
Master thesis
March 15, 2021

Elemental UI
Portable and performant solution for modern

GUI rendering

Luka Lapanashvili
of Tbilisi, Georgia (13-934-062)

supervised by
Prof. Dr. Harald C. Gall

Dr. Pasquale Salza

software evolution & architecture lab

Master thesis

Elemental UI
Portable and performant solution for modern

GUI rendering

Luka Lapanashvili

software evolution & architecture lab

Master thesis

Author: Luka Lapanashvili, luka.lapanashvili@uzh.ch

Project period: 15.09.2020 - 15.03.2021

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First, I would like to thank my supervisor Dr. Pasquale Salza for accepting my proposal and
agreeing to guide me through this difficult endeavor. Your continued support and encourage-
ment reassured me to keep pushing forward, even when the task seemed impossible.
A special thanks goes to Mariam Lapanashvili for proofreading the thesis and for providing con-
stant motivation. Furthermore, I would like to thank my friends and family for their continuous
support. Finally, I want to thank Prof. Dr. Harald C. Gall from the Software Evolution and
Architecture Lab research group for giving me the opportunity to write this thesis.

Abstract

Interacting with software is commonplace in modern society. Music, video, images, and text are
routinely consumed on smartphones, laptops, smart wearables, stationary workstations, and em-
bedded devices. Simultaneously, the number of network-enabled devices per person rises, which
increases the demand for the preferred media playback software or the social media application
to be available on any device in such a way that a podcast paused on a laptop can be resumed
on a smartphone. However, rarely is it possible to use the same frontend code or even the same
programming language to create an application that can be run on different devices. Application
developers often have to adapt implementations for every single platform or even write bespoke
implementations for individual operating systems. Naturally, such a fragmented codebase is dif-
ficult to maintain and to uphold feature parity across all the devices. Having one unified solution,
where one codebase can target a large set of devices, would be highly beneficial. In this thesis,
we discuss the difficulties of developing a cross-platform application and evaluate available so-
lutions. Finally, we introduce Elemental UI, our cross-platform solution for modern GUI appli-
cation development, and discuss its strengths and shortcomings compared to other established
frameworks.

Zusammenfassung

Die Interaktion mit Software ist in der modernen Gesellschaft alltäglich. Musik, Video, Bild und
Text werden regelmässig auf Smartphones, Laptops, Smart-Wearables, Arbeitsplatzrechnern und
Embedded-Devices konsumiert. Gleichzeitig steigt die Anzahl der netzwerkfähigen Geräte pro
Person, wobei die Anforderung immer grösser wird, dass die bevorzugte Wiedergabesoftware
oder die Social-Media-Anwendung auf jedem Gerät verfügbar sein muss, sodass ein auf dem
Laptop pausierter Podcast auf dem Smartphone fortgesetzt werden kann. Allerdings ist es selten
möglich den gleichen Frontend-Code oder sogar die gleiche Programmiersprache zu benutzen,
um eine Anwendung zu entwickeln, welche auf verschiedenen Geräten ausgeführt werden kann.
Entwickler müssen ihre Implementierungen oft für jede einzelne Plattform anpassen oder sogar
massgeschneiderte Lösungen für einzelne Betriebssysteme schreiben. Verständlicherweise ist
es schwierig, mit einer solch fragmentierten Code-Basis die Funktionsparität auf allen Geräten
aufrechtzuerhalten. Eine einheitliche Lösung, bei der eine Code-Basis auf eine grosse Anzahl von
Geräten abzielt, kann viele Vorteile bieten. In dieser Arbeit erläutern wir die Schwierigkeiten
bei der Entwicklung einer plattformübergreifenden Anwendung und evaluieren vorhandene Lö-
sungsansätze. Schliesslich stellen wir Elemental UI, unser plattformübergreifendes System für
die Entwicklung moderner GUI-Anwendungen vor und erläutern die Stärken und Schwächen
im Vergleich zu anderen etablierten Systemen.

Contents

1 Introduction 1

2 Background 3
2.1 High-Level Concepts . 3

2.1.1 Cross-Platform . 3
2.1.2 Rendering API . 3

2.2 Technical Glossary . 4
2.2.1 Shader . 4
2.2.2 Buffer Objects . 4

3 Related Work 5
3.1 Requirements . 5
3.2 State of the Art . 6

3.2.1 Rendering Libraries . 6
3.2.2 GUI Toolkits . 7

4 Approach 9
4.1 System Architecture . 9
4.2 2D Rendering Library - Elemental Draw . 10

4.2.1 Cross-Compatibility . 10
4.2.2 Rendering . 19

4.3 GUI Library - Elemental UI . 23
4.3.1 Node Hierarchy . 23
4.3.2 Styling . 24
4.3.3 Event System . 25
4.3.4 Transitions . 26
4.3.5 Dynamic Framerate . 27

5 Case Studies 29
5.1 Painting Application . 29
5.2 Breakout Game . 30
5.3 Calculator . 31
5.4 Messaging Application . 32
5.5 Conway’s Game Of Life . 33

6 Evaluation 35
6.1 RQ1 - Performance Evaluation . 35
6.2 RQ2 - Performance Comparison . 37

viii Contents

7 Future Work 41
7.1 Metal Implementation . 41
7.2 Path Rendering . 41
7.3 Custom OS Interface . 42
7.4 Binding Generation . 43

8 Conclusion 45

Contents ix

List of Figures
4.1 Elemental UI architecture . 9
4.2 Supported primitives in Elemental Draw . 21
4.3 Event propagation . 26

5.1 Painting application . 30
5.2 Breakout game . 31
5.3 Calculator application . 32
5.4 Messaging application . 33

6.1 Benchmark application . 36
6.2 Performance benchmark . 38
6.3 Performance comparison . 39

List of Tables
3.1 2D Rendering Libraries . 6
3.2 GUI Toolkits . 7

4.1 Graphics API compatibility . 11

x Contents

Chapter 1

Introduction

It is difficult to create cross-platform graphical user interfaces, especially if the requirements de-
mand for the application to be compatible across a wide range of platforms and operating sys-
tems. This is due to the fact that operating systems expose unique proprietary interfaces to their
own systems, forcing a developer to write unique implementations for every targeted operating
system. The complexity is increased by the fact, that some operating systems can provide multiple
backends. For example, the Windows operating system alone exposes four different application
platforms, which were accumulated over time: Universal Windows Platform (UWP), Windows
Presentation Foundation (WPF), Windows Forms, and Win32 [1].

Furthermore, if high performance is important, the complexity of the resulting system further
increases drastically, as low-level languages as well as Graphics Processing Unit (GPU) accelera-
tion need to be used, implying manual memory and state management.

Naturally, this is not a new problem and numerous libraries and frameworks already exist,
which can aid in interfacing with the various operating systems in a unified manner. Unfortu-
nately, many such libraries are rather dated and employ old technologies. Although a high age
of a library is not necessarily a negative attribute, as typically such libraries are much more ro-
bust and well tested, often they also prove to be rigid, which makes adapting to emerging design
trends much more difficult. New design concepts such as Glassmorphism [2] are difficult to repli-
cate with older libraries, as these rendering systems were never designed for such use cases.

Simultaneously, web technologies are pushing the envelope and provide the basis for new de-
sign ideas and emerging trends. Furthermore, artists invent new interactive experiences that run
inside the web-browser [3] [4]. Combined with the almost frictionless portability and availability
of a web page on virtually any device, it is not surprising to observe an avalanche of new web ap-
plications and the increasing dominance of the JavaScript programming language since 2014 [5].
While web technologies might provide diverse features for creative designs, the client code is al-
ways written in JavaScript which is slower than lower-level languages like C++ [6]. Therefore,
the question arises as, why such great user experiences should not be replicable utilizing native
technologies which take full advantage of the hardware to deliver a smoother experience.

2 Chapter 1. Introduction

The goal of the thesis is to identify critical requirements that are necessary for a portable and
high performant graphical user interface solution, that enables creative design choices. Further-
more, we will evaluate the pre-existing state-of-the-art libraries and toolkits on the basis of the
predetermined standards.

In addition, the thesis will propose two new libraries (Elemental Draw and Elemental UI) by
employing all the requirements as best as possible to explore the following two research ques-
tions:

RQ 1: How does the proposed system perform on different hardware? As hardware can majorly
influence the performance of an application, we will perform a benchmark on a wide num-
ber of devices to identify the specific performance characteristics of the proposed architec-
ture.

RQ 2: How does the performance compare to similar frameworks? To confirm the validity of our
proposed system, a preliminary comparison has to be performed to verify whether our sys-
tem meets the performance standards set out by other existing software.

The thesis is structured as follows. In Chapter 2, we introduce background concepts, rele-
vant to the technical approach of this thesis. Chapter 3 presents the identified requirements and
provides an overview of the existing state-of-the-art GUI toolkits. In Chapter 4, we introduce
our proposed framework and elaborate on the main design decisions and how they relate to the
designated requirements. Subsequently, in Chapter 5, we conduct case studies for possible ap-
plications of the introduced system and select a suitable benchmark for performing evaluations
in Chapter 6 related to our formulated research questions. Finally, we list the shortcomings of
our solution alongside ideas for future improvements in Chapter 7 and conclude the thesis in
Chapter 8.

Chapter 2

Background

This chapter establishes conceptual and technical topics and terms to provide a clear overview
before they are used in the context of this thesis. The two main categories are high-level concepts
and a technical glossary. The concepts are introduced in order of their appearance in the thesis in
the individual categories.

2.1 High-Level Concepts

2.1.1 Cross-Platform
A cross-platform or portable code base refers to software that can be run on different platforms
with the same source code. To achieve portability, special care must be given to the choice of
language, the version of the language standard, use of operating system (OS) features, the de-
pendencies, and the build configuration. For example, C++ code can be compiled and run on a
vast number of platform targets through compilers such as Visual C++ [7], GCC [8], Clang [9] and
others. However, the C++20 standard, although already published, is still not fully supported by
all the compiler vendors and, therefore, might not work on all the platforms [10]. Furthermore,
the OS-specific calls, such as window creation, networking, and so forth, must be segregated and
implemented separately for every single platform. In addition, dependencies must be carefully
selected, as they also have to comply with the same restrictions. Finally, the build system must be
set up in a way that different instruction set architectures and bit register ranges can be targeted
during compile time [11, p. 3-9]. Common architecture targets for Intel-based chips are x86 with
32-bit or 64-bit.

2.1.2 Rendering API
A rendering API, also referred to as graphics API or rendering backend, is an application pro-
gramming interface that exposes procedures and commands for interacting with a rendering sys-
tem [12, p. 21]. In the case of Vulkan [13] and OpenGL [14], the interface describes how to access
the graphics processing unit (GPU) and perform graphics and compute operations. As the inter-
faces only describe how to interact with the GPU, the actual implementation of said interfaces
has to be done by the GPU vendors through drivers. Therefore, discrepancies between different
GPUs can occur, caused by driver bugs or different implementations leading to different states in
cases of undefined behavior [15, p. 36].

4 Chapter 2. Background

2.2 Technical Glossary

2.2.1 Shader
A shader, in the context of computer graphics, is a program that runs on the GPU [12, p. 150].
Typically, the output of a shader are pixels (fragment shader). However, there are different types
of shaders (vertex, geometry and compute) that can be chained together to perform varying oper-
ations on user-defined data. In the case of compute shaders, the resulting output can be fed back
to the main memory and accessed by the application. This type of hardware acceleration can lead
to great performance improvements for highly parallelizable algorithms.

2.2.2 Buffer Objects
As shaders run physically separated from the remainder of the application code, a mechanism
is required to share data from the application memory to the GPU. This can be done through
different mechanisms provided by the graphics API [12, p. 186].

Uniform Buffer Objects (UBO)

A uniform buffer can, for example, be used to rapidly pass data to the GPU by storing the data
in the registers of the GPU. This approach allows the shaders fast access to said data; however,
the size of the buffer is limited. Typically, only a size of 16 KB [16] is guaranteed to be available
through the OpenGL standard.

Shader Storage Buffer Objects (SSBO)

In contrast, in cases where the UBO does not provide sufficient space, SSBOs that allows the buffer
to be up to 128 MB [16] in size can be used. However, the fast GPU registers cannot be utilized
for this approach, so the access can be considerably slower than with UBOs. Furthermore, unlike
UBOs, SSBOs are read and write enabled [12, p. 186].

Chapter 3

Related Work

Considering the motivation and goals of this thesis, the following chapter provides an overview
of the requirements necessitated by a modern and portable UI system. Thereafter, the currently
available frameworks are presented, categorized, and evaluated according to the stated require-
ments.

3.1 Requirements
Following are five core requirements corresponding to the categories: portability, flexibility, and
performance, based on the initial motivation for this thesis.

Low-Level Exposure While high-level languages can offer some convenience factors during de-
velopment, these conveniences come with a runtime cost. Therefore, while high-level lan-
guage bindings can be beneficial in some applications, a low-level API should still be ex-
posed for performance-critical code.

GPU-Based Rendering To ensure high-performance rendering and smooth framerates, the ren-
dering system ideally should be utilizing the GPU to its fullest. While a software renderer
can be beneficial to overall compatibility, it should not be established as the main component
but instead as a complement to a high-performance GPU renderer.

Flexible Styling Separating style from content and offering a wide range of styling options can
enable creative use cases and provides the basis for new design concepts. Therefore, it
is important that styling is not only enforced as a means for configuring preexisting UI
widgets but instead offers room for creative design choices.

Composition Based Although the object-oriented paradigm of inheritance would seem as an ob-
vious choice for modeling graphical user interface widgets and components, it entails a
rather rigid design. Alternatively, a composition-based approach would allow for runtime
generated objects with varying properties, contributing to the flexibility of the system.

Responsive Design Portability in the context of graphical user interfaces does not only entail
the capability to run the application on different platforms but also to present the visual
content. As device monitors vary in resolution and shape, the system has to be able to
adapt and offer the developer the means for optimizing the presented content regardless of
the available screen dimensions.

6 Chapter 3. Related Work

3.2 State of the Art
Following, we introduce the state-of-the-art libraries, which we divided into two categories for
better comparison: Rendering libraries and GUI toolkits. While rendering libraries solely provide
necessary means for drawing on a color buffer with simple lines, arcs, and shapes, GUI toolkits
provide a much more diverse tool-set for rendering and interacting with user interface elements.
However, this division might not always be clear-cut and might not apply for certain libraries
which provide both: low-level rendering commands and high-level widget elements.

3.2.1 Rendering Libraries
While there may certainly exist many more rendering libraries, the following Table 3.1 only fo-
cuses on the most popular options currently available. Native OS rendering solutions such as
Quarz2D or DirectDraw are omitted from the table as they do not provide cross-platform capa-
bilities.

Name Language Published Last Release GPU Platforms

Allegro [17] C before
2000 [18]

5.2.7 (2021) OpenGL,
D3D

Windows,
Linux, Mac
OSX, iPhone,
Android

cairo [19] C++ 2003 [20] 1.17.4
(2020) [21]

partial [22] Win, Linux,
Mac, BeOS

JavaFX [23] Java before
2008 [24]

v16 (2021) [25] OpenGL,
D3D [26]

Win, Linux,
Mac

Skia [27] C++ 2008 [28] 2021 [29] OpenGL,
(Vulkan) [30]

Win, Linux,
Mac, iOS,
Android

Table 3.1: 2D Rendering Libraries

While JavaFX provides great features and flexibility in terms of portability and rendering, it
was discarded as only the best performing rendering libraries were considered. Skia and cairo
are both widely adopted and mature graphics engines. Other technologies and GUI toolkits
build upon these renderers as shown in Table 3.2. In addition, Skia is the renderer used in
the Chromium browser which is the basis for Google Chrome and recently Microsoft’s Edge
browser [31]. It is not surprising that Skia is highly optimized and can run on all major plat-
forms. However, its Vulkan implementation is still new and unstable [30]. Finally, Allegro would
have been considered due to its various platform targets, nevertheless, it was discarded, as it
lacked modern backend support.

3.2 State of the Art 7

3.2.2 GUI Toolkits
Similar to the rendering libraries, only a subset of all available GUI toolkits were considered
because not all relevant information about technical details could be obtained on all options, due
to public availability.

Name Exposed Lan-
guage

Last Release Renderer Platforms

Avalonia [32] C#, XAML 0.10.0 (2021) Skia [33] Windows,
Linux, macOS

CEGUI [34] C++, XML 0.8.7 (2016) custom Windows,
Linux, macOS

Electron [35] JavaScript,
HTML, CSS

12.0.1 (2021) Skia Windows,
Linux, macOS

FLTK [36] C++ 1.3.5 (2019) custom Windows,
Linux, macOS

Flutter [37] Dart v2 (2021) Skia Android, iOS,
(Windows,
Linux, macOS)

GTK [38] C, (many bind-
ings)

4.0.3 (2021) cairo [39] Windows,
Linux, macOS

imgui [40] C++, (many
bindings)

1.81 (2021) custom (GPU) Windows, ma-
cOS, Linux,
Android

nana [41] C++ 1.7.4 (2020) custom (CPU) Windows,
Linux, FreeBSD

JUCE [42] C++ 6.0.7 (2021) custom (CPU) Windows,
Linux, macOS,
Android, iOS

Nuklear [43] C 4.06.2 (2020) custom Windows,
Linux, macOS

Qt [44] C++ (many
bindings)

v6 (2020) custom Windows,
Linux, macOS,
Android, iOS

wxWidgets [45] C++ (many
bindings)

3.1.4 (2020) native/GTK/Qt Windows,
Linux, macOS

Table 3.2: GUI Toolkits

CEGUI was initially designed to provide user interface functionality for game applications.
Therefore, it provides several OpenGL and Direct3D backends as well as integration for some
game engines [34]. Unfortunately, it has not been maintained since 2016 and therefore lacks mod-
ern backends implementation such as Vulkan.

8 Chapter 3. Related Work

Whilst FLTK is a mature and lightweight technology, the offered styling options did not meet
the set requirements of a modern and creative environment, therefore, the library was not further
evaluated.

GTK and nana both mainly utilize the CPU for rendering. While this is not necessarily a neg-
ative aspect, the specified requirements demand a highly performant renderer. Therefore, both
were not further considered.

While wxWidgets is a versatile platform leveraging native OS renderers and offering multi-
media playback capabilities, the 1992 founded technology was discarded due to its rigid nature
and lack of hardware acceleration.

imgui and Nuklear both operate as immediate mode GUI libraries. In contrast to retained
mode, immediate mode entails that no information is stored from one rendering to the next. The
entire user interface has to be reevaluated and re-rendered. This approach is commonly used in
computer graphics applications due to its simplicity of integration. However, it was deemed not
suitable based on the specified requirements.

JUCE and especially Qt provided a diverse toolset for authoring rich graphical user interfaces.
However, due to a more strict licensing, the technologies were not deemed suitable for further
investigation.

Avalonia, Electron, and Flutter all use Skia either directly or indirectly through other frame-
works. As already elaborated, Skia is an exceptional renderer driving many GUI applications,
however, we believe that a dedicated GPU renderer can still outperform a general purpose ren-
derer.

Chapter 4

Approach

The following chapter describes the approach, the architecture, and design choices made for con-
structing the envisioned UI system named Elemental UI according to the specified requirements.

4.1 System Architecture
The Elemental UI architecture is built on the concept of layers, abstracting and unifying lower-
level functionality for higher layers. Figure 4.1 depicts the architecture of the framework.

Figure 4.1: The architecture of the Elemental UI Framework (Own source).

Glad At the lowest level, Vulkan and OpenGL (marked in red in Figure 4.1) expose an API to
communicate with the GPU and issue a variety of commands. To access said API (especially for
Vulkan), the functions have to be dynamically loaded on run-time. This is typically done through
a loader library, which is commonly auto-generated from the API specifications. Glad [46] was
the preferred loader for the Elemental UI architecture, as it can generate both a Vulkan and an

10 Chapter 4. Approach

OpenGL loader, is minimal, and integrates well with GLFW.

GLFW Apart from accessing the GPU, the system also requires the means to create a window
frame provided by the operating system, create a context for the appropriate backend API, and
handle user input. These tasks are highly platform-specific and require individual approaches
and implementations for every operating system. Writing windowing implementations for ev-
ery OS is beyond the scope of this thesis. Therefore, the widely used GLFW [47] library was
embedded into the architecture, enabling simplified access to window creation and events. Un-
fortunately, GLFW currently does not support mobile platforms, hence limiting the portability of
the Elemental UI framework onto handheld devices. Possible solutions and an outlook regarding
this issue is presented in Chapter 7.

Elemental Draw The Elemental Draw library (marked in blue in Figure 4.1) sits on top of the
previously mentioned components and ties them into one coherent interface for window and
context creation, event handling, and, most importantly, rendering primitives. Furthermore, El-
emental Draw loads and manages resources such as images and fonts through stb_image [48]
and FreeType [49], respectively. The library only provides the bare minimum functionality for
rendering a predefined set of primitive shapes as well as text. Nevertheless, the provided capa-
bilities are sufficient for many applications and can be combined to render much more complex
shapes and UI elements, as will be demonstrated by Elemental UI. Furthermore, Elemental Draw
can be directly used by a developer to build any type of application on it, be it a 2D game or a
visualization software. A more detailed breakdown of the Elemental Draw library is provided in
Section 4.2.

Elemental UI Elemental UI is the topmost layer in the architecture stack. It provides a tree
structure, where every node specifies its styling, positioning, and events, similar to the document
object model (DOM) that is utilized in web-standards such as HTML [50]. The library provides
all the necessary interfaces for managing said node structures and responding to events. In ad-
dition, it utilizes the rendering capabilities of Elemental Draw and transforms the user-defined
tree structure into primitive draw calls that are then issued down through the stack. In contrast
to Elemental Draw, the Elemental UI library fully exposes the underlying Elemental Draw li-
brary, so that custom rendering code can be developed for cases where the provided default node
rendering logic is insufficient. Further elaborations of the Elemental UI system are provided in
Section 4.3.

4.2 2D Rendering Library - Elemental Draw
The choice of the programming language has major implications about the range of performance
that can be achieved. Therefore, as interpreted languages are inherently slower, the choice was
narrowed down to low-level compiled languages. Ultimately, C++ was selected as the main lan-
guage for Elemental Draw, due to its portability, raw speed, and ability to natively interface with
most operating systems.

4.2.1 Cross-Compatibility
As already mentioned, cross-compatibility is one of the core pillars of our system. If the proposed
framework cannot provide a large target-set, there is no need for it to exist in the first place, as

4.2 2D Rendering Library - Elemental Draw 11

every platform has its own development tools. Therefore, multiple design considerations have
been made to ensure cross-compatibility.

Modular Backend

Elemental Draw utilizes exclusively the GPU for rendering. As shown in the architecture in Sec-
tion 4.1, a graphics API is required to access the GPU. Conventionally, the hardware vendors
decide which specific graphics API the hardware supports. However, in some cases, a graphics
API can be unavailable on certain operating systems, even though the underlying hardware is
compliant with the graphics API specifications. For example, the Apple 16” MacBook Pro - AMD
Radeon Pro 5300M [51] variant utilizes the AMD Radeon Pro 5300M graphics card that is Vulkan
1.2.133 compliant [52]. Nonetheless, the macOS operating system and Apple devices, in general,
do not support Vulkan [12, p. 372]. Although, there are initiatives to enable Vulkan on macOS
through translation layers such as MoltenVK [53], the technology has proved to be not practical
in the context of Elemental Draw and was, therefore, omitted.

Evidently, a well-considered choice of the graphics API is crucial when portability is impor-
tant, especially when rendering is the primary task of the library. Therefore, the five common
graphics APIs were examined.

Windows Linux macOS iOS Android Xbox PlayStation Web
OpenGL [54] X X (X) [55] X
Vulkan [56] X X X
DirectX [57] X X
Metal [58] X X

OpenGL ES [59] X X X (X) [60] X X X

Table 4.1: Graphics API compatibility with platforms. (X) denotes deprecated support.

As can be seen from the Table 4.1, there is no single API that is supported across all targets.
The following is a breakdown of the APIs in respect of their supported platforms:

OpenGL OpenGL, OpenGL ES, and Vulkan are graphics APIs managed by the Khronos Group
consortium [15, p. 35] [12, p. 376]. As an open standard, these APIs benefit from widespread adop-
tion and, therefore, strive for compatibility across a wide range of devices. OpenGL is supported
on all three major desktop operating systems and Android. However, the support on macOS is
deprecated and only versions up to OpenGL 4.1 [55] are currently supported.

OpenGL ES OpenGL Embedded Systems (OpenGL ES) is similar to OpenGL but, as the name
suggests, is designed for embedded systems where hardware resources are sparse, as, for exam-
ple, in mobile devices [15, p. 735-736]. Therefore, it covers all the major desktop systems, mobile
operating systems such as Android and iOS, and PlayStation. Additionally, it also enables hard-
ware acceleration for web platforms through WebGL, which is semantically based on OpenGL ES
2.0 [61].

Vulkan Vulkan is officially regarded as the successor to OpenGL. The new API has the same
goals as OpenGL to reach as many platforms as possible, in some cases with the help of com-
patibility layers. In contrast to OpenGL however, Vulkan shifts the responsibility of resource
management into the hands of the programmer, thus providing considerably more control over

12 Chapter 4. Approach

the exact behavior of the GPU [12, p. 16]. A more in-depth overview of the strengths of Vulkan,
as well as comparisons to OpenGL, is presented in Section 4.2.2.

DirectX DirectX is a Microsoft-owned set of APIs that provide different functionalities. DirectX
is comprised of Direct2D and Direct3D for 2D and 3D rendering, respectively. DirectX also en-
compasses more APIs, such as DirectWrite for font rendering, DirectXMath for accelerated math
and linear algebra operations, XAudio, and XInput for signal processing and controller input
events [57]. As a Microsoft product, the DirectX APIs target Windows and Xbox platforms only.

Metal Similar to DirectX, Metal is the proprietary graphics API for macOS, iOS, iPadOS, tvOS,
and Apple devices in general. It is, therefore, the favored interface for communicating with Apple
hardware [58]. In an attempt to force out foreign APIs from their ecosystem, Apple has depre-
cated support for the open standard API OpenGL [55] and is not planning to support Vulkan,
therefore leaving Metal as the only target API for Apple hardware moving forward.

It is evident from the compatibility Table 4.1, that no one graphics API can provide full native
compatibility over all platforms. Therefore, the Elemental Draw library was designed in a way
that the rendering backends could be interchanged and new implementations added at any time.
This was achieved by introducing a new rendering API comprised of a set of carefully chosen
primitive draw commands. An exact breakdown of the introduced API is presented in Listing 4.2.
In the context of this thesis, Vulkan was implemented as the first backend, which establishes com-
patibility with Windows, Linux, and Android. Afterwards, an OpenGL backend was introduced
to cover macOS-capable devices. Further sensible extensions could be a Metal backend for native
support on hardware from the Apple ecosystem, OpenGL ES for web rendering, and, finally, a
software rasterizer in cases where no discrete GPU is present on low-power devices.

Build System

As already alluded to in Section 2.1, many factors can influence the portability of a project, and
a major one is the compiler, which is responsible for turning the source code into an executable.
There are several compilers available, some only on select platforms. The most popular ones are
Microsoft’s Visual C++ for Windows platforms and GCC for macOS and Linux [11, p. 3].
To reach as many platforms as possible, it has to be ensured that first, the source code does not
utilize exclusive compiler features that are not present elsewhere and, second, a simple means of
generating a project configuration is provided. For example, the set of inputs required for the Mi-
crosoft Visual C++ compiler to convert source code into an executable is different from the inputs
required for GCC.
Typically, a build system is then introduced to automate among other tasks, the process of sup-
plying the necessary compiler and linker flags for generating an executable [11, p. 9]. Generally, a
build system is simply a script that abstracts a set of commands into simpler, more common com-
mands, for the convenience of the developer. There are several build systems available, one of the
more popular being GNU make. It automatically detects a developer-generated script called the
makefile, which typically states all the necessary steps for successfully compiling the project at
hand [62].

Unfortunately, a make file alone does not provide a C++ project sufficient flexibility when it
comes to setting up a development environment. Code development is commonly performed
inside an integrated development environment (IDE) [11, p. 9], which provides alongside a code
editor, productivity features to speed up development. Often the build system is directly inte-
grated into the IDE for a more streamlined experience. It is not uncommon for platform vendors

4.2 2D Rendering Library - Elemental Draw 13

to also provide native IDEs that are appropriately set up to work on native applications for that
platform. One example is Microsoft’s Visual Studio IDE, which works on native Windows appli-
cations [11, p. 67].

To retain freedom of choice regarding the IDEs and, thus, widen the development potential on
different platforms, all the necessary script, make, and solution files have to be provided. How-
ever, it is a time-consuming task to create and maintain these. Therefore, another abstraction layer
has to be introduced. By creating a manifest file that contains detailed descriptions of where the
source files are located, as well as configurations and other preferences, we can ask a build sys-
tem generator to generate a solution of choice, according to the manifest. There are a number of
such generators available, such as premake, which is based on a Lua manifest file [63] or the more
popular CMake [64], which uses its own language for the manifest files.
Furthermore, by allowing the manifest files to not only contain descriptive content on the where-
abouts of the source code files but also logical operators, conditional includes are made possible
according to predefined switches and flags. For example, the elemental draw project generator
provides a flag for the rendering backend, whereby the preferred API can be chosen. Due to the
individual backend implementations being segregated into separate folders, entire source code
modules can be excluded from the build system, effectively decreasing compilation times.

In the context of this thesis, CMake was selected as the main build system generator due to it
being the preferred system for interacting with vcpkg.

Implementation Separation

The header file context.h defines the public rendering interface in the Context class (the exact
list of methods are provided in Listing 4.2). Its constructor is kept private, so no foreign function
can construct it independently. Instead, a static method create() is exposed, returning a pointer
to the context object. Next, a Vulkan, as well as an OpenGL-context were created by inheriting
from the Context class and implementing their respective behavior (Listing 4.1). Therefore,
invoking the exposed create() method creates a new Vulkan or OpenGL context and returning
it as a Context pointer.
This approach, referred to as PImpl (Pointer to implementation), not only decreases compile times
by reducing header file includes, but also effectively hides all the implementation details, which
would otherwise have been exposed [65, p. 147-148]. Furthermore, from the consumer side of
the API, the interaction with the interface is streamlined and consistent, regardless of the target
platform.

14 Chapter 4. Approach

// context.hpp

class Context

{

public:

static Context* create();

protected:

Context() = default;

virtual ~Context() = default;

}

// context_impl_vulkan.cpp

Context* Context::create()

{

return new ContextImplVulkan();

}

// context_impl_opengl.cpp

Context* Context::create()

{

return new ContextImplOpengl();

}

Listing 4.1: PImpl implementation of Context Class

Dependency Management

A considerable effort went into reducing the necessity for foreign code inside the project as de-
pendencies might utilize platform-specific code or rely on specific compilers features, hindering
the portability of the entire project. Nevertheless, reinventing the wheel for every project is time-
consuming; therefore, a select list of established libraries were considered to expedite the devel-
opment time.

As already established in Section 4.1, the dependencies were as follows:

• GLFW [47] - For window and context creation and input handling.

• glslang [66] - For shader compilation.

• stb [48] - For reading and writing image files.

• FreeType [49] - For font loading and glyph generation.

In C++, the integration of dependencies is a surprisingly challenging task. In contrast to the
more modern languages, such as JavaScript or Rust, there is no one dominant package manage-
ment system for C and C++. Six possible approaches were evaluated for managing the depen-
dencies in a clean and structured manner. The main focus was once more the portability of the
entire system.

4.2 2D Rendering Library - Elemental Draw 15

1. Including Source - An obvious approach would be to include the required library in its
entirety into the project. However, this has a few downsides. On the one hand, the project’s
size increases drastically, as many unnecessary files will be included, such as demos and
documentation. On the other hand, custom glue scripts have to be made to interface with
the build systems, which the dependencies might be using. Furthermore, the licensing of
the dependencies might prevent redistribution or uploading of the source code.

2. Git Submodules [67] - Instead of manually downloading the sources for the libraries, git
submodules can be utilized, which allow the declaration of dependencies in a git reposi-
tory. The main benefit from this approach is the reduction in the size of the repository, as
the dependencies are not duplicated inside every repository, depending on the library. Fur-
thermore, the process of updating dependencies is facilitated as only the declaration has to
be adjusted accordingly. Git tools automatically detect the changes and pull in the desired
commit of the dependency. However, the manual work of coordinating the exotic build
systems that might arise inside dependencies still has to be done by hand.

3. Manual Restructuring - An alternative to including the dependencies in their entirety is to
consider only certain modules of interest for copying. By selecting only the relevant code
base, the size of the dependency can be somewhat reduced. Furthermore, a unified folder
structure can be employed for every dependency, improving the readability of the project as
a whole. Unfortunately, a considerable downside to this approach is the significant work-
load beforehand to convert all dependencies into a unified format. Reordering the source
code will most likely negatively affect the build system, as it may no longer be able to find
the source files in their predetermined locations. Finally, accepting updates from the origi-
nal branch might be impossible if the changes are too comprehensive.

4. Forked Submodules - The fourth approach can be identified by combining the manual re-
structuring approach with submodules. By forking the dependency, a separate develop-
ment branch can be opened where all the restructuring can be applied. The fork can then
be utilized as a submodule for the main project, inheriting all its benefits. Unfortunately,
the same problems regarding the inherent difficulty in updating the dependency still apply;
however, it being on a separate repository increases the separation and might simplify the
process of updating from the original branch.

5. Pre-built Binaries - Instead of providing the source code and instructions to compile bina-
ries, the binaries themselves can be distributed, eliminating the compilation process. The
dependency folder can then be considerably simplified, containing only header files and the
binaries.
Although this approach might appear reasonable at first glance, it still entails some signifi-
cant issues. First, the file size of the generated binaries is typically considerably larger than
their source code counterparts, therefore, notably increasing the size of the entire repository.
Regardless of the size, there is still the issue of obtaining the pre-built binaries in the first
place. Although binaries are sometimes generated by the developers of the libraries and
made publicly available on binary repositories, it is still not a given that all the necessary
platform and architecture binaries will be provided, as, for example, is the case with GLFW,
where only Windows 32/64 and macOS 64 are provided [47].

6. Package Manager - The responsibilities of a package manager are downloading, installing,
updating, and removing packages or modules. It is a convenient and centralized way to
address dependencies and can alleviate all the shortcomings of the previously stated ap-
proaches. An additional benefit of a good package manager is the ability to notify of se-
curity alerts in dependencies when they arise. As an example, npm [68], a popular Node

16 Chapter 4. Approach

package manager for JavaScript developers, requires the declaration of dependencies in a
so-called package.jsonmanifest file [69]. The packages can, therefore, be downloaded di-
rectly from a common repository by the package manager and the developer can be notified
of any vulnerabilities in their dependencies.

As illustrated, it makes sense to utilize a package manager as it can simplify setting up the
project on different platforms by automatically managing the dependencies. Therefore, during
the development of Elemental Draw, vcpkg [70], a package manager for C++ libraries was uti-
lized. It was specifically chosen for the following reasons.
As C and C++ libraries are structured, built, and hosted completely differently from one another,
vcpkg offers a flexible and decentralized approach to packaging libraries. A port contains a man-
ifest that describes the library it is packaging as well as instructions on where to download the
source for the specific library and the changes that are necessary to modify the library to comply
with the vcpkg interface. Although there is a considerable amount of work to be done before-
hand to set up a port, the benefits are the simplified maintainability of the preexisting ports, as
libraries can be updated rather quickly by adjusting the download repository. Vcpkg contains
1’610 prepackaged ports [71] and provides a system for introducing custom ports, called ports
overlay [72], for cases where a dependency might not already be prepackaged.
In a manner familiar to other package managers, vcpkg allows the downloading and installation
of libraries. During the installation process, vcpkg applies the predefined changes to the library
and compiles it to the desired target triplet. Triplets are a set of target configurations that contain
information about the target architecture, platform, and library linkage. The officially supported
targets are as follows [73]:

• arm-uwp

• arm64-windows

• x64-linux

• x64-osx

• x64-uwp

• x64-windows-static

• x64-windows

• x86-windows

In addition, there are community triplets as well as custom triplets that can be defined to
further increase portability. However, unofficial ports are not tested and can, therefore, not be
guaranteed to work with all ports.
The patches specified in the ports allow for the modification of the library, which, in some cases,
can improve the portability of the library, which was originally not set up to be compiled to
certain target platforms. This dedication to portability was one of the main reasons why vcpkg
was chosen as the package manager for the development of Elemental Draw.

Continuous Integration

In summary, there are numerous possible points of failure when it comes to cross-compatibility.
Starting with the dependencies to the build system and even the source code for Elemental Draw
can introduce unintended side effects that might cause incompatibility with a platform. There-
fore, it was important to closely track the compatibility of the project during development to

4.2 2D Rendering Library - Elemental Draw 17

detect possible violations immediately.
Continuous Integration (CI) is an automated system that performs integration tasks [74, p. xx].
Although often described as a useful system for larger teams, the scripts run by the automation
system are defined by the developer and can, therefore, perform any generic action necessary.
Thus, the CI system was used to integrate the entire technology stack of Elemental Draw, by pro-
ducing compiled binaries on every commit.
The CI system utilized in the context of this thesis was GitHub Actions [75]. The choice of this
CI solution was natural since the Elemental Draw project was hosted on GitHub. The setup com-
prised of setting up a .yml script detailing what actions were to be executed when. For the library
introduced in this thesis, the following actions were specified:

1. Download Repository - On every commit to the master branch, the repository is down-
loaded to a GitHub Actions runner machine.

2. Setup Environment - The environment is prepared by downloading or updating necessary
build dependencies.

3. Generate Solution - Through invoking CMake, the appropriate project solution is generated
according to the current platform and the linking parameters.

4. Build - The project is then built via the appropriate compiler from the platform.

5. Package - If the build step is successful, the generated binaries alongside the header-files are
packaged into a compressed folder.

6. Upload - The generated artifacts are uploaded from the runner to a database where they can
be accessed later.

This process is performed six times for three platforms (Linux, Windows, and macOS) and
two linking configurations (static and dynamic). Altering the architecture would have also been
possible but was omitted, as it was deemed unnecessary.
Unfortunately, the current CI system is only able to detect static issues, such as misconfigura-
tion or syntax errors. Runtime errors, especially those caused by loading unsupported backends,
cannot be discovered because the binaries are not executed in the CI pipeline. Although it is tech-
nically possible to execute generated binaries on the remote CI systems, the runners are typically
set up in a virtual environment where accessing hardware, especially the GPU, is not possible.
Therefore, the CI system could be further improved by adding an additional step, with the bina-
ries transferred to a trusted machine where they are executed.

Language Bindings

The low-level programming language C++ was chosen for Elemental Draw not only because of its
high performance but also with the intent to provide portability across platforms and languages.
It is understandable that, in some cases, the speed of development might be preferred over the
speed of the resulting application. In such cases, C++ code might prove difficult to work with, as
the low-level language requires more attention regarding memory management and strict type
declaration. Commonly, higher-level languages provide the means for loading and interfacing
with lower-level C shared libraries, to communicate with the operating system, to benefit from
preexisting low-level libraries, or to shift performance critical code into a lower-level language
due to performance concerns.
The language C provides a great standard interface for types and functions, and, therefore, there
are many dynamic library loaders available for different higher-level languages or, in some cases,
such loaders are already provided with the language.

18 Chapter 4. Approach

Elemental Draw was written in C++ and, therefore, naturally allows being interfaced by another
C++ codebase directly. In addition, a C wrapper was introduced on top of the C++ API to expose
the library’s functionality in a more accessible interface. This was achieved by introducing a new
file called c_bindings.cpp, which wraps all the public calls to the Elemental Draw API, includ-
ing the constructors and destructors, as the library was written in an object-oriented style while
the C language does not have the concept of classes. Furthermore, small adjustments were made
to the new C bindings, where complex C++ classes, such as strings and vectors, were adapted to
their C counterparts. The adaptation process was performed rapidly, as great care had been taken
early on, to utilize C types as much as possible for exposed classes as well as public methods. Still,
for the implementation itself, the full range of C++ types was used as it was fully encapsulated
through the PImpl approach.

C# Binding The exposed C API allowed for a wide range of new language bindings to be in-
troduced. For example, the C# language directly provides the means to load libraries through the
annotation "DllImport" [76].

using System;

using System.Runtime.InteropServices;

// load

[DllImport("elemd.dll", CharSet = CharSet.Unicode)]

public static extern void fill_rect(IntPtr ctx, float x, float y, float w, float h);

// call

fill_rect(ctx, 10, 10, 20, 20);

When the declared function is called, the program executes the implementation from within
the shared library, effectively making Elemental Draw accessible through C#.

Java Binding Similarly, the Java language also provides the means to load a library directly
from within the language with the system call "System.loadLibrary" [77].

// load

static { System.loadLibrary("elemd"); }

private static native void fill_rect(int ctx, float x, float y, float w, float h);

// call

fill_rect(ctx, 10, 10, 20, 20);

Some additional wrapping has to be performed for the Java binding, as Java expects certain
prefixed names and does not provide the concept of pointers. Therefore, the interface should
be adjusted to utilize uint64_t types to support 32-bit as well as 64-bit pointers. In the context
of this thesis, language bindings were not a major focus. Therefore, there is potential for future
improvements in this aspect. Possible refinements to the binding system will be presented in
Chapter 7.

Python Binding For the programming language Python, the library loading is exposed through
the standard library "ctypes" [78].

4.2 2D Rendering Library - Elemental Draw 19

from ctypes import *

load

lib = cdll.LoadLibrary("elemd.dll")

lib.fill_rect.argtypes = [POINTER(Context), c_float, c_float, c_float, c_float]

call

lib.fill_rect(ctx, 10, 10, 20, 20)

A reference Python language binding was created in the context of this thesis, to demonstrate
what a more advanced binding could look like, by reintroducing the concept of classes.

4.2.2 Rendering
Leveraging the GPU for rendering has the potential to drastically increase performance, especially
when it comes to large-scale bitmap filtering operations. However, by shifting the rendering op-
erations to a separate hardware, the task at hand inherently increases in complexity since, besides
rendering, new responsibilities arise. Among these, resource allocation has to be addressed on
the GPU; communication barriers have to be established between GPU and CPU; and, most im-
portantly, a rendering strategy has to be devised for issuing rendering commands with as few
state changes as possible.
In general, performing rendering operations is much more involved on the GPU than on the CPU.
Furthermore, the degree of difficulty also depends on the chosen rendering API. While immedi-
ate mode in OpenGL allows for rendering points, lines, and vertices with little effort or setup, the
approach suffers from poor performance [15, p. 23]. In contrast, Vulkan requires a considerable
amount of work upfront, even for the simplest rendering operation, but it provides opportunities
for optimizations on the lowest level.

Despite these difficulties, to achieve the best possible performance, it was decided to utilize the
GPU for all rasterization tasks. Furthermore, Vulkan was selected as the main backend target, as
it offers the highest performance potential compared to older graphics APIs, due to its exhaustive
configuration capabilities.

Vulkan

GPUs can perform a vast number of simple operations in a highly parallel manner. However, in
order to communicate with the GPU, so-called synchronization barriers have to be established.
Performing too many synchronizations on the GPU can lead to idle time and wasted performance.
Therefore, special care has to be taken to strategically sequence the calls to the GPU to avoid un-
necessary synchronization between the host and application [12, p. 322].

Considering this fact, we identified an opportunity for accelerating the rendering, by deliver-
ing all the necessary data upfront and issuing only one rendering command. Hereby, only one
synchronization barrier would have to be established as well as only one data upload would be
performed. This approach is known as instancing and is used in games to render vast numbers
of objects in a performant manner [12, p. 247-248]. While different properties can be defined that
vary from instance to instance, the main limitation of this approach is that the instances have to
consist of the same geometry. Therefore, instancing can only be used, if a common shape between

20 Chapter 4. Approach

the instances can be identified.

In the case of GUI rendering, we discovered that the most common shapes in UI applications
can be described as axis-aligned rectangles. Circles, rectangles, rounded rectangles, squares, out-
lined rectangles, font glyphs, and image bitmaps can all be expressed within a rectangle. There-
fore, by constructing a list containing positions, dimensions and contents of individual rectangles,
the instancing approach can be utilized to render the entire user interface in one draw call. Fig-
ure 4.2 depicts how all primitives supported by Elemental Draw can be rendered as rectangles.
The list of rectangles is generated by invoking shape draw calls exposed in the Elemental Draw
API (Listing 4.2). The desired shapes and their positions are stored in the list and only submitted
to the GPU as one instanced draw call as soon as the draw_frame() method is invoked. To
ensure that all rectangles can be fitted in one draw call, SSBOs are utilized due to their higher
capacity. Furthermore, to allow for alpha blending, an operation, where none opaque colors are
blended according to their alpha value, the correct order of rendering has to be employed.

Unfortunately, not all primitives can be expressed with this approach. Bespoke shapes or free
form paths cannot be realized directly.

While it is technically possible to construct unique meshes to allow for custom shapes to be
rendered, the added shapes can potentially interfere with the ordering of elements, causing a
split in the instance list. For example, issuing six rectangle shapes and one complex shape call
in-between will cause three rendering calls. One for the first three rectangles, one for the complex
shape, and a third one for the three remaining rectangles. In this case, omitting the complex
shape would have made it possible to combine the six rectangles into one instanced draw call.
The restriction to a limited set of shapes was done deliberately to prevent such breaks in the
instance chain. Possible improvements regarding this issue are given in Chapter 7.

Rendering Primitives

Given the information regarding the color, corner radius, and line width, the desired shape can
be rendered utilizing shaders. As an example, a simple circle can be rendered, by evaluating the
vector length of every x and y coordinate pair inside a rectangle and only coloring those pixels,
that lie within the radius r of the circle as visualized (Equation 4.1).

√
x2 + y2 < r (4.1)

Outlines can be achieved, by introducing a second circle with a smaller radius r2 and carving
out the first circle, by enforcing that both conditions, smaller than r and bigger than r2 are met
(Equation 4.2).

√
x2 + y2 < r√
x2 + y2 > r2

(4.2)

Applying this concept, one shader was created providing the ability to render all the shapes
depicted in Figure 4.2 and provided in Listing 4.2. The base equation for the shapes was derived

4.2 2D Rendering Library - Elemental Draw 21

(a) Overview of supported primitives in Elemental Draw

(b) Wireframe view of the supported primitives in Elemental Draw

Figure 4.2: An overview of all supported primitives, font, and bitmap rendering provided by Elemental Draw
(a). Figure (b) depicts the generated wireframe mesh used for the simultaneous rendering all elements.
(Own source).

22 Chapter 4. Approach

from Inigo Quilez’s sdRoundedBox algorithm [79].

// Stroke

void stroke_rect(...);

void stroke_rounded_rect(...);

void stroke_circle(...);

// Fill

void fill_rect(...);

void fill_rounded_rect(...);

void fill_circle(...);

// Draw

void draw_text(...);

void draw_image(...);

void draw_rounded_image(...);

// Shadow

void draw_rect_shadow(...);

void draw_rounded_rect_shadow(...);

void draw_circle_shadow(...);

// Mask

void set_rect_mask(...);

void remove_rect_mask();

// State

void set_clear_color(...);

void set_fill_color(...);

void set_stroke_color(...);

void set_line_width(...);

void set_font(...);

void set_font_size(...);

// Submit

void draw_frame();

Listing 4.2: Rendering API exposed by Elemental Draw

Text Rendering

Text rendering was achieved, by first loading a font file utilizing the FreeType [49] library and con-
verting all available glyphs from said font file to image bitmaps for texture mapping. To avoid
creating individual glyph images, one texture atlas was created, encompassing all glyphs, laid
out in a grid structure. Alongside it, a mapping was created, encoding individual characters to
positions inside the texture atlas as well as their dimensions. The text can be then rendered, by
constructing rectangle meshes for individual glyphs and filling them with the appropriate texture
regions.

4.3 GUI Library - Elemental UI 23

In most cases, this is a passable approach for font rendering, however, it suffers from aliasing
artifacts on small font sizes and blurry edges on big font sizes. Increasing the bitmap sizes of the
glyphs can improve overall quality but at the same time also increases the memory footprint.
To avoid increasing the bitmap sizes, a technique called signed distance fields (SDF) can be em-
ployed. By encoding distance information of the glyph in a bitmap, a clean separation between
the glyph and background can be produced at virtually any scale, effectively eliminating the
blurring of the edges. The original SDF approach was later improved by Viktor Chlumsky, by
introducing a multi-channel approach that eliminated several artifacts common to SDFs [80]. A
reference implementation was also provided by Chlumsky [81], which was integrated into Ele-
mental Draw. However, due to practical reasons, the multi-sample distance field font rendering
implementation was not included in the submitted version.

4.3 GUI Library - Elemental UI
Whilst Elemental Draw performs all the heavy lifting by communicating with the operating sys-
tem and providing a window with a context ready to be drawn to, Elemental UI builds on top of
the provided system and once again abstracts it for a more convenient use. In particular, Elemen-
tal UI abstracts away the primitive rendering calls and provides functionality for defining media
content, styles, layouts, and interaction logic. Many concepts and implementation details were
mainly influenced by web technologies, such as HTML, CSS, and JavaScript’s event system, and
the document object model.

4.3.1 Node Hierarchy
In Elemental UI every entity is represented as a node. Every node can have one parent and
multiple child nodes. This allows for a tree structure of nodes to be generated. Nodes are imple-
mented as an abstract class to provide their composition capabilities to other, more specialized
nodes, such as the element class. Elements represent generic container entities mostly utilized
for layouting purposes. In contrast, the heading class is used specifically for displaying text.
Therefore, it is only used as a leaf node and does not provide any layouting capabilities or the
ability to accept child nodes. Lastly, the Elemental UI implementation provides a text_field
class that is similar to the heading class but allows the displayed text to be modified during run-
time. The three classes define implementations, which, according to the current style of the node,
issue draw commands to the Elemental Draw renderer. This system can be easily expanded if the
desired functionality is not provided. For example, a slider element could be implemented by de-
riving from the node class and implementing its visual appearance with the primitive rendering
commands exposed through Elemental Draw.

A node tree can be created by instantiating individual nodes, providing the appropriate con-
tents and style configurations, and chaining them by calling the add_child(node* child)
methods on the parent nodes. Once a node tree is declared, the root node can be passed to the
Elemental UI context. The context automatically traverses the tree structure, performing layout-
ing instructions and caching all the calculated positions of the nodes. Finally, a second traversal is
executed, however, this time calling all rendering commands from the nodes with their respective
cached positions. If more operations have to be done after the tree is rendered, as is the case with
transitional effects, another traversal is requested, to be executed immediately after.

24 Chapter 4. Approach

4.3.2 Styling
In an effort to separate content from styling, the Elemental UI implementation closely follows the
style properties defined by the Cascading Style Sheets (CSS). However, liberties were taken dur-
ing the implementation to diverge functionality from the CSS specification where it was deemed
necessary.
In addition, some new generic types were introduced, such as measure_value to assist in repre-
senting measurement values in pixels or percentages. Similarly, the maybe<T> template structure
was introduced to help to specify a default state of a property where the type itself cannot express
an appropriate default value. The implemented properties are as follows:

• width, height - These are of type measure_value and provide information regarding
the dimensions of the element.

• min_width, min_height,max_width, max_height - The minimum and maximum prop-
erties specify the dimensions to which an element is allowed to grow or shrink, whilst the
type is measure_value.

• padding - The padding property is used to insert whitespace in the four main cardinal
directions. The whitespace is added to the inside of the element and can therefore, increase
the size of the element. The type is defined as a float[4] to represent the four directions,
north, east, south, and west.

• margin - Similar to padding, margin is also used for adding whitespace. Contrary to
padding, however, the whitespace is inserted outside the element, which can cause the el-
ement to be re-positioned. The type is again float[4].

• border_width - The property specifies the width of the border to be stroked. As a float[4]
type, it provides individual widths for the four main cardinal directions.

• border_color - border_color should be used in conjunction with the border_width
property. It is of type color and specifies the color of the border stroke.

• border_radius - The property of type float[4] specifies the roundness of the four cor-
ners of the rectangle. The four float values correspond to the four diagonal cardinal direc-
tions: northwest, northeast, southwest, and southeast.

• background_color - Of type maybe<color>, the background_color specifies the back-
ground color of the element. Although a black color with zero transparency could be seen
as an appropriate default value, this property can conflict with background_image. The
additional information stored in the maybe struct provides a clear distinction, whether the
background is supposed to be rendered transparent or if the values are not set and the
background_image property should be considered for providing the appropriate back-
ground decoration.

• background_image - A type of maybe<image*> that specifies whether a bitmap should
be rendered as the background to the current element.

• color - The color property specifies the font color and is of type color. In this instance,
no maybe type is required as black is always an appropriate default color. Font-related
properties are only utilized by node classes that handle text rendering such as heading
and text_field.

4.3 GUI Library - Elemental UI 25

• font_family - The property of type font* specifies the font type.

• font_size - The property of type float defines the size of the font.

• display - The display property defines the layout properties of the current element. The
enumerated type Display with options {BLOCK, INLINE} specifies whether the element
should stretch horizontally (BLOCK), filling the entirety of the width, provided by its parent
element, or whether the element should shrink (INLINE) to its minimum width according
to its child elements. The BLOCK property is mostly used for container elements, whilst
INLINE is more appropriate for leaf nodes, which define their own width, as is the case
with the node type heading.

• overflow - The overflow property enumerates three options {SHOW, HIDDEN, SCROLL}
and is of type Overflow. In cases where an element exceeds the size of its parent, a strategy
has to be devised on how the element should react. While SHOW does not act at all and lets
the content overflow, the option HIDDEN cuts off the overflown content. The third option
SCROLL converts the element into a scrollable item and renders scroll bars.

• scroll_bar_color - Related to the overflow property with option SCROLL, the dis-
played scroll bar color can be adjusted with the scroll_bar_color property of type
color.

• transition_time - The transition_time of type float specifies the transition dura-
tion in seconds.

Compared to the CSS specifications, the implemented style properties are only a small sub-
set. Still more properties have to be introduced; however, only the presented properties were
considered within the scope of this thesis.

4.3.3 Event System
The interaction system implemented in Elemental UI is based on events. Thus, interaction reso-
lution logic has to be written as a lambda function and added to nodes as an event-listener. The
following event types are exposed on the node objects:

node_click_event The node click event is triggered, providing the left mouse button was pressed,
while the mouse cursor was positioned within the bounding box of a node element. The event
object provides a reference to the node which emitted the event as well as a struct containing x
and y coordinates of the click origin.
Due to the inherent kd-tree structure of the nodes, where the parent node always fully encom-
passes all its child nodes, a fast search algorithm can be devised to identify the exact leaf node,
where the click event should be triggered on. Given a click event with global coordinates, we
can start a search on the root node and, according to the x and y coordinates, decide which child
node encompasses those coordinates. Once a child node is found, the search can be continued
recursively, ignoring all other siblings, as shown in Figure 4.3, steps 1 to 3. Once a leaf node is
reached, all event listeners can be triggered on that node. Finally, the node returns the recursive
call, allowing the parent node to employ its event-listeners if present. The events will, therefore,
automatically be bubbling from leaf node to root node, as depicted in Figure 4.3, steps 4 to 6. This
behavior can be interrupted by returning false in the lambda function, signaling the parent
node that bubbling is not desired.

26 Chapter 4. Approach

Figure 4.3: Event propagation diagram. Fictive layout (left), event propagation along node tree structure
(right). (Own source).

node_scroll_event Similarly to the node click event, the node scroll event is invoked on a
mouse scroll event. Hereby, the mouse coordinates are checked against the node tree and the
leaf node triggers its event listeners. The bubbling behavior in the scroll event is dependent on
the scroll state of the child node. In a scenario, where one scroll node is inside another, it is not
desirable, for the child node to propagate the scroll event upwards, which would cause a double
scroll translation. Therefore, the bubbling only occurs if the child node has reached a scroll limit
in either direction. The node_scroll_event object provides a reference to the target node as
well as a scroll delta in the x and y direction.

node_key_event Elemental UI allows for one node to be focused at any given time. Focusing
a node is performed by clicking on it. The node key event is triggered upon any keypress from
the keyboard and is triggered on the currently focused node. The node_key_event object has a
reference to the focused object and provides the key scan-code as well as potential modifiers. The
event has bubbling as the default behavior.

node_char_event Finally, the node char event acts similar to the node key event. The main
difference being the contents of the node_char_event object. It contains, Unicode character
instead of a key number. node_char_event is therefore mostly useful for events, where the
literal character value is required instead of a key code. As an example, the text_field element
utilized the node_char_event for inserting characters, as node_key_event would retrieve
ambiguous results due to differences in keyboard layouts and language settings.

4.3.4 Transitions
The concept of transitions was also significantly influenced by web technologies. It entails a visual
transformation from one form into another via a user event or through any other means. Hover
effects are a typical example of transitions. Upon a user mouse move input, a hover event is
triggered on the elements directly underneath the cursor. The elements can act upon the event
as specified by the developer, for example by changing the background color or adding a border.
To ease the transition for a smoother experience, we introduced a transition_time variable,

4.3 GUI Library - Elemental UI 27

controlling the duration of the transition. The default value being 0, executes transition instantly
from one frame to the next. Increasing the value spreads the transition over the specified amount
of time.
The transition is implemented on all numeric style properties of a node. By defining the starting
value x0 and the desired end value x1, we can evaluate any value along the path from x0 to x1

given a factor t with the linear interpolation formula:

(x1 − x0)t+ x0 (4.3)

These intermediate values can then be presented during the transition according to the transi-
tion time and transition progress.
The same is true for color properties, as color properties are stored as a four-component vector,
corresponding to r red, g green, b blue, and a alpha channels.

(r1 − r0)t+ r0

(g1 − g0)t+ g0

(b1 − b0)t+ b0

(a1 − a0)t+ a0

(4.4)

Again, a source and destination color can be specified and linearly interpolated to obtain
mixed color values according to the mix factor t.

4.3.5 Dynamic Framerate
Graphical user interfaces usually tend to be static most of the time and typically change with user
input. Therefore, it would not make sense to employ a constant render loop, as is the case for
games. Re-rendering the presented UI without there being any visible change would waste GPU
and CPU cycles and, therefore, produce unnecessary heat and waste energy.
The render loop created in Elemental UI is a mix of an event-driven and animation-based loop.
In general, the framework awaits input events and issues a render call, as soon as one is given.
Therefore, every event can directly lead to one render call. However, in the case where animations
or transitions are expected to be played, components can request a subsequent render call, regard-
less of the input. On every render call, all the appropriate components update their progress and
evaluate their new transition states, requesting further frames, if necessary. The renderer per-
forms rendering calls, as long as individual components report being in such a transition state.
This approach, therefore, allows for a high framerate rendering during transitions and animations
and completely halts rendering as soon as the UI reaches a steady state.
As is presented in the performance evaluation Section 6.1, on middle to high tier GPUs, Elemen-
tal Draw can provide high-frequency rendering, in some cases even surpassing the refresh rate
of a monitor. Providing higher framerates than the monitor can present does not grant any ad-
ditional benefits, therefore, Elemental UI provides means to limit the framerate, in cases where
consequent rendering calls are issued without any throttling, as is the case with animations.

Chapter 5

Case Studies

To evaluate the viability of the Elemental UI framework, five case studies were conducted, each
covering different aspects and capabilities of the Elemental Draw and Elemental UI libraries.
Three applications were made directly, utilizing the rendering library Elemental Draw, to demon-
strate the adaptability of the system. The two remaining applications were built with Elemental
UI to demonstrate the layouting and animation mechanics.

5.1 Painting Application
The painting application provides a canvas as well as a color picker with ten predefined colors.
The brush is a bitmap, which can be replaced by the user to achieve different brush stroke styles.
The brush size can be modulated by the scroll wheel.
This application, though not designed for the creation of artistic masterpieces, helps to demon-
strate the flexibility of the renderer, despite Elemental Draw being mainly tailored towards geo-
metric user interface rendering.

30 Chapter 5. Case Studies

Figure 5.1: A sunset scene created with the painting application running on top of Elemental Draw. (Own
source).

The technical implementation can be greatly improved since every single brush stroke is
stored in memory and re-rendered on every input. Due to the employed instanced rendering
technique, re-rendering as many as thousands of brush strokes does not degrade the performance.
However, in future work, it is advised that the presented painting is stored as a whole in a texture
rather than re-rendering individual strokes.

5.2 Breakout Game
Showcasing the real-time capabilities of the Elemental Draw renderer, a generic breakout game
was created. Using the arrow keys as controls, a player can steer the paddle on the horizontal
axis to bounce the ball back into the bricks. Upon colliding with a brick, it either gets destroyed,
or depending on its type, its hit points get counted down. Once minimal health is reached the
brick is destroyed and an extra life is spawned, falling down towards the paddle. The level is
completed by destroying all bricks.

5.3 Calculator 31

(a) Breakout game start screen. (b) Breakout game during gameplay.

Figure 5.2: Breakout game application. (Own source)

In contrast to the painting application, the breakout game runs on a constant loop, indepen-
dent of the user input.

5.3 Calculator
A visual calculator app was created on the Elemental UI framework, directly utilizing layout-
ing and animation features. On mouse hover over the buttons, a transition plays, animating the
background color of the buttons. Such an effect is commonly applied to elements to signal in-
tractability with the visual element. Furthermore, the buttons were laid out automatically by
specifying the desired widths in proportion to the width of their parent container. In this case, at
25%, four buttons are allowed to appear adjacent to each other. Providing relative measures for
the dimensions of the elements allows for responsive reactions of the layout for resizing events.
This behavior can be observed in Figure 5.3.
In addition, character events were mapped to allow for the inputting of numbers and operators
directly from the keyboard. Finally, the calculator features a scrollable number display. This was
done by restricting the height of the display, causing the layouting algorithm to horizontally over-
flow characters in the event that there is no more room to expand. The overflown content is then
accessible via a scrollbar or by scrolling with the mouse wheel.

32 Chapter 5. Case Studies

(a) (b)

Figure 5.3: Calculator application in initial size (a) and resized (b). (Own source)

5.4 Messaging Application
Preceding, a mock messaging app was created, demonstrating more complex layout possibilities
as well as special icon and media rendering. This layout was achieved by dividing the content
into containers. The left sidebar was placed in a container with a 23% width whilst the main
content body was assigned a 77% width, resulting in a side-by-side arrangement. The individual
elements were then laid out similarly, utilizing margin and padding properties to provide enough
whitespace in-between the elements. Furthermore, the demo features hover effects and a scrol-
lable main body.

Although the title bar appears similar in style to the macOS, the image was taken from a demo
application running on a windows machine. This effect was achieved through disabling the na-
tive frame and reimplementing the title bar appearance and functionality, including the three title
bar buttons.

5.5 Conway’s Game Of Life 33

Figure 5.4: Messaging application demonstration with main focus on complex layouting. (Profile images
from external source2)(Own source).

It should be noted that the application as such is non-functional and only serves to showcase
visual results for demonstration purposes.

5.5 Conway’s Game Of Life
Finally, Conway’s Game of Life cellular automaton was implemented extensively utilizing the
draw_rect() command provided by the Elemental Draw renderer. This automaton regulates
the life and death of cells in a grid according to a predefined rule set [82]. The number of columns
and rows, as well as the cell size, can be varied for different simulation domains. Therefore, the
provided implementation can serve as a basis to study performance characteristics of the ren-
dering system. Precisely due to these properties, the Game of Life application was subsequently
utilized, though in a slightly modified state, for performing performance evaluations in Chap-
ter 6.

For interaction purposes, a halt and resume functionality was introduced via the spacebar
keypress. Furthermore, new cells can be created via a left mouse click in the desired grid cell.
This functionality serves as a means to find interesting configurations of cell structures.

2https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

Chapter 6

Evaluation

The performance of the renderer was the main focus of the research questions. Thus, a bench-
mark application was devised for evaluating the exact performance characteristics of the Elemen-
tal Draw library (i.e., RQ1) as well as to compare its performance against other state-of-the-art
frameworks (i.e., RQ2). The preliminary results from devising this benchmark are provided in
the following section.

6.1 RQ1 - Performance Evaluation
The benchmark builds on the notion of a repeatable simulation, which can provide variable loads
on the CPU and GPU. Hereby Conway’s Game of Life as introduced in Section 5.5 was used in
a slightly modified way, removing all interactivity to ensure consistent outcomes. A dense initial
configuration was chosen, with approximately 60’000 individual cells (Figure 6.1 (a)) dispersing
down to approximately 15’000 cells throughout 8’200 generations (Figure 6.1 (d)), upon which
the cells reach a steady state. The cells were colored according to their current state. Red sig-
naling death, green signaling birth, and white corresponding to an unchanged state of life. The
initial state being rather dense causes a lot of state changes on the entire grid due to overpopu-
lation. Therefore, more load is generated in the initial few seconds of the simulation, rather than
towards the end where the cells reach an equilibrium.
We believe that such a synthetic benchmark is still a good measure of performance, as it simulates
a significant load with many changing elements in addition to a slow and steady scene. Further-
more, the test can be repeated due to the deterministic nature of the selected cellular automaton.

The performance benchmark was conducted on several machines with different hardware
components and operating systems. The hardware ranged from mid-tier laptops given the mobile
graphics chips (GeForce MX250, Intel UHD Graphics 620), to high-end gaming stations (GeForce
RTX 2080Ti, GeForce GTX 1080Ti). To provide comparable results, the application was fixed at
a native resolution of 1800 pixels width and 1200 pixels height. Resizing was disabled. The
benchmark ran automatically and measured the elapsed time during each generation in millisec-
onds. The measured frame-times were then averaged. The benchmark was run approximately
five times on each device. Figure 6.2 presents the quartiles and medians of the tests. The x-axis
enumerates the milliseconds per frame while the y-axis lists the machines the benchmark was con-
ducted on. The green, blue, and red dotted vertical lines mark the 144Hz, 120HZ, and 60Hz limits,
respectively. These are common monitor refresh rates and can be used as performance targets. Al-
though overshooting the targets can lead to wasted performance and screen tearing [15, p. 764], it
is still preferred, as the framerate can be throttled down artificially. However, if the target cannot
be reached, it means that the application is underperforming. Stuttering and delayed response

36 Chapter 6. Evaluation

(a) 58’386 entities @ generation 6 (b) 18’219 entities @ generation 2730

(c) 16’149 entities @ generation 5466 (d) 15’514 entities @ generation 8200

Figure 6.1: Benchmark application running Conway’s Game of Life from the initial configuration (a) to a
steady state (d). Red rectangle (a) marks zoomed in region. (Own source).

6.2 RQ2 - Performance Comparison 37

times can be artifacts of an underperforming application leading to a bad user experience.

Figure 6.2 shows that most of the devices performed well, far above the 144Hz mark. Fur-
thermore, the midrange laptops also managed to perform above the 120Hz threshold. The only
exception was the MacBook 16”, performing the worst at an approximate 13 ms average. This was
to be expected due to the OpenGL implementation not being able to utilize SSBOs. In addition,
the macOS build was generally less optimized than its two counterparts due to limited accessi-
bility during development. However, considering all the limitations, an average frame-time of
under 16 ms can still be viewed as sufficient.

An additional observation was made on the spread of the quartiles. The spread from the lower
to the upper quartiles appears to be more pronounced on laptops with poor thermal properties,
where subsequent execution of the benchmark would lead to worse results due to heating issues
that throttled the overall performance of the device. In contrast to the portable devices, the high-
performance workstations managed to deliver highly consistent scores.

6.2 RQ2 - Performance Comparison
To evaluate how the achieved performance compared to other available solutions, the Conway’s
Game of Life performance benchmark was ported to JavaScript, utilizing the HTML5 Canvas
API [83]. The web contents were then run on Google Chrome, Electron, and Firefox. The reso-
lution was again fixed to 1800 pixels in width and 1200 pixels in height to ensure a comparable
result. The generated output was confirmed to be visually identical to each other. All bench-
marks were executed on the same device and operating system. In both implementations, the
frame-times were measured, stored in a pre-allocated array, and printed out at the end to ensure
that neither the array resizing nor the console printing operation would distort the measurement.

Figure 6.3 (a) shows the achieved milliseconds throughout 8’200 generations of the simula-
tion. As expected, due to a high density in the initial configuration with up to 60’000 individually
painted cells, the performance was worse throughout all variants. It was approximately 110 ms
in the case of the HTML5 implementation running on Chrome and Electron compared to a consis-
tent 20 ms at the end of the simulation. The same JavaScript benchmark performed better overall
on Firefox with a starting performance of approximately 20 ms, leveling off to 18 ms at the end.
Similarly, our implementation also showed a small improvement throughout the simulation. It
was at 6 ms at the outset, although, the system quickly recovered from the initial load and show-
cased a rather steady frame-time of approximately 3 ms during the entire remaining simulation.

Due to the drastic difference in the frame-times between the Elemental Draw and the HTML5
Canvas implementations, the resulting total simulation duration was considerably shorter in the
case of Elemental Draw, with 22 sec compared to Google Chrome’s 202 sec and Electron’s 178 sec
as shown in Figure 6.3 (b). Firefox proved to have a slightly more optimized renderer, completing
the benchmark in 114 sec.

A similar performance between Google Chrome and Electron was to be expected, as Electron
utilizes the Chromium browser [35] for displaying web contents. The slight improvement can be,
therefore, attributed to the somewhat more streamlined Chromium browser.

38 Chapter 6. Evaluation

Figure 6.2: Conway’s Game of Life performance benchmark on different hardware and platforms. Dotted
vertical lines denote target refresh rate limits. Lower numbers are better. (Own source).

6.2 RQ2 - Performance Comparison 39

(a) Milliseconds per frame

(b) Total runtime

Figure 6.3: Conway’s Game of Life performance benchmark comparison between Elemental Draw, Google
Chrome (Version 88.0.4324.190 (64-bit)), Firefox (86.0 (64-bit)) and Electron (Electron: v12.0.0, Chromium:
v89.0.4389.69, Node: v14.16.0). (a) Milliseconds per frame comparison, (b) overall runtime comparison.
(Own source).

40 Chapter 6. Evaluation

It has to be noted, that the comparison considerably favors the Elemental Draw implemen-
tation, as rendering a vast number of simple rectangles directly caters to the strengths of the
presented system. Furthermore, the measured frame-times do not compensate for the inherent
performance differences in the programming languages used. However, an argument can be
made regarding the appropriate choice of a programming language in the correct setting; there-
fore, we believe that the comparison is still valid. After all, the C++ programming language was
selected precisely for its performance capabilities.

Chapter 7

Future Work

Considering all the technical challenges involved in building a cross-platform system, the evalu-
ation showed that the Elemental UI framework provides a solid foundation for portable applica-
tions with a performant, though limited renderer.
A collection of possible issues that could be addressed in future work are discussed in the follow-
ing section.

7.1 Metal Implementation
While discussing the rendering backends in Chapter 4, we presented the limited support for other
backends on macOS in Table 4.1. Although some support remains for OpenGL, the preferred
rendering backend for Apple devices is still Metal. In addition, the highest supported OpenGL
version is 4.1 [55], which hinders the use of SSBOs that were only introduced in version 4.3 [16].
The OpenGL implementation is forced to invoke multiple draw calls because of having to resort
to limited-sized UBOs. This is also partially the reason why we saw a poor performance on the
otherwise well-equipped Mac machine running an OpenGL backend, compared to Vulkan sup-
ported platforms, as shown in Figure 6.2.
The OpenGL implementation was delivered solely as a stand-in backend in the context of this
thesis, as a Metal backend proved to be difficult to implement because it required a unique ecosys-
tem. First, the Metal implementation would have to be done in Objective-C with bindings from
the main backend interface. Second, the shaders would have to be rewritten with the Metal Shad-
ing Language.
Therefore, it would still make sense to introduce a Metal backend in future work for Apple de-
vices to replace the deprecated OpenGL implementation, as it would additionally open up the
doors to target mobile platforms from the Apple ecosystem, such as iOS, iPadOS, and tvOS, as
demonstrated in Section 4.2.1.
The OpenGL backend can still prove to be useful, as the current 4.1 version can be downgraded
to OpenGL ES 2 with little effort to serve as a web renderer as illustrated in Table 4.1.

7.2 Path Rendering
We established in Section 4.2.2 that, due to performance concerns linked to breaks in the instance
chain, it is currently not feasible to render lines, arcs, and arbitrary shapes with Elemental Draw.
Although the text rendering system somewhat remedies the issue by providing a means to con-
vert SVG shapes into glyphs that can be rendered as bitmaps, this approach is only a workaround

42 Chapter 7. Future Work

and does not solve the underlying issue. For example, dynamically generated and animated line
graphs cannot be realized with the current set of primitives provided by Elemental Draw.
Although free form path rendering falls into the same realms as font rendering, as font files com-
monly also contain paths, there is a major difference between them, making font rendering much
more practical. As glyphs are predefined within the font files, they can be pre-computed, either
during compilation or on startup, to generate whatever data structure is most convenient. Alter-
natively, they can be directly converted into bitmaps and directly rendered. However, this is not
possible with dynamically generated paths during runtime.
We do acknowledge that omitting such an integral set of primitives limits the usefulness of the
library. Therefore, two techniques that could improve the rendering system in future work are
presented.

Line Segments Paths can be expressed by short line segments chained to each other. By increas-
ing the number of segments and reducing their length, somewhat smooth paths can be drawn.
Naturally, it is desirable to reduce the amount of segmentation optimally without degrading the
visual fidelity. A possible approach to optimize the number of segments is to carefully place the
segmentation points on the path instead of dividing the path into segments of the same length. Fa-
voring more rounded areas of the path when distributing the segmentation can lead to smoother
curves [84].
Unfortunately, there are some issues with this method. Although it should be possible to pipe the
generated segments through the existing pipeline of rectangle instances, this would drastically in-
crease the instance count, as every single segment would have to be accounted for. Alternatively,
breaking the instance chain could be explored to render a fully assembled path. However, this
approach still only enables rendering paths. Filled shapes would still have to be accomplished
through different means.

Mixed Rendering New opportunities could arise from combining existing software renderers
with our presented GPU renderer. Components from the already well-established Skia graphics
library [27] could be utilized for select pre-rendering applications, such as free form shape ren-
dering, lines, and paths. Skia is optimized for real-time applications, so these primitives could be
generated in a timely manner and stored to a bitmap. These bitmaps could then be directly used
by the Elemental Draw rendering pipeline by queuing them in the instance buffer. The obvious
benefit here is the ability to offload the GPU whilst maintaining the instance chain.
It is noteworthy that this particular issue of path rendering is still being researched and new con-
cepts for GPU acceleration are being introduced, such as a proposed approach by NVIDIA to
accelerate rendering, utilizing the stencil buffer [85], and later, a proposition utilizing scan-line
rasterization [86].

7.3 Custom OS Interface
As already established in Section 4.1 regarding the system architecture of Elemental Draw, the
core library significantly relies on GLFW for communicating with the operating system for com-
mon windowing tasks and events. While it is a robust and well-established library, there are some
unfortunate embedded limitations in its design. GLFW mainly targets desktop-grade operating
systems and, therefore, does not provide support for mobile platforms such as Android or iOS.
Consequently, neither Elemental Draw nor its dependent library, Elemental UI, will be able to
support mobile platforms in its current state.
One possible solution for this issue would be the introduction of the PImpl idiom, similar to the
way it was done with the rendering backends. A new common API that encompasses all the

7.4 Binding Generation 43

necessary interaction points between the OS and the application could be introduced. Thereafter,
an alternative library for mobile platforms, such as GLFM [87], has to be embedded. Finally, the
correct backend for interacting with the OS can be chosen, according to the configuration in the
project generation step. Unfortunately, it is unclear whether both libraries will be able to provide
substitutes for every single common API call.
Therefore, an alternative approach would be the implementation of a custom solution for inter-
acting with the operating system, which is also platform agnostic including desktop and mobile
systems. Although such an approach would provide a greater degree of flexibility and consis-
tency for finding a common interface, it would also require a significant amount of time and
effort to even attain feature parity with GLFW-supported platforms.

7.4 Binding Generation
Another area of improvement is in the language bindings. Currently, only partial bindings are
provided for the Python language. This process is slow and error-prone. Automation can help to
improve the quality and consistency, by automatically regenerating the bindings according to the
latest API changes. An integration of such a system could be realized in the already present CI
system.
In addition, the exported C interface is also only partially implemented and requires further
changes. The exported C API utilizes pointers that are not supported by every language, as is
the case with Java. A rewrite is required to convert all pointers into handlers to make the inter-
face more accessible. Alternatively, instead of providing C wrappers on top of the C++ source
code, the Elemental Draw library could be rewritten entirely in C. The value of such a drastic
measure still has to be evaluated.

Chapter 8

Conclusion

This thesis presents an alternative approach to user interface rendering, by focusing primarily on
a robust hardware acceleration rather than on a complete feature set. Based on our formulated
requirements, we presented a new cross-platform rendering library Elemental Draw, alongside
its companion library Elemental UI.

The case studies presented in Chapter 5 have demonstrated the cross-compatibility capabili-
ties of both the Elemental Draw and Elemental UI libraries. When compiled from source, the sys-
tem allows for virtually all versions of Windows, macOS, and Linux distributions to be targeted,
as it does not rely on specific OS rendering features, which can change over time. Hereby a ma-
jority of desktop-grade operating systems are covered. Though, it would be desirable to expand
the portability to mobile platforms as well, the task at hand is difficult and requires modifications
to the layer communicating with the operating system as well as new language bindings.

Taking a look at the preliminary results provided by the performance benchmarks in Sec-
tion 6.1, it can be concluded that a major goal concerning high-performance rendering through
GPU acceleration was realized. Though, there is still room for improvement considering the
weaker performance delivered by the OpenGL implementation running on a MacBook. Finally,
we demonstrated in Section 6.2 how much faster the rendering operations can be executed given
a specific domain of primitive shapes if sequenced correctly. Although, it has to be reiterated that
the comparison is focused on a very specific and narrow set of problems, which highly favors our
implementation.

It can be concluded that the Elemental UI framework provides a solid foundation for ren-
dering a set number of shapes on the GPU on the three most relevant platforms. Though, not
complete in its feature set, it already provides essential UI capabilities in a performant manner.
However, a lot more work needs to be done to consider our system over other, more robust, and
established solutions.

46 Chapter 8. Conclusion

Bibliography

[1] M. Schofield, M. Wojciakowski, L. Blevins, K. Guo, L. Graham, S. Krsmanovic, G. Milener,
D. Coulter, K. Bridge, J. Kennedy, A. Braden, and M. Lacey, “Choose your windows app plat-
form - windows applications | microsoft docs,” Accessed 11. March 2021 from https://docs.
microsoft.com/en-us/windows/apps/desktop/choose-your-platform#uwp, 2021-02-03.

[2] M. Malewicz, “Glassmorphism in user interfaces,” Accessed 13. March 2021 from https://
uxdesign.cc/glassmorphism-in-user-interfaces-1f39bb1308c9, 2020-11-22.

[3] 14islands, “blobmixer,” Accessed 13. March 2021 from https://blobmixer.14islands.com,
2021.

[4] L. P. 5, “marseille,” Accessed 13. March 2021 from https://marseille.laphase5.com, 2021.

[5] C. Zapponi, “Github language stats,” Accessed 03. March 2021 from https://madnight.
github.io/githut/#/pull_requests/2020/2, 2021.

[6] K. Stefanoski, A. Karadimce, and I. Dimitrievski, “Performance comparison of c++ and
javascript (node.js -v8 engine),” 09 2019.

[7] C. Robertson, N. Schonning, M. Jones, G. Hogenson, and S. Cai, “Msvc c/c++ compiler
reference - visual studio | microsoft docs,” Accessed 10. February 2021 from https://docs.
microsoft.com/en-us/cpp/build/reference/compiling-a-c-cpp-program?view=msvc-160,
2018-10-12.

[8] GCC Team, “Gcc, the gnu compiler collection- gnu project - free software foundation (fsf),”
Accessed 11. February 2021 from https://gcc.gnu.org, 2021-01-18.

[9] The LLVM Team, “Clang c language family frontend for llvm,” Accessed 11. February 2021
from https://clang.llvm.org, 2021.

[10] cppreference.com, “C++ compiler support - cppreference.com,” Accessed 9. February 2021
from https://en.cppreference.com/w/cpp/compiler_support, 2021-02-04.

[11] S. Logan, Cross-Platform Development in C++: Building Mac OS X, Linux, and Windows Applica-
tions, 1st ed. Addison-Wesley Professional, 2007.

[12] G. Sellers and J. Kessenich, Vulkan Programming Guide The Official Guide to Learning Vulkan
(OpenGL). Addison-Wesley, 2016.

[13] The Khronos Group Inc., “Vulkan overview - the khronos group inc,” Accessed 9. February
2021 from https://www.khronos.org/vulkan, 2021.

https://docs.microsoft.com/en-us/windows/apps/desktop/choose-your-platform#uwp
https://docs.microsoft.com/en-us/windows/apps/desktop/choose-your-platform#uwp
https://uxdesign.cc/glassmorphism-in-user-interfaces-1f39bb1308c9
https://uxdesign.cc/glassmorphism-in-user-interfaces-1f39bb1308c9
https://blobmixer.14islands.com
https://marseille.laphase5.com
https://madnight.github.io/githut/#/pull_requests/2020/2
https://madnight.github.io/githut/#/pull_requests/2020/2
https://docs.microsoft.com/en-us/cpp/build/reference/compiling-a-c-cpp-program?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/compiling-a-c-cpp-program?view=msvc-160
https://gcc.gnu.org
https://clang.llvm.org
https://en.cppreference.com/w/cpp/compiler_support
https://www.khronos.org/vulkan

48 BIBLIOGRAPHY

[14] ——, “Opengl overview - the khronos group inc,” Accessed 11. February 2021 from https:
//www.khronos.org/opengl, 2021.

[15] R. S. Wright, B. Lipchak, and N. Haemel, OpenGL (R) SuperBible: Comprehensive Tutorial and
Reference, 4th ed. Addison-Wesley Professional, 2007.

[16] The Khronos Group Inc., “Shader storage buffer object - opengl wiki,” Accessed 12. February
2021 from https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object, 2020-
06-08.

[17] liballeg.org, “Allegro - a game programming library,” Accessed 12. March 2021 from https:
//liballeg.org, 2021.

[18] G. Foot, “Github - liballeg/allegro5 initial revision,” Accessed 12. March 2021 from https:
//github.com/liballeg/allegro5/tree/d94899aa0381f1e1b2f2ba6a63ed6e9a1bd98626, 2000.

[19] cairographics.org, “cairographics.org,” Accessed 12. March 2021 from https://www.
cairographics.org, 2014.

[20] C. Worth and K. Packard, “Xr: Cross-device rendering for vector graphics,” Accessed 12.
March 2021 from https://cworth.org/cworth/papers/xr_ols2003/html, 2003-05-17.

[21] B. Harrington, “Latest cairo news,” Accessed 12. March 2021 from https://www.
cairographics.org/news, 2020.

[22] cairographics.org, “Using cairo with opengl,” Accessed 12. March 2021 from https://www.
cairographics.org/OpenGL, 2016.

[23] OpenJFX, “Javafx,” Accessed 12. March 2021 from https://openjfx.io, 2021.

[24] J. Marinacci, “Javafx 1.0 is live : Javafx blog,” Accessed 12. March 2021 from https://web.
archive.org/web/20081207095309/http://blogs.sun.com/javafx/entry/javafx_1_0_is_live,
2008-12-04.

[25] Gluon HQ, “Javafx - gluon,” Accessed 12. March 2021 from https://gluonhq.com/products/
javafx, 2021.

[26] Oracle Corporation, “Javafx 2.2.3 system requirements | javafx 2 tutorials and doc-
umentation,” Accessed 12. March 2021 from https://docs.oracle.com/javafx/2/system_
requirements_2-2-3/jfxpub-system_requirements_2-2-3.htm, 2012.

[27] Skia Inc., “Skia graphics library,” Accessed 04. March 2021 from https://skia.org, 2021.

[28] Google LLC, “Commits · google/skia · github,” Accessed 12. March 2021 from https://
github.com/google/skia/commits/1550a42d9647162edc4e6758fc2958fa4ab7f6ca, 2008.

[29] B. Osman, “refs/heads/master - skia - git at google,” Accessed 12. March 2021 from https:
//skia.googlesource.com/skia/+/refs/heads/master, 2021.

[30] Skia Inc., “Vulkan,” Accessed 12. March 2021 from https://skia.org/user/special/vulkan,
2021.

[31] J. Belfiore, “New year, new browser – the new microsoft edge
is out of preview and now available for download,” Accessed
13. March 2021 from https://blogs.microsoft.com/latino/2020/01/15/
new-year-new-browser-the-new-microsoft-edge-is-out-of-preview-and-now-available-for-download,
2020-01-15.

https://www.khronos.org/opengl
https://www.khronos.org/opengl
https://www.khronos.org/opengl/wiki/Shader_Storage_Buffer_Object
https://liballeg.org
https://liballeg.org
https://github.com/liballeg/allegro5/tree/d94899aa0381f1e1b2f2ba6a63ed6e9a1bd98626
https://github.com/liballeg/allegro5/tree/d94899aa0381f1e1b2f2ba6a63ed6e9a1bd98626
https://www.cairographics.org
https://www.cairographics.org
https://cworth.org/cworth/papers/xr_ols2003/html
https://www.cairographics.org/news
https://www.cairographics.org/news
https://www.cairographics.org/OpenGL
https://www.cairographics.org/OpenGL
https://openjfx.io
https://web.archive.org/web/20081207095309/http://blogs.sun.com/javafx/entry/javafx_1_0_is_live
https://web.archive.org/web/20081207095309/http://blogs.sun.com/javafx/entry/javafx_1_0_is_live
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://docs.oracle.com/javafx/2/system_requirements_2-2-3/jfxpub-system_requirements_2-2-3.htm
https://docs.oracle.com/javafx/2/system_requirements_2-2-3/jfxpub-system_requirements_2-2-3.htm
https://skia.org
https://github.com/google/skia/commits/1550a42d9647162edc4e6758fc2958fa4ab7f6ca
https://github.com/google/skia/commits/1550a42d9647162edc4e6758fc2958fa4ab7f6ca
https://skia.googlesource.com/skia/+/refs/heads/master
https://skia.googlesource.com/skia/+/refs/heads/master
https://skia.org/user/special/vulkan
https://blogs.microsoft.com/latino/2020/01/15/new-year-new-browser-the-new-microsoft-edge-is-out-of-preview-and-now-available-for-download
https://blogs.microsoft.com/latino/2020/01/15/new-year-new-browser-the-new-microsoft-edge-is-out-of-preview-and-now-available-for-download

BIBLIOGRAPHY 49

[32] AvaloniaUI OÜ, “Github - avaloniaui/avalonia: A cross platform xaml framework for .net,”
Accessed 12. March 2021 from https://github.com/AvaloniaUI/Avalonia, 2021.

[33] ——, “Avalonia docs,” Accessed 12. March 2021 from https://avaloniaui.net/docs, 2021.

[34] cegui.org, “Faq - cegui wiki - crazy eddie’s gui system (open source),” Accessed 12. March
2021 from http://cegui.org.uk/wiki/FAQ#What_is_CEGUI.3F, 2014.

[35] OpenJS Foundation and Electron contributors, “Electron | build cross-platform desktop
apps with javascript, html, and css,” Accessed 10. March 2021 from https://www.electronjs.
org, 2021.

[36] B. Spitzak, “Fast light toolkit - fast light toolkit (fltk),” Accessed 12. March 2021 from https:
//www.fltk.org/, 2021.

[37] C. Sells, “What’s new in flutter 2. by chris sells | mar, 2021 | medium |
flutter | flutter,” Accessed 12. March 2021 from https://medium.com/flutter/
whats-new-in-flutter-2-0-fe8e95ecc65, 2021-03-03.

[38] The GTK Team, “The gtk project - a free and open-source cross-platform widget toolkit,”
Accessed 12. March 2021 from https://www.gtk.org, 2021.

[39] ——, “The gtk project - a free and open-source cross-platform widget toolkit,” Accessed 12.
March 2021 from https://www.gtk.org/docs/architecture/, 2021.

[40] O. Cornut, “Github - ocornut/imgui: Dear imgui: Bloat-free graphical user interface for c++
with minimal dependencies,” Accessed 12. March 2021 from https://github.com/ocornut/
imgui, 2021.

[41] nanapro.org, “Nana c++ library - a modern c++ gui library,” Accessed 12. March 2021
from http://nanapro.org/en-us, 2020.

[42] E. Davies, J. Storer, and T. Poole, “Github - juce-framework/juce: Juce is an open-source
cross-platform c++ application framework for desktop and mobile applications, including
vst, vst3, au, auv3, rtas and aax audio plug-ins.” Accessed 12. March 2021 from https://
github.com/juce-framework/JUCE, 2021.

[43] Nuklear, “Github - immediate-mode-ui/nuklear: A single-header ansi c immediate
mode cross-platform gui library,” Accessed 12. March 2021 from https://github.com/
Immediate-Mode-UI/Nuklear, 2020.

[44] The Qt Company, “Qt | cross-platform software development for embedded & desktop,”
Accessed 12. March 2021 from https://www.qt.io, 2020.

[45] wxWidgets, “wxwidgets: Cross-platform gui library,” Accessed 12. March 2021 from https:
//www.wxwidgets.org, 2020.

[46] D. Herberth, “Github - dav1dde/glad: Multi-language vulkan/gl/gles/egl/glx/wgl loader-
generator based on the official specs.” Accessed 23. February 2021 from https://github.com/
Dav1dde/glad, 2021.

[47] glfw.org, “An opengl library | glfw,” Accessed 23. February 2021 from https://www.glfw.
org, 2021.

[48] S. Barrett, “Github - nothings/stb: stb single-file public domain libraries for c/c++,” Ac-
cessed 24. February 2021 from https://github.com/nothings/stb, 2020-07-13.

https://github.com/AvaloniaUI/Avalonia
https://avaloniaui.net/docs
http://cegui.org.uk/wiki/FAQ#What_is_CEGUI.3F
https://www.electronjs.org
https://www.electronjs.org
https://www.fltk.org/
https://www.fltk.org/
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://www.gtk.org
https://www.gtk.org/docs/architecture/
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
http://nanapro.org/en-us
https://github.com/juce-framework/JUCE
https://github.com/juce-framework/JUCE
https://github.com/Immediate-Mode-UI/Nuklear
https://github.com/Immediate-Mode-UI/Nuklear
https://www.qt.io
https://www.wxwidgets.org
https://www.wxwidgets.org
https://github.com/Dav1dde/glad
https://github.com/Dav1dde/glad
https://www.glfw.org
https://www.glfw.org
https://github.com/nothings/stb

50 BIBLIOGRAPHY

[49] W. Lemberg, “The freetype project,” Accessed 23. February 2021 from https://www.
freetype.org, 2021.

[50] WHATWG (Apple and Google and Mozilla and Microsoft), “Html standard,” Accessed 17.
February 2021 from https://html.spec.whatwg.org, 2021-02-11.

[51] Apple Inc., “Macbook pro 16-inch - technical specifications - apple,” Accessed 24. February
2021 from https://www.apple.com/macbook-pro-16/specs, 2021.

[52] S. Willems, “Amd radeon pro 5300m - vulkan hardware database by sascha willems,”
Accessed 24. February 2021 from http://vulkan.gpuinfo.org/displayreport.php?id=10099,
2020-12-14.

[53] The Khronos Group Inc., “Moltenvk is a vulkan portability implementation. it layers a subset
of the high-performance, industry-standard vulkan graphics and compute api over apple’s
metal graphics framework, enabling vulkan applications to run on ios and macos.” Accessed
11. March 2021 from https://github.com/KhronosGroup/MoltenVK, 2021.

[54] ——, “Conformant products - the khronos group inc,” Accessed 01. March 2021 from https:
//www.khronos.org/conformance/adopters/conformant-products/opengl, 2021.

[55] Apple Inc., “Mac computers that use opencl and opengl graphics - apple support,” Accessed
01. March 2021 from https://support.apple.com/en-us/HT202823, 2020-07-28.

[56] The Khronos Group Inc., “Conformant products - the khronos group inc,” Ac-
cessed 01. March 2021 from https://www.khronos.org/conformance/adopters/
conformant-products/vulkan, 2021.

[57] J. Kennedy, K. Sharkey, D. Coulter, S. White, J. Kramer, D. Batchelor, and
M. Satran, “Getting started with directx graphics - win32 apps | microsoft docs,”
Accessed 18. February 2021 from https://docs.microsoft.com/de-de/windows/win32/
getting-started-with-directx-graphics, 2018-05-31.

[58] Apple Inc., “Metal | apple developer documentation,” Accessed 24. February 2021
from https://developer.apple.com/documentation/metal, 2021.

[59] The Khronos Group Inc., “Conformant products - the khronos group inc,” Ac-
cessed 01. March 2021 from https://www.khronos.org/conformance/adopters/
conformant-products/opengles, 2021.

[60] Apple Inc., “Opengl es | apple developer documentation,” Accessed 24. February 2021
from https://developer.apple.com/documentation/opengles, 2021.

[61] The Khronos Group Inc., “Webgl and opengl differences - webgl public wiki,” Accessed
18. February 2021 from https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_
Differences, 2014-04-13.

[62] Free Software Foundation, Inc., “Make - gnu project - free software foundation,” Accessed
25. February 2021 from https://www.gnu.org/software/make, 2020-01-19.

[63] Premake, “Premake,” Accessed 25. February 2021 from https://premake.github.io, 2021.

[64] Kitware, Inc., “Cmake,” Accessed 25. February 2021 from https://cmake.org, 2021.

[65] S. Meyers, Effective Modern C++. O’Reilly, 2015.

https://www.freetype.org
https://www.freetype.org
https://html.spec.whatwg.org
https://www.apple.com/macbook-pro-16/specs
http://vulkan.gpuinfo.org/displayreport.php?id=10099
https://github.com/KhronosGroup/MoltenVK
https://www.khronos.org/conformance/adopters/conformant-products/opengl
https://www.khronos.org/conformance/adopters/conformant-products/opengl
https://support.apple.com/en-us/HT202823
https://www.khronos.org/conformance/adopters/conformant-products/vulkan
https://www.khronos.org/conformance/adopters/conformant-products/vulkan
https://docs.microsoft.com/de-de/windows/win32/getting-started-with-directx-graphics
https://docs.microsoft.com/de-de/windows/win32/getting-started-with-directx-graphics
https://developer.apple.com/documentation/metal
https://www.khronos.org/conformance/adopters/conformant-products/opengles
https://www.khronos.org/conformance/adopters/conformant-products/opengles
https://developer.apple.com/documentation/opengles
https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences
https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences
https://www.gnu.org/software/make
https://premake.github.io
https://cmake.org

BIBLIOGRAPHY 51

[66] The Khronos Group Inc., “Khronos-reference front end for glsl/essl, partial front end
for hlsl, and a spir-v generator,” Accessed 24. February 2021 from https://github.com/
KhronosGroup/glslang, 2021.

[67] git-scm.com, “Git - submodules,” Accessed 25. February 2021 from https://git-scm.com/
book/en/v2/Git-Tools-Submodules, 2021.

[68] npm, Inc., “About npm | npm docs,” Accessed 25. February 2021 from https://docs.npmjs.
com/about-npm, 2021.

[69] F. Copes, M. Borins, F. Hemberger, O. Laru, J. G. Bousiquot, A. Miller, and A. Awais,
“The package.json guide,” Accessed 25. February 2021 from https://nodejs.dev/learn/
the-package-json-guide, 2021.

[70] Microsoft Corporation, “Github - microsoft/vcpkg: C++ library manager for windows,
linux, and macos,” Accessed 25. February 2021 from https://github.com/microsoft/vcpkg,
2021.

[71] ——, “vcpkg/ports at master · microsoft/vcpkg · github,” Accessed 25. February 2021
from https://github.com/microsoft/vcpkg/tree/master/ports, 2021.

[72] T. Raj, “Vcpkg: 2019.06 update,” Accessed 25. February 2021 from https://devblogs.
microsoft.com/cppblog/vcpkg-2019-06-update, 2019-07-19.

[73] Microsoft Corporation, “vcpkg/triplets at master · microsoft/vcpkg · github,” Accessed
27. February 2021 from https://github.com/microsoft/vcpkg/tree/master/triplets, 2021-
02-18.

[74] P. M. Duvall, A. Glover, and S. Matyas, Continuous integration improving software quality and
reducing risk, 8th ed., ser. The Addison-Wesley signature series; A Martin Fowler signature
book. Addison-Wesley, 2013.

[75] GitHub, Inc., “Introduction to github actions - github docs,” Accessed 28.
February 2021 from https://docs.github.com/en/actions/learn-github-actions/
introduction-to-github-actions, 2021.

[76] Microsoft Corporation, “Dllimportattribute class (system.runtime.interopservices) | mi-
crosoft docs,” Accessed 01. March 2021 from https://docs.microsoft.com/en-us/dotnet/
api/system.runtime.interopservices.dllimportattribute?redirectedfrom=MSDN&view=
net-5.0, 2021.

[77] Oracle Corporation, “System (java se 9 & jdk 9),” Accessed 01. March 2021 from https:
//docs.oracle.com/javase/9/docs/api/java/lang/System.html#loadLibrary-java.lang.
String-, 2021.

[78] Python Software Foundation, “ctypes — a foreign function library for python — python 3.9.2
documentation,” Accessed 01. March 2021 from https://docs.python.org/3/library/ctypes.
html, 2021.

[79] I. Quilez, “Inigo quilez :: fractals, computer graphics, mathematics, shaders, demoscene
and more,” Accessed 13. March 2021 from https://www.iquilezles.org/www/articles/
distfunctions2d/distfunctions2d.htm, 2021.

[80] V. Chlumsky, “Shape decomposition for multi-channel distance fields,” Master’s thesis,
Czech Technical University, 2015.

https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://docs.npmjs.com/about-npm
https://docs.npmjs.com/about-npm
https://nodejs.dev/learn/the-package-json-guide
https://nodejs.dev/learn/the-package-json-guide
https://github.com/microsoft/vcpkg
https://github.com/microsoft/vcpkg/tree/master/ports
https://devblogs.microsoft.com/cppblog/vcpkg-2019-06-update
https://devblogs.microsoft.com/cppblog/vcpkg-2019-06-update
https://github.com/microsoft/vcpkg/tree/master/triplets
https://docs.github.com/en/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/introduction-to-github-actions
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?redirectedfrom=MSDN&view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?redirectedfrom=MSDN&view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?redirectedfrom=MSDN&view=net-5.0
https://docs.oracle.com/javase/9/docs/api/java/lang/System.html#loadLibrary-java.lang.String-
https://docs.oracle.com/javase/9/docs/api/java/lang/System.html#loadLibrary-java.lang.String-
https://docs.oracle.com/javase/9/docs/api/java/lang/System.html#loadLibrary-java.lang.String-
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html
https://www.iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm
https://www.iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm

52 BIBLIOGRAPHY

[81] ——, “msdfgen - multi-channel signed distance field generator,” Accessed 13. March 2021
from https://github.com/Chlumsky/msdfgen, 2021.

[82] M. Gardner, “Mathematical games the fantastic combinations of john conway’s new solitaire
game "life",” Scientific American, vol. 223, pp. 120–123, 10 1970.

[83] Mozilla Foundation, “Canvasrenderingcontext2d - web api referenz | mdn,” Ac-
cessed 10. March 2021 from https://developer.mozilla.org/de/docs/Web/API/
CanvasRenderingContext2D, 2021.

[84] B. Ciechanowski, “Drawing bézier curves – bartosz ciechanowski,” Accessed 11. March 2021
from https://ciechanow.ski/drawing-bezier-curves, 2014-02-18.

[85] M. J. Kilgard and J. Bolz, “Gpu-accelerated path rendering,” ACM Transactions on Graphics
(TOG), vol. 31, pp. 1 – 10, 2012.

[86] R. Li, Q. Hou, and K. Zhou, “Efficient gpu path rendering using scanline rasterization,”
ACM Trans. Graph., vol. 35, no. 6, Nov. 2016. [Online]. Available: https://doi.org/10.1145/
2980179.2982434

[87] D. Brackeen, “Github - brackeen/glfm: Opengl es and input for ios, tvos, android, and we-
bgl,” Accessed 02. March 2021 from https://github.com/brackeen/glfm, 2021.

https://github.com/Chlumsky/msdfgen
https://developer.mozilla.org/de/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/de/docs/Web/API/CanvasRenderingContext2D
https://ciechanow.ski/drawing-bezier-curves
https://doi.org/10.1145/2980179.2982434
https://doi.org/10.1145/2980179.2982434
https://github.com/brackeen/glfm

	Introduction
	Background
	High-Level Concepts
	Cross-Platform
	Rendering API

	Technical Glossary
	Shader
	Buffer Objects

	Related Work
	Requirements
	State of the Art
	Rendering Libraries
	GUI Toolkits

	Approach
	System Architecture
	2D Rendering Library - Elemental Draw
	Cross-Compatibility
	Rendering

	GUI Library - Elemental UI
	Node Hierarchy
	Styling
	Event System
	Transitions
	Dynamic Framerate

	Case Studies
	Painting Application
	Breakout Game
	Calculator
	Messaging Application
	Conway's Game Of Life

	Evaluation
	RQ1 - Performance Evaluation
	RQ2 - Performance Comparison

	Future Work
	Metal Implementation
	Path Rendering
	Custom OS Interface
	Binding Generation

	Conclusion

