Data Augmentation for
Improved Classification
in Neural Networks

Master Thesis

Isabel Margolis
13-776-281

Submitted on
March 30 2021

Thesis Supervisor
Prof. Dr. Manuel Glnther

N @®:
N = my
Q) Er Z Department of
.& & —_ Ini
O B 5
Ay ¢ =
g §
o Learning
ﬁ

Master Thesis
Author: Isabel Margolis, isabel.margolis@uzh.ch
Project period: October 12020 - March 31 2021

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Acknowledgements

First and foremost, I would like to thank my thesis supervisor, Prof. Dr. Manuel Giinther, for the
opportunity to write my thesis within the Artificial Intelligence and Machine Learning Group at
the University of Zurich and for his guidance and support through each stage of the process. I
would like to thank my partner, Vinzenz, for his endless help and support throughout my stud-
ies. And to my father for inspiring my interest in machine learning and for his final review and
proofreading. Lastly, I am thankful to everybody who has helped and supported me during my
studies at the University of Zurich.

Abstract

Image classification models are often trained on additional transformations of the original images
to increase the number and the variance of the training set. These transformations can include,
for example, horizontal flips, rotations, and color transformations. Most of the recent data aug-
mentation methods focus on improving data augmentation techniques during the training phase.
There is very little research on test-time augmentation, which contains data augmentation during
the testing phase. Often, only very simple transformations are used during testing, and the pre-
dictions are frequently aggregated through simple averaging or majority voting. I propose new
aggregation methods to improve the predictive performance of image classification models dur-
ing the testing phase. I show on four different datasets, namely CIFAR-10, MNIST, ImageNet, and
a dataset containing images for melanoma classification, that other aggregation methods, besides
the commonly applied averaging and majority voting, obtain better results.

Zusammenfassung

Um die Leistung von Bildklassifikationsmodellen zu verbessern, werden die Bilder beim Trainieren
eines Modells oft durch verschiedene Transformationen vermehrt. So kann man die Anzahl und
die Varianz der Bilder vergrossern, ohne zusitzliche Daten sammeln zu miissen. Solche Trans-
formationen konnen zum Beispiel Rotationen, horizontale Verschiebungen und Farbveridnderun-
gen beinhalten. Oft fiihrt dies zu besseren Ergebnissen und ist eine weit verbreitete Technik.
Wihrend die Augmentation der Bilder wihrend der Trainingsphase bereits ausgiebig erforscht
wurde, existieren nur wenige Arbeiten, die sich auf die Testphase beziehen. Oft werden nur sehr
einfache Transformationen wahrend dieser Phase angewendet und die gewonnenen Prognosen
auf den Testbildern werden meistens durch Mittelwertbildung oder Mehrheitsentscheidung ag-
gregiert. In dieser Arbeit zeige ich auf vier verschiedenen Datensdtzen, CIFAR-10, MNIST, Im-
ageNet und ein Datensatz mit Bildern zur Melanomklassifizierung, dass die Augmentation von
Bildern wahrend der Testphase verbesserte Resultate erbringen. Zusatzlich zeige ich, dass neue
Methoden zur Aggregierung bessere Prognosen erzielen als die herkémmlichen Methoden.

Contents

Acknowledgements i
Abstract iii
Zusammenfassung v
1 Introduction 1
1.1 Motivation L. 2

1.2 Descriptionof Work L 2

1.3 ThesisOutline 2

2 Datasets 5
21 CIFAR-10o o 6
22 MNIST . . . 6
23 ImageNet. 7
24 Melanoma 8

3 Related Work 11
3.1 Common Data Augmentation Techniques 11
3.1.1 Geometric Transformations 11

312 NoiseInjection 14

3.1.3 Color Space Transformations 14

314 RandomErasing 15

3.2 Advanced Data Augmentation Techniques 16
3.2.1 Information Dropping 16

322 MixingImages 17

3.2.3 Generative Adversarial Networks (GANs) 18

3.3 Data Augmentation during the Training Stage 19
331 AutocAugment. 19

3.3.2 Population Based Augmentation 0L 19

3.4 Test-Time Augmentation 20

4 Data Augmentation during the Training Stage 21
41 Model Specifications L 21
411 Model Architecture L L 21

412 TLossFunction 23

413 Hyperparameters 23

42 Data Augmentation Techniques 24

viii Contents

43 Training Scores 26
5 Test-Time Augmentation 29
51 Methods 30
511 Greedy Approach. 31

512 Weighted Approach, 32

513 Majority Voting 37

514 Averaging e 38

6 Results 39
7 Discussion 43
71 Improvements 44
7.1.1 Combination of Transformations« 44

7012 Clusters e e 45

7.2 Limitations e e e e e e e 46
8 Conclusion and Future Work 49
8.1 Conclusion e e e 49
8.2 Future Work e 50
A Hyperparameters 53
Grid Search Results 57

C Optimal Weights 65

Chapter 1

Introduction

Many image recognition applications have emerged with the development of deep learning, such
as self-driving cars, autonomous robots, and facial recognition. There are many benefits to im-
proving the capabilities in image recognition. For example, self-driving cars must be able to detect
traffic lights and other objects correctly. In recent years, medical image recognition has become
a very important application. Deep learning models are increasingly used to help recognize dis-
eases in medical images, such as diagnosing brain diseases in brain MRI images (Cai et al., 2020).
In this thesis, I aim to improve the accuracy of image classification models. Thus, the application
of image classification on medical images is particularly interesting because even a tiny improve-
ment in the accuracy can have life-and-death consequences.

Data augmentation is often used to improve the accuracy of image recognition tasks. Images
are transformed to augment the current dataset without collecting new images. At the same
time, they help increase the diversity of the data. Common examples of transformations include
rotating, shifting, and cropping the original images. Machine learning algorithms are, in general,
more effective the more data they have access to. This statement holds, even if the data is of
lower quality (Perez and Wang, 2017). More data and increased diversity in the data reduce
the chances of overfitting to the training set (Takahashi et al., 2020). Overfitting happens when
the model performs very well on the training set but not on the validation and test set. In other
words, the model does not generalize well to unseen data (Shorten and Khoshgoftaar, 2019). More
specifically, it can be used as a regularization method. Compared to other regularization methods,
such as dropout in neural networks, data augmentation does not require changing the network
structure. Instead, it only operates on the input (Chen et al., 2020). Thus, data augmentation
is especially beneficial when the amount of available data is small. This is often the case with
medical data, such as cancer images, due to the rarity of diseases, patient privacy, the demand for
expert labeling, and the cost to create and process the images (Shorten and Khoshgoftaar, 2019).

There exist several ways to use data augmentation for image classification tasks. In general, it
can be divided into two stages: data augmentation during the training stage and data augmen-
tation during the testing stage. The latter is also called test-time augmentation. Recent research
focuses a lot on improving data augmentation techniques during training. These improvements
often involve automatic choices of transformations and new transformation techniques. The goal
is to find the ideal set of transformations such that the trained model performs best during the
training stage. Along with data augmentation during the training stage, test-time augmentation
can also be performed. However, there is very little research that focuses on this particular prob-
lem. Some papers mention that they have used test-time augmentation to boost the performance
of their image classification model. But only very few papers propose a novel technique or test
new methods. The goal of test-time augmentation is to improve the image classification score for
the unseen test images. Instead of predicting the class of an image solely on the original image, it
is augmented several times, creating multiple images. Then the predictions of each separate im-

2 Chapter 1. Introduction

age are aggregated to form the final class prediction. Common aggregation methods are simple
averaging of the class probabilities and majority voting. The aim of this thesis is to investigate the
effects of test-time augmentation and propose new aggregation methods.

1.1 Motivation

There is very little research on test-time augmentation, and besides simple averaging and major-
ity voting, there are not many different propositions on how to aggregate the predictions during
testing. Because other research has demonstrated that test-time augmentation has a positive im-
pact on the accuracy of image classification models, and because new aggregation methods are
rarely explored, this thesis aims to investigate and propose new methods for improving test-time
augmentation. Additionally, although many well-performing classification models already exist
that use advanced data augmentation during training, their overall accuracy on the test set may
be further improved by improving test-time augmentation techniques.

1.2 Description of Work

I use four different datasets, namely CIFAR-10, MNIST, ImageNet, and a dataset containing im-
ages for melanoma classification, which from now on I will refer to as Melanoma, for evaluating
different test-time augmentation methods. I choose the datasets such that any results in this thesis
can likely be generalized to a large set of different datasets and unique classification problems.
In the first stage, I train a neural network on each dataset using simple data augmentation meth-
ods. In the second stage, I implement and evaluate various data augmentation methods during
the testing phase. Finally, in the third stage, I compare and discuss results found on the test sets
of each dataset. The goal is to find a method that works well on all datasets and can likely be
generalized and implemented in many other image classification problems.

1.3 Thesis Outline

This thesis is structured as follows:

« Datasets: In this chapter, I will give an overview of the four datasets that I use to evaluate
various test-time augmentation methods. These four datasets include CIFAR-10, MNIST,
ImageNet, and Melanoma.

 Related Work: I will give an overview of transformation techniques commonly used and
provide some background regarding data augmentation in general. Additionally, I will
introduce related work concerning data augmentation during the training stage and test-
time augmentation.

+ Data Augmentation during the Training Stage: Here, I will explain how I train the neural
networks, which I will later use to compare test-time augmentation methods.

+ Test-Time Augmentation: Test-time augmentation is the main focus of this thesis. In this
chapter, I will explain in detail the various methods that I implement and evaluate.

* Results: In this chapter, I will share all the results from my experiments. Additionally, I will
provide results from Welch'’s t-test to underline the statistical significance of my results.

1.3 Thesis Outline 3

« Discussion: I will discuss the results found in the previous chapter, discuss attempts to
improve these results and bring forth potential limitations in my approach.

« Conclusion and Future Work: Finally, in this last chapter, I will sum up the results found in
this thesis and provide some insight into areas where my research can be further improved
or where it has remained inconclusive.

Chapter 2

Datasets

There exist several publicly available datasets containing labeled images. Each image can be
represented as an array of the shape D x W x H, where D represents the color dimension, and W
and H represent the width and height of the image in pixels. If I only indicate two dimensions,
then I am referring to W and H. The first dimension, representing the color, should be clear from
the context. If D is 3, then the color of the image is represented in the RGB color scheme. In
general, any color can be created by combining red, green, and blue. The values for each color
range between 0 and 255 and are scaled to be between 0 and 1. If D is 1, then the image is grey-
scaled. The pixel values also range between 0 and 255 and are scaled to be between 0 and 1. 0
indicates black, and 1 indicates white.

I mostly use CIFAR-10?, described in Section 2.1, for my investigations of data augmenta-
tion techniques and methods to improve image classification. I choose CIFAR-10 because it is a
sufficiently small dataset that allows me to run tests without massive computation times. The Im-
ageNet 2012 Classification Dataset, described in Section 2.3 has 1000 different categories, whereas
CIFAR-10 only has ten different categories. The ImageNet set has about 25 times more images
for training than CIFAR-10. Additionally, the resolution of the images belonging to ImageNet is
much higher than the images of CIFAR-10. The images in CIFAR-10 are all equally sized with a
resolution of 32x32 pixels. ImageNet, on the other hand, contains images of different sizes with
an average resolution of about 500x400 pixels. However, to ensure that my discoveries can be
generalized to other images and datasets, I also test my results on all the datasets described in
this chapter.

I load the datasets using the DataLoader? class from PyTorch. CIFAR-10, MNIST, and many
other datasets are included in torchvision.datasets and can easily be loaded. For the
ImageNet 2012 Classification Dataset, torchvision.datasets only includes the protocol of
how to split the dataset into training, validation, and test sets. The data, however, has to be
downloaded from an external source.®> Melanoma?*, described in Section 2.4, is considered a
special case because it is a very specific application of image recognition where there are only
two possible outcomes that are extremely unbalanced. Additionally, Melanoma is not included
in torchvision.datasets, and it brings about further challenges that are not present in the
other datasets. However, it is an interesting case of image classification, where data augmenta-
tion techniques may have many potentials, and I, therefore, decided to run my experiments on
it. In general, I put importance on testing all methods in this thesis on various datasets. Each of
the four datasets that I use is unique in some way and allows me to understand how well my
methods generalize among various datasets and make meaningful conclusions.

Ihttps://www.cs.toronto.edu/~kriz/cifar.html
2https://pytorch.org/docs/stable/data.htmlftorch.utils.data.DataLoader
Shttp://www.image-net.org/challenges/LSVRC/2012/index
4https://doi.org/10.34970/2020-ds01

https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
http://www.image-net.org/challenges/LSVRC/2012/index
https://doi.org/10.34970/2020-ds01

6 Chapter 2. Datasets

apiane ot IR I " - IS O 0
automobile E Eﬂh‘
oe Sl WSS ¥
cat
ceer [PV B0 5 L PR R
o [RESE®BIFIK LB
woo [R N 21 A
AREEO AR
e e el EOR D
0 i N P = o SR

Figure 2.1: CIFAR-10 EXAMPLE. 10 random images for each class in the CIFAR-10 dataset. Source:
(Krizhevsky, 2012)

horse

truck

2.1 CIFAR-10

CIFAR-10 contains 60’000 labeled 32x32 color images. There are ten possible labels: plane, car,
bird, cat, deer, dog, frog, horse, ship, and truck. Figure 2.1 gives an example of 10 random images per
label. The dataset is publicly available, and it is split into 50’000 training images and 10’000 test
images. The labels of the test set are balanced; thus, there are precisely 1’000 images per category.
Furthermore, the labels are mutually exclusive, meaning that no image can simultaneously belong
to more than one category. In addition to CIFAR-10, there also exists the CIFAR-100 dataset. It is
essentially the same as CIFAR-10, except that there are 100 different categories (Krizhevsky, 2012).
I do not run my experiments on CIFAR-100 because of its similarity to CIFAR-10 and ImageNet.
I do not suppose that additional experiments on CIFAR-100 would provide any novel insights
for this thesis. For implementing my experiments and testing new ideas, I always use CIFAR-10
because of its small size and simplicity.

2.2 MNIST

MNIST® contains handwritten black and white digits from 0 to 9. The training set consists of
60’000 images, and the test set contains 10°000 images. The digits were centered and fit into a
28x28 field. It is a popular database to learn image classification techniques because there is very
little preprocessing and formatting required (LeCun and Cortes, 2010). It is used extensively in
optical character recognition and machine learning research. Additionally, because the task of

Shttp://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

2.3 ImageNet 7

NNERSESSEE
NEEEEENEEN
LS NSNS
ol [0 W] v]os] [Cafob | B
L 20 0 £ 80 N AV N R 1)
RN S Y ES Y EN NN ES
NSNS NN NTE

clefplelels]Rlcw]<f
£) Y 2T Y Y RN 2 Y
olfslololvleoalolvg

Figure 2.2: MNIST EXAMPLE. 10 random images for each class in the MNIST dataset. Source: (Lim et al.,
2016)

classifying handwritten digits is somewhat more straightforward than most other image recog-
nition tasks, MNIST is often used for fast-testing machine learning algorithms (Deng, 2012). In
comparison to the other datasets mentioned in this chapter, MNIST contains grey-scale images.
Hence, the first dimension, D, of the image is 1. Figure 2.2 shows a few examples from the
MNIST dataset. The digits are all centered and scaled such that they have similar sizes. I include
this dataset because it is quite different from the other datasets mentioned in this chapter. It is
a very specific image recognition application that is easier than image recognition using CIFAR-
10, ImageNet, or Melanoma. I am interested in whether data augmentation methods that prove
helpful for more difficult classification tasks help classify digits as well.

2.3 ImageNet

ImageNet is an extensive collection of human-annotated photographs intending to further the
research and the development of computer vision algorithms (Deng et al., 2009). It consists of
27 high-level categories and 21’841 subcategories. The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC2012) contains images from ImageNet with 1000 different labels. ILSVRC2012
is one of the annual challenges to provide a benchmark for state-of-the-art algorithms. There are
1'281"167 images for training with 732 to 1300 images per label. The validation set consists of
50’000 images, 50 images per label, and the test set consists of 100’000 images with 100 images per
label. However, the labels of the test set are not publicly available (Russakovsky et al., 2015). I
use the given validation set as my test set and randomly split the given training set into a training
and a validation set, with 1181167 training images and 100’000 validation images. Whenever
I mention ImageNet in my results and discussions, I always mean the dataset of ILSVRC2012.

8 Chapter 2. Datasets

In contrast to CIFAR-10 and MNIST, the images in ImageNet come in different sizes and shapes.
Because most neural networks require all images to be of the same size, I must reshape each image
before passing it to the model. The difficulty with ImageNet is mainly its size and number of
possible labels. Using such a large number of training images forces me to consider computational
efficiency aspects. Although some methods might improve the image recognition accuracy, I
sometimes opt for the worse but more computationally efficient method. ImageNet is also a useful
dataset to ensure that specific methods that perform well on datasets with only a few labels also
perform well on datasets with many different labels.

2.4 Melanoma

Melanoma belongs to the ISIC 2020 Challenge and has also been a Kaggle® competition that ended
in August 2020. It contains 33’126 training images of skin lesions. The goal of the challenge is to
identify whether the patient suffers from malignant melanoma, which is a serious form of skin
cancer that develops from pigment-producing cells. The dataset was generated by the Interna-
tional Skin Imaging Collaboration (ISIC). Along with the images, an additional file with infor-
mation on patient ID, sex, age, and general anatomic site, can be downloaded (Rotemberg et al.,
2021). Medical images are especially interesting for this thesis because the amount of data is of-
ten small, and data augmentation has, therefore, a significant impact. Additionally, good image
classification models for medical data are in big demand because they could potentially improve
the diagnosis of diseases that are otherwise difficult to detect.

Figure 2.3 shows examples of images in Melanoma. Figure 2.3a and 2.3b are examples of
benign skin lesions. Figure 2.3c and 2.3d are examples of malignant melanoma. Classifying ma-
lignant melanoma is a very challenging image classification task because compared to the other
datasets, it is even challenging for a human to identify differences between benign and malignant
skin lesions.

®https://www.kaggle.com/c/siim-isic-melanoma-classification

https://www.kaggle.com/c/siim-isic-melanoma-classification

2.4 Melanoma 9

(a) Benign skin lesion

(c) Malignant melanoma (d) Malignant melanoma

Figure 2.3: MELANOMA EXAMPLE. There are two possible labels for each image in Melanoma: benign
skin lesion and malignant melanoma. (a) and (b) are examples of benign skin lesions. (c) and (d) are exam-
ples of malignant melanoma.

Chapter 3

Related Work

A lot of research has been done on data augmentation techniques and how they improve image
classification. Some techniques, such as cropping and flipping, are very common. But there
exist more advanced and less common techniques as well. This chapter will introduce the most
common data augmentation techniques and a few promising advanced techniques. Additionally,
I will give an overview of what has been done in terms of data augmentation during the training
stage and test-time augmentation. Data augmentation during training is very common and is
almost always used as an additional measure to improve image classification accuracy. There are
a few standard approaches and related work for test-time augmentation; however, this is much
less common than data augmentation during training. Not many papers are focused on new and
improved methods for test-time augmentation.

3.1 Common Data Augmentation Techniques

In this section, I will introduce the standard transformations that are almost always used for
data augmentation during the training stage of an image classification model. Although these
techniques are very simple, many of these techniques have substantially improved image classifi-
cation. They are commonly used to increase the number of training samples or to add additional
variety to the set of training images. They are popular because they are easy to understand and
implement, and the implementation code is often available in most deep learning frameworks
(Mikotajczyk and Grochowski, 2018). Additionally, all these standard augmentation techniques
can be applied sequentially to an image, thus creating a more extensive set of possible transfor-
mations.

3.1.1 Geometric Transformations

Geometric transformations are transformations that change the geometric shape of the image.
These transformations include flipping, rotating, shifting, and cropping of an image. In general,
these transformations help the model not to rely on the object’s location, shape, and angle within
the image. For example, in many image datasets, the relevant object is in the middle of the image.
However, an unseen image might contain the object in a corner or near the image border. Thus,
for the model to correctly classify those images, it is helpful to augment the training set such that
it contains the object in varying positions and sizes.

12 Chapter 3. Related Work

0 5 W 15 22 25 B 0 5 W 15 0 25 3
(a) Original image (b) Transformed image after
horizontal flipping

Figure 3.1: HORIZONTAL FLIP. Example of horizontal flipping on a bird image from CIFAR-10. (a) shows
the original image and (b) shows the image after applying horizontal flipping.

Flipping

Flipping can be done both vertically and/or horizontally. Horizontal flipping has proven useful
on many datasets such as CIFAR-10 and ImageNet (Shorten and Khoshgoftaar, 2019). Figure 3.1
shows an original image from CIFAR-10 and the result of horizontally flipping the image. De-
pending on the image, it might be inappropriate to use flipping. For example, on MNIST, which
contains images of numbers, flipping those images could potentially change their labels. Vertical
flips are very rarely appropriate because most objects would never appear vertically flipped in
real life. Huang et al. (2017) demonstrate on CIFAR-10 and CIFAR-100 that adding horizontal
flips during training improves the error rate of many popular neural networks.

Rotation

Rotating augmentation is done by rotating the image to a specific degree. Depending on the rota-
tion degree, this technique could also change the image such that it is no longer label-preserving
(Shorten and Khoshgoftaar, 2019). Figure 3.2a and 3.2b show examples of rotating an image in
clockwise and counterclockwise direction. 3.2a is rotated by 20 degrees in a counterclockwise
direction, and 3.2b is rotated by 10 degrees in a clockwise direction.

Shift/Translation

Shifting is done by moving the image either up, down, left, or right while preserving its size.
Shifting is very useful because the position of the object varies. This can help avoid positional
bias in the data. For example, in facial recognition tasks, the sample images are often centered.
Without shift augmentation, the model might only recognize a face in the center of the image
(Shorten and Khoshgoftaar, 2019). Figure 3.2c and 3.2d show examples of shift transformations.
3.2c is shifted horizontally, and 3.2d is shifted vertically.

When rotating or shifting an image missing pixels will appear. An example of this can be seen
in Figure 3.2. The top row has black areas where the image is undefined. There exist several
methods on how to fill the unknown space. For example, the missing pixels can be filled with
a constant value or an interpolation function. Figures 3.2e, 3.2, 3.2g, and 3.2h show the above

3.1 Common Data Augmentation Techniques 13

s b by |

s o

o 5 10 15 20 5 30 o 5 10 15 20 5 30 0 5 10 20 5 30 0 5 10 15 20 5 30
(a) Counterclockwise (b) Clockwise rotation (c) Horizontal shift (d) Vertical shift
rotation

-

e o

3 R

o 5 pu 15 20 r- 30 o 5 10 15 20 r=3 30 o 5 10 20 r=3 30 o 5 pu 15 20 r- 30

(e) Counterclockwise (f) Clockwise rotation (g) Horizontal shift (h) Vertical shift with
rotation with with interpolation with interpolation interpolation
interpolation

Figure 3.2: ROTATIONS AND SHIFTS. Examples of rotations and shifts with different directions. (a) and
(b) show rotations in counterclockwise direction and clockwise direction, respectively. (c) shows a horizontal
shift to the right. (d) shows a vertical shift up. (e), (f), (g), and (h) show the transformed images after
interpolating the missing pixels from the images above.

images after using the function extrapolate_mask! from the bob.ip.base package, which in-
terpolates the missing pixels using a nearest neighbors approach.

Cropping

Random cropping is a data augmentation technique where a random crop of either fixed or ran-
dom size is taken from the original image. Because objects that we want to identify in image
recognition are not always fully visible in the image, it helps to add random crops to the training
set. The model learns to identify subsets of an object correctly as well. A concern with random
cropping is that there is a chance that the actual object to be classified might not appear in the
chosen cropped image. Instead, there will only be background information present. Figure 3.3
shows examples of different crops of the original bird image. Depending on the crop size and the
position, the bird might be difficult to classify. Figure 3.3d gives an example of a crop that over-
laps the borders, which causes the cropped image to contain undefined pixels. The undefined
pixels can be filled. However, the main object to classify is hardly in the cropped image anymore
because of the large overlap. Additionally, there are other cropping techniques besides random
cropping. For example, center cropping, which takes a crop from the center of the image.

Thttps://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html\#bob.ip.
base.extrapolate_mask

https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html\#bob.ip.base.extrapolate_mask
https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html\#bob.ip.base.extrapolate_mask

14 Chapter 3. Related Work

0
2
. 4
L 6
10.0 8
125 10
150
12
175
1
] 5 10 15

© (d)
Figure 3.3: RANDOM CROPS. Examples of random crops from the same image. (a), (b), and (c) show
examples of different crop positions and sizes. (d) shows an example where the cropped image goes beyond
the borders, resulting in undefined pixels.

0
5
H i H
15
= =
Eil
FL]
Y]
0 5 W 5 W 25 3

0.0 25 50 75 100 125

o

5

o 5 10 15 20 i 30

(@o=0 (b) o = 0.01 (c)o =0.04 (d)o=0.14

Figure 3.4: NOISE INJECTION. Examples of noise injections from a Gaussian distribution with varying
standard deviations. (a) is the original image without Gaussian noise. (b), (c), and (d) contain Gaussian noise
with o = 0.01, 0 = 0.04, and o = 0.14, respectively.

3.1.2 Noise Injection

Noise injections are usually drawn from a Gaussian distribution (Shorten and Khoshgoftaar,
2019). Injecting the training images with noise can be beneficial because images are often cor-
rupted by noise, thus, if a model is trained to consider this, it may perform better on unseen
images. Figure 3.4 shows examples of injecting the original image with noise from a Gaussian
distribution. The higher the standard deviation o, the noisier the image. Images are often rep-
resented with scaled pixel values between 0 and 1. Therefore, the values for o are chosen corre-
spondingly. Figure 3.4a shows the original image with no noise injection. Figure 3.4b shows the
augmented image with noise injection with ¢ = 0.01. Figure 3.4c corresponds to ¢ = 0.04 and
Figure 3.4d to o = 0.14.

3.1.3 Color Space Transformations

Images are often represented in the RGB color model. Color space augmentations are achieved
by changing the intensities of the channels. For example, this includes isolating a single color
channel by setting the other two channels to zero (Shorten and Khoshgoftaar, 2019). Similar to
geometric transformations, there are also many possibilities for changing the color space of an
image. Figure 3.5 shows examples of changing the brightness, contrast, hue, and saturation of an
image. These four color transformations can also be combined with each other. For images that
are grey-scaled, not all color transformations are useful. The change in hue and saturation, for
example, do not impact grey-scaled images. However, changes in brightness and contrast can be

3.1 Common Data Augmentation Techniques 15

b’

o 5 10 15 20 25 30 o 5 10 15 20 bl 30 0 5 10 15 bl 30 0 5 10 15 20 25 30

(a) Increased brightness (b) Reduced contrast (c) Increased saturation (d) Change of hue

Figure 3.5: COLOR SPACE TRANSFORMATIONS. Transformed images after changing the color space. (a)
contains increased brightness, (b) has reduced contrast, (c) has increased saturation, and (d) has a different
hue.

Figure 3.6: RANDOM ERASING. Examples of random erasing on images from CIFAR-10. Each patch is
exactly 1/10 the size of the original images. The position is chosen randomly, and the shape of the rectangle
is chosen randomly from a given range of aspect ratios.

applied.

3.1.4 Random Erasing

Random erasing is done by randomly placing a rectangle patch on the image and masking those
pixels with either a constant value or random pixels (Shorten and Khoshgoftaar, 2019). This
method is useful because the model is forced to concentrate on the entire image, not only a sub-
set of the image. This technique has been shown to produce high accuracies on various datasets
(Zhong et al., 2020). However, random erasing might not always be label-preserving depending
on the images (Shorten and Khoshgoftaar, 2019). Figure 3.6 shows four examples of random eras-
ing. Each image contains a black rectangle where pixels are removed from the original image. The
size and aspect ratio can be adjusted. In Figure 3.6 each patch is 1/10 the size of the original im-
age, and the shape of the rectangle is chosen randomly from a fixed range of possible aspect ratios.

Zheng et al. (2020) find that translation and horizontal flips are the most useful data aug-
mentation techniques on CIFAR-10. On the other hand, rotation and noise disturbances did not
significantly impact the classification accuracy. They explain that the CIFAR-10 dataset contains
very small images (32 x 32 pixels), which are also quite blurred. Therefore, adding additional
noise or changing the image significantly has a large impact on the image structure and does not
help improve the network.

16 Chapter 3. Related Work

Figure 3.7: EXAMPLE OF GRIDMASK. First the grid is created based on a set of parameters that indicate
the width, height, and space between the grids, and then the pixels in the original image are removed based
on the created grid. Source: (Chen et al., 2020)

3.2 Advanced Data Augmentation Techniques

In addjition to the standard data augmentation techniques, recent research has introduced several
more advanced augmentation techniques, some of which are based on neural networks. I will
give an overview of these techniques that have been tested and proven helpful in image classifi-
cation tasks.

3.2.1 Information Dropping

Information dropping has proven to be highly effective because the model becomes robust against
occlusion. The idea is to delete parts of the input data. This has proven to work best with small
datasets (Chen et al., 2020). Random erasing, introduced in Section 3.1.4, belongs to the category
of information dropping techniques. Because the location of the erased patches is chosen ran-
domly, there always exists a risk of covering the main object. On the other hand, if a smaller
patch size is chosen to reduce the risk of covering the object, the method might not be beneficial.
Chen et al. (2020) propose a new method called GridMask, which uses structured dropping re-
gions. Instead of randomly dropping an area within the image, GridMask lays a grid over the
image and drops the corresponding areas accordingly. Figure 3.7 demonstrates this method. The
first row shows the original image. The second row shows examples of different grids created
based on a set of parameters that indicate the width, height, and space between the grids. The
black areas indicate that those pixels are removed. The last row shows the transformed images
based on the grid above.

Chen et al. (2020) demonstrate that GridMask improves the accuracy on ImageNet from 76.5%
to 77.9%. Additionally, on CIFAR-10, they report an accuracy increase from 95.28% to 96.54%
using GridMask.

3.2 Advanced Data Augmentation Techniques 17

° 5 1 15 m B B b 5 W 15 2 B B b 5 W 15 2 B B

(a) Original image (b) Randomly chosen (c) Mixed image
image

Figure 3.8: EXAMPLE OF MIXING IMAGES. The original image in (a) has label horse. The randomly
chosen image in (b) has label boat. The mixed image in (c) is created by simple pixel averaging and has label
horse.

3.2.2 Mixing Images

Another interesting data augmentation technique, which has many variations, is mixing images.
The simplest way to mix images is by taking two random images and producing a new image
by averaging their pixel values (Shorten and Khoshgoftaar, 2019). Inoue (2018) introduces the
technique SamplePairing. For an original image, SamplePairing randomly chooses another image
and overlaps them to create a new augmented image. The overlapping takes place by averaging
each pixel value from the original image and the randomly chosen image. The randomly chosen
image does not necessarily have to be from the same class. The label of the transformed image
is chosen to be the same as the original image label. For example, in Figure 3.8, the first image
belongs to the category horse. Then another image is randomly chosen from the training set,
which is from the category boat. Figure 3.8c shows the resulting mixed image from averaging the
pixels in 3.8a and 3.8b. The label of the mixed image is the same as the label of the first image.
Therefore the label is also horse. Inoue (2018) finds that choosing a random image from the entire
training set gives better results than choosing an image from the same class or choosing an image
from outside the training set. SamplePairing has been shown to improve the image classification
accuracy on various datasets, including CIFAR-10.

Instead of taking the average of pixels in two images, Takahashi et al. (2020) propose a differ-
ent method of mixing images. They propose a new data augmentation technique called RICAP
(random image cropping and patching). Four images are mixed into one by taking a random
patch from each image and concatenating them. Figure 3.9 illustrates this on an example. The
red areas indicate the random crop that is taken from each of the four original training images.
The center image shows the transformed image after patching the crops together. Furthermore,
the crop sizes are selected so that the patched image remains the same size as the original im-
ages. Additionally, Takahashi et al. (2020) set the label of the mixed image to be probabilities
proportional to the crop sizes. Hence, instead of using hard labels, where each image belongs to
exactly one category with probability one, they used soft labels. Every image belongs to multi-
ple categories, each with a probability. Takahashi et al. (2020) state that RICAP prevents CNNss
from overfitting, which improves the accuracy in image classification tasks. Their results show an
absolute improvement in the error rate of 1.04% on CIFAR-10 and an improvement of 1.63% on
CIFAR-100.

Similar to RICAP, Summers and Dinneen (2019) propose other methods of mixing images.
They examine many different methods, which consist of concatenating patches of both images
and element-wise weighted averaging. In their experiments on CIFAR-10 and CIFAR-100, most
methods improved the performance of the model. In particular, VH-Mixup, which takes a left top

18 Chapter 3. Related Work

Figure 3.9: ILLUSTRATION OF RICAP. From each of the four images, a random crop is taken, indicated
by the red area. The random crops are patched together to create a new transformed image. The label of the
transformed image is a weighted mixture of the labels of the four images. Source: (Takahashi et al., 2020)

First Source Second Source Augmented Image

Figure 3.10: AUGMENTED IMAGE FROM A NEURAL NETWORK. This figure shows an example of an
augmented image from a neural network that takes in two images of the same class. Source: (Perez and Wang,
2017)

rectangle from the first image, a right bottom rectangle from the second image, and the rest from
element-wise weighted averaging, showed an absolute improvement of 1.6% on the error rate of
CIFAR-10.

There exist more advanced methods for creating an augmented image from two original im-
ages. Perez and Wang (2017) came up with a method where one neural network is trained to
create a transformed image from the input of two images from the same class, and a second neu-
ral network is trained to classify the images, where the input consists of the original images and
the transformed images. Figure 3.10 shows an example of a transformed image that the first neu-
ral network produces from the input of two images. Although the experiments show that this
method can work better than traditional data augmentations, the improvement is only minimal
while the computation time is about three times longer (Perez and Wang, 2017).

3.2.3 Generative Adversarial Networks (GANSs)

GANSs have proven to be good at augmenting datasets (Perez and Wang, 2017). They are used to
artificially create new samples similar to the original dataset (Shorten and Khoshgoftaar, 2019).
Antoniou et al. (2018) have designed a Data Augmentation Generative Adversarial Network (DA-
GAN). The Generator takes an original image from class ¢, projects it to a lower-dimensional

3.3 Data Augmentation during the Training Stage 19

space, and concatenates a random gaussian vector. Then the Decoder generates an augmented
image from this vector. The Discriminator Network receives images from the same class ¢, rep-
resenting the real distribution, and augmented images from the Generator, representing the fake
distribution. It tries to identify whether the distribution is real or fake. Thus, the generated im-
ages must be similar to the original images from class ¢ but different enough to be a different
sample. In contrast to other data augmentation methods, DAGAN is a flexible model that auto-
matically learns to augment data. An advantage of this is that it automatically discovers which
transformations are valid for a given dataset. Some datasets, for example, MNIST, are more likely
to be non-label preserving after a transformation. Horizontal flips are, for example, not a safe
augmentation. Instead of manually deciding which transformations to include and which not to
include, DAGAN does this automatically. Antoniou et al. (2018) have demonstrated on various
datasets that DAGAN improves the image classification accuracy, even after standard data aug-
mentations. In addition to DAGAN, there are many other variations of using GANs for creating
additional augmented training images.

3.3 Data Augmentation during the Training Stage

All techniques mentioned in this chapter so far are mostly used during training. Recently, re-
search has focused mainly on how to select the best data augmentation techniques automatically.
Because this is an important development in data augmentation methods, I will introduce two
techniques that try to tackle the automatic selection of transformations during training.

3.3.1 AutoAugment

Cubuk et al. (2019) introduce an algorithm that automatically searches for the best data aug-
mentation policies such that training a neural network yields the best validation accuracy. The
algorithm uses reinforcement learning. From a fixed set of policies that include specific image
transformations and a probability that indicates how likely the transformation will be applied,
the reinforcement learning algorithm finds the best policy. However, Cubuk et al. (2019) state that
other search algorithms, such as a random walk, might generate better results.

3.3.2 Population Based Augmentation

In contrast to AutoAugment, Ho et al. (2019) introduce a new technique that is less computation-
ally expensive. For image classification on CIFAR-10, AutoAugment requires 5'000 GPU hours,
while Population Based Augmentation (PBA) requires only 5 GPU hours (Ho et al., 2019). The
goal of PBA is to find the best schedule of data augmentation policies. Because PBA searches for a
schedule instead of a fixed policy, the algorithm is more efficient. When searching for a fixed pol-
icy, the model must be trained until convergence for each possible policy, which is computation-
ally expensive. However, when searching for a schedule, the model can reuse prior computations
for schedules with the same prefixes.

The Population Based Algorithm was first introduced to tune the parameters and hyperpa-
rameters in a neural network such as the weights, the architecture, the loss function, and the
optimization algorithm (Jaderberg et al., 2017). The algorithm starts by initializing a set of mod-
els with their weights and hyperparameters. The models are trained for a number of steps, and
then the parameters of the worst-performing models are replaced by the parameters of the best-
performing models.

20 Chapter 3. Related Work

3.4 Test-Time Augmentation

Test-time augmentation is a technique where multiple different data augmentations are performed
on the test image, and each transformed image is propagated through the trained neural network.
The final prediction is obtained through an aggregation function. The most common approaches
are averaging and majority voting. In contrast to data augmentation on the training set, where
advanced techniques are being used to find the best data augmentations, only simple techniques
such as rotation and translation are commonly used for the test set (Molchanov et al., 2020).

Zheng et al. (2020) have tested various data augmentation techniques such as shifts, horizontal
flips, and noise disturbance. In the testing phase, Zheng et al. (2020) used the same distribution
of data augmentation techniques as in the training phase and calculated the final prediction using
majority voting. Zheng et al. (2020) report that the average classification accuracy of CIFAR-10
has increased from 85.7% to 93.4% using data augmentation on both the training and the test
images. However, data augmentation on the training images was more effective than on the test
images.

Krizhevsky et al. (2012) used test-time augmentation by extracting five patches from the orig-
inal test images. They extracted one patch from each corner of the image and the fifth patch from
the center. Additionally, they flipped each patch horizontally, resulting in ten augmented im-
ages. Then they averaged the predictions made by the last layer of the network to obtain the final
prediction. Hence, from the output probabilities for each category, they took the average over
all the crops, resulting in a new vector of probabilities. Then the final prediction is the category
with maximum probability. Howard (2013) out-performed this method by not just considering
crops. Instead, he considered the combination of five translations, two flips, three scales, and
three views, which in total resulted in 90 augmented images per test image. The views are large
crops, in the top left corner, the center, and the bottom right corner. Due to running time concerns,
he implemented a greedy algorithm that finds the ten best transformations instead of all 90. Sim-
ilar to Krizhevsky et al. (2012), he averaged the network outputs for each augmented image to
receive the final prediction. Howard (2013) obtained an improvement in the image classification
error rate of 2% in ILSVRC2013 compared to Krizhevsky et al. (2012).

In ILSVRC2014, the winning team states that they have also used test-time augmentation.
They fed the original test images and their horizontally flipped augmentations into the trained
neural network. Then they averaged the outputs of both the original and the flipped test images
(Simonyan and Zisserman, 2015).

Molchanov et al. (2020) have come up with a more advanced technique for test-time augmen-
tation. They introduce a greedy policy search (GPS) that learns a test-time augmentation policy
based on the predictive performance on the validation set. From a set of possible data augmenta-
tions (sub-policies), GPS iterates through all sub-policies and adds them to the current policy. If
the validation performance increases, GPS keeps the sub-policy. Molchanov et al. (2020) state that
their method improves the accuracy of image classification on various datasets, such as CIFAR-10
and ImageNet, compared to using the same data augmentation techniques as during the training
stage and using the standard approach with crops and flips.

So far, these test-time augmentation approaches have focused mainly on the data augmen-
tation techniques and not on the aggregation function. For aggregating the predictions of each
transformed version of a test image, they often used simple averaging of the output probabilities
from the softmax layer. However, Shanmugam et al. (2020) show in their experiments that simple
averaging might not always be optimal. Instead, they used weighted averaging. They searched
for the optimal weights by minimizing the cross-entropy loss between the true labels and the out-
put of the aggregation function using gradient descent. They report that this method improves
on simple averaging, greedy policy search, and no test-time augmentation.

Chapter 4

Data Augmentation during the
Training Stage

The main goal of this thesis is to investigate data augmentation methods on the test set. However,
I also use data augmentation during training because it improves the performance of the trained
models. For each epoch during training, I transform each training image according to a set of
transformations with given hyperparameters. The hyperparameters indicate, for example, the
possible range of rotation angles to apply. Multiple transformations can be applied sequentially,
and each transformation is given a probability that indicates the likelihood of that transformation
to be applied. I choose the hyperparameters empirically by experimenting with different combi-
nations and deciding based on the nature of the dataset. For example, with MNIST, I do not use
any color transformations that change the hue or saturation because the images are grey-scaled.
Additionally, I do not add horizontal flips for the MNIST dataset because it is not always label-
preserving. Table 4.1 provides a full list of all transformations with the chosen hyperparameters
that I use for training. The variable p in Table 4.1 indicates the probability of the corresponding
transformation to be applied. Therefore, a specific image is randomly transformed in each epoch,
creating a new version of the original image used for training and then discarded again. This has
the effect that the network is introduced to a larger variation of the images without artificially
enlarging the entire training set. Thus, as long as the image processing is fast enough, the training
time of the neural network is similar to training the neural network on only the original training
images.

4.1 Model Specifications

In this section, I will introduce the model specifications that I use for training. I use the same
model architecture and loss function for all datasets. The hyperparameters, such as the learning
rate, may differ slightly. I manually adjusted the learning rate if I found that the model was not
learning well.

4.1.1 Model Architecture

I use the ResNet-18 architecture in my experiments, which is a deep residual neural network
with 18 layers (He et al., 2016). Specifically, in this thesis I use Python as my main programming
language, and use the implementation of ResNet-18 from the torchvision.models! package

Thttps://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html

22 Chapter 4. Data Augmentation during the Training Stage

X
\ 4
weight layer
F(x) Jrelu N
weight layer identity

Figure 4.1: RESIDUAL UNIT. This figure shows an example of a residual unit. x is the input of the residual
unit and F(z) + z is the output. F(x) consists of two layers. The skip connection is the identity function.
Source: (He et al., 2016)

from PyTorch. ResNet-18 can be used both as a pretrained or a non-pretrained model. The pre-
trained model was trained on images from ImageNet. I tested both versions, and the pretrained
model converged considerably faster and usually resulted in higher image classification accu-
racies. However, because it was pretrained on the training images of ImageNet, my validation
results on ImageNet may not be as accurate as the validation results on the other datasets because
the ImageNet training and validation sets overlap. However, this should not affect the test scores
after test-time augmentation.

Residual neural networks solve the problem of vanishing gradients. During back-propagation,
the gradient in the first layers is calculated using the chain rule, thus multiplying the derivatives
of all the subsequent layers. Repeated multiplication of the derivatives eventually makes the gra-
dient very small, which results in the vanishing gradient problem. Residual neural networks solve
this problem by adding skip connections to the architecture. The architecture can be separated
into multiple residual units. An example of a residual unit can be seen in Figure 4.1. The input
x of the residual unit is propagated through several layers and additionally also through a skip
connection, which in the figure is an identity mapping. Then, both the output of the layers and the
output of the skip connection are summed up. An activation function, in this case, ReLU, takes
the sum, and its output is fed to the next residual unit. In Figure 4.1, the skip connection is the
identity function. However, suppose the dimensions of z are not the same as F(z). In that case,
the skip connection includes a convolutional layer and batch normalization for downsampling or
zero paddings for upsampling, such that the dimension matches F(z). The full architecture of
ResNet-18 can be seen in Figure 4.2. The solid arcs are identity mappings; thus, the dimensionali-
ties of 7 () and x are the same. The dotted arcs, which are annotated as skip connections, include
an extra step to increase or decrease the dimensionality of to match the dimensionality of F(x).
In this example, the input images are of size 100 x 100 pixels. However, the pretrained network
from PyTorch requires the input sizes to be at least 224 x 224. Therefore, after performing data
augmentation, I scale each image to 224 x 224 before feeding it to the model.

The final layer of the ResNet-18 model outputs logits for each of the possible classes. Those
logits can be transformed into probabilities when applying the softmax function. However, in the
testing stage of my thesis, I use the original logits.

4.1 Model Specifications 23

Skip Connection

8 [2 g}
Max pool, = [¢ o~
b /o= * "
stride =2 o /2) w H
o p ™~ v
— BN e .
: -
o ; *
; —
=] '
x i N
8 |u o . e . o
A e BRI REE R Bkl B8 B ol Il
o B = “=11-=11: = =] I 1B I I -] R ey 2 |
o o 8 g Z 2l I8! = = PR d=]z =t e e o [2 B
g2- El B—B—8| 88—z Bl ot BB B B BB S D
- 8l o = = - = g o =} g =} [} 3 =i o o o 5 ©
~ 2 OB OB OB OB B m a 5 B R Ok OE R R Ok OGP
2 RS - = - = el L. i =i = = i)]]
™] (o]
- | -

Tay e?l

,_
w
o
=
It

3 Fully connected
[fc 128

Identical ConvNets

ResNet-18 Architecture

Fruit 360 Input Image size= 100*100 px

Figure 4.2: RESNET-18 ARCHITECTURE. This figure shows the architecture of ResNet-18. It describes
each layer and where the skip connections are located. The solid arcs represent identity mappings, and the
dotted arcs are skip connections with an extra step for adjusting the dimensionality. Source: (Singhal, 2020)

4.1.2 Loss Function

During training I use the categorical cross-entropy loss® provided by PyTorch. For Melanoma
I use weighted cross-entropy because the labels are imbalanced with 584 malignant and 32’542
benign cases. To calculate the weights I use the same function as scikit-learn:3

N
T Cxne

We

where N is the total number of samples, C the total number of classes, and n. the total number of
samples in class c. Hence,

33126
Wpenign = 9 *732/542 = 0.5090

33126
Wmalignant = 2 % 5784 = 28.3613

4.1.3 Hyperparameters

I use the stochastic gradient descent optimizer from PyTorch with a momentum factor of 0.9. The
learning rate is slightly different depending on the dataset because, in some cases, the model did
not seem to learn well. Additionally, the learning rate decays by 0.1 at every seventh epoch. The
batch sizes differ as well, depending on the dataset. The exact learning rates and batch sizes for
each model can be found in Appendix A in Table A.1.

2https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Shttps://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight .compute_
sample_weight.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_sample_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_sample_weight.html

24 Chapter 4. Data Augmentation during the Training Stage

4.2 Data Augmentation Techniques

CIFAR-10 & ImageNet MNIST Melanoma
Horizontal Flip p=05 p=0 p=05
Random Crop proportion = 0.8 proportion = 0.8 proportion = 0.8
p=05 p=05 p=05
Color Jitter brightness = (0.3,1.8) brightness =(0.1,2) brightness = (0.6, 1.4)
contrast = (0.3, 1.8) contrast = (0.1, 2) contrast = (0.6, 1.4)
saturation = (0, 2) saturation = (0, 2)
hue = (-0.1, 0.1) hue = (-0.1, 0.1)
p=02 p=02 p=05
Gaussian Noise min. std =0 min. std =0 min. std =0
max. std =0.1 max. std = 0.1 max. std = 0.1
p=02 p=02 p=02
Shift min. width =0 min. width =0 min. width =0
max. width =0.2 max. width = 0.2 max. width = 0.1
min. height =0 min. height =0 min. height =0
max. height = 0.2 max. height = 0.2 max. height = 0.1
p=02 p=02 p=05
Rotation min. angle =0 min. angle =0 min. angle =0
max. angle =40 max. angle = 40 max. angle = 180
p=02 p=02 p=05
Random Erasing scale = (0.1, 0.1) scale = (0.1, 0.1) scale = (0.1, 0.1)
p=02 p=02 p=02

Table 4.1: TRANSFORMATIONS FOR TRAINING. Chosen data augmentation techniques with given hy-
perparameters for training. p stands for the probability that the respective transformation is chosen.

Table 4.1 shows all the transformations with the corresponding hyperparameters that I use
during training. I only consider the most common data augmentation techniques because they
are easy to combine, and more advanced techniques go beyond the scope of this thesis.

Horizontal Flip 1 use the function RandomHorizontalF1lip from torchvision* and adjust p,
which indicates the probability of horizontal flipping being applied. Hence, for the experiments
with the MNIST dataset I use p=0.

Random Crop I use the RandomCrop function from torchvision with a fixed crop proportion,
with which I calculate the height and width of the cropped image. For each dataset, I use a crop
proportion of 0.8 and a probability of 0.5 for applying the crop transformation. Specifically, if
the original image is 230x400 pixels, and my crop proportion is 0.8, then the cropped image is
184x320. A crop proportion instead of a fixed crop size is necessary because, in ImageNet, the
images have different sizes. Thus, it is not feasible to set a fixed crop size. Additionally, the crop
placement is randomly chosen. A small value or None for padding in RandomCrop ensures that
the crop placement does not overlap the borders by too much.

4https://pytorch.org/docs/stable/torchvision/transforms.html

https://pytorch.org/docs/stable/torchvision/transforms.html

4.2 Data Augmentation Techniques 25

Color Jitter I use the class ColorJitter from torchvision, where I set values for the hyper-
parameters brightness, contrast, saturation, and hue. For CIFAR-10, ImageNet, and
Melanoma, I change the brightness, contrast, saturation, and hue. However, I choose a smaller
range for the brightness and contrast for Melanoma because the skin lesions become difficult to
detect with more extreme changes. For MNIST, I only change the brightness and contrast be-
cause the saturation and hue do not result in any changes for grey-scaled images. The ranges for
brightness and contrast are larger for MNIST compared to the other datasets because the digits
are still well visible after more extreme transformations. p indicates the probability of a color
transformation to be applied.

Gaussian Noise I add Gaussian noise with a randomly chosen standard deviation (¢) from
a fixed range. I choose the range such that ¢ would never be larger than 0.1 because with too
much noise injected, it will be difficult to classify the image correctly. After choosing o, I take a
sample from a Gaussian Normal distribution with mean 0 and variance o of the same size as the
image. Then I add the sample to the pixel values of the image, which results in the augmented
image with noise injection. Additionally, to ensure that the pixel values remain between 0 and 1,
I replace values above 1 with one and values below 0 with zero.

Shift I use the function shift® from the bob.ip.base® package, where I set of fset depending
on the shift direction and length. Specifically, the direction of the shift, thus whether to shift
horizontally or vertically, is always given. The length of the shift is chosen randomly from a
given range.

Rotation Ichoose a minimum and maximum rotation angle that is applied with probability p. I
use the rotate” function from the bob.ip.base package. rotation_angle indicates the rotation
angle and can be either positive or negative. If it is positive, the image is rotated in a counterclock-
wise direction by the given degree. If it is negative, the image is rotated clockwise by the given
degree. In my experiments, I randomly select an angle from a given range. With the given rota-
tion angle, I randomly choose whether to rotate the image clockwise or counterclockwise, both
with equal probability. For example, if my rotation angle is 20, and it randomly chooses to rotate
in a clockwise direction, I set rotation_angle to -20.

For both shifting and rotation I use the function ext rapolate_mask () from the bob.ip.base
package which interpolates the missing pixels using information from the closest neighbors.

Random Erasing I use the function RandomErasing from torchvision. The hyperparameter
scale gives the range of proportion of the erased area against the input image. It is assigned a
tuple that indicates the minimum and maximum possible proportions of the patch. For all exper-
iments, I choose scale=(0.1,0.1). Thus, the erased area is exactly 1/10 of the original image.
This ensures that the erased area is not too large, which could cause difficulties in categorizing
the image correctly. The position of the erased area is chosen randomly, and I use a constant fill
method, such that all the patches are black.

Shttps://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html#bob.ip.
base.shift
6 . i - ;
https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html
"https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html#bob.ip.
base.rotate

https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html#bob.ip.base.shift
https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html#bob.ip.base.shift
https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html
https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html#bob.ip.base.rotate
https://www.idiap.ch/software/bob/docs/bob/bob.ip.base/stable/py_api.html#bob.ip.base.rotate

26 Chapter 4. Data Augmentation during the Training Stage

Dataset Training Size Validation Size Test Size

CIFAR-10 407000 10000 10000
MNIST 507000 10’000 10000

ImageNet 1'181'167 1007000 507000

Melanoma 23’958 4’374 4’360

Table 4.2: DATASET SPLITS. Number of training, validation, and test images per dataset.

Dataset DA Training Score Validation Score Epochs Training Instances

CIFAR-10 No 100% 95.25% 16 407000
Yes 93.28% 96.02% 34 1'360°000
MNIST No 100% 99.58% 9 507000
Yes 99.33% 99.63% 10 5007000
ImageNet No 93.63% 70.41% 8 1181167
Yes 71.51% 73.20% 26 30'710°342
Melanoma No 0.9744 0.8321 19 23'958
Yes 0.9022 0.8689 102 2'443'716

Table 4.3: TRAINING SCORES. Training scores on CIFAR-10, MNIST, ImageNet, and Melanoma with
and without data augmentation (DA). For CIFAR-10, MNIST, and ImageNet, the accuracies are given. For
Melanoma, the AUC score is given.

4.3 Training Scores

I train a ResNet-18 model on all datasets mentioned in Chapter 2 using data augmentation. I also
train each model without data augmentation for comparison. I split each dataset according to
Table 4.2. CIFAR-10 and MNIST already have pre-defined train and test splits. I use the same
split and additionally sample 10’000 images from the train set to use for validation. ImageNet has
pre-defined training, validation, and test splits. However, because the labels for the test images
are not publicly available, I use the 50’000 validation images as my test set and randomly split
the training set into a training and a validation set. Melanoma also contains test images without
publicly available labels. Therefore, I split the training set into a training, a validation, and a
test set. In this case, a random split would not be ideal because the labels are very unbalanced.
There exist multiple images from the same patients, and there are almost identical images of
the same skin lesions. I use a split found by Chris Deotte, who competed in the corresponding
Kaggle competition, and whose split has been a very valuable and widely used contribution.®
Specifically, he assigned each image to one of 15 splits, such that all splits are equally distributed
based on the labels and the proportion of the same images per patient. I use the first 11 splits for
training, splits 12 and 13 for validation, and splits 14 and 15 for testing.

Table 4.3 shows the training and validation scores on the datasets with and without data aug-
mentation. All models are evaluated on the original images of the validation set. All these results
are with a pretrained ResNet-18 model with an early stopping threshold of 10 epochs. Hence,
whenever the validation score does not improve for ten rounds, the training is terminated, and
the parameters of the best scoring model are saved. The values under the column "Training In-
stances" indicate how many different images the model sees during training. For the models
without data augmentation, this is precisely the size of the training set. For the models with data

8https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/164092

https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/164092

4.3 Training Scores 27

augmentation, it is the number of images in the training set multiplied by the number of epochs;
because for each image and each epoch, a new transformation is applied given the sequence of
transformations and probabilities from Table 4.1.

The models without data augmentation during training score worse on all datasets. Interest-
ingly, the training score is always higher without data augmentation, but the validation score is
smaller. This demonstrates that without data augmentation, the model is more likely to overfit to
the training images. And hence, adding data augmentation during training can be beneficial in
preventing overfitting.

Additional Comments on Melanoma In the corresponding Kaggle competition of Melanoma,
participants had to submit probabilities that the test image is malignant melanoma. The sub-
missions were then evaluated on the area under the ROC curve (AUC), which is a performance
measurement independent of the class imbalance. It relies on the concept of some adjustable
threshold. In particular, the AUC score receives logits or probabilities and returns a value that
ranges from 0 to 1, with 0 being the worst score and 1 the best score that a model can achieve. I
follow this approach and use the AUC score instead of the accuracy score for Melanoma. There-
fore, I do not convert probabilities to labels but feed the probabilities directly to the score func-
tion. Since I implement all my methods using CIFAR-10, I have to adapt some methods for the
Melanoma dataset. Therefore, this dataset serves as an interesting application and an experiment
on whether the implemented methods can generalize well to different prediction problems.

A few data augmentation techniques have proven useful in the Kaggle competition, which
I do not apply in this thesis because they are particular to the Melanoma dataset and beyond
the scope of this thesis. Because some images include hair and some do not, it proved helpful
to randomly add hair strands to the skin lesions during training.” This is an interesting case of
data augmentations where the augmentation is very specific to the dataset and the classification
problem since it would not make sense to add hair strands to the other datasets. Additionally,
techniques of removing hair strands from the image have also proven helpful.'’

Melanoma contains not only images of benign and malignant skin lesions but also information
on the respective patients. Both the sex and the age of the patients are available. Additionally,
information on the location of the skin lesion is also obtainable. Ideally, the predictions on the
images and the given information on the patient and the location of the skin lesion should be
aggregated to form a final prediction. However, for simplicity, I only consider the images. There-
fore, my results, both during training and later during testing, are considerably lower compared
to other results found on Kaggle or in papers mentioning the melanoma dataset.

The goal of the training stage is to train models on each of the four datasets, CIFAR-10, MNIST,
ImageNet, and Melanoma, and to ensure that they perform relatively well such that the results
in the next chapter are meaningful. The goal is not to train the best possible model. To do that,
I would have to spend considerable time fine-tuning the hyperparameters of the model, using
an automated approach to find the best set of data augmentation to use during training and
experiment with different model architectures. I believe that although the validation scores given
in Table 4.3 may not be the best possible scores, the scores are quite reasonable compared to what
other papers have reported. Thus, in the following chapter, which is the main part of this thesis,
I'will extensively discuss how to use data augmentation techniques during the testing stage.

9https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/159176
Whttps://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/165582

https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/159176
https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/165582

Chapter 5

Test-Time Augmentation

Test-time augmentation is the main focus of this thesis. As introduced in Chapter 3, test-time
augmentation is a technique for improving the image classification accuracy during the testing
stage. However, there is not a lot of research focusing on test-time augmentation techniques and
methods. Figure 5.1 shows the workflow of the general procedure. The images in the test set are
augmented, resulting in several modified images. Each image is fed to the network, which out-
puts logits or probabilities for each of the possible classes. Those logits are aggregated to form the
final prediction. The most common approach is to augment each image in the test set using stan-
dard data augmentation techniques, such as horizontal flips, crops, and shifts. Then the resulting
probabilities or logits are aggregated using simple averaging to form the final prediction. Shan-
mugam et al. (2020) discuss that this simple method might not always be optimal. In fact, in their
experiments, they showed that using weighted averaging instead of simple averaging, with the
weights corresponding to the importance of each transformation, results in better image classifi-
cation accuracy. In this thesis, I build upon these insights and test various methods to aggregate
the outputs of the augmented test images. In Section 5.1 I will describe all the methods that I
implement and evaluate in my experiments. Some of these methods are very similar to already
introduced methods in Chapter 3. However, they serve as a comparison to new approaches. Ad-
ditionally, my set of transformations differ from the transformations in other papers. Most of the
papers mentioned in Chapter 3 that use test-time augmentation used horizontal flips, crops, and
shifts. I additionally use color transformations, random noise injection, rotations, and random
erasing.

In contrast to data augmentation during the training stage, I use fixed hyperparameters for
the transformations instead of ranges of possible values. In some cases, however, I allow some
randomness. First, the crop is of fixed size, but the location of the crop is chosen randomly.
Second, I add two shifts, a vertical and a horizontal shift. Whether the vertical shift is shifted up
or down, and the horizontal shift is shifted left or right, is chosen at random. Similarly, the rotation
angle is fixed, but the direction of the rotation, clockwise or counterclockwise, is chosen randomly.
Lastly, the size of the random erasing patch is fixed, but the location is chosen randomly. I could
have removed this randomness by adding additional transformations. For example, instead of
randomly choosing the direction of the 10-degree angle, I could have just added both the 10-
degree rotation clockwise and the 10-degree rotation counterclockwise. But because a smaller set
of transformations simplifies the analysis and building of my methods, I decided to run most of
my experiments without additional transformations. Listings A.1, A.2, and A.3 in Appendix A
show all the transformations with the hyperparameters that I use for test-time augmentation on
each dataset.

30 Chapter 5. Test-Time Augmentation

Test-time Augmentations Predictions

r

K
o-“'

Original Image

A —-

Aggregated

||..I|||I| |.|I|I|.|. |||||II|.| Prediction

) |yl

lnaner vty [t l

Lttt Latislt .., o

] S
2%) 7 2

Original Image

”

Figure 5.1: WORKFLOW OF TEST-TIME AUGMENTATION. The original image is augmented into several
different modified versions. Each modified image is fed to the network, which produces an output of logits
or probabilities for each category. Those outputs are aggregated to form the final prediction.

5.1 Methods

In this section, I will describe in detail the methods that I implement for test-time augmentation.
All the methods that require fitting are fitted on the validation set after training. More specifically,
I choose a fixed set of data transformations for test-time augmentation and augment each image
in the validation set, respectively. After training, I save the raw predictions of the last layer of
the network, the logits, of each transformed validation image. This results in a multi-dimensional
array of logits, V' € RT*N*C with T equal to the number of transformations, N equal to the
number of validation images, and C' equal to the number of classes in the dataset. With V/, I fit
various methods, which I then test on the test set. The advantage of this approach is that I do not
have to re-train the model for each method that I test. I can use the same array of logits, V, to
implement and experiment with different test-time augmentation methods.

First, I will provide a few definitions and notations that I will use throughout this chapter. For
any matrix 4, the function g returns a vector consisting of the indices per row with the largest

5.1 Methods 31

value:
a1 a2 ... @
a1 A22 ... Q2C
A= | | . (5.1)
an1 anN2 ... aNnC

argmax, .
argmax, aac

g(A) = : (5.2)
arg max, ay.

The function g is used to calculate the predictions from a matrix of logits or probabilities. For each
dataset, I index all the transformations used for test-time augmentation. For example, horizontal
flipping may have index 1. Then, for any transformation ¢ € {1,...,T}, V; is a matrix of logits
corresponding to transformation ¢:

t t t
S L)
U 1
Vi=|") € RV (5.3)
;5 t ’ t
Iy o e

where 1)) is the logit for the n-th validation image, class ¢, and transformation ¢. Additionally, the
function ¢ is defined as:
0 ,0>\

5.4
0 ,06<A 64

0(A,0) = {
Finally, y, which I will use later, indicates the vector of the true validation classes, and g indicates
the class predictions.

5.1.1 Greedy Approach

The greedy approach, which I will simply refer to as Greedy, tries to find the subset of data trans-
formations from the given list of possible transformations that will result in the highest validation
score. It is similar to the approach by Molchanov et al. (2020), except that my set of possible data
augmentations differs. The procedure of this method is given as:

0 0 0

. . 0 0 ... 0

Ty :={}, Vi:=|. | e RVXC
0o 0 ... 0

ts = argmax |[score(y, g(V; + Vs))}
te{1,...,T\Ts

Topr =T, U{ts}, Vipr=Vi+V;, forse{l,..T}

where score is either the accuracy score or the AUC score. The goal of Greedy is to find the op-
timal set of transformations, T, such that the score of the sum of logits in that set is maximized.

32 Chapter 5. Test-Time Augmentation

=[]
bestScore = 0;
count = 0;
while count smaller than early_stopping and T does not contain all transformations do
runningScore = 0;
for every possible transformation t not in T do
take sum of logits of transformation ¢ and all transformations in 7’;
calculate predictions;
calculate score;
if score is greater than runningScore then

set runningScore to calculated score;

set bestTransformation to ¢;
end
end
if runningScore is greater than bestScore then
set bestScore to runningScore;
set count to 0;
else

| increase count by 1;

end

add bestTransformation to 7’
end

remove last count entries of 7’;
return T;

Algorithm 1: ALGORITHM OF GREEDY. This algorithm explains the procedure of Greedy described
in Section 5.1.1.

In my experiments, I implement an early stopping condition, where I terminate the algorithm as
soon as the score does not improve for a given number of iterations. This number is given in
early_stopping. In this case, I choose a small value for early_stopping because experi-
ments show that once the algorithm deteriorates, it is unlikely that it improves again. Hence, I
choose early_stopping=3. The final set of best data augmentations, which I will refer to as T,
is used on the test images for comparison with the other methods.

The full algorithm is given in Algorithm 1. The function receives the validation logits V" and
labels y and returns a set of transformations 7".

5.1.2 Weighted Approach

Instead of finding the best subset of transformations, the idea behind the weighted approach is
to weigh each transformation based on its importance. This was also done by Shanmugam et al.
(2020). They used gradient descent to optimize the weight vector. I use various common opti-
mization algorithms. Some of these algorithms rely on different fixed hyperparameters. I fine-
tune those hyperparameters on CIFAR-10, MNIST, and Melanoma by splitting the validation set
randomly using 75% for fitting and 25% for evaluating the weights with different hyperparame-
ters. Specifically, for each hyperparameter, I define a set of values to test. For each combination
of hyperparameters, I run the algorithm on the larger subset of the validation images and calcu-
late the final best weights. Then I evaluate the weights on the smaller subset of the validation

5.1 Methods 33

images and save the results. Finally, after testing all combinations, I receive the best scoring set
of hyperparameters. Then I re-fit the weights using the complete validation set and test it on the
test set. In this case, the holdout sample of the validation set is only used to ensure that hyper-
parameters are chosen that generalize well to an unseen set of images. However, all the images
are used for re-fitting the weights. I do not run this grid search on ImageNet because of time con-
cerns. Instead, I choose a combination of hyperparameters similar to the best combination found
on CIFAR-10 and adjust them to save computation time. The exact hyperparameters that I test for
each algorithm and the results of the grid search are given in Appendix B.

I test four different optimization algorithms to obtain the weights. They differ in the general
procedure but also in the constraints of the weights. For some algorithms, the weights are re-
stricted to be non-negative, whereas, in other algorithms, I allow negative weights. I introduce
each algorithm in detail in the following sections. However, the idea of the weighted approach is
always the same. I want to find the optimal weight vector 8 such that when taking the weighted
sum of logits based on , the validation score is maximized. This can be written as:

T
V(0):=) 6.V, (5.5)
t=1
6 = arg max [score(y, g(V (8)))] (5.6)
0

where T is the number of transformations, and V; is the matrix of logits for transformation ¢ given
in Eq. (5.3).

Random Walk

In Random Walk, the weight vector is first initialized, and then in every iteration, some part of
the vector changes. If the new vector improves the score, it is accepted; otherwise, it is rejected.
There are many variants of Random Walk, and often adjustments must be made depending on
the problem.

I adjust the hyperparameters for the initialization method, whether to normalize the weights
or not and the number of early stopping rounds. I test two different initialization methods. The
first initialization method is equal; thus, all weights are initialized to one. The second initializa-
tion method is random, where the initial weights are randomly sampled from a uniform distribu-
tion over [0, 1). Additionally, the normalization hyperparameter can be set to True or False.
If it is set to True, I normalize the initial weight vector. Because in every step of the algorithm,
I always change two values of the vector; the first I increase by a randomly generated number,
and the second I decrease by the same randomly generated number, the vector remains normal-
ized throughout the process. If normalization is set to False, then the initial weight vector
will not additionally be normalized at initialization. Normalization is not necessary; however, it
allows me to infer the importance of each transformation based on the final weight. Additionally,
the randomly generated number is chosen from a range such that the weight vector can never be
negative. Again, this is not a necessity; however, since the weights represent the importance of
each transformation, negative weights are difficult to interpret. Table 5.1 shows the initial weight
vector, 0, given the different possibilities for the initialization method and normalization. 7 is the
number of transformations, and w; is a randomly generated number from a uniform distribution
between 0 and 1 for each t € {1,...,T}. I run a grid search on CIFAR-10, MNIST, and Melanoma
to identify the best combination of initialization, in addition to the best early stopping value. The
results of the grid searches can be found in Appendix B in Tables B.1, B.2, and B.3. The final
chosen hyperparameters for each dataset can be found in Table 5.2.

34 Chapter 5. Test-Time Augmentation

Equal Initialization Random Initialization
. . . _T1 171/ o Uy U !
With Normalization 0=+ ... 7] 0= [ZL w T “fl
Without Normalization 6=1[1 1 ... 1]/ 0=1[u uy ... uT]/

Table 5.1: WEIGHT INITIALIZATION. Weight initialization possibilities depending on the hyperparame-
ters for initialization and normalization.

Dataset early_stopping normalization initialization

CIFAR-10 500 True Equal
MNIST 10 True Random

ImageNet 10 True Equal

Melanoma 10 False Equal

Table 5.2: RANDOM WALK HYPERPARAMETERS. Chosen Random Walk hyperparameters for each
dataset based on the best grid search results. For ImageNet, I choose similar hyperparameters as CIFAR-10
but reduce the number of early stopping iterations to shorten the computation time.

The score of the new weight vector is calculated by summing up the logits with respect to
the weights, given in Eq. (5.5), and making predictions using the weighted sum of logits. If the
score improves, the new weight vector is kept, and the algorithm continues changing values on
the new weight vector. If the score does not improve, the new weight vector is discarded, and
the algorithm continues with the previous weight vector. This process continues until the early
stopping condition is met. Hence, as soon as the algorithm does not improve for a certain number
of rounds based on the value in early_stopping, the learning process is terminated, and the
weight vector with the best score is returned and saved for testing.

Algorithm 2 shows the procedure in pseudo-code. Because the resulting weight vector differs
for different random seeds, I run this procedure 20 times and return the average validation and
test scores along with the standard deviation over the 20 rounds.

Evolutionary Algorithms

Evolutionary algorithms follow the idea of survival of the fittest, which in turn causes a rise in
the fitness of the population (Eiben and Smith, 2015). This idea can be used to optimize a vector.
There are many variants of this algorithm, but the general scheme is given in Algorithm 3.

I implement a very simple variant of evolutionary algorithms, EA Own, which only uses
mutation and selection. In summary, given a weight vector 0, it creates n new weight vectors
{é(i)}ie{l,...,n} by adding random Gaussian noise to 8. Additionally, weights smaller than one

are set to zero to prevent overfitting. A new weight vector 8" is, therefore, defined as:

5(1,0, + ")

0% .= :
3(1, 07 +)

were § is defined in Eq. (5.4) and €\ ~ A(0, 1).

Then, for each new weight vector 0%, fori e {1,...,n}, the validation score is calculated and
a fixed number of best weights are kept. That number is given in n_elites. The average of

5.1 Methods 35

initialize 0;
count = 0;
while count smaller than early stopping do
choose two random indices to change;
generate a random value;
add the random value to the weight in the first chosen index;
subtract the random value from the weight in the second chosen index;
calculate the weighted sum of logits;
calculate predictions;
calculate score;
if score improved then
‘ keep 6 and set count to 0;
else
revert back to previous 6;
increase count by 1;
end
end

return 0;

Algorithm 2: ALGORITHM OF RANDOM WALK. This algorithm explains the procedure of Random
Walk described in Section 5.1.2.

those n_elites best weights is calculated, which results in a new weight vector, é, with which
the process is repeated. Thus, instead of recombining pairs of parents to create offsprings, the
offsprings are created by taking the mean of all parents, which I then evaluate. This process
is repeated multiple times until it reaches the early stopping threshold. Algorithm 4 gives the
algorithm in pseudo-code.

Similar to Random Walk, I test both an equal and a random initialization. In contrast to Ran-
dom Walk, however, I do not perform normalization. I run a grid search for each dataset, except
ImageNet, with different values forn, n_elites, and early_stopping. The results of the grid
search on CIFAR-10, MNIST, and Melanoma can be found in Appendix B in Tables B.4, B.5, and
B.6. The chosen hyperparameters based on the grid search results can be found in Table 5.3. Ad-
ditionally, because this algorithm also returns different weights based on different random seeds,

initialize population with random candidate solutions;
evaluate each candidate;
while termination condition not yet satisfied do
select parents;
recombine pairs of parents;
mutate the resulting offspring;
evaluate new candidates;
select individuals for the next generation;
end
return best candidate;

Algorithm 3: EVOLUTIONARY ALGORITHM. This algorithm explains the general scheme of an evo-
lutionary algorithm.

36 Chapter 5. Test-Time Augmentation

initialize ;

count = 0;

while count smaller than early stopping do

create n new vectors by adding Gaussian noise;

set negative and small weights to zero;

calculate weighted sum of logits for each new vector;
calculate predictions;

calculate scores;

choose best n_elites weight vectors;

0 = average of best n_elites weight vectors;
if score with 6 improved then
| set count to 0;
else
| increase count by 1;
end
end

return 0;

Algorithm 4: ALGORITHM OF EA OWN. This algorithm explains the procedure of EA Own de-
scribed in Section 5.1.2.

Dataset n n_elites initialization early stopping
CIFAR-10 1000 10 Random 10

MNIST 100 20 Random 50
ImageNet 100 20 Random 10
Melanoma 100 50 Ones 10

Table 5.3: EA OWN HYPERPARAMETERS. Chosen hyperparameters for EA Own for each dataset based
on the best grid search results. For ImageNet I choose similar hyperparameters to CIFAR-10 but adjust n
and n_elites to reduce the computation time.

I run the algorithm 20 times and save the average validation and test scores and the standard
deviation.

Since this algorithm is a very simplified version of evolutionary algorithms, I also experiment
with another variant. I experiment with ESTool!, which contains implementations of various
evolutionary algorithms including SimpleGA (Ha, 2017).

SimpleGA follows the general scheme given in Algorithm 3, where the offsprings are created
by crossover, thus randomly selecting the values of either parent 1 or parent 2 both with 50% prob-
ability. SimpleGA can be adjusted with different hyperparameters. From the current population,
the best samples, called the elites, are chosen. The proportion of elites must be given. From the
elite sample, two random parents are chosen, and a child is created by crossover. This is done as
many times as the given population size, hence creating the next generation. After this recombina-
tion process, Gaussian noise is added to each sample of the new generation. This is the mutation
process. The standard deviation of the Gaussian noise decreases over time, but the initial standard
deviation must be given. This procedure is repeated multiple times until a given stopping criteria
is reached. I adjust the hyperparameters for population_size, standard_deviation, and
elite_proportion in my experiments. I run grid search on CIFAR-10, MNIST, and Melanoma

https://github.com/hardmaru/estool

https://github.com/hardmaru/estool

5.1 Methods 37

Dataset population_size standard_deviation elite_proportion

CIFAR-10 250 0.7 0.2

MNIST 250 0.5 0.1
ImageNet 20 0.7 0.2
Melanoma 20 0.7 0.1

Table 5.4: SIMPLEGA HYPERPARAMETERS. Chosen hyperparameters for SimpleGA for each dataset
based on the best grid search results. For ImageNet, I choose similar hyperparameters to CIFAR-10 but
adjust population_size to reduce the computation time.

to identify the best combination of hyperparameters such that the score on the validation images
is maximized. The grid search results with the tested hyperparameters can be found in Appendix
B in Tables B.7, B.§, and B.9. The chosen hyperparameters can be found in Table 5.4. Additionally,
Tuse early_stopping=10 for all experiments with SimpleGA.

Similar to Random Walk and EA Own, I also repeat the algorithm 20 times and save the aver-
age validation scores, test scores, and standard deviation.

Score Based

The score-based approach, which I will refer to as Score Based, is a straightforward approach to
find the best weights without using an optimization algorithm. The weight for each transforma-
tion is equal to the validation score of using only that transformation. For example, the weight for
the transformation of random erasing is equal to the score I receive on the validation images after
doing random erasing on each image. Additionally, I choose a threshold for the score for which
the weight becomes zero. Hence, if the score for a specific transformation is below the given
threshold, the weight for that transformation is set to zero. This can be seen as a regularization
technique because I am not considering transformations that are not helpful. I tune the threshold
on each dataset individually and choose the threshold that maximizes the validation score using
the resulting weights. The following equation shows this method in mathematical terms:

01 score(y, g(V1))

02| |score(y,g(V2))

G.T score(y., g(Vr))
5\, 01)

0= 6()\:02) , AeR*
5(). br)

where the function ¢ is given in Eq. (5.4), and A is the threshold. Given the weight vector 6, the
weighted sum of logits is calculated as in Eq. (5.5).

5.1.3 Maijority Voting

Majority voting is probably the most straightforward technique for test-time augmentation. Zheng
et al. (2020) used majority voting in their experiments. I implement majority voting mainly to
compare its results with other methods mentioned in this chapter. The general idea of majority

38 Chapter 5. Test-Time Augmentation

voting for test-time augmentation is to make separate predictions for each transformation. In-
stead of aggregating each transformation by summing up the logits, I aggregate the final class
predictions of each transformation. For example, with 20 different transformations, I get a vec-
tor of 20 class predictions for an image. Then I choose the most frequent prediction for the final
prediction. This is given as:

&)
lc -

mode(arg max, lé? ,arg max, l;? , ..., arg max, lg))

mode(arg max, lﬁ) ,argmax, [}, ..., arg max, Zg))

y/\ =
mode(arg max, lg\}i, arg max, lﬁl, .., arg max, ZEVTC))

where mode returns the most frequent integer and 1\1) are the logits in V; defined in Eq. (5.3).

5.1.4 Averaging

Averaging is the method that most research papers mention when doing test-time augmentation.
The last layer of the model is often a softmax layer that converts the logits to probabilities. Those
probabilities are averaged over all transformations. Then, the label with maximum probability is
chosen. I test this method both with the logits and the probabilities after applying the softmax
function to the logits. The following formulas explain averaging on the original logits V. The
procedure using probabilities instead of logits is analogous.

(1) 442 (1) 1) 4 ,(2) (T)
l11)+l11)+'“+l11 LothotAhg
- T

T
Vi
wglv) = Z | : e R

T R Y1 MY)
t - =

Then, the prediction y is calculated using the function g defined in Eq. (5.2):

g = g(avg(V))

I do not have to fit Majority Voting and Averaging on the validation set because these methods
do not require optimizing any parameters. However, for Greedy and the four methods belonging
to the weighted approach, I have to add an additional step to fit the subset and weights to the
validation set. In the following chapter, I will provide all my results using the different test-time
augmentation methods introduced in this chapter.

Chapter 6

Resulis

In this chapter, I will provide my results from the experiments using different test-time augmenta-
tion methods mentioned in Chapter 5. I adapt and tune all the methods using only the validation
images. I then compare them with each other using the results on the test images. Table 6.1 gives
an overview of all the approaches and the resulting validation and test scores on the different
datasets. The scores on CIFAR-10, MNIST, and ImageNet are accuracy scores, and the scores
on Melanoma are AUC scores. I repeat the experiments for Random Walk, EA Own, and Sim-
pleGA 20 times per dataset with different randomly generated seeds. The noted scores in Table
6.1 correspond to the average scores over the 20 repetitions. The last column contains the stan-
dard deviation over the 20 seeds on the test set. Additionally, all the experiments for test-time
augmentation are done after training. During the training stage, I use a pre-trained ResNet-18
architecture and include data augmentation.

The red boxes in Table 6.1 indicate the best methods on the test set for each dataset. Before
comparing the performances of the methods, it is important to note that Majority Voting and both
Averaging methods do not require an additional fitting on the validation set and are therefore
simpler and less computationally expensive than Greedy and the weighted approaches. Addi-
tionally, those are also the methods that are most often used for test-time augmentation. I will
refer to Majority Voting, Averaging (probabilities), and Averaging (logits) as the simple methods.

For CIFAR-10, the best method is my variant of the evolutionary algorithm, EA Own. It scores
on average 0.42% higher than without using any test-time augmentation. In fact, all methods
score better than without test-time augmentation. Additionally, Score Based and SimpleGA per-
form quite well on CIFAR-10. Although EA Own performs better on average, the standard devi-
ation of SimpleGA is much smaller and performs only slightly worse than EA Own. Out of the
simple methods, Averaging (probabilities) scores best with only a 0.09% lower accuracy than EA
Own.

On MNIST, all methods perform better than no test-time augmentation as well. The best-
scoring methods on MNIST are SimpleGA and EA Own, with a 0.14% and 0.13% improvement
compared to not using test-time augmentation. Similar to CIFAR-10, the standard deviation of
SimpleGA is the smallest. Out of the simple methods, Majority Voting scores best with a 0.06%
lower accuracy than SimpleGA.

The results on ImageNet are similar to CIFAR-10 and MNIST. SimpleGA scores best with an
absolute increase in accuracy of 1.66% compared to no data augmentation during the testing
stage. EA Own scores only 0.01% worse than SimpleGA. Out of the simple methods, Averaging
(probabilities) scores best with a 0.62% lower accuracy than SimpleGA.

On Melanoma, EA Own scores best, with an increase of 0.0258 in the AUC score compared
to not using test-time augmentation. Score Based and Greedy score relatively high as well. Sim-
pleGA scores best on the validation set but quite low on the test set. Hence, there seems to be
an overfitting issue regarding SimpleGA. Out of the simple methods, Averaging (probabilities)

40 Chapter 6. Results
Dataset Method Validation Score Test Score Standard Deviation
CIFAR-10 No Data Augmentation 96.02% 95.58% -
Greedy 96.52% 95.87% -
Random Walk 96.46% 95.87% 0.0335
| EA Own 96.66% 96.00% 0.0287 |
SimpleGA 96.69% 95.95% 0.0005
Score Based 96.32% 95.96% -
Majority Voting 96.28% 95.89% -
Averaging (probabilities) 96.24% 95.91% -
Averaging (logits) 96.28% 95.83% -
MNIST No Data Augmentation 99.63% 99.56% -
Greedy 99.71% 99.64% -
Random Walk 99.69% 99.64% 0.0174
EA Own 99.75% 99.69% 0.0173
SimpleGA 99.76% 99.70% 0.0002 |
Score Based 99.69% 99.63% -
Majority Voting 99.68% 99.64% -
Averaging (probabilities) 99.68% 99.62% -
Averaging (logits) 99.68% 99.62% -
ImageNet No Data Augmentation 73.20% 68.36% -
Greedy 74.57% 69.68% -
Random Walk 74.29% 69.59% 0.2182
EA Own 74.74% 70.01% 0.0131
SimpleGA 74.80% 70.02% 0.0329 |
Score Based 74.27% 69.52% -
Majority Voting 73.87% 69.11% -
Averaging (probabilities) 74.10% 69.40% -
Averaging (logits) 73.87% 69.15% -
Melanoma No Data Augmentation 0.8689 0.8627 -
Greedy 0.8897 0.8863 -
Random Walk 0.8784 0.8809 0.0000
| EA Own 0.8899 0.8885 0.0005 |
SimpleGA 0.9010 0.8837 0.0020
Score Based 0.8886 0.8883 -
Majority Voting - - -
Averaging (probabilities) 0.8784 0.8820 -
Averaging (logits) 0.8784 0.8809 -

Table 6.1: VALIDATION AND TEST SCORES. Validation and test scores of all the experiments for test-
time augmentation. The scores for CIFAR-10, MNIST, and ImageNet are given as accuracies. The scoring
metric for Melanoma is AUC. The experiments for Random Walk, EA Own, and SimpleGA were repeated
20 times, and the average validation and test scores are given, along with the standard deviation. The red
boxes indicate the best scoring methods for each dataset.

41

scores best with a 0.0065 lower AUC score than EA Own. In contrast to CIFAR-10 and MNIST,
SimpleGA has the highest standard deviation over the 20 seeds. The results of Majority Voting
are missing because it is not easily applicable for Melanoma. I evaluate Melanoma using the AUC
score, which relies on the concept of some adjustable threshold and requires real values. Majority
Voting, on the other hand, returns binary class predictions.

Because the scores of Random Walk, EA Own, and SimpleGA differ depending on the random
seed, I run a t-test to compare their results with each other and with the methods that I only run
once. To do this, I use Welch’s t-test. Welch's t-test is similar to the Student’s t-test, except that it
does not assume equal variance. Thus, both groups do not have to have an equal sample size and
variance. For Random Walk, EA Own, and SimpleGA, I have 20 different samples because the fi-
nal test score varies depending on the randomly generated seed. However, for all the other meth-
ods included in my experiments, the test scores remain the same for different seeds because the
methods are non-random. Thus, if I compare methods across both groups, for example, Random
Walk with Greedy, then the Student’s t-test may be unreliable because the assumption of equal
variance is not given. Therefore, I opt for the Welch’s t-test, and use the function ttest_ind!
from SciPy.

Given two methods, M; and Ms, with M; being a method that depends on a random seed,
and M, being another method, the Null and alternative hypothesis are given as:

« Hy: M belongs to the distribution of M;.
« Hi: M, is significantly different from M.

If M, belongs to the distribution of M, then there is no significant difference between the meth-
ods M; and M,. This is important because Random Walk, EA Own, and SimpleGA require a
longer computation time to optimize the weights. Thus, if their test scores are not significantly
better than faster methods, there is no benefit from using weight-optimizing algorithms. I use
a significance level of 0.01; thus, given the p-value calculated by Welch's t-test, I reject the Null
hypothesis for p < 0.01. The results of Welch’s t-test are given in Table 6.2. In most cases, the
methods are significantly different from each other. I am mostly interested in EA Own and Sim-
pleGA, because those seem to be the best-performing algorithms. On MNIST and ImageNet,
there is no significant difference between EA Own and SimpleGA. However, they are both sig-
nificantly better than all other methods. On Melanoma, EA Own scores best, followed by Score
Based. According to Welch's t-test, there is no significant difference between the two. Because
Score Based only requires optimizing a threshold, it is computationally less expensive than EA
Own. On CIFAR-10, Score Based is also the next best scoring model after EA Own. However, in
this case, EA Own seems to be significantly better than Score Based.

In the following chapter, I will continue the discussion of my results, introduce further at-
tempts to improve on the test scores, and highlight the limitations of my approach.

IThttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

42

Chapter 6. Results

Dataset Method Random Walk EA Own SimpleGA
CIFAR-10 No Data Augmentation 2.48e-19 1.25e-23 5.51e-56
Greedy 1.00e+00 4.02e-14 2.39e-43
Random Walk - 3.12e-15 2.74e-09
EA Own 3.12e-15 - 3.60e-07
SimpleGA 2.74e-09 3.60e-07 -
Score Based 3.91e-10 7.66e-06 3.37e-26
Majority Voting 1.75e-02 8.15e-13 5.65e-41
Averaging (probabilities) 5.04e-05 2.79e-11 1.25e-37
Averaging (logits) 5.04e-05 2.94e-16 1.08e-46
MNIST No Data Augmentation 3.07e-14 3.51e-18 1.58e-55
Greedy 1.00e+00 1.13e-10 1.55e-48
Random Walk - 8.26e-11 5.29e-12
EA Own 8.26e-11 - 2.09e-02
SimpleGA 5.29e-12 2.09e-02 -
Score Based 2.15e-02 4.80e-12 8.31e-50
Majority Voting 1.00e+00 1.13e-10 1.55e-48
Averaging (probabilities) 7.77e-05 3.09e-13 6.57e-51
Averaging (logits) 1.00e+00 1.13e-10 1.55e-48
ImageNet = No Data Augmentation 7.33e-16 2.25e-41 7.94e-34
Greedy 8.81e-02 4.24e-28 8.89e-21
Random Walk - 7.98e-08 4.81e-08
EA Own 7.98e-08 - 2.30e-01
SimpleGA 4.81e-08 2.30e-01 -
Score Based 1.78e-01 2.34e-31 6.11e-24
Majority Voting 1.03e-08 2.26e-36 7.19e-29
Averaging (probabilities) 1.22e-03 3.65e-33 1.04e-25
Averaging (logits) 4.03e-08 5.35e-36 1.69e-28
Melanoma No Data Augmentation 0.00e+00 5.19e-34 6.59%¢-21
Greedy 0.00e+00 6.81e-14 1.83e-05
Random Walk - 6.09e-24 7.23e-06
EA Own 6.09e-24 - 1.25e-09
SimpleGA 7.23e-06 1.25e-09 -
Score Based 0.00e+00 9.74e-02 5.05e-09
Majority Voting - - -
Averaging (probabilities) 0.00e+00 1.17e-22 1.50e-03
Averaging (logits) 1.00e+00 6.09e-24 7.23e-06

Table 6.2: WELCH’S T-TEST. This table provides the p-values of Welch’s t-test. The bold values represent
p-values below the significance level of 0.01. In those cases, I reject the Null hypothesis that both methods

belong to the same distribution.

Chapter 7

Discussion

In this chapter, I will discuss the results and usability of the various test-time augmentation meth-
ods introduced in Chapter 5. I will compare the different methods for improving test-time aug-
mentation and discuss my attempts to improve the test scores. Lastly, I will discuss and examine
limitations in my approach.

The results in Chapter 6 show that the weighted approach, using a weight optimizing algo-
rithm, scores best on all datasets. In particular, on each dataset, EA Own or SimpleGA score
best. Both algorithms are variants of evolutionary algorithms. In EA Own, the weights are non-
negative. All negative weights are set to zero. I reason that negative weights are difficult to
interpret since I assume that the weights indicate their importance towards the classification of
the images. For SimpleGA, I do not enforce that restriction. However, the negative weights in
SimpleGA are a concern because I suspect that they encourage overfitting on the validation set.
The validation score of SimpleGA is highest across all datasets. The test score, on the other hand,
is not always the highest. For Melanoma, in particular, the test score is comparatively low. The
optimal weights found by each algorithm can be found in Appendix C. For Random Walk, which
does not score as well as the other two optimization algorithms, the weights are non-negative,
and for all datasets, except Melanoma, they are normalized. For Melanoma, the best combination
found by grid search using Random Walk is equal initialization without normalization. Hence,
the weights are initialized to ones. Table C.4 shows that the average optimal weights remain all
ones for Random Walk. In fact, for none of the 20 rounds with different seeds, the optimal weight
differs from all ones. Although the grid search finds that this initialization results in the best score,
it is unclear whether equal initialization without normalization is a good technique for Random
Walk.

Regarding computational efficiency, EA Own and SimpleGA are, in most experiments, the
most expensive algorithms. The running time for both algorithms depend on the size of the
dataset, the number of transformations, and the chosen hyperparameters. The hyperparameters,
such as early_stopping, can be adjusted to speed up computation time. However, often there
is a trade-off between computation time and performance. Additionally, even with hyperparam-
eters that allow a faster computation, it will still require more time than other methods, such as
Majority Voting and Averaging. On the other hand, the test scores are significantly higher using
EA Own or SimpleGA compared to faster methods. EA Own and SimpleGA can be used in many
different applications and in combination with other related work. First, other datasets can be
used besides CIFAR-10, MNIST, ImageNet, and Melanoma. Second, other model architectures
can be used besides a ResNet-18 model. In particular, all methods introduced in Chapter 5 are
applied after training the neural network. Therefore, all methods can be applied during testing,
no matter what model architecture or hyperparameters are chosen during training, as long as
the output of the network contains logits or probabilities for each possible class. In particular,
more advanced data augmentation techniques mentioned in Chapter 3, such as AutoAugment,

44 Chapter 7. Discussion

can be combined with the test-time augmentation methods introduced in this thesis. Important
to note, however, is that depending on the method for training, for example, the chosen data aug-
mentation technique, the test-time augmentation methods may not have the same effect. I will
come back to this point in Section 7.2. Additionally, other transformations can be used during
testing, besides the transformations that I consider. However, not all techniques mentioned in
Chapter 3 can be well combined with all my methods for test-time augmentation. For example,
mixing images may not work well with Greedy and the weighted approaches because the exact
or very similar transformations have to be applied to both the validation and the test set, such
that the optimal subset or weight can be successfully inferred to the test set. On the other hand,
Majority Voting and Averaging can be easily applied to other transformations, such as mixing
images. They only rely on a set of transformations for each test image. It is not required that each
transformation must be similar among the images.

In my experiments, I use very similar transformations both during training and testing. How-
ever, it is possible that if specific transformations are used for test-time augmentation, for exam-
ple, random erasing, which was not used during training, that this may have a negative effect on
the test score. I will further elaborate on this point in Section 8.2. In contrast to the other methods,
Majority Voting cannot be easily applied in some cases, as seen with Melanoma, because it returns
class predictions instead of logits or probabilities.

In the following section, I will introduce further attempts to improve the test score.

7.1 Improvements

Although I try to cover various datasets and methods with my experiments, many improvements
can be made in several different areas. I will discuss potential improvements for future work in
Chapter 8. However, I experiment with two additional ideas to improve my test-time augmen-
tation approaches. To further improve data augmentation during the testing phase, I experiment
with a larger set of transformations and image clusters. During the testing, described in the pre-
vious chapters, I focus on a small fixed set of transformations given in Appendix A in Listings
A.1, A2, and A.3. Depending on the dataset, this includes 13 to 19 single transformations. These
transformations include flips, crops, color transformations, noise injection, shifts, rotations, and
random erasing. However, I do not combine these transformations with each other. For exam-
ple, a transformed test image is not both horizontally flipped and injected with Gaussian noise.
Because the combination of transformations, and in general a larger set of transformations, may
improve the results of the methods introduced in Section 5.1, I add an experiment on CIFAR-10.
The details of this experiment is given in Section 7.1.1. My second attempt for improving test-
time augmentation involves clustering of the images. Instead of fitting the methods mentioned in
Section 5.1 on all validation images and inferring the results to all test images, I try to find suitable
clusters among the validation and test images, such that results during validation are only used
on test images within the same cluster. Details of this attempt can be found in Section 7.1.2.

7.1.1 Combination of Transformations

I run all the methods described in Section 5.1 using an enlarged set of transformations. I include
the single transformations given in Appendix A Listing A.1, and all combinations of combining
two transformations. However, I do not combine similar transformations. Specifically, I do not
combine color transformations if both transformations are applying the exact opposite. For exam-
ple, if the first transformation increases the brightness of the image and the second transformation
decreases the brightness. And I do not combine multiple rotations. Finally, this new set of trans-
formations, which I will refer to as the set of double combinations, includes 162 different trans-

7.1 Improvements 45

Algorithm Single (19 transformations) Double (162 transformations)
Greedy 95.87% 95.93%
Random Walk 95.87% 95.81%
EA Own 96.00% 96.01%
SimpleGA 95.95% 96.04%
Score Based 95.96% 96.11%
Majority Voting 95.89% 95.81%
Averaging (probabilities) 95.91% 96.06%
Averaging (logits) 95.83% 95.80%

Table 7.1: COMBINATION OF TRANSFORMATIONS. Comparison of the test accuracy when using single
transformations and the set of double combinations for test-time augmentation on CIFAR-10.

formations. Then I run the same experiments mentioned in Section 5.1 using the set of double
combinations. The results on CIFAR-10, compared with the results of using only the single trans-
formations, can be found in Table 7.1. Greedy, EA Own, SimpleGA, Score Based, and Averaging
(probabilities) seem to benefit from a more extensive set of transformations. Random Walk, Ma-
jority Voting, and Averaging (logits), on the other hand, deteriorate. Out of all methods evaluated
on CIFAR-10, Score Based using 162 transformations results in the best test accuracy. Therefore,
increasing the number and variation of test-time augmentations may indeed be beneficial. Some
methods, for example, Greedy, will score at least as good by including more transformations be-
cause the choice of transformations increases. If the additional transformations are of no help, the
algorithm will choose the same set as with using only single transformations. Therefore, it is not
surprising that Greedy scores better using the set of double combinations. Although enlarging
the set of transformations seems to improve the accuracy in most cases, it also extends the total
computation time.

7.1.2 Clusters

For both the greedy and the weighted approaches introduced in Sections 5.1.1 and 5.1.2, I fit the
algorithm on the entire set of validation images and use the optimal subset or weight on the test
images. However, it is possible that depending on the nature of the images, different validation
images would result in different subsets of transformations or different optimal weights. In this
additional experiment, I cluster the images based on their deep features, i.e., the output of the sec-
ond to last layer of the trained ResNet-18 model, which is an average pooling layer. I only test this
approach on CIFAR-10 because it is sufficiently small to conduct new experiments. Additionally,
I only evaluate this attempt using Greedy. Specifically, for each image in the test set, I find the &
most similar images in the validation set based on the deep features, run the greedy algorithm to
receive a subset of transformations, and use the found subset of transformations on the test image
to make a prediction. I choose a very simple similarity function C' defined as:

C(A,B)= > (Ay—By)
i€{1,...,n},
je{1,....m}

where A and B are two matrices representing the deep features of two images, and n and m
represent the dimension of those matrices. Additionally, I run the experiment several times with
different values for k. All the results are given in Table 7.2. Only the experiments with £ = 1000

46

Chapter 7. Discussion

k Test Score
5 95.44%
10 95.33%
50 95.37%
100 95.71%
500 95.80%
1000 95.95%
2000 95.83%
3000 95.96%
No clustering | 95.87%

Table 7.2: CLUSTERS. Results of using clustering before running Greedy on CIFAR-10. k represents the
cluster size.

and k£ = 3000 improve the greedy approach without clustering. The improvements are minimal
compared to the increased computation time of calculating the k£ most similar validation images
for each test image.

7.2 Limitations

In this section, I will discuss potential limitations in my study. There are multiple times where I
make generalizations, where they may not be valid.

For Random Walk, EA Own, and SimpleGA, I run grid search with different hyperparame-
ters on CIFAR-10, MNIST, and Melanoma. I do not run grid search on ImageNet because of
time concerns. Instead, I use similar hyperparameters found for CIFAR-10 but adjust them
to reduce computation time. Therefore, results found on ImageNet for Random Walk, EA
Own, and SimpleGA may not be optimal. Additionally, the choice of values to test for each
of the hyperparameters is chosen arbitrarily and may not reflect the optimal values.

Related to the point above, I do not repeat the grid search for the set of double combinations
introduced in Section 7.1.1. Therefore, the results found in Table 7.1 may not be optimal for
Random Walk, EA Own, and SimpleGA.

All results in Table 6.1 are evaluated on a single validation and test set. It is unclear how the
scores would differ on new validation and test sets. A more reliable approach would be to
use cross-validation or resampling of the test set and save the average scores and standard
deviations. However, this requires additional computation time.

Because some transformations, for example, random cropping, contain random elements,
the logits differ depending on the random seed. Consequently, the final test scores for each
method differ as well, depending on the chosen seed.

For simplicity, I use the same ResNet-18 architecture for all datasets and only adapt the
learning rate if the model seems to learn very poorly. Because each dataset is quite different,
generalizing one model architecture to all datasets may not be the best approach. In fact,
there are many other reasons to believe that the training scores found in Table 4.3 are not
optimal. In Chapter 3 I discuss related work corresponding to data augmentation. A lot of
work has been done to improve data augmentation during training, such as the automatic
selection of transformations. I only use simple transformation functions and do not select

7.2 Limitations 47

them automatically. Therefore, it is possible that my final test scores would differ if the
models were trained with a different architecture, different hyperparameters, and different
data augmentations. I cannot guarantee that my proposed test-time augmentation methods
that score best would also score best using an entirely different model or training procedure.

+ Although I test four different datasets, I cannot guarantee that my results hold for other ap-
plications as well. However, results that are consistent among CIFAR-10, MNIST, ImageNet,
and Melanoma, may be more likely to generalize to other datasets.

« Finally, in my experiments, I primarily work with logits. Only in the case of averaging
probabilities do I convert the logits to probabilities. However, in many cases, the last layer
of the network is a softmax layer that outputs probabilities. All methods introduced in
Chapter 5 can be applied to matrices of probabilities as well, but the final results might
differ.

Chapter 8

Conclusion and Future Work

I have demonstrated on four different datasets that test-time augmentation for image classifi-
cation tasks positively affects image classification accuracy. I showed that there are different
methods for test-time augmentation. The most common methods are averaging the probabili-
ties (or logits) of each transformation and majority voting. Additionally, I implemented a greedy
algorithm and four different weighted approaches. The greedy algorithm searches for the best
subset of transformations to aggregate instead of aggregating all transformations. The goal of the
weighted approach is to find optimal weights for each transformation. The final predictions are
then aggregated according to those weights. Details of this method are provided in Section 5.1.2.
In my experiments, I have demonstrated that the standard approaches of averaging and majority
voting often perform worse than the greedy or weighted methods. In the following sections, I
will further discuss my conclusions of this thesis, and finally, I will offer some suggestions for
future work.

8.1 Conclusion

All test-time augmentation methods provide significantly better test scores than using no test-
time augmentation. Therefore, transforming the test images and aggregating the individual re-
sults to form a final prediction improves the accuracy of the image recognition model. EA Own,
which belongs to the weighted approach, where the weights are not necessarily normalized, but
they are non-negative, scored best on CIFAR-10 and Melanoma. SimpleGA, which also belongs to
the weighted approach, and does not have any restrictions on the weights, scored best on MNIST
and ImageNet.

In some cases, for example, in medical diagnosis, even the slightest improvement in accuracy
can be of great importance. Therefore, including test-time augmentation techniques is beneficial.
On the other hand, adding test-time augmentations extends the computation time. Instead of
feeding just the original image to the model, each image must be transformed multiple times and
fed to the model. Then, the individual outputs must be aggregated to a final prediction. When us-
ing the greedy approach, or the weighted approach, the optimal subset of transformations or the
optimal weights must first be calculated. This step adds extra computation time during training.
Test-time augmentation is, therefore, instrumental in applications where a slight increase in accu-
racy is much more critical than fast performance. For self-driving cars, for example, this might
not be the case because they must be able to recognize new images quickly. Table 7.1 shows that
using a more extensive set of transformations can improve the accuracy of some methods. How-
ever, the larger the set of transformations, the longer the computation time during training and
testing. Similarly, the clustering attempt mentioned in Section 7.1.2 shows that for specific cluster
sizes k, there may be a slight improvement in the accuracy. However, the step of additionally

50 Chapter 8. Conclusion and Future Work

clustering the images increases the overall computation time. Out of the simple methods, which
require transforming the test images multiple times and aggregating individual predictions but
do not require an additional fitting step, averaging the probabilities seems to score best. This is
the method that is most commonly applied.

In conclusion, my results from several different experiments and on four different datasets
show that test-time augmentation, in general, improves the overall test score. Still, depending on
the dataset and the aggregating method, the improvement may be only minimal. Thus, depend-
ing on the specific dataset and problem, the increased computation time may not be worth the
incremental increase in the test score. However, in many cases, I believe that the advantage in
the classification score using test-time augmentation and using more advanced techniques than
averaging or majority voting outweighs the disadvantages. This is especially the case with image
recognition tasks for medical diagnoses, such as the diagnosis of brain tumors from brain MRIs.

8.2 Future Work

This thesis provides the groundwork for improving test-time augmentation techniques. However,
there are still many open questions.

+ In my experiments, I find that using a weighted approach for test-time augmentation per-
forms better than other methods. However, it remains unclear which weight optimization
algorithm to use and with what restrictions. The goal would be to find an optimization
algorithm that scores best on all datasets.

+ The computation time of the weighted approaches is a concern. Many other optimization
algorithms besides the three algorithms that I tested exist, and a more efficient algorithm
might result in the same score improvement and less computation time than my proposed
algorithms.

+ Instead of using the same model architecture and similar hyperparameters and transforma-
tion functions for each dataset, it would be useful to make individual adjustments.

» As mentioned already in Chapter 7, I use very similar transformations both for training and
testing. It would be interesting to investigate whether this is necessary or if transformations
can differ without affecting the test score.

* In Section 7.1 I implement and evaluate two experiments on CIFAR-10, a combination of
transformations and clustering, and find that in some cases, there is indeed an improvement
in the test score. However, both methods require more work. First, it is unclear what the
ideal number of transformations for test-time augmentation should be and whether results
found on CIFAR-10 generalize to other datasets as well. Second, when finding clusters
among the images, I use a very simple similarity function. Other functions and other image
features might improve this method.

+ Because I focused more on the testing stage of the model rather than the training stage, my
training scores are not as good compared to current benchmarks. For future research, it
would be interesting to test whether some of my proposed test-time augmentation methods
can further improve the current best models.

« It would be interesting to investigate whether machine learning algorithms, such as Ran-
dom Forest, could be helpful for test-time augmentation. For example, a model could be
trained on features extracted from the logits of each transformation, which predicts the final
class.

8.2 Future Work 51

- Finally, it would be helpful if the set of best transformations for each dataset is known before
applying test-time augmentation. This would likely improve the test scores and speed up
the process. Therefore, it would be interesting to run test-time augmentation on multiple

different datasets and investigate patterns. Ideally, one could limit the set of transformations
based on the nature of the dataset.

Appendix A

Hyperparameters

Table A.1 shows the learning rates and batch sizes that I use for each data augmentation method
during training. Listings A.1, A.2, and A.3 give the exact list and ordering of the transformations
used for test-time augmentation.

Dataset DA Learning Rate Batch Size

CIFAR-10 No 0.001 16
Yes 0.001 16
MNIST No 0.001 16
Yes 0.001 16
ImageNet No 0.001 64
Yes 0.001 64
Melanoma No 0.0001 16
Yes 0.0001 16

Table A.1: HYPERPARAMETERS FOR TRAINING. Chosen learning rates and batch sizes for each dataset
with and without data augmentation (DA) during training.

54 Appendix A. Hyperparameters

Original
Horizontal Flip
Crop with proportion 0.8

Color
Color
Color
Color
Color
Color
Color

Color

Jitter with

brightness

Jitter
Jitter
Jitter
Jitter
Jitter
Jitter
Jitter

Random Noise

with brightness

with
with
with
with
with
with
with

contrast O.
contrast 1.
saturation
saturation
hue -0.2
hue 0.2

[GNE)]

N O o o O

standard deviation 0.05
Shift with width proportion 0.2
Shift with height proportion 0.2

Rotation
Rotation
Rotation

Rotation

with
with
with
with

angle
angle
angle

angle

Random Erasing with

5
10
15
20
scale (0.

1, 0.1)

Listing A.1: Data augmentation transformations with hyperparameters for test-time augmenta-
tion on CIFAR-10 and ImageNet.

Original

Crop with proportion 0.8

Color
Color
Color

Color

Jitter
Jitter
Jitter
Jitter

Random Noise

with
with
with
with
with

brightness
brightness
contrast O.
contrast 1.

0
1.5
5

5

standard deviation 0.05
Shift with width proportion 0.2
Shift with height proportion 0.2

Rotation
Rotation
Rotation
Rotation

with
with
with
with

angle
angle
angle
angle

Random Erasing with

Listing A.2: Data augmentation transformations with hyperparameters for test-time augmenta-

tion on MNIST.

5
10
15
20
scale (0.

1, 0.1)

55

Original

Horizontal Flip

Crop with proportion 0.8

Color
Color
Color
Color
Color
Color
Color
Color

Jitter
Jitter
Jitter
Jitter
Jitter
Jitter
Jitter
Jitter

Random Noise
Shift with width proportion 0.1
Shift with height proportion 0.1

Rotation
Rotation
Rotation
Rotation

with
with
with
with

with
with
with
with
with
with
with
with
with

brightness

Doy

brightness
contrast O.
contrast 1.

saturation

N O B O P O

saturation
hue -0.2
hue 0.2
standard deviation 0.05

angle 45

angle 90

angle 135

angle 180

Random Erasing with scale (0.1, 0.1)

Listing A.3: Data augmentation transformations with hyperparameters for test-time augmenta-
tion on Melanoma.

Appendix B

Grid Search Results

I run a grid search for specific hyperparameters of Random Walk, EA Own, and SimpleGA for the
datasets CIFAR-10, MNIST, and Melanoma. I do not run the grid search on ImageNet because of
time concerns. Additionally, I run each combination of hyperparameters 20 times with different
random seeds and provide the average validation scores. Tables B.1, B.2, and B.3 give the results
of grid search for Random Walk. Tables B.4, B.5, and B.6 show the results of grid search for
EA Own. And finally, Tables B.7, B.§, and B.9 give the results of grid search on SimpleGA. The
red boxes in the tables highlight the chosen combination of hyperparameters for the respective
dataset. If several combinations score equally well, I choose the hyperparameters that result in
the fastest computation time.

early_stopping normalization

initialization Validation Accuracy (%)

10 True Random 97.09
10 True Equal 97.22
10 False Random 97.15
10 False Equal 97.20
100 True Random 97.20
100 True Equal 97.23
100 False Random 97.18
100 False Equal 97.20
200 True Random 97.23
200 True Equal 97.25
200 False Random 97.16
200 False Equal 97.20
500 True Random 97.19
(500 True Equal 97.29
500 False Random 97.21
500 False Equal 97.20

Table B.1: CIFAR-10 RANDOM WALK. Grid search results for Random Walk on CIFAR-10 with different

values for early stopping, normalization, and initialization.

58 Appendix B. Grid Search Results

early_stopping normalization initialization Validation Accuracy (%)

[10 True Random 99.79 |
10 True Equal 99.76
10 False Random 99.78
10 False Equal 99.76

100 True Random 99.78

100 True Equal 99.78

100 False Random 99.78

100 False Equal 99.76

200 True Random 99.78

200 True Equal 99.78

200 False Random 99.77

200 False Equal 99.76

500 True Random 99.77

500 True Equal 99.78

500 False Random 99.77

500 False Equal 99.76

Table B.2: MNIST RANDOM WALK. Grid search results for Random Walk on MNIST with different
values for early stopping, normalization, and initialization.

early_stopping normalization initialization Validation AUC Score

10 True Random 0.8939

10 True Equal 0.8931

10 False Random 0.8979
[10 False Equal 0.8995 |
100 True Random 0.8899
100 True Equal 0.8905
100 False Random 0.8975
100 False Equal 0.8995
200 True Random 0.8906
200 True Equal 0.8910
200 False Random 0.8968
200 False Equal 0.8995
500 True Random 0.8905
500 True Equal 0.8900
500 False Random 0.8963
500 False Equal 0.8995

Table B.3: MELANOMA RANDOM WALK. Grid search results for Random Walk on Melanoma with
different values for early stopping, normalization, and initialization.

59

n_elites n initialization early_stopping Validation Accuracy (%)

5 100 random 10 97.29
5 100 random 50 97.30
5 100 ones 10 97.33
5 100 ones 50 97.28
5 500 random 10 97.36
5 500 random 50 97.34
5 500 ones 10 97.35
5 500 ones 50 97.32
5 1000 random 10 97.33
5 1000 random 50 97.35
5 1000 ones 10 97.35
5 1000 ones 50 97.37
10 100 random 10 97.32
10 100 random 50 97.31
10 100 ones 10 97.29
10 100 ones 50 97.32
10 500 random 10 97.34
10 500 random 50 97.33
10 500 ones 10 97.36
10 500 ones 50 97.34
[10 1000 random 10 97.42 |
10 1000 random 50 97.34
10 1000 ones 10 97.35
10 1000 ones 50 97.37
20 100 random 10 97.30
20 100 random 50 97.32
20 100 ones 10 97.30
20 100 ones 50 97.32
20 500 random 10 97.34
20 500 random 50 97.31
20 500 ones 10 97.35
20 500 ones 50 97.33
20 1000 random 10 97.36
20 1000 random 50 97.32
20 1000 ones 10 97.38
20 1000 ones 50 97.34
50 100 random 10 97.31
50 100 random 50 97.31
50 100 ones 10 97.30
50 100 ones 50 97.28
50 500 random 10 97.33
50 500 random 50 97.31
50 500 ones 10 97.33
50 500 ones 50 97.33
50 1000 random 10 97.34
50 1000 random 50 97.32
50 1000 ones 10 97.35
50 1000 ones 50 97.32

Table B.4: CIFAR-10 EA OWN. Grid search results for EA Own on CIFAR-10 with different values for
number of elites to keep, number of vectors to generate n, initialization method, and early stopping.

60 Appendix B. Grid Search Results

n_elites n initialization early stopping Validation Accuracy (%)

5 100 random 10 99.798
5 100 random 50 99.798
5 100 ones 10 99.802
5 100 ones 50 99.802
5 500 random 10 99.798
5 500 random 50 99.798
5 500 ones 10 99.798
5 500 ones 50 99.798
5 1000 random 10 99.794
5 1000 random 50 99.800
5 1000 ones 10 99.800
5 1000 ones 50 99.798
10 100 random 10 99.800
10 100 random 50 99.800
10 100 ones 10 99.800
10 100 ones 50 99.794
10 500 random 10 99.798
10 500 random 50 99.800
10 500 ones 10 99.800
10 500 ones 50 99.800
10 1000 random 10 99.800
10 1000 random 50 99.798
10 1000 ones 10 99.800
10 1000 ones 50 99.800
20 100 random 10 99.802
[20 100 random 50 99.804 |
20 100 ones 10 99.800
20 100 ones 50 99.798
20 500 random 10 99.800
20 500 random 50 99.800
20 500 ones 10 99.800
20 500 ones 50 99.800
20 1000 random 10 99.798
20 1000 random 50 99.800
20 1000 ones 10 99.800
20 1000 ones 50 99.800
50 100 random 10 99.800
50 100 random 50 99.798
50 100 ones 10 99.800
50 100 ones 50 99.798
50 500 random 10 99.802
50 500 random 50 99.800
50 500 ones 10 99.800
50 500 ones 50 99.800
50 1000 random 10 99.800
50 1000 random 50 99.798
50 1000 ones 10 99.800
50 1000 ones 50 99.800

Table B.5: MNIST EA OWN. Grid search results for EA Own on MNIST with different values for number
of elites to keep, number of vectors to generate n, initialization method, and early stopping.

61

n_elites n initialization early_stopping Validation AUC Score

5 100 random 10 0.8903
5 100 random 50 0.8893
5 100 ones 10 0.8903
5 100 ones 50 0.8895
5 500 random 10 0.8896
5 500 random 50 0.8890
5 500 ones 10 0.8896
5 500 ones 50 0.8891
5 1000 random 10 0.8894
5 1000 random 50 0.8890
5 1000 ones 10 0.8893
5 1000 ones 50 0.8891
10 100 random 10 0.8907
10 100 random 50 0.8900
10 100 ones 10 0.8905
10 100 ones 50 0.8905
10 500 random 10 0.8897
10 500 random 50 0.8891
10 500 ones 10 0.8897
10 500 ones 50 0.8891
10 1000 random 10 0.8895
10 1000 random 50 0.8891
10 1000 ones 10 0.8893
10 1000 ones 50 0.8891
20 100 random 10 0.8909
20 100 random 50 0.8904
20 100 ones 10 0.8905
20 100 ones 50 0.8902
20 500 random 10 0.8902
20 500 random 50 0.8892
20 500 ones 10 0.8902
20 500 ones 50 0.8892
20 1000 random 10 0.8897
20 1000 random 50 0.8891
20 1000 ones 10 0.8898
20 1000 ones 50 0.8891
50 100 random 10 0.8913
50 100 random 50 0.8904
[50 100 ones 10 0.8913|
50 100 ones 50 0.8905
50 500 random 10 0.8906
50 500 random 50 0.8902
50 500 ones 10 0.8904
50 500 ones 50 0.8902
50 1000 random 10 0.8903
50 1000 random 50 0.8893
50 1000 ones 10 0.8903
50 1000 ones 50 0.8893

Table B.6: MELANOMA EA OWN. Grid search results for EA Own on Melanoma with different values
for number of elites to keep, number of vectors to generate n, initialization method, and early stopping.

62 Appendix B. Grid Search Results

population_size standard_deviation elite_proportion Validation Accuracy (%)

20 0.2 0.1 97.22
20 0.2 0.2 97.22
20 0.2 0.3 97.22
20 0.5 0.1 97.18
20 0.5 0.2 97.26
20 0.5 0.3 97.25
20 0.7 0.1 97.19
20 0.7 0.2 97.24
20 0.7 0.3 97.25
100 0.2 0.1 97.24
100 0.2 0.2 97.25
100 0.2 0.3 97.22
100 0.5 0.1 97.25
100 0.5 0.2 97.26
100 0.5 0.3 97.26
100 0.7 0.1 97.21
100 0.7 0.2 97.24
100 0.7 0.3 97.26
250 0.2 0.1 97.27
250 0.2 0.2 97.27
250 0.2 0.3 97.30
250 0.5 0.1 97.26
250 0.5 0.2 97.29
250 0.5 0.3 97.32
250 0.7 0.1 97.30
(250 0.7 0.2 97.33 |
250 0.7 0.3 97.28

Table B.7: CIFAR-10 SIMPLEGA. Grid search results for SimpleGA on CIFAR-10 with different values
for population size, standard deviation, and elite proportion.

63

population_size standard_deviation elite_proportion Validation Accuracy (%)

20 0.2 0.1 99.82
20 0.2 0.2 99.83
20 0.2 0.3 99.83
20 0.5 0.1 99.81
20 0.5 0.2 99.83
20 0.5 0.3 99.83
20 0.7 0.1 99.82
20 0.7 0.2 99.81
20 0.7 0.3 99.82
100 0.2 0.1 99.81
100 0.2 0.2 99.83
100 0.2 0.3 99.82
100 0.5 0.1 99.82
100 0.5 0.2 99.83
100 0.5 0.3 99.83
100 0.7 0.1 99.82
100 0.7 0.2 99.84
100 0.7 0.3 99.83
250 0.2 0.1 99.83
250 0.2 0.2 99.83
250 0.2 0.3 99.83
250 0.5 0.1 99.83
[250 0.5 0.2 99.84 |
250 0.5 0.3 99.83
250 0.7 0.1 99.83
250 0.7 0.2 99.83
250 0.7 0.3 99.84

Table B.8: MINIST SIMPLEGA. Grid search results for SimpleGA on MNIST with different values for
population size, standard deviation, and elite proportion.

64 Appendix B. Grid Search Results

population_size standard_deviation elite_proportion Validation AUC Score

20 0.2 0.1 0.8716
20 0.2 0.2 0.8745
20 0.2 0.3 0.8748
20 0.5 0.1 0.8738
20 0.5 0.2 0.8734
20 0.5 0.3 0.8740
[20 0.7 0.1 0.8762 |
20 0.7 0.2 0.8760
20 0.7 0.3 0.8726
100 0.2 0.1 0.8720
100 0.2 0.2 0.8729
100 0.2 0.3 0.8733
100 0.5 0.1 0.8738
100 0.5 0.2 0.8728
100 0.5 0.3 0.8738
100 0.7 0.1 0.8721
100 0.7 0.2 0.8740
100 0.7 0.3 0.8739
250 0.2 0.1 0.8735
250 0.2 0.2 0.8730
250 0.2 0.3 0.8740
250 0.5 0.1 0.8746
250 0.5 0.2 0.8744
250 0.5 0.3 0.8737
250 0.7 0.1 0.8715
250 0.7 0.2 0.8737
250 0.7 0.3 0.8732

Table B.9: MELANOMA SIMPLEGA. Grid search results for SimpleGA on Melanoma with different values
for population size, standard deviation, and elite proportion.

Appendix C

Optimal Weights

Tables C.1, C.2, C.3, and C.4 give the optimal weights found by Random Walk, EA Own, Sim-
pleGA, and Score Based. Because I run Random Walk, EA Own, and SimpleGA 20 times with
different seeds, the weights provided here are averaged over the 20 repetitions. The highlighted
transformations are the three first transformations found by Greedy. They are indicative of the
most important transformations per dataset according to the greedy algorithm. Additionally, the
highlighted weights indicate the three highest weights per method. They should also indicate the
most important transformations according to each respective weighted approach method.

Transformation Random Walk EA Own SimpleGA Score Based
Original 0.0543 0.1586 -1.7896 0.9602
Horizontal Flip 0.0855 0.1160 9.8699 0.9596
Random Crop 0.0817 7.5453 6.3778 0.9450
Color Jitter (brightness 0.5) 0.0551 0.1184 -0.9076 0.9556
Color Jitter (brightness 1.5) 0.0375 0.0189 -0.3975 0.0000
Color Jitter (contrast 0.5) 0.0678 2.2698 2.7202 0.9546
Color Jitter (contrast 1.5) 0.0327 0.0114 -3.2860 0.9484
Color Jitter (saturation 0) 0.0286 4.2538 2.5470 0.0000
Color Jitter (saturation 2) 0.0472 0.2363 1.3980 0.9514
Color Jitter (hue -0.2) 0.0331 0.0546 0.5353 0.0000
Color Jitter (hue 0.2) 0.0476 0.0698 1.6260 0.0000
Random Noise 0.0448 0.0377 -0.5249 0.0000
Vertical Shift 0.0647 0.0328 0.6722 0.0000
Horizontal Shift 0.0582 0.0286 1.2511 0.9464
Rotation (angle 5) 0.0411 3.4339 5.3120 0.9573
Rotation (angle 10) 0.0551 1.7683 3.3541 0.9522
Rotation (angle 15) 0.0515 0.2857 -0.2074 0.9458
Rotation (angle 20) 0.0586 0.2856 2.0116 0.0000
Random Erasing 0.0550 3.2794 3.0093 0.0000

Table C.1: CIFAR-10 WEIGHTS. Optimal weights found by the four algorithms for the weighted ap-
proach on CIFAR-10. The highlighted transformations and weights are the three most important transfor-
mations based on the different methods.

66 Appendix C. Optimal Weights

Transformation Random Walk EA Own SimpleGA Score Based
Original 0.0479 0.2601 -1.6942 0.9963
Random Crop 0.0924 6.8521 1.8947 0.9954
Color Jitter (brightness 0.5) 0.0750 0.2964 0.1279 0.9963
Color Jitter (brigtness 1.5) 0.0678 11.0821 3.3072 0.9949
Color Jitter (contrast 0.5) 0.0726 10.0107 3.4854 0.9962
Color Jitter (contrast 1.5) 0.0642 0.2321 1.2917 0.9940
Random Noise 0.0795 6.8960 3.3887 0.9961
Vertical Shift 0.0640 0.3462 -0.5367 0.0000
Horizontal Shift 0.0755 0.2761 -1.2251 0.9950
Rotation (angle 5) 0.0715 0.3704 -0.2260 0.9965
Rotation (angle 10) 0.0711 0.6854 2.3089 0.9950
Rotation (angle 15) 0.0621 0.5371 0.8701 0.9949
Rotation (angle 20) 0.0866 3.1081 -0.0113 0.0000
Random Erasing 0.0698 6.2348 2.0552 0.0000

Table C.2: MNIST WEIGHTS. Optimal weights found by the four algorithms for the weighted approach
on MNIST. The highlighted transformations and weights are the three most important transformations based
on the different methods.

Transformation Random Walk EA Own SimpleGA Score Based
Original 0.0778 3.6648 3.9622 0.7320
Horizontal Flip 0.1217 10.3063 9.9357 0.7320
Random Crop 0.1032 5.4414 5.5554 0.0000
Color Jitter (brightness 0.5) 0.0330 0.0987 -2.3761 0.0000
Color Jitter (brightness 1.5) 0.0569 0.6289 1.2038 0.0000
Color Jitter (contrast 0.5) 0.0442 0.2594 0.9341 0.0000
Color Jitter (contrast 1.5) 0.0604 0.5332 1.3556 0.0000
Color Jitter (saturation 0) 0.0347 0.4357 1.0808 0.0000
Color Jitter (saturation 2) 0.0362 0.5301 1.0075 0.0000
Color Jitter (hue -0.2) 0.0215 0.2639 0.5395 0.0000
Color Jitter (hue 0.2) 0.0220 0.2193 0.1658 0.0000
Random Noise 0.0372 0.4322 1.3329 0.0000
Vertical Shift 0.0811 3.3330 3.4466 0.0000
Horizontal Shift 0.0919 2.9224 2.2960 0.0000
Rotation (angle 5) 0.0197 0.0269 -3.4991 0.0000
Rotation (angle 10) 0.0283 0.1974 0.5681 0.0000
Rotation (angle 15) 0.0423 0.0352 -0.3446 0.0000
Rotation (angle 20) 0.0365 0.0354 0.2404 0.0000
Random Erasing 0.0523 0.1781 0.3149 0.0000

Table C.3: IMAGENET WEIGHTS. Optimal weights found by the four algorithms for the weighted ap-
proach on ImageNet. The highlighted transformations and weights are the three most important transfor-
mations based on the different methods.

67

Transformation Random Walk EA Own SimpleGA Score Based
Original 1.000 0.2411 0.5063 0.0000
Horizontal Flip 1.000 0.3488 0.7238 0.0000
Random Crop 1.000 0.4397 2.2090 0.0000
Color Jitter (brightness 0.6) 1.000 0.0735 -2.4806 0.0000
Color Jitter (brightness 1.4) 1.000 0.2564 0.1565 0.0000
Color Jitter (contrast 0.6) 1.000 0.0560 -3.3363 0.0000
Color Jitter (contrast 1.4) 1.000 0.3903 1.4561 0.0000
Color Jitter (saturation 0) 1.000 0.2917 0.1629 0.0000
Color Jitter (saturation 2) 1.000 0.2011 -1.5542 0.0000
Color Jitter (hue -0.2) 1.000 1.5959 2.7304 0.0000
Color Jitter (hue 0.2) 1.000 0.1491 -2.2312 0.0000
Random Noise 1.000 0.1993 -0.1010 0.0000
Vertical Shift 1.000 7.2606 8.2523 0.8808
Horizontal Shift 1.000 0.1102 -5.9190 0.0000
Rotation (angle 45) 1.000 0.3759 0.7683 0.0000
Rotation (angle 90) 1.000 0.2805 -1.5776 0.0000
Rotation (angle 135) 1.000 7.7241 4.3001 0.0000
Rotation (angle 180) 1.000 1.3310 3.3788 0.8717
Random Erasing 1.000 3.4235 4.9039 0.0000

Table C.4: MELANOMA WEIGHTS. Optimal weights found by the four algorithms for the weighted
approach on Melanoma. The highlighted transformations and weights are the three most important trans-
formations based on the different methods.

68

Appendix C. Optimal Weights

69

List of Figures

2.1
2.2
2.3

3.1
32
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1

CIFAR-10 Example
MNIST Example o
Melanoma Example L

Horizontal Flip
Rotationsand Shifts o
Random Crops. e
NoiseInjection
Color Space Transformations
Random Erasing
Exampleof GridMask
Example of MixingImages
Mustration of RICAP
Augmented Image from a Neural Network

Residual Unit e e
ResNet-18 Architecture e

Workflow of Test-time Augmentation

70

Appendix C. Optimal Weights

List of Tables

4.1
4.2
43

5.1
52
53
54

6.1
6.2

7.1
7.2

Al

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9

C1
C2
C3
C4

Transformations for Training 24
Dataset Splits 26
Training Scores 26
Weight Initialization 34
Random Walk Hyperparameters 34
EA Own Hyperparameters. 36
SimpleGA Hyperparameters 37
Validation and Test Scores e 40
Welch's t-test e 42
Combination of Transformations o v i v i it 45
CIUSErS o o o e e e e 46
Hyperparameters for Training 53
CIFAR-1I0 Random Walk e 57
MNIST Random Walk e 58
Melanoma Random Walk e 58
CIFAR-IOEA OWN o e e e e e e e e e 59
MNISTEA OWNL o e e e e e e s e e e e 60
Melanoma EA Own e 61
CIFAR-10 SimpleGA e 62
MNIST SimpleGA e 63
Melanoma SimpleGA L 64
CIFAR-10Weights 65
MNIST Weights 66
ImageNet Weights 66
Melanoma Weights 67

7

List of Listings

A.1 Data augmentation transformations with hyperparameters for test-time augmen-

tation on CIFAR-10 and ImageNet. 54
A.2 Data augmentation transformations with hyperparameters for test-time augmen-
tationon MNIST. 54

A.3 Data augmentation transformations with hyperparameters for test-time augmen-
tation on Melanoma.

Bibliography

Antoniou, A., Storkey, A., and Edwards, H. (2018). Data Augmentation Generative Adversarial
Networks. arXiv preprint arXiv:1711.04340 [stat. ML].

Cai, L., Gao, J., and Zhao, D. (2020). A review of the application of deep learning in medical image
classification and segmentation. Annals of Translational Medicine, 8(11).

Chen, P, Liu, S., Zhao, H., and Jia, J. (2020). GridMask Data Augmentation. arXiv preprint
arXiv:2001.04086 [cs.CV].

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Autoaugment: Learn-
ing augmentation strategies from data. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019-June(Section 3):113-123.

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, and Li Fei-Fei (2009). ImageNet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248-255.

Deng, L. (2012). The MNIST Database of Handwritten Digit Images for Machine Learning Re-
search [Best of the Web]. IEEE Signal Processing Magazine, 29(6):141-142.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer Publishing
Company, Incorporated, 2nd edition.

Ha, D. (2017). Evolving Stable Strategies. http://blog.otoro.net/2017/11/12/
evolving-stable-strategies/. [Online; accessed 23-February-2021].

He, K., Zhang, X., Ren, S., and Sun,]. (2016). Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778.

Ho, D, Liang, E., Stoica, I., Abbeel, P, and Chen, X. (2019). Population based augmentation:
Efficient learning of augmentation policy schedules. 36th International Conference on Machine
Learning, ICML 2019, 2019-June:4843-4856.

Howard, A. G. (2013). Some Improvements on Deep Convolutional Neural Network Based Image
Classification. arXiv preprint arXiv:1312.5402 [cs.CV].

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convo-
lutional networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-January:2261-2269.

Inoue, H. (2018). Data Augmentation by Pairing Samples for Images Classification. arXiv preprint
arXiv:1801.02929 [cs.LG].

http://blog.otoro.net/2017/11/12/evolving-stable-strategies/
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/

74 BIBLIOGRAPHY

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O.,
Green, T., Dunning, 1., Simonyan, K., Fernando, C., and Kavukcuoglu, K. (2017). Population
Based Training of Neural Networks. arXiv preprint arXiv:1711.09846 [cs.LG].

Krizhevsky, A. (2012). Learning Multiple Layers of Features from Tiny Images. Technical Report
TR-2009, University of Toronto, Toronto.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). ImageNet Classification with Deep Con-
volutional Neural Networks. In Pereira, F, Burges, C.]. C., Bottou, L., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database. http://yann.lecun.
com/exdb/mnist/.

Lim, S.-H., Young, S. R., and Patton, R. M. (2016). An analysis of image storage systems for scal-
able training of deep neural networks. The seventh workshop on Big Data Benchmarks, Performance
Optimization, and Emerging Hardware (in conjunction with ASPLOS’16).

Mikotajczyk, A. and Grochowski, M. (2018). Data augmentation for improving deep learning
in image classification problem. In 2018 International Interdisciplinary PhD Workshop (IIPhDW),
pages 117-122.

Molchanov, D., Lyzhov, A., Molchanova, Y., Ashukha, A., and Vetrov, D. (2020). Greedy Policy
Search: A Simple Baseline for Learnable Test-Time Augmentation. In Proceedings of the 36thCon-
ference on Uncertainty in Artificial Intelligence (UAI), PMLR volume 124, 2020, volume 124.

Perez, L. and Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification
using Deep Learning. ArXiv preprint arXiv:1712.04621.

Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia,
M., Dusza, S., Guitera, P, Gutman, D., Halpern, A., Helba, B, Kittler, H., Kose, K., Langer, S.,
Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., and Soyer, P. (2021). A patient-centric dataset
of images and metadata for identifying melanomas using clinical context. Scientific Data, 8:34.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252.

Shanmugam, D., Blalock, D., Balakrishnan, G., and Guttag, J. (2020). When and Why Test-Time
Augmentation Works. arXiv preprint arXiv:2011.11156 [cs.CV].

Shorten, C. and Khoshgoftaar, T. (2019). A survey on Image Data Augmentation for Deep Learn-
ing. Journal of Big Data, 6:1-48.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Im-
age Recognition. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Singhal, G. (2020). Transfer Learning with ResNet in PyTorch. https://www.pluralsight.
com/guides/introduction-to-resnet. [Online; accessed 02-February-2021].

Summers, C. and Dinneen, M. J. (2019). Improved Mixed-Example Data Augmentation. In 2019
IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1262-1270.

Takahashi, R., Matsubara, T., and Uehara, K. (2020). Data Augmentation Using Random Image
Cropping and Patching for Deep CNNs. IEEE Transactions on Circuits and Systems for Video
Technology, 30(9):2917-2931.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.pluralsight.com/guides/introduction-to-resnet
https://www.pluralsight.com/guides/introduction-to-resnet

BIBLIOGRAPHY 75

Zheng, Q., Yang, M., Tian, X., Jiang, N., and Wang, D. (2020). A full stage data augmentation
method in deep convolutional neural network for natural image classification. Discrete Dynam-
ics in Nature and Society, 2020.

Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. (2020). Random Erasing Data Augmentation.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(07):13001-13008.

