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Abstract

With the emergence of several thousand Blockchains in recent years, the selection of
use-case appropriate Blockchains has become a formidable task. Withal, hitherto no
Blockchain standardization body is prevalent, leading to a research gap concerning the
characterization and classification of Blockchains. Therefore, this thesis’ approach to
bridge this gap is by taking inspiration from software engineering principles, namely
Functional and Non-Functional Requirements and their characterization using Softgoal
Interdependency Graphs. Through decompositions and quantification of relationships,
these graphs allow the understanding of how certain Blockchain attributes and aspects
are achieved and obtained, and they facilitate the comparison of various Blockchain im-
plementations. Consequently, a Blockchain specific Softgoal Interdependency Graph was
designed and evaluated on two relevant use cases. Due to the inherent structure of the
graph, a Blockchain characterization relating to four different attributes was achieved,
and a Machine Learning evaluation on the use cases resulted in a classification of three
different Blockchain clusters. Therefore, this approach can be deemed as successful, and
future work can utilize this process and the resulting values to incorporate them into the
Blockchain Selection task.
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Durch die Popularität von Blockchain in den letzten Jahren ist das Problem entstan-
den, dass das anwendungsspezifische Auswählen einer passenden Blockchain zunehmend
schwierig geworden ist. Umso mehr, Standardisierungsansätze sind bisher noch nicht ge-
läufig, und betreffend der Chrakterisierung und der Klassifizierung von Blockchains exi-
stiert bisher eine Forschungslücke. Um diese Lücke zu schliessen, wird in dieser The-
sis Inspiration von Software Engineering Prinzipien genommen, nämlich Functional und
Non-Functional Requirements und ihrer Charakterisierung durch Softgoal Interdependen-
cy Graphs wird erforscht. Durch Dekompositionen und das Quantifizieren von Beziehun-
gen und Werten, erlauben diese Graphen das Verständnis, wie Blockchain Attribute erfüllt
werden und ermöglichen gleichzeitig auch die Gegenüberstellung von verschiedenen Block-
chain Implementierungen. Infolgedessen, wurde ein Blockchain spezifischer Softgoal Inter-
dependency Graph entworfen und an zwei relevanten Anwendungsfällen evaluiert. Durch
die dahinterliegende Struktur des Graphens, wurde eine Charakterisierung von Block-
chains anhand vier verschiedener Attribute erreicht, und durch eine Machine Learning
Evaluation resultierte eine Klassifizierung in drei verschiedene Blockchain Gruppen. An-
hand der Resultate, kann dieser Ansatz als erfolgreich angesehen werden, und zukünftige
Arbeiten können die erreichten Werte und den Prozess in das Unterfangen der Blockchain
Auswahl inkorporieren.
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Chapter 1

Introduction

Since the inception of Bitcoin in 2008, and the mining of its first genesis block in early 2009,
Bitcoin’s popularity started a new era of digital currencies and Blockchain technology, and
now, several years later, thousands of Blockchains (BC) have emerged, each with different
functionalities and designed as solutions for unique problems [42, 5, 18].

Consequently, due to the plethora of available BC to choose from, and the BC standard-
izations not being advanced enough, the predicament has arisen, that classification and
characterization of BC, but also the selection of BC for specific use cases is no easily
accomplishable undertaking [21, 55].

An approach to solve these problems is by taking inspiration from Software Engineering
(SE) principles, namely Non-Functional Requirements (NFR) and Functional Require-
ments (FR) and applying them to BC. Namely, by capturing specific BC implementation
subtleties, and devising a Softgoal Interdependency Graph (SIG) according to the NFR
Framework, cf. [17], a BC characterization and classification can be achieved. In par-
ticular, by selecting BC NFRs, such as Performance or Security and decomposing them
into more specific attributes and incorporating design decisions such as Proof-of-Work, a
graph is synthesized, which includes contributions and interdepenencies between the var-
ious selected BC aspects, in which BC implementations can be evaluated based on their
fulfillment of user requirements.

Furthermore, by applying a Quantification Extension, cf. [1], to a SIG, contributions and
values can be quantified and the fulfillment of requirements can be scored and evaluated
across different BCs. Therefore, the resulting scores can be processed and they present
themselves to be used in various applications, inter alia, BC selection, further motivating
the approach of applying the NFR Framework to BC.

1.1 Description of Work

Thus, the goal of this thesis is to approach the characterization and classification of BCs
by applying Software Engineering principles such as NFR and FR on BCs by utilizing
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2 CHAPTER 1. INTRODUCTION

the NFR Framework and its Quantification Extension. To achieve this, the NFR Frame-
work and its extension have to be fully understood and BC literature review must be
undertaken, such that appropriate NFRs and FRs for the SIG can be selected. By de-
signing and proposing a SIG and choosing its parameters, it then serves as a general BC
characterization, capturing various BC aspects.

Sequentially, eight BC implementations are selected and the SIG is evaluated on two
specific use cases, leading to a quantification of values for the BC aspects. These values are
then used for Machine Learning algorithms to evaluate the SIG and to further characterize
and classify the BCs.

Moreover, a BC SIG application is devised and implemented to offer a visualization of
the SIG and to also enable an accessible way to calculate the scores. Finally, the SIG
implementation is evaluated based on calculation process time for given BCs, and possible
case studies for applications are discussed.

1.2 Thesis Outline

This thesis has been structured in the following manner: In Chapter 2 the FR and NFR
foundations are provided, leading to their appliance in the NFR Framework and its quan-
tification extension, which are thereafter walked through, and hereafter, a concise intro-
duction to BC is given and the necessary BC background is established. In Chapter 3 BC
characterization and classification approaches are discussed, and relevant SIG usages are
explored. Further, in Chapter 4, a SIG is designed and decomposed, the quantification
process is applied and the implementation of a SIG computation system is documented.
Subsequently, in Chapter 5, multiple use cases are chosen to evaluate the SIG, a Machine
Learning evaluation of the SIG is performed, and further, a performance evaluation of the
SIG score computation is given. Finally, a concluding summary is presented and future
works are explored in Chapter 6.



Chapter 2

Background

In this chapter, the theoretical background for Requirements, the NFR Framework, the
Quantification Extension and Blockchains is explored. This background serves as an
overview of the involved concepts and provides the necessary foundations leading to Chap-
ter 4.

2.1 Functional (FR) and

Non-Functional Requirements (NFR)

In Software Engineering (SE), requirements are seen as the real-world goals for function-
ality or constraints on systems, and Requirements Engineering (RE) concerns itself with
their precise specification [78]. Besides, the exact elicitation and specification of require-
ments is not to be overlooked, since these processes have been identified as a major cause
for software project failures [1].

Requirements can be classified into Functional Requirements (FR) and Non-Functional
Requirements (NFR) [15]. While FRs concern themselves with the functional charac-
teristics of software artifacts and specify what a function of a system must be able to
perform, or what a product must do, NFRs are colloquially referred to as the “-ilities”
of software, since they take the non-functional perspective [15, 24]. Although NFRs are
commonly represented as sentences and listed separately from FRs in the Software Re-
quirements Specification, the requirements engineering community has notably had no
consensus over the nature of NFRs and how to specify, elicit, and validate them [15, 24].
In Figure 2.1, depicting a taxonomy of requirements, NFRs are defined as attributes of a
system, or constraints on a system [24].

Typical NFR aspects to consider are usability, flexibility, interoperability, or non “-ility”
attributes such as user-friendliness, coherence or security [15]. Due to their non-functional
nature, NFRs are intrinsically hard to specify and verify [24]. Thus, they can be seen as
“soft” [15, 1], which will be important for Section 2.2. In this sense, SE has historically
focused more on FRs due to the need and demand for being able to run systems with

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Taxonomy of requirements: NFR are attributes or
constraints on system requirements [24].

the basic functionality as soon as possible [15]. Further, instead of specifying NFRs
methodically, an “ad hoc” manner has often been applied in development, meaning that
NFRs were retrofitted during development and developers relied on their intuition when
dealing with NFRs, leading to unsatisfactory user expectations [16]. Additionally, since
the non-functional aspects directly complement the functional components, a lack of NFRs
leads to inappropriate functionality [16]. Therefore, both sides (i.e., FR and NFR) must
be considered for successful software projects [15].

However, despite the previously mentioned predicaments, various frameworks have been
developed to address the definition of NFRs [1]. One that stands out is the “NFR frame-
work” [17], which is discussed in Section 2.2, and that is the basis for the Softgoal Inter-
dependency Graph (SIG) [1] described in Section 2.2.

2.2 NFR Framework and SIG

The NFR Framework is a process-oriented approach for NFRs and builds upon decision
support systems [16], and offers a precise approach to deal with the decision making
process for NFRs [1]. It can be applied in early stages of the design phase, or during late
requirements specifications [1].

By utilizing the notions of goals and softgoals (SG), the NFR Framework abstracts the
conceptions of requirements, e.g., functionality, constraints and attributes, and, thus,
SGs are defined as goals, where there are no clear boundaries for their acceptances and
accomplishments [15, 44]. Therefore, SGs are considered satisficed, when sufficient for,
and little indices against, are present to support their conclusion [44]. This notion is
used analogous to the meaning of the word satisficing, which considers a goal as being
sufficiently satisfactory without necessarily being optimal [44, 17]. Further, development
techniques, which are design choices to meet the NFR, are termed as operationalizations
(OP), and are incorporated equally into the framework [44, 17].
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The NFR Framework, as proposed by [17], also includes the concepts of contributions,
meaning that SGs can contribute to other SGs in various ways:

• MAKE (++): Stands for providing sufficient positive support. A single offspring
SG being satisficed “makes” the parent SG satisficed as well.

• HELP (+): Stands for providing partial positive support. A single offspring SG
being satisficed leads to its parent being partially positively supported.

• HURT (−): Stands for providing partial negative support. A single offspring SG
being satisficed leads to its parent being partially negatively supported.

• BREAK (−−): Stands for providing sufficient negative support. A single offspring
SG being satisficed, “breaks” the parent SG and denies it.

• AND: Relates to a group of SG offsprings to their parent. If all offsprings are
satisficed, the parent becomes satisficed as well.

• OR: Relates to a group of SG offsprings to their parent. If one offspring is satisficed,
the parent becomes satisficed as well.

With these contributions, the framework permits NFRs to be conflicting goals, or for
them to be synergetic to each other [16]. Thus, due to its modular structure, development
alternatives can be considered simultaneously to achieve the same NFR [16].

Consequently, using the aforementioned building blocks, the original NFR framework,
proposed by [17], contains the following steps:

1. Acquiring knowledge about the domain, NFR and FR,

2. Identifying NFRs for the domain,

3. Decomposing NFRs,

4. Identifying OPs,

5. Dealing with ambiguities, tradeoffs, priorities and interdependencies among NFRs
and OPs,

6. Selecting OPs,

7. Supporting decisions with design rationale,

8. Evaluating the impact of decisions.

These steps can be applied non-sequentially and might need to be iterated over multiple
times [17]. Instead of a “top-down” approach, the development process can be viewed
as “bottom-up”, meaning that one is able to start with certain OPs in mind to reach
certain SGs [17].
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Figure 2.2: A Softgoal Interdepdency Graph using the original NFR framework [44].

Following the definiton of SGs and OPs, the NFR framework can be visualized in a SIG,
which records the design and reasoning process that was acquired through the steps [17].
Figure 2.2 illustrates an example of a SIG for a banking software.

Given the vertices,

• SG: Softgoals,

• LSG: Leaf-Softgoals (LSG) gained from the refinement process, Section 2.2.2,

• OP: Operationalizations,

and the edges,

• ↑++: Make,

• ↑+: Help,

• ↑−: Hurt,

• ↑−−: Break,

• : And,

• : Or,
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a SIG is a set defined by [56] as a graph:

SIG = (V,E)

V ∈ {SG,LSG,OP}
E ∈ {↑++, ↑+, ↑−, ↑−−, , }

Although the NFR framework allows reasoning about NFR and is an important corner-
stone for NFRs, no quantifications are possible. To address this conundrum, [1] proposes
a quantitative extension to the previously mentioned steps. Since the quantification is a
fundamental layer of this thesis, the extended NFR framework will be considered next.

2.2.1 SIG Score Calculation

The extended NFR framework, as proposed by [1], is built upon the NFR framework and
allows for a quantitative reasoning. To achieve this, the original NFR Framework steps
have to be altered, and the resulting modified steps are the following:

• Identify Softgoals,

• Decompose Softgoals,

• Assign Leaf-Softgoal Weights in the range [0.0, 1.0],

• Identify Operationalizations,

• Calculate Operationalization Scores,

• Select Operationalizations,

• Calculate Leaf-Softgoal Scores,

• Calculate Softgoal Scores,

• Calculate Attainment.

To demonstrate its capabilities and inner workings, the next paragraphs will be following
the example from Figure 2.2 to calculate the scores and attainment from Figure 2.3 [1].
This example assumes a already decomposed SIG, with the given SG, depicted as white
clouds in Figure 2.2, and the contributions SGcontrib, by which offspring SG relate towards
their parents according to Table 2.1.

Table 2.1: Contributions for SIG [1].

Symbol Name Contribution

↑++ MAKE 1
↑+ HELP [0,1]
↑− HURT [-1,0]
↑−− BREAK -1

AND 1
NumChild

OR 1
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Figure 2.3: The SIG for the bank example [1].

Consequently, LSG weights are assigned to the LSG according to [1], where

LSGweight ∈ [0, 1]

and a LSGweight of 0 denotes a non-critical SG, while a score of 1 stands for critical SGs
with significant impact on decisions [1]. In Figure 2.3, the critical SG Accurate [Accounts]
was assigned a weight of 1, while Response Time [Accounts] was assigned a weight of 0.5.

In the next step, Identify Operationalizations, the relation between OPs and LSGs are
gathered, and Table 2.1 can be similarly used to denote the contributions, here impacts
between OPs and LSGs, termed impactLSG×OP [1], and OPs that do not contribute to-
wards a SG, feature an impact score of 0, since no relationship exist [1].

Given the impactLSGxOP , the OP Scores can be computed in the following way [1]:

OPscore = OPparent.score +
∑
LSG

impactLSG×OP × LSGweight (2.1)

This calculation is performed top-down, and OPscore denotes the contribution of OPs on
the system [1]. Consequently, OPparent.score is 0, if no parent OPs are given [1]. In this
example the OP Use Uncompressed Format got its score in the following way:

OPscore = 0 + (−0.5× 0.3 + 0.7× 0.5)

= 0.2
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In the next step Select Operationalizations the OPscore is used to determine if operational-
izations are to be accepted or rejected [1]:

• OPscore ∈ (0,∞): Advantageous to the system,

• OPscore = 0: No effect to the system,

• OPscore ∈ (−∞, 0): Disadvantageous to the system.

Generally, in the case of AND-operationalizations, the developer must take action if the
rejection of a child would make the parent rejected as well. In contrast, in the case where
OPs are alternatives to each other, they are OR-operationalizations, then the OP with
the maximum score is selected [1]. The previously calculated score of 0.2 means, that
the OP Use Uncompressed Format has a low, but beneficial effect on the system.

Afterwards, the LSG Scores LSGscore can be calculated using the following equation [1]:

LSGscore = max(min(
∑

OPaccept=true

impactLSG×OP , 1),−1) (2.2)

The LSG score denotes the satisficing percentage of a SG, and LSGscore ∈ [−1, 1] due to
the min and max functions that are necessary to cap the score, since multiple positive or
negative contributions are possible [1]. In other words, a SG that was to 100% satisficed
will get a LSG score of 1, while a SG that was not satisficed will result in a score of -1 [56].

Using equation 2.2, the LSGscore of Response Time [Accounts] is 1.0, meaning that it is
fully satisficed, and it can be calculated in the following way [1]:

LSGscore = max(min(0.7 + 0.8 + (−0.1), 1.0),−1.0)

= max(min(1.4, 1.0),−1.0)

= max(1.0,−1.0)

= 1.0

After all LSG scores have been calculated, the next objective is to calculate the SGs
further up in the graph [56]. In the equation 2.3 for SGscore, SGchild.contrib denotes the
contributions from Table 2.1 [1]:

SGscore = max(min(
∑

SGchild × SGchild.contrib, 1),−1) (2.3)

Similarly to the LSGscore, the SGscore is bounded between [-1, 1], and using the AND-
contribution the score of 0.25 for Good Performance [Accounts] can be calculated in the
following way, [1]:
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SGscore = max(min(((−0.5)× 1

2
) + (1.0× 1

2
)), 1.0),−1.0)

= max(min((−0.25 + 0.5), 1.0),−1.0)

= max(min(0.25, 1.0),−1.0)

= max(0.25,−1.0)

= 0.25

In the final step, the optimal and the obtained attainment scores can be calculated, and
while the optimal scores denote how much could be potentially obtained by satisficing the
SGs to their fullest extent, the obtained score depicts how much was actually obtained
during the process [1].

attainmentoptimal =
∑
LSG

LSGweight (2.4)

attainmentactual =
∑
LSG

max(LSGscore × LSGweight, 0) (2.5)

By comparing both scores and trying several implementations, this metric can be used to
select the best implementation and to facilitate decision support or verification [1].

Consequently, from the example it is clear, that this light-weight quantification extension
is powerful, and the performed evaluation by the authors found no difference in recom-
mendations compared to the original framework [1]. However, they also note that if little
or no tradeoffs are present regarding the design decisions, meaning that a high number
of one-to-one mappings are prevalent, the extension is less useful, and it is truly able to
excel when a high number of trade-offs are available [1].

2.2.2 Goal Refinement and SIG Design

While the previous sections covered the calculation and the steps of the Framework, this
section explores the process of designing a SIG.

After studying the requirements and identifying the initial SGs, the predicament can
occur, that these SGs are too broad and abstract, and thus, too unspecific to deal with,
and as such, these SGs need to be decomposed by the developer into smaller and more
specific components [17]. Hence, the SGs are refined into more specific sub-SGs, and the
sub-SGs contribute upwards to the decomposed parent SG [17]. At last, this process helps
the clearing of ambiguities, since different interpretations of the requirements are possible
and misunderstandings are obviated [17]. Simultaneously, the decomposition can also be
done for the FR, that are represented by hardgoals and the OPs [64].
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During the decomposition step, the developer can choose between the different contribu-
tions, which are discussed in more detail in Section 2.2.1, in particular, the developers
decide how child SGs relate to their parent SG [64].

Additional to the contributions in the decomposition step, the the two available methods
to decompose SGs are by type or by topic [17]. Decomposing by type means that the
sub-SGs cater to the same type, i.e., for performance there are space performance and
time performance, as can be seen in Figure 2.2 [17]. The offspring SGs then take a subtype
of the parent softgoal type, and also the topic of the SG, such as [Account] [17]. On the
other hand, decomposing by topic refers to differentiate and distinguish the topic, i.e.,
accounts can be split into regular accounts and special accounts, while still keeping the
type of their parent [17]. These decompositions can be done in a “divide-and-conquer”
fashion, by trying to solve each component alone the full problem set is tackled [17].

The decomposition step can be seen in Figure 2.2, where the Secure [accounts] SG has
been broken down into three sub-SGs [17]:

• integrity,

• confidentiality, and

• availability.

This decomposition was done with the AND-contribution, that is to say, that all three
sub-SGs must be met to satisfice the parent SG [17].

Additionally, to identify critical SGs, the concept of priority softgoals is introduced [17],
and in Figure 2.2, the SG Accuracy [accounts] has been denoted a Priority SG. In the
SIG, priority SGs produce an offspring, with the same type and topic, as seen for Accurate
[Accounts] in Figure 2.3 [17]. This concept was introduced to capture that some SG are
vital to the sucess of the system, and tradeoffs among SGs may need to be made [17].

At the end of the refinement process, an initial design of a SIG will be developed. However,
to achieve the final design, an iterative process has to be put in place [17].

2.3 Blockchain

The name Blockchain (BC) is fitting for this data structure, since a BC is exactly that,
a chain of blocks, and each block in the chain contains a cryptographic hash of and
pointer to the previous block [76]. Thus, a BC can be seen as an append-only linked-
list [73]. Furthermore, every block contains transactions, which are the atomic data
structure of a BC, and capture a transfer of digital tokens from a sender to a receiver
address as a record [73]. Although these transactions can be of monetary nature, they
can also be issued, for instance, to run a program, named smart contract (SC), or can be
digital representations of real-world assets [76, 21]. These transactions are created in a
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BC network or exchanged with peers directly, all without the need of any intermediate
entities [76, 21].

As described by [80, 76, 21], the most prominent BC technology features are the character-
istics of being decentralized and offering anonymity, and in particular, in contrast to cen-
tralized systems, there are no central coordinating entities, since all peers in the network
can communicate directly with each other, consequently avoiding potential performance
bottlenecks. Additionally, since the communication between the nodes happens through
generated addresses, and no private information is stored, the decentralization increases
the anonymity of users in the network [21]. Furthermore, the data in the blockchain is
immutable, thus, in the general case the data is tamper-resilient, since the transactions are
stored in a distributed manner over the network and validated independently, and though
possible, a tremendous effort would be needed to alter the data [79, 21]. Furthermore,
the transactions are transparently stored and can be verified and traced back to previous
transactions, offering auditability opportunities [21, 79].

Withal, these aspects lead to BC allowing mistrusting parties to interact with each other
without the need of a Trusted Third Party (TTP) [76]. Emphasizing that there is no need
to trust a centralized bank to perform transactions; currencies can be freely traded inde-
pendently from governments and other authorities [5]. Following, the most notable charac-
teristics that vary in the various BC implementations will be discussed in the next sections.

2.3.1 Consensus Mechanism

Given that the nodes in a BC network do not necessarily trust each other and no cen-
tral entity is present, how can a consensus amongst the nodes be reached? Consensus
mechanism try to solve this conundrum with various strategies [80]. At the same time,
consensus mechanism also solve the challenge of double-spending (i.e., the issue where
users are able to spend the same tokens twice [71]).

The most commonly used consensus mechanism are listed in the next items. These are a
select few from a vast amount, and there are several proposals of consensus mechanism that
tackle different problems and provide new features. Extensive surveys of novel approaches
have been concluded by [7, 73].

Proof-of-Work (PoW) is notably used by Bitcoin (and Ethereum) [80], and is a com-
petition between the nodes to calculate the hash value of the succeeding block to append
to the BC [55, 80]. The challenge lies in finding a hash value that is below a certain target
threshold, and once such a value has been found by a node, this value is broadcasted over
the network and mutually confirmed by the nodes [55, 80].

In particular, hash algorithms are used, since for an arbitrary-length input, a fixed-length
deterministic output is produced, that is always the same for the given input [2]. Fur-
thermore, given an input and the hash algorithm, the verification of the output is easily
done, however, the reverse is not true, to find a value below the target threshold one must
randomly try until a hashed input fits the criteria [2]. This mechanism is therefore named
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PoW, since the found hash value is proof, that a considerable amount of work has been
done by the miner [2].

Upon verification, the new block is then added to the BC [80]. This hash calculation
process is also called mining, and since this process is not only computationally expensive
and time consuming, but also energy intensive, incentive mechanisms are needed to reward
the winner of the competition and incentivize users to participate [80, 71]. However,
Bitcoin’s energy consumption already hit an astronomous 121 TWh a year, by comparing
it to the energy consumption of various countries, it has already surpassed Argentina and
would be in the top 30 energy users worldwide [19].

In Bitcoin’s case, this mining process takes on average 10 minutes, and this rate is essen-
tially the heartbeat of Bitcoin, it directs the issuance of currency and also the speed of
transactions [2]. In fact, this time is not per chance, but is carefully kept in place since
computers are expected to get faster in the future, and the 10 minutes average time is
to be kept constant, the difficulty of the PoW target is being constantly and dynamically
adjusted [2]. Essentially by comparing the mining time of the last 2016 blocks and its
expected 10 minutes per block time, the difficulty can be either increased or decreased to
match the expected 10 minutes time [2].

Proof-of-Stake (PoS) is an efficient alternative to PoW that tries to mitigate its con-
siderable energy depletion by randomly selecting a mining block leader for the next block
based on the concept of stake [73, 80]. This process is also called “virtual mining”, since
mining does not consume any resources [73]. For this reason, the terms “minting” or
“forging” can be used instead of mining [49].

This mechanism follows the idea, that participants with a higher stake in a BC, e.g.
owning a greater amount of its currency, have less incentives to attack the network [80].
In particular, in the planned PoS Ethereum upgrade, stake refers to a security deposit
that will be forfeited if the miner behaves maliciously [38, 49]. In the similar variant,
Proof-of-Capacity, stake refers to hard drive space that needs to be allocated [80].

Nonetheless, this essentially means that participants with the highest stake, would dom-
inate the network, and as such various solutions have been proposed that not only take
the stake size into account to decide on the miner selection [80]. In Peercoin’s case, the
originator of this concept, the stake is measured as “coin age”, a product of the miners
token and the holding time of these tokens, and the coin age increases the probability to
mine the next block [73].

However, PoS is vulnerable to the“nothing-at-stake-attack”, where conflicting blocks could
be generated by the block leader on various forks of the BC, since the creation of these
blocks do not cost anything, which could facilitate “double spending” [73, 38]. Further-
more, PoS can also be exploited by the grinding-attack, an attack on the leader election
process [73].

delegated Proof-of-Stake (dPoS) builds upon the PoS mechanism by making the
nodes elect delegates (also called witnesses), who in turn are permitted to generate and
validate blocks [80, 49]. Since dishonest nodes can always be voted out, there are less
incentives for dishonest behavior [80]. Finally, dPoS is faster and more scalable than
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PoS, as there are only a few delegates, typically 20, and thus blocks can be confirmed
quickly [49, 80]. However, it is noteworthy, that due to the small number of validators,
this also introduces a considerable amount of centralization [55].

Proof-of-Authority (PoA) features N trusted nodes, the Authorities, who stake their
identity and are allowed to propose new blocks to achieve distributed consensus [20, 46].
The principle behind this mechanism is, that the trusted nodes are incentivized to not
attack the network, since their identity is known, they would harm their reputation by
doing so [46]. This consensus works in a round-robin fashion, where in each round one
of the authorities, a mining leader is in charge [20]. However this mechanism requires at
least N/2 + 1 nodes to be honest [20].

IOTA takes a different approach to the other consensus mechanism, and considers a Di-
rected Acyclic Graph (DAG) instead of blocks to structure the transactions [73]. Therefore,
transactions are directly pushed onto the DAG, and each transaction verifies two addi-
tional transactions [73, 47]. This approach significantly improves network throughput,
since no mining needs to be done [73, 47]. Nonetheless, IOTA is currently under develop-
ment and features a central coordinator entity, the shift to a fully decentralized system is
still underway [48, 47]. However, IOTA is just a variant of nonlinear block organizations,
there exist others that also use the underlying pricinples of DAGs [73].

2.3.2 Deployment Models

In essence, a possible BC deployment classification can be done on two axis; permissioned
vs. permissionless and public vs. private [55]. The former refers to read and write
permissions and the latter denotes the data visibility of a BC [55]. Being able to write to
a BC means, that an entity is allowed to add transactions and extend the BC, or in some
cases, even validate blocks [76]. On the other hand, a reader can not extend the BC, but
is allowed to read the content on the BC [76].

Combining the two classifications, the four categories emerge, [55]:

• Public permissionless, open read and write access to all nodes [55].

• Public permissioned, open read but restricted write access [55].

• Private permissionless, a closed BC network [55].

• Private permissioned, restricted access [21] and selection of participants and their
rights is handled by a centralized authority [55, 76].

From this classification, it follows, that permissioned BCs can only be seen as partially
decentralized, however, they boast speed advantages compared to permissionless BCs [36].
Moreover, [21] notes, that with restricted access and known participants in the network,
permissioned or private ledgers do not require a extensive transaction validation schemes,
such as PoW.
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2.3.3 Blockchain Features

The BC implementations have various features and idiosyncrasies that are not shared by
all implementations, and therefore, this section gives a short overview on Smart Contracts
and Performance metrics for BCs.

Smart Contracts (SC) are an addendum to BCs, allowing developers to add business
logic to BCs [33]. In particular, they can be seen as self enforcing digital contracts, that
grant the BC further capabilities besides transactions [76].

However, SC support strongly depends on the BC, for instance, Ethereum’s SC are quite
extensive, and in contrast to Bitcoin, they can be developed with the Turing Complete
programming language Solidity, which allows for many powerful possibilities [33]. Fur-
ther, although SCs open up many opportunities, such as a disintermediation between
contract parties, SC do not currently have the necessary legal support, hindering their
advancements and usefulnesses [33].

Concerning performance, there are various aspects that can be considered, one of them
is throughput, defined in transactions per second (tps) [23]. As per [55, 23, 32],

TransactionsPerBlock =
BlockSize

AverageTransactionSize
(2.6)

then the maximum theoretical throughput can be calculated as

tps =
TransactionsPerBlock

BlockInterval
(2.7)

given the metrics:

• Transaction Size refers to the average transaction size in the BC.

• Block Size denotes the size of a block in the BC

• Block Interval relates to the latency that takes place before blocks are written into
the BC, this is directly dependent on the chosen consensus mechanism.

However, [23] show, that performance and security are in some aspects interlinked, and
increasing performance can have repercussions on security.

Since consensus mechanism function on the basis of incentives, miners are rewarded for
their work, they collect Transaction Fees as well as Block Rewards [55]. These
rewards can be seen as a necessity to secure the network and to avoid attacks on the
network, such as flooding the network with transactions [2]. How much transaction fees
cost depends on the BC, though in Bitcoin they are subject to market forces, the more
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one is willing to pay, the higher the probability that their transaction will be included
in the next block [55, 2]. Ultimately, although transaction fees are not mandatory, not
including them makes it unlikely that the transaction will be processed, as in it might not
be included in a block [2].

Furthermore, BC are also able to store arbitrary data with transactions and Data Size
can be used as a criteria to choose between various BC implementations, and for some
use cases, enabling to depend on the BC as an immutable and transparent database [55].



Chapter 3

Related Work

To best of the authors knowledge, SIGs or NFRs have not yet been employed in the BC
classification context. However, such concepts are not novel and have been successfully
applied in different areas of Computer Science. Thus, in Section 3.1 an overview of the
SIG applicability is presented, and in Section 3.2 the BC classification work is explored.

3.1 SIG

Influential to this thesis has been the work by [17], who collected early endeavors on
NFRs and devised the NFR framework and SIGs. Further, noteworthy for this thesis
is the cornerstone laid by [1], to extend the SIGs to allow quantitative reasoning by
being able to calculate softgoal scores, which increases the realm of possibilities for the
SIG usage. They showed an exemplary usage of the extended NFR framework by going
through an early example described by [17].

• In [44], SIGs were adopted to the context of data warehouses, to analyze design
decisions during the requirements specification phase. They were able to analyze
and apply a SIG design to the ongoing development work of a large data warehouse
system, and SIGs were used to support implementation decisions.

• [56] proposes a SIG to classify and quantify different aspects, such as security, perfor-
mance, and privacy, that a Virtualized Network Function (VNF) is able to provide.
The values calculated by the SIG are used to select and chain such VNFs in VNF
forwarding graphs to satisfy high-level policies input by network operators.

• [13] used a SIG to capture solutions and also characteristics for the novel NFR
“Invisibility”, meaning the ability to hide technology from users in the context of
Ubiquitous Computing and Internet of Things (IoT). They identified 56 specific
solutions for the SIG, though they did not consider in their design negative contri-
butions towards other NFRs.

17
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3.2 Blockchain Classification

Regarding the BC Classification, there have been some efforts and endeavors to standard-
ize BC, and a select few are presented here.

• [4] introduced a taxonomy to classify 50 Distributed Ledgers (DL) with 19 attributes
in two dimensions, namely attributes concerning the Distributed Ledger Technology
(DLT) and aspects concerning the cryptoeconomic design (CED). This taxonomy
and the classification were evaluated by contributors to the BC community and via
Machine Learning Analysis, Multiple Correspondence Analysis and K-Means, and
they were found to be useful and accepted and also extensible for future attributes.
Based on the classification, they were also able to propose a design guideline for
DLs via Machine Learning. The taxonomy is shown in Figure 3.1.

Figure 3.1: Distributed Ledger Taxonomy [4].

• [67] designed a taxonomy tree for DL with 30 attributes that were inferred from an
analysis of BC components via a literature review. The taxonomy consists of main,
sub and also sub-sub components. They suggest, that this taxonomy could be used,
inter alia, to compare various BC design decisions or as a regulatory framework.
The final taxonomy tree is shown in Figure 3.2.

• [26] devised a BC Applicability Framework (BAF) to determine if a BC is appro-
priate for an application, and if this is the case, whether the BC should be permis-
sioned/private or permissionless/public, and which one of four selected consensus
mechanisms would be suitable. By evaluating 92 controls (i.e., questions) divided in
5 domains by their applicability, the algorithm of the framework recommends one of
the 9 aforementioned outcomes based on a percentage distribution, cf. Figure 3.3.
Controls regarding Transaction Constraints can be seen in Table 3.1.
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Figure 3.2: Blockchain Taxonomy Tree [67].

Figure 3.3: The 9 possible BAF outcomes [26].
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Table 3.1: Controls regarding Transaction Constraints, F/L refer to the states Fully
or Partially Applicable and P/N refer to Partially or Not Applicable [26]. The entries
in the table are abbreviated in the following way: Blockchain (Y), No Blockchain (N),
Permissioned/Private (V), Permissionless/Public (U), PoW (W), PoS (S), Proof-of-Burn
(PoB) (B), and PoA (A) [26].

Controls F/L P/N
29: Are exchanges and transactions involved? Y N
30: Do the blockchain need to first provide the nodes
with the rights to view the transactions?

V U

31: Is there a requirement to get authorization to vali-
date transactions in the blockchain? (see the Appendix)

VA UWBS

32: Is there a need for the transactions to be validated
by votes/consensus?

Y N

33: Is the transactional fee required to carry out trans-
actions very small (or null)? (see the Appendix)

V U

3.3 Comparison and Discussion

Concerning the BC classification, [4] notes, that their work stands out from related works
since their results and choice of attributes are evaluated and validated. Further, they
observe that in [67], it is not clear how the components relate to each other, and that
their amount of attributes is much higher than in other comparable related works.

Compared to the other related works, the BAF by [26] takes a different approach, although
it takes some of the same attributes into account with the controls, the classification is
not done on a BC level, but on an application-level to determine which type of BC would
be appropriate for an use case.

Comparing the aspects, for instance, they all consider Fees, in [67] this can be seen in the
sub component Fee System, in [4] there is the differentiation between Action Fees, fees
that must be paid to perform an action and are unrelated to consensus mechanism, and
Consensus Fees, in [26] there is the control: ‘Is the transactional fee required to carry
out transactions very small (or null)?’. However, the considered attributes are not in all
cases the same, e.g., [26] does not consider Turing Completeness, however, this choice is
reasonable, since the recommendations are not as granular, and the consensus mechanism
does not relate with the smart contract capabilities.

Consequently, the proposed SIG from this thesis differs from the aforementioned tax-
onomies, although graph-like structures were given in some of the related works, the use
of the SIG notably allows to focus on interdependencies between the attributes and to
quantify BC aspects. Further, a total of 74 nodes and 88 edges are present in the proposed
SIG, and although Fees and Turing Completeness have been covered by the SIG design,
the work by [4] went into more detail concerning the Token attributes. However, the SIG
is able to show how certain aspects are achieved, e.g., the proposed SIG covers various
Performance and Security aspects that were not used in either [4] or [67].
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Furthermore, unlike the design guidelines proposed by [4], design choices with the SIG
are based on the quantified results for a specific use case, and the BC selection can be
done based on the quantified values.
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Chapter 4

Characterizing and Classifying
Blockchains

This chapter describes the design and implementation of an approach based on SIGs
to characterize and classify different BC implementations based on the functions they
provide. Thus, Section 4.1 presents the design of the complete SIG, Section 4.1.1 goes
over its design and the meaning of its values, next, in Section 4.1.2 the computation of
the values are described and finally, in Section 4.2 an implementation is introduced, to be
able to calculate and visualize BC SIGs.

4.1 Blockchain SIG Design

The full design of the proposed generic BC SIG is depicted in Figure 4.1, and the next
section describes how the design and decomposition of such a SIG from the requirements
was achieved, and lastly the quantification of its values is presented in Section 4.1.2.

To design the SIG, the aforementioned NFR Framework by [17] was utilized in conjunction
with the quantification extension devised by [1] for the quantification of its values, cf.
Section 4.1.2.

Consequently, to achieve this SIG, an iterative process was employed to refine from the
initial SGs the proposed SIG according to Section 2.2.2. Due to the SIG topic of this thesis
focusing on BCs per se, it meant that the decompositions were done by type, and therefore,
the topic, [Blockchain], was omitted from the SIG visualizations, since it belonged to
all nodes of the SIG, hence, its omnipresence did not contribute any additional useful
information to the SIG, and further, the chosen decomposition contributions, according
to Table 2.1, are explained in detail in the next Section.

Due to the design and the nodes of the SIG, it can be used as a characterization of BCs,
and due to its design it is able to showcase how certain BC attributes are achieved and
how different BC aspects are interdependent to each other.

23
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Figure 4.1: Complete SIG. Source: The author.
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4.1.1 Requirements Decomposition

The proposed SIG has been modeled with four initial NFRs, Performance, Security, Pri-
vacy and Applicability that form the SGs and core of the SIG. These NFRs have been
chosen, since they are major talking points of BCs, for instance, Performance has been
selected, since Bitcoin has been criticized in the past for scalability issues and having low
tps, making its performance a considerable bottleneck to its usability compared to more
traditional options [32]. The aspect of security and privacy are also considered, since they
are both imperative to the context of transactions and payment solutions [79], thus, the
survey by [79] was closely followed and applied to the SIG to capture these significant
details. Furthermore, Applicability was added to recognize that various BCs have differ-
ent features, that may either limit or expand the BC’s functionality for a given use case,
thus, this is also highlighting the fact, that not all BCs are suitable for all use cases, as
will be further evaluated in Section 5.1. In total, the four aforementioned SGs lead to a
decomposition into 32 OPs, and 42 LSGs and SGs, meaning that the proposed SIG spans
74 nodes and 88 contributions.

Performance

Firstly, the NFR Performance is looked at, and in Section 2.3.3 Performance was measured
in throughput, defined as tps, although other metrics exist as well [55]. Therefore, in this
SIG Performance directly relates to the NFR Scalability, this stems from the choice of
viewing Scalability as a limitation of tps [28], and using tps as a performance metric.

SG: Scalability is described by [28] as a serious limitation of BC based systems, and
is therefore subject to ongoing research. Subsequently, a wider adoption of BC
systems, e.g., IoT use cases, is hindered by the current Scalability and Performance
of BC systems [47]. Moreover, due to the importance of Scalability, novel BC are
being designed to tackle this very problem [47], e.g., the IOTA Tangle [48].

LSG: Parallel Transactions, it can be said that a BC utilising the UTXO account-
ing standard in contrast to an Account Model, enables Parallel Transactions
to a degree [60, 65]. This in turn gives the advantage of reducing computa-
tional load [60].

OP.: UTXO refers to ‘Unspent Transaction Output’, and new transactions use
the output from previous transactions [60]. This OP. enables Parallel
Transactions, since Transactions can be processed in parallel [60]. How-
ever, their parallel functionality is detrimental to stateful Smart Con-
tracts [60], though this connection has not been made in the SIG, since
Extended UTXO (EUTXO) models exist [14], which for example are used
by Cardano, enabling the writing of Smart Contracts, though in a more
functional approach, cf. [9]. The EUTXO models are commonly referred
to as hybrid models, enjoying the advantages of parallel processing without
losing the functionality of smart contracts [60]. For reasons of complexity,
this distinction has not been considered here.
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OP.: Account Model, in comparison to UTXO, this model works similarly to
debit card accounts, and BC addresses hold an account with the bal-
ance [60]. The connection to Smart Contracts, as described by [60], was
also not considered here, to avoid giving an advantage of Account Models
over UTXO models towards Smart Contract Functionality.
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SG: Throughput, this is also a feature that various greatly within the BC world,
thus, novel BC’s and so-called Layer 2 Solutions are emerging to specifically
tackle the problem of Scalability, and therefore, Performance in the bigger
picture [28]. Additional to the Layer 2, throughput is typically also split into
Layer 0 and Layer 1, where each layer has different approaches to increase
tps [28]. Despite that, the Layer 0 approaches, which concern the network
infrastructure [28], were considered out of scope for this thesis.

LSG: Layer 2 revolves around off-chain solutions to solve the problem of Scalabil-
ity [28]. Unsurprisingly, since this is an important topic, there are various
Layer 2 approaches in development. For Ethereum the reader can refer
to [22], and for Bitcoin, [35].

OP.: Layer 2 Solutions relates to the BC’s availability of such aforemen-
tioned Layer 2 solutions.

LSG: Layer 1 refers to the points related to the consensus protocols and general
BC data structures [28]. Additionally to the consensus protocols and High
number of confirmations in the network, which will be be considered under
the NFR Secure, the aspects of Block Size and Block Interval Time were
added to the SIG, which were discussed in Section 2.3.3.

OP.: Large Block Size, Block Size has been defined in Section 2.3.3 as the
size of a block in the BC, thus, given the formulae in Equations 2.6
and 2.7, it automatically follows, ceteris paribus, that a larger Block
Size leads to an increase in tps. However, they introduce security
risks, since larger blocks reduce the propagation speed in the network,
leading to a higher Stale Block Rate [23].

OP.: Fast Block Interval Time, Block Interval Time has been defined in
Equation 2.3.3 as the time it takes to add a new block to the BC.
Here it also follows, with the same reasoning as for Large Block Size,
that, ceteris paribus, given the formula for tps in Equation 2.7, a faster
Block Interval Time leads to an increase in tps. Nevertheless, a faster
Block Interval Time increases the probability of stale blocks, naturally,
since for PoW consensus mechanisms this can be pictured by lowering
the overall mining difficulty [23].

Security

Security of BC systems stands at the center of debate regarding its applications [79], es-
pecially FinTech applications require high security that needs to be fulfilled to become
viable [73], so to highlight its importance, the NFR Secure was added to the SIG. Since
Privacy and Security are similar in nature. [26, 79] handled Privacy together with Secu-
rity, however, they have been split for the SIG to allow for a better quantification of the
individual SG values and to provide a better overview. Moreover, it has to be mentioned,
that [23] also showed that increasing the block reward also leads to an increase in secu-
rity, though for complexity reasons this was not added to the SIG. The SGs Consistency,
Integrity, Availability and Double-Spending Prevention were identified by [79] as Secu-
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Figure 4.3: SG Secure. Source: The author.

rity and Privacy Requirements, and subsequently incorporated into the SIG as Security
decompositions.

SG: Consistency was outlined by [79] as a basic Security property, denoting that all the
nodes hold the same BC at the same time. Furthermore, [79] points out, that it is
up for debate whether BC systems fulfill eventual consistency or strong consistency.
In Summary, eventual consistency means in the distributed computing context, that
the data will be eventually consistent, while strong consistency means that the same
ledger is shared by all nodes, and the amount of confirmations in the BC network
could be seen as a parameterized strong consistency [79], however, this distinction
was not incorporated into the SIG.

LSG: Consensus Protocols have been identified by [79] as the appropriate technique
to ensure the Security and Privacy requirement of Consistency. Regarding
the consensus protocols, that were looked at in Section 2.3.1, five are consid-
ered here.

OP.: PoW, to ensure security, the mechanics behind the PoW consensus mech-
anism limit the throughput greatly [70, 20]. For instance, Bitcoin is only
able to achieve 7 tps [70]. Regarding Security Level, PoW based consensus
mechanism are susceptible to Majority Attacks [51], more details can be
found under the LSG Degree of Centralization.
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OP.: PoS, regarding the Security Level, it is susceptible to nothing-at-stake and
grinding-attack [73]. Additionally, [25] notes that PoS does not work well
with permissioned BC, since miners with the most stake could add fradu-
lent transactions and ‘rich’ nodes tend go get richer [25].

OP.: dBFT, referring to delegated Byzantine Fault Tolerance, offers a very high
throughput since they are able to handle up to thousand of tps [25]. How-
ever, regarding the LSG Security Level, the missing ‘Commit’ Phase has
security implications and additionally, BFT protocols only support up to
n
3

byzantine nodes [72].

OP.: PoA is a hybrid consensus protocol, combining the Byzantine Fault Tol-
erance (BFT) property with PoS [25]. Therefore, it also offers a very
high performance, though hardware limitations are at play [25]. Regard-
ing Security Level, it requires N

2
+ 1 nodes to be honest, though the real

identities behind the nodes can also be seen as a security mechanism [25].
More details can be found in Section 2.3.1 and [25].

OP.: dPoS, is referring to delegated Proof of Stake. From Section 2.3.1 and [79],
it offers higher scalability than PoS, though, similar security levels.

LSG: Low Stale Block Rate; due to conflicts or concurrency, not all blocks get ap-
pended to the longest chain, they are denoted as stale blocks [23]. Since they
lead to chain forks, which is an inconsistent state of the BC, they offer consid-
erable advantages to attackers and simultaneously increase the bandwidth in
the network, thus, a lower Stale Block Rate increases Security [23].

LSG: Confirmations in the Network, refers to the additional blocks that have been
added on top of the BC [28]. Therefore, transactions are only accepted after a
specific number of confirmations have passed [23].

OP.: High Number of Confirmations in the Network, [23] showed that to offset
security issues introduced by a stale blocks, a higher number of confirma-
tions is needed to ensure Security. However, it is also another restriction on
tps, since to confirm a single transaction, additional blocks are needed [28].

SG: Integrity is another Security and Privacy Requirement by [79] relating to the In-
tegrity of Transactions. This is also an important point, since different intermedi-
aries might access the transaction data and a risk of falsification or forging exists,
hence, a Tamper Resistance guarantee is needed [79].

SG: Tamper Resistance in the context of BC means that the BC data cannot be
tampered with, either during the block creation process, or after it has already
been written to the BC [79].

LSG: Resistance Against Tampering of New Transactions, this LSG contains
the OP. Use of secure/collision resistent Hash Functions, though the LSG
Validity of Transactions with the OP. Use of Digital Signatures is related,
since Digital Signatures are also used against tampering [79]. Since for
both, the process is the same [79], it was not added here a second time.

OP.: Use of secure/collision resistent Hash Functions, to solve the issue of
tampering of new transactions, secure hash functions are used, such as
SHA-256 [79].
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LSG: Resistance Against Tampering of Old Transactions, this relates to the
tampering of historical data that has already been written to the BC [79].
This resistance is ensured by using Hash Chained Storage [79].

OP.: Hash Chained Storage make use of Hash Pointers, which use hash
functions on the data and pointers to show its location; and Merkle
Trees, a binary search tree data structure [79]. Merkle Trees use Hash
Pointers to link nodes together, and parent nodes contain the hash
values of their children [79]. With these two techniques, tampering
can be prevented, since tampering causes parent nodes to not match
anymore, and an adversary would need to change all nodes in the path
up to the top [79]. Compared to simply using Hash Pointers, due to
the binary search tree data structure of Merkle Trees, one can verify
its integrity in logarithmic time [79].

SG: Availability relates to Availability of System and Data by [79]. It means, that for
online systems, that they should be accessible to their users at any time, even in
case of attacks [79].

SG: DDoS Resistance, was chosen as a suitable Availability decomposition, since
it relates to the network’s resistance against Distributed Denial-of-Service, ab-
breviated as DDoS, attacks [79]. Accordingly, DDoS attacks flood the network
with traffic to make the server unavailable to its intended use, consequently,
this kind of attack is typically very difficult to deal with [79]. However, for de-
centralized systems, like BCs, this is not the case, since attackers would need
to attack a large portion of the network simultaneously, even if some nodes
become unavailable, the network is able to function properly [79]. Nonethe-
less, [51] notes, that a DDoS attack can also manifest itself by a Majority
Attack, also leading to a denial of the service, though this case was also cov-
ered in the SIG under Security Level.

LSG: Amount of Nodes indicates the amount of nodes in the network.

OP.: High Amount of Nodes, this stems from the fact, that the larger the
network is, the harder it is to simultaneously attack all nodes of the
network with a DDoS attack, and consequently, a large network pro-
vides better DDoS resistance [79].

LSG: Degree of Centralization specifies to which degree the BC network is cen-
tralized. Having a centralized network directly imposes huge security im-
plications, since mining pools or centralized entities controlling more than
50% of the resources can take over the network [34]. Additionally, follow-
ing the deduction for the DDoS resistance for High Amount of Nodes, it
becomes clear, as outlined by [79], that this is only the case for fully de-
centralized systems, resulting in centralized systems and services having a
single point of failure.

OP.: Centralized Entity refers to the question whether centralized entities
are prevalent in the network. [34] showed that in 2019, in Ethereum the
largest mining pool mined 28.2% of all blocks, and in Bitcoin 18.2%.
In 2014, GHash.IO, a Bitcoin mining pool went even above 51% of the
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total hash rate [51, 41]. [34] points out, that these numbers are con-
cerning. However, for Consortium or Private Blockchains, where the
participants of the network are known and pre-selected [79], naturally,
this does not impose a security risk, since the network was designed
that way.

SG: Double-Spending Prevention, has been added to the SIG, since for digital curren-
cies double-spending is a challenge which needs to be addressed, because digital
information can be easily reproduced [79]. Double-spending essentially means, that
a user is able to spend a coin more than once [79].

SG: Double-Spending Resistance has been split into Double-Spending Resistance in
Decentralized Systems and Degree of Centralization. Degree of Centralization
was chosen, since in a fully centralized system, the centralized Trusted Third
Party is responsible for the verification of the transactions, and double-spending
can be prevented in that way [79].

SG: Double-Spending Resistance in Decentralized Systems, in Decentralized
Systems, the consensus algorithms are used to prevent Double-Spending [79].
Therefore, the LSG Consensus Protocols, discussed at the SG Consistency,
is connected here.

LSG: Validity of Transactions denotes that the transaction’s validity must
be verifiable, to prevent Double-Spending [79].

OP.: Use of Digital Signatures, by digitally signing a transaction, its au-
thenticity and validity of the data is verifiable [79]. An example for
such an algorithm is the Elliptic Curve Digital Signature Algorithm
(ECDSA), that is used by Bitcoin [79].

SG: Resistance to Attacks, for BCs a multitude of attacks exist, some on the BC appli-
cation level, some on the Peer-to-Peer System, and more details were collected and
can be found under [72]. For reasons of complexity, only consensus specific attacks
were considered here and aggregated into an overall LSG Security Level.

LSG: Security Level, this LSG was added to highlight the fact, that the multiple
consensus mechanisms offer different attack surfaces, according to the expla-
nation given above, and the details can be found under the specific Opera-
tionalizations.

Privacy

Privacy has been outlined as a relevant property for DL by [76] and subsequently been
chosen as a NFR, since due to the importance of Privacy, it has been in the focus of
research, and it can also been seen as an enabler for novel BC applications [79]. There have
also been BCs designed to specifically deal with Privacy [55]. Privacy was decomposed into
User’s Anonymity and Confidentiality of Transactions, which are Security and Privacy
Requirements described by [79], and an ‘AND’ contribution has been chosen here, since
these are all important aspects.
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Figure 4.4: SG Privacy. Source: The author.

SG: User’s Anonymity has been described by [79] as the notion that the user’s anonymity
is ensured to prevent accidental leakage of user’s data to potential intermediaries,
or further, parties might not even want to engage in a transaction if their real
identities are known to the other party. To ensure Anonymity, both Pseudonymity
and Unlinkability of Transactions need to be fulfilled [79], thus, leading to an ‘AND’
Contribution.

LSG: Pseudonymity is the appropriate Security and Privacy Property by [79] for
the Requirement User’s Anonymity, and has been added as a LSG here.

OP.: Use of Public Keys as Pseudonyms was added as an OP to Pseudonymity.
Since BC users generate their key pairs, consisting of the public and pri-
vate key, themselves, and the hashes of public keys are used as addresses
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to interact in the network, the public keys act de facto as pseudonyms,
and no personal identity information is shared [79].

LSG: Unlinkability of Transactions was noted as a requirement for online transac-
tions by [79]. This requirement implies that it is not possible to link multiple
transactions of a user together, denying any possible deductions about the user,
such as his account balance or transaction behavior [79]. It is also noteworthy,
that through statistical analysis, this data could even be used to infer the real
identities of users [79], and Unlinkability of Transactions is therefore an impor-
tant LSG for Privacy. Additionally, if addresses are reused for transactions,
it is trivial to link them together, greatly decreasing the Privacy requirement,
however, since this can be avoided by not reusing the addresses [2], this has
not been added as an OP here.

OP.: Mixing/Tumblers were identified as an OP, since the Unlinkability of
Transactions is not in every case given, especially when addresses are
reused [79]. The idea behind Mixing or Tumblers is to obfuscate the coin
ownership by randomly exchanging coins with other users, and as such,
outsiders cannot link transactions together anymore [79].

OP.: Anonymous Signatures refer to Digital Signature variants that provide
anonymity to the signer, these variants include Group Signatures or Ring
Signatures [79]. These techniques obfuscate the sender of a transaction,
since not only the sender, but any node in a group or a ring can sign
the transaction [79]. For example, using Ring Signatures the probability
of guessing the real sender of a transaction is 1/n, given n participating
nodes in a ring [79].

SG: Confidentiality of Transactions as a security and privacy requirement traditionally
means that transactions only disclose as little information as possible, and that user’s
information cannot be accessed by others [79]. However, for public BCs, this is not
something that is easily achievable, since the Smart Contract Data and transaction
content are public [79].

LSG: Data Privacy This LSG was chosen to signify the importance of data privacy,
and is linked to Confidentiality of Transactions. Due to existing inference at-
tacks, Pseudonymity alone is not enough [79]. Therefore, Homomorphic En-
cryption and Non-Interactive Zero Knowledge Proof were selected as possible
solutions and OPs, though other techniques have also been outlined by [79].
Data Privacy is also linked to the SG Smart Contract Privacy cf. Applicabil-
ity.

OP.: Homomorphic Encryption denotes a cryptographic technique where com-
putations can be done directly on the encrypted data [79]. This can be
relevant where not only the privacy of the user, but also the privacy of
the data is important [77]. There are Partial and Fully Homomorphic
Encryptions techniques available [79, 77]. By storing encrypted data on
the BC, one would thus be able to still do computations on the data
without leaking any information about the data, in particular, this can
be applied to data stored in Smart Contracts [79].
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OP.: Non-Interactive Zero Knowledge Proof (NIZK) is another noteworthy
cryptographic technique, that allows to verify an assertion without leak-
ing any information about it, since the information that the user gives to
a verifier does not disclose anything else [79]. This technique can be used
to prove that an user’s balance is sufficient for a transaction, without the
need to reveal the balance publicly [79].
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Figure 4.5: SG Applicability. Source: The author.

The SG Applicability relates to the selected requirement, that a BC should be applicable
to various use cases, and various of the selected attributes help extend the BC’s usability.
Thus, Access, Interoperability, Token, Fees, Blockchain Data Writability and Blockchain
Data Visibility have been added as LSGs with their OPs each, and Smart Contract Support
as a SG that has been further decomposed.

The need for the LSGs Access, Interoperability, Token and Fees arose, since the quan-
tification of values by [1] does not consider the case where OPs and LSGs or SGs are
simultaneously children to a parent SG. Thus, these LSGs only contain a single OP.
In the following items the SIG’s structure and decomposition regarding Applicability is
explained.

LSG: Access stems from the need of facilitating communication between devices, especially
IoT devices, that have several limitations [50]. This is an important point, and as
such this use case will be evaluated in Section 5.1. An example of BC that was
specifically designed to be applicable in the IoT context is IOTA [50].

OP.: Availability of Light Clients; the Light Clients allow interaction with the BC
by connecting the client to full nodes, which verify the blocks and require
all transactions [68]. In contrast to the full nodes the Light Clients are very
lightweight and can be used to allow IoT communication with the BC to satisfy
the need of Access [50].



4.1. BLOCKCHAIN SIG DESIGN 35

SG: Smart Contract Support; various BCs feature the functionality of Smart Contracts,
but they are not in every case equal and can differ greatly, as seen in Section 2.3.3.
The Smart Contract functionality has been decomposed into three aspects by an
‘AND’ contribution:

SG: Smart Contract Privacy, has been linked to Data Privacy, as the OP. Ho-
momorphic Encryption and Non-Interactive Zero Knowledge Proof can be
used in conjunction to Smart Contracts to ensure additional Privacy on the
BC, and Privacy based applications [79].

LSG: Smart Contract Functionality has been separated from the other points and
only relates to the question if Smart Contracts per se are supported by a
particular BC, and does not consider their functionality and features.

OP.: Smart Contracts, if the functionality of Smart Contracts is supported
and offered by the BC.

LSG: Smart Contract Features is about the available features of Smart Contracts,
namely to which degree are Smart Contracts supported by a particular BC?

OP.: Turing Completeness, this OP denotes whether the Smart Contract
Scripting Language can execute Turing machines [4]. This allows for
complex logic flows and also loops in Smart Contracts [2], and Turing
Incomplete Script Languages are thus less complex, though, also less vul-
nerable to Smart Contract attacks in a network, since e.g. an infinite
loop that would be executed by all nodes would not be possible and can
therefore not be exploited [2].

OP.: Data Storage Possibilities, if data that is unrelated to transactions can
also be stored on a BC [4]. As an example, this would allow for ap-
plications where IoT devices function on top of the underlying BC net-
work [31]. Since most On-chain storage is extremely expensive, Off-chain
data storage, like the InterPlanetary Filesystem (IPFS) can be used by
storing only the identifying hash of a file on the BC [63]. Furthermore, to
enhance the Applicability of the SIG and to capture a broader spectrum
of BC characteristics, this OP also includes data storage that is unre-
lated to Smart Contracts, e.g., Ethereum’s 46 kByte Maximum String
Size from Transactions [54] would likewise allow for storage applicabili-
ties.

LSG: Interoperability further enables the possibilities for applications, that can also make
use of the synergies of different BC [6]. This interoperability could in some cases
also be leveraged to further increase scalability [6], which has also been considered
here in the SG Performance, at Layer 2 Solutions.

OP.: Interoperability Possibilities, in the context of BC, is about whether differ-
ent BC can interoperate with each other to make use of the aforementioned
advantages.

LSG: Token, can belong to either of Utility Tokens, Asset Tokens or Payment Tokens [4].
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OP.: Token Usage denotes whether the BC employs one of the aforementioned types
of Tokens. Although Tokens can enable Applicability functionalities, some BC
like R3’s Corda or Fabric do not use tokens [45].

LSG: Fees; in [4] the distinction has been made, whether Validators are paid a fee and
if participants in the network need to pay a fee for actions, since both cases are
not dependent on each other, though for simplicity both cases have been merged
together here. Paying the validators fees for their work incentives their work [2].
However, within a private BC deployment (e.g., a BC for IoT), fees are not required
as all the participants are known and the validators pre-selected. Thus, there is no
need for incentives in such deployment.

OP.: No Fees denotes that no kind of Fees exist in the BC.

LSG: Blockchain Data Writability, as in Section 2.3.2 and [55] BC can be decomposed
into four categories, based on Data Writability and Data Visibility. This LSG is
therefore about who can write on the BC. Since the options are mutually exclusive,
the contribution HELP has been chosen here.

OP.: Permissioned in comparison to Permissionless, this attribute restricts the
write functionality to only some select nodes [55].

OP.: Permissionless, represents the functionality that enables all nodes to write on
the blockchain [55].

LSG: Blockchain Data Visibility, referring to the accessibility of the data, cf. Section 2.3.2
and [55].

OP.: Private, only some selected nodes are allowed to view the BC data [55].

OP.: Public, the BC is public and its data can be read by all peers [55].

4.1.2 Quantification of Values

In this section the proposed generic SIG from Section 4.1.1 is extended with predefined
values, and [1]’s quantification of values is used to compute the OP, LSG and SG scores
of the generic SIG.

Although the choice of predefined values was arbitrary, they were discussed during meet-
ings with the supervisors, and selected choices are shortly justified and explained here.
Additionally, for reasons of complexity, only steps of 0.25 were considered. To reiterate,
according to the quantification framework of [1], a LSG weight of 1.0 denotes a critical
SG, while a weight of 0 denotes a SG without influence on decisions, and a an OP impact
of 0 shows, that an OP has no association with a LSG.

For the quantification of values, the Tables 4.1, 4.4, 4.7, 4.10 denote the impact between
the OPs to either a LSG or to a parent OP. In Tables 4.3, 4.6, 4.9, 4.12 the contribu-
tions are shown from a node towards the parent. The chosen LSG weights are shown in
Tables 4.2, 4.5, 4.8, 4.11.
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Performance

The quantification for Performance are denoted in Tables 4.1, 4.2 and 4.3.

Table 4.1: Performance: Operationalization impacts on parent LSG or OP.

Operationalization Parent Impact

UTXO Parallel Transactions 1.0
Account Model Parallel Transactions 0.0
Layer 2 Solutions Layer 2 1.0
Interoperability Possibilities Layer 2 Solutions 1.0
Large Block Size Layer 1 0.5
Fast Block Interval Time Layer 1 0.5
High Number of Confirmations
in the Network

Layer 1 -0.5

dBFT Layer 1 0.75
PoA Layer 1 0.25
PoW Layer 1 -0.75
PoS Layer 1 0.25
dPoS Layer 1 0.5

Table 4.2: Performance: LSG Weights

LSG Weight

Parallel Transactions 0.5
Layer 2 1.0
Layer 1 1.0

Table 4.3: Performance: Contributions

Node Parent Type Contribution

Scalability Performance MAKE 1
Parallel Transactions Scalability AND 0.25
Throughput Scalability AND 0.75
Layer 2 Throughput AND 0.5
Layer 1 Throughput AND 0.5

OP.: UTXO, in Section 4.1.1, it was mentioned that UTXO enables Parallel Transactions,
so this value was chosen as 1.

OP.: Account Model, since in Section 4.1.1, it was mentioned that Account Model does
not allow for parallel computations, the impact to Parallel Transactions was chosen
as 0.

LSG: Layer 1 and Layer 2, the AND contribution has been chosen, since both layers
have been deemed as equally important, furthermore, they are both in the focus of
research cf. Section4.1.1.
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OP.: Large Block Size and Fast Block Interval Time, both have been given an equal
impact of 0.5, since from the Equations 2.6 and 2.7, higher tps can be achieved
through either one of those.

OP.: High Number of Confirmations in the Network, from Section 4.1.1, more confir-
mations lead to less tps, thus, it can be said that a high number of confirmations
affects Layer 1 negatively.

LSG/SG: Throughput has been given more weight than Parallel Transactions, since in Sec-
tion 4.1.1 it has been noted, that Throughput directly relates to Scalability.

OP.: The consensus protocol dBFT was given an impact towards Layer 1 of 0.75, since it
is able to handle up to thousand of tps, cf. Section 4.1.1. Since Visa is on average
at 1700tps [32], this value was taken as the maximum and a linear interpolation [74]
between the minimum impact value of -1 and the maximum of 1 was done. However,
since the dBFT’s and Visa’s tps value are rather outliers, the linear interpolation
approach lead to a poor choice of values, since PoW, PoS and PoA would not be
distinguishable anymore due to the large difference in scale. Thus, the choice was
done arbitrarily, and an impact of value of 0.75 was chosen for dBFT. PoA was given
a score of 0.25, since in Parity, it only achieves up to 80 tps [25]. Equally, PoS was
also given a score of 0.25, since similar tps can be achieved [12]. PoW was given an
impact rating of -0.75, due to the inner workings of the mechanism mainly targeting
security over performance, cf. Section 4.1.1. In comparison to PoS, dPoS was given
an impact of 0.5, since a higher scalability can be achieved cf. Section 2.3.1.

Secure

The chosen values for the SG Secure can be found in Tables 4.4, 4.5 and 4.6.

LSG: both Low Stale Block Rate and Confirmations in the Network were given a score of
0.5, since as per [23], the amount of confirmations in the network can offset security
issues, and a Low Stale Block Rate is desirable as well. Regarding Consensus
Protocols, they were given a value of 1.0, since from [79], they are the main technique
to achieve Consistency in the network.

OP.: Regarding Security Level, PoW was given a score of 1.0, due to the work by [51,
25, 73, 79] and also cf. 4.1.1, it was deemed as very secure, since it boasts a high
security by being mostly only susceptible to Majority attacks. PoS was given a score
of 0.25, since by not being applicable to permissioned BCs and being susceptible
to various attacks cf. Section 4.1.1, its security was deemed lower. Equally, dBFT
was only given an impact of 0.25 due to the missing ‘Commit’ Phase and by having
a weakness towards majority attacks, cf. Section 4.1.1. In comparison, PoA was
given an impact score of 0.75, since its honest nodes requirement is higher than e.g.,
dBFT and by staking the real identity, the repercussions can be high if a node acts
dishonest, acting as an incentive to act honest and equally as a security mechanism,
cf. Section 4.1.1. Similarly to PoS, dPoS was given the same impact score, since
it hosts a similar tolerated adversary power and further, dishonest nodes can be
voted out [80].

LSG: Resistance Against Tampering of New Transactions and Resistance Against Tam-
pering of Old Transactions were both given a LSG weight of 1.0 and an ‘AND’
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Table 4.4: Secure: Operationalization impacts on parent LSG or OP.

Operationalization Parent Impact

Use of Secure/ Collision Re-
sistent Hash Functions

Resistance Against Tampering
of New Transactions

0.75

Use of Secure/ Collision Re-
sistent Hash Functions

Hash Chained Storage 1.0

Hash Chained Storage
Resistance Against Tampering
of Old Transactions

0.75

Large Block Size Low Stale Block Rate -0.5
Fast Block Interval Time Low Stale Block Rate -0.5
High Number of Confirmations
in the Network

Confirmations in the Network 1.0

dBFT Consensus Protocols 1.0
PoA Consensus Protocols 1.0
PoS Consensus Protocols 1.0
dPoS Consensus Protocols 1.0
PoW Consensus Protocols 1.0
dBFT Security Level 0.25
PoA Security Level 0.75
PoS Security Level 0.25
dPoS Security Level 0.25
PoW Security Level 1.0
Use of Digital Signatures Validity of Transactions 1.0
Centralized Entity Degree of Centralization 1.0
High Amount of Nodes Amount of Nodes 1.0

Table 4.5: Secure: LSG Weights

LSG Weight

Resistance Against Tampering of New Transactions 1.0
Resistance Against Tampering of Old Transactions 1.0
Low Stale Block Rate 0.5
Confirmations in the Network 0.5
Consensus Protocols 1.0
Security Level 1.0
Validity of Transactions 1.0
Degree of Centralization 0.75
Amount of Nodes 0.5

contribution, since Tamper Resistance is an important feature of BC [79], and both
have been deemed as equally important and also critical SGs.

OP.: dBFT, PoA, PoS, dPoS, PoW have all been given an OP. impact of 1.0, since they
all satisfice the LSG Consensus Protocols equally.

SG/LSG: Since Double-Spending Resistance has been decomposed into decentralized and cen-
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Table 4.6: Secure: Contributions

Node Parent Type Contribution

Integrity Secure AND 0.2
Consistency Secure AND 0.2
Resistance to Attacks Secure AND 0.2
Double-Spending Prevention Secure AND 0.2
Availability Secure AND 0.2
Tamper Resistance Integrity MAKE 1.0
Resistance Against Tampering
of New Transactions

Tamper Resistance AND 0.5

Resistance Against Tampering
of Old Transactions

Tamper Resistance AND 0.5

Low Stale Block Rate Consistency HELP 0.5
Confirmations in the Network Consistency HELP 0.5
Consensus Protocols Consistency HELP 0.5

Consensus Protocols
Double-Spending Re-
sistance in Decentral-
ized Systems

HELP 0.75

Validity of Transactions
Double-Spending Re-
sistance in Decentral-
ized Systems

HELP 0.25

Security Level Resistance to Attacks MAKE 1.0
Double-Spending Resistance in
Decentralized Systems

Double-Spending Re-
sistance

HELP 0.75

Degree of Centralization
Double-Spending Re-
sistance

HELP 0.75

Degree of Centralization DDoS Resistance HURT -0.75
Amount of Nodes DDoS Resistance HELP 0.5

Double-Spending Resistance
Double Spending Pre-
vention

MAKE 1.0

DDoS Resistance Availability MAKE 1.0

tralized, and the latter being denoted by the LSG Degree of Centralization, both
were given an equal contribution towards Double-Spending Resistance.

Privacy

The chosen values for the SG Privacy are in the Tables 4.7, 4.8 and 4.9.

SG: The SG Privacy was decomposed into User’s Anonymity and Confidentiality of
Transactions with an ‘AND’ contribution, leading to both SGs having the contri-
bution towards the SG Privacy.
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OP.: The OP. Homomorphic Encryption and Non-Interactive Zero Knowledge Proof
were equally given an OP impact of 0.5, since both were identified by [79] as tech-
niques to achieve the Security and Privacy property Confidentiality. However, [79]
also considered other techniques, which were not added to the SIG.

OP.: Mixing/Tumbler and Anonymous Signatures were also equally given the same OP
impact, since both techniques can be used to achieve Unlinkability of Transactions,
as noted by [79].

LSG: Furthermore, Pseudonymity and Unlinkability were both also given an equal con-
tribution towards User’s Anonymity, as both were decomposed with an ‘AND’ con-
tribution, cf. Section 4.1.1.

LSG: Unlinkability of Transactions was given a smaller LSG weight compared to the LSG
Pseudonymity, since Unlinkability needs to be enhanced, and is not fully supported
so far [79].

Table 4.7: Privacy: Operationalization impacts on parent LSG or OP.

Operationalization Parent Impact

Use of Digital Signatures Anonymous Signatures 1.0
Use of Public Keys as
Pseudonyms

Pseudonymity 1.0

Mixing/ Tumbler Unlinkability of Transactions 0.75
Anonymous Signatures Unlinkability of Transactions 0.75
Homomorphic Encryption Data Privacy 0.5
Non-Interactive Zero Knowl-
edge Proof

Data Privacy 0.5

Table 4.8: Privacy: LSG Weights

LSG Weight

Pseudonymity 1.0
Unlinkability of Transactions 0.75
Data Privacy 0.75

Table 4.9: Privacy: Contributions

Node Parent Type Contribution

Pseudonymity User’s Anonymity AND 0.5
Unlinkability of Transactions User’s Anonymity AND 0.5

Data Privacy
Confidentiality of
Transactions

MAKE 1.0

User’s Anonymity Privacy AND 0.5
Confidentiality of Transactions Privacy AND 0.5
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Applicability

The quantifications for the SG Applicability can be found in the Tables 4.10, 4.11 and
4.12.

LSG/SG: Smart contract Support was decomposed into Smart Contract Privacy, Smart Con-
tract Features and Smart Contract Functionality with an ‘AND’ contribution, lead-
ing to a contribution value of 1/3 for each. To incorporate all three aspects when
considering Smart Contracts, the ‘AND’ contribution has been chosen. Consequen-
tially, as can be seen in the case of Bitcoin, Turing Incompleteness [2] hurts and
limits the Smart Contract Support in the SIG.

LSG: Interoperability, Token and Fees were all given a LSG weight of 0.5, since, they
can be useful for Applications, but are not supported by all BC, cf. Section 4.1.1,
and therefore not always compulsory.

OP.: Data Storage Possibilities has been given a smaller OP. impact than Turing Com-
pleteness, since due to the functionality gains by using a Turing Complete Scripting
Language more applications are deemed possible, cf. Section 4.1.1.

Table 4.10: Applicability: Operationalization impacts on parent LSG or OP.

Operationalization Parent Impact

Availability of Light Clients Access 1.0
Smart Contracts Smart Contract Functionality 1.0
Turing Completeness Smart Contract Features 0.75
Data Storage Possibilities Smart Contract Features 0.25
Interoperability Possibilities Interoperability 1.0
Token Usage Token 1.0
No Fees Fees 1.0
Permissioned Blockchain Data Writability 1.0
Permissionless Blockchain Data Writability 1.0
Public Blockchain Data Visibility 1.0
Private Blockchain Data Visibility 1.0

Table 4.11: Applicability: LSG Weights

LSG Weight

Access 0.25
Smart Contract Functionality 1.0
Smart Contract Features 1.0
Interoperability 0.5
Token 0.5
Fees 0.5
Blockchain Data Writability 1.0
Blockchain Data Visibility 1.0
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Table 4.12: Applicability: Contributions

Node Parent Type Contribution

Data Privacy
Smart Contract Pri-
vacy

MAKE 1.0

Access Applicability AND 0.14
Smart Contract Support Applicability AND 0.14
Interoperability Applicability AND 0.14
Token Applicability AND 0.14
Fees Applicability AND 0.14
Blockchain Data Writability Applicability AND 0.14
Blockchain Data Visibility Applicability AND 0.14

Smart Contract Privacy
Smart Contract Sup-
port

AND 0.33

Smart Contract Functionality
Smart Contract Sup-
port

AND 0.33

Smart Contract Features
Smart Contract Sup-
port

AND 0.33

Computation of Values

The values from the tables above were steps A, B and C from the quantification frame-
work [1]. Hence, they can then be used to compute the OP Scores, LSG Scores and SG
Scores following [1] quantification extension. As an example, given Equation 2.1 from
Section 2.2.1 and the values from Tables 4.1, 4.2, 4.4 and 4.5 the OP Score of Large Block
Size is calculated in the following way:

OPScore = impactLayer1×LargeBlockSize × Layer1weight

+ impactLowStaleBlockRate×LargeBlockSize × LowStaleBlockRateweight

OPScore = 0.5× 1.0 + (−0.5)× 0.5

OPScore = 0.5− 0.25

OPScore = 0.25

Although in the next step the OPs are to be selected, cf. [1], this was not done for the
generic SIG, since it serves as a representation and example only. As will become clear
from the calculations, this also leads to unfavorable LSG and SG scores due to all OPs
being selected, and in some cases contradictory values are reached as well. However, for
the use cases in Section 5.1 this step is crucial and will naturally be applied.

Subsequently, using Equation 2.2, the LSG scores can be calculated, cf. Table 4.14.
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Table 4.13: Computed Operationalization Scores

Operationalization Operationalization Score

UTXO 0.5
Account Model 0.0
Layer 2 Solutions 1.0
Large Block Size 0.25
Fast Block Interval Time 0.25
Use of Secure/Collision-Resistent Hash Functions 1.5
Hash Chained Storage 0.75
High Number of Confirmations in the Network 0.0
dBFT 2.0
PoA 2.0
PoS 1.5
dPoS 1.75
PoW 1.25
Use of Digital Signatures 1.56
Centralized Entity 0.75
High Amount of Nodes 0.5
Use of Publilc Keys as Pseudonyms 1.0
Mixing/Tumbler 0.56
Anonymous Signatures 0.56
Homomorphic Encryption 0.38
Non-Interactive Zero Knowledge Proof 0.38
Availabililty of Light Clients 0.25
Smart Contracts 1.0
Turing Completeness 0.75
Data Storage Possibilities 0.25
Interoperability Possibilities 1.5
Token Usage 0.5
No Fees 0.5
Permissioned 1.0
Permissionless 1.0
Public 1.0
Private 1.0
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Table 4.14: Computed LSG Scores

LSG LSG Score

Parallel Transactions 1.0
Layer 2 1.0
Layer 1 1.0
Resistance Against Tampering of New Transactions 0.75
Resistance Against Tampering of Old Transactions 0.75
Low Stale Block Rate -1.0
Confirmations in the Network 1.0
Consensus Protocols 1.0
Security Level 1.0
Validity of Transactions 1.0
Degree of Centralization 0.75
Amount of Nodes 1.0
Pseudonymity 1.0
Unlinkability of Transactions 1.0
Data Privacy 1.0
Access 1.0
Smart Contract Functionality 1.0
Smart Contract Features 1.0
Interoperability 1.0
Token 1.0
Fees 1.0
Blockchain Data Writability 1.0
Blockchain Data Visibility 1.0

The LSG Score for Unlinkability of Transactions was computed in the following way:

LSGscore = max(min(0.75 + 0.75, 1.0),−1.0)

LSGscore = max(min(1.5, 1.0),−1.0)

LSGscore = max(1.0,−1.0)

LSGscore = 1.0

Given Equation 2.3, the SG Scores from Table 4.15 are then computed. As an example,
the SG Score for Consistency was calculated in the following way:

SGscore = max(min(((−1.0× 0.5) + (1.0× 0.5) + (1.0× 0.5)), 1.0),−1.0)

SGscore = max(min((−0.5 + 0.5 + 0.5), 1.0),−1.0)

SGscore = max(min(0.5, 1.0),−1.0)

SGscore = max(0.5,−1.0)

SGscore = 0.5
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Table 4.15: Computed SG Scores

SG SG Score

Performance 1.0
Scalability 1.0
Throughput 1.0
Secure 0.6
Integrity 0.75
Tamper Resistance 0.75
Consistency 0.5
Resistance to Attacks 1.0
Double-Spending Prevention 1.0
Double-Spending Resistance 1.0
Double-Spending Resistance in Decentralized Systems 1.0
Availability -0.25
DDoS Resistance -0.25
Privacy 1.0
User’s Anonymity 1.0
Confidentiality of Transactions 1.0
Applicability 1.0
Smart Contract Support 1.0
Smart Contract Privacy 1.0

4.2 Implementation

In this section an application is documented that has been built to specifically handle
the BC SIG. A user is able to view a visualization of the graph, can select use cases (cf.
Section 5.1) and also select OPs. A short overview of the client facing user interface of the
application is described in Section 4.2.1, the REST API between the client and the server
is given in Section 4.2.2 and the calculation of the scores is documented in Section 4.2.3.
The sequence and flow between the different components has been sketched in Figure 4.6.

4.2.1 Frontend

For the frontend, React has been used with the additional libraries:

• axios, a HTTP library for node.js [3].
• react-beforeunload, a library to add functionality to unmounting components in the

client [10].
• react-copy-to-clipboard, a library to copy text to the user’s clipboard [11].
• material-ui, an User Interface (UI) design framework for React [39].

Upon opening the BC SIG page, the user is presented with the SIG visualization, cf.
Figure 4.7, and can select OPs, see the computed SG scores from the graph and also copy
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Figure 4.6: The sequence between the components. Source: The author.

the SIG’s JSON, to e.g., store it elsewhere. All of this is being sent from the server to the
client to display. Directly below the header, the two different evaluation use cases from
Section 5.1 were added, and the use case ‘IoT’ has been preselected as default.

Upon clicking on the tab ‘Custom’, the UI changes, cf. Figure 4.8, and the user can enter
a custom SIG, which in turn gets sent and processed by the server to create a visualization
of the graph, and also to compute the scores. However, the application requires the custom
SIG that was entered to be a networkX graph encoded as a JSON.

4.2.2 Server API

For the implementation of the server that calculates the SIG values and creates the graph,
Python has been used with the following additional libraries:

• NetworkX, a network library for Python [43].
• Sanic [53] and Sanic cors [62], a framework to build Python servers.

To make the code modular, a SIG class has been defined that can be used to handle
different SIG with various user-defined contributions and impacts. These SIGs are stored
in the backend, the Sanic Python Server, which communicates with the various clients.
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Figure 4.7: The user interface of the application. Source: The author.

The server logic has been set up in a way, that when a client connects to the server, it
calls createGraph to create an unique id (cf. line 3 in Listing 4.1) that is associated with
the SIG and stored in a dictionary data structure (cf. line 5 in Listing 4.1), and used
throughout the session as an identifier for the various clients and their SIGs.

1 @api.route(’/createGraph ’, methods =[’POST’])

2 async def createGraph(request):

3 id = uuid.uuid4().hex

4 sig = bc_SIG_iot(id)

5 sigs[id] = sig

6 return response.json({’success ’: True , ’id’: id})

Listing 4.1: Create Graph API Endpoint

This function also creates the default ‘IoT’ SIG (cf. line 4 in Listing 4.1), which has
arbitrarily been chosen as the default SIG to present to the user.

The server then returns this id to the client (cf. line 6 in Listing 4.1), and after the client
receives this id, it calls in succession the following three functions. In a way, these three
functions are the backbone of the application, if a user changes the use case or deselects
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Figure 4.8: The ‘Custom’ UI View which allows the user to enter a custom SIG as a JSON.
Based on the information, the system calculates the SIG scores. Source: The author.

an OP, these functions are always those that compute and return the values and create
the visualization for the client to display. They all have in common, that they are ‘GET’
functions that receive the unique id from the client, (cf. line 4 in Listing 4.2).

The first function is to calculate all the SIG scores, namely the OP, LSG and SG scores
and to return them to the client in a JSON format. The ‘GET’ functions make use of
a ‘getter’ function that returns the client’s SIG, which is identified by the unique id,
from the dictionary (cf. line 4 in Listing 4.2). Line 5 of Listing 4.2 calls the function in
Listing 4.8.

1 @api.route(’/calculateScores ’, methods =[’GET’])

2 async def calculateScores(request):

3 try:

4 sig = getSIGfromId(request.args[’id’][0])

5 scores = sig.calculateScores ()

6 return response.json(scores)

7 except:

8 return response.json({’success ’: False})

Listing 4.2: Calculate Scores API Endpoint

After the scores have been calculated, the server outputs the graph in a JSON format,
containing all the nodes, edges and scores from the SIG and returns it subsequently to the
client (cf. line 5 in Listing 4.3). This JSON can be used later, i.e., entered in networkX
as input to display the very same SIG again.
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1 @api.route(’/getJSON ’, methods =[’GET’])

2 async def getJSON(request):

3 try:

4 sig = getSIGfromId(request.args[’id’][0])

5 return response.json(sig.createJSON ())

6 except:

7 return response.json({’success ’:False})

Listing 4.3: Get JSON API Endpoint

And subsequently, the client asks for the visualization of the SIG with the scores. The
server tries to write a ‘PNG’ image file (cf. line 6 in Listing 4.4) and to return it to the
client to display (cf. line 8 in Listing 4.4). To avoid errors and exceptions, a check is
made before sending the file, to make sure whether writing the file was truly successful
and the file exists (cf. line 7 in Listing 4.4).

1 @api.route(’/getGraph ’, methods =[’GET’])

2 async def getGraph(request):

3 try:

4 id = request.args[’id’][0]

5 sig = getSIGfromId(id)

6 sig.draw(id)

7 if os.path.isfile(id+’graph.png’):

8 return await response.file(id+’graph.png’)

9 else:

10 return response.json({’success ’: False})

11 except:

12 return response.json({’exception ’: True})

Listing 4.4: Get Graph API Endpoint

After the computation of the previously mentioned functions has completed, the client’s
UI is fully loaded and the frontend is presented in full to the user.

Should the user decide to change the OP., the following function is called. It gets the id
from the client, and based on the ‘tabChoice’ the user made, that is, if the user is currently
working with the ‘IoT’ or ‘Supply Chain Management’ SIG, a new SIG is created (cf. lines
7, 9, 11 in Listing 4.4). Based on the OPs that were selected by the user, the deselected
OPs are removed from the graph (cf. line 16 in Listing 4.4). This in turn makes the
client ask the server anew to calculate the scores, to get the JSON and to get the SIG
visualization.

Should the user want to change the ‘tabChoice’ instead, this function gets called as well
and the currently selected OPs are taken into consideration and get applied to the different
use case as well. This enables the user to compare the use cases easily with each other.

1 @api.route(’/selectOperationalizations ’, methods =[’POST’])

2 async def selectOperationalizations(request):

3 body = request.json

4 try:

5 id = body[’id’]

6 if body[’tabChoice ’] == ’IOT’:

7 sig = bc_SIG_iot(id)

8 elif body[’tabChoice ’] == ’SCM’:
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9 sig = bc_SIG_scm(id)

10 elif body[’tabChoice ’] == ’Custom ’:

11 pass

12 else:

13 raise Exception(’Content Body Invalid ’)

14 sig.selectOperationalizations(body[’OP’])

15 sigs[id] = sig

16 return response.json({’success ’: True})

17 except:

18 return response.json({’success ’: False})

Listing 4.5: Select Operationalizations API Endpoint

If a user chooses to input his or her custom SIG, then the server attempts to create a
graph from the given graph JSON (cf. line 7 in Listing 4.6). This will then also trigger
the functions to calculate the scores, get the JSON and create the visualization.

1 @api.route(’/readJSON ’, methods =[’POST’])

2 async def readJSON(request):

3 try:

4 input = json.loads(request.json[’inputJSON ’])

5 id = request.json[’id’]

6 sig = getSIGfromId(id)

7 sig.createGraphFromJSON(input)

8 sigs[id] = sig

9 return response.json({’success ’:True})

10 except:

11 return response.json({’success ’:False})

Listing 4.6: Read JSON API Endpoint

The final function in the API, is the ‘cleanup’ function. Since every client creates a
visualization graph, this would clutter the server with the image files and it would sooner or
later run out of memory. This function gets called when a client unmounts its components
and it deletes the computed SIG from the dictionary to free up memory, and also removes
the ‘PNG’ file from the server, (cf. line 8 in Listing 4.7).

1 @api.route(’/cleanup ’, methods =[’POST’])

2 async def cleanup(request):

3 id = request.json[’id’]

4 if id and sigs.get(id):

5 del sigs[id]

6 if id and os.path.exists(id + ’graph.png’):

7 # check if file exists , then delete

8 os.remove(id + ’graph.png’)

9 return response.json({’success ’:True})

Listing 4.7: Cleanup API Endpoint

4.2.3 Computation of Scores

The calculation of the scores is done in a procedural manner, and the SIG calculation score
code was adapted from the code of [56]. Based on the predefined LSG weights and OP
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impacts, firstly the OP scores are computed, secondly the LSG scores, and lastly the SG
scores. Therefore, for the SIG class the computation has been split into three functions
as well.

1 def calculateScores(self):

2 self.__calculateOperationalizationScores ()

3 self.__calculateLSGScores ()

4 self.__calculateSGScores ()

5 return self.printSGScore ()

Listing 4.8: Calculate Scores Function

After the computation of the scores is done, this function also prints the computed SG
scores in a JSON to return the client, which is done with the function printSGScore() (cf.
line 5 in Listing 4.8).

For the OP score calculation, it is important, that the calculation is done in a top-down
manner, since parent’s OP score are included in the computation of the child node’s OP
score (cf. Equation 2.1 in Section 2.2.1), given that this constellation of OP edges exists
in the graph. Therefore, to ensure the top-down calculation, all the nodes in the graph
are topologically sorted (cf. [75]) and then the order is reversed (cf. line 4 in Listing 4.9).
The computation gets all nodes from the graph that were tagged as OPs (cf. line 2 in
Listing 4.9), and for every node the algorithm loops through all its edges and makes the
case distinction whether the parent node is a LSG, or a OP (cf. lines 12, 15 in Listing 4.9).
The algorithm applies Equation 2.1 then.

1 def __calculateOperationalizationScores(self):

2 operationalizations = list(nx.get_node_attributes(

3 self.sig , ’operationalization ’).keys())

4 topologicallySorted = list(reversed(list(

5 nx.topological_sort(self.sig))))

6 for node in topologicallySorted:

7 if node in operationalizations:

8 impact = 0

9 for edge in self.sig.edges(node , data=True):

10 edgeImpact = edge [2][’impact ’]

11 parent = self.sig.nodes[edge [1]]

12 if(parent.get(’leafSoftGoal ’)):

13 weight = parent[’w’]

14 impact += edgeImpact * weight

15 else:

16 impact += parent[’opScore ’]

17 impact = round(impact , 2)

18 self.sig.nodes[node][’opScore ’] = impact

19 self.sig.nodes[node][’label’] =

20 node + ’\nOPscore= ’+ str(impact)

Listing 4.9: Calculate Operationalization Scores Function

To compute the LSG scores, the Equation 2.2 can be simply applied to all LSG nodes in
the graph, taking into account the impact of the OPs (cf. lines 5-8 in Listing 4.10). Since
the label attribute is used to show the weight and also the score of the node, the label
gets overwritten here (cf. lines 9, 11-12 in Listing 4.10).
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1 def __calculateLSGScores(self):

2 lsg = list(nx.get_node_attributes(self.sig , ’leafSoftGoal ’).keys())

3 for node in lsg:

4 lsgScore = 0

5 for edge in self.sig.in_edges(node , data=True):

6 lsgScore += edge [2][’impact ’]

7 lsgScore = min(max(lsgScore , -1.0), 1.0)

8 lsgScore = round(lsgScore , 2)

9 weight = self.sig.nodes[node][’w’]

10 self.sig.nodes[node][’lsgScore ’] = lsgScore

11 self.sig.nodes[node][’label’] =

12 node + ’\nw= ’ + str(weight) + ’\nLSGscore= ’ +str(lsgScore)

Listing 4.10: Calculate LSG Scores Function

Lastly, the SG scores themselves are computed. This algorithm follows a similar logic
to the one to compute the OP scores, cf. Listing 4.10. The nodes from the graph are
again topologically sorted, but this time the order is not reversed, leading to a bottom-up
approach of the computation (cf. line 3 in Listing 4.11). This step is necessary, since SG
nodes can have parent SG nodes, and the computation must follow the right order in that
case. The algorithm also makes a case distinction to check if the children is a LSG or a
SG, and the Equation 2.3 is then applied (cf. lines 9-15 in Listing 4.11).

1 def __calculateSGScores(self):

2 sg = list(nx.get_node_attributes(self.sig , ’softGoal ’).keys())

3 topologicallySorted = list(nx.topological_sort(self.sig))

4 for node in topologicallySorted:

5 if node in sg:

6 sgScore = 0

7 for edge in self.sig.in_edges(node , data=True):

8 children = self.sig.nodes[edge [0]]

9 contribution = 1.0

10 if edge [2]. get(’contribution ’) is not None:

11 contribution = edge [2][’contribution ’]

12 if children.get(’lsgScore ’) is not None:

13 sgScore += contribution*children.get(’lsgScore ’)

14 elif children.get(’sgScore ’) is not None:

15 sgScore += contribution*children.get(’sgScore ’)

16 else:

17 raise Exception

18 score = round(sgScore , 2)

19 self.sig.nodes[node][’sgScore ’] = score

20 self.sig.nodes[node][’label’] =

21 node + ’\nSGscore= ’ + str(score)

Listing 4.11: Calculate SG Scores Function
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Chapter 5

Evaluation

In this chapter, in Section 5.1, to show the flexibility of this approach, the proposed SIG
is firstly evaluated on different use cases, that are both relevant and contemporary for
BC applications. Consequently the use cases suggest each different parameter choices
for the SIG and lead to a different evaluation and outcome. Sequently, in Section 5.2
the computational performance of the SIG score calculation is evaluated. Following,
the results from the use cases are evaluated through Machine Learning in Section 5.3.
Ultimately, the results from the evaluation are discussed in Section 5.4.

5.1 Use Cases

For the evaluation of the proposed SIG, the use cases Internet of Things (IoT) and Supply
Chain Management (SCM) have been chosen, since they are major use cases for BC, cf.
[8, 29, 52]. To undertake the evaluations, the key aspects for applying BC on these use
cases were researched and evaluated, and the SIG values were adjusted to properly reflect
these aspects. However, even though the use case specifc aspects were weighted, at the
core, these values are still arbitrary, though they were discussed with the supervisors.
The BC that were chosen for the use case evaluation were based on [54], and due to its
popularity [72], NEO was added to the evaluation as well.

The chosen values for the SIG are displayed in the Appendix in Tables A.1, A.2 for IoT,
and for SCM in Tables B.2, B.1. However, the contributions between LSG to SG or SG to
SG from the generic SIG were not changed, since they were part of the SG decomposition
step and therefore part of the SIG foundation. The aforementioned contribution values
from the proposed SIG are found in Tables 4.3, 4.6, 4.9, 4.12 in Chapter 4.1.2.

5.1.1 Internet of Things (IoT)

The first use case that was selected is IoT, a technology that has seen enormous growth and
impact lately, and its name stems from a network of connected devices, hence things [29].

55
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Table 5.1: Evaluated IoT SG Scores. The scores are capped between [-1, 1] [1].

BC Performance Secure Privacy Applicability

Bitcoin -0.31 0.76 0.06 0.40
Ethereum -0.19 0.76 0.56 0.49
Stellar 0.19 0.14 0.56 0.51
EOS 0.38 0.3 0.06 0.58
Multichain 0.44 0.48 0.06 0.61
HyperLedger Sawtooth 0.44 0.12 0.56 0.70
IOTA 0.25 0.27 0.06 0.42
NEO 0.44 0.3 0.56 0.56

In fact, earlier predictions assumed that by 2020 more than 50 billion connected de-
vices are reached [29]. However, given its potential, open issues and limitations are also
present [29]. In particular, IoT devices are limited by their processing power and storage,
and unfortunately, the rapid development has lead to security issues not being fully ad-
dressed so far [31]. Nonetheless, BCs utilizing SCs can be expected to solve key challenges
of IoT and additionally, IoT is also seen as a major use case for BC technology [29, 30].

Various BC aspects that are of interest to IoT and were considered and applied to the
SIG:

• Smart Contracts, can be used, amongst others, for authorization and to admin-
ister devices [29], and also for autonomous transactions [30].

• Data Privacy, can be ensured via SCs to set access rules and conditions [29].
• Decentralization, a decentralized BC can overcome the centralized clouds to pre-

vent a single point of failure and provide availability [30].
• Security, IoT security has been a predominant issue, compromised IoT devices

have in the past been used to launch DDoS attacks [30], and also double-spending
must be avoided [29].

• Interoperability, is seen currently as an open issue for IoT, namely how different
security protocols can interact with each other [29].

• Scalability and Efficiency, are both ongoing challenges for BC based IoT solu-
tions, which must also be considered in conjunction with the limitations that IoT
devices are both low-cost and low-power devices [29].

• Immutability, is important for identity and access management systems [30].
• Private, this refers to private BC, allowing to store device’s cryptographic hashes [30].
• Data Storage, enabling e.g., the storage of sensor data on the BC [31].

Thus, the SIG values were adapted to take these aspects into consideration, and the results
of this evaluation are noted in Table 5.1, while as the impact values and LSG weights are
noted in Tables A.2 and A.1.
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5.1.2 Supply Chain Management (SCM)

SCM is in its nature about creating value to the customer, enabled by planning and
controlling activities and by simultaneously integrating and coordinating processes across
companies [8]. Nonetheless, this is not easily accomplishable, since supply chains range
across continents, heterogenous regulatory policies and cultural differences make this en-
deavor very complex to manage [52]. As a result, supply chain problems can lead to
inefficient transactions, fraud, and a lack of traceability can lead to safety and health
hazards when issues arise and problematic goods are not traceable, as has happened in
the past [52].

Furthermore, consumers desire to know the provenance and the real value of certain items,
and they want to be able to verify those pieces of information as well [52]. It is clear,
that a lack of transparency prevents that, also leading to companies endangering their
reputation [52]. Consequently, supply chain problems lead to a lack of trust between
parties and SCM requires better information sharing and verifiability, and importantly a
fundamental traceability [52].

The four key pillars that BCs provide for SCM were identified by [8]:

• Transparency , the BC is shared and its data originates from various data sources.
• Validation of information , enabled by immutability and consensus-based veri-

fication.
• Automation , refers to the SC functionality of BCs that enables ‘ex-post’ contract

enforcability and also non reversibility.
• Tokenization , denotes to the BC’s ability to create tokens, each referring to an

asset claim in this context, and to exchange them between parties.

Additionally, in comparison to other BC applications, a closed , i.e., a private and per-
missioned BC is seen as adequate for SCM [52]. Therefore, the values for the SIG were
adjusted to reflect these aspects. The results of this evaluation are noted in Table 5.2.

Table 5.2: Evaluated SCM SG Scores. The scores are capped between [-1, 1] [1].

BC Performance Secure Privacy Applicability

Bitcoin -0.31 0.73 0.13 0.43
Ethereum -0.28 0.73 0.13 0.48
Stellar 0.09 0.19 0.13 0.55
EOS 0.38 0.4 0.13 0.50
Multichain 0.34 0.53 0.06 0.61
HyperLedger Sawtooth 0.25 0.16 0.06 0.65
IOTA 0.16 0.21 0.06 0.42
NEO 0.44 0.4 0.06 0.55
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5.2 Performance

For the performance evaluation, the BC SIG application has been evaluated, namely, the
computation of the calculation time for the OP, LSG and SG scores were timed and noted,
and finally compared to each other, cf. Figure 5.1. The code of the respective functions
can be seen in Listings 4.9, 4.10 and 4.11. It is noteworthy, that the computation of these
values happen in the backend, and as such, the latency to return the scores to the clients
is not included in the evaluation results, only the score computation time.

The evaluation has been performed 10 times on a MacBook Pro (15-inch, 2017) with a 2.8
GHz Quad-Core Intel Core i7 Processor and 16 GB of memory, and the resulting average
computation times are shown in Figure 5.1.
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Figure 5.1: Comparison of the average computation times for the calculation of the OP,
LSG and SG scores in ms (n=10). Source: The author.

From the Listing 4.9 and Listing 4.11 it is clear, that the topological sorting of the nodes
in the graph takes a performance hit for the computation of the OP. and SG scores. In
comparison with Listing 4.10, where no graph preprocessing is needed, the computation
is naturally much faster.

Nonetheless, the difference in results are not peculiarly problematic, since the time frame
is in the scope of milliseconds. These results ensure, that the application can be used in
real-time and further extenstions, e.g., a larger SIG is not a problem.

5.3 Machine Learning

For the Machine Learning evaluation, the data from the use cases IoT and SCM, in
Tables 5.1 and 5.2, were used for clustering with the Scikit-Learn Python Library [57, 58]



5.3. MACHINE LEARNING 59

Table 5.3: Computed Mutual Information between SGs and Cluster Label.

Use Case Performance Secure Privacy Applicability

IoT 0.39 0.57 0.82 0.00
SCM 0.21 0.35 1.01 0.01

and the visualizations were made with Matplotlib [40] and Seaborn [59]. The goal of this
evaluation is to apply the k-Means clustering algorithm [37] to find clusters from the
results that group different BCs together for a specific use case. Consequently, based
on their scores, the clustering results lead to a classification of the BCs, and similarities
between the BC implementations can be found.

For clustering, the right amount of clusters have first to be found, thus, the elbow technique
[66] was applied, and by plotting the different amount of clusters, for both use cases k = 3
was chosen as appropriate, cf. Figures 5.2a and 5.2b. The idea of this technique is to
evaluate the Sum of Square Errors (inertia [58]), against the amount of clusters to find a
k value after a drastic decrease in the Sum of Square Errors [66].
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Figure 5.2: Computing the best amount of clusters for the k-means clustering (a) IoT Use
Case and (b) SCM Use Case. Source: The author.

Although all the computed values are bounded in [-1, 1], the distribution of the values is
not balanced, cf. the diagonal entries in Figure 5.3 denoting the distributions. Therefore,
the values have been Min-Max Normalized to rescale them into the range of [0, 1] [27].
Most importantly, this transformation preserves the relationship between the values [27],
and is therefore applicable to clustering.

However, if all four SGs are clustered, this approach is not without issues, cf. Mutual
Information in Table 5.3. In particular, Mutual Information captures how much informa-
tion the variables share [69], and the high Privacy value implies that it already predicts
the Cluster Label, and Applicability has no, or an extremely low impact.

Indeed, this can be best seen in Figure 5.4, it is noticeable that the clustering algorithm
grouped the BCs with low Performance together (Cluster 1 ), since in those cases their
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Figure 5.3: IoT: Clustered Pair Plots (without Normalization). Source: The author.
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Figure 5.4: IoT Performance/Privacy Clustering Results (normalized). Source: The au-
thor.

Secure score is also high, and they are therefore further away from the other BCs, cf.
Figure 5.3. In comparison, Cluster 0 and Cluster 2 have similar Performance results,
and the algorithm has separated them mostly by their Privacy score.

Consequently, the SG Privacy has not been considered for further analysis, since it distorts
the clustering strongly, which is problematic in this case, due to the proposed SIG not
capturing the differences between the BCs well enough relating Privacy for the chosen
use cases. This is further amplified by the chosen use cases not having a focus on Privacy,
cf. Section 5.1.

Finally, the result of the clustering are visualized in Figure 5.5 for IoT and 5.6 for SCM.
The algorithm ran with the value of n init = 50, meaning that the resulting clustering
was the best output from a random centroid initialization that ran 50 times, which is
much higher than the default value of 10 [58]. This has been done, since clustering results
are susceptible to the initial centroid locations [66]. Additionally, to obtain significance,
the experiment was repeated 10 times, with each run resulting in the same clustering
outcome.

For IoT, cf. Figure 5.5, the clustering results look promising, the intra-cluster distance [61]
is low, all BCs forming a cluster are close together, meaning that they all have similar
values, and additionally, the inter-cluster distance [61] is high, the clusters are far away
from each other, and thus, not similar. By fulfilling these two clustering performance
metrics, the clustering has been effective [61].

• Cluster 0 captured Multichain, NEO, EOS and HyperLedger Sawtooth. All of them
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scored the highest Performance scores, though their Secure scores were low to aver-
age and their Applicability scores were average to very high.

• Cluster 1 includes Ethereum and Bitcoin, both have been clustered together, which
can be explained by their use of PoW (cf. Section 2.3.1 and both have therefore
similar attribute scores, due to PoW influencing both Performance and Secure SGs.

• Cluster 2 contains Stellar and IOTA, although they scored high Performance values,
both their Secure and their Applicability scores were comparatively low.

For SCM, cf. Figure 5.6, the clusters are not as neatly grouped, and the intra-cluster
distance, cf. [61] is higher than in the IoT case. The visualization is also deceptive, since
HyperLedger Sawtooth appears extremely close to Bitcoin and Ethereum, even though
they are not close together, HyperLedger Sawtooth’s high Performance and Applicability
scores makes it simply appear in front of the others.

• Cluster 0 includes HyperLedger Sawtooth, Multichain, NEO and EOS, which all
scored highly in the Performance metric and they all have rather high Applicability
scores, though NEO scored a bit lower than the average. Regarding Secure, their
values differ greatly. In fact, the cluster spans a wide area and leads therefore to
not a homogenous grouping.

• Cluster 1 is equal to the IoT use case, and only includes Ethereum and Bitcoin.
Again, they boast the highest Secure scores, but lack in Performance.

• Cluster 2 captured Stellar and IOTA. Again, both have comparable Performance
and Secure scores, though the clustering did not consider the Applicability differ-
ences.

Consequently, it is noteworthy, that due to the SIG design, both use cases resulted in
the same clusters, even though the values differed between the use cases. This can be
partly explained by the fact, that both use cases had an overlap in their requirements,
leading to similarities between the relative values, and partly, this can be attributed to
the inherent selection of BC specific Operationalizations, i.e., BC implementations will
not change their attributes.

In summary, based on the results of the clusterings, a BC classification can be made, and
the following three categories present themselves:

• BCs that focus highly on Security, but on the other hand have low Performance and
Applicability.

• BCs that at their core have very high Performance values, though their Security
tends to be on the lower side. Additionally, they reach various degrees of Applica-
bility.

• BCs that score high on the Performance side, but have low Applicability and Secu-
rity.

Hence, for a BC selection point of view and a specific BC use case, it depends on the use
case’s priorities and requirements to select a BC from a resulting category.
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5.4 Discussion

Based on the clustering results, cf. Section 5.3, the proposed SIG was able to success-
fully capture the fine grained differences between various BC implementations. However,
for complexity reasons, the use case evaluations only covered Mainnet BC deployments
and did not consider private BC deployments, e.g., a private Ethereum BC deployment,
hence, this would naturally influence the resulting scores in various dimensions. Further,
even though the graph spans 74 nodes and 88 edges, for complexity reasons, many BC
implementation specific characteristics were not covered by the SIG, which in some cases
also lead to perhaps surprising results, e.g., IOTA not scoring highly in the IoT use case
(cf. Section 5.1.1), even though IoT can be seen as one of IOTA’s main use cases [48].

Withal, the contributions between the edges of the SIG offer additional layers of intri-
cacies, since requirements and BC aspects are regularly related and interdependent in
near unfathomable ways. Furthermore, the authors of the quantification extension also
pointed out, [1], that the extension’s value rises from having numerous many-to-many
mappings and tradeoffs. Consequently, only by capturing these small, but influental de-
tails an exhaustive SIG can be achieved. Essentially, due to complexity constraints, this
directs a paramount limitation on the design of the SIG and the ultimate goal would be
then to achieve the highest expressivity with the smallest SIG as possible. However, by
doing so, while the most important differences between various BCs would be captured,
and common, but important attributes would be left out, not a full BC characterization
would be obtained. Nonetheless, since this thesis set out to capture the characterization
aspect of various BC implementations, the focus was thence laid on this very aspect.

Additionally, there is an inherent difficulty in proposing operationalization impacts and
leaf softgoal weights, since the framework does not only not allow for half satisficing values,
the quantification of differences is elaborate and occasionally hard to justify. While in some
cases linear interpolation could be applied, at other times this was not as straightforward,
and the values could be more seen as arbitrary. In spite of that, given from the clustering
results, the relative differences between the values are more important than the values per
se, and the SIG was still able to capture the aforementioned characteristics.

Part of these limitations can be attributed to the fact, that the NFR framework was
devised to be mainly used during the design stage of an application to, inter alia, facilitate
the selection of design decisions (cf. Section 2.2), whereas it was applied in this thesis to
already realized BC implementations. Consequently, the Softgoal Scores were the main
focus, and operationalization scores and attainment were not further used. Nonetheless,
based on the BC characterization and classifications that resulted from the use of SIGs,
its BC appliance can be seen as successful.
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Chapter 6

Summary and Future Work

The recent emergence of a great multitude and variety of blockchains in conjunction
with no blockchain standardization body being prevalent led to a research gap concerning
the classification and characterization of blockchains, further hinting at complicacies in
selecting a suitable blockchain for an application.

Therefore, in this thesis inspiration has been taken from Software Engineering principles,
in particular, the Non-Functional Requirements Framework was exercised and applied to
blockchains, and accordingly, a multitude of blockchain characteristics were examined and
collected to design and decompose a specific blockchain Softgoal Interdependency Graph.
This graph decomposition process led to an incorporation of a total of 74 Nodes and 88
Edges. By further applying a framework extension on the Softgoal Interdependency Graph
that permitted the quantification of values, specific and timely blockchain use cases (e.g.,
Internet of Things (IoT) and Supply Chain Management (SCM)) were researched and then
evaluated through Machine Learning, resulting in a high-level blockchain classification.

Simultaneously, an application in a client server architecture was designed and established
to allow for a convenient visualization of the graph and the calculation of scores. Further,
the application was also devised to grant its users the ability to select design choices in
the form of operationalizations, to evaluate distinct blockchain implementations, and to
enter their own graph to process and to visualize.

Future work should include the expansion of the Softgoal Interdependency Graph to add
more blockchain aspects, and to focus further on considering and researching more inter-
dependencies and impacts between the nodes of the graph. Besides, through the quantifi-
cation of values, the calculated scores data offers the opportunity to further explore Ma-
chine Learning techniques for various use cases, inter alia, to also approach the blockchain
selection use case.

67
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dorf, and Srdjan Capkun. On the Security and Performance of Proof of Work
Blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 3–16, 2016.

[24] Martin Glinz. On Non-Functional Requirements. In IEEE International Require-
ments Engineering Conference (RE 2007), pages 21–26. IEEE, 2007.

[25] Isitan Görkey, Chakir El Moussaoui, Vincent Wijdeveld, and Erik Sennema. Com-
parative Study of Byzantine Fault Tolerant Consensus Algorithms on Permissioned
Blockchains, 2020.

[26] Sri Nikhil Gupta Gourisetti, Michael Mylrea, and Hirak Patangia. Evaluation and
Demonstration of Blockchain Applicability Framework. IEEE Transactions on En-
gineering Management, 67(4):1142–1156, 2019.

[27] T. Jayalakshmi and A. Santhakumaran. Statistical Normalization and Back Propa-
gation for Classification. International Journal of Computer Theory and Engineering,
3(1):1793–8201, 2011.

[28] Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. SoK:
A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies. IACR
Cryptol. ePrint Arch., 2019:352, 2019.



BIBLIOGRAPHY 71

[29] Minhaj Ahmad Khan and Khaled Salah. IoT security: Review, blockchain solutions,
and open challenges. Future Generation Computer Systems, 82:395–411, 2018.

[30] Nir Kshetri. Can Blockchain Strengthen the Internet of Things? IT professional,
19(4):68–72, 2017.
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Table A.1: IoT use case. LSG weights on parent LSG.

LSG Weight

Blockchain Data Visibility 1.0
Blockchain Data Writability 1.0
Fees 0.5
Token 0.25
Interoperability 1.0
Smart Contract Features 1.0
Smart Contract Functionality 1.0
Access 1.0
Data Privacy 1.0
Unlinkability of Transactions 0.0
Pseudonymity 0.25
Amount of Nodes 0.25
Degree of Centralization 1.0
Validity of Transactions 1.0
Security Level 1.0
Consensus Protocols 1.0
Confirmations in the Network 0.25
Low Stale Block Rate 0.25
Resistance Against Tampering of Old Transactions 0.5
Resistance Against Tampering of New Transactions 0.5
Layer 1 1.0
Layer 2 1.0
Parallel Transactions 0.25
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Table A.2: IoT use case. Selected Operationalization impacts on parent LSG or OP.

Operationalization Parent Impact

Private Blockchain Data Visibility 0.75
Public Blockchain Data Visibility 0.25
Permissionless Blockchain Data Writability 0.25
Permissioned Blockchain Data Writability 0.75
No Fees Fees 0.50
Token Usage Token 0.25
Interoperability Possibilities Interoperability 1.0
Interoperability Possibilities Layer 2 Solutions 1.0
Data Storage Possibilities Smart Contract Features 1.0
Turing Completeness Smart Contract Features 0.75
Smart Contracts Smart Contract Functionality 1.0
Availability of Light Clients Access 0.75
Non-Interactive Zero Knowledge Proof Data Privacy 1.0
Homomorphic Encryption Data Privacy 1.0
Anonymous Signatures Unlinkability of Transactions 0.0
Mixing/Tumbler Unlinkability of Transactions 0.0
Use of Public Keys as Pseudonyms Pseudonymity 0.25
High Amount of Nodes Amount of Nodes 1.0
Centralized Entity Degree of Centralization 1.0
Use of Digital Signatures Validity of Transactions 0.5
Use of Digital Signatures Anonymous Signatures 1.0
dPoS Security Level 0.25
PoW Security Level 1.0
PoS Security Level 0.25
PoA Security Level 0.75
dBFT Security Level 0.25
dPoS Consensus Protocols 1.0
PoW Consensus Protocols 1.0
PoS Consensus Protocols 1.0
PoA Consensus Protocols 1.0
dBFT Consensus Protocols 1.0
dPoS Layer 1 0.75
PoW Layer 1 -1.0
PoS Layer 1 0.25
PoA Layer 1 0.25
dBFT Layer 1 1.0
High Number of Confirmations in the Network Confirmations in the Network 1.0
High Number of Confirmations in the Network Layer 1 -0.5
Fast Block Interval Time Layer 1 0.5
Large Block Size Layer 1 0.5
Fast Block Interval Time Low Stale Block Rate -0.25
Large Block Size Low Stale Block Rate -0.25
Use of Secure/Collision-Resistent Hash Func-
tions

Resistance Against Tampering of New
Transactions

0.75

Use of Secure/Collision-Resistent Hash Func-
tions

Hash Chained Storage 1.0

Hash Chained Storage
Resistance Against Tampering of Old
Transactions

0.75

Layer 2 Solutions Layer 2 0.5
Account Model Parallel Transactions 0
UTXO Parallel Transactions 0.25
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86 APPENDIX B. SUPPLY CHAIN MANAGEMENT USE CASE CALCULATIONS

Table B.1: Supply Chain Management use case. LSG weights on parent LSG.

LSG Weight

Blockchain Data Visibility 1.0
Blockchain Data Writability 1.0
Fees 0.25
Token 1.0
Interoperability 0.75
Smart Contract Features 1.0
Smart Contract Functionality 1.0
Access 0.5
Data Privacy 0.0
Unlinkability of Transactions 0.0
Pseudonymity 0.0
Amount of Nodes 0.25
Degree of Centralization 0.5
Validity of Transactions 1.0
Security Level 0.75
Consensus Protocols 1.0
Confirmations in the Network 0.25
Low Stale Block Rate 0.5
Resistance Against Tampering of Old Transactions 1.0
Resistance Against Tampering of New Transactions 1.0
Layer 1 0.25
Layer 2 0.25
Parallel Transactions 0.25
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Table B.2: Supply Chain Management use case. Selected Operationalization impacts on
parent LSG or OP.

Operationalization Parent Impact

Private Blockchain Data Visibility 0.75
Public Blockchain Data Visibility 0.25
Permissionless Blockchain Data Writability 0.25
Permissioned Blockchain Data Writability 0.75
No Fees Fees 0.25
Token Usage Token 1.0
Interoperability Possibilities Interoperability 0.75
Interoperability Possibilities Layer 2 Solutions 1.0
Data Storage Possibilities Smart Contract Features 1.0
Turing Completeness Smart Contract Features 1.0
Smart Contracts Smart Contract Functionality 1.0
Availability of Light Clients Access 0.5
Non-Interactive Zero Knowledge
Proof

Data Privacy 0.0

Homomorphic Encryption Data Privacy 0.0
Anonymous Signatures Unlinkability of Transactions 0.0
Mixing/Tumbler Unlinkability of Transactions 0.0
Use of Public Keys as Pseudonyms Pseudonymity 0.25
High Amount of Nodes Amount of Nodes 0.25
Centralized Entity Degree of Centralization 0.5
Use of Digital Signatures Validity of Transactions 1.0
Use of Digital Signatures Anonymous Signatures 1.0
dPoS Security Level 0.25
PoW Security Level 1.0
PoS Security Level 0.25
PoA Security Level 0.75
dBFT Security Level 0.25
dPoS Consensus Protocols 1.0
PoW Consensus Protocols 1.0
PoS Consensus Protocols 1.0
PoA Consensus Protocols 1.0
dBFT Consensus Protocols 1.0
dPoS Layer 1 0.75
PoW Layer 1 -1.0
PoS Layer 1 0.25
PoA Layer 1 0.25
dBFT Layer 1 1.0
High Number of Confirmations in the
Network

Confirmations in the Network 1.0

High Number of Confirmations in the
Network

Layer 1 -0.5

Fast Block Interval Time Layer 1 0.25
Large Block Size Layer 1 0.25
Fast Block Interval Time Low Stale Block Rate -0.25
Large Block Size Low Stale Block Rate -0.25
Use of Secure/Collision-Resistent
Hash Functions

Resistance Against Tampering of
New Transactions

1.0

Use of Secure/Collision-Resistent
Hash Functions

Hash Chained Storage 1.0

Hash Chained Storage
Resistance Against Tampering of
Old Transactions

1.0

Layer 2 Solutions Layer 2 0.25
Account Model Parallel Transactions 0.0
UTXO Parallel Transactions 0.25
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Appendix C

Installation Guidelines

Frontend

The frontend can be launched by running the following commands in the project directory:

1 yarn install

2 yarn build

3 npm start

Additionally, this project’s packages require a node.js version of 10, 12 or 14. The version
can be configured with the following command, using the node version manager nvm1:

1 nvm use 10

This application has been tested with Firefox and Chrome, latest versions.

Server

This implementation has been tested with Python 3.8. The author recommends using
Anaconda2 or Miniconda3 to install the necessary packages and to manage the python
environment.

In particular, this stems from the package pygraphviz4 appearing to be problematic to
install on OS X using pip5 as a package manager, however, no issues were had with pip
on a Ubuntu installation. Pygraphviz installation errors will lead to the server not being
able to draw the graph visualizations, though it can still calculate the scores.

Additionally, the server runs per default on localhost with the port 8000. If this should not
be the case, this must be changed for the frontend, in the file src/components/config.js.,
such that the frontend is able to find the server.

1https://github.com/nvm-sh/nvm
2https://docs.anaconda.com/anaconda/install/
3https://docs.conda.io/en/latest/miniconda.html
4https://pygraphviz.github.io/documentation/stable/pygraphviz.pdf
5https://pip.pypa.io/en/stable/
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Installation using Anaconda/Miniconda:

1 conda create -n conda -server -test python =3.8 networkx =2.5 sanic =20.12.1

sanic -cors =0.10.0. post3 pygraphviz =1.7

Proceed: ‘y’

1 conda activate conda -server -test

2

3 conda install matplotlib

Proceed: ‘y’

1 python3 main.py

Installation using pip:

1 pip3 install networkx sanic sanic -cors

2 sudo apt install graphviz libgraphviz -dev

3 pip3 install pygraphviz matplotlib
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