The Influence of Colour
on Image Classification

and Face Recognition

Comparing the Performance of Convolutional
Neural Networks Using Multiple Datasets,
Network Architectures, and Image
Chromaticities

Master Thesis

Vincent A. Ruegge

15-700-966

Submitted at

February 28 2021

Thesis Supervisor

Prof. Dr. Manuel Giinther

QOUASI[[AIU]

MACHINE

University of
Zurich™

Department of
Informatics

Learning

—

Master Thesis
Author: Vincent A. Riiegge, vincent@rueegge.ch
Project period: September 01 2020 - February 28 2021

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Acknowledgements

Throughout the writing of this thesis I have received support, assistance, and guidance and I
would like to express my appreciation to everyone contributing to my work.

I thank my supervisor, Professor Doctor Manuel Giinther, for his continuing support and ex-
pertise. Our discussions and your feedback were invaluable to me and deepened my under-
standing of Deep Learning in both, theory and practice. You allowed me to work freely with an
omnipresent guidance and support. Thank you.

I thank my parents for creating an environment that allowed me to focus on my work. Thank
you for your counsel and sympathetic ear.

I also thank my sister for proofreading my work. Your feedback was greatly appreciated and
your visits on the weekend provided healthy distractions.

Abstract

Recognition of colour is an essential part of our visual system and impressive neural resources are
devoted to colour vision. With the emergence of Convolutional Neural Networks (CNNs) from
Artificial Intelligence (AI) and Al’s goal to simulate vision, the influence of colour on artificial
image classification and face recognition gained further attraction in recent years and remains
subject to much debate until today. In this thesis, we compare the performance of CNNs using
four datasets, six network architectures, and two image chromaticities to investigate on the in-
fluence of colour on image classification and face recognition. To extend our analysis beyond the
application of pre-existing network architectures, we implement a novel CNN architecture, R-G-
B, that learns convolutional filters on the colour channels of an RGB image separately and fuses
those layers later in the network architecture, allowing us to investigate on the influence of pro-
cessing colour within CNNs. Our results suggest that colour does improve performance on both,
image classification and face recognition at the expense of computational costs. Furthermore, R-
G-B networks are applicable but do not improve performance and are outperformed by regular
networks trained on either RGB or greyscale images.

Zusammenfassung

Das Erkennen von Farben ist ein wesentlicher Bestandteil unseres Gehirns und ein Grossteil der
neuronalen Ressourcen wird dafiir eingesetzt. Mit dem Aufkommen von Convolutional Neu-
ral Networks (CNNs) aus dem Bereich Artificial Intelligence (AI) und dem Ziel von Al, Sehen
zu simulieren, gewann der Einfluss von Farbe auf kiinstliche Bild- und Gesichtserkennung in
den letzten Jahren an Bedeutung und ist auch heute noch Gegenstand kontroverser Diskussio-
nen. In dieser Arbeit vergleichen wir die Leistungsfahigkeit von CNNs im Hinblick auf den
Einfluss von Farbe auf Bild- und Gesichtserkennung. Dazu verwenden wir vier Datensitze,
sechs Netzwerk-Architekturen, und zwei Bild-Chromatizititen. Um unsere Analyse in der An-
wendung von bestehenden Netzwerk-Architekturen zu erweitern, implementieren wir eine neue
Netzwerk-Architektur, R-G-B, welche die Netzwerk-Filter auf den einzelenen Farbkanilen eines
RGB Bildes anwendet und spéter in der Netzwerk-Architektur zusammenfiihrt. Somit kénnen
wir den Einfluss von Farbverarbeitung innerhalb eines Netzwerkes untersuchen. Unsere Re-
sultate zeigen, dass Farbe die Leistungsfahigkeit erhoht, sowohl fiir Bild- wie auch fiir Gesicht-
serkennung, allerdings auf Kosten der Berechnungszeit. Zusétzlich zeigen unsere Resultate, dass
R-G-B Netzwerke anwendbar sind, die Leistungsfahigkeit jedoch nicht erh6hen und sowohl von
reguldren Netzwerken trainiert auf RGB Bildern, wie auch von reguldren Netzwerken trainert auf
Grauwert Bildern in der Leistung tibertroffen werden.

Introduction
Related Work

Computer Vision Compendium

3.1 Image Classification.
3.2 Face Recognition

Colour in Image Classification and Face Recognition

4.1 From the Retina to the Monitor
4.2 Colour Spaces and the Luma Transformation
43 TheCurrentState
Convolutional Neural Networks
51 Originand Evolution
52 BuildingBlocks
521 Imput,
522 Convolution
5.2.3 Activation Function
524 Pooling.............
525 Full-Connection and Output
5.3 Batch Normalisation
Datasets
6.1 CIFAR-10. i
6.2 ImageNet.
6.3 VGGFace2
6.4 Labeled FacesintheWild
6.5 DataNormalisation
Networks
71 Pre-existing,
711 LeNet.
7.1.2 Residual Networks
72 NovelR-G-B
721 Inspiration.
722 Concepts & Constraints

723 Implementation.................

Contents

viii Contents

8 Experimental Setup 45
81 Overview L 45
8.2 Hyperparameter Selection 46
8.3 Network Training and Validation 46
84 NetworkTesting 47
9 Results 49
91 CIFAR-10 e 49
92 ImageNet. e 50
9.3 VGGFace2 51
94 Labeled Facesinthe Wild 52
10 Discussion 57
11 Conclusion 61

A Attachments 63

Contents ix
List of Figures
3.1 Image classification and face recognition as subfields of computer vision 10
3.2 Face verification and identification with Bob! 10
4.1 RGB Colour Space; Gonzales and Woods (2008) 14
5.1 Structure of an RGB image (left) and a greyscale image (right). ¢ represents the
number of channels, n the height, and m the width of theimage 20
52 Input image with different filters visualised; Wu (2020) 21
5.3 Illustration of a convolution operation; Dumoulin and Visin (2016) 21
5.4 Convolution operation over multiple channels. ¢, represents the channels, &, the
filters, and f, the featuremaps L L. 22
5.5 Convolution operation with padding; Dumoulin and Visin (2016) 22
5.6 Convolution operation with stride; Dumoulin and Visin (2016) 22
5.7 Sample max pooling operation! L 23
5.8 Fully-connected layer after a flattened convolutional output volume. c represents
the channels, n the height, and m the width of theimage 23
6.1 Sampleimagesof eachdataset 28
6.2 Facenormalisation 29
7.1 LeNetarchitecture 37
7.2 Training and validation error for plain (left) and residual (right) networks on Ima-
geNet. The thin lines represent the training error and the bold lines represent the
validation error; Heetal. (2016) e 37
7.3 Residual block with shortcut connection; Heetal. (2016) 38
7.4 First layer and first two districts of the original ResNet18 architecture 39
7.5 Conventional and depthwise separable convolutions; Kamal et al. (2019) 40
7.6 Original architecture to process RGB images (left) vs. novel R-G-B architecture to
process RGB images (right) o L. 41
7.7 R-G-B-LeNetarchitecture 41
7.8 Original and R-G-B-LeNet pseudocode implementation 42
7.9 Sample R-G-B processing of a batch of images 43
7.10 First layer, first two districts, and Crosshair- (red) and Channelblocks (green) of the
R-G-B-ResNet18 architecture visualised including parameter count 43
9.1 Results on CIFAR-10: Validation accuracy (%) as a function of the number of epochs
for LeNet (left) and ResNet18 (right) 53
9.2 Results on ImageNet: Validation accuracy (%) as a function of the number of epochs
for ResNet18 (left) and ResNet34 (right) 53
9.3 Results on VGGFace2: Validation accuracy (%) as a function of the number of epochs
forResNet34 e 54
9.4 Results on Labeled Faces in the Wild: ROC curves for ResNet34. 55
A.1 Sample images from one person from the normalised VGGFace2 dataset 64
A.2 Original ResNet18 architecture including parameter count 65
A.3 R-G-B-ResNetl18 architecture inlcuding parameter count 66

Contents

List of Tables

9.1

9.2

9.3

94

Al

Results on CIFAR-10: Validation accuracy (%) / Number ofepochs 50
Results on ImageNet: Validation accuracy (%) / Number of epochs 51
Results on VGGFace2: Validation accuracy (%) after 20 epochs 52

Results on Labeled Faces in the Wild: Accuracy (%) per fold and mean accuracy p
and standard deviation o per experiment oL 56

Configuration for each experiment: LR represents the learning rate, BS the batch
size, #W the number of workers used to load the data, Optim the optimiser, and ES
theearly stoppingrule. L 67

Chapter 1

Introduction

Visual object recognition is one of the most important functions of the brain and is extensively
studied in the field of cognitive science. For the visual system to work properly, it must be able to
recognise objects of various shapes, textures, and colours (Rossion and Pourtois, 2004). According
to Polyak (1957), the perception of colour in the human visual system coevolved with the evolu-
tion of brightly coloured plants to facilitate food gathering, and more specifically, the search and
recognition of natural objects such as fruit and vegetables. Therefore, the recognition of colour is
an essential part of our visual system and impressive neural resources are devoted "[...] to color
vision and the perceptual salience of color [...]" (Wurm et al., 1993, p. 899). Interestingly, many
people with colour vision deficits state, that they do not experience any difficulties in day-to-day
life (Wurm et al., 1993) and are only made aware of their deficits after taking a colour test (Stew-
ard and Cole, 1989). Nevertheless, various studies concluded that colour is an important cue in
object and face recognition (Rossion and Pourtois, 2004; Wurm et al., 1993; Yip and Sinha, 2002)
and Tanaka and Presnell (1999) specifically introduced the term colour diagnosticity to describe
the degree to which an object is associated with a specific colour. They showed that the influence
of colour on object recognition is relevant for objects with high colour diagnosticity, e.g. bananas
compared to objects with low colour diagnosticity, e.g. lamps.

With the emergence of Convolutional Neural Networks (CNNs) from Artificial Intelligence
(Al) and AI’s goal to simulate vision (Waltz, 1982) as cited in Perrott and Hamey (1991), the in-
fluence of colour on artificial image classification and face recognition gained further attraction
in recent years and remains subject to much debate until today. CNNs are often used in image
classification and face recognition because they are well designed to process images of various
chromaticities (Chollet, 2018; Simard et al., 2003) and they achieved state-of-the-art results in
both, image classification (Russakovsky et al., 2015) and face recognition (Cao et al., 2018). Al-
though there is existing research investigating on the influence of colour on image classification
and face recognition, it is not yet explicitly clear whether colour improves image classification
and face recognition performance. Various studies suggest that colour positively influences the
performance of image classification and face recognition (Arandjelovi¢, 2012; Buhrmester et al.,
2019; Clark et al., 2019; Jones and Abbott, 2006; Jones and Rehg, 2002; Liu et al., 2010; Liu and
Liu, 2008; Lu et al., 2018; Rajapakse et al., 2004; Shih and Liu, 2006; Socher et al., 2012; Torres
etal., 1999; Yang and Liu, 2008). On the other hand, multiple studies show that networks trained
on greyscale images outperform networks trained on images that combine red, green, and blue
colour information (RGB), suggesting that colour does not add performance enhancing informa-
tion (Bui et al., 2016; Sachin et al., 2017; Xie and Richmond, 2018).

In this thesis, we therefore aspire to mitigate the discrepancies about the influence of colour on
image classification and face recognition. We identify and address the following gaps currently
present in the literature: (1) The use of CNNs in image classification and face recognition with-
out the comparison between RGB and greyscale images. (2) The comparison between RGB and

2 Chapter 1. Introduction

greyscale images without the use of CNNs. (3) The use of CNNs and the comparison between
RGB and greyscale images without the use of multiple purely CNN-based feature extractors.
Therefore, we conduct our experiments using multiple purely CNN-based feature extractors and
compare the performance of RGB and greyscale images on image classification and face recogni-
tion. Additionally, we extend our analysis by proposing a novel CNN architecture, R-G-B, that
processes each colour channel in an RGB image separately. Currently, the fusion of the three
colour channels in an RGB image is made in the first convolutional layer of a CNN. However,
researchers never questioned this behaviour. Due to the nonlinear behaviour of the network, it is
unclear whether it might be better to learn convolutional filters on the colour channels separately
and fuse those channels later in the network architecture. Thus, our proposed novel CNN archi-
tecture allows us to further investigate on the influence of processing colour information within
CNNs. We conduct a total of 19 experiments spanning over four datasets, six network architec-
tures, and two image chromaticities. More specifically, we trained and evaluated our networks
on CIFAR-10, ImageNet, VGGFace2, and Labeled Faces in the Wild data. For our networks we used
LeNet, ResNet18, ResNet34, and their R-G-B counterparts. We trained the original architectures
on both, RGB and luma transformed greyscale images.

The thesis is structured as follows: In Chapter 2, we highlight the related work regarding the
influence of colour on image classification and face recognition. In Chapter 3, we provide an
overview over computer vision, specifically image classification and face recognition. Chapter
4 explains key concepts with regard to colour in both, the human visual system and computer
vision. In Chapter 5, we explain the origin, evolution, and the building blocks of CNNs. Chapter
6 outlines the four datasets used throughout the thesis and explains how we normalised the data.
Chapter 7 explains the architectures of the original networks and our novel R-G-B networks. In
Chapter 8, we provide an overview over all the experiments and describe the experimental setup.
In Chapter 9, we report the results obtained with each experiment, which we discuss in Chapter
10, highlighting the thesis’ limitations, and suggesting directions for future work. Finally, in
Chapter 11, we draw conclusions from our work and summarise the key findings.

Chapter 2

Related Work

Regarding image classification, Buhrmester et al. (2019) investigated on the impact of different
colour spaces and data augmentation techniques on four distinct datasets. They evaluated the
performance on a custom CNN with two convolutional layers with max pooling and three fully
connected layers. They found that colour information played an important role in classifying
images. Furthermore, they showed that colour information was increasingly relevant in datasets
with a high number of classes and that certain classes benefited more from colour information
than other classes did. For example, deer, rabbits, foxes, beavers, ships, plain landscapes, and
deserts all benefited from colour information. Additionally, they showed that greyscale images
transformed using the luma transformation are especially well suited for classes where texture is
of great importance. Such classes included e.g. trees, flowers, cats, cars, and people. One possible
extension which they mentioned in their study would be to consider state-of-the-art network
architectures and compare the performance on various colour spaces.

Clark et al. (2019) investigated seven input formats passed to a ResNet34 and their effects on
terrain classification. Among others, they compared RGB and greyscale images and found that
colour improved validation accuracy but also led to over-reliance and poor testing accuracy. They
suggested to use greyscale images over colour images to avoid overfitting the training data. For
their study, they assumed that the network architecture does not have an impact on the relative
results between the different input formats. Therefore, they used the ResNet34 architecture for all
their experiments. The influence of using multiple architectures thus remains subject to further
investigation.

Xie and Richmond (2018) pre-trained an Inception-V3 network on ImageNet after converting
the images into their greyscale counterparts using the luma transformation. They evaluated their
network by classifying greyscale chest X-ray images and found that the pretrained network on
greyscale images outperformed the network on colour images in terms of both, speed and accu-
racy. Their results suggest that colour is not a critical feature in image classification. However,
they also found that colour did help to distinguish between certain classes. For example, images
belonging to the ice-cream class were predicted more accurately using colour images, whereas
images belonging to the pier class were predicted more accurately using greyscale images. The
comparison between different CNN architectures and their performance remains subject to fur-
ther investigation.

Bianco et al. (2017) demonstrated the impact of colour balancing, a procedure used to map
device-dependent RGB values into a device-independent colour space, on CNN-based texture
classification. Thus, they aimed to correct for different lighting conditions and examined the
impact on the accuracy in recognising textures. They used various CNN architectures and showed
that the effectiveness of colour balancing is not proven. Additionally, since colour balancing is
part of the image preprocessing, the study is more situated in the domain of image processing
rather than image classification (Perrott and Hamey, 1991).

4 Chapter 2. Related Work

Sachin et al. (2017) analysed the effect of different colour spaces on scene classification. They
used a pretrained CNN (Places-CNN) in combination with classifiers such as Random Forests
and Extra Tree Classifiers to classify scenes into eight different scene categories. They obtained
best results using greyscale images and showed that the colour space affected the overall and
class-wise accuracy. Because they worked with a relatively small dataset, they chose to use a
pretrained network instead of training a CNN from scratch. Additionally, their classifier was not
purely CNN-based.

Bui et al. (2016) investigated on the performance of greyscale images and RGB images on
image classification. They applied a Convolutional Recursive Neural Network on RGB images
and their greyscale converted counterparts. Additionally, they compared their approach to more
traditional classifiers such as Random Forests and Support Vector Machines. The results showed
that greyscale images led to a higher accuracy compared to RGB images across all classifiers at
less computational cost. Their Convolutional Recursive Neural Network classifier outperformed
both, the Random Forests and the Support Vector Machines. The effect of a purely CNN-based
classifier remains subject to further investigation.

Bo et al. (2013), Socher et al. (2012), Bo et al. (2011), and Lai et al. (2011) experimented with
image classification with regard to RGB-D images. RGB-D images are images captured by a
depth camera. The camera is capable of providing a corresponding depth map that holds three-
dimensional information to the two-dimensional original image. Whereas current image clas-
sification applications are limited to two-dimensional images, typically in greyscale, the usage
of RGB-D images can take full advantage of colour-coded information and depth channels. Bo
et al. (2013) showed superior object recognition results using Linear Support Vector Machines.
Socher et al. (2012) introduced a network based on a combination of Convolutional and Recur-
sive Neural Networks and applied it to RGB-D images. They obtained state-of-the-art results
and demonstrated the applicability of Convolutional and Recursive Neural Networks to the do-
main of depth images. Bo et al. (2011) reached an improvement of 10% — 15% in accuracy over
the state-of-the-art using Linear Support Vector Machines. Lai et al. (2011) used Linear Support
Vector Machines, Gaussian Kernel Support Vector Machines, and Random Forests and demon-
strated that combining colour-coded information and depth information substantially improved
the quality of the results. Although the usage of RGB-D images is not directly comparable to
the usage of RGB images, the results suggest that colour-coded information has an impact on the
overall performance.

LeCun et al. (2004) assessed the applicability of Nearest Neighbour methods, Support Vector
Machines, and CNNs for recognising greyscale images of toys with invariance to pose, lighting,
and surrounding clutter. Thus, they aimed to detect and recognise three-dimensional objects in
images primarily from shape information. They found that CNNs outperformed the other tech-
niques. However, the comparison between RGB and greyscale images has to be further addressed.

Jones and Rehg (2002) constructed histogram colour models, operating on the colour of a
single pixel, to classify skin and non-skin pixels. Their skin classifier reached high accuracy in
detecting images containing naked people which could be used for low-level feature extraction
and image indexing and retrieval. Their results suggest that colour can be a powerful cue for
detecting people in images. However, the power of colour in general image classification remains
unclear. Furthermore, their classifier is not directly comparable to a CNN as it does not extract
features on multiple levels.

Regarding face recognition, Lu et al. (2018) proposed a novel colour space consisting of one
luminance component and two chrominance components which they tested using CNNs on three
datasets. They achieved better performance compared to state-of-the-art colour spaces, suggest-
ing that colour does have an impact on face recognition performance. However, they did not
directly compare their novel colour space to the greyscale colour space.

Arandjelovi¢ (2012) investigated on the discriminative power of colour-based invariants under

large illumination changes between training and query data. They applied Canonical Correlation
Analysis to compute the similarity between sets of colour-based invariants. Their results obtained
on a large database with extreme illumination variability suggest that colour may significantly
improve greyscale-based matching algorithms. The effect in combination with CNNs has to be
further investigated.

Liu et al. (2010) presented a novel face recognition method that extracts features in the colour
image discriminant colour space. They derived three colour component images and applied three
different image encoding methods to extract features from each component image. The experi-
ments showed the effectiveness of their approach and suggest that colour-coded information is
beneficial. However, they did not use CNNs to extract features from the images and did not
compare their results to greyscale images.

Liu and Liu (2008) applied an Enhanced Fisher Model to extract features in a novel hybrid
colour space. The hybrid colour space combined the R component of the RGB colour space and
the chromatic components I and Q of the YIQ colour space. Their results showed improved face
recognition performance due to the complementary characteristics of the component images. Al-
though they did not apply CNNs and compare the performance to greyscale images, their results
suggest that colour does have discriminatory power.

Yang and Liu (2008) developed a colour image discriminant model to unify the colour image
representation and recognition tasks into one framework. Thus, they tackled the current trend of
first choosing a colour image representation scheme and then evaluating its effectiveness using a
recognition method. The authors argued that such a separate strategy cannot guarantee the cho-
sen colour image representation scheme to be best suited for the subsequent recognition method.
Their results demonstrate the effectiveness of the proposed model and suggest that colour-coded
information can improve face recognition performance. They did not apply CNNs but reported
superior performance of their approach compared to greyscale images.

Jones and Abbott (2006) explored the feature extraction from colour images for face recog-
nition. Therefore, they extended Gabor filters to the hypercomplex (quaternion) domain and
quantified the effectiveness of these filters based on an elastic graph implementation extended to
colour images. They compared monochromatic and colour images and showed an improvement
of 3% - 17% in recognition accuracy over monochromatic images when using complex Gabor fil-
ters. They did not apply CNNSs to extract features but their results suggest that colour is beneficial
in face recognition.

Shih and Liu (2006) presented a colour configuration YQC,, where Y and Q are from the
YIQ colour space and C, is from the YC,C, colour space. The new colour configuration was
effective for face recognition using the Enhanced Fisher Linear Discriminant model. Their results
suggest that colour is important in face recognition tasks. However, the usage of CNNs as feature
extractors and the comparison to greyscale images has to be further investigated.

Rajapakse et al. (2004) used Non Negative Matrix Factorization to compare colour images
and greyscale images. Their results showed improved accuracy of colour images compared to
greyscale images when facial expressions and illumination variations were present in the data.
The impact of using CNNs as feature extractors remains to be investigated.

Torres et al. (1999) used Principal Component Analysis to compare colour images and im-
ages with only the luminance information present. They showed that using colour information
improved the recognition rate. However, the usage of CNNs remains to be further investigated.

Chapter 3

Computer Vision Compendium

Computer vision research started with the pioneering work of Roberts (1963) who built a com-
puter program capable of displaying a three-dimensional representation of a two-dimensional
image. Within computer vision, there are multiple sub-fields, one of which is recognition. Ac-
cording to Szeliski (2010), analysing a scene and recognising all of the objects present in this scene
is the most challenging visual task we might ask a computer to perform, to which there are sev-
eral reasons. The real world is made up of a vast amount of different objects. Furthermore, these
objects can appear under various circumstances such as illumination, pose, or occlusion, just to
name a few. Additionally, the intra-class variability of an object, e.g. the different breeds of dogs,
makes it unlikely to perform an exhaustive matching against a database including every variety
of every class. The same challenge holds true for face recognition. Designing a system capable
of recognising faces affected by variances of illumination, pose, facial expression, occlusion, etc.
is non-trivial. In this thesis, we focus our attention on image classification and face recognition,
two sub-fields of computer vision as illustrated in Figure 3.1. In this chapter, we describe the
goals and challenges of image classification and face recognition and outline the steps necessary
to perform each.

3.1 Image Classification

Image classification can be described as the ability of a computer to recognise patterns and objects
present in an image (Albon, 2018). Within computer vision, object recognition in general is con-
sidered to be one of the most challenging areas (Bui et al., 2016; Grauman and Leibe, 2011; Socher
etal., 2012), and is of great interest to research and industry in many application domains. Despite
recent success (Russakovsky et al., 2015), image classification remains susceptible to various chal-
lenges. For example, objects of the same category can appear in multiple variations, depending
on e.g. illumination, pose, camera viewpoint, occlusion, and background clutter which compli-
cate object recognition tasks (Grauman and Leibe, 2011). Furthermore, colour-coded information
has been shown to be susceptible to noise, illumination, and the quality of the capturing device
(Ebner, 2007), further contributing to the variety of object representations the recognition systems
must be able to deal with.

Image classification consists of two stages. A learning stage in which the algorithm builds the
classifier by analysing the training data and a classification step in which the classifier is used to
make predictions on validation or test data (Han et al., 2011). In image classification with CNNss
for example, the image is propagated through each layer of the network where features such as
edges, corners, lines, textures, or shapes are extracted in each layer. The CNN then outputs a
vector of scores, one for each category present in the dataset. Ideally, the highest score within

8 Chapter 3. Computer Vision Compendium

the output vector represents the actual label of the corresponding category of the input. How-
ever, before training, the CNN is unlikely to do so. To perform at a reasonable level and learn
from its predictions, it requires a measure of performance that can be used to optimise its in-
ternal parameters, i.e. its weights. Therefore, during training, the CNN uses a loss function to
compute a measure such that a higher number represents incorrect predictions and the CNN’s
confidence of these incorrect predictions, or correct predictions and the CNN’s insecurity of these
correct predictions. More formally, a measure representing the distance between the predicted
label and the actual label. For use cases with more than two classes, the cross-entropy loss is
often applied as a measure of performance (Wu, 2020). After propagating the input and calculat-
ing the cross-entropy loss, the CNN applies backpropagation which passes the loss backwards
through the network and calculates the gradients (Goodfellow et al., 2016). The gradients indicate
for each weight by which amount the loss changes if the weight is increased by a small amount.
Thus, based on the gradients, the weights can be adjusted to minimise the loss. The adjustment
is performed using e.g. stochastic gradient descent (SGD), an optimisation technique that can
be described as "[...] showing the input vector for a few examples, computing the outputs and
the errors, computing the average gradient for those examples, and adjusting the weights accord-
ingly." (LeCun et al., 2015, p. 437). This procedure is then repeated over many small subsets of
the training data until the average of the loss stops decreasing (Howard and Gugger, 2020; LeCun
etal., 2015). The classifier is then applied on validation or test data to complete the second stage of
image classification and assess the network’s ability to correctly classify previously unseen data.

3.2 Face Recognition

Face recognition is one of the most preferred biometric systems for verification and identifica-
tion of individuals and dates back as far as 1974 with the development of the first automated
face recognition system by Kanade (1974). Contrary to face detection, which can be described
as detecting the presence of a human face in an image, face recognition is concerned with iden-
tifying a specific individual in a passive, non-intrusive manner (Chokkadi and Bhandary, 2019;
Lawrence et al., 1997; Huang et al., 2008). Because of the wide range of application domains, face
recognition is one of the most researched areas in computer vision (Oloyede et al., 2020). It can
be applied in border security, surveillance, law enforcement, access control, computer graphics,
and psychology (Naik, 2014; Oloyede et al., 2020). It has been shown, that face recognition sys-
tems perform best under controlled conditions. However, the challenge remains to construct face
recognition systems capable of dealing with conditions resembling real-life more closely. Such
conditions include varying illumination, pose, facial expression, occlusion, plastic surgery, low
image resolution, ageing, hair, facial wear, and motion and are termed face recogntion in the wild
(Jain and Li, 2011; Oloyede et al., 2020; Syafeeza et al., 2014). Under such conditions, face recogni-
tion is according to Taigman et al. "[...] at the forefront of the algorithmic perception revolution.”
(2014, p. 1).

Typically, a face recognition system consists of four stages. These are face detection, pre-
processing (or normalisation or alignment), feature extraction (or representation), and recognition
(or matching). However, the exact definition of each stage varies in literature (Jain and Li, 2011;
Naik, 2014; Oloyede et al., 2020; Taigman et al., 2014). Since our face recognition experiments
are conducted with the Bob framework (Anjos et al., 2012, 2017; Glinther et al., 2012, 2016), we
henceforth use the terminology and procedural description used by Bob. Figure 3.2 illustrates the
face recognition stages for face verification and face identification respectively.!

Although we focus on face verification, we briefly describe both procedures to highlight the
differences. In face verification, the system tries to prove whether a person’s claimed identity is

1 https:/ /www.idiap.ch/software /bob/docs/bob/docs/stable /bob/bob.bio.base/doc/struct_bio_rec_sys.html

3.2 Face Recognition 9

true. Therefore, face verification is a one-to-one setting. In face identification, the system tries
to associate a person’s identity with an identity from a set of identities in the system’s database.
Therefore, face identification is a one-to-many setting (Jain and Li, 2011; Naik, 2014; Syafeeza
et al., 2014). Face verification can be compared to image classification as both aim to predict the
class/identity of a given image/person. However, regarding Deep Learning, there are differences
worth mentioning. Whereas image classification is an end-to-end process in which data is fed into
the network to produce a prediction, face verification is a two-step problem. First, the system is
trained similarly to an image classification system. However, to assess the generalisability beyond
the set of training identities, an intermediate layer, e.g. the second to last layer, of the network is
used as a representation on which a threshold on a distance measure is applied to decide whether
two images are from the same identity (Schroff et al., 2015). The Pre-processor processes the raw
biometric data to make it fit for modeling purposes and make recognition easier. One example of
pre-processing is to crop the face image and remove the background. The Feature Extractor trans-
forms the face image into a numerical representation by extracting the most important features
from the image. This is achieved similarly to how CNNs extract features in image classification
problems, where features such as edges, corners, lines, textures, or shapes are extracted in each
layer. The Model Database stores the numerical representation for each person alongside the per-
son’s ID. The Matcher then compares a new input, a probe, to one (for verification) or all (for
identification) representations in the Model Database and produces a similarity score for each com-
parison. Finally, the Decision Maker decides whether the probe and the representation match (for
verification), i.e. whether the similarity score is above or below a pre-defined threshold. For iden-
tification, the Decision Maker decides which representation best describes the probe. In this thesis
for example, we first trained our networks to predict identities on VGGFace2 data and then tested
the performance on Labeled Faces in the Wild data by calculating the distance-cosine between the
intermediate layer (a vector of size 256) of the probe and the corresponding numerical representa-
tion stored in the Model Database. CNNs are frequently used for face recognition tasks (Chokkadi
and Bhandary, 2019; Jain and Li, 2011), since they provide for partial invariance with regard to
translation, rotation, scale, and deformation (Lawrence et al., 1997; Naik, 2014) and according to
Oloyede et al. (2020), they have been the most preferred classification technique in recent times.
Therefore, we use CNNs to conduct our face verification experiments and investigate on the in-
fluence of colour on face recognition.

10 Chapter 3. Computer Vision Compendium

Computer Vision

<~
o~

1

1

1

! -

1 N -
1

I

1

1

.

Recognition

Object Recognition Face Recognition

Instance Recognition Image Classification
(Category Recognition)

Figure 3.1: Image classification and face recognition as subfields of computer vision

Madel
Database

Model

John
0o
@

Database
o0 —
Feature ~ John Feat 22 John
Pre-processor g Pre-processor eaure
\i’ o » Extractor 25 Mary P Extractor 2 Mary
N | L -
X —_ Olga
John . B 0
Yy y -
Match (face does Identity (7 bel
belong to John) Decision entity (face belongs isi
or - Mak Matcher [«— tolJohn”) Decision l«—{ Matcher [«
No Match (face does aKer |score o0 Maker |scores °
not belong to John) . John ~— John
22 Mary
O Olga
— = Enroliment

—— = Enroliment
» = Vferification — = |dentification

(a) Face verification (b) Face identification

Figure 3.2: Face verification and identification with Bob !

Chapter 4

Colour in Image Classification
and Face Recognition

The human visual system can distinguish between thousands of colours but only between about
two dozen shades of grey (Gonzales and Woods, 2008), which leads us to believe that colour must
be an important part in helping us to interpret scenes and recognise objects therein. According to
Rossion and Pourtois (2004), Wurm et al. (1993), and Yip and Sinha (2002), colour seems to im-
prove image classification and face recognition performance. However, as highlighted in Chapter
2, the influence of colour on artificial image classification and face recognition is still subject to
much debate. In this chapter, we briefly describe the evolution of the human colour vision system
and its adaptation in image processing. We then explain the definition of a colour space, a key
concept with regard to colour specification. More specifically, we discuss the RGB colour space
and show how to transform images from RGB to greyscale using the luma transformation. This
is an essential part of our experimental setup. Finally, we outline the current state of colour in
image classification and face recognition. Is it perceived as a performance enhancing feature or
just a computational burden?

4.1 From the Retina to the Monitor

Compared to the modern human’s option to go grocery shopping in the nearest supermarket, our
ancestors had to rely far more on their ability to gather food. In order to spot for example ripe
red berries and distinguish them from their green and unripe counterparts, humans thus had to
develop some form of colour vision. Polyak (1957) argued that the ability of humans to perceive
colour thus coevolved with the evolution of brightly coloured plants. Because an exhaustive
description of the evolution of the human visual system would go beyond the scope of this thesis,
we will focus on some of the core concepts needed to understand colour from both, a biological
and a technical point of view. The retina is the innermost membrane of the eye and its surface
contains two types of receptors: cones and rods. There are around six to seven million cones and
75 to 150 million rods present on the surface of the retina. The cones are located in the central part
of the retina and are highly sensitive to colour. Because each cone is connected to its own nerve
end, they can be used to resolve fine details. The rods on the other hand are distributed over a
larger area and multiple rods are connected to the same nerve end. They serve to give a general
picture of the field of view, are not involved in colour vision, but are sensitive to low levels of
illumination. This explains why we can perceive objects as brightly coloured during daylight
(relatively high illumination) when the cones are active but only as colourless forms during the
night (relatively low illumination) when the rods are active. The cones can be further divided into

12 Chapter 4. Colour in Image Classification and Face Recognition

three principal categories. These categories roughly represent the colours red (R), green (G), and
blue (B), the so-called primary colours. It is not surprising then that the most commonly used
colour space in image processing is called RGB (Gonzales and Woods, 2008). But what exactly is
a colour space?

4.2 Colour Spaces and the Luma Transformation

A colour space (or colour model or colour system) is a specification of a coordinate system and
a subspace within that system where each colour is represented by a single point. Thus, colours
can be specified in a standardised way. The most commonly used colour space oriented towards
colour monitors and colour video cameras is RGB. Therefore, when we talk about colour in re-
spect to computer vision, the RGB colour space is omnipresent. It is based on a three-dimensional
cartesian coordinate system where each of the three primary colours red, green, and blue is lo-
cated at a corner of the system. The secondary colours cyan, magenta, and yellow are located at
the three other corners between the primary colour corners, whereas black is located at the origin
and white at the corner furthest away from the origin. Figure 4.1 displays the RGB colour space.
As illustrated in the figure, the line between the colour black and the colour white is the so called
greyscale. Every point on this line is represented with equal RGB values. Note that, for conve-
nience, the colours in the figure have been normalised to be in range [0,1]. Images represented
in the RGB colour space therefore consist of three component images (channels), one for each
primary colour. When displayed on an RGB monitor, the three component images are combined
on the screen to produce a composite colour image (Gonzales and Woods, 2008). Greyscale im-
ages on the other hand, are composed of a single component image instead of three (Sachin et al.,
2017). There exist multiple algorithms to transform an RGB image into its greyscale counterpart.
In their study, Kanan and Cottrell (2012) described thirteen of such methods. However, in this
study we focus on the luma transformation (or luminance transformation) that is designed to
match human brightness perception by using a weighted combination of the RGB channels. The
luma transformation is described in Equation (4.1). We chose the luma transformation because of
its availability in PyTorch and its wide usage in image processing software (Kanan and Cottrell,
2012). The question remains, whether RGB images or their transformed greyscale counterparts
lead to superior classification and recognition performance?

299 587 114
L=RXx —+Gx — + B x

1000 1000 1000 1)

4.3 The Current State

There are multiple studies suggesting that colour information can be beneficial to artificial image
classification and face recognition (Arandjelovi¢, 2012; Buhrmester et al., 2019; Clark et al., 2019;
Jones and Abbott, 2006; Jones and Rehg, 2002; Liu et al., 2010; Liu and Liu, 2008; Lu et al., 2018;
Rajapakse et al., 2004; Shih and Liu, 2006; Socher et al., 2012; Torres et al., 1999; Yang and Liu,
2008). However, multiple other studies show that colour does not help and that colour only
introduces computational costs (Bui et al., 2016; Sachin et al., 2017; Xie and Richmond, 2018). This
has partially been attributed to the fact that colour is susceptible to noise, lighting conditions, and
the quality of the capturing device. Interestingly, some studies also found the impact of colour on
image classification to be dependent on the class to be predicted (Buhrmester et al., 2019; Xie and
Richmond, 2018). That is, certain objects of a class are better suited to be associated with a specific
colour which in turn can boost classification performance for this class. The degree to which

4.3 The Current State 13

an object is associated with a specific colour is called colour diagnosticity, a term introduced
by Tanaka and Presnell (1999). It can be observed that the impact of colour on artificial image
classification and face recognition is not entirely clear.

14 Chapter 4. Colour in Image Classification and Face Recognition

B
4
0,01

Blue () Cyan
1
1
1
1

Magenta 1

I | White
: .o‘..
1
I ’..
I 0.
L
L
: ...,.* Grayscale 0, 1,0)

Black pemcmmccmccce e >G

e Green
/',,
(1,0,0) k2
Red Yellow
R

Figure 4.1: RGB Colour Space; Gonzales and Woods (2008)

Chapter 5

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are often used in computer vision applications (Chollet,
2018; Simard et al., 2003) and they are well designed to process images of various chromaticities.
They achieved state-of-the-art results in both, image classification (Russakovsky et al., 2015) and
face recognition (Cao et al., 2018). In this chapter, we first outline the origin and evolution of
CNNs. We then explain typical building blocks of CNNs that are used throughout the thesis.
Additionally, we describe batch normalisation, a common regularisation technique applied in
residual networks.

5.1 Origin and Evolution

In the 1950s, a small subset of Artificial Intelligence (AI) called Machine Learning (ML) revo-
lutionised several fields. Neural Networks (NN), a subfield of ML, arose and spawned a novel
area today called Deep Learning (DL). Within DL, CNNs are a form of supervised learning al-
gorithms that can be used to e.g. classify images and recognise faces (Alom et al., 2018). In the
early 1960s, the idea of connecting input units to local receptive fields, and the almost simultane-
ous discovery of locally sensitive, orientation-selective neurons in the cat’s visual system (Hubel
and Wiesel, 1962) sparked the invention of CNNSs. Such local receptive fields enabled neurons
to extract visual features such as oriented-edges, end-points, and corners and connect these fea-
tures to construct more complex patterns. Thus, an important step towards image processing was
made. When exactly the first CNN was introduced is not entirely clear. According to Nielsen
(2015), CNNs date back as far as the 1970s. Contradictorily, Alom et al. (2018) date the origin
back to the 1980s with the first CNN network structure proposed by Fukushima (1988). How-
ever, the proposed network was not widely used due to computation power limitations which
played a crucial role in the popularity of CNNs as an efficient learning approach for computer
vision (Alom et al., 2018). The excitement and optimism regarding NNs in general lasted for the
entirety of the decade, but faded in the 1990s due to the rise of other techniques such as Support
Vector Machines (Nielsen, 2015). The general opinion was that learning useful, multistage fea-
ture extractors with little prior knowledge was infeasible (LeCun et al., 2015). Simard et al. even
mentioned that “In 2000, [...] the term “neural networks” in the submission title was negatively
correlated with acceptance.” (2003, p. 1). For CNNs, the breakthrough came later in the 1990s
with the establishment of the modern subject of CNNs proposed by Lecun et al. (1998) (Nielsen,
2015). Their success in the handwritten digit classification problem led various researchers to fur-
ther improve CNNs and obtain state-of-the-art results in many image classification tasks (Alom
et al., 2018). Therefore, CNNs were widely applied since the early 2000s, mainly for detection,
segmentation, and recognition of objects and regions in images (LeCun et al., 2015). In 2012, the
ImageNet competition (Russakovsky et al., 2015) further proved CNNs applicability on large scale

16 Chapter 5. Convolutional Neural Networks

datasets and their superior performance compared to more traditional techniques. The usage of
CNNs led to an almost 50% reduction in error rates (Krizhevsky et al., 2012; LeCun et al., 2015).

5.2 Building Blocks
5.2.1 Input

For image classification and face recognition tasks, the input to a CNN is typically an image. The
image is stored as a multi-dimensional array of size ¢ x n x m, where c is the number of channels
in the image, n is the height, and m is the width of the image. Each cell in the matrix represents
the pixel intensity for the corresponding pixel of the image (LeCun et al., 2015). The number of
channels depends on the image’s chromaticity. An RGB image consists of three channels, one
for each primary colour. A greyscale image consists of only one channel representing the pixel
intensity along the greyscale. The height and width of the image define the number of pixels
present in the image and are typically referred to as the image’s resolution (Dumoulin and Visin,
2016). For example, an RGB image from the CIFAR-10 dataset is of size 3 x 32 x 32, whereas its
converted greyscale counterpart is of size 1 x 32 x 32. Figure 5.1 illustrates the structure of RGB
and greyscale images. For simplicity, we will only consider square images throughout the thesis,
that is images with n = m.

5.2.2 Convolution

The goal of a CNN is to extract features from an image and classify the image accordingly. A
feature is a visually distinctive attribute such as an edge, a corner, a texture, a line, a particular
shape, or in combination, an object or a face. However, a feature extractor is needed to transform
the raw data, such as pixel values in an image, into a suitable representation that can be used
for classification and recognition. Whereas traditional ML techniques require careful engineering
and domain expertise to design such a feature extractor, a CNN can be fed with raw data and
automatically transform the input in such a way that it can extract features (e.g. horizontal and
vertical edges) from it, as illustrated in Figure 5.2. This is a key advantage of CNNs over tradi-
tional ML approaches as it eliminates the need for hand-crafted feature extractors (Alom et al.,
2018; Lecun et al., 1998; LeCun et al., 2015; LeCun and Bengio, 1995). To extract the features, the
CNN transforms the raw input using a convolution. A convolution is a mathematical linear op-
eration between matrices (Howard and Gugger, 2020). Hence, the name Convolutional Neural
Network. The convolution slides a kernel, a little matrix, across an image. Thereby, the convolu-
tion multiplies each cell of the kernel with each cell in the corresponding area of the image. This
area is called the local receptive field. The results are then added together to produce an output,
a feature map (Goodfellow et al., 2016). Since each cell within a feature map is only connected
to the local receptive field, each feature map extracts partial information of the image including
its spatial representation. This is important because of the strong two-dimensional local structure
present in images. In other words, the pixels that constitute the image are highly correlated with
regard to their location (Lecun et al., 1998). A convolution can exploit this knowledge and take
into account the input topology (Nielsen, 2015; Simard et al., 2003). Furthermore, because each
cell of the kernel is used at every position of the input, a convolution only learns one set of param-
eters rather than learning a separate set of parameters for every receptive field. This is referred
to as parameter sharing and results in CNNs being much more efficient than fully-connected op-
erations in terms of memory requirements (Alom et al., 2018; Goodfellow et al., 2016; Krizhevsky
et al.,, 2012; Nielsen, 2015). It also allows the CNN to detect the same feature regardless of its
location in the image (Chen et al., 2015), and improves the overall generalisability of the network

5.2 Building Blocks 17

(LeCun and Bengio, 1995). Figure 5.3 shows the application of a kernel of size 3 x 3 across one
channel of a 4 x 4 image (light blue) to produce a feature map of size 2 x 2 (light green). Notice,
the dark blue area in the image represents both, the kernel and the receptive field. In the case
where ¢ > 1, the convolution needs a separate kernel for each channel. That is, the number of
kernels has to be equal to the number of incoming channels. Multiple kernels stacked together
are sometimes referred to as a filter. Therefore, a filter is a three-dimensional collection of kernels
applied to a three-dimensional collection of input channels where the depth (number of kernels
and number of channels) is the same. Figure 5.4 illustrates a convolution for ¢ > 1. We can
see that the number of incoming channels is equal to the number of kernels in each filter, that is
¢1 = ¢z = 3, and that the number of filters determines the number of feature maps and outgoing
channels, k1 2 = f1,2 = ¢3 = 2. Furthermore, we can see that each filter, k; and ks, produces its
own feature map, fi and f, respectively. Whereas the number of filters determines the number of
outgoing channels, the size of the kernels, the padding, and the stride determine the height and
width of the outgoing channels. Typical kernel sizes are 3 x 3 and 5 x 5, although various other
sizes can also be applied. However, even kernel sizes are seldom used in practice because they
require different amounts of padding on the top /bottom and left/right of the input (Howard and
Gugger, 2020). If padding is applied, additional pixels are added around the outside of the input
to increase its height and width. Typically, pixels of zeroes are added. Padding ensures that the
height and width of the feature map are the same as the height and width of the input. Figure 5.5
illustrates the application of a 3 x 3 kernel over a 5 x 5 input with padding added to the input
to produce a feature map of size 5 x 5. The stride defines the distance between two consecutive
positions of the kernel. It constitutes a form of subsampling and can also be interpreted as a mea-
sure of how much of the output is retained. Figure 5.6 displays the application of a 3 x 3 kernel
over a 5 x 5 input with a stride of two to produce a feature map of size 2 x 2. In general, the
relationship between the output o, the input ¢, the kernel k, the padding p, and the stride s can
be described using Equation (5.1) (Dumoulin and Visin, 2016). The sequential usage of convo-
lutional layers allows for the extraction of different feature levels. The first convolutional layer
extracts low-level features such as edges, corners, textures, and lines. The second convolutional
layer extracts higher-level features such as particular arrangements of edges and shapes. The last
convolutional layer extracts the highest-level features, e.g. the objects and faces to be classified
(LeCun et al., 2015; Ren et al., 2012).

i+2p—k
s

o= J+1 (5.1)

5.2.3 Activation Function

The output of a convolution (or if present a batch normalisation), is fed into a non-linearity, or
activation function before being passed to the next convolution. Thus, the network is able to
learn more complex models (Zheng et al., 2014). In Deep Learning, the most common activation
function is the rectified linear unit, ReLU, due to its superior performance regarding training time
(Namatevs, 2017). Krizhevsky et al. (2012) for example, mentioned their training time to be up
to six times faster on the CIFAR-10 dataset compared to an equivalent network with a hyperbolic
tangent (Tanh) activation function. The ReLU activation is described in Equation (5.2) (Howard
and Gugger, 2020).

ro={ 0 §s 62

18 Chapter 5. Convolutional Neural Networks

5.2.4 Pooling

According to Namatévs, “[...] pooling ensures that the network focuses on the most important
patterns.” (2017, p. 43). A pooling layer is typically placed right after the activation function
to perform subsampling on the feature map and reduce the feature map’s resolution and com-
plexity for subsequent layers (Albawi et al., 2017; Nielsen, 2015). This in turn makes the output
more robust to shifts and distortions in the input and further improves computational efficiency
(Dumoulin and Visin, 2016; Goodfellow et al., 2016; LeCun and Bengio, 1995; Nielsen, 2015). In
some sense, pooling works similarly to a convolution as it subsamples parts of the input to pro-
duce a reduced output according to some function. The most common pooling operation is max
pooling !, which outputs the maximum value of each subsample. Figure 5.7 illustrates the max
pooling operation with a 2 x 2 filter and a stride of 2. Since both, convolution and pooling rely on
the assumption that some function is repeatedly applied to subsets of the input, the relationship
between the output o, the input 4, the kernel k, and the stride s of a pooling operation can be
formulated as the relationship of a convolution without padding. The relationship is described in
Equation (5.3) (Dumoulin and Visin, 2016).

J+1 (5.3)

5.2.5 Full-Connection and Output

Another type of layer of a CNN is a fully-connected layer. It connects every cell of the output
volume of the previous layer to a neuron. To map the three-dimensional output volume to a one-
dimensional input volume of the fully-connected layer, the output volume is flattened. That is,
all the rows of each feature map are concatenated to produce a one-dimensional string of cells. If,
for example, the output volume of the previous convolutional layer consists of three feature maps
of size 12 x 12, the flattened input to the fully-connected layer will consist of 3 x 12 x 12 = 432
cells (Nielsen, 2015). These 432 cells are then connected to e.g. ten output neurons of the fully-
connected layer to predict ten classes present in the data. It is also possible to stack multiple fully-
connected layers and train another classifier or make predictions (Namatévs, 2017). Essentially,
the last layer of a CNN is a traditional NN (Albawi et al., 2017). Figure 5.8 illustrates the three-
dimensional output volume being flattened into a one-dimensional string of cells. Each cell is then
connected to each output neuron to construct the fully-connected layer and predict ten classes.
For simplicity, only two of the flattened cells are connected to each output neuron.

5.3 Batch Normalisation

CNNss are interconnected because a layer’s input depends on the output of the previous layers.
Thus, a layer’s input distribution also depends on changes during training, as the parameters
of previous layers are updated. This phenomenon is referred to as internal covariate shift and
is responsible for slower training times by requiring lower learning rates and careful parameter
initialisation. To address this issue, loffe and Szegedy (2015) proposed to apply batch normalisa-
tion, a method to make normalisation part of each layer within the network. Thus, each batch of
images being processed by the network is normalised per layer, which subsequently reduces the
internal covariate shift and allows to use higher learning rates and be less careful about initiali-
sation. The normalisation is achieved by calculating the average mean p and variance o2 of the

]htt-ps: //¢s231n.github.io/convolutional-networks/ /#pool

5.3 Batch Normalisation 19

activations of a layer and normalising each activation X according to Equation (5.4) to produce
the normalised activation X', with e being a constant added to the variance for numerical stability.
Since the network might not require every layer to have 4 = 0 and o = 1, batch normalisation
adds two learnable parameters v and 3 to scale and shift the normalised activations and allow
them to have any mean or variance, independent from the mean and variance of previous layers
(Howard and Gugger, 2020; Ioffe and Szegedy, 2015).

X’ :'yM + 5 (5.4)

Vo e

20 Chapter 5. Convolutional Neural Networks

—n

Figure 5.1: Structure of an RGB image (left) and a greyscale image (right). c represents the number
of channels, n the height, and m the width of the image

5.3 Batch Normalisation 21

(b) Horizontal edge

Figure 5.2: Input image with different filters visualised; Wu (2020)

T

Figure 5.3: Illustration of a convolution operation; Dumoulin and Visin (2016)

22 Chapter 5. Convolutional Neural Networks

‘k1,2 "f1,2 -JZ

C3

Figure 5.4: Convolution operation over multiple channels. ¢, represents the channels, k, the
filters, and f, the feature maps

Figure 5.5: Convolution operation with padding; Dumoulin and Visin (2016)

- * 5 e

Figure 5.6: Convolution operation with stride; Dumoulin and Visin (2016)

5.3 Batch Normalisation

23

Single depth slice

111

2

4

9|6

4

max pool with 2x2 filters
and stride 2

8
0
4

m
3D output | ¢_.——

volume Y-]—n N

|

Figure 5.7: Sample max pooling operation!

—

flattened 1D
output volume:

fully-connected
layer

| 10 output
neurons

Figure 5.8: Fully-connected layer after a flattened convolutional output volume. c represents the
channels, n the height, and m the width of the image

Chapter 6

Datasets

In this chapter, we provide an overview over the different datasets used throughout the thesis and
explain how we normalised them for our experiments. Specifically, we outline the size, structure,
and image format of each dataset and illustrate sample images. In total, we use four datasets to
train, validate, and test our networks. We conduct our first experiments on CIFAR-10, a relatively
small dataset allowing us to develop the training and validation procedure within reasonable
time. We then use ImageNet as our second dataset to conduct further image classification experi-
ments on a larger, more challenging dataset. As our third dataset, we use VGGFace? to train and
validate our networks with regard to face recognition. Finally, we test the networks we trained
on VGGFace2 on our fourth dataset, Labeled Faces in the Wild.

6.1 CIFAR-10

CIFAR-10 is a labelled subset of the tiny images dataset (Torralba et al., 2008) and consists of
60’000 colour images of size 32 x 32. It was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton and is divided into a training set and a testing set containing 50’000 and 10’000 images
respectively. The 60’000 images are equally divided into ten classes, leading to 5°000 images per
class in the training set and 1’000 images per class in the testing set. The classes are designed to
be mutually exclusive. In other words, each image belongs to exactly one class. Figure 6.1a shows
ten sample images of the CIFAR-10 dataset. We chose to use CIFAR-10 because of its relatively
small size and because it has been used extensively in research and many authors show state-of-
the-art results with this specific benchmark dataset (Cubuk et al., 2018; DeVries and Taylor, 2017;
Dutt et al., 2020; Gastaldi, 2017; Goodfellow et al., 2013; Huang et al., 2017, 2019; Krizhevsky and
Hinton, 2010; Phong and Ribeiro, 2020; Real et al., 2019; Wistuba et al., 2019; Yamada et al., 2018;
Zagoruyko and Komodakis, 2016; Zoph and Le, 2016).

6.2 ImageNet

ImageNet (Deng et al., 2009) is a large scale database of full resolution images built upon the
structure of WordNet (Miller, 1995). The database is divided into subtrees (e.g. plant, flora, plant
life) which consist of sets of synonyms (synsets) or classes. At the time of writing, the database
consists of almost 15 million images belonging to almost 22'000 synsets.! For our experiments,
we used the 2012 ImageNet Large Scale Visual Recognition Challenge ILSVRC2012) dataset, a subset
of the entire ImageNet database. Figure 6.1b shows ten sample images of one class of the ImageNet

1http: //www.image-net.org/

26 Chapter 6. Datasets

dataset. This subset consists of over 1.2 million full-resolution colour images for the training set
and 50’000 full-resolution colour images for the validation set. There are 1’000 classes in total
with 732-1"300 images per class for the training set and 50 images per class for the validation
set. ImageNet is a challenging, large-scale dataset that has been used extensively in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) to train state-of-the-art networks. The challenge
has been run annually since 2010 and has become a standard benchmark for large scale object
recognition and object detection. It shows how the state-of-the-art accuracy improved over the
years, showcasing the progress in large scale object recognition and object detection (Russakovsky
etal., 2015).

6.3 VGGFace2

A major contributing factor to the success of CNNs in computer vision is the availability of large
quantities of training data. For image classification tasks, the introduction of ImageNet was in-
strumental and further advanced research in this area. However, for face recognition tasks, the
availability of a comparable dataset was lacking until the introduction of VGGFace by Parkhi et al.
(2015). The dataset contains 2’622 identities with 1’000 images per identity resulting in a total of
2.6 million images in the entire dataset. Three years later, Cao et al. (2018) introduced VGGFace2,
a dataset for recognising faces across pose and age. It contains 9’131 identities with an average
of 362.6 images per identity resulting in a total of 3.31 million full-resolution colour images in
the entire dataset. Figure 6.1c shows ten sample images of one person of the VGGFace2 dataset.
VGGFace2 aims to introduce a new large-scale face dataset with large variations in pose, age, illu-
mination, ethnicity, and profession. Additionally, it provides more balanced data with regard to
ethnicity and gender compared to VGGFace. VGGFace? is divided into two splits, one for training
having 8’631 classes and one for validation having 500 classes. For our experiments, we only had
access to the 8’631 identities in the training set. Thus, for each identity, we randomly split the
images into a training set (90% of the data) and a validation set (10% of the data).

6.4 Labeled Faces in the Wild

In order to test the performance of a face recognition system under uncontrolled circumstances,
Huang et al. (2008) introduced the Labeled Faces in the Wild dataset. The dataset aims to provide
images spanning the range of conditions present in everyday life. Therefore, the dataset includes
variety in factors such as pose, lighting, race, accessories, occlusion, and background. The dataset
contains 5749 identities and a total of 13'233 full-resolution colour images. Figure 6.1d shows
ten sample images of the Labeled Faces in the Wild dataset. Additionally, the dataset comes in two
protocols, View 1 for algorithm development and View 2 for performance reporting. Since we
developed our networks on VGGFace2, we exclusively used View 2 to report the performance of
our networks.

6.5 Data Normalisation

In total, we applied three normalisation procedures to our data to change the image size and sec-
tion, chromaticity, and range of pixel intensity values. Since we only considered square images
for our experiments, we cropped the ImageNet and VGGFace2 images to be of size 224 x 224 as
suggested in Krizhevsky et al. (2012), Simonyan and Zisserman (2014), and Cao et al. (2018) re-
spectively. We also cropped the Labeled Faces in the Wild images to be of size 224 x 224 to match

6.5 Data Normalisation 27

the size of the cropped VGGFace2 images the network was trained on. Additionally, for ImageNet,
we randomly cropped and resized? the images. For VGGFace2, we normalised the images with
respect to the center eyes and the center mouth locations. We computed these two points based on
the annotated landmarks (left eye coordinates, right eye coordinates, tip of the nose coordinates,
left mouth corner coordinates, and right mouth corner coordinates) of each image annotated with
the Multitask Cascaded Convolutional Network (MTCNN) described in Zhang et al. (2016). We
then used Bob (Anjos et al., 2012, 2017; Guinther et al., 2012, 2016) to crop and align each image to
the predefined size such that the two derived landmarks (center eyes and center mouth) would
be located at the (x, y)-coordinates (112, 80) and (112, 170) respectively. Figure 6.2a illustrates the
provided MTCNN landmarks (blue dots), our derived normalisation landmarks (green dots), and
the resulting normalised image with the predefined landmark coordinates (red dots). An excerpt
of the normalised images can be found in Figure A.1 in the Appendix. For Labeled Faces in the
Wild, we used Bob to crop and align each image to the predefined size such that the right eye
(subject’s perspective) would be located at the (x, y)-coordinate (60, 70) and the left eye (subjetc’s
perspective) at the (x, y)-coordinate (160, 70). Figure 6.2b illustrates an original image and the
resulting normalised image with the predefined eye locations (red dots). To convert the images
into greyscale, we applied PyTorch’s own greyscale conversion function. The function translates
a three-channel RGB image into a one-channel greyscale image using the ITU-R 601-2 luma trans-
formation, described in Equation (4.1) and applied in e.g. Buhrmester et al. (2019) and Xie and
Richmond (2018). To normalise the images with regard to the range of pixel intensity values, we
standardised them to be in range [—1,1]. A normalised range of pixel intensity values often al-
lows a network to distinguish between classes more easily, since it reduces the variability within
each class (Bishop, 2006). Common normalisation techniques include standardisation and mean
normalisation with the former showing superior performance (Pal and Sudeep, 2016). Both tech-
niques transform an input X into its normalised counterpart X’ using the mean of the training
set y, and the standard deviation of the training set . Equations (6.1) and (6.2) illustrate the stan-
dardisation and the mean normalisation respectively. Whereas both of these procedures require
to compute 4 and/or o, transforming the images into PyTorch Tensors scales them to be in range
[0,1]. This allowed us to set y and ¢ in Equation (6.1) equal to 0.5 to scale the data in range [—1, 1]
and make it centered around 0 without the need to compute . or o.

x = X =n (6.1)

g

X' =X-pu (6.2)

2https: / / github.com/pytorch/examples/blob/master/imagenet/main.py#L122

28 Chapter 6. Datasets

Figure 6.1: Sample images of each dataset

6.5 Data Normalisation 29

MTCNN Landmarks Normalisation Landmarks)
o Normalised Image

50
100
150

200

(a) VGGFace2
Original Image Normalised Image

o

5

100
100

125
150

150

200 175

200

(b) Labeled Faces in the Wild

Figure 6.2: Face normalisation

Chapter 7

Networks

In this chapter, we explain the networks and their architectures used throughout the thesis. The
chapter is divided into a section detailing pre-existing network architectures (LeNet & Residual
Networks) and a section describing our novel network architecture (R-G-B) which processes the
RGB channels of an image separately. For each of the pre-existing networks, we outline the orig-
inal architecture and concepts as well as the changes made to suit the goal of this thesis. For our
novel architecture, we first draw a comparison to the concept of depthwise separable convolu-
tions and show how they are different to our architecture. Second, we explain the core concepts
of our architecture and the constraints it is bound by. Finally, we illustrate the implementation of
our novel architecture on the basis of the LeNet architecture and explain the differences between
the original and our novel architecture.

7.1 Pre-existing
7.1.1 LeNet

LeNet is a network introduced by Lecun et al. (1998) and is considered to be one of the first
CNNs (Nielsen, 2015). Due to its wide usage and simplicity it is well suited for benchmarking
and furthermore, in our case, for developing and testing the training and validation procedure.
The original LeNet consists of seven layers, not counting the input and was trained on greyscale
images of size 32 x 32. The seven layers are made up of four convolutional layers, two average
pooling layers, and a fully-connected layer, whereas each activation is passed through a scaled
hyperbolic tangent activation function. Denoting convolutional layers as C,, pooling layers as
S, activations as A, and fully-connected layers as F;, LeNet can be summarised as: C; — A —
S =20y - A— 5 —C3 - A— Cy - A — Fy. For our experiments, we used the ReLU
activation function instead of the scaled hyperbolic tangent used in the original paper. As shown
by Krizhevsky et al. (2012), using ReLU instead of Tanh can result in up to six times faster training
without reducing the error rate. Additionally, having the same input size as in the original paper
allowed us to implement Cjy as a fully-connected layer as described in Lecun et al. (1998). Thus,
our implementation of LeNet can be summarised as: C; -+ A =+ S} = Cy = A — S, = C3 —
A — Fy — A — F,. Figure 7.1 shows the architecture of our implementation of LeNet. F' denotes
the height (and width) of the kernel, D denotes the number of incoming channels, K represents
the number of outgoing channels (the number of filters applied), and # Params represents the
number of parameters in the corresponding layer. The three convolutional layers are highlighted
in colours. The first row of a convolutional layer denotes the convolution itself and the second
row denotes the biases present in this layer.

32 Chapter 7. Networks

7.1.2 Residual Networks

As demonstrated by He et al. (2015), Ioffe and Szegedy (2015), Simonyan and Zisserman (2014),
and Szegedy et al. (2015), deeper networks usually outperformed shallower networks in the chal-
lenging ImageNet classification task. Based on these findings, one could assume that improving a
network’s performance is as simple as adding more layers to the network. Counterintuitively, the
study conducted by He et al. (2016) showed that deeper networks resulted in higher training and
testing errors compared to shallower networks on both, CIFAR-10 and ImageNet. One reason for
this is the degradation problem, a phenomenon characterised by a saturating and then decreasing
accuracy as the network’s depth increases (He et al., 2015). This phenomenon has been partially
attributed to optimisation challenges such as vanishing and shattered gradients (Balduzzi et al.,
2017; Monti et al., 2018) and suggests that the solvers might have difficulties in approximating
identity functions (He et al., 2016). To tackle this problem and thus allow networks to go deeper,
He et al. (2016) proposed a novel network architecture, the residual network, ResNet. Figure 7.2
illustrates the training and validation error achieved on ImageNet with both, plain networks (left)
and ResNets (right), where the thin lines represent the training error and the bold lines represent
the validation error. It can be observed, that going deeper with ResNets does not decrease the net-
work’s performance. The main idea is to allow the network to easily learn the identity function if
necessary by passing the identity forward through the network in so-called shortcut connections,
as illustrated in Figure 7.3. Thus, the network will at least be able to learn the identity function
and additionally have the potential to learn more complex functions. More formally, the authors
denote H(x) as an underlying function to be fitted by a few stacked layers of a network, with z
denoting the input to these layers. Based on the hypothesis that multiple nonlinear layers can
asymptotically approximate complicated functions (Montufar et al., 2014), one can hypothesise
that the same layers can asymptotically approximate the residual functions, i.e., H(x) — x (as long
as the input and output are of the same dimension). Thus, instead of expecting the stacked lay-
ers to approximate H(x), the authors explicitly let these layers approximate the residual function
F(z) == H(z) — z. The original function H(z) thus becomes F(z) + x. The authors hypothesise
that although for the network it should be possible to approximate both functions, the ease of
learning might be different. In practice, this can be achieved by directly passing the input « for-
ward through the network. The additional forward passing of the input is realised through the
shortcut connections. These shortcut connections skip one or more layers, perform identity map-
pings, and add the input to the output of the stacked layers, right before the activation function.
In addition to potential ease of learning, the shortcut connections do neither add extra parameters
nor computational complexity to the network. In the case of ResNet18 for example, the shortcut
connections skip two layers, each consisting of a convolution, a batch normalisation, and a ReLU
activation. The two skipped layers are often referred to as a residual block. Figure 7.3 depicts two
layers grouped as one residual block with a parallel shortcut connection. He et al. (2016) define
multiple consecutive blocks with the same dimensions as a layer. Since the term layer has already
been used to define the ensemble of different operations, we define the consecutive blocks with
the same dimensions as districts. ResNet18 for example, consists of four districts, each of which
consists of two blocks, and each block consists of two layers. Each of those layers consists of a con-
volution, a batch normalisation, and a ReLU activation. This results in (4 x 2 x 2) 4+ 2 = 18 layers
in total, where the +2 references the first layer before the first district, consisting of a convolution
and a max pooling, plus the fully-connected layer after the fourth district. It is worth mentioning
that there are two types of residual blocks, an identity block and a convolutional block. The
identity blocks are used whenever the input at the beginning of a block and output at the end of a
block are of the same dimension. Whenever the dimension changes, a convolutional block is used.
In a convolutional block, the shortcut connection does not simply forward the input z, but addi-
tionally transforms the dimension of = to match the dimension of the following layer. This is done
by a 1 x 1 convolution introduced and described in Lin et al. (2013), followed by a batch normal-

7.2 Novel R-G-B 33

isation. Depending on how many residual blocks are contained within each district and how the
layers inside the residual blocks are composed, various sizes of ResNets can be constructed. The
most common being ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152. Figure 7.4 illus-
trates the first layer and the first two districts of our ResNet18 architecture. I' denotes the height
(and width) of the kernel, D denotes the number of incoming channels, K represents the number
of outgoing channels (the number of filters applied), and # Params represents the number of
parameters in the corresponding layer. Two consecutive rows, one operation, mimic a convolu-
tional layer followed by a batch normalisation. The parameters of a batch normalisation are equal
to the number of filters K of the corresponding convolutional layer multiplied by two, represent-
ing the two learnable parameters v and 8. Two consecutive operations represent a block. Two
consecutive blocks represent a district and are accentuated using the same colour (e.g. district
one is accentuated in blue, district two in orange). Two consecutive rows framed by dashed lines
represent a shortcut connection. The entire architecture can be found in the Appendix, Figure A.2.
We implemented the ResNets according to the official implementation provided by PyTorch. !

7.2 Novel R-G-B

7.2.1 Inspiration

Currently, the fusion of the three colour channels in an RGB image is made in the first convolu-
tional layer of a CNN. However, researchers never questioned this behaviour. Due to the nonlin-
ear behaviour of the network, it is unclear whether it might be better to learn convolutional filters
on the colour channels separately and fuse those channels later in the network architecture. In
this thesis, we therefore investigate a novel architecture, based on common CNN architectures,
to handle colour channels with CNNs separately. The novel architecture (1) takes RGB images
as input, (2) separates the images into their colour channels before the first convolutional layer,
(3) propagates the channels sequentially through the CNN, and (4) fuses the convolved channels
together before the fully-connected layer at the end of the CNN. Thus, the CNN processes each
colour channel individually and derives colour-specific features. This approach can partially be
compared to the application of a depthwise separable convolution, first introduced by Sifre and
Mallat (2014). Depthwise separable convolutions are a form of factorised convolutions that split
the convolution operation into two steps. The first step consists of a depthwise convolution, i.e.
a convolution performed independently over each channel of the input. The second step consists
of a pointwise convolution, i.e. a set of 1 x 1 convolutions, to transform the number of channels
from the first step into the desired number of outgoing channels of the convolution operation.
This factorisation reduces computational cost and network size (Chollet, 2017; Howard et al,,
2017). Figure 7.5 illustrates a conventional convolution and the two steps composing a depthwise
separable convolution. We can see that the output of the depthwise separable convolution is the
same as the output of the conventional convolution. This is due to the pointwise convolution
that fuses the channels together to produce the desired output volume. However, our approach is
different as it does not fuse the layers back together until later in the network. Thus, we keep pro-
cessing the channels individually throughout the entirety of the network architecture. In essence,
every input fed to our network is passed through the network three times, once for each channel.
Thus, our approach does not reduce computational cost but rather increases it.

1https: / /pytorch.org/docs/stable/_modules/torchvision/models/resnet.html

34 Chapter 7. Networks

7.2.2 Concepts & Constraints

Figure 7.6 illustrates the comparison of the original and our novel approach to process RGB im-
ages over one convolutional layer and one fully-connected layer using the architecture of LeNet.
Since the RGB channels are split and processed separately, we named our approach R-G-B. In the
original architecture, the network takes an RGB image as input and applies six filters to the image,
each with a depth of three. Each of the six filters produces a feature map. The six feature maps are
then stacked together to produce the output volume of the first convolutional layer. The output
volume is flattened and each cell is connected to a neuron in the fully-connected layer. In the R-G-
B architecture, the network takes an RGB image as input and splits the image into its three colour
channels. For simplicity, Figure 7.6 illustrates the propagation of the three channels as a parallel
process. Each channel is convolved with | £ | filters, where k is equal to the number of filters in the
corresponding original architecture. Thus, in the case of R-G-B-LeNet, each channel is convolved
with & = 2 filters. Each of the two filters produces a feature map. The two feature maps are
then stacked together to produce the output volume of the first convolution. After every channel
produced its output volume, the three volumes are concatenated together to produce the overall
output volume. This output volume is flattened and each cell is connected to a neuron in the
fully-connected layer. Figure 7.7 shows the architecture of our implementation of R-G-B-LeNet.
F denotes the height (and width) of the kernel, D denotes the number of incoming channels, K
represents the number of outgoing channels (the number of filters applied), and # Params rep-
resents the number of parameters in the corresponding layer. The three convolutional layers are
highlighted in colours. The first row of a convolutional layer denotes the convolution itself and
the second row denotes the biases present in this layer. This approach allows us to transform
the original architecture into its R-G-B counterpart by keeping the number of parameters in the
network comparable. The number of parameters can be interpreted as the network’s capacity,
i.e. the network’s ability to fit a wide variety of functions. Since we aspire to compare original
networks with their R-G-B counterparts, the networks’ capacity must be comparable. Thus, train-
ing on the same data, both network architectures are equally likely to underfit, overfit, or fit the
data (Goodfellow et al., 2016; Wu, 2018). The number of parameters can be calculated using the
formula described in Equation (7.1). P refers to the number of parameters in a layer, F refers to
the kernel size, D refers to the number of incoming channels, and K refers to the number of out-
going channels (the number of filters applied) in that layer. The +1 represents the bias typically
associated with each filter (Unnikrishnan et al., 2018).

P=(FxFxD)+1)x K (7.1)

7.2.3 Implementation

We illustrate a pseudocode implementation of the original LeNet and its R-G-B counterpart in
Figure 7.8a and Figure 7.8b respectively. Whereas we initialise the architecture once in the orig-
inal LeNet, we initialise each convolutional layer three times in the R-G-B-LeNet, once for each
channel. Thus, R-G-B-LeNet consists of nine convolutional layers, whereas each channel is prop-
agated through three of them. To propagate the channels separately, we transform the input
[batch_size,3 channels, height, width] into a list of shape [batch_size,1 channel, height, width]
for each channel in the split method. Then, we propagate each channel through the network
and save the output in a temporary list temp. We concatenate temp in the concatenate method
to produce [batch_size,in_features, height, width], where in_features is equal to the number of
incoming channels expected by the subsequent fully-connected layer. This batch of images is
then propagated through the fully-connected layers and returned. Figure 7.9 illustrates the split
and concatenate methods on the basis of a sample batch containing two images of size 2 x 2. For

7.2 Novel R-G-B 35

simplicity, we did not change the shape of the concatenated channels. In reality, the shape of
the concatenated channels would be equal to the shape of the volume being passed to the first
fully-connected layer of the network. In the case of LeNet for example, the shape of the concate-
nated channels would be [batch_size, 120, 1, 1]. With this approach, we are able to construct an
R-G-B-LeNet with a total of 61’738 parameters compared to a total of 62’006 parameters present
in the original LeNet. The difference in the total number of parameters can be explained using
Equation (7.1). In the first convolutional layer of the R-G-B-LeNet we have ((5 x 5 x 1) +1) x 2
parameters for each channel, whereas in the original LeNet, we have ((5 x 5 x 3) + 1) x 6 param-
eters. Thus, the first convolutional layer in the R-G-B-LeNet has 300 parameters less compared
to the original LeNet. Additionally, in the second convolutional layer, for the R-G-B-LeNet we
get ((5 x 5 x 2) 4+ 1) x 16 parameters for each of the three channels. In the original LeNet we get
((5 x 5 x 6) 4+ 1) x 16 parameters. Whereas the three channels, with depth 2 each, offset the one
channel with depth 6, we have 2 x 16 more biases in the R-G-B-LeNet compared to the original
LeNet in the second convolutional layer. Added up, we have -300 parameters from the first con-
volutional layer and +32 parameters from the second convolutional layer resulting in a difference
of 62’006-61"738=268 parameters.

Although the same principles and transformations apply to the R-G-B-ResNet architecture,
we had to reengineer parts of the original ResNet architecture to allow for roughly the same
number of parameters being present in the original and the R-G-B-ResNet. Since ResNets do not
include bias terms in their convolutional layers, Equation (7.1) can be reduced to Equation (7.2).
As we keep the size of each kernel F' x F' the same, we can either change D or K to manipulate
the total number of parameters. Because we concatenate the three colour channels together in
the end, we can have either D or K to be a third of the original values in every convolutional
layer, but not both at the same time. The only exception being the first convolutional layer as it
expects only one incoming channel and applies a third of the filters of the original architecture.
However, changing K does not only impact the number of parameters for the current convo-
lutional layer but also the number of parameters of the subsequent convolutional layer because
Kconv, = Dconv,.,- In order to apply our R-G-B approach to the strict architectural pattern of a
ResNet and taking Kcony, = Dconv,,, into consideration, we reengineered the ResNet architec-
ture to use a different architectural pattern in the first district compared to districts two, three, and
four. We introduce the CrosshairBlock to build district one, taking Do, incoming channels and
producing Kconv, = Deonv, X 3 outgoing channels in the first layer and Deono, ., = Kcono, incom-
ing channels producing Kconv, ; = Deconv, Outgoing channels in the second layer. This results in
a crosshair-like channel-pattern, hence the name. Figure 7.10 illustrates the architectural design of
a CrosshairBlock, highlighted in red. For districts two, three, and four we introduce another type
of block, the ChannelBlock. It takes Doy, incoming channels and produces Kconv, = Deonw, X 6
outgoing channels in the first layer of the first block and D oo, ., = Kconv, incoming channels

Keonvy

producing Kcone,,, = —%* outgoing channels in the second layer of the first block. Figure 7.10
illustrates an example of a ChannelBlock, highlighted in green. Although ChannelBlocks can look
like CrosshairBlocks in the second block, they are only used to build districts two, three, and four,
whereas CrosshairBlocks are strictly used to build district one. Figure 7.10 also illustrates the first
layer and the first two districts of the R-G-B ResNet18 architecture. F' denotes the height (and
width) of the kernel, D denotes the number of incoming channels, K represents the number of
outgoing channels (the number of filters applied), and # Params represents the number of pa-
rameters in the corresponding layer. Two consecutive rows, one operation, mimic a convolutional
layer followed by a batch normalisation. The parameters of a batch normalisation are equal to the
number of filters K of the corresponding convolutional layer multiplied by two, representing the
two learnable parameters v and 8. Two consecutive operations represent a block. Tow consec-
utive blocks represent a district and are accentuated using the same colour (e.g. district one is
accentuated in blue, district two in orange). Two consecutive rows framed by dashed lines repre-

36 Chapter 7. Networks

sent a shortcut connection. The entire architecture can be found in the Appendix, Figure A.3.

P=(FxFxD)xK (7.2)

7.2 Novel R-G-B

37

Input
D K
3 6
6
6 16
16
16 120
120

fully-connected
10'164

fully-connected
850

Total parameter count
62'006

Output

Params

450
6

2'400
16

48'000
120

Figure 7.1: LeNet architecture

60 — — — -
50 —_ — — -
S
g 40 — — — -
© 34-layer
30— — — — = — — =
plain-18
—plain-34
20 . . : .
0 10 20 30 40 50
iter. (1e4)

error (%)

30,

ResNet-18
—ResNet-34

,,,,,,,,,,,,,

34—layer J

200

10

20

30
iter. (1e4)

40

50

Figure 7.2: Training and validation error for plain (left) and residual (right) networks on ImageNet.

The thin lines represent the training error and the bold lines represent the validation error; He
et al. (2016)

38 Chapter 7. Networks

weight layer
F(x) l relu

weight layer

X

identity

Figure 7.3: Residual block with shortcut connection; He et al. (2016)

7.2 Novel R-G-B

39

Input

F D K # Params
3 64 9'408

1 2 64 128
64 64 36'864

1 2 64 128
64 64 36'864

1 2 64 128
64 64 36'864

1 2 64 128
64 64 36'864

1 2 64 128
64 128 73'728

1 2 128 256
128 128 147'456

1 2 128 256

1 64 128 8'192

2 128 256
128 128 147'456

1 2 128 256
128 128 147'456

1 2 128 256

Figure 7.4: First layer and first two districts of the original ResNet18 architecture

40

Chapter 7. Networks

\./

L—

(a) Conventional Convolutional Neural Network

\/

Depthwise Convolu-
tion

/

/

L —

Pointwise Convolution

(b) Depthwise Separable Convolutional Neural Network

Figure 7.5: Conventional and depthwise separable convolutions; Kamal et al. (2019)

7.2 Novel R-G-B

41

Original architecture

u

Novel R-G-B architecture

out

Figure 7.6: Original architecture to process RGB images (left) vs. novel R-G-B architecture to

process RGB images (right)

F D
5 1
i
) 2
1
S 16

#Params

Input
F D K
5 1 2
1 0 2
5 2 16
il 0 16
5 16 40
1 0 40

fully-connected
10'164

fully-connected
850

Total parameter count
61'738

Output

#Params

#Params

Figure 7.7: R-G-B-LeNet architecture

42 Chapter 7. Networks

Algorithm 1: LeNet
Input: Batch of Images
Output: Batch of Predictions
Data: Training Data

1 definit ():

2 L initialise architecture

3

4 def forward (batch of images):

5 propagate batch of images through the network
6 return batch of predictions

(a) Original LeNet

Algorithm 2: R-G-B-LeNet
Input: Batch of Images
Output: Batch of Predictions
Data: Training Data
1 def init ():
2 L initialise architecture for each channel

3
4 def forward (batch of images):

5 split(batch of images)

6 temp = [|

7 propagate each channel through its architecture

8 append each propagated channel to temp

9 concatenate(temp)

10 propagate batch of images through the fully-connected layers

1 return batch of predictions
12
13 def split (batch of images):

14 transform batch of images from [batch_size, 3 channels, height, width] into a list with

lbatch_size, 1 channel, height, width] for each channel

15 return [ist
16

17 def concatenate (temp):

18 transform temp into batch of images with [batch_size,in_features, height, width]
where in_ features is equal to the number of incoming channels of the subsequent
fully-connected layer

19 return batch of images

20

(b) R-G-B-LeNet

Figure 7.8: Original and R-G-B-LeNet pseudocode implementation

7.2 Novel R-G-B 43
Sample Batch After split After concatenate _
Image height
/ width
Shape: torch.Size([2, 3, 2, 2]) Shape: torch.size([2, 1, 2, 2]) Shape: torch.Size([2, 3, 2, 2])
of
t 6.2100, 0.4442], channels
tensor{([[[|[e.2100, @.4442], enso ([“{a_lm‘ 6_8268}“, tensor|[[[[[0.2100, 0.4442], Batch
[0.1182, ©.8268]]) [0.1182, ©.8268]], .
Red size
Imagel\ [fe-soto, e.6408], channels [[[e.4198, ©.7063], [[0.8919, ©.6408],
[0.2187, ©.1869]], [e.1755, @.9258]]11) [0.2187, .1862]],
([e-.35e9, e.8e25], tensorl([[[[0.8919, o.6408], [[®.3509, ©.8025],
[0.6617, ©.6862]]], [e.2187, ©.1869]]], | ————— » [0.6617, ©.6862]]],
[[re.4198, e.7063], Green “EZ?Z?E Zéiihm [[[0.4198, ©.7@63],
[0.1755, 0.9258]]) channels e [0.1755, 0.9258]],
[[0.26068, ©.5535], tensor{([[[[©.3509, @.8625], [[0.360@, ©.5535],
/ [0.6625, ©.3943]], [e.6617, ©.6862]]], [6.6625, ©.3943]],
Image 2
[0.8691, e.9%044], [[[e.8691, 0.9044], [[e.8691, @.0044],
[e.5606, ©.7432]1]] Blue [e.5606, 6.7432]11]) [e.5606, ©.7432]]]]
channels
Figure 7.9: Sample R-G-B processing of a batch of images
Input
F D K #Params F D K #Params F D K # Params
7 1 21 1'029 7 1 21 1'029 7 1 21 1'029
1 2 21 2 1 2 21 2 1 2 21 2
3 21 63 11'907 3 21 63 11'907 3 21 63 11'907
1 2 63 126 1 2 63 126 1 2 63 126
3 63 21 11'907 3 63 21 11'907 3 63 21 11'907
1 2 21 42 1 2 21 42 1 2 21 42
3 21 63 11'907 3 21 63 11'907 3 21 63 11'907
1 2 63 126 1 2 63 126 1 2 63 126
3 63 21 11'907 3 63 21 11'907 3 63 21 11'907
1 2 21 42 1 2 21 42 1 2 21 42
3 21 126 23'814 3 21 126 23'814 3 21 126 23'814
1 2 126 252 1 2 126 252 1 2 126 252
3 126 42 47'628 3 126 42 47'628 3 126 42 47'628
1 2 42 84 1 2 42 84 1 2 42 84
1 21 22 832 1 21 22 882 1 21 42 882
1 2 42 84 1 2 42 84 1 2 42 84
3 42 126 47'628 3 42 126 47'628 3 42 126 47'628
2 126 252 1 2 126 252 1 2 126 252
3 126 42 47'628 3 126 42 47'628 3 126 42 47'628
1 2 42 84 1 2 42 84 1 2 42 84

Figure 7.10

: First layer, first two districts, and Crosshair- (red) and Channelblocks (green) of the
R-G-B-ResNet18 architecture visualised including parameter count

Chapter 8

Experimental Setup

In this chapter, we describe the setup of our experiments. We conduct a total of 19 experiments,
where each experiment consists of three building blocks: The network, the dataset, and the image
chromaticity. We give an overview over all the experiments, describe how we selected the hyper-
parameters, how we trained and evaluated the network performance, and finally, how we tested
the performance on a test set.

8.1 Overview

 Experiment 1: LeNet on CIFAR-10 with RGB images

+ Experiment 2: LeNet on CIFAR-10 with greyscale images

« Experiment 3: R-G-B-LeNet on CIFAR-10 with RGB images

« Experiment 4: ResNet18 on CIFAR-10 with RGB images

 Experiment 5: ResNet18 on CIFAR-10 with greyscale images

+ Experiment 6: R-G-B-ResNet18 on CIFAR-10 with RGB images

« Experiment 7: ResNet18 on ImageNet with RGB images

« Experiment 8: ResNet18 on ImageNet with greyscale images

 Experiment 9: R-G-B-ResNet18 on ImageNet with RGB images

+ Experiment 10: ResNet34 on ImageNet with RGB images

« Experiment 11: ResNet34 on ImageNet with greyscale images

 Experiment 12: R-G-B-ResNet34 on ImageNet with RGB images

+ Experiment 13: ResNet34 pretrained on ImageNet on VGGFace2 with RGB images

+ Experiment 14: ResNet34 pretrained on ImageNet on VGGFace2 with greyscale images
« Experiment 15: R-G-B-ResNet34 pretrained on ImageNet on VGGFace2 with RGB images

- Experiment 16: ResNet34 pretrained on VGGFace2 on Labeled Faces in the Wild with RGB
images

46 Chapter 8. Experimental Setup

 Experiment 17: ResNet34 pretrained on VGGFace2 on Labeled Faces in the Wild with greyscale
images

 Experiment 18: R-G-B-ResNet34 pretrained on VGGFace2 on Labeled Faces in the Wild with
RGB images

 Experiment 19: ResNet34 pretrained on VGGFace2 on RGB images on Labeled Faces in the
Wild with greyscale images

8.2 Hyperparameter Selection

According to Bengio, the definition of a hyperparameter for a learning algorithm A is defined as:
“[...] a variable to be set prior to the actual application of A to the data, one that is not directly
selected by the learning algorithm itself.” (2012, p. 8). However, choosing the right set of hyperpa-
rameters requires years of experience (Smith, 2018) and there is no one size fits all approach. There
are various techniques and recommendations to ease the selection of hyperparameters. However,
most of these techniques are guided towards training state-of-the-art classifiers, which would be
beyond the scope of this thesis. Therefore, we chose to adopt a different approach to select the
optimal set of hyperparameters by applying a grid search on CIFAR-10 with LeNet. We chose this
particular dataset and network configuration to establish a baseline within reasonable training
time and overall computational cost. We then reused the resulting optimal set of hyperparame-
ters for all subsequent experiments and compared the results, provided they were based on the
same dataset. It is worth mentioning that we use the term optimal relative to our study, since we
focused on conducting multiple comparable experiments. In total, we had three hyperparame-
ters to configure. The learning rate, the batch size for the training set, and the optimiser. For our
grid search, we chose three learning rates (0.1, 0.01, 0.001), four batch sizes (16, 32, 64, 128), and
two optimisers (Adam and SGD). These values also are common in the literature (Bengio, 2012;
Ruder, 2016) and allowed us to compare a total of 24 different sets of hyperparameters (3 x 4 x 2).
We defined each set of hyperparameters as a run and trained the network for 100 epochs for each
run. We chose the number of epochs to be 100 as Lecun et al. (1998) reached convergence in the
original LeNet paper after 10 to 12 epochs on the MNIST dataset. Since we used CIFAR-10 which
is more complicated to learn, we argued that our implementation of LeNet will take more epochs
to reach a satisfactory level of predictive power. In the end, we selected the three hyperparame-
ters resulting from the best run (highest accuracy on the validation set) out of the 24 we started
with. Henceforth, we set the learning rate to 0.01, the batch size for the training set to 64, and used
SGD as our optimiser. Additionally, we used the same pseudorandom number generator for all
our experiments to make them deterministic. Thus, rerunning the experiments yields exactly the
same results since e.g. the weights of a network are always initialised with the same numbers.
The complete list of all the hyperparameters and settings to reproduce each experiment can be
found in the appendix, Table A.1.

8.3 Network Training and Validation

Our training and validation procedure follows the proposed guidelines described in Goodfellow
et al. (2016). Therefore, we divided each epoch in a training and a validation phase. During
the training phase, the network processed batches of images, calculated the cross-entropy loss,
applied backpropagation to calculate the gradients, and adjusted the weights using SGD to min-
imise the cross-entropy loss for each batch. In other words, during the training phase, the net-
works learned on the training data. We shuffled the training data for each training phase to avoid

8.4 Network Testing 47

providing the data in a meaningful order, since not shuffling the data could bias the optimisa-
tion algorithm (Ruder, 2016). After the entire training data was processed, the validation phase
started in which the network with its adjusted weights was applied on the validation data. Dur-
ing the validation phase, the network again processed batches of images and calculated the loss
for each batch but did not apply backpropagation and did not adjust its weights. The idea behind
this procedure was to estimate the network’s ability to generalise on the validation data after the
network learned on the entire training data. That is, estimating whether the patterns it learned
were specific to the data it was trained on (Prechelt, 1998). Whereas the network used the loss
to differentiate and optimise (Howard and Gugger, 2020), we used the validation accuracy (the
number of correctly classified images divided by the total number of images) as the measure to
estimate the generalisation, i.e. the performance of our networks (Goodfellow et al., 2016; Smith,
2018). The validation accuracy is relatively intuitive and easy to understand from a human per-
spective. We used the validation accuracy to select the optimal set of hyperparameters and to
compare the performance of our subsequent experiments. For all our experiments conducted on
CIFAR-10 and ImageNet after the grid search, we additionally applied early stopping to terminate
the training process once the performance dropped under a certain threshold. Early stopping can
be used to avoid overfitting and decrease computational costs. The idea is to apply a stopping
criterion on the validation set which, once broken, terminates the training process (Bengio, 2012;
Prechelt, 1998). However, choosing the stopping criterion involves a trade-off between training
time and performance. Since we focused on conducting multiple comparable experiments, we
also focused on the training time. This allowed us to construct several experiments with different
network architectures and datasets. As described in Prechelt (1998), focusing on the training time
allows to use a fast stopping criterion. The study suggested to terminate the training process after
the performance measure did not improve over five consecutive epochs. Since we used relatively
complex network architectures and datasets, we chose to use ten epochs for the experiments con-
ducted on CIFAR-10 and ImageNet. That is, we terminated the entire process once the validation
accuracy did not increase over ten consecutive epochs. For our experiments on VGGFace2, we
did not apply early stopping due to time limitations but ran each experiment for 20 epochs. This
allowed us to complete and compare the VGGFace2 experiments within the time period of the the-
sis (we estimated the R-G-B experiment on VGGFace2 to take about 30 days to complete, which
would have been beyond the scope of this thesis). However, to enhance the performance on VG-
GFace2 data, we used the networks pretrained on ImageNet. This allowed us to reach a relatively
high performance despite only training the networks for 20 epochs. A similar approach is shown
in Glinther et al. (2017), where a pretrained network on ImageNet reached convergence around
three times faster yielding comparable results compared to a network trained from scratch.

8.4 Network Testing

We tested the networks we trained on VGGFace2 on Labeled Faces in the Wild to estimate their
generalisability. Therefore, we used View 2, a protocol provided by the Labeled Faces in the Wild
database and specifically developed for performance reporting. The protocol consists of ten data
splits where performance should be reported for each split alongside the mean and standard de-
viation over the ten splits (Huang et al., 2008). We then used Bob (Anjos et al., 2012, 2017; Glinther
et al.,, 2012, 2016) to normalise the images, extract a feature vector of size 256 for each image,
calculate an overall representation (model) for each person, associate each model with a set of
probes and calculate the distance-cosine for each comparison, decide whether the probe and the
model belong to the same person, and report the overall performance as the accuracy on each
split. Finally, we calculated the mean and standard deviation over the ten data splits. In ad-
dition to testing networks pretrained and applied on the same image chromaticities, we tested

48 Chapter 8. Experimental Setup

the network’s performance when pretrained on RGB images and applied on greyscale (3-channel
pseudo-colour) images. This allowed us to further investigate how filters learned on colour im-
ages behave when applied on greyscale images. In medical studies for example, images often
contain only a single channel and datasets are relatively small and scarce. Therefore, practition-
ers rely on pretrained networks and fine-tune the networks according to their needs. However,
pretrained networks are often trained on RGB images, which forces practitioners to comply with
the shape and structure of the original data (Talo, 2019; Xie and Richmond, 2018).

Chapter 9

Results

In this chapter, we report the results obtained on each dataset. For CIFAR-10, ImageNet, and VG-
GFace2, we illustrate the validation accuracy as a function of the number of epochs. Additionally,
we show the highest validation accuracy and the corresponding number of epochs required to
reach it. We use the highest validation accuracy to compare the performances of all the exper-
iments. For the testing of the pretrained VGGFace2 networks on Labeled Faces in the Wild, we
show the Receiver Operating Characteristic (ROC) curve for each experiment to visualise their
performance. Furthermore, we report the accuracy for each of the ten splits of View 2, alongside
the mean accuracy and the standard deviation over the ten splits. We use the mean accuracy to
compare the performances of all the experiments conducted on Labeled Faces in the Wild.

9.1 CIFAR-10

We evaluated two preexisting network architectures, LeNet and ResNet18, on RGB as well as
on greyscale images to investigate on the influence of colour on image classification. Addition-
ally, we transformed both networks into our novel R-G-B architecture to process the RGB colour
channels separately. Thus, we could compare the impact of colour processing within CNNs. Fig-
ure 9.1 and Table 9.1 illustrate the results obtained from the total of six experiments conducted on
CIFAR-10. Whereas Figure 9.1 illustrates the validation accuracy as a function of the number of
epochs, Table 9.1 shows the highest validation accuracy obtained with each experiment and the
corresponding number of epochs required. Regarding LeNet, we observe from Figure 9.1 that the
three experiments all reach relatively different accuracies after the first epoch. The RGB experi-
ment reaches the highest accuracy (42.84%) after the first epoch and results in the second highest
accuracy (62.43%) in the end. The greyscale experiment reaches the second highest accuracy
(35.99%) after the first epoch and results in the lowest accuracy (62.01%) in the end. The R-G-B
experiment reaches the lowest accuracy (31.74%) after the first epoch and results in the highest ac-
curacy (62.94%) in the end. Furthermore, Figure 9.1 illustrates that the three experiments perform
with marginal differences. The three accuracy-curves start to overlap at around epoch 10 and re-
main overlapping until the end. This is also reflected in Table 9.1 with the best (R-G-B) and worst
(greyscale) performing experiments having a difference of 62.94% — 62.01% = 0.93%. Addition-
ally, Table 9.1 shows that the number of epochs required to reach the highest accuracy is almost
identical with the RGB experiment requiring the least amount of epochs (15) and the greyscale
experiment requiring the most (20). Regarding ResNet18, Figure 9.1 shows that the three experi-
ments all reach similar accuracies after the first epoch. The RGB experiment reaches the highest
accuracy (55.28%) after the first epoch and results in the highest accuracy (75.87%) in the end.
The greyscale experiment reaches the lowest accuracy (52.35%) after the first epoch and results in

50 Chapter 9. Results

the second highest accuracy (73.13%) in the end. The R-G-B experiment reaches the second high-
est accuracy (54.49%) after the first epoch and results in the lowest accuracy (71.30%) in the end.
Additionally, Figure 9.1 shows that the three experiments perform with relatively high margins.
The three accuracy-curves stop to overlap at around epoch 5 and become separated more clearly.
This is also reflected in Table 9.1 with the best (RGB) and worst (R-G-B) performing experiments
having a difference of 75.87% — 71.30% = 4.57%. Table 9.1 also shows that the number of epochs
required to reach the highest accuracy is relatively different between the three experiments with
the RGB experiment requiring the most amount of epochs (43) and the greyscale experiment re-
quiring the least (22). Overall, the R-G-B experiment performs the best with LeNet and the worst
with ResNet18. The RGB experiment performs better than the greyscale experiment with both,
LeNet and ResNet18.

Network
LeNet ResNet18
RGB 62.43 /15 | 75.87 / 43
Greyscale | 62.01 /20 | 73.13 / 22
R-G-B 6294 /16 | 71.30 / 30

Table 9.1: Results on CIFAR-10: Validation accuracy (%) / Number of epochs

Experiment

9.2 ImageNet

We evaluated two preexisting network architectures, ResNet18 and ResNet34, on RGB as well as
on greyscale images to investigate on the influence of colour on image classification. Addition-
ally, we transformed both networks into our novel R-G-B architecture to process the RGB colour
channels separately. Thus, we could compare the impact of colour processing within CNNs. Fig-
ure 9.2 and Table 9.2 illustrate the results obtained from the total of six experiments conducted on
ImageNet. Whereas Figure 9.2 illustrates the validation accuracy as a function of the number of
epochs, Table 9.2 shows the highest validation accuracy obtained with each experiment and the
corresponding number of epochs required. Regarding ResNet18, Figure 9.2 shows that the three
experiments all reach similar accuracies after the first epoch. The RGB experiment reaches the
highest accuracy (12.71%) after the first epoch and results in the highest accuracy (57.50%) in the
end. The greyscale experiment reaches the second highest accuracy (11.32%) after the first epoch
and results in the second highest accuracy (54.53%) in the end. The R-G-B experiment reaches
the lowest accuracy (9.16%) after the first epoch and results in the lowest accuracy (50.92%) in
the end. Additionally, Figure 9.2 shows that the three experiments perform with relatively high
margins. The three accuracy-curves stop to overlap at around epoch 5 and become separated
more clearly. This is also reflected in Table 9.2 with the best (RGB) and worst (R-G-B) perform-
ing experiments having a difference of 57.50% — 50.92% = 6.58%. Table 9.2 also shows that
the number of epochs required to reach the highest accuracy is relatively different between the
three experiments with the RGB experiment requiring the most amount of epochs (107) and the
greyscale experiment requiring the least (74). Regarding ResNet34, Figure 9.2 shows a similar
pattern to the experiments conducted with ResNet18. The RGB experiment reaches the highest
accuracy (13.27%) after the first epoch and results in the highest accuracy (60.24%) in the end.

9.3 VGGFace2 51

The greyscale experiment reaches the second highest accuracy (9.62%) after the first epoch and
results in the second highest accuracy (57.76%) in the end. The R-G-B experiment reaches the low-
est accuracy (8.62%) after the first epoch and results in the lowest accuracy (54.38%) in the end.
Figure 9.2 also shows that the three experiments perform with relatively high margins. The three
accuracy-curves stop to overlap at around epoch 5 and become separated more clearly. This is
also reflected in Table 9.2 with the best (RGB) and worst (R-G-B) performing experiments having
a difference of 60.24% — 54.38% = 5.86%. Table 9.2 also shows that the number of epochs re-
quired to reach the highest accuracy is comparable between the three experiments with the RGB
and greyscale experiment requiring the most amount of epochs (98) and the R-G-B experiment
requiring the least (90). Overall, the RGB experiment performs the best, followed by the greyscale
experiment, and finally the R-G-B experiment with both, ResNet18 and ResNet34.

Network
ResNetl1l8 | ResNet34
RGB 57.50 / 107 | 60.24 / 98
Greyscale | 54.53 /74 | 57.76 / 98
R-G-B 50.92 / 89 | 54.38 / 90

Experiment

Table 9.2: Results on ImageNet: Validation accuracy (%) / Number of epochs

9.3 VGGFace2

We evaluated one preexisting network architecture, ResNet34, on RGB as well as on greyscale im-
ages to investigate on the influence of colour on face recognition. Additionally, we transformed
the network into our novel R-G-B architecture to process the RGB colour channels separately.
Thus, we could compare the impact of colour processing within CNNs. We pretrained the net-
works on ImageNet and trained them for an additional 20 epochs on VGGFace2. Figure 9.3 and
Table 9.3 illustrate the results obtained from the total of three experiments conducted on VG-
GFace2. Whereas Figure 9.3 illustrates the validation accuracy as a function of the number of
epochs, Table 9.3 shows the highest validation accuracy obtained with each experiment after 20
epochs. Figure 9.3 shows that the three experiments all reach similar accuracies after the first
epoch. The RGB experiment reaches the highest accuracy (83.22%) after the first epoch and re-
sults in the highest accuracy (93.62%) in the end. The greyscale experiment reaches the second
highest accuracy (82.57%) after the first epoch and results in the second highest accuracy (93.34%)
in the end. The R-G-B experiment reaches the lowest accuracy (82.46%) after the first epoch and
results in the lowest accuracy (92.78%) in the end. Furthermore, Figure 9.3 illustrates that the three
experiments performed with marginal differences. The three accuracy-curves overlap at the be-
ginning and remain close until the end. This is also reflected in Table 9.3 with the best (RGB) and
worst (R-G-B) performing experiments having a difference of 93.62% — 92.78% = 0.84%. Over-
all, the RGB experiment performs the best, followed by the greyscale experiment, and finally the
R-G-B experiment.

52 Chapter 9. Results

Network
ResNet34
RGB 93.62
Greyscale 93.34

R-G-B 92.78

Table 9.3: Results on VGGFace2: Validation accuracy (%) after 20 epochs

Experiment

9.4 Labeled Faces in the Wild

To test the performance of the networks pretrained on VGGFace2, we evaluated them on Labeled
Faces in the Wild. Additionally, we tested the network’s performance when pretrained on RGB
images and applied on greyscale (3-channel pseudo-colour) images. This allowed us to further
investigate how filters learned on colour images behave when applied on greyscale images. Fig-
ure 9.4 and Table 9.4 illustrate the results obtained from the total of four experiments conducted
on Labeled Faces in the Wild. Whereas Figure 9.4 illustrates the Receiver Operating Characteris-
tic (ROC) curves, Table 9.4 shows the accuracy for each fold and the corresponding mean and
standard deviation over the ten folds. Figure 9.4 shows that the four experiments perform with
marginal differences. The RGB experiment performs the best, followed by the greyscale experi-
ment, the R-G-B experiment, and finally the RGB on greyscale experiment. This is also reflected
in Table 9.4 with the RGB experiment having the highest mean accuracy (96.26%) u over the ten
folds, followed by the greyscale experiment (96.23%), the R-G-B experiment (95.49%), and finally
the RGB on greyscale experiment (95.33%). The standard deviation o shows a slightly differ-
ent pattern with the RGB experiment having the lowest standard deviation (0.92), followed by
the greyscale experiment (1.11), the RGB on greyscale experiment (1.22), and finally the R-G-B
experiment (1.48). Overall, the RGB experiment performs the best, followed by the greyscale
experiment, the R-G-B experiment, and finally the RGB on greyscale experiment.

9.4 Labeled Faces in the Wild

53

— RGB

Greyscale

— R-G-B

75
60 ~
& 55 £70
> >
[v] [v]
g e
3 3
S g 65
© ©
£ 45 £
B &
= 40 = °0
o | a
> | >
; —— RGB
35 Greyscale 55
— R-G-B |
0 10 20 30 0

Number of epochs

20

30 40 50

Figure 9.1: Results on CIFAR-10: Validation accuracy (%) as a function of the number of epochs
for LeNet (left) and ResNet18 (right)

—— RGB
Greyscale
— R-G-B

60

50
_ —~ 50
b S
o 0
g 40 & 40
3 3
[9) [9)
(] (]
[+ T
5% 530
© o
© o
£ 20 g 20

—— RGB
Greyscale
10 —— R-GB 10
0 25 50 75 100 0

Number of epochs

20

40

60 80 100

Figure 9.2: Results on ImageNet: Validation accuracy (%) as a function of the number of epochs
for ResNet18 (left) and ResNet34 (right)

54 Chapter 9. Results

w
s

w
rJ

Validation accuracy (%)
o
oo

867 — RGB
84 - Greyscale
— R-G-B
82— . . .
0 2 10 15

Number of epochs

Figure 9.3: Results on VGGFace2: Validation accuracy (%) as a function of the number of epochs
for ResNet34

9.4 Labeled Faces in the Wild

55

1-FNMR

1.0 A

0.8 A

0.6 1

0.4 1

0.2 1

0.0 1

—— RGB

—— Greyscale

— R-G-B

—— RGB-on-Greyscale

1073 1072 107! 10°
FMR

Figure 9.4: Results on Labeled Faces in the Wild: ROC curves for ResNet34

Chapter 9. Results

56

Experiment Fold 7 o
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
RGB 97.00 | 96.00 | 96.33 | 95.67 | 95.00 | 97.00 | 95.33 | 95.67 | 98.33 | 96.33 | 96.26 | 0.92
Greyscale 96.00 | 96.67 | 95.33 | 95.67 | 94.67 | 96.00 | 96.33 | 95.67 | 99.00 | 97.00 | 96.23 | 1.11
R-G-B 96.33 | 97.00 | 94.00 | 94.00 | 92.33 | 96.33 | 96.00 | 96.00 | 97.33 | 95.67 | 95.49 | 1.48
RGB on Greyscale | 95.33 | 95.33 | 93.33 | 94.33 | 95.00 | 95.67 | 95.33 | 94.67 | 98.33 | 96.00 | 95.33 | 1.22

Table 9.4: Results on Labeled Faces in the Wild: Accuracy (%) per fold and mean accuracy p and standard deviation o per experiment

Chapter 10

Discussion

In this thesis, we compared the performance of Convolutional Neural Networks using multi-
ple datasets, network architectures, and image chromaticities to investigate on the influence of
colour on image classification and face recognition. More specifically, we trained and evalu-
ated LeNet, ResNet18, and ResNet34 on RGB and greyscale images from CIFAR-10, ImageNet,
VGGFace2, and Labeled Faces in the Wild data. To extend our analysis beyond the application of
pre-existing network architectures, we transformed each network into its R-G-B counterpart, a
novel CNN architecture that learns convolutional filters on the colour channels of an RGB image
separately and fuses those layers later in the network architecture. First, we address the question
whether RGB images improve image classification and face recognition performance compared to
greyscale images. Second, we discuss the performance of our novel R-G-B approach and how its
performance relates to the influence of colour on image classification and face recognition. Third,
we summarise our findings to generalise the influence of colour on image classification and face
recognition. Finally, we outline the thesis’ limitations and provide recommendations for future
work.

On the performance of RGB and greyscale images: Throughout all of our experiments, we find that
networks trained on RGB images outperform networks trained on greyscale images. This finding
indicates that colour positively influences the performance of Convolutional Neural Networks
on both, image classification and face recognition, a finding supported by Arandjelovi¢ (2012),
Buhrmester et al. (2019), Clark et al. (2019), Jones and Abbott (2006), and Rajapakse et al. (2004).
Interestingly, our results contradict the claims of Bui et al. (2016), Sachin et al. (2017), and Xie and
Richmond (2018). They showed that classifiers trained on greyscale images led to a higher ac-
curacy at lower computational costs compared to classifiers trained on RGB images. Our results
obtained with ResNet18 on CIFAR-10 and ResNet18 on [mageNet showcase that networks trained
on greyscale images require significantly less epochs to train compared to networks trained on
RGB images. This suggests that greyscale images require lower computational costs. The ex-
ceptions being the results obtained with LeNet on CIFAR-10, where the greyscale experiment
required the most amount of epochs, and ResNet34 on [mageNet, where the greyscale experiment
required the same amount of epochs as the RGB experiment. Therefore, regarding the influence
of colour on image classification, our results suggest that there is a trade-off between accuracy
and computational costs, where RGB images favour the former and greyscale images the latter.

On the performance of our novel R-G-B approach: Our results show that our novel R-G-B approach
is applicable. However, it yields a worse performance compared to regular architectures applied
on either RGB or greyscale images. Interestingly, the R-G-B experiment performed the best with
LeNet on CIFAR-10. However, we argue that this is a result of the relatively high fluctuation in
accuracy and that the results might look different when training the networks on CIFAR-10 with
a less constricting early stopping rule. According to Engilberge et al. (2017) and Rafegas and Van-
rell (2018), Convolutional Neural Networks possess colour-sensitive units which are distributed

58 Chapter 10. Discussion

throughout the entirety of the network architecture. However, both studies show that shallower
layers are more colour-sensitive whereas deeper layers are more class-specific. This is interesting
as it suggests that the stage at which the layers in our R-G-B approach are fused, has an impact
on the performance of the network. Regarding our approach (fusing the layers towards the end
of the network), we argue that while this approach allows the network to learn on red, green, and
blue channels separately, it removes colour-coded information representing non-primary colours
such as orange. Rafegas and Vanrell (2018) illustrated the hue distribution of ImageNet which is
biased towards the colours orange and blue. They argued that this might be a result of the pres-
ence of brownish animals, human skin tones, and sky backgrounds. In such a case, our R-G-B
approach is not able to learn from one of the most frequent colours in the data because the colour
orange is not represented within the network. Interestingly, our R-G-B approach performed bet-
ter compared to the RGB on greyscale experiment on Labeled Faces in the Wild. Pretraining on RGB
images and then applying the pretrained network on greyscale (3-channel pseudo-colour) images
is a common procedure in e.g. medical sciences because medical data is relatively scarce and of-
ten available as greyscale only. Thus, practitioners use pretrained networks and fine-tune them
according to their needs (Talo, 2019; Xie and Richmond, 2018). This finding shows that while our
R-G-B approach is outperformed by networks trained on RGB or greyscale images, it is capable
of yielding comparable results obtained with established procedures.

On the influence of colour on image classification and face recognition: Our experiments show that
there are differences in performance depending on the image chromaticity and the colour pro-
cessing within the network architecture. Networks trained on RGB images outperform networks
trained on greyscale images and both outperform networks trained with our novel R-G-B ap-
proach. Our R-G-B approach outperforms networks trained on RGB images that are applied to
greyscale images. Overall, our results are very consistent throughout all the experiments and nei-
ther one of the experiments shows significantly worse results compared to the others. We want
to highlight this finding, because we hope it aspires future research to further investigate on the
influence of colour on image classification and face recognition.

On the thesis’ limitations and recommendations for future work: To provide future researchers with
a starting point, we would like to mention the thesis’ limitations and provide recommendations
on how to tackle them. First, we chose to use the luma transformation to transform the RGB
images into their greyscale counterparts because of its availability in PyTorch and its wide usage
in image processing software (Kanan and Cottrell, 2012). However, there are many alternatives
on how to transform RGB images into greyscale images. It would be interesting to see how the
transformations impact the overall results and whether similar findings to the ones presented in
Kanan and Cottrell (2012) could be reported. Additionally, Shih and Liu (2005) as cited in Lu et al.
(2018) showed that the component image R of an RGB image outperformed component images
from other colour spaces in face recognition. Thus, comparing the performance of the compo-
nent image R with the performance of greyscale converted images could be interesting as both
images are represented by a single channel. Second, all of our experiments are based on a single
run and are not averaged over multiple runs. Additionally, we used a pseudorandom number
generator (PRNG) to initialise the weights of our networks and make the results deterministic in
nature. While this is convenient for testing and reproducing results, the usage of a PRNG has been
shown to impact the results (Bird et al., 2020). Thus, to make our results more robust, it would
be beneficial to run each experiment multiple times with different PRNGs. Third, to conduct a
high number of experiments within the given time period of the thesis, we decided to apply an
early stopping rule, terminating the training once the validation accuracy did not improve over
ten consecutive epochs. Additionally, we used our networks pretrained on ImageNet and trained
them for an additional 20 epochs on VGGFace2 instead of training the networks on VGGFace2 from
scratch. While these decisions allowed us to complete our experiments within reasonable time, it
potentially biases the results. Therefore, we suggest to focus on a subset of our experiments and

59

rerun them with less constraints. For example, training the networks on VGGFace2 from scratch
until they reach convergence. Fourth, we proposed a novel approach of processing RGB images
within a CNN. However, there are various ways our approach can be altered. The layers could
be fused together earlier in the network architecture and then further propagated as in a tradi-
tional network. Thus, the network could learn on the colour channels separately as well as learn
non-primary colour representations. Additionally, our R-G-B approach could be applied to other
network architectures and/or with other hyperparameters to further investigate its performance.

We believe that the total of 19 experiments conducted using four datasets, six network ar-
chitectures, and two image chromaticities help to further understand the influence of colour on
image classification and face recognition. Additionally, the thesis provides explanations and il-
lustrations of core concepts with regard to Deep Learning with CNNs, further contributing to the
ease at which future research can build upon our work. We are convinced that while our work is
not exhaustive, it is a step into the right direction to better understand the influence of colour on
image classification and face recognition.

Chapter 11

Conclusion

We investigated on the influence of colour on image classification and face recognition by com-
paring the performance of Convolutional Neural Networks using multiple datasets, network ar-
chitectures, and image chromaticities. We conducted a total of 19 experiments spanning over four
datasets, six network architectures, and two image chromaticities. Additionally, we implemented
a novel architecture, R-G-B, that learns convolutional filters on the colour channels of an RGB
image separately and fuses those layers later in the network architecture, allowing us to extend
our analysis beyond the application of pre-existing network architectures. Throughout all of our
experiments, we found networks trained on RGB images performing marginally better compared
to networks trained on greyscale images, and both performing better compared to R-G-B net-
works. This finding suggests that colour positively influences the performance of Convolutional
Neural Networks on both, image classification and face recognition. Furthermore, our results
show that learning convolutional filters on the colour channels separately and fusing those layers
towards the end of the network architecture does not improve the performance of Convolutional
Neural Networks. Based on our observations, we argue that fusing the layers earlier in the net-
work architecture might yield different results and that more work is required to quantify colour
processing within Convolutional Neural Networks. We suggest various improvements to build
upon our work and further investigate on the influence of colour on image classification and face
recognition.

Appendix A

Attachments

Link to GitLab: https://gitlab.ifi.uzh.ch/aiml/theses /master-rueegge

Appendix A. Attachments

64

Figure A.1: Sample images from one person from the normalised VGGFace2 dataset

65

Input
F D K #Params
7 3 64 5'408
i 2 64 128
3 64 64 36'864
il 2 64 128
3 64 64 36'864
1 2 B4 128
3 64 64 36'864
il 2 64 128
3 64 64 36'864
1 2 B4 128
3 64 128 73728
i 2 128 256
3 128 128 147456
i 2 128 256
i 64 128 8'192
i 2 128 256
3 128 128 147456
i 2 128 256
3 128 128 147456
i 2 128 256
3 128 256 264'512
i 2 256 512
3 256 256 S85'824
i 2 256 512
i 128 256 32768
i 2 256 512
3 256 256 S85'824
1 2 256 512
3 256 256 S85'824
i 2 256 512
3 256 512 1'175'648
i 2 512 1024
3 512 512 2'355'266
i 2 512 1024
i 256 512 131072
i 2 512 1024
3 512 512 2'355'266
i 2 512 1024
3 512 512 2'355'266
i 2 512 1024

fully-connected

Total parameter count

5130

11'181'642

Output

Figure A.2: Original ResNet18 architecture including parameter count

Appendix A. Attachments

Input
D K # Params F D K #Params F D K #Params
1 21 1'029 7 1 21 1029 7 1 21 1'029
2 21 42 1 2 21 42 1 2 21 42
21 63 11'907 3 21 63 11'907 3 21 63 11'907
2 63 126 1 2 63 126 i 2 63 126
63 21 11'907 3 63 21 11'907 3 63 21 11'907
2 21 42 1 2 21 42 i 2 21 42
21 63 11'907 3 21 63 11'907 3 21 63 11'907
2 63 126 1 2 63 126 i 2 63 126
63 21 11'907 3 63 21 11'907 3 63 21 11'907
2 21 42 1 2 21 42 i 2 21 42
21 126 23'814 3 21 126 23'814 3 21 126 23'814
2 126 152 i 2 126 252 i 2 126 252
126 42 47'628 3 126 42 47'628 3 126 42 47'628
2 42 84 i 2 42 84 i 2 42 84
1 [F] B8 1 il [F] 7] 1 1 [F] B8
2 42 84 i 2 42 84 i 2 42 84
42 126 47'628 3 42 126 47'628 3 42 126 47'628
2 126 252 i 2 126 252 i 2 126 252
126 42 47'628 3 126 42 47'628 3 126 42 47'628
2 42 24 1 2 42 24 1 2 42 24
42 255 96'390 3 42 255 96'390 3 42 255 96'390
2 255 510 i 2 255 510 i 2 255 510
255 B5 195'075 3 255 B5 195075 3 255 B5 195075
2 85 170 i 2 85 170 i 2 85 170
42 B5 3'570 i 42 B5 3570 i 42 B5 3'570
2 B5 170 i 2 B5 170 i 2 B5 170
85 255 195'075 3 85 255 195075 3 85 255 195075
2 255 510 i 2 255 510 i 2 255 510
255 85 195'075 3 255 85 195075 3 255 85 195075
2 85 170 i 2 85 170 i 2 85 170
85 510 390'150 3 85 510 390°150 3 85 510 390'150
2 510 1'020 i 2 510 1020 i 2 510 1'020
510 170 7B0'300 3 510 170 780’300 3 510 170 780'300
2 170 340 i 2 170 340 i 2 170 340
85 170 14'450 1 85 170 14'450 1 85 170 14'450
2 170 340 i 2 170 340 i 2 170 340
170 510 7B0'300 3 170 510 7B0'300 3 170 510 7B0'300
2 510 1'020 i 2 510 1'020 i 2 510 1'020
510 170 780'300 3 510 170 780'300 3 510 170 780'300
2 170 340 i 2 170 340 i 2 170 340
fully-connected
5110
Total parameter count
10'963'048
Output

Figure A.3: R-G-B-ResNet18 architecture inlcuding parameter count

67

‘amnx Surddoys Ajres ayy g7 pue ‘resrumdo ayy wiygdo “eyep ayy
PEO[0} Pasn SIIOM JO IDqUINU 3} M# “OZIS Uydjeq aY} §g ‘rex Surures] ayj syussardar y7 Juawrzadxa yoes 10y uone3yuo)) 1y d[qel,

- - - - - I - - | oressharn uo goy MAT FEIONSNY 6T#
- -)) - I - - g MAT PEIRNSNI-g-O 8T#
- - - - - I - - d[edsharn MAT FEIONSY LT#
- - - - - I - - aod MAT FEIPNSRN oT#
- ans z 8 anil | ¥9 | 100 | TF aod Z0BIDOA | FERNSI-9-O-Y ST#
- ans z 8 onil | $9 [100 | TF a[edsharn ZBIDOA FEINSR i
- ans z 8 onil | $9 | 100 | TF a9 ZDBIDOA FCIONSN ET#
syooda o1 | @os z 8 onil | $9 [100 | TF aod 1oNPSeW] | FEIRNSNY-G-DO-Y T
syoda o1 | aos z 8 onil | ¥9 | 100 | TF o[edsharn LINGEEY| PEIONSN T1#
syooda 01 | @os z 8 onil | $9 [100 | TF aod 1oNPSew] PEIONSRN OT#
syoda o1 | aos z 8 onil | ¥9 | 100 | TF a9 1oNPSew] | §TIONSY-A-DO-Y 6#
syooda o1 | @os z 8 onul | $9 [100 | TF o[edsharn 1oNPSew] STIONSN 8#
syoda 01 | aos ¥ 8 onil | ¥9 | 100 | TF a9 1oNPSew] STIONSRN L#
syooda 01 | dos I I onul | $9 [100 | TF aou 0I-AVAID | S8TIONSY-9-O-4 o#
syooda 01 | aos I I oniy, | 9 | 100 | T o[edsAaIn 01-AVAID STIONSAN S#
syooda 01 | dos I I onil | ¥9 | 100 | TF aod 0T-AVAID STIONSN P
syooda 01 | aos I I onil | ¥9 | 100 | TF aod 0IAVADD | PNPT-g-D-¥ c#
syooda o1 | oS I I anil | $9 | 100 | TF o[edsharn 0I-AVAID PN T
syoda o1 | aos I I onil | ¥9 | 100 | TF a9y 01-AVAID PNT I#
sq wndo | sNdD# | M# | PBINYS | S9 | AT | P9S fyprewory) ejeq NIOMPN yudwradxy

68

Appendix A. Attachments

Bibliography

Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017). Understanding of a convolutional neural
network. In 2017 International Conference on Engineering and Technology (ICET), pages 1-6.

Albon, C. (2018). Machine learning with python cookbook: Practical solutions from preprocessing to deep
learning. " O'Reilly Media, Inc.".

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C,,
Awwal, A. A. S., and Asari, V. K. (2018). The History Began from AlexNet: A Comprehensive
Survey on Deep Learning Approaches. arXiv:1803.01164 [cs]. arXiv: 1803.01164.

Anjos, A., El-Shafey, L., Wallace, R., Glinther, M., McCool, C., and Marcel, S. (2012). Bob: a free
signal processing and machine learning toolbox for researchers. In Proceedings of the 20th ACM
international conference on Multimedia, pages 1449-1452.

Anjos, A., Glinther, M., de Freitas Pereira, T., Korshunov, P, Mohammadi, A., and Marcel, S.
(2017). Continuously reproducing toolchains in pattern recognition and machine learning ex-
periments.

Arandjelovi¢, O. (2012). Colour invariants under a non-linear photometric camera model and
their application to face recognition from video. Pattern Recognition, 45(7):2499-2509. Publisher:
Elsevier.

Balduzzi, D., Frean, M., Leary, L., Lewis, J. P., Ma, K. W.-D., and McWilliams, B. (2017). The
shattered gradients problem: If resnets are the answer, then what is the question? arXiv preprint
arXiv:1702.08591.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, pages 437-478. Springer.

Bianco, S., Cusano, C., Napoletano, P., and Schettini, R. (2017). Improving CNN-based texture
classification by color balancing. Journal of Imaging, 3(3):33. Publisher: Multidisciplinary Digital
Publishing Institute.

Bird,].]., Ekért, A., and Faria, D. R. (2020). On the effects of pseudorandom and quantum-random
number generators in soft computing. Soft Computing, 24(12):9243-9256. Publisher: Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bo, L., Ren, X., and Fox, D. (2011). Depth kernel descriptors for object recognition. In 2011
IEEE/RS] International Conference on Intelligent Robots and Systems, pages 821-826. IEEE.

70 BIBLIOGRAPHY

Bo, L., Ren, X., and Fox, D. (2013). Unsupervised feature learning for RGB-D based object recog-
nition. In Experimental robotics, pages 387—402. Springer.

Buhrmester, V., Miinch, D., Bulatov, D., and Arens, M. (2019). Evaluating the Impact of Color
Information in Deep Neural Networks. In Iberian Conference on Pattern Recognition and Image
Analysis, pages 302-316. Springer.

Bui, H. M., Lech, M., Cheng, E., Neville, K., and Burnett, I. S. (2016). Using grayscale images for
object recognition with convolutional-recursive neural network. In 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE), pages 321-325.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. (2018). Vggface2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018), pages 67-74. IEEE.

Chen, T., Xu, R, He, Y., and Wang, X. (2015). A Gloss Composition and Context Clustering Based
Distributed Word Sense Representation Model. Entropy, 17(9):6007-6024. Number: 9 Publisher:
Multidisciplinary Digital Publishing Institute.

Chokkadi, S. and Bhandary, A. (2019). A study on various state of the art of the art face recognition
system using deep learning techniques. arXiv preprint arXiv:1911.08426.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1251-1258.

Chollet, F. (2018). Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der
Keras-Bibliothek. MITP-Verlags GmbH & Co. KG.

Clark, A., Simpson, J., and Hall, J. (2019). Comparing CNN Inputs for Terrain Classification using
Simulation. In 2019 First International Conference on Transdisciplinary Al (TransAl), pages 43—47.
IEEE.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018). Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501.

Deng, J., Dong, W., Socher, R,, Li, L.-]., Li, K,, and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248-255. Ieee.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285.

Dutt, A., Pellerin, D., and Quénot, G. (2020). Coupled ensembles of neural networks. Neurocom-
puting, 396:346-357. Publisher: Elsevier.

Ebner, M. (2007). Color constancy, volume 7. John Wiley & Sons.

Engilberge, M., Collins, E., and Siisstrunk, S. (2017). Color representation in deep neural net-
works. In 2017 IEEE International Conference on Image Processing (ICIP), pages 2786-2790. IEEE.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern
recognition. Neural Networks, 1(2):119-130.

Gastaldi, X. (2017). Shake-shake regularization. arXiv preprint arXiv:1705.07485.

BIBLIOGRAPHY 4l

Gonzales, R. and Woods, R. (2008). Digital Image Processing. 3rd. Upper Saddle River: Pearson.

Goodfellow, L., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press
Cambridge.

Goodfellow, 1., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout net-
works. In International conference on machine learning, pages 1319-1327. PMLR.

Grauman, K. and Leibe, B. (2011). Visual object recognition. Synthesis lectures on artificial intelli-
gence and machine learning, 5(2):1-181. Publisher: Morgan & Claypool Publishers.

Giinther, M., El Shafey, L., and Marcel, S. (2016). Face recognition in challenging environments:
An experimental and reproducible research survey. In Face recognition across the imaging spec-
trum, pages 247-280. Springer.

Giinther, M., Rozsa, A., and Boult, T. E. (2017). AFFACT: Alignment-free facial attribute classifi-
cation technique. In 2017 IEEE International Joint Conference on Biometrics (IJCB), pages 90-99.
IEEE.

Giinther, M., Wallace, R., and Marcel, S. (2012). An open source framework for standardized
comparisons of face recognition algorithms. In European Conference on Computer Vision, pages
547-556. Springer.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026-1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and
Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861.

Howard, J. and Gugger, S. (2020). Deep Learning for Coders With Fastai and PyTorch: Al Applications
Without a PhD. O'Reilly Media, Inc.: Sevastopol, CA, USA.

Huang, G,, Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convo-
lutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4700-4708.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008). Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., Lee, H., Ngiam, J., Le, Q. V., and
Wu, Y. (2019). Gpipe: Efficient training of giant neural networks using pipeline parallelism. In
Advances in neural information processing systems, pages 103-112.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional ar-
chitecture in the cat’s visual cortex. The Journal of physiology, 160(1):106. Publisher: Wiley-
Blackwell.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

72 BIBLIOGRAPHY

Jain, A. K. and Li, S. Z. (2011). Handbook of face recognition, volume 1. Springer.

Jones, C. and Abbott, A. L. (2006). Color face recognition by hypercomplex gabor analysis. In 7th
International Conference on Automatic Face and Gesture Recognition (FGR06), pages 6—pp. IEEE.

Jones, M. J. and Rehg, J. M. (2002). Statistical color models with application to skin detection.
International Journal of Computer Vision, 46(1):81-96. Publisher: Springer.

Kamal, K. C,, Yin, Z., Wu, M., and Wu, Z. (2019). Depthwise separable convolution architectures
for plant disease classification. Computers and Electronics in Agriculture, 165:104948. Publisher:
Elsevier.

Kanade, T. (1974). Picture processing system by computer complex and recognition of human
faces. Publisher: Kyoto University.

Kanan, C. and Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in image recog-
nition? PloS one, 7(1):€29740. Publisher: Public Library of Science.

Krizhevsky, A. and Hinton, G. (2010). Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40(7):1-9.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). ImageNet Classification with Deep Con-
volutional Neural Networks. In Pereira, F, Burges, C.]. C., Bottou, L., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Asso-
ciates, Inc.

Lai, K, Bo, L., Ren, X., and Fox, D. (2011). A large-scale hierarchical multi-view RGB-D object
dataset. In 2011 IEEE International Conference on Robotics and Automation, pages 1817-1824. ISSN:
1050-4729.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition: A convolutional
neural-network approach. IEEE transactions on neural networks, 8(1):98-113. Publisher: IEEE.

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436—444. Number:
7553 Publisher: Nature Publishing Group.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278-2324. Conference Name: Proceedings of
the IEEE.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods for generic object recognition
with invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages 1I-104 Vol.2.
ISSN: 1063-6919.

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.

Liu, Z. and Liu, C. (2008). A hybrid color and frequency features method for face recognition.
IEEE transactions on image processing, 17(10):1975-1980. Publisher: IEEE.

Liu, Z., Yang,]., and Liu, C. (2010). Extracting multiple features in the CID color space for face
recognition. IEEE Transactions on image Processing, 19(9):2502-2509. Publisher: IEEE.

BIBLIOGRAPHY 73

Lu, Z, Jiang, X., and Kot, A. (2018). Color space construction by optimizing luminance and
chrominance components for face recognition. Pattern Recognition, 83:456-468. Publisher: Else-
vier.

Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM,
38(11):39-41. Publisher: ACM New York, NY, USA.

Monti, R. P.,, Tootoonian, S., and Cao, R. (2018). Avoiding degradation in deep feed-forward net-
works by phasing out skip-connections. In International Conference on Artificial Neural Networks,
pages 447-456. Springer.

Montufar, G. F,, Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear regions of
deep neural networks. In Advances in neural information processing systems, pages 2924-2932.

Naik, Y. (2014). Detailed survey of different face recognition approaches. International Journal of
Computer Science and Mobile Computing, 3(5):1306-1313.

Namatévs, L. (2017). Deep convolutional neural networks: Structure, feature extraction and train-
ing. Information Technology and Management Science, 20(1):40-47. Publisher: Sciendo.

Nielsen, M. A. (2015). Neural networks and deep learning, volume 2018. Determination press San
Francisco, CA.

Oloyede, M. O., Hancke, G. P, and Myburgh, H. C. (2020). A review on face recognition sys-
tems: recent approaches and challenges. Multimedia Tools and Applications, 79(37):27891-27922.
Publisher: Springer.

Pal, K. K. and Sudeep, K. S. (2016). Preprocessing for image classification by convolutional neural
networks. In 2016 IEEE International Conference on Recent Trends in Electronics, Information &
Communication Technology (RTEICT), pages 1778-1781. IEEE.

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. Publisher: British
Machine Vision Association.

Perrott, C. G. and Hamey, L. G. (1991). Object recognition, a survey of the literature. Publisher:
Citeseer.

Phong, N. H. and Ribeiro, B. (2020). Rethinking Recurrent Neural Networks and other Improve-
ments for Image Classification. arXiv preprint arXiv:2007.15161.

Polyak, S. (1957). The vertebrate visual system. Publisher: University of Chicago Press Chicago.

Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade, pages 55-69.
Springer.

Rafegas, 1. and Vanrell, M. (2018). Color encoding in biologically-inspired convolutional neural
networks. Vision research, 151:7-17. Publisher: Elsevier.

Rajapakse, M., Tan,]., and Rajapakse, J. (2004). Color channel encoding with NMF for face recog-
nition. In 2004 International Conference on Image Processing, 2004. ICIP'04., volume 3, pages 2007-
2010. IEEE.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier
architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33, pages
4780-4789.

74 BIBLIOGRAPHY

Ren, J. S., Wang, W., Wang, J., and Liao, S. (2012). An unsupervised feature learning approach to
improve automatic incident detection. In 2012 15th International IEEE Conference on Intelligent
Transportation Systems, pages 172-177. IEEE.

Roberts, L. G. (1963). Machine perception of three-dimensional solids. PhD Thesis, Massachusetts
Institute of Technology.

Rossion, B. and Pourtois, G. (2004). Revisiting Snodgrass and Vanderwart’s object pictorial set:
The role of surface detail in basic-level object recognition. Perception, 33(2):217-236. Publisher:
SAGE Publications Sage UK: London, England.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., and Bernstein, M. (2015). Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211-252. Publisher: Springer.

Sachin, R., Sowmya, V., Govind, D., and Soman, K. P. (2017). Dependency of various color and in-
tensity planes on CNN based image classification. In International symposium on signal processing
and intelligent recognition systems, pages 167-177. Springer.

Schroff, E, Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recogni-
tion and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 815-823.

Shih, P. and Liu, C. (2006). Improving the face recognition grand challenge baseline performance
using color configurations across color spaces. In 2006 International Conference on Image Process-
ing, pages 1001-1004. IEEE.

Sifre, L. and Mallat, S. (2014). Rigid-motion scattering for image classification. Ph. D. thesis.
Publisher: Citeseer.

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best practices for convolutional neural net-
works applied to visual document analysis. In Icdar, volume 3. Issue: 2003.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part 1-learning
rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820.

Socher, R., Huval, B., Bath, B., Manning, C. D., and Ng, A. Y. (2012). Convolutional-recursive deep
learning for 3d object classification. In Advances in neural information processing systems, pages
656—664.

Steward, J. M. and Cole, B. L. (1989). What do color vision defectives say about everyday tasks?
Optometry and vision science: official publication of the American Academy of Optometry, 66(5):288—
295.

Syafeeza, A. R., Khalil-Hani, M., Liew, S. S., and Bakhteri, R. (2014). Convolutional neural network
for face recognition with pose and illumination variation. International Journal of Engineering &
Technology, 6(1):0975-4024.

Szegedy, C., Liu, W,, Jia, Y., Sermanet, P, Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1-9.

BIBLIOGRAPHY 75

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & Business Media.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap to human-
level performance in face verification. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1701-1708.

Talo, M. (2019). Automated classification of histopathology images using transfer learning. Arti-
ficial intelligence in medicine, 101:101743. Publisher: Elsevier.

Tanaka, J. W. and Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception &
Psychophysics, 61(6):1140-1153. Publisher: Springer.

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 30(11):1958-1970. Publisher: IEEE.

Torres, L., Reutter,].-Y., and Lorente, L. (1999). The importance of the color information in face
recognition. In Proceedings 1999 International Conference on Image Processing (Cat. 9CH36348),
volume 3, pages 627-631. IEEE.

Unnikrishnan, A., Sowmya, V., and Soman, K. P. (2018). Deep AlexNet with Reduced Number of
Trainable Parameters for Satellite Image Classification. Procedia computer science, 143:931-938.
Publisher: Elsevier.

Wistuba, M., Rawat, A., and Pedapati, T. (2019). A survey on neural architecture search. arXiv
preprint arXiv:1905.01392.

Wu, C. W. (2018). ProdSumNet: reducing model parameters in deep neural networks via product-
of-sums matrix decompositions. arXiv preprint arXiv:1809.02209.

Wu, J. (2020). Convolutional neural networks. National Key Lab for Novel Software Technology.
Nanjing University. China, page 35.

Wurm, L. H,, Legge, G. E., Isenberg, L. M., and Luebker, A. (1993). Color improves object recog-
nition in normal and low vision. Journal of Experimental Psychology: Human perception and perfor-
mance, 19(4):899. Publisher: American Psychological Association.

Xie, Y. and Richmond, D. (2018). Pre-training on grayscale ImageNet improves medical image
classification. In Proceedings of the European Conference on Computer Vision (ECCV), pages 0-0.

Yamada, Y., Iwamura, M., and Kise, K. (2018). Shakedrop regularization.

Yang, J. and Liu, C. (2008). Color image discriminant models and algorithms for face recognition.
IEEE Transactions on Neural Networks, 19(12):2088-2098. Publisher: IEEE.

Yip, A. W. and Sinha, P. (2002). Contribution of color to face recognition. Perception, 31(8):995—
1003. Publisher: SAGE Publications Sage UK: London, England.

Zagoruyko, S. and Komodakis, N. (2016). @ Wide residual networks. arXiv preprint
arXiv:1605.07146.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using mul-
titask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499-1503. Pub-
lisher: IEEE.

76 BIBLIOGRAPHY

Zheng, Y., Liu, Q., Chen, E., Ge, Y., and Zhao,]. L. (2014). Time series classification using multi-
channels deep convolutional neural networks. In International Conference on Web-Age Information
Management, pages 298-310. Springer.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578.

