. The entry to be added is mapped to a column family which can be compared
to a table in a traditional database. As described above, the keys and values are stored
as serialized byte strings. This means that a de/serialization must take place for every
read and write operation. This leads to reduced performance compared to the in-memory
state backend of Flink.

However, RocksDB makes up for the performance losses with its other advantages. It
is not affected by the garbage collector and is the only option that allows incremental
Checkpointing. The size of the state is also only limited by the size of the hard disk
and not by the memory. Fig. 3.8 depicts the basic functionality of the read and write
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operation in RocksDB. A write operation stores its data in the currently active memory
table. When such a memory table is full, it is converted to a read-only table and replaced
by a new one. The read only tables are then periodically stored by a background process
in read only files sorted by key. These unchangeable tables (SSTables) are then compacted
in the background by a multiway merge.

Figure 3.8: Basic Read/Write in RocksDB According to [35]

Read operations in RocksDB access the first active memory table that responds to a
request. If the key is found, the read only memory table is searched from the most recent
to the oldest value. If the key is not found, the operation accesses the SSTables. They are
either fetched from the block cache (i.e., uncompressed table files) or, in the worst case,
read from the disk.

It seems clear that it makes a big difference in which structures the searched values are
stored and that it is not good from a performance point of view to have to access the
disc for read operations. The list of parameter tuning options mentioned in [35] is not
exhaustive, but it lists three important points that can be taken as a starting point to
make resource utilisation more efficient.

• state.backend.rocksdb.writebuffer.size controls the maximum size of the mem-
ory tables in RocksDB. This setting will also increase memory usage. According
to [4] this size is set to 64 MB by default. Adjusting this parameter can reduce
the impact of write operations. However, at the same time pressure is built up on
the upper levels as larger amounts of data have to be handled in the subsequent
compactions. Therefore, it is recommended to adjust this parameter only in combi-
nation with the compaction parameters. These parameters regulate, among others,
the interval at which the compactions are carried out.
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• state.backend.rocksdb.writebuffer.count controls how many memory tables are
held until they are flushed to the local disk as SSTables. This is the maximum
number of read only tables in the memory.

• state.backend.rocksdb.writebuffer.number-to-merge is mentioned by [4] and
controls the minimum number of memory tables it needs before performing a flush.
By default this value is set to 1. If it is set to two, a flush is only triggered when two
such immutable tables are available. This allows more changes to be noted before
a flush. Tests carried out by [4] have shown that the best performance is achieved
when setting the value to 2 or 3.

• state.backend.rocksdb.block.blocksize represents the actual block size. This is
set to 4KB by default. According to [4] it is recommended to increase this value
to 32KB in productive environments. However, this setting should be increased
together with the block cache size. Otherwise, the number of blocks in the cache
is reduced, which in turn has a bad effect on the read times.

• state.backend.rocksdb.block.cache-size represents the maximum number of cached
and uncompressed blocks in the memory. As this number grows, so will the mem-
ory size, but the advantage is that less disk access will be needed. In addition, a
specified level of memory can be set. The size is set to 8MB by default. However,
[4] recommends setting this size to 128 MB or even 256 MB to lower the needed
time for reading operations significantly.

• state.backend.rocksdb.thread.num controls the paralellism of background flush-
ing and compaction. The read and write operations are carried out directly in
RocksDB. However, the flushing from memory to the local disk and the compact-
ing are carried out in background threads. In a machine with multiple CPUs, [21]
recommends increasing this parameter as it is too low by default.

Another parameter that has a direct influence on RocksDB is the Flink managed memory
which is allocated as native memory (off-heap). It can be set by configuring the taskman-
ager.memory.managed.size. As stated by [54], RocksDB limits the native memory allo-
cation to the size of the managed memory. Therefore, increasing this parameter also in-
creases the memory RocksDB has at its disposal to store state. In the worst case scenario,
if the RocksDB memory control is disabled, TaskManagers can be killed in containerized
deployments when RocksDB allocates more memory than the requests container size.

With the help of these parameter adjustments, it should be possible to observe an increase
in the performance of the RocksDB state backend.

The last Chapter provided an introduction to related work and concepts. Especially
the slicing technique and split/join pattern will find direct application in the present
thesis. Next, chapter 4 is the dedicated to the design decisions taken and elaborates the
optimization approaches chosen.



Chapter 4

Design

The following Chapter presents the design decisions for the optimization strategies to
be implemented. The problems of the baseline implementation mentioned in Section 2.5
are addressed and the potential solutions discussed. It is important to note that the
optimization strategies differ depending on the key cardinalities and the overall complexity
of a given Flink job. A slicing technique does not have the same significance when applied
to windows with sparse, respectively extensive data. Also, an I/O optimization is more
efficient when there is a large number of parallel tasks generating I/O. The remainder of
this Chapter is structured as follows. First, a measurement strategy is designed to identify
the effective latencies and congestion in the existing system. Second, a solution for the high
number of windows and keys in the state backend has to be found. In the third Section, the
I/O between the tasks as well as the shuffle operations between the individual operators
are looked at. Lastly, approaches to optimize the used algorithms will be introduced.
These include the further reduction of the number of parallel window aggregations, the
handling of streams with different output behaviour as well as the continuously sliding
window algorithms.

4.1 Metrics

Metrics are of critical importance when assessing the performance of a streaming system.
To make the measurement of values in the individual pipelines as convenient as possible, a
systematic approach is used. Fig. 4.1 visualizes an example job which is used to calculate
three different windows and combine them with the raw event. The goal regarding the
metrics is to measure the complete duration of the window aggregation and the split/join
operation.

A distinction is made between inter and intra operator measurements, which must meet
the following requirements:

• Perform measurements on ProcessFunction level. Detailed insights shall be pro-
vided regarding the duration of single operations inside the functions.

49
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• It should be possible to measure how much time individual events spend between
operations when being transferred or buffered.

For the second requirement, the latency measurement provided by Flink cannot be used
directly. As described in Section 2.4.8, it measures latency by sending a special La-

tencyMarker event through the pipeline. Thus, it measures the pure I/O time between
operators, but not how much time is used inside of the operators for computations.

Figure 4.1: High-Level Overview of The Two Additional Measurement Types

In Section 2.4.8 the different metric types were listed. For the additional metrics to
be implemented, histograms are used. These provide values per time unit divided into
confidence percentiles. Thus, statements can be made about the probability that the
values do not exceed a certain limit.

An interface needs to be implemented for the detailed measurements in the Process-

Function. It should offer the possibility to initialize the measurement with histograms
for pre-defined categories. The categories can be defined by the developer and passed as a
parameter at initialization. A separate histogram is then created for each entry in the list.
To start measurements for a category, the function startCategory(category: String)

will have to be called. For example, startCategory("StateInteraction" ) can be used
to start a measurement of a state interaction (e.g., read, write, delete). This time measure-
ment is subsequently interrupted by the next call to startCategory("somethingElse" ),
which in turn starts the new category called ”somethingElse” If the category ”StateInter-
action” is started a second time, the newly measured value is combined with the existing
one. Thus, a holistic picture of the elapsed time of a category in a function is achieved.
Finally, the measurements must be terminated with a call to the report() function. This
call closes the currently active category and updates the histograms with the accumulated
values.

The second type of measurement should make it possible to measure the duration between
two points of a job. For this purpose, each event is enriched with a timestamp. This
timestamp can be initialized and updated with the help of a map() function. At a desired
point, a ProcessFunction implemented specifically for this purpose can be used to read
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this timestamp and write it to a histogram. Another version of this measurement is
the HotTrack measurement. An ingestionTimestamp is set on each record during the
incorporation of the corresponding event into the pipeline. The value corresponds to
the current time in nanoseconds. If this metric is of interest, a ProcessFunction can
be inserted at the end of the job, which extracts the ingestion timestamp, subtracts the
current nano time and stores it into a histogram. The exact details of the implementation
are explained in Section 5.1.

In this Section, it was described how the additional measurement methods will be ap-
proached. Consequently, this Chapter will proceed with the optimization strategies re-
garding the operational state.

4.2 Operational State Optimizations

The optimization of the operational state will be divided into two areas. First, possibilities
are elaborated how the number of parallel windows as well as active keys in the state
backend can be reduced. This is due to the fact that a larger key and data space has
an influence on the performance. In the second step, the potential combination of the
RocksDB state backend and a manually managed Heap data structure for state storage
depending on the cardinalities of certain keys is elaborated.

4.2.1 Reduction of Number of Parallel Windows

The reduction of concurrently active windows is accompanied by a reduction of the key and
data space. The fewer windows are kept active, the fewer resources are consumed. This
Section strongly parallels Section 4.3.2. By reducing the number of concurrent windows,
the number of active tasks is also reduced, which in turn affects the latency caused by the
I/O.

In the baseline implementation, windowing was implemented as shown in Fig. 4.2. For
the basic features, three different aggregators are needed. These are the statistical mo-
mentum (e.g., sum, mean, standard deviation, skewness), the unique count as well as the
oldest/recent aggregates. These aggregation functions have to be repeated for each key
domain and window length. Fig. 4.2 shows a section of the aggregation by card id and the
required operators for a 7-day sliding window. This pattern is repeated multiple times.
First, one such block is needed per window length. Thus, there are at least four (i.e.,
day zero, 7-days, 28-days, 392-days) such blocks per aggregation function (e.g., statistical
momentums, unique count, oldest/recent). This number is multiplied by the number of
key domains. Finally, combined with all associated operators, an execution plan with
approximately 1800 nodes results.

In Fig. 4.2 it can be seen that each window has its own separate area in the job. This means
that in each of these blocks all events must be stored and aggregated separately. Due to
the business requirement, daily sliding 7, 28 and 392 day windows are used. Consequently,
every day new windows are created to which the records of up to 392 days in the past are
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Figure 4.2: Momentum Aggregate Per CardId With a 7 Days Sliding Window

assigned to. For scenario 1 (i.e., key by card id), with four different window lengths and
three different aggregation functions, 12 independent, parallel windows are created on a
daily basis. For scenario 2 this number becomes even larger due to the multiplication of
keys.

The proposed solution for this issue refers to the fact that a two-stage windowing algorithm
can be used. Instead of implementing daily sliding windows, daily tumbling windows can
be created in a preliminary stage. These daily tumbling windows are then aggregated
to larger windows in a second stage. Thus, individual windows (i.e., containing up to
392-days) are no longer created each day, but only one window per day per aggregation
function and key domain. This one window is then used by the second aggregation level
to form the 7, 28 and 392 daily sliding windows. Fig. 4.3 compares this approach with
the baseline implementation.

Another potential optimization strategy related to operational state is the switch between
the RocksDB state backend and a manually managed Heap data structure while still being
able to use the Checkpointing API provided by Flink. This approach is introduced in more
detail in Section 4.2.2.

4.2.2 Manually Managed State on Heap Data Structures

For certain keys it is feasible that state is kept in-memory. This speeds up the access times
as it is not necessary to access a state backend for each record. As is should still be possible
to benefit from the Checkpointing API provided by Flink, the CheckpointedFunction

interface has to be implemented. It forces the developer to implement the two functions
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Figure 4.3: Comparison of Baseline And Two Stage Windowing

snapshotState and initializeState. The Context provided in those functions allow
access to the state backend. This way is not only possible to store and initialize the
operator state, but also the keyed state. A HashMap structure can now be created on the
Heap. All operations involving intermediate state will work with this Heap data structure.
As soon as the snapshotState function is called, the data inside of the HashMap structure
is transferred into a List and stored in the state backend. The detailed implementation
and the chosen state primitive is further described in Section 5.2. In case of a fresh start,
the Heap structure is initialized. In case of a restart, the Checkpointed data stored in the
state backend is copied to the in-memory structure.

Important for the implementation is the knowledge about the key and data cardinalities.
When storing state in an in-memory structure, special care must be taken to ensure that
the data does not exceed the allocated resources. In a first step, this approach can be
implemented when the developer is sure that the data will fit inside of the memory. In a
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second step, it can be considered to count the number of records and the number of keys
with the help of a metric counter. Until a certain threshold is not reached, data is saved
in the Heap structure. As soon is it grows too big, an automatic switch to the RocksDB
state backend is carried out.

The adjustments mentioned in the last sections are planned with respect to the operational
state optimizations. The next Section will focus on potential solutions to optimize the
I/O.

4.3 I/O Optimizations

After a detailed analysis of the baseline implementation, it was found that not only the
high number of operators and tasks, but also their linkages impact the overall performance.
As already explained in Section 2.4.7, there is a distinction between the hash, forward and
rebalance partitioners, which represent the links between the individual operators. They
are used to determine how data is forwarded from the instances of an operator to the next
one. With a forward partitioner, the data is passed from one instance of an operator to
the exact same instance of the following operator. If a hash partitoner is present, they
are distributed among the instances of the subsequent operator based on their hash value.
In case of a rebalance, any (potentially skewed) data is distributed with a round-robin
scheme (cf. [31]. The use of a hash or rebalance partitioner between the operators causes
the data to be de/serialized. However, this procedure is not necessary in all cases, which
is used for the following optimization technique.

Another topic is the de/serialization of data between individual tasks. The conditions
described in Listing 2.8 indicate when an existing operator chain is interrupted and
a new task begins. For the baseline implementation, the condition downStreamVer-

tex.getInEdges().size() == 1 is most important. It states that an operator may only
be chained if it has one input at a time. However, this is not the case when using the split
join pattern in the baseline implementation.

In the following Section, the approach to remove unnecessary hash partitioners is de-
scribed. Afterwards, the design decisions made to introduce the approach to extend the
task chaining is shown.

4.3.1 Transforming Redundant Shuffle Operations

In Flink, the return type after applying a transformation on a KeyedStream is a DataS-

tream. If two successive operations (on the same key attributes) are to be performed on
a KeyedStream (e.g., two-stage windowing algorithm), the stream must be keyed again.
This is done even though the stream would actually already be correctly partitioned. How-
ever, if the key domain is not changed, no re-partitioning is necessary. This behaviour can
be remedied by the Flink function reinterpretAsKeyedStream. It allows to reinterpret a
DataStream into a KeyedStream without performing the effective keyBy operation. How-
ever, the documentation [8] states the following point. It is important to note that for
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each partition of the base stream all keys of the records must be partitioned exactly the
same as if they were created by a keyBy. This will especially be important for handling
the delayed streams introduced in Section 4.4.2.

Fig. 4.4 shows an execution plan with a large number of redundant shuffle operations
(i.e., hash partitioners). The shuffles that originate from operator 7 are particularly
noticeable. This behaviour is shown as a keyBy is executed right after operator 7. A
potential solution is to add a map operator before operator 7 that does not apply any logic
to the stream but just forwards the records. Also, the keyBy has to be moved just after
this new map operator. Thus, the keyBy moves one position to the left. Then operator 7
is executed which transforms the stream from a KeyedStream into a DataStream. This is
due to the fact that a rehash operation is a virtual operation in Flink, which is in effect
applied to each input of successive operators. The map reduces the number of successive
operations to 1 before the fan-out to the individual successive operations. Afterwards,
a call to reinterpretAsKeyedStream can be used to transform the DataStream into a
KeyedStream again. Finally, all the redundant hash partitioners are omitted.

Figure 4.4: Shuffles That Can be Transformed Into Forwards

It can be stated that a keyBy and thus a shuffle operation only makes sense if the key
domain changes. Otherwise, reinterpretAsKeyedStream can be used if a KeyedStream

is required for further operations. Although the shuffle operations are eliminated, it still
happens that different operators cannot be chained. In some cases, this behaviour can
have a bad influence on the performance. As a result, the next Section is dedicated to the
second problem domain in the I/O area, the task chaining.

4.3.2 Task Chaining

The overall idea of the extension of the task chaining as described in Section 2.4.7 is to
reduce the de/serialization and I/O effort by reducing the total number of tasks in a Flink
job. Due to the conditions described in Listing 2.8, it is not possible to chain operators
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with two inputs. Not even if the chaining policy is set to Always in the configuration and
a forward partitioner is present.

The goal of this experiment is to prevent tasks from being subdivided as shown in the
JobGraph depicted in Fig. 4.5. It is a representation of the execution plan drawn in
Fig. 4.4. For small jobs, this optimization may seem trivial. However, if the execution
plan of the baseline implementation with 1800 nodes is taken as a reference, the number
of tasks increases rapidly and each new task means de/serialization and I/O effort.

Figure 4.5: Splitting of a Job Into Separate Tasks For Operators With Two Inputs

For the implementation of the task chaining extension, some adjustments have to be made
in the framework itself. The goal is to have the option of specifying an individual task
chaining strategy using the strategy pattern when creating the JobGraph. As stated in
Chapter 2.4.7, the JobGraph creation is on the second level of the transformation of a
program to an execution plan. Due to the closed architecture of Flink in this region, it is
essential to develop a separate implementation of the first and second level of the transfor-
mation. The new implementation of the environment should then provide a function called
setChainingStrategy, which allows to change the chaining via configuration parameters.
This should also enable efficient testing and comparison of the different strategies. Fig. 4.6
visualizes the desired outcome of the different chaining strategy implementations.

The last Section presented the optimization strategies designed to improve the I/O. Con-
sequently, the next Section is dedicated to the algorithmic optimizations.

4.4 Algorithmic Optimizations

The last area to be addressed is the optimization of the used algorithms. First, the
concept of the reduction of the number of parallel windows presented in Section 4.2.1
will be deepened. Afterwards, the handling of delayed streams is discussed. Finally, the
concept of the continuously sliding window algorithm, which is not provided out of the
box by Flink, is elaborated.
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Figure 4.6: Differences Between JobGraph With Original and PoC Chaining Strategy

4.4.1 Reducing Redundant Operators

This approach aims at reducing the high number of parallel operators needed for window-
ing. The beneficiary effects of this optimization are manyfold. On the one hand, parallel
operations on the state backend can be reduced. On the other hand, the I/O can be
reduced due to the overall smaller number of operators and tasks. Also, redundancies in
the code can be prevented by generalizing interfaces.

The operations that are performed on the individual key domains are mostly the same.
The only difference is the data type of the extracted key. Therefore, the approach should
allow a transformation of a key into a generalized form. With the generalization, all needed
key types and combinations (i.e., scenario 1 and 2) can be specified. The algorithm can
be summarized as follows:

1. Extract all keys (per key domain)

2. Convert the keys to common data type

3. Attach the key to a separate copy of the original event

4. Forward (key, event)

By using this process, all key types can be handled in the same pipeline.

However, parallel processing of the windows (cf. green boxes in Fig. 4.7) still takes place.
In the current pipeline, there are three operators used for windowing (i.e., 7, 28, 392 day
windows), which generates de/serialization overhead and state interaction per window
algorithm.

In a second step, the merging of the window aggregations is to be considered as depicted
in Fig. 4.8. The continuously sliding windows are excluded from this optimization because
they are not based on the daily tumbling windows.
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Figure 4.7: Splitting of an Event Into Multiple Events With a Generalized Key

Figure 4.8: Combining The Different Operators Used for Windowing

It should be possible to pass any number of days to the algorithm, reflecting the windows
that need to be aggregated. The operator should then automatically calculate the indi-
vidual time intervals. This process is to be carried out serially. First, the records stored
in the state are divided into distinct time intervals. Afterwards, groups are formed from
the smallest to the largest interval and incrementally rolled up.

For the example visualized in Fig. 4.9, 7, 28 and 392 day windows are to be created. The
events delivered so far are shown on the timeline. The records are divided into distinct
groups according to their time interval. This is done as larger intervals always contain
the smaller ones and thus, a roll-up of the these values can be carried out. After an
interval has been calculated, the corresponding window result is emitted. The windows
of the cascading window aggregation should be configurable. Intervals other than 7, 28,
392 days should be definable without having to change the code.

The great advantage of this method is that the windows are calculated in one go. Thus,
the corresponding MapState containing all events of a key is iterated only once instead of
once per window aggregation. Additionally, the aggregation of the entries is more efficient.
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Figure 4.9: Cascading Window Aggregation Example

This is due to the fact that if the first record of the Flink RocksDB MapState has been
found, the pointer for the following entries is already at the right position. Consequently,
the complexity drops to O(1).

The next approach shows a potential optimization strategy that can be used when multiple
streams with different output behaviour are to be joined together. For example, this will
be necessary when combining the day zero (i.e., one input / one output) and daily sliding
windows (one input / 1 output per day).

4.4.2 Handling Delayed Streams

An important point which is not obvious at first is the handling of time-delayed streams.
Operators can have different output behaviors. An input / output consideration must
be made. The continuously sliding window algorithm generate one output per input.
However, this is not the case with daily (or longer) sliding or tumbling windows. Here,
many events are bundled and normally output as a single record when the end of the time
interval is reached.

However, if events from a non-time-delayed route (i.e., day zero windows) have to be
combined, this does not work without further ado. On the one hand, if the split join
pattern is used, the records can only be sent further down the stream when all events
have arrived in the join operator. However, this does not correspond to the desired
result. It also causes the events in the baseline implementation to jam at the operator
that was supposed to do the joining of the split data. This happens because the data
on the ”fast” route was written almost immediately to the state of the joining operator
where it had to wait for the results of the daily sliding windows. On the other hand, if a
union operation is used, the different records must still be combined and pivoted into an
output record. As a potential solution, a CoProcessFunction can be implemented. As
described in Section 2.4.5, it contains two inputs and thus, two processEvent functions.
ProcessEvent1() represents the ”fast” route and is called when an event is delivered on
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Figure 4.10: Delayed Streams Pattern

input 1. ProcessEvent2() is consequently called when a delayed event arrives on the
second input. The architecture of the pattern is visualized in Fig. 4.10. The stream is
split before the operation is performed that causes the time delay (i.e., before the split into
different output behaviours). From then a route flows via the delaying operator into the
subsequent CoProcessFunction as input 2. The other route passes without detours into
the CoProcessFunction as input 1. The function contains, depending upon the use case,
a Value- or MapState which holds the last delivered value(s) of the time-delayed route. If
such a record is output, it is written into the state structure of the CoProcessFunction

as the current value. If a ”fast” event is delivered on input 1, the state structure is checked
whether a current value is present or not. If so, it is passed on as the current aggregation
result. Otherwise, a null event is sent on.

With the help of this pattern, a pile-up of events can be prevented, since an output is
always generated for each input. Consequently, it is not necessary to wait 392 days until
a result is available at the end of the pipeline. As a second algorithmic optimization
strategy, the continuously sliding window algorithm is examined in more detail.

4.4.3 Continuously Sliding Windows

The continuously sliding window algorithm should make it possible to keep the last x time
units (e.g., seconds, minutes, hours, days) in a window at any time. The default sliding
or tumbling windows emit a result only at the end of a defined time interval. However,
with the continuously sliding windows, there should only be one window, which slides
with millisecond precision. This concept is illustrated in Fig. 4.11. The requirements can
be specified as follows.

• It should be possible to define a dynamic window length, which contains the current
result of the window length with millisecond precision.

• When a new event is added to the window, it should be automatically added to the
state of the window.
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Figure 4.11: Comparison Tumbling And Continuously Sliding Windows

• If an event is no longer in the current time to be examined, it shall be automatically
removed from the window.

The above requirements imply some challenges which have to be addressed. Adding
events to such a window is trivial. However, extracting them is not as it implies that all
events belonging to the window must be cached. Moreover, not all incremental algorithms
support an inverse operation, which in turn makes it necessary to recompute the individual
values.

One Stage Algorithm

A first idea which could be implemented with standard Flink means relies on a Process-

Function. The approach is visualized on the left side of Fig. 4.12. When a new event
arrives, it is ingested in the ProcessFunction, added to a MapState, aggregated with the
pre-existing values and emitted as a result. Finally, a timer is set based on the duration
for which the event is relevant plus the event time. When this timer is due, the event will
be removed from the state. Even though the complexity of the aggregation per event is
O(n2), this approach can be used for keys that contain little data per time interval.
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Two Stage Algorithm

To reduce the impact of the incremental re-aggregation, it was decided to introduce a
two-stage window algorithm (cf. right side of Fig. 4.12). In general, the process should
work as follows. The events are first divided into smaller tumbling windows (e.g., 30
minutes) (cf. box Windowing). These smaller windows in turn are collected in a second
stage by a ProcessFunction (cf. box Rollup) and stored in a MapState structure. If one
of these windows is now either added or renewed, only the pre-aggregated windows have
to be re-aggregated, but not all events of the complete time interval.

If a new event is delivered, an event time timer is registered in the Trigger, which defines
when the event must be removed from the window again. Afterwards, the event is stored
in the MapState structure of the ProcessFunction (cf. box Windowing). These values
are incrementally aggregated and passed on as intermediate window result.

Subsequently, the intermediate window results are stored in a MapState structure of
a second ProcessFunction (cf. box Rollup). The new intermediate window result is
incrementally rolled up with the existing window results in the MapState structure and
returned as the result of the continuously sliding window at this exact point in time. As
the intermediate window results get outdated at some point, for every window a removal
timer is registered as soon as it appears for the first time. This way no state bloat can
occur. If an event is delivered, for which a window was already emitted, the existing
intermediate window result is overwritten.

Figure 4.12: Simple And Slicing Continuously Sliding Windows

However, both variants are not optimal in terms of complexity of the aggregation. For each
new event, either all events of the time interval, or all events of the window, respectively all
intermediate window results must be aggregated. The reason why a re-aggregation of the
window content is necessary is that no numerically stable subtraction operation is given
for the required holistic aggregation algorithms. If values are repeatedly calculated to and
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from a result, a small error can accumulate and finally, lie far away from the actual value.
This error must be isolated and eliminated. A possible solution is the removing the old
intermediate results and re-aggregating all remaining values. The following algorithm for
continuously sliding windows has the potential to lower the impact of the re-aggregation
each time a value has to be removed from a window.

Reverse Aggregation

The two-stage continuously sliding window algorithm mentioned in Section 4.4.3 assumes
that a re-aggregation of the cached events of an intermediate window result must be
performed with each added and removed record. This is due to the fact that no numerical
stable inverse operation is available for the required aggregations.

Assumed that at a certain point in time no more events are added to a window, but only
removed, the algorithm visualized in Fig. 4.13 can be implemented.

In a first phase, all events are handled the same way as described in Section 4.4.3. When
point in time tx is reached, all values are written to another MapState structure in reverse
order. Furthermore, the values are incrementally aggregated and stored together with the
timestamp at which the corresponding event would have to be removed. Afterwards, as
soon as an event is removed from the slice, the already aggregated value can be output.
Therefore, a re-aggregation for each removed event is no longer necessary.

Figure 4.13: Comparison Between Incremental and Reversed Removal of Events in Slices

The design decisions made in this Chapter should allow the baseline implementation to
be executed without overloading or congesting the system. The exact implementation
follows in Chapter 5.
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Chapter 5

Implementation

This Chapter discusses the implementation of the design decisions made in Chapter 4.
The remainder of the Chapter is structured as follows. First, the implementation of the
custom metrics is discussed. This is followed by explanations of the operational state
optimizations. Namely, the reduction of the number of parallel windows and the switch
between the RocksDB state backend and a manually managed Heap data structure for
state storage. The third topic focuses on the I/O optimizations. The transformation of
redundant shuffle operations and the extension of the task chaining are discussed. Finally,
the algorithmic optimizations are described. These include the handling of streams with
different output behaviour and the continuously sliding window algorithms.

5.1 Metrics

In Section 4.1, the additionally required metrics were divided into intra and inter operator
measurements. The former is intended to provide a detailed insight into the individual
operators, while the latter is used to measure the duration between two points in the
job. The following Section will go into more detail on how these two requirements were
implemented.

5.1.1 Intra-Operator Measurements

The structure of the intra operator measurements relies on the getRuntimeContext func-
tion of the RichFunction interface. It allows to interact with metrics using the function
context.getMetricGroup().

To enable a user to perform categorically subdivided measurements in a ProcessFunc-

tion, the in Listing 5.1 depicted trait was implemented. The LatencyHistogram class
is used as an example of the actual implementation of the trait. The open function seen
in Listing 5.2 is called when the MetricsReporter is initialized. This function handles
the creation of the individual metrics. The operator name and the MetricGroup of the

65
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corresponding RuntimeContext must be passed as parameters for the identification of
the newly registered metrics. Furthermore, the list of categories and list of ratios of the
categories can be provided. For the ratios, a list of tuples is required, where the first
category of the tuple is divided by the second one. Subsequently, the function start-

Category (cf. Listing 5.3) can be used to start one of the previously defined categories.
The other two functions startCustomDuration and endCustomDuration can be used to
make overall measurements independent of the categories. Finally, if the report function
(cf. Listing 5.4) is called, the histograms are updated with the measured values.

1 t r a i t Metr icsReport {
2 de f r e s e t ( )
3
4 de f open (
5 operatorName : S t r ing
6 , metricGroup : MetricGroup
7 , c a t e g o r i e s : L i s t [ S t r ing ]
8 , r a t i o s : L i s t [ ( Str ing , S t r ing ) ]
9 )
10
11 de f startCustomDuration ( )
12
13 de f endCustomDuration ( )
14
15 de f s ta r tCategory ( category : S t r ing )
16
17 de f r epo r t ( )
18 }

Listing 5.1: MetricsReporter Trait Used For Intra-Operator Measurements

For each element in the list of categories to be created, a histogram is initialized which
contains the operator name and the category itself as identification. Furthermore, the
slide size of the histogram WindowReservoir can be defined. It determines the value
capacity of the histogram. The same initialization process is carried out for the ratios.
The only difference is that the two parts of the ratio tuple are taken as the name of the
metric.

1 ove r r i d e de f open ( operatorName : Str ing , metricGroup : MetricGroup ,
categoriesToAdd : L i s t [ S t r ing ] , r a t i o s : L i s t [ ( Str ing , S t r ing ) ] ) = {

2
3 categoriesToAdd . f o r each {
4 x => {
5 c a t e g o r i e s = c a t e g o r i e s+(x −>

metricGroupWithSubGroup . histogram ( s ”${operatorName} $ {x} ” , new
DropwizardHistogramWrapper (new Histogram (new
SlidingWindowReservoir (100) ) ) . as InstanceOf [ Histogram ] ) )

6 }
7 }
8 }

Listing 5.2: Implementation of open() Function
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If a new category is to be started, the system first checks whether another category is
already active. If this is the case, the active category is terminated and the duration of the
category measured. It is checked if a measurement for this category already exists. If so,
the two values are combined. Otherwise, only the new measurement is stored. Afterwards,
the currently active element is set to the new category. This process is depicted in Fig. 5.3.

1 ove r r i d e de f s ta r tCategory ( category : S t r ing ) : Unit = {
2
3 endAndResetActiveElement ( )
4
5 cu r r en t l yAc t i v e = Some( Current lyAct ive ( category , System . nanoTime ( ) ) )
6
7 }

Listing 5.3: Implementation of startCategory(category: String) Function

When the report function (cf. 5.4) is called, the currently active category is terminated.
For each category, the collected values are retrieved and the histogram is updated. The
same procedure is carried out for the ratios, except that the two values belonging to the
ratio are divided by each other.

1 ove r r i d e de f r epo r t ( ) : Unit = {
2
3 endAndResetActiveElement ( )
4
5 c a t e g o r i e s . f o r each {
6 x => {
7 va l currentHistogram = x
8 va l currentValue = valuesByCategory . get ( x . 1 )
9 currentValue .map( value => currentHistogram . 2 . update ( va lue ) )

10 }
11 }
12 r e s e t
13 }

Listing 5.4: Implementation of report() Function

With the help of these functions, it is possible to instantiate an implementation of the
MetricsReporter in a RichFunction to perform categorical measurements. The next
step is to look at the inter operator measurements.

5.1.2 Inter-Operator Measurements

Two options were introduced for the inter operator measurements. On the one hand, the
duration from the ingestion of an event to the end of the pipeline can be measured. For
this purpose, each event is enriched with a MetaInformation object at the beginning of
the job. In this object, not only the event id for a possible split join scenario is stored but
also the ingestion time (i.e., ingestionNanos) and a timestamp which can be updated
(i.e., lastProcessingTs).
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For measuring the total duration, the current nano time of the system is set by default
when creating the MetaInformation. At the end of the job, a last monitoring Process-

Function (e.g., ReportTotalDurationProcessFunction) can be inserted. This operator
contains the instantiation of a MetricsReporter which subtracts the ingestion time from
the current nano time in the ProcessFunction and saves it in a histogram. This way,
the latency of the entire pipeline can be measured.

If the duration between one or more operators is to be measured, the lastProcess-
ingTs timestamp can be used. First, it must be updated by using a map() operator. Sub-
sequently, the ReportProcessingTimeProcessFunction can be inserted at the desired
position in the job. In its open() function, a histogram is initialized. The processEvent

function is then used to subtract the lastProcessingTs value from the current nano
time. The whole process is shown as code in Listing 5.5. An overview of the different
inter-operator measurements is depicted in Fig. 5.1.

1
2 va l withMetaInfo = inputStream . appendMetaInformation ( )
3
4 va l updatedTs = withMetaInfo .map( event =>
5 event . update ( event . metaInformation . copy ( l a s tProc e s s i ngTs =

System . nanoTime ( ) ) )
6 )
7
8 va l applyOps = updatedTs . p roce s s (new SomeOperationsProcessFunction ( ) )
9
10 va l measureTime = applyOps . p roce s s (new

ReportProcess ingTimeProcessFunct ion ( ) )
11 }

Listing 5.5: Updating lastProcessingTs, Applying Operations And Measuring Duration

Figure 5.1: Comparison of Different InterOperator Measurement Types

With the help of the intra and inter operator measurements, more detailed insights into
a running job can be provided. The next step is to take a closer look at the operational
state optimization strategies and their implementation.

5.2 Operational State Optimizations

The state optimizations are mainly concerned with reducing the number active parallel
windows. This is important as the use of a large sliding window size with small slide
parameter is associated with potential issues. For example, for each slide interval, all
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records of the given time period are stored. This means a multiplication of the data that
has to be stored, which has a negative effect on performance. The parallel execution of
the window aggregations also generates de/serialization effort, as the individual windows
need to be combined afterwards. The second optimization regarding operational state
is the situational switch between the RocksDB state backend and a manually managed
Heap data structure if the data and key cardinalities allow it. It is not possible to store
all data in memory. However, for keys that do not expect an extensive amount of data,
this approach can be considered.

5.2.1 Reduction of Number of Parallel Windows

The initial problem that made the reduction of the number of parallel windows necessary
was the duplication of data and state accesses as mentioned in Section 4.2.1. When looking
at the number of features that need to be calculated, multiple parallel running windows
generate a considerable amount of overhead.

Therefore, a two-stage windowing algorithm was introduced that helps with the reduction
of the number of parallel windows. As a first step, the lowest common denominator of
the window size has to be found. Due to the business requirements in the present case,
daily tumbling windows are chosen.

These daily tumbling windows are gathered in a second step by the subsequent Process-
Function and stored in a MapState structure. The key of the MapState is the end time of
the daily tumbling window added to the maximum window length in milliseconds. This is
due to the automatic deletion of the daily tumbling windows from the MapState structure
by a timer as soon as the record is not relevant anymore.

1 //Dai ly Tumbling Windows With an Allowed Lateness o f 28 Days
2 va l tumblingByOneDay = aggregatedTumblingWindowFeatures ( inputStream ,

Time . days (1 ) , Time . days (28) )
3
4 //Aggregation o f Dai ly Tumbling Windows
5 va l d007 = tumblingByOneDay
6 . reKey (x => x . key )
7 . aggregateWindowsBy ( ”AggregateTumblingDailyTo007 ” ,

Time . days (7 ) . t oM i l l i s e c ond s )
8
9 va l d028 = tumblingByOneDay

10 . reKey (x => x . key )
11 . aggregateWindowsBy ( ”AggregateTumblingDailyTo028 ” ,

Time . days (28) . t oM i l l i s e c ond s )
12
13 va l d392 = tumblingByOneDay
14 . reKey (x => x . key )
15 . aggregateWindowsBy ( ”AggregateTumblingDailyTo392 ” ,

Time . days (392) . t oM i l l i s e c ond s )

Listing 5.6: Aggregation of Daily Tumbling Windows
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If the window value already exists in the MapState structure, it is overwritten with the
new one (i.e., late event handling). The output is calculated by aggregating all elements in
the MapState structure. Finally, the timer for the deletion of the daily tumbling window
from the state is registered.

Listing 5.6 presents the usage of the two-step algorithm. First, the incoming events are
divided into the daily tumbling windows. They are accumulated with the existing window
values of the previous days by using the function aggregateWindowsBy. The currently
presented algorithm emits a result once a day for each window (i.e., one input / zero-
to-one output). However, if a window is added that has a different output behaviour
(i.e., one input / one output), the merging of the different output behaviours becomes
more complex. This problem is handled in more detail in Section 5.4.2. The reduction
of the number of parallel windows already takes some pressure off the system. Further
improvements to this issue are presented in Section 5.4.1. The next topic that is discussed
in terms of the state is the switch between the RocksDB state backend and a manually
managed Heap data structure. It allows the user to operate on the Heap while still being
able to benefit from the Flink Checkpointing API.

5.2.2 Manually Managed State on Heap Data Structures

The switch between the RocksDB state backend and a manually managed Heap data
structure allows a user to decide which state store to use based on the expected data
volume of a key. For this, the CheckpointendFunction interface is used. It grants
control over the process that handles the initialization and snapshotting of state in a
stateful function. The CheckpointedFunction interface forces the user to implement the
initializeState and snapshotState functions. InitializeState is used to initialize
the state on startup or when in recovery from a Checkpoint. SnapshotState is called
when a Checkpoint is triggered and a snapshot of the state needs to be generated.

The overall goal of the approach is to enable a user to store values into an in-memory
structure which is still able to benefit from the Checkpointing API provided by Flink.
Thus, the application is still recoverable in case of a failure although values are not
directly stored in a state backend.

As aggregations per key were needed until now, the KeyedStateBackend would be used
to store incoming events or window values. For the present approach, the operator state
has to be used which was introduced in Section 2.4.6. It differs from keyed state in
terms that all records handled by the same operator access the same state. Whereas for
keyed state, each key is separated and has its own state. When using operator state,
different state primitives are available. For the present approach, the ListState and
UnionListState are considered. While the ListState safes a list of the entries per
operator instance, the UnionListState stores a list of all values across all parallel operator
instances. The advantage of the latter is, that in case of a change in parallelism, the
values can be distributed to the correct operator by checking the key group assignment
and subtask index. The ListState will be evenly split and then sent to the different
parallel instances of the operator. Due to the aforementioned advantages in case of a
restore, the UnionListState was chosen as the state primitive.
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Figure 5.2: Algorithm Used For The Manually Managed Heap Data Structure

Fig. 5.2 visualizes the algorithm presented in Listing 5.7. The functions processElement
and onTimer are not discussed in detail as they are not central for the algorithm. Pro-

cessElement is called when a new event is received. It stores the event in the in-memory
HashMap and aggregates it with the already existing values. Finally, the new window
value is output and a timer is set to remove the value from the in-memory state again
in the onTimer function. It is important to note that both functions work with the in-
memory HashMap. No direct operations are performed on the UnionListState. Another
important point is the nesting of the HashMap. As operator state is used, values are not
grouped by key when accessing the state. This task is left to the user. Therefore, the first
level of the HashMap is the grouping by individual keys, the second level is the grouping
by timestamp. This way, when removing a value from the in-memory structure, a search
for the key can be performed. Afterwards, the timestamp to be deleted can be removed
from the second HashMap.

The core of the algorithm is found in the snapshotState and initializeState function.
As stated before, the UnionListState is used. Therefore, when a Checkpoint is triggered,
the in-memory HashMap structure needs to be converted into a List. As to safe all relevant
information, a Tuple3 consisting of the key, timestamp and value itself was used as the
List entry. Afterwards, the newly formed Tuple gets added to the UnionStateList.
The initializeState function is called when initializing the job. This can either be
due to a fresh start or a restore. In case of a fresh start, only the UnionListState

needs to be initialized so it can be used for the Checkpointing. In case of a restore, the
algorithm is more complex. As the UnionListState contains the data of all instances of
an operator, a splitting has to be carried out. Not every operator instance needs to have
all values. To achieve this, the KeyGroupRangeAssignment class was used, which handles
the assignment a given key to a parallel operator index in Flink. For every value in the
list, the assignKeyToParallelOperator function is called. Afterwards, it is checked if
the key belongs to the index of the operator instance. If true, the value is written into
the in-memory HashMap. If not, no action is taken.
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1 c l a s s D0ProcessFunction extends KeyedProcessFunction [KEY, KV, KVW] with
CheckpointedFunction{

2
3 @t r an s i e n t l azy va l currentValues = new mutable .HashMap [KEY,

mutable .HashMap [ Long ,KV] ] . empty
4
5 @t r an s i e n t l azy var cu r r en tVa lue sL i s tS ta t e : L i s t S t a t e [ (KEY, Long , KV) ]

= nu l l
6
7 de f processElement ( )
8
9 de f onTimer ( )

10
11 ove r r i d e de f snapshotState ( funct ionSnapshotContext :

FunctionSnapshotContext ) : Unit = {
12 cur rentVa luesSta te . c l e a r ( )
13 f o r {
14 entry <− currentValues
15 k = entry . 1
16 v <− entry . 2
17 } y i e l d ( cur rentVa luesState . add ( ( k , v . 1 , v . 2 ) ) )
18 }
19
20 ove r r i d e de f i n i t i a l i z e S t a t e ( f u n c t i o n I n i t i a l i z a t i o nCon t e x t :

Func t i on In i t i a l i z a t i onCon t ex t ) : Unit = {
21 va l d e s c r i p t o r = new L i s tS t a t eDe s c r i p t o r [ (KEY, Long , KV) ] ( . . . )
22 va l ope ra to rS ta t eS to r e =

f un c t i o n I n i t i a l i z a t i o nCon t e x t . ge tOperatorStateStore
23
24 cur rentVa luesSta te =

ope ra to rS ta t eS to r e . ge tUnionLi s tState ( d e s c r i p t o r )
25
26 i f ( f u n c t i o n I n i t i a l i z a t i o nCon t e x t . i sRe s to r ed ) {
27 va l i t e r a t o r = currentVa luesState . get ( ) . a sSca la
28
29 i t e r a t o r . f o r each ( entry=>{
30 va l operatorIndexForKey =

KeyGroupRangeAssignment . ass ignKeyToPara l l e lOperator ( . . . )
31 va l indexOfSubTask =

getRuntimeContext ( ) . getIndexOfThisSubtask ( )
32 i f ( operatorIndexForKey . equa l s ( indexOfSubTask ) ) {
33 addToHashMap( entry . 1 , entry . 2 , entry . 3 )
34 }
35 })
36
37 }
38 }
39 }

Listing 5.7: KeyedProcessFunction With CheckpointedFuntion Interface

With this algorithm it is possible to store data in a manually managed Heap data structure
while still being able to benefit from the Checkpointing mechanism provided by Flink.
For future work, a dynamic switch between the in-memory storage and the RocksDB state
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backend based on the cardinalities of a key could be implemented. This concludes the
optimizations that were applied to the state. In the next Section, the I/O optimizations
follow.

5.3 I/O Optimizations

The I/O optimizations deal with the reduction of latency by reducing I/O interactions.
For this purpose, two subtopics were highlighted in Chapter 4. Their implementations are
discussed in the following Section. First, the transformation of redundant shuffle opera-
tions is described. Afterwards, the extension of the task chaining algorithm is explained
in more detail.

5.3.1 Transforming Redundant Shuffle Operations

First of all, the individual key domains must be precisely known for this optimization
strategy. The developer must ensure that the data in the section to be optimized is always
partitioned the same way. Then, a DataStream can be reinterpreted into a KeyedStream

by using the function reinterpretAsKeyedStream. To elevate the usability, the function
has been put into a syntax object (cf. Listing 5.8). This syntax allows the extension of
classes with functions

1 imp l i c i t c l a s s DataStreamSyntax [ I ] ( i : DataStream [ I ] )
2 ( imp l i c i t I I n f o : TypeInformation [ I ] ) {
3
4 de f reKey [K] ( i k : I => K)
5 ( imp l i c i t KInfo : TypeInformation [K] ) : KeyedStream [ I , K] =
6 new KeyedStream [ I ,K] (
7 DataStreamUtils . re interpretAsKeyedStream ( i . javaStream
8 , new KeySe lector [ I , K] {
9 ove r r i d e de f getKey ( in : I ) : K = ik ( in )

10 } , KInfo )
11 )
12 }

Listing 5.8: DataStream Syntax to Conveniently Use reinterpretAsKeyedStream

The reKey function is given a projection which extracts a key from the record type
of the stream. The reinterpretAsKeyedStream function takes the source stream, a
KeySelector which determines the key using the given projection function as well as a
TypeInformation of the key type as a parameter. The final result after applying the
function is a KeyedStream, transformed from a DataStream.

As a last step, the shuffle operations before and after the split/join pattern have to be
bundled. This can be achieved by inserting a map operator. An example pipeline is
depicted in Fig. 5.9. First, the key and the value to be aggregated is extracted from
the stream. Then a keyBy is performed. Afterwards, the map operator is inserted which
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should bundle the shuffle operations. Next, a reKey is used which converts the DataStream
after the map operation into a KeyedStream again. This is followed by splitting the stream
and performing the individual operations. Finally, the splitted streams are combined again
with a union operator, bundled with a map operator and then keyed by the evend id. The
last keyBy event id is needed for the subsequent joining of the individual streams. The
principle of the split join pattern was explained in Section 3.2.

1 va l bund ledShuf f l e = inputStream
2 . extractKey (x => x . cardId )
3 . extractValue (x => MomentumAggregate (x . amount ) )
4 . keyBy (x => x . key )
5 .map(x => x ) . name( ”Bundle Shu f f l e ”)
6 . reKey (x => x . key )
7
8 va l D0 = bund ledShuf f l e
9 . p roce s s (new ApplyOperat ionsProcessFunction ( ) )
10
11 va l D7 = bund ledShuf f l e
12 . p roce s s (new ApplyOperat ionsProcessFunction ( ) )
13
14 va l D28 = bund ledShuf f l e
15 . p roce s s (new ApplyOperat ionsProcessFunction ( ) )
16
17 va l D392 = bund ledShuf f l e
18 . p roce s s (new ApplyOperat ionsProcessFunction ( ) )
19
20 va l bundledOut = D0
21 . union (D7 ,D28 , D392)
22 .map(x => x )
23 . name( s ”Bundled Forward ”)
24 . keyBy ( f => f . metaInformation . eventId )

Listing 5.9: Bundling of Shuffle Operations

Fig. 5.3 depicts the revised pipeline of Fig. 4.4 after removing the redundant shuffle
operations. Thus, the total number of shuffle operations for this key domain could be
reduced from 14 to 2.

The next optimization strategy focuses on the extension of the task chaining. It should
help to lower the number of tasks, and thus, lowering the latency caused by the de/seri-
alization and buffering between the tasks.

5.3.2 Task Chaining

The extension of the task chaining was mainly considered an issue due to the large number
of nodes that were created in the baseline implementation (cf. Section 2.5). For each
created task of the pipeline, a de/serialization and buffering of the data is carried out.
This leads to a potential delay which is not neglectable in an execution plan with around
1800 nodes. Section 2.4.7 describes how an execution plan is built by Flink and how
task chaining is embedded in it. Especially of interest is the second transformation when
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Figure 5.3: Pipeline Shown In Fig. 4.4 After Removing Redundant Shuffle Operations

converting a StreamGraph into a JobGraph. In this stage, the task chaining takes place.
Flink currently relies on the algorithm shown in Section 2.4.7 to determine whether an
operator can be chained or not. For the use case listed in this paper, the issue was found
in the downStreamVertex.getInEdges().size() == 1 statement of the isChainable()
function. It made it impossible to chain operators with more than 1 input.

To mitigate this issue, a way had to be found to implement the possibility to add a custom
chaining strategy to the JobGraph generator. Due to the closed architecture of Flink, a
large number of changes had to be applied to the classes involved in the transformation
of a Flink program into an execution plan. For simplicity, not all the changes will be
described in this Section.

As a first step, the StreamExecutionEnvironment needs to be extended. As a result, the
newly created DiStreamExecutionEnvironment is able to accept a representation of the
ChainingStrategy interface presented in Listing 5.10

1 pub l i c i n t e r f a c e ICha in ingStrategy {
2 boolean i sCha inab l e ( StreamEdge edge , StreamGraph streamGraph ) ;
3 }

Listing 5.10: Chaining Strategy Interface

An implementation of the ChainingStrategy interface is then handed down the transfor-
mation chain from the DiLocalStreamEnvironment to the StreamGraph. As it is also built
in a closed way, a custom implementation has to be provided, called the DiStreamGraph.
Besides other changes, it passes the ChainingStrategy to the StreamingJobGraphGen-

erator. Again, a closed architecture is present and thus it has to be re-implemented as
the DiStreamingJobGraphGenerator. In there, the passed ChainingStrategy is used by
a strategy pattern to switch between the different chaining implementations, which can
be configured from the outside.

The whole process was enormously more complex due to the closed architecture of the
StreamingJobGraphGenerator as well as the StreamGraph and the associated classes
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that determine the chaining of tasks. Due to the reduction of the number of parallel
operators described in Section 5.4.1 this optimization will not have a big impact on the
overall performance of the present pipeline. Nevertheless, an interesting concept is shown
which can be useful under certain circumstances.

The last Section described ways to lower the latency generated by the I/O. It presented the
transformation of redundant shuffle operations as well as an extension of the task chaining.
The next section discusses the implementation of the algorithmic optimizations.

5.4 Algorithmic Optimizations

The first part of the algorithmic optimizations is dedicated to the refinement of the re-
duction of parallel window operations shown in Section 5.2.1. The second part focuses on
the handling of streams with different output behaviour, which led to an almost uncon-
trollable growth of state in the baseline implementation. Finally, the implementation of
the continuously sliding window algorithm is discussed and the functionality is explained
in detail.

5.4.1 Reducing Redundant Operators

The concept of the reduction of redundant operators as mentioned in Section 4.4.1 is based
on processing all key domains (i.e., when the same operations must be performed) in the
same pipeline. Furthermore, a cascading of the window aggregations shall be carried out.
Thus, a fanning out due to different window lengths is no longer necessary.

To handle keys of several key domains (i.e., different key types) in the same pipeline, they
must be converted into a common type. A first solution to achieve this goal was to convert
the keys by means of the Flink serializer into a byte array and use this array as a key.
Due to a restriction in Flink, this approach had to be discarded. In the documentation
[8] the following statement is made.

A type cannot be a key if:

• It is a POJO type but does not override the hashCode() method and relies on the
Object.hashCode() implementation.

• It is an array of any type.

Next, obtaining a common type by using a hashing algorithm for the different keys was
discussed. The key is converted into a byte array. Subsequently, this array is converted by
an interchangeable hash algorithm (e.g., Sha-256, Sha-512) into a string representation.
Thus, all keys have the same data type and can be used in the same pipeline. The
disadvantage of this approach is that a hash is a ”one-way” function. A possible later
reversal of the hash is not possible.
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Therefore, this design was also discarded and the solution described in Listing 5.11 was
implemented. First, the keys are serialized into a byte array. The byte array is then
converted into a char array. Since a string is a representation of a char array, the char
array can be converted to a string, which is a common data type that is not an array. A
conversion of the string to the original representation is still possible, which makes the
function revertible.

1 de f projectToHash [T, K] ( p r o j e c t : T => K)
2 ( imp l i c i t a In fo : TypeInformation [K] , jobEnv : JobEnv )
3 : T => St r ing = {
4 va l t s = aIn fo . c r e a t e S e r i a l i z e r ( jobEnv . getConf ig )
5 de f convert ( input : T) : S t r ing = {
6 va l byteArrayStream = new ByteArrayOutputStream ( )
7 va l out : DataOutputView = new

DataOutputViewStreamWrapper ( byteArrayStream )
8 //Function Used to Pro j e c t a Record Into a Key
9 va l key = pro j e c t ( input )

10 t s . s e r i a l i z e ( key , out )
11 byteArrayStream
12 . toByteArray ( )
13 .map( . toChar )
14 . mkString
15 }
16 convert
17 }

Listing 5.11: Key Generalization

The second optimization which should reduce the number of parallel operators is the
cascading of the different window aggregations. A two-stage window algorithm is proposed
for this. In a first step, windows of the smallest common unit are created. In the present
case, sliding windows of different sizes (e.g., 7, 28, 392 days) are required by the business.
The windows should slide by one day. Thus, tumbling windows are created on a daily
basis. In the remainder of this section, the term D1 will be used for the daily tumbling
windows. In the second stage, the core piece of the algorithm follows. In Fig. 5.4, the
operations that take place in the KeyedProcessFunction utilized for the calculation of
the cascading windows are visualized. The list below provides an overview of the necessary
steps for the algorithm.

1. Incoming D1 windows are stored in the MapState

2. An iterator is used to loop through the MapState

3. Remove first value if it’s timestamp is out of scope

4. Dynamically divide the D1s into buckets according to the defined window sizes

5. While dividing the values into buckets, use the aggregate function to accumulate
the values

6. Add calculated buckets to a list, always append new buckets to the head of the list
to flip the ordering
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Figure 5.4: Dnn Algorithm Used For Cascading Window Calculation

7. Register a timer for the next day to check if a value needs to be removed from the
MapState

8. Iterate through the list, incrementally add all buckets to the corresponding size and
output window results

It is important to note that this approach works due to an inherent characteristic of the
RocksDB state backend. The values stored in RocksDB are canonically ordered due to the
usage of a column family storage system. The algorithm exploits this characteristic when
using an iterator on the MapState. Due the column store, no more search operations
have to be performed when the first entry for the query has been found. The iterator
is able to iterate over the returned data structure in constant time and aggregate all
the windows in one go. This property is not given for the other state backends. The
advantage of this procedure is that all windows for a key can be calculated serially. No
parallel state access for the different windows is necessary. Although an algorithm is used
that is worse in theory, the given characteristics of the RocksDB state backend mitigate
some disadvantages of the approach. In addition, no de/serialization effort is generated
when combining the individual window sections, which also has a positive effect on the
performance.

With this algorithm it is possible to calculate the different daily sliding windows in a
performant way. Additionally, multiple key domains can be handled by the same pipeline.
No operators need to be duplicated solely because of a different data type. Still, there is an
open issue with the combination of the daily sliding windows and the continuously sliding
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windows, which have a different output behaviour. Thus, the next Section is dedicated
to the handling of the so-called delayed streams.

5.4.2 Handling Delayed Streams

Combining streams with different output behavior is a problem that is not obvious at first
glance. The streams can be merged (i.e., if the streams have the same output data type)
with a union operator. However, if a pivoting of the events has to be done, there is almost
nothing else to do but to wait for the end of the window for each event and then output a
common record. This process is described in the split/join pattern shown in Section 3.2.
Only when all streams have delivered a result, the process can continue. Therefore, an
accumulation of events in the joining operator and thus, a bloating of the state occurred
in the baseline implementation. A possible remedy is the pattern visualized in Fig. 4.10.

A stream is split with one outgoing path performing the actual windowing algorithm
before being combined with the other path in the subsequent KeyedCoProcessFunction.
This merging is presented in Listing 5.12. It should be noted which input is passed into the
processEvent1 and processEvent2 function. The input which is listed as a parameter
the connect operator is always linked to the processEvent2 function.

1 va l delayedStream = inputStream
2 . connect (windowedStream )
3 . p roce s s (new CombineDelayedStreamsFunction ( ) )

Listing 5.12: Combination of Delayed Streams With a KeyedCoProcessFunction

The KeyedCoProcessFunction contains either a MapState or ValueState structure de-
pending on the scenario. If a window is now supplied on the second input, the proces-

sEvent2 function updates the state of the lastWindow value as presented in Listing 5.13.

1 ove r r i d e de f processElement2 (
2 value : IN2
3 , ctx : CoProcessFunction [ IN1 , IN2 , OUT]#Context
4 , out : Co l l e c t o r [OUT]
5 ) : Unit = {
6
7 lastWindow . update ( va lue )
8
9 }

Listing 5.13: ProcessEvent2 Function of DelayedStreams Operator

Since the incoming event is directly forwarded by the route that is skipping the windowing,
a one-to-one relation between the input and output is achieved. The directly forwarded
events are handled by the processEvent1 function. It checks whether a window is already
stored in the state. If no window is present, an Option[None] is emitted. Else, the last
received window is output. In the out.collect statement, the MetaInformation of the
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buffered window result is overridden. This is due to the fact that the stored window
result contains an outdated event id, which would cause problems when a merge had to
be carried out later. Therefore, it needs to be adapted to the current MetaInformation.
This process is presented in Listing 5.14.

1 ove r r i d e de f processElement1 (
2 value : IN1
3 , ctx : CoProcessFunction [ IN1 , IN2 , OUT]#Context
4 , out : Co l l e c t o r [OUT]
5 ) : Unit = {
6 va l l a s t = lastWindow . va lue ( )
7
8 i f ( l a s t == nu l l ) {
9 out . c o l l e c t (None )
10 } e l s e {
11 out . c o l l e c t (Some( l a s t . copy ( metaInformation =

value . metaInformation ) ) )
12 }
13 }

Listing 5.14: ProcessEvent1 Function of DelayedStreams Operator

The last Section described how for each incoming event an outgoing one is emitted. A pil-
ing up of the events does not occur any more, which increases the performance noticeably.
The last optimization is dedicated to the continuously sliding window algorithm and how
slicing can leverage the performance of the window calculation.

5.4.3 Continuously Sliding Windows

A custom implementation of the continuous sliding window algorithm was necessary as
Flink does not offer an efficient operator for this requirement. The problem with con-
tinuously sliding windows is that with large amounts of data, no efficient slicing can be
introduced that acts with millisecond precision. Normal tumbling windows are only calcu-
lated when the end time of the window is reached. However, if a result is to be output for
each event, it must be handled via triggers. A trigger can be defined that calls the pro-

cessEvent function of the ProcessWindowFunction for each incoming event. After the
desired slide period has expired, the event must be removed again. Accordingly, another
trigger must be defined for each event in order to remove it. Alternatively, an evictor can
be used. However, both alternatives have the disadvantage that they keep all events of
the window in a List object, which does not provide any ordering. Consequently, if an
element is to be removed, all elements of the List must be checked for their timestamp
whether it is expired or not. This leads to a complexity of O(n2). Therefore, this is not
a valid approach. Especially with large amounts of data, no satisfactory performance
can be guaranteed. In Section 4.4.3, two approaches were introduced that could help to
mitigate this problem. The remainder of this Section is used to describe the implemented
solutions.
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One-Stage Algorithm With Process Function

The first algorithm that was considered mainly works for keys that cover a smaller amount
of data. In this variant, no slicing takes place. Thus, no previous trigger must be registered
and only a ProcessFunction is required. If a new value is added, all events of the slide
period are aggregated repeatedly. As shown in Listing 5.15, the incoming events are
stored by the processEvent function in the MapState (i.e., currentValuesState) structure.
Subsequently, the map is iterated through for each value and the records are aggregated
incrementally. At the end the window result is output and a timer is registered which is
needed to remove the previously stored event from the MapState. The whole process is
lightweight but should only be used if a small amount of data is expected for certain keys.

1 ove r r i d e de f processElement (
2 value : KV
3 , ctx : KeyedProcessFunction [KEY, KV, KVW]#Context
4 , out : Co l l e c t o r [KVW]
5 ) : Unit = {
6
7 va l de let ionTime = ctx . timestamp ( ) + keepEventFor
8
9 cur rentVa luesSta te . put ( delet ionTime , va lue )

10
11 va l i t = currentVa luesSta te . i t e r a t o r
12 var aggregatedValue : KV = af . createAccumulator ( )
13 whi l e ( i t . hasNext ) {
14 aggregatedValue = a f . add ( i t . next ( ) , aggregatedValue )
15 }
16 out . c o l l e c t ( aggregatedValue . addWindow(None ) )
17 ctx . t ime rSe rv i c e ( ) . registerEventTimeTimer ( de let ionTime )
18 }

Listing 5.15: ProcessEvent Function of The One-Stage Algorithm

Two-Stage Algorithm With AllStateWindow

The implementation of the continuously sliding windows with a two-stage algorithm is
achieved by using an extension of the Flink WindowOperator developed in the cooperating
company. The basic idea behind this is that a ProcessWindowFunction can distinguish
based on a trigger whether a new event is added or an action on an existing window (e.g.,
remove operation) is to be performed. A representation of the adjustments is visualized
in Fig. 5.5. The upper diagram shows the original WindowOperator and how it interacts
with the WindowFunction based on the TriggerResult. The lower diagram shows the
adapted AllStateWindowOperator, which is derived from the existing WindowOperator.
In addition, the ProcessAllStateWindowFunction is derived from the ProcessWindow-

Function and extended by another function called triggerWindow. This differs from
the default implementation as follows. The standard WindowOperator relies on the two
functions processElement and onEventTime. The former is called as soon as a window
is ready and executes the process function in the ProcessWindowFunction attached to
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the operator. The function processElement is only called when a TriggerResult ==

FIRE is present. For every other TriggerResult, the algorithm stops. The onEventTime

function distinguishes between the TriggerResult PURGE and FIRE. The former clears
the values in the window, the latter calls the ProcessWindowFunction along with the
entire window content.

Figure 5.5: Difference Between WindowOperator And AllStateWindowOperator

In the customized AllStateWindowOperator, the processElement function calls the Pro-
cessWindowFunction for each event when a TriggerResult==CONTINUE is present. As a
first difference compared to implementation in Flink, no TriggerResult==FIRE is needed
to call the process function. Nevertheless, if a FIRE is present, the triggerWindow func-
tion is called additionally. Another difference is found in the function interface. The
standard implementation uses a List of the whole window content as an argument. The
new implementation only hands-over the current event to be processed. If a onEventTime

is triggered, the process function of the ProcessWindowFunction is not called as usual,
but the triggerWindow function instead. This function is supplied the current timestamp
of the triggering event in addition to the existing attributes of the Context. This makes
it possible to find and remove events stored in the MapState structure with constant com-
plexity. The need to search a MapState or ListState to find the value that needs to be
removed can be omitted. In a second stage, these pre-aggregated windows are combined
into the actual continuously sliding window with its full slide size. For the present case,
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this means that the pre-aggregated windows of 30 minutes length are combined into 24
hour windows. This is achieved by implementing a ProcessFunction that contains a
MapState structure with the deletion timestamp of the window as a key and the window
result as value. When a new window is delivered or an existing one is updated, the Map-

State structure is adjusted accordingly and a re-aggregation of the windows is carried
out. Finally, the accumulated value is emitted as the current result of the continuously
sliding window.

Reverse Aggregation

The in Section 5.4.3 presented version of the continuously sliding window algorithm re-
lied on re-aggregating all values in a certain window when a record had to be removed.
Furthermore, it is not distinguished between an add or remove operation. An alternative
approach was described in Section 4.4.3. At a certain point in time, values will only be
deducted from a window with a high probability. This point in time is normally reached
when the first event gets removed from the window. Speaking in a continuously slid-
ing context, this point is reached when the first call to triggerWindow is made. As for
the cascading window calculation shown in Section 5.4.1, the approach is based on the
canonical ordering that is given by the RocksDB state backend.

The implemented process is depicted in Fig. 5.6. The algorithm is divided into two differ-
ent phases. Phase one is dedicated to the addition of values to the MapState containing
the Raw Input and accumulating a Running Aggregation which is implemented as a
ValueState. The key for the Raw Input MapState is the time to remove the entry and
the value represents the unaggregated value of the event. When the aggregation of the
newly delivered event is done, the result of the ValueState is output.

As soon as the first call to the triggerWindow function is made, phase 2 starts. Initially,
the Raw Input is taken and the values are put into a List in reverse order. Subse-
quently, an iterator is used to incrementally aggregate the values for each key. By the
time the trigger for the triggerWindow function fires, the current value is already out-
dated. Therefore, the incrementally aggregated values are shifted by one iteration. When
all values are calculated and stored in the second MapState structure (i.e., Reversed
State Storage), no recalculation of the window has to be performed anymore as the
results are already present for the respective key.

In the last paragraph it was stated that at a certain point, no new values will be added to
the window with a high probability. This indicates that late events are still possible.
Thus, the algorithm also needs to be able to handle this case. Fig. 5.7 visualizes the
measures taken to counter this issue. When a late event arrives, it is picked up but not
written into the Raw Input. Instead, an iterator is used to go through the Reversed
State Store. For each element, the current value is retained in a variable. Then the
element is checked if the key that has to be added is smaller than the key of the current
element. If it is smaller, the new value is added to the current value and the next element
is checked. If it is not smaller, the new key is inserted into the MapState together with
the new value plus the retained value of the first key that was bigger. As soon as the
value is found, the algorithm stops as no further steps need to be taken.
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Figure 5.6: Phases of The Continuously Sliding Window Reverse Aggregation Algorithm

This section concludes Chapter 5, which described the implementation of the design de-
cision made in Chapter 4. First, the reduction of the number of parallel windows and
the switch between the RocksDB state backend and a manually managed Heap data
structure for state storage were shown. Afterwards, the I/O optimizations, namely the
transformation of redundant shuffle operations and the extension of the task chaining were
described. Finally, the reduction of redundant operators, the handling of streams with
different output behaviour as well as the different continuous sliding window algorithms
were explained. Next, Chapter 6 will evaluate the implemented solutions regarding their
effect on the performance of the present streaming job.
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Figure 5.7: Late Event Handling of The Reverse Aggregation Algorithm
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Chapter 6

Evaluation

While testing the implemented baseline described in Section 2.5, some logical issues in
scenario 3 were found. Furthermore, as the results of the baseline implementation with
an even higher number of parallel operators would not be more expressive, it was decided
to focus on scenario 1 and 2 for the evaluation. Scenario 3 could not be fully implemented
due to a time shortage, thus it was delayed for future work. Nevertheless, a special
characteristic and interesting test case is the aggregation of extensive data for a small
key space in scenario 3. To simulate this, the same aggregations as in scenario 1 were
considered, but the key was exchanged with one key of scenario 3. Table 6 summarizes
the characteristics for the different scenarios.

The different key characteristics are taken into account, as some of the effects only get
visible in certain use cases. For instance, I/O optimizations will be most effective, when
there is a considerable number of tasks and operators that generate I/O delays. Optimiza-
tions regarding aggregations in windows will be more relevant if there is either a bigger
key space, or higher data volume.

Scenario 1 Scenario 2 Scenario 3

Key Domains 1 8 24

Key Space Small (2 Million) Large ( 1.6 Billions) Medium (60 Million)

Data Characteristics Sparse Data Sparse Data Extensive Data

Number of Events / Day 400k Events 400k Events * 8 Keys 400k Events * 4 Keys * 3 Classifications

Aggregations Momentum Aggregate

Window Types DZ, 7, 28, 392 Daily Sliding Windows

Table 6.1: Scenario Definitions

6.1 Setup

The evaluation of the different use cases was performed on a Virtual Desktop Infrastruc-
ture (VDI) client with 16 GB of memory and an Intel(R) Xeon(R) Gold 6142 CPU with
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2.60 GHz. The test data is generated by the data generator implemented in the previous
master’s project [6]. The data is stored in the test environment of the Kafka server of the
company [7].

The largest time horizon to be looked at is 392 days. As per year 200 million authorizations
are performed in reality, around 215 million synthetic records are being generated for the
test cases.

During the implementation of the master thesis, a switch from Flink version 1.8 to Flink
1.12 was necessary due to a bug that caused the incremental Checkpointing to fail. The
task chaining was still implemented with version 1.8 and could not yet be adapted to 1.12.
Also, Flink 1.12 offers some improvements in that exact topic. Due to a time shortage,
further investigations in that direction had to be postponed. Nevertheless, it proved that
optimizations in that field are currently also discussed by the developers of Flink.

One further restriction that arose from the existing environment is related to the authen-
tication to the Kafka server with Kerberos [55]. When testing from the VDI, a Kerberos
ticket has to be acquired. Due to security restrictions, the validity period for this ticket
is set to a few hours without a possibility to extend. If the time-frame has passed, a
new ticket has to be requested. Due to the local execution, the job is not able to renew
the ticket while running and thus fails to retrieve data from Kafka after a certain time.
Therefore, the maximum run duration of a test is restricted. As a result, the job that is
used to evaluate scenario 1 and 2 in combination will not be able to finish all of the 392
days needed to get into a steady state. As a compromise, only a maximum of 200 days
will be tested. The resulting performance will be analyzed to make statements about the
expected performance if the whole range of days would be used.

Furthermore, no production like cluster is available to test the job. Thus, another way
had to be found to simulate the parallel execution of the job and the splitting of data. To
mitigate this issue, the sharding of the data as presented in Listing 6.1 was introduced.
The key of the incoming event is hashed. If the result of the modulo operation between
this hash and the maximum shard count equals the shard index that should be retrieved,
the element is forwarded. Else it is filtered out. This way the data is split as if it would
be spread out to different instances. For the upcoming evaluation, a shard count of 16 is
chosen.

1 i f ( shards > 0) {
2 authStream = input
3 . f i l t e r (
4 new F i l t e rFunc t i on [EVENT] {
5 va l shardCount = shards
6 va l shardInd = shard
7 ove r r i d e de f f i l t e r ( va lue : EVENT) : Boolean = {
8 key . hashCode % shardCount == shardInd
9 }
10 }
11 ) . name( s ”shard$ { shard} o f$ { shards } ”)
12 }

Listing 6.1: Sharding Used To Simulate Parallel Execution
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The last Section described the general setup for the evaluation of the different optimization
strategies. The next Sections will provide an individual look at the optimization strategies
and compare them to the baseline implementation. Some strategies have a bigger effect on
the overall performance than others. Thus, certain optimizations (e.g., Section 6.2.3 and
6.3.2) that have a more subtle impact are not compared to the baseline implementation,
but to an already improved version of the job.

6.2 Operational State Optimizations

For the state optimization strategies, a look is first taken at the impact of RocksDB
parameter tuning. Afterwards, the reduction of the number of parallel windows and
the switch between the RocksDB state backend and the manually managed Heap data
structure is evaluated.

6.2.1 RocksDB Parameter Tuning by [4]

If the available memory of a Flink job is too small, the evaluation of the algorithms will
be affected by environmental factors. This leads to distorted results. Parameter tuning
has a potentially large impact on the efficiency of a job. To increase the significance of the
strategies, the parameter tuning will be applied to all the following tests. For this reason,
this type of optimization is evaluated first in order to identify possible, indispensable
effects on the performance. In Fig. 6.1 and 6.2 the difference between a job with and
without additional managed memory (cf. Fig. 3.4) is depicted. It can be seen that this
parameter is crucial for jobs that need to store a considerable amount of state. When
no additional memory is assigned (i.e., default of 256MB is used), the calculation of one
single day takes approximately around 10 minutes. Furthermore, it can be seen in the
bottom of Fig. 6.1 that during the calculation of the windows, all other parts of the job
are blocked. The biggest increase in throughput could be seen when assigning the job
around of 1GB of memory. Of course, this value depends on the requirements of the job
itself and the data it needs to process. Nevertheless, once enough memory is assigned to
Flink, a further increase of the memory does not provide a better performance. When
using RocksDB, the increase of the background thread number also showed to be essential.
For the other parameters listed in Section 3.4, no clear indication could be found that
they have a significant impact on the present job. Nevertheless, further investigations in
this directions should be carried out to find the optimal parameters, as soon as the other
optimization strategies are implemented and do not yield any more performance gains.

6.2.2 Reduction of Number of Parallel Windows

This optimization strategy aims at reducing the number parallel windows by pre-aggregating
the sliding windows into daily tumbling windows. The approach was compared to the
baseline, aggregated with keys from scenario 1 and 2. The difference between the two
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Figure 6.1: Flink Job Without Adaption of the Default Managed Memory

Figure 6.2: Flink Job With 4GB of Managed Memory

algorithms is shown in Fig 6.3 and 6.4 in terms of number of records out as well as the
overall output pattern the pipeline generates.
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What can be seen first is a significant improvement when it comes to the number of records
out per second. Almost immediately, the performance of the baseline implementation
severely degrades as seen in Fig. 6.3. The number of records out per second gets smaller
and the space between the single spikes is increasing. This is mainly due to the aggregation
of the sliding windows. First, for every day a sliding window of the defined length needs
to be kept in state and aggregated. As a consequence, the events will take increasingly
longer to process after some time. The job also blocks itself after a short period of time.
While evaluating, most of the time this happened shortly after one hour passed. When
looking at the pre-aggregation approach in Fig. 6.4, spikes can be seen. When comparing
the time of the spikes with the watermark progress it shows that the spikes always happen
when the daily tumbling windows are aggregated. This effect is described by [56] as the
the trembling herd effect. It states that when a lot of concurrent windows need to be
calculated at the same point in time (e.g., daily sliding windows). The sudden appearance
of a herd of calculations blocks the system for some time. To mitigate this problem, [56]
suggest to stagger the window creation and therefore the time when it is evaluated. For
the system at hand, this is unfortunately no option as the windows really need to cover one
whole business day from 00:00 to 23:59. It is not possible to start a window at 10:30 and
another one at 15:09. This leads to the conclusion that optimizations have to be applied
to the algorithm for the aggregation of the daily windows. The optimization implemented
for this issue is the cascading window aggregation described in Section 5.4.1.

Figure 6.3: Number of Records Out Behaviour of The Baseline

When comparing the number of active keys in the state backend, the difference between
the baseline implementation (cf. Fig. 6.5) and the presented approach (cf. Fig. 6.6) is
obvious. By using the aggregation of daily tumbling windows, a significant reduction of
the active keys could be achieved. For the observed interval, the number of active keys at
a time went down from around 20 million to less than 1 million.

Although reducing the number of parallel windows yielded good results (i.e., increasing
throughput from a few 100 to 10’000 events per second), three individual ProcessFunc-
tions are still used for window aggregation. Hence, three different MapStates per key
area and aggregation function. This fact diminishes the impact of pre-aggregation into
tumbling windows. A potential solution for this is the cascading window calculation (cf.
Section 5.4.1) where only a single MapState primitive per key domain and aggregation
function is required. Still, Fig. 6.6 shows a promising property. After the time of a window
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Figure 6.4: Number of Records Out Behaviour For Parallel Window Reduction

horizon has passed, the amount of keys for this state primitive stays nearly constant. This
shows that the values get added to and from the aggregations and no state bloat occurs.

Figure 6.5: Number of Active Keys in State Backend Without Pre-Aggregation

The reduction of the number of parallel windows is a promising approach. Still, the
calculation of the daily windows causes the job to slow down. The refined technique of
cascading window aggregations will be evaluated in Section 6.4.1. The next optimization
strategy regarding state is the switch from RocksDB to a manually managed state in Heap
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Figure 6.6: Number of Active Keys in State Backend With Daily Tumbling Windows

that uses the Flink Checkpointing.

6.2.3 Manually Managed State on Heap Data Structures

To manually manage state on heap data structures while still being able to use state
persistence by means of Flink per operator Checkpointing API has a limited, yet important
use case. If the key cardinalities allow it to store all operational state data inside of the
memory, a switch between the usage of the state backend can be considered. In Fig. 6.7,
the calculation time (right) and the state access time (left) is visualized when using the
RocksDB state backend to store the operational state data. Fig. 6.8 is used to compare
the numbers (cf. Fig. 6.7) to the algorithm that stores the operational state data in a
Heap structure. What can be seen is that only half the time is needed for calculations
when storing the values in the memory. Also, the overall time of the operation reduces as
no state access is required. The state interaction that can be seen in Fig. 6.8 originates
from saving the in-memory structure into a UnionListState managed by Flink when a
Checkpoint occurs. As the Checkpointing is performed asynchronous, it does not count
towards the latency. Nevertheless, as the UnionListState will grow continuously with
the amount of data, the approach has to be used with caution.

Concluding Section 6.2, the reduction of the number of parallel window aggregations
already has a considerable effect on the overall performance. Still, the processing of the
daily tumbling windows slows down the system to some extend due to the trembling
herd effect. Also, although the overall state usage could be minimized by pre-aggregating
values, the overhead for calculating three different windows in parallel stays. A potential
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Figure 6.7: Continuously Sliding Window Using RocksDB State Backend as Storage

Figure 6.8: Continuously Sliding Window Using Heap as Storage

solution for this issue is the cascading window algorithm shown in Section 5.4.1, which
will be evaluated in Section 6.4.1. The switch between the heap and RocksDB state
backend has to be refined some more. Nevertheless, the approach yields a promising
potential for future work. The RocksDB parameter tuning proved to be essential in terms
of performance. As shown in the last section, the default amount of managed memory
(256MB) used by the RocksDB state backend per Flink Taskmanager is not sufficient for
the present job. As caching of entries in RocksDB is limited, access times to the hard
disk slows down the process.

6.3 I/O Optimizations

The I/O optimization strategies aim at reducing the overall delay between operators
and tasks by lowering the de/serialization effort and buffering needed. A first approach
is dedicated to detecting and transforming redundant shuffle operations. The second
optimization tries to apply an adapted chaining strategy to the task chaining algorithm
of Flink.
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6.3.1 Transforming Redundant Shuffle Operations

The detection and transformation of redundant shuffle operations has the potential to
take a lot of de/serialization effort, as well as network I/O from the system. The results
shown in the evaluation are astonishing. It was expected that removing redundant shuffle
operations would lower the latency. Actually, the exact opposite was measured. On the
one hand, Fig. 6.9 visualizes a Flink job that uses a keyBy statement if a KeyedStream

is needed for the operations. On the other hand, Fig. 6.10 depicts the same job when
removing the redundant shuffle operations. The average latency for the job without the
optimization was only about half the time it needed when using the reKey functionality.
This could be the result of the given setup. As only a parallelism of 1 is configured,
no shuffle I/O could be measured. To mitigate this flaw, the same job was measured
with a parallelism of 4, 8 and 16. The results showed the same pattern as depicted in
Fig. 6.11 and 6.12. The job with the usage of reKey performed worse on average. Yet,
with a growing parallelism, the overall difference seems to get smaller. Currently, the job
is executed locally and no data has to be sent over the network. One possible explanation
could be that as soon as shuffle operations over multiple network nodes are carried out,
the performance of the keyBy operation will be worse as the data will not stay on the
same machine. As the results do not conform to what was expected, further investigations
need to be carried out in future work.

Figure 6.9: Latency Without Removing Redundant Shuffle Operations, Parallelism of 1

As a next topic for the I/O optimizations, the custom task chaining will be looked at. By
reducing the amount of individual tasks, the de/serialization effort should be lowered and
thus the latency.

6.3.2 Task Chaining

The extension of the task chaining was implemented in Flink 1.8, before the switch to
Flink 1.12 had to be performed. Still, this should have no impact for the evaluation of
the task chaining. The overall goal was to reduce the I/O by reducing the de/serialization
effort, as well as the buffered I/O between different tasks. This should be achieved by
decreasing the number of tasks created by the chaining strategy. The evaluation showed
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Figure 6.10: Latency With Removed Redundant Shuffle Operations, Parallelism of 1

Figure 6.11: Latency Without Removing Redundant Shuffle Operations, Parallelism of 8

Figure 6.12: Latency With Removed Redundant Shuffle Operations, Parallelism of 8

a significant difference between the default task chaining by Flink in Fig. 6.13 and the
custom implemented chaining strategy in Fig. 6.14. The custom implementation proved
to be capable of cutting the pure latency measured by Flink in half. It dropped from an
average of 9 µs to around 4-5 µs.
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Figure 6.13: Flink Job Latency With Default Task Chaining Strategy

Figure 6.14: Flink Job Latency With Adapted Task Chaining Strategy

The implementation of the custom task chaining strategy lowered the latency as expected.
Nevertheless, Flink 1.12 applied some changes in that field and the implemented solution
would need to be adapated to those changes. Due to time restrictions and optimization
strategies with more severe impact, this task is material for future work.

The I/O optimizations represent an optimization on a very fine granular level and are
overshadowed by more siginificant problems (e.g., unoptimized window aggregation). For
future detail optimizations, fitting the task chaining strategy is a valid solution. However,
the implementation has to be adapted to Flink 1.12, which requires some effort. Changing
the keyBy to reKey statements and thus transforming unneeded shuffle operations in the
job had the opposite effect of what was expected. This will have to be investigated further
in future work.

6.4 Algorithmic Optimizations

The algorithmic optimizations offer great potential to improve the performance of the
streaming job. The optimization strategy of serially processing the window computations
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by reducing parallel operations is an interesting approach which should improve the time
needed for aggregations by lowering the number of state backend queries. An important
adaptation, which is also essential for the logic, is the handling of time-delayed streams.
It is not only relevant for performance reasons, but also for the output behavior. Finally,
the different implementations of the continuously sliding window algorithm are evaluated.

6.4.1 Reducing Redundant Operators

The first optimization strategy this Section evaluates is dedicated to the further devel-
opment of the approach discussed in Section 6.2.2. It aims at cascading the window
calculations for the individual lengths of the sliding windows. Fig. 6.16 visualizes the
number of records out for the optimized cascading window calculation approach. The red
line shows the output of the aggregation, green the events ingested in the pipeline. It is
compared to the first implementation of the reduction of the number of parallel windows
depicted in Fig. 6.15. The blue line shows the newly ingested events, whereas the outgoing
events are represented by the small bumps between the spikes. The first thing that stands
out is the much lower rate of outgoing events at around 200-500 events per second. In
the cascading window approach, this changed. The output of the pipeline is much higher
with up to nearly 40’000 records per second. Also, the spikes in the Records Out Per
Second metric are flattened and the overall output is smoother. The cascading window
calculations increase the general performance significantly. Still, it tends to get slower
after some time due to the number of records to process. Nevertheless, the job does not
get blocked and continues to work.

There are still some spikes occurring which need explaining. Most of the operators in the
job are executed serially when using this algorithm. Therefore, the job has to spend an
increasing amount of time in the cascading window aggregation since the state and the
number of keys are growing. During this process, no new events will be ingested as the
calculations need to take place. With higher parallelism, the duration between the spikes
can be reduced.

Figure 6.15: Parallel Window Reduction Approach With 9 Key Domains
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Figure 6.16: Cascading Window Aggregation With 32 Shards

The approach showed to be highly effective for the present use case. By implementing the
slicing and cascading window aggregation technique the throughput of the pipeline could
be increased by a factor of 100. Now that the windows can be calculated in a performant
way, the approach to efficiently handle streams with different output behaviours will be
evaluated.

6.4.2 Handling Delayed Streams

The handling of streams with different output behaviour was necessary due to the re-
quired combination of streams that delivered one result per day or one result per event.
In Fig. 6.17 the resulting number of active keys in the state backend can be seen when the
different output behaviours are not taken care of. In the join operator, a pile up of events
occur as the operator has to wait until all events of the corresponding event id have been
delivered. In the job that was used for the evaluation, the tumbling windows were output
after one day. Thus, after a day had passed and the windows got emitted, the size of the
state in the join operator dropped to some extend until later rising again (green line).
Only at the time the number of buffered records in the join operator drop (i.e., they are
sent downstream), the subsequent operators can start with their operations and acquire
state (yellow line). This piling up has negative effects on the performance of the job. It
also starts to congest the whole pipeline after some time. As a solution, the Delayed-

StreamProcessFunction was implemented. For each incoming event, the MapState or
ValueState structure in the operator is checked and the last received aggregate is output.
If no value for a key has been received, a null value is given out. This way, a result can be
emitted for every incoming event. Hence, the pile up does not occur anymore as depicted
in Fig. 6.18. The red line shows the storage of the last received values increasing per day,
yellow shows the aggregated windows and the green line represents the nearly not existing
buffer for the records to be joined.

This optimization approach proved to be efficient for the present semantics of the job.
This strategy can be used when it is needed to join multiple streams with different output
behaviour. Nevertheless, it had to be kept in mind that potentially outdated results are
shown until a new window is emitted. Thus, the approach has to be used carefully and
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Figure 6.17: Number of Active Keys in State Behaviour of The Baseline

Figure 6.18: Number of Active Keys in State Behaviour With Activated Delay Handling

only when the semantics of the job allow it. As a last algorithmic optimization, the
continuously sliding windows will be evaluated in the next Section.
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6.4.3 Continuously Sliding Windows

The continuously sliding windows were an important topic of the present work. They
represent a requirement that is not inherently thought of in Flink in this way. Different
algorithms had to be elaborated until a promising approach was found. The first ap-
proach tried to handle the continuously sliding windows in a naive way. It relied on a
ProcessFunction that added an event to the MapState when it was ingested and removed
it with a timer as soon as it got irrelevant for the time horizon. The second approach
tried to adapt the WindowOperator and allow to distinguish between an execution of the
ProcessFunction due to a new incoming event, or the trigger of an event timer. The last
option was an optimization of the aggregation algorithm used for the second approach
and aimed at reducing the necessary recalculation in the incremental accumulation of the
stored events. To see the impact of the different algorithms better, the aggregations were
made with a key that holds extensive data and consequently many aggregated events per
base key window. In the current context, such a key could be the country attribute of an
event.

One-Stage Algorithm With Process Function

The one-stage algorithm showed an acceptable performance when using a single key that
holds sparse data. With a growing number of values per window to aggregate, the perfor-
mance degrades quickly as visualized in Fig. 6.19. In a worst case scenario, the calculation
of the aggregates took on average 212 milliseconds. On the positive side, the state inter-
actions stayed more or less constant with on average at most 2.29 milliseconds.

Two-Stage Algorithm With AllStateWindow

The initial two-stage algorithm that extended the WindowOperator used a slicing tech-
nique to eliminate some of the incremental recalculations by pre-aggregating into smaller
windows. This caused a great improvement of the performance in terms of the calcula-
tions. The maximum needed time for aggregations dropped from 212ms (cf. Fig. 6.19) to
17.5ms. Again, the time used for state interactions such as read and write stayed nearly
constant with an average maximum of 1.70ms.

Reverse Aggregation

Finally, another big improvement could be made by applying the reverse aggregation
algorithm to the two-stage windowing approach as described in Section 5.4.3. It caused
not only the calculation time to drop from 17.5ms (cf. Fig. 6.20) to at most 4.1 ms on
average, but also the state interactions could be further lowered to 973 µs

The reverse aggregation algorithm for the continuously sliding windows is currently the
way to go. It offers the by far best performance for keys with sparse and extensive data.
The one-stage approach could be used for cases where the overhead implemented in the
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Figure 6.19: Calculation and State Interaction Duration of The One Stage Algorithm

two-stage algorithm is not needed. Yet, the weaknesses of the implementation have to be
kept in mind.
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Figure 6.20: Calculation and State Interaction Duration of The AllStateWindowOperator

Figure 6.21: Calculation and State Interaction Duration of Reverse Aggregation Approach
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Chapter 7

Summary and Conclusions

As described in Chapter 1, the overall goal of this thesis was to study and optimize a
data preparation system for fraud prevention in terms of latency, jitter and throughput.
The development of the existing system started in the previous master project and was
refined before the start of the master thesis.

In a first part, a literature research had to be performed in order to list credit card
fraud detection and prevention approaches. Furthermore, algorithms and strategies to
optimize a streaming system while adhering to certain constraints have to be covered. In
a second part, the existing system had to be analyzed for potential weaknesses. A system
to measure the latency, jitter and throughput had to be elaborated and installed. The
gained insights would later be needed in the evaluation of the optimization strategies to
compare the approaches to a baseline. The third part was dedicated to the design and
implementation of the envisioned optimization strategies. Finally, the thesis provides an
evaluation of the optimizations and lists their advantages and limitations. The elaborated
strategies all have their own field of application. Not every optimization is suited for
every type of Flink job or data characteristic. In the following section, the approaches
are summarized and statements are made in which case an optimization strategy could
be helpful.

7.1 Optimization Strategies

The following Section provides a short summary on the different optimization strategies
implemented and provides a statement about the applicability of the approaches.

7.1.1 RocksDB Parameter Tuning by [4]

If the resource requirements of a Flink job regarding the RocksDB cache size are not
fulfilled, the performance will degrade severely. To mitigate this issue, parameter tuning
can be taken into consideration as a first step. For the present case, the increase of the
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background thread number asssigned to RocksDB as well as the overall managed memory
size of Flink yielded the biggest effect. Without the parameter tuning, the implemented
job was not usable.

Applicability: Flink jobs in general.

7.1.2 Reduction of Number of Parallel Windows

The reduction of the number of parallel windows by introducing slicing into tumbling
windows and then aggregating the slices is a simple and easy to implement technique.
It offers a considerable increase to performance and reduction of overall state size. The
throughput could be increased from a few 100 to a few 1000 events on average.
Furthermore, the operational state size was reduced from 20 million keys to 3
million. As the calculation of the parallel window aggregations still causes an omittable
overhead, the cascading window aggregation approach shown in 7.1.6 is to be preferred.

Applicability: Can be used to increase the performance of a streaming job with
a high number of concurrently active windows. Nevertheless, it is more bene-
ficiary to use the cascading window aggregation algorithm (cf. Section 7.1.6).

7.1.3 Manually Managed State on Heap Data Structures

The switch between the RocksDB state backend and the manually managed Heap data
structures has a limited use case by now. It provides the user with the possibility to decide
whether the data should be stored in-memory or in the RocksDB state backend. This
way, a trade-off can be made between state size and access time. To use the approach,
the cardinalities of the expected data has to be known as too much data in memory will
cause the garbage collector to slow down the system. Also, the developer has to know the
exact maximum size the state can grow to, otherwise the job is destined to fail due to a
memory shortage. Nevertheless, in the evaluation it was shown that the approach is able
to halve the time needed for calculations (i.e., from approximately 262µs to 131µs).
Also, when using the Heap data structure, nearly no time for state access is needed.
For future work, a dynamic switch between the two variants or a hybrid approach with
hot (in-memory) and cold (RocksDB state backend) windows could be considered.

Applicability: Operators with clear operational state size boundaries, that need
to rely on fast calculations.

7.1.4 Transforming Redundant Shuffle Operations

This approach aimed at reducing the latency by reducing the number of shuffle operations
by reinterpreting a stream as an already partitioned one. What appears to be logical
had the opposite effect. When applying the reKey function, the latency increased. In
the current evaluation setup, the network I/O could not be measured as no real cluster
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environment was ready to use. This could potentially have a great impact. Therefore,
these negative results must be viewed with caution and need to be further analysed in
future work.

Applicability: Currently not usable as it causes the latency to increase.

7.1.5 Task Chaining

The extended task chaining aims at reducing the I/O by creating a coarser task granu-
larity. Everytime a de/serialization can be omitted, the performance should be increased.
The results of the task chaining delivered positive results. The evaluation showed that
the extended task chaining strategy halved the latency of the pipeline used from an
average of 9µs to 4-5µs. Nevertheless, the approach has two weaknesses. First, the
implementation was done in Flink 1.8. However, in Flink 1.12 changes were made in this
exact region. On the one hand, this shows that a hot topic has been touched. On the
other hand, it would have to be analyzed to what extent the custom task chaining is now
redundant with the official release. Also, the custom task chaining implementation would
need to be adapted to Flink 1.12 as some classes have been changed.

Applicability: Results are promising and the approach lowers the latency. How-
ever, currently not usable with Flink 1.12.

7.1.6 Reducing Redundant Operators

The further development of the reduction of the number of parallel windows in Sec-
tion 7.1.2 lead to the cascading window aggregation algorithm. It exploits the charac-
teristics of the RocksDB MapState structure and the inherent canonical ordering of the
stored data. By using an iterator, all values for a certain timeframe can be aggregated
incrementally. For all windows that have to be calculated in a cascading way, the records
only need to be retrieved once. Additionally, as soon as the first record has been found,
the following entries can be returned with constant complexity as the iterator is already at
the correct, in-order position. By assigning the stored values into corresponding window
time-frame groups, the smaller windows can be merged to form larger ones. This leads to
fewer and more efficient state backend accesses and thus, a better overall performance. By
using the cascading window aggregation, the throughput could be increased from
a few 100 to about 40’000 events per second, which corresponds to an increase
by a factor of 100. Also, by removing redundant pipelines and operators, the overall
number of nodes in the execution plan could be lowered by a factor of 60 (i.e., baseline
implementation had 1800 nodes, cascading windowing approach approximately 30). This
in turn has a positive effect on the general latency of the pipeline as less potential network
I/O and de/serialization effort is generated.

Applicability: Efficiently aggregate multiple windows serially with possibility to
use the same pipeline for different key domains.
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7.1.7 Handling Delayed Streams

The handling and combination of streams with different output behaviour was of great use
for the present work. Due to the piling up of the individual records in the join operator of
the split/join pattern, the job got congested after some time. With increasing size of the
time difference between each output, the piling up gets more severe. For instance, if one
operator outputs one record per incoming event and another operator one record per 10
days, the join operator needs to buffer all the records for 10 days for joining the former to
the latter ones. By using a CoProcessFunction the last received record can be buffered.
For every new event, this buffered record is then propagated. If no previous record is
available, a null record gets emitted. This way, the output behaviour can be controlled.
It has to be kept in mind that this procedure only works if the semantics of the job allow
for it.

Applicability: Solves the problem of piling-up records in join operators.

7.1.8 Continuously Sliding Windows

The continuously sliding window algorithm allows a user to define windows that always
contain data for a definable time horizon from now. The challenging aspect is the contin-
uous addition and removal of records to and from the window. What can be easily solved
with a ProcessFunction, gets increasingly unsuitable with a larger amount of data. As
a solution, a two stage algorithm was introduced. It catches up on the idea of stream
slicing introduced by [10]. A first approach of this algorithm already delivered promis-
ing results. The further implementation focused on an optimization for the continuously
sliding window aggregation algorithm.

At a certain point in time, it is highly probable that records will only be removed but none
added to the window. In the first approach, for each removed record all the values of the
window would be aggregated again to get the current result. In the adapted approach,
the values in the MapState are reversed and a one-time aggregation with a bottom-up
approach happens. This way, when a record is removed, only the corresponding pre-
aggregated value needs to be emitted. Again, the characteristics of the RocksDB state
backend and the inherent canonical ordering gets used to benefit from a serial processing
of the window values. Additionally, by using a slicing technique, the results will stay
numerically stable as potential errors get removed from the result continuously. In the
evaluation it was shown that the usage of the reverse aggregation for the continuously
sliding window algorithm could lower the latency from 212ms to 4.1ms, which is a
reduction by a factor of 50.

Applicability: Efficient handling of continuously sliding windows with sparse
and extensive data.
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7.2 Conclusions And Guidelines

This Section provides the main key points regarding optimization of a streaming job, that
resulted from this work.

• Slicing techniques help to reduce the number of concurrently active windows.

• Generalize interfaces to reduce redundant pipelines for different data types.

• Cascading window aggregation reduces the number of concurrent queries to the
state backend.

• Cardinalities of the expected keys and data have to be known. A job with too few
allocated resources is bound to fail.

Except for the transformation of redundant shuffle operations, all other listed optimization
strategies proved to be of great efficiency. A first optimization step that always should be
considered when state is involved is the parameter tuning. The setting of the managed
memory size is of central importance, also when no RocksDB state backend is used.
Additionally, if RocksDB is used, the increase of the background thread number allows
for further performance gains.

To the best of the authors knowledge, the cascading window calculation and the reverse
aggregation of continuously sliding windows represent a novel approach in the Flink envi-
ronment. By using the canonical ordering provided by RocksDB, an efficient incremental
roll-up of the values stored in a window can be achieved. The usage of slicing tech-
niques further increases this effect. By implementing the various presented strategies, the
throughput of the initial baseline implementation could be increased from a few hundred
events out per second, to up to 40’000. This is equivalent to an increase in throughput
by a factor of more than 100. By using the reverse aggregation for continuously
sliding windows, the latency of this operation could be reduced from 212ms to
4.1ms on average. This is a reduction by a factor of 50.

Nevertheless, measuring the complete latency of a pipeline only makes sense when the
whole history of the maximum defined time span (e.g., 392 days) has been processed and
the system is in a live mode. Still, it can be stated that by reducing the number of parallel
window aggregations, and thus the number of operators, also the latency will greatly ben-
efit from this optimization. By implementing a way to run multiple key domains in one
pipeline, the latency further benefits from a leaner architecture and less de/serialization
effort. In total, the number of operators could be lowered from 1800 nodes to
approximately 30, which is a reduction by factor 60. The extended task chaining
remains an open, yet interesting topic. It proved to work and lowered the pure la-
tency of the pipeline by 50%. Nevertheless, it needs an adaption to the newest Flink
version. As this optimization technique operates in the microsecond range, it represents
a fine granular optimization. The benefit of this optimization can be lost if other, more
performance-relevant problems are present. Therefore, it only makes sense to perform an
I/O optimization if everything else is running optimally.
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7.3 Future Work

There exist many topics for future work in this area. First, the implementation of the
feature generation job for scenario 3 poses some additional challenges. On the one hand,
the keys that need to be added further enlarge the key space and the overall data usage
of the state backend. Also, the unique count aggregation for keys with extensive data sets
is a difficult topic for incremental aggregations. It has to be found out if algorithms such
as HyperLogLog [57] are useful in this field or just further complicate the issue. Also,
scenario 3 includes the issue with reclassifications of values for a time-frame of at least 28
days. As it was shown, although many optimizations have been applied to the job and
it does not get blocked anymore, the performance degrades over time. Nevertheless, low
latency will only be needed when authorizations are aggregated live and not while initially
rolling up the history. A potential approach to solve this challenge is to initially calculate
the state as a batch job. As soon as the current timestamp is reached, the job would
switch to the streaming-mode. The state that was calculated in the batch-mode could
then be used as a starting point for test scenarios. Other topics are further investigations
regarding the latency differences between the keyBy and reKey functions, the adaption of
the custom task chaining to Flink 1.12 as well as the implementation of a dynamic switch
between the RocksDB state backend and the manually managed heap data structure.
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MCC Merchant Category Code
Auth Authorisation
Trx Transaction
CardId Card Identification Number
ML Machine Learning
RBT Red Black Tree
ADT Abstract Data Type
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TE Temporal Event
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Glossary

Fraud Scoring Solution that scores authorizations in near real-time using machine learn-
ing algorithms in order to detect fraud attempts.

Authorisation Is a check from the merchant, which verifies the chargeability of the
credit card and makes a pre-booking of a certain transaction-related amount. For
example, half, a quarter or the whole amount of a transaction can be reserved.

Transaction Booking of a purchase. Authorisations are provisional, transactions are a
definitive debit of the customer account.

Apache Flink Stream Processing Framework used for this project.

Red Black Tree Self-balancing sub-type of a binary search tree.

Poisson Point Process a stochastic process named after Siméon Denis Poisson.It is a
renewal process whose gains are Poisson-distributed.

Monad Algebraic structure used to isolate side effects and facilitate the composability
of calculations and computations.

Fraud Scoring Fraud prevention system based on machine learning, which analyzes au-
thorizations and assigns a certain probability of fraud to card usages.

Scala Functional and object-oriented programming language used for this project

Apache Avro Is a remote procedure call and serialization framework developed as part
of Apache Hadoop. It uses a compact binary format for serialization.

Continuously Sliding Windows Custom windowing algorithm that allows to keep the
last x time units (e.g., seconds, minutes, hours, days) in a window at any time with
millisecond precision

Unique Count Aggregate Aggregation function that counts the unique appearances
of a defined attribute in a window.

Oldest/Recent Aggregate Aggregation function that determines the first and last oc-
currence of an event in a window.

Momentum Aggregate Aggregation function that incrementally calculates the higher
order statistics (e.g., sum, mean, standard deviation, skewness).
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Split/Join Pattern Pattern used for combining calculated features with the initial event
they were extracted from.

Delayed Stream Streams with different output / timing behaviour.

Two-Factor Authentication Access authorization is verified by several independent
characteristics
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