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Abstract

Continuous Integration (CI) is a software development practice introduced by the Agile move-
ment with the aim of delivering reliable software releases quickly by regularly integrating changes
to the software. The spread and success of CI has lead to a spike in empirical software engineering
research, examining the benefits and the impact of this new practice. Implementing Continuous
Integration is relatively simple because it is only required to add a configuration file to the repos-
itory and register with a CI cloud provider. Unfortunately, due to its easy adaptability, in many
software repositories the process is poorly implemented. This is a substantial risk that threatens
the validity of CI-based studies unless care is taken in the selection of repositories. To overcome
this risk we present CINDER, a tool that detects genuine CI configuration files. The tool works by
using a random forest classifier trained on a labeled ground truth data set and various features
describing the characteristics of configuration files. With CINDER we show that significant action
within the pipeline and its regular adaptation is a strong indicator of the genuineness of a config-
uration file. By replicating a study we show that the selection of projects has a significant impact
on the results of CI based studies. With CINDER we provide researchers with a tool to enhance
the process of selecting applicable software repositories, consequently improving the quality and
validity of their studies.





Zusammenfassung

Kontinuierliche Integration (CI) ist eine agile Softwareentwicklungspraxis, die von der Agile-
Bewegung eingeführt wurde. Das Ziel besteht darin, die Veröffentlichung von Software durch
häufige Integration von Änderungen an der Software zuverlässig und schnell liefern zu können.
Die Verbreitung und der Erfolg von CI hat zu einem Anstieg der empirischen Softwareentwick-
lungsforschung geführt, welche die Vorteile und Auswirkungen dieser neuen Praxis untersucht.
Das Einführen von Kontinuierliche Integration ist relativ einfach, da nur eine Konfigurations-
datei in das Repository der Software hinzugefügt und das Projekt bei einem CI Cloud Provider
registriert werden muss. Leider ist der Prozess in vielen Softwareprojekten aufgrund der tiefen
Einstiegshürden nur schlecht implementiert. Wenn bei der Auswahl der Softwareprojekte nicht
sorgfältig vorgegangen wird, stellt dies ein erhebliches Risiko dar, welches die Gültigkeit von
CI-basierten Studien bedroht. Um dieses Risiko zu überwinden implementieren wir CINDER,
ein Programm, das ernsthafte CI-Konfigurationsdateien erkennt. Das Tool arbeitet mit einem
Random-Forest-Klassifikator, der auf einem Wahrheitsdatensatz und verschiedenen Merkmalen,
welche die Eigenschaften von Konfigurationsdateien beschreiben, trainiert wurde. Mit CINDER
zeigen wir, dass viele Aktionen innerhalb der Pipeline und eine regelmässige Anpassung der
Konfiguration an die Bedürfnisse der Software starke Indikatoren dafür sind, dass eine Konfigu-
rationsdatei ernsthaft ist. Mithilfe der Replikation einer bestehenden Studie zeigen wir, dass die
Auswahl der Projekte einen signifikanten Einfluss auf die Ergebnisse hat von CI-basierten Stu-
dien hat. Mit CINDER stellen wir Forschern ein Programm zur Verfügung, welches dazu dient,
die Auswahl geeigneter Softwareprojekte zu verbessern und damit die Qualität und Gültigkeit
ihrer Studien erhöht.
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Chapter 1

Introduction

First of all, we are going to introduce our motivation towards the topic and tear the problem
of why it is important to detect genuine Continuous Integration configuration files. Then, we
propose the goal of the thesis along with the research questions that arise.

1.1 Motivation
Continuous Integration (CI) is a software development practice introduced by the Agile move-
ment with the aim of delivering reliable software releases fast [HF10]. Whenever a change is
pushed to a remote software repository (e.g., GitHub), a build server tool (e.g., Travis-CI) detects
this change and triggers the integration pipeline. The pipeline typically consists of several steps,
i.e., compilation, unit testing, packaging, integration testing, installation and deploy and is usu-
ally defined within a configuration file (e.g., .travis-ci.yml in case of Travis CI).

The success of CI has lead to a spike in empirical research on this topic that investigated
the impact of CI on the process of how software is developed. Studies show that, for example,
CI leads to a higher code commitment frequency and reduced code chunks [ZSZ+17], different
programming languages show different adoption times (e.g., Ruby as being an early-adopter,
whereas Java projects tend to adopt later) [VVSW+14], and proper build configurations should
be maintained in order to reduce long build durations [GDCZ19].

Many free cloud CI providers exist, such as Travis-CI or Jenkins, and they are easy to adopt:
once a repository is registered, it is sufficient to maintain a single configuration in the repository to
use the service. Due to this low entrance barrier, many public repositories contain such configura-
tion files. Many of them do not use CI seriously though, the developers might have played around
with the provider or the repository is a toy-project altogether. Unfortunately, many studies do
not differentiate between these cases and treat every project with a configuration file as a valid
instance (e.g., [ZSZ+17], [VVSW+14], [GDCZ19]), which might dilute the results. This presents a
real threat to the validity of empirical studies on CI. Inspired by Munaiah et al. [MKCN17], who
created REAPER1, a tool that can detect seriously engineered repositories, we aim at creating a
tool that can assess the genuineness of a pipeline configuration. To this end, we need to identify
various features that describe the configuration (e.g., length, complexity, or number of configu-
ration changes), build automated extraction facilities, and train a binary classifier (e.g., Decision
Tree, Random Forest Classifier, Support Vector Machine). To assess the success of the approach,
we will establish a manually investigated Ground Truth data set that can be used in an automated
evaluation.

1https://github.com/RepoReapers/reaper
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1.2 Goal
The goal of this thesis is to identify practices or configurations that qualitative Continuous In-
tegration typically express with the intention to generalize them in order to identify software
repositories adopting these practices. Such a classifier (similar to REAPER) would either accept a
CI configuration file or a software repository, and output a score on the quality of the continuous
integration within the software. This will allow future studies to filter out software projects that
do not have serious Continuous Integration, picking only those who use Continuous Integration
at a high level of quality.

RQ1: Why do repositories contain pseudo configuration files? First, we analyze the reasons why
software projects contain pseudo configurations (i.e., in opposite to genuine configurations).
A side effect of this investigation is the creation of a labelled dataset of genuine and pesudo
configuration files.

RQ2: Is it possible to automatically detect genuine CI configurations? This RQ provides initial
proof that the thesis goal is achievable. We will define an infrastructure that can extract
arbitrary CI-related features for existing projects, and use our ground truth data set to train
a classifier and assess its accuracy in a 10-fold cross evaluation.

RQ3: What is the predictive value of different feature categories? We intend to extract features
on three different levels: configuration-features can be extracted from the configuration itself
(e.g., how many lines?), repository-features can be extracted from the containing repository
(e.g., how often has the configuration been changed?), and CI-features can be extracted from
the CI provider (e.g., how many builds have been performed in this project?). In this RQ,
we will analyze whether simple configuration features are sufficient to yield accurate clas-
sifications, or whether advanced features should be taken into consideration.

RQ 4: Are engineered repositories (reaper) also genuine? Previous work has identified engineered
software repositories. This does not automatically imply a genuine CI configuration, but
there might be a relation to uncover. We are interested in understanding how both popula-
tions of software repositories compare and whether it is necessary to have two independent
classifiers.

RQ 5: What impact does the classifier have on CI-based studies? The last RQ presents a quan-
tification for the motivating problem of this thesis. We will replicate simple statistics taken
from other empirical study and compare the results when created on genuine and pseudo
configurations.

In addition to the experimental results, this thesis will produce a usable tool that allows future
studies to filter out software projects that do not have genuine CI configurations so that they can
focus on projects with a meaningful CI configuration.



Chapter 2

Overview

In this chapter we give an overview of the structure of the thesis. We first describe the steps
necessary in order to answer the research questions, and then briefly introduce the tools we used.

Figure 2.1 shows a systematic overview of the thesis. In particular, the different tools are
shown, how these tools are connected to each other and what results they produce. Recall our
motivation: We want to understand how to automatically detect genuine CI configurations. To
achieve this goal we have to complete several steps.

In a first step, the characteristics of genuine configuration files must be recognized. This char-
acterization is done with the help of various features that can be derived from the configuration
file. To access these features efficiently in a later step, a Feature Extractor (2) was implemented.

Next, data basis for the model is needed. We need configuration files for which we can extract
the features and classify them. More precisely, software repositories containing CI configuration
files are needed for which the features can be extracted and then manually classified. To identify
applicable software repositories, we implemented a tool called Project Mining (1), which scrapes
GitHub for projects based on the selection criteria.

To conclude the ground truth data set (4), each classifications has to be labeled. To label the
configuration files, experienced developers use a classification tool (3) to evaluate whether a con-
figuration file is genuine or not. A three-step evaluation process ensures that the quality of the
labels is guaranteed.

Ultimately, with the features and the classifications the ground truth data set can be formed.
A random forest classifier (5) is trained on this data set. With the help of various examinations,
the performance of the model is evaluated. The focus lies on the behavior of the variables, the
influence of programming languages as well as the possible limitations. In a further evaluation
it will be examined whether there are similarities or dependencies to the similar tool Reaper (6).
For this purpose, a larger data set (7) is compiled, which is labeled by model. Finally, the impact
of the model on CI-based studies is evaluated by replicating a study performed by Widder et
al. [WVHK18] about the reasons why software repositories leave Travis-CI using their replication
package (8).

Finally, the discussion summarizes the knowledge gained, puts it in relation to the assump-
tions made, and derives corresponding findings. In doing so, we reflect critically and give indi-
cations for future work.
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The individual tools are presented below:

Project Mining The Project Mining is responsible for identifying the appropriate projects for the
data sets. Various criteria are used to search for optimal projects on GitHub. It is implemented
with Python and available here: https://github.com/cinder-config/data-mining

Feature Extractor The Feature Extractor receives as an input a configuration file or a software
repository that contains a configuration file. Based on the input, all possible features are extracted.
The Feature Extract distinguishes between three different feature types: Configuration, Reposi-
tory and Pipeline. The Feature Extractor is Java based and exposes a JSON endpoint with which
the user can interact. Source-Code: https://github.com/cinder-config/extractor

Classification Tool With the help of the Classification Tool, the participants of the study receive
a clear GUI with which they can decide for a configuration file whether it is genuine or not.
The classification tool is a Vue.JS application with a PHP Symfony backend. The data is stored
using a MySQL database. Frontend: https://github.com/cinder-config/classification-frontend,
Backend: https://github.com/cinder-config/classification-backend

Classifier The classifier is the heart of the work. Based on the labeled data (ground truth data
set) a random forest classifier is trained that can decide for a given configuration file whether it is
genuine or not. The machine learning framework scikit-learn is used for this purpose. The model
and the evaluations are available here: https://github.com/cinder-config/classifier.





Chapter 3

Related work

In this chapter, we present prior approaches to the problem of selecting appropriate software
repositories in the field of empirical software engineering research and identify approaches that
we can reuse. We will then discuss similar work around the CI/CD process, and finally we will
dive into the topic of Continuous Integration anti-patterns and smells.

3.1 Filtering data
Mining software repositories is a branch of empirical software engineering research aiming at dis-
covering interesting facts and information about the contents of software repositories. It is often
described as a process to "obtain lots of initial evidence" [HZ10] by exploring software repositories
and its contents. With the rise of open access to software systems - GitHub noted a growth of
60 million new repositories in 2020 [Git21] - endless possibilities have opened up for researchers.
But this variety unfortunately also has its price. Through quantitative and qualitative analysis of
GitHub, Kalliamvakou et al. identified the dangers posed by this great diversity. They identified
that a repository is not necessarily a project, many repositories are personal and that most project
contains only few commits and are inactive [KGB+14].

Therefore, researchers have often developed their own filtering criteria to reduce the large
amounts of data into manageable sizes while maintaining a certain quality. For example in the
code quality analysis of different programming languages, Ray et al. [RPFD14] made their selec-
tion by picking the 50 most popular repositories. Bissyandée et al. studied the popularity, inter-
operability and impact of different programming languages. For their quantitative analysis, they
selected the first 100’000 repositories which were available through the GitHub API [BTL+13].

The need for meaningful filtering options to produce reproducible data set is highlighted in
a quantitative study by Robes [Rob10] analyzing the reproducibility of 171 MSR1 papers. He
discovered that while the majority of the paper uses publicly available data sources, both data set
and tools are often unavailable, although indicated otherwise by the authors. He concludes that
many papers are not replication friendly. This behavior is also supported by the study of Falessi
et al. [FSS17]. The analysis of 68 different studies revealed that the selection of projects was not
fully reproducible. To overcome this issue, they presented STRESS, a semi-automated approach
to project selection by generating a reproducible data set.

A similar approach is followed by Munaiah et al. They solve the project selection problem
by proposing an innovative framework which reduces noise in the data set by efficiently identify
engineered software repositories [MKCN17]. According to their definition, an "engineered software

1International Workshop on Mining Software Repositories
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project is a software project that leverages sound software engineering practices in one or more of its di-
mensions such as documentation, testing, and project management" [MKCN17]. They identified a set
of metrics which describe the seriousness of a software repository. Using a manually curated set
of labeled repositories - they trained a classifier which both demonstrated high precision while
maintaining high recall.

Our work is highly inspired by the work of Munaiah. Using a binary classifier, we aim at
classifying Continuous Integration configuration files, and ultimately providing a filtering frame-
work to enhance the quality of data sets for empirical research in the field of Continuous Integra-
tion.

3.2 Configuration smells
In the early days of Continuous Integration, developers used various scripts and code snippets
to build, deploy and distribute software. Build notifications, error handling as well as build op-
timizations often had to be developed by the organization itself. With the rise of cloud-based
providers such as Travis-CI, the configuration file became the unique entry point for the devel-
opers to configure the pipeline service. Because the configuration file is part of the software
repository, and the build process tends to evolve [MAH12], it is important for the configuration
file to be maintained as well. But unfortunately Gallaba et al. detected through empirical analysis
that "most CI configuration files, once committed, rarely change" [GM18].

Through the configuration file, the developer can make use of the different features a pipeline
provider offers, thus customizing the build process to the repositories and organizations needs.
Ultimately, the software benefits from the vast majority of benefits CI/CD offers, such as increased
developer productivity [VYW+15], faster and more frequent releases [HTH+16] and detecting
problems earlier [SB13].

But where there is usage, there is also misuse. Researchers already identified various anti-
patterns, for example overzealous and slow builds [Duv10], ignoring the results of the build
process or poor usage of branches [ZVP+20]. If not addressed in a timely manner, these pose
a substantial threat to the maintainability of the software.

In order to identify and mitigate anti-patterns, Vassallo et al. introduced CI-ODOR [VPGDP19].
It automatically detect four anti-patterns: slow builds, skipping failed tests, broken release branches
and late merging.

Similar work has focused not only on the pipeline, but on the configuration file itself. To au-
tomatically detect smells on the configuration file, Gallaba et al. introduce HANSEL, a framework
to detect four common smells: redirecting scripts into interpreters, bypassing security checks, ir-
relevant properties and using commands in the wrong phase [GM18]. In addition, they presented
GRETEL, a tool to automatically eliminate those smells in Travis-CI configuration files.

A similar approach is followed by Vassallo et al. with their linter named CD-LINTER [VPJ+20].
It can detect four important smells during the pipeline process: fuzzy versions (failing to specify
the exact version), fake success (job failure does not affect build failure), manual execution (job
needs to be manually executed by a user) and retry failure (rerunning a failed job until success).

Referring to our work, these approaches will significantly influence the characterization of the
configuration file.



Chapter 4

Detecting Genuine
Configurations

In this chapter, we describe the background information necessary for the classification task. We
briefly introduce Continuous Delivery as well as the concept of genuine configuration files. Next,
we show what information we want to extract from the configuration files and which insights we
believe we gain from them, and finally we present different models of how we can aggregate this
information into a binary decision classifier.

4.1 Continuous Delivery
Continuous Delivery is a technique which aims to deliver a new version of software in a fast
and reliable way. Humble and Farley more precisely describe it as "an automated manifestation of
your process for getting software from version control into the hands of your users" [HF10]. Continuous
Delivery is tightly coupled with Continuous Integration, which aims at integration changes to
the software as often as possible (i.e., multiple times a day). Grady Booch more precisely defined
Continuous Integration as follows: "At regular intervals, the process of Continuous Integration yields
executable releases that grows in functionality at every release" [Boo90]. It is known to be one of the
twelve Extreme Programming practices by Kent Beck [Bec00].

An important part of this process is the Pipeline. It is a sequence of steps which usually
include the phases build, test, deploy and release. These steps are described in a configuration file,
the subject of interest to the thesis.

4.2 Configuration file
A Continuous Integration configuration file describes the pipeline process. It contains informa-
tion about the infrastructure and operating system (e.g., Linux 18.04, MacOS, ...) on which the
pipeline runs, which instructions and actions need to be executed and which additional services
are required. It may also contain information about the deployment, about caching mechanism
and much more.

The configuration file, its features and operations may also vary depending on the selected
pipeline provider. Nowadays many different pipeline providers exist, for example GitHub Ac-
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tions1, Bitbucket-Pipelines2 from Atlassian, TeamCity3 by JetBrains or in open-source especially
known Travis-CI4. While each of the providers would like to differentiate themselves from the
competition with its functionalities, they share one common functionality. They regularly check
the repository for changes and start the pipeline with the underlying configuration file once
changes are detected.

Figure 4.1: Example of a configuration file for Travis-CI taken from the repository common-
voice/common-voice

To give a deeper understanding, Figure 4.1 illustrates an example of a configuration file for the
pipeline provider Travis-CI. The first step is to define which programming language (1) should be
supported in the build. Additionally, further necessary services that are needed in the course of
the build, (2) are defined. The first actions in the build are performed in the install phase, usually
responsible for installing the dependencies of the software. In this example, additional commands
are executed before this phase (3). The following task is then the actual build itself. Here (4),

1https://github.com/features/actions
2https://www.atlassian.com/de/software/bitbucket/features/pipelines
3https://www.jetbrains.com/teamcity/
4https://travis-ci.org/
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the software is assembled and tested. Following a successful build, the software is deployed
using Docker (5). Since the deployment requires login credentials for Docker, this information
is stored using encrypted environment variables (6). The figure obviously shows only a subset
of all possible functions. A complete listing of all options can be taken from the Travis-CI User
Manual5. Because arbitrary code can be executed, the pipeline offers endless possibilities.

4.3 Definition
Our motivation is to be able to automatically identify genuine configuration files. In the following
we would like to specify the term genuine more precisely. A genuine configuration file describes
a pipeline process which compiles, tests or deploys software in which the result of the build
process is observed, e.g., a new version is deployed, new artifacts are generated or the result
is used in subsequent builds. In contrast to a pseudo configuration, a genuine configuration
file demonstrates a serious engineered pipeline. A genuine configuration file is always in step
with the repository, it is regularly maintained and adapted to the repositories needs. A genuine
configuration file describes several phases, which follow one after the other, but are complete in
themselves and does not interfere with each other. Moreover, a genuine configuration file ensures
that the developers are informed in case of erroneous behaviour.

For the remainder of this thesis, whenever we refer to a good example of a configuration file,
it is labeled as genuine. On the contrary, bad examples are labeled as pseudo.

4.4 Features
Previously we have introduced the concept of genuine configuration files. Based on this defini-
tion, we have identified twenty-two different metrics with which we attempt to characterize a
configuration file. Table 4.1 briefly summarizes the features. These features are compiled from
three different sources: (1) the configuration file itself, (2) the repository in which the configu-
ration file lies, and (3) the pipeline-provider which parses and interprets the configuration file.
Each of theses feature sources provides a different type of access, in which the higher the level,
the more difficult it is to extract the features. In the following each feature is defined, described
how it is extracted and indicated, if possible, the assumption about the impact of the feature on
the model.

4.4.1 Configuration
On the configuration level, the features are extracted directly from the configuration file. Those
features are built around the different functionalities which the pipeline-provider (in our case
Travis-CI) offers, for example how many different jobs should be processed, on which operating
system the job is running or where the software should be deployed to.

To make it easier for us to process the configuration, we use travis-yml6. With travis-yml con-
figuration files can be parsed, validated and normalized. It reproduces the same steps that are
performed on Travis-CI itself. The end product of the process is a job matrix in which each job is
described with its specific instructions [CI21].

5https://docs.travis-ci.com/
6https://github.com/travis-ci/travis-yml
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Feature Description Level

lines number of lines of the configuration file Configuration

jobs number of pipeline jobs Configuration

stages number of pipeline stages in the pipeline Configuration

env number of environment variables used Configuration

comments number of comments within the file Configuration

lint score obtained when linting the configuration
file

Configuration

notifications number of notifications at the end of the
pipeline process

Configuration

unique_instructions number of unique instructions during the
pipeline execution

Configuration

use_branches true if conditional builds are enabled Configuration

use_cache true if caching mechanism is enabled Configuration

use_deploy true if there is a deployment at the end of the
pipeline

Configuration

template_similarity calculates a similarity score compared to a tem-
plate

Configuration

config_changes number of changes of the configuration file Repository

config_change_contributors number of contributors who have changed the
configuration file

Repository

commits_until_added number of commits until CI is introduced i.e.,
configuration file has been added

Repository

days_until_added number of days until CI is introduced i.e., con-
figuration file has been added

Repository

config_change_frequency frequency with which the file is changed (con-
fig_changes / total_commits)

Repository

success_ratio number of successful builds in relation to the
total builds

Pipeline

build_time average time of the building process (in sec) Pipeline

pull_request_ratio ratio with which builds are triggered by pull re-
quests (opposite to push)

Pipeline

manual_interaction_ratio ratio with which manual builds are triggered on
Travis CI

Pipeline

time_to_fix average time until a broken build is fixed (in
sec)

Pipeline

Table 4.1: List of features



4.4 Features 13

lines

The feature lines describes the total number of lines within the configuration file and is obtained
by counting the number of lines of the file. This feature gives an indication of how detailed the
pipeline is described. We assume that the more detailed a pipeline is, the better it is, and therefore
it is consequently more genuine.

jobs

With the feature jobs we count the number of jobs a configuration file generates. We receive the
number of jobs by expanding the configuration file to a job matrix using travis-yml. We assume
that the more jobs, the more action is taking place, hence more genuine.

stages

In the pipeline process, a build consist of different stages, each stage grouping similar jobs. For
example a build might contain the stages compile, test and deploy. Creating additional stages re-
quires engineering effort, therefore we anticipate that a higher number of stages results in a more
genuine configuration.

env

Environment variables are dynamic values that allow the user to customize an application on
run-time behaviour. With the feature env, we count how many environment variables are defined
in the configuration file i.e., how many of them influence the build process. A higher number
could indicate a better pipeline process.

comments

Comments are a central part of documenting source code, which consequently also can be ap-
plicable to the documentation of configuration files. The feature comments counts the number
of comments in the configuration file, anticipating that the more documented the configuration
file is, the more engineering took place. However, this assumption must be taken with caution,
since the comment function can also be used to make parts of the configuration file inactive, i.e.,
commenting out certain sections.

lint

The functions which can be enabled through the configuration file may change from time to time
- adopting new practices and capabilities. travis-yml offers a linting service which gives indication
about the usage of deprecated features, invalid syntax or even forbidden configuration options.
To obtain the lint score, we multiply each message with a severity factor according to table 4.2.
For example, a configuration file with one info, two warnings and one error will receive a lint
score of 121.

notifications

Continuous Integration usually requires fast feedback. Travis-CI offers various notification-providers
with which the developers of the project can be informed about the status of the build process.
With this feature, we track how many notifications will be triggered at the end of each build,
assuming that a genuine configuration file contains at least some sort of notification system.
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Severity Description Factor

info deprecations, missing defaults, skips... - safe to ignore 1

warn config contains error which were fixed during the parsing -
safe to ignore

10

error config contains error which cannot be fixed during parsing 100

alert leaking of secrets 100

Table 4.2: travis-yml validation messages

unique_instructions

During the lifecycle of a job, custom commands can be run in several phases, i.e., before, during
and after the install and script phase7. The feature counts the number of unique instruction that
will be executed during these phases. We assume that a sufficient number of actions will be
carried out in a reasonable pipeline. However, it is important to see that this feature has its
limitation. If external scripts are called during these phases, these scripts will not be explored.
Also, the quality of the actions is not evaluated, for example, a mvn test (invoking maven to
execute the testsuite) is equally weighted to pwd (displaying the current path).

use_branches

Unless otherwise specified, a build is triggered on every push/pull-request on the repository.
Travis-CI allows the maintainer to specify certain repository branches to be excluded (blocklist)
or disabled the build on all other branches except certain branches (safelist). Use_branches is a
bit-flag tracking whether the configuration make use of this feature.

use_cache

Travis-CI gives the maintainer the option to cache content that does not often change, for example
dependencies. This is especially useful to speed up the build process. The boolean feature indi-
cates whether caching is enabled or not. We assume that caching is enabled in a genuine pipeline,
as this makes the feedback loop faster.

use_deploy

A crucial part at the end of the build process is the optional deploy stage. Travis-CI offers in-
terfaces to easily integrate different hosting providers (e.g., AWS, Azure, Firebase) with mini-
mal configuration. We track whether the configuration has enabled one or multiple deployment
providers.

template_similarity

Due to the low barriers to entry offered by CI, quick registration at the pipeline provider and
the addition of a simple configuration file, many repositories contain simple and template-like
configuration files. With the feature template_similarity we want to identify these. For this purpose,

7https://docs.travis-ci.com/user/job-lifecycle/
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we have identified a possible template for each programming language. By calculating a JSON-
Patch [PB13], the difference between the template and the configuration file is measured. The
higher the score, the more the configuration file deviates from the template. Example: A value
of 0 means that the configuration is identical to the template, while a value of 20 means that
20 different operations (e.g., adding, removing, modifying nodes) has to be performed until the
configuration file is reached.

4.4.2 Repository
The repository level describes features which are accessible through the git repository in which
the configuration file is placed. These features provide insight into how the configuration files is
handled, for example how many times the file has been changed or how many different contrib-
utors have worked on the file.

config_changes

Within a git repository, every change to a file is recorded with a commit. Using the git history,
we record how often the file has been changed and presume that the more changes, the more
engineering resources have been put into the configuration file. But this hypothesis has to be
taken with great care, as it may also be the case that the developers struggled with setting up the
pipeline and used a lot of different tries.

config_change_contributors

Software is usually developed together. Especially in the open source context it is not uncommon
to have many different contributors. With this feature we track how many different contributors
have made changes to the configuration file. thus modified the CI process.

commits_until_added

The features commits_until_added measures how many commits were present in the repository
until the configuration file is added, thus introducing Continuous Integration. Our assumption
is that the earlier Travis CI was introduced, the more experience with CI was gained, hence the
configuration file is more genuine.

days_until_added

This feature works similar to commits_until_added feature. However, it does not measure quanti-
tatively when Travis CI was introduced, but in a temporal relation,i.e., the number of days until
the file was added. Our assumption is the same as in the previously referenced feature.

config_change_frequency

While config_changes measures the number of changes, the feature config_change_frequency addi-
tionally includes a temporal component. It measures how often the configuration file has been
changed per commit i.e., ccf = config_changes/commits. Our assumption is that a high value
indicates that developers place a high value on Continuous Integration, and therefore the under-
lying configuration file is of interest to us.
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4.4.3 Pipeline
Features on the pipeline level are obtained through the API’s provided by the pipeline service
providers. Since the access to those API’s is not always guaranteed, those features are the most
difficult to obtain. Features on this level are trying to characterize the quality of the pipeline, for
example the build success ratio or the time it takes for developers to resolve a broken build.

success_ratio

At the end of a pipeline build, the build is usually marked either successful, if all steps were
successfully passed, or failed if any of the stages fail. The success_ratio measures how many builds
are successful in relation to the total number of builds. We expect genuine configurations to be
more stable, hence producing less build errors and consequently having a higher success ratio.

build_time

Build time is an essential component of Continuous Integration. If the build takes too long, the
developer does not get quick feedback on the integration of his work and the advantage of Con-
tinuous Integration is lost. Humble et al. propose the build to take no longer than "making a cup
of tea" [HF10]. An empirical study has shown that proper build configurations should be main-
tained in order to reduce long build durations [GDCZ19]. We therefore conclude that a short
build time may indicate that the underlying configuration file tends to be genuine.

pull_request_ratio

A build is usually started by opening a pull request or pushing a commit to the repository. With
the feature pull_request_ratio we measure the ratio for which builds are triggered by pull requests.
Pull requests provide a great way in modern code review for developers to inspect the code before
it is merged into the repository. We assume that a high pull request ratio indicates a good pipeline
process.

manual_interaction_ratio

In contrast to the pull_request_ratio, the manual_ interaction_ratio measures the rate for which builds
are triggered by hand. A build usually does not have to be triggered by hand unless something is
quite wrong, hence we speculate that a high ratio does not imply genuineness.

time_to_fix

There are many reasons a build can fail, for example an erroneous test, a compilation error, a
timeout in the virtual machine or simply a misspelling in the configuration file. An empirical
study conducted by Kerzazi et al. recorded a build break ratio of 17.9% [KKA14]. Whenever
the build is broken, it is of utmost importance to inspect and resolve the build failure because
otherwise the software cannot be delivered anymore. We calculate the average time to fix a build
by looping through the build history and whenever we encounter a faulty build, we advance until
we find a successful one, and measure the time between these two builds. Our assumption is that
a short remediation time indicates a good Continuous Integration adaption, and consequently a
genuine configuration file.
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4.5 Binary-Classification problem
Recall the initially stated goal: for a given configuration file it should be decided whether it is
genuine or not. Consequently, this is a binary classification task. Since the classifier is trained
on a labeled data set, a supervised learning model will be used. To solve this problem, many
different machine learning algorithms and models exist, such as decision trees, random forests,
support-vector machines or neural network models.

Support-vector machines A support-vector machine works by mapping the input-vectors to
a very high dimensional feature space [CV95], maximising the gap between two classifications. A
well-known area of application is for example handwriting recognition [MBP15]. SVMs work well
when the input data is of high dimension, i.e., many features, but it is prone to overfitting [skl21].

Decision Tree learning Using a decision tree, the model is trying to predict the classification
through a series of rules. Those rules were initially derived by providing the tree with training
data. A big advantage of decision tree learning is that it can be visualized very easily and is
therefore easy to follow. Unfortunately, they often lack predictive accuracy and tend to generalize
too much [JWHT13].

Random Forest A random forest classifier is an enhanced version of decision tree learning. It
works by constructing and bagging multiple decision trees to a single model. An important fea-
ture of random forest classifiers is that during the learning process whenever there is a split, a
random subset of features is chosen. In contrast to Decision tree classifiers, a random forest clas-
sifier significantly reduces the variance and the risk of overfitting [JWHT13]. In addition, random
forests provide a great framework in analyzing feature importance, i.e., the impact of different
features on the model.

In an empirical comparison of different supervised learning algorithms, Caruana and Niculescu-
Mizil explored that random forest and SVMs are among the top performers, outperforming espe-
cially single trees [CNM06]. With this background knowledge and the fact that the feature space
is rather small, we decided to use a random forest classifier. For the remainder of this thesis,
whenever we refer to the model, a random forest classifier is meant.
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Methodology

The foundation of the model is a labeled data set of truth with a set of features of how this truth
is gained. In the following chapter, we describe the methodology we used to compile the data
set for the classifier. We describe how the data is obtained, how the labels are set and how we
guarantee the quality of the labels.

5.1 Data mining

In order to build the model, we need to have a data set which acts as the source of truth for the
model. Since the classifier is a novel approach and no such similar work has been curated, the
following steps were necessary to collect the projects for the data set.

To accurately represent the current state of software engineering, the data set shall be as di-
verse as possible. Consequently, a mix of various projects, such as large-scale projects, open-
source projects, research projects, plugins, as well as student/homework-projects should be rep-
resented in the data set. In addition, the data set should span across several programming lan-
guages, covering the most used ones. Also, a project should have at least some activity i.e., com-
mits. This way project that have no activity and were only created for testing purposed are elim-
inated. As a final and most important criteria, a project must contain a valid .travis.yml file and
must be registered on Travis-CI.

According to the 2020 State of the Octoverse [Git21], conducted by GitHub, we selected the six
most popular programming languages which are supported by Travis-CI: JavaScript (TypeScript),
PHP, Ruby, C++, Java and Python.

Since the GitHub API has a lot of restrictions and provides only little possibility to discover
projects, researchers introduced GHTorrent [Gou13], a scalable and queriable offline mirror of the
data that is offered through the GitHub API. The most recently created mirror contains over 125
million software repositories with a compressed data volume of around 100 GB.

To ensure the previously mentioned diversity of the projects, we categorize each project based
on various metrics. Table 5.1 describes the categories and their selection criteria. In order to obtain
a balanced data set with respect to the classifications (genuine/pseudo), we assign a weight to
each category. Our assumption is that medium, large and popular projects are more focused on
adapting Continuous Integration and hence may contain more genuine configuration files. As a
result, we weight these three categories equally with the small category.
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Label Selection Criteria Desired weight

Big commits >= 5000 and pullrequests >= 500 13.33%

Medium commits >= 1000 and commits < 5000 13.33%

Small commits >= 20 and commits < 1000 50.00%

Popular watchers >= 100 and contributors >= 20 and issues >= 200 13.33%

100.00%

Table 5.1: Project categorization

5.2 Data labeling
Once a large enough data set is compiled, for each element in the data set has to be decided
whether the configuration file it contains is genuine or not. To guarantee label quality and ulti-
mately reduce bias, this process is outsourced to experienced and talented developers. To achieve
this, a classification tool was developed.

5.2.1 Classification Tool
The tool to collect the classifications is divided into two sections. In the first step, simple demo-
graphics are collected and in the second step, the classification takes place. The demographics
enables in a later processing step to remove classifications that do not meet the quality standards.
The following information is collected from the participants:

• Years of professional experience in a software development context that uses CI
• Self-assessment of skills and knowledge about CI (score from one to nine)
• Ever used Travis-CI (True/False)
• Consent for data processing

During the classification task, the participant has to give an indication whether the given configu-
ration file is genuine or not. To support the decision of the participant, he is presented with some
information about the repository in which the configuration file can be found. Additionally he is
presented with the configuration file itself as well as external links to the repository as well as the
Travis CI page.

Finally, the participant is confronted with some questions. The first four questions are aimed
at the participant forming an opinion about the configuration file, while the last question finally
aims at the classification itself. The questions are always answered with yes or no, the participant
does not have the option to skip a question. This setting has been chosen deliberately in order to
ensure that the participant is forced to form a final opinion. We believe that the above questions
provide a reasonable basis to form a final picture.

Seriousness Do you think the linked repository contains a serious software project (in contrast
to, for example, study projects or examples)?

Integrated Do you get the impression that TravisCI is an important part of the project’s devel-
opment process?
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Tailored Does the TravisCI configuration look customized to the project’s needs, i.e., is it more
than a template or a stub?

Interesting Is this TravisCI configuration interesting for you or could it be interesting for others,
for example, to learn something new?

Genuine Would you say that this TravisCI configuration is a good example of a genuine CI
pipeline?

Figure 5.1 shows a screenshot from the classification tool, displaying the project under review,
its configuration file and the final questions. Each participant is asked to classify 10 projects, with
the option to provide more classifications if he is willing to do so.

5.2.2 Labeling review
After receiving the classification of the participants, each classification is subjected to a second
opinion by the author. If the opinions agree, the classification is included in the data set. If the
opinions diverge, a third opinion is obtained from the thesis supervisor, who therefore finalizes
the classification. This two(-three) step approach ensures that for each classification there are at
least two opinions, which may be confirmed by a third. This is necessary as only labels of high
quality should be included in the data set.
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Figure 5.1: An example from the classification tool
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Results

This chapter presents the results of this thesis. First, the results of the classification task and the re-
sulting ground truth data set is presented. Subsequently, the performance of the classifier, trained
on the data set, is evaluated. We also investigate the influence of the variables, the categories as
well as the programming languages. After making an additional comparison with engineered
repositories, the impact on CI-based studies is investigated.

6.1 Ground truth data set

6.1.1 Classification task
The call-to-action to build the ground truth data set has been followed by 68 participants, sub-
mitting a total of 338 classifications. Since the goal is to curate a data set of high quality, all
classifications from participants who did not submit at least 5 classifications, effectively 40 par-
ticipants, were eliminated. Furthermore, only classifications from participants who have used
Travis-CI in a professional context or demonstrated a sufficient knowledge of the domain (Crite-
ria: years_experience >= 4 and relative_experience_score >= 7) were included. This reduced
the total amount of classifications to 151, respectively 12 participants. A participant contributed
on average 12 classifications, while taking around 61 seconds for each classification task. Addi-
tional demographics from the classification task are visible in Table 6.1.

avg experience 4.583 years

avg relative experience score 6.583

used travis 83.33%

classifications per user 12.583

avg time spent per classification 60.85s

dropout rate 58.82%

discard ratio 44.67%

Table 6.1: Demographics participants
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Based on the proposed methodology (Chapter 5.2.2), we subjected each classification to a sec-
ond and optionally a third opinion, furthermore ensuring the quality of the labeled data set. Fi-
nally, the resulting data set consists of 151 projects. Table 6.2 provides detailed information about
the distribution of the labels within the programming languages. From this it is observed that
genuine as well as pseudo classifications are evenly distributed.

Ruby JavaScript Python Java C++ PHP Total

Big 3/1 1/0 5/1 5/1 4/0 3/0 21/3

Medium 2/1 4/3 2/1 0/4 3/1 4/0 15/10

Small 6/12 1/10 9/8 1/7 8/6 6/7 31/50

Popular 1/4 1/5 0/1 2/2 1/0 3/1 8/13

Total 12/18 7/18 16/11 8/14 16/7 16/8 75/76

Table 6.2: Classification matrix per language and bucket. genuine/pseudo classification. Exam-
ple: For medium JavaScript projects there are 4 genuine and 3 pseudo classifications

6.1.2 Characteristics
For each configuration file in the data set, the 22 features (Chapter 4.4) were extracted using the
Feature Extractor. Together with the classifications, they form the ground truth data set.

Figure 6.1 shows the distribution of each variable within the data set, split by genuine and
pseudo. From this visualization, certain trends can be identified. For example, genuine configu-
ration files have more environment variables defined. They also have more jobs on average and
use more unique_instructions.

On the other hand, both genuine and pseudo configuration files sparsely use the notifications
feature. Also, very few configurations include a deployment section.

Also not surprising is that the majority of configuration files classified as genuine are on av-
erage much larger (more commits) and much better known (more stars) than projects with non-
genuine configuration files. This is also in line with the assumption we made when collecting the
projects.

To better understand the dependencies of the variables, Figure 6.2 visualizes the correlation
of the different features. The graph shows how the values for the features relate to each other,
the darker (i.e., blue = positively correlated, red = negatively correlated) the more strongly the
variables are linked to each other.

At first glance, it is noticeable that most features within the same category correlate with them-
selves. We attribute this to the fact that they are all extracted from the same source.

It is also noticeable that the feature lines correlates with many features. This is to no surprise,
as one can assume that the larger a configuration file is, the more it will specify, so for example
more jobs or more actions.
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Figure 6.1: Feature distribution within the ground truth data set
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Figure 6.2: Feature correlation within the ground truth data set

6.1.3 Pseudo-Configurations
Based on the ground truth data set and the knowledge gained from it, we address the first re-
search question: why do repositories contain pseudo configurations? To answer this, we inspect
configuration files labeled as pseudo within the data set. In particular repositories that have made
few changes to the configuration. In these, the configuration file as well as the commit messages
are inspected in detail.

Two reasons why repositories contain pseudo configurations can be identified. The first reason
is that the repositories want to use the main function of the pipeline, the build process. Many
repositories that works with template-like configurations were identified. This is also confirmed
by the distribution of the feature template_similarity (Figure 6.1). We suspect that they simply
want to be informed about the state of their software, i.e., whether it is still executable after a
newly introduced change.

On the other hand, we see that many projects have a badge in their README.md1 file display-
ing the current status of the build process, i.e., if the latest build was successful. This behavior is
very common in the open source community. It can be observed that the badge is often added
at the same time or directly after introducing Travis-CI. We deduce that the maintainers of the
project wants to demonstrate quality with the badge, implying that a project that has a working
pipeline (even if it is not very engineered) is functional and might be of interest to others. There
is nothing more frustrating than using software that does not work at first attempt.

1The README.md file usually contains textual description about the repository and is displayed on the front page
when browsing the repository on GitHub.
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6.2 Detecting genuine CI configurations
A central question of our work (i.e., RQ2) is whether it is achievable to detect genuine configura-
tion files, and if so, how precise can they be detected. Using the scikit-learn package [PVG+11]
and the ground truth data set, we train the model. In the following, the model is subjected to
various analyses. We evaluate precision and recall, the importance of the variables, the influence
of feature category as well as programming language and finally present the limitations of the
model.

6.2.1 Performance
Using a repeated 10-fold cross validation, the model achieves an accuracy score of 80.00% (std =
10.33%). Table 6.3 presents the summarized performance metrics of the classifier. A more detailed
overview is provided in Figure 6.3 and Figure 6.4.

The precision-recall curve shows the trade off between true positive rate (precision) and the
positive predictive value (recall) given different probability thresholds. The graph shows that up
to a certain threshold ( 50% recall) the precision is very good and stable. With increasing recall,
unfortunately, the precision decreases sharply. On the other hand, the ROC (receiver operating
characteristic) shows the correct predictions versus the incorrect ones given different probability
thresholds. The area under the curve (AUC) hereby gives an indication of the skill of the classifier
- the larger the more skill he demonstrates. It can be seen that the classifier can work very precisely
up to a certain point. However, with the increasing number of hits, the misclassifications also
strongly increase.
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Figure 6.3: Precision recall curve
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Figure 6.4: Receiver operating characteristics

The evaluation shows a good precision while also maintaining an acceptable rate of recall, demon-
strating an overall good and acceptable performance of the model. What is particularly interest-
ing is the difference between the recall of genuine and pseudo classifications. While the model
may miss some genuine classifications, it shows strong performance in classifying pseudo config-
uration files.
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precision recall f1-score

genuine 0.815 0.789 0.795

pseudo 0.769 0.806 0.782

avg 0.792 0.798

accuracy 0.800

std +/- 0.103

Table 6.3: Classification report

Unfortunately, the evaluations also show that there are high uncertainties in the model. This is
shown by the high standard deviation. This can be inferred from the fact that with 151 classifica-
tions the ground truth data set is rather limited. Depending on how the training set and test set
is split, the performance may increase or worse. The question arises to what extent the extension
of the data set affects performance and deviation.

To investigate the impact of an increased size of the data set on the model, we train the model
with different sizes of the data set. Figure 6.5 shows the results of this analysis. While the accuracy
does not change significantly, we observe that as the number of projects in the data set increases,
the standard deviation is significantly reduced. From this we conclude that with a larger data set
more reliable results can be obtained.
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Figure 6.5: Model performance by using different feature sizes
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6.2.2 Variable importance
In order to get more insights into the mechanics of the model, we perform a variable importance
analysis. SHAP (SHapley Additive exPlanations) values provide a great framework for interpret-
ing predictions, assigning each feature an importance value for a particular prediction [LL17].

Figure 6.6 presents a SHAP summary plot for each of the features, ordered by their impor-
tance. It displays the impact on the model based on their value. A positive SHAP value hints
towards a genuine classification, while a negative points towards a pseudo configuration. Ex-
ample: A high value (red) of unique instructions indicates that the configuration file is likely
genuine, while a low value (blue) indicates a pseudo configuration. In addition, Figure 6.7 shows
the weight of each variable on the model, as well as the cumulative ratio, i.e., how many variables
are required to explain a certain part of the model.
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Figure 6.6: SHAP summary plot displaying the
impact of each variable on the model
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Figure 6.7: Importance of feature on the model
including the cumulative ratio.

With only the top five variables, 70% of the models output can already be explained. Addi-
tionally, three out of these five can be assigned to the configuration category, clearly indicating
a strong dominance of this category. Furthermore, there are many features that, contrary to our
intentions, have hardly any influence on the model. These could be easily omitted without sub-
stantially affecting the performance of the model. For example it does not matter how many
stages a pipeline has, whether it has a deployment mechanism or if notifications are enabled.
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6.2.3 Feature category
Each feature can be assigned to one of the three different categories: Configuration, Repository
and Pipeline, with the name indicating the origin of the feature. The third research question aims
to find out to what extent these categories influence the classifier, in particular whether features
directly extracted from the configuration are sufficient to yield accurate classifications or if more
advanced features i.e., features extracted from the repository or even the pipeline should be taken
into consideration.

We examine this as follows: For each combination of the feature categories a new model with
only these features is trained. The evaluation is performed using a repeated 10-fold cross valida-
tion. The result of this evaluation is visualized in Figure 6.8.

By comparing the different models, the following becomes apparent. In order to achieve a high
accuracy, the features of the level configuration are indispensable, since each model trained with
configuration features significantly outperforms the other models. Likewise, the models with
additional metrics (repository & pipeline) do not provide a significant accuracy boost compared
to the single configuration model. In addition, the variance does not change with additional
features. It can be concluded that additional metrics are not necessary and can potentially only
dilute the model.

Configuration Repository Pipeline Configuration
Repository

Configuration
Pipeline

Repository
Pipeline

Configuration
Repository

Pipeline
Feature Categories

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Model performance by feature categories

Figure 6.8: Model performance by using different feature categories
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6.2.4 Programming languages
In selecting the data, we limited ourselves to 6 different programming languages. The question
arises to what extent the programming language, i.e., the underlying programming language of
the software which is built by the pipeline, has an influence on the result of the classifier.

We evaluate this as follow. For each programming language, a new classifier with only a
subset of the ground truth data set is trained. The subset consists of the original data set minus
the data of the corresponding programming language. The programming language then acts as
the test set. This will allow us to find out if certain characteristics of a programming language
have a significant impact on the classification.

Figure 6.9 presents the finding of this evaluation. It can be seen that all programming lan-
guages basically perform quite well and the precision is similar to the previous findings. It is
noticeable that Java performs slightly above average, while ruby and PHP slightly perform be-
low average. If we look at the characteristics of the data set, it can bee seen that for Java the
classifications are not evenly distributed and pseudo classifications dominate. The previous find-
ings indicated that the classifier is stronger at identifying pseudo configuration, which therefore
explains the stronger performance in the evaluation. However, we do not consider this deviation
to be significant.

Thus, it can be concluded that the programming language has no significant influence on the
classifier and all programming languages can be detected with about the same accuracy.
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Figure 6.9: Model performance by using different programming languages
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6.2.5 Limitations
Although the model demonstrates acceptable accuracy, it does have certain limitations. We show
the limitations of the model with two examples, a false negative and a false positive, and explore
the reasons for the misclassification.

False Negative

An example of a false negative is the configuration file from the project integer-net/Anonymizer2.
While the manual classification tasks by the participants and the authors labeled the configuration
file as genuine, the model indicates otherwise. With the help of the previously introduced SHAP
values, we investigate the cause of this misclassification. The decision plot for the classification is
visible in Figure 6.11

The decision plot is to be understood as follows: Starting from the bottom, the expected value
of the model, the prediction line shows the effect of each variable on the classification. The fea-
tures are sorted by importance weight, with the most important at the top. The final classification
value is visible at the top.

Figure 6.10: .travis-yml of the software reposi-
tory integer-net/Anonymizer
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Figure 6.11: Decision plot false negative

The decision plot shows that the high build time (1020s), the frequent changes to the config-
uration file (16) as well as a high value for the template similarity (inverse property) classify the
file as genuine, while the low number of lines (24) as well as few instructions (3) classify the file
as pseudo.

A closer look reveals that the configuration file (Figure 6.10) intuitively looks very exciting.

2https://github.com/integer-net/Anonymizer
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By combining different PHP versions as well as Magento versions, a job matrix with size 9 is
formed. Additionally, dependencies are installed and unit tests are run. Furthermore, the versions
are deployed for each git tag. However, the configuration lacks action. This action is actually
included, but unfortunately it is hidden behind two bash scripts, called in Line 13 and 14 during
the script respectively the before_deploy phase of the pipeline.

The model is not able to identify these additional actions behind the scripts and therefore the
configuration file is unfortunately classified as pseudo.

False Positive

We show further limitations of the classifier by means of a false positive. To do this, we inspect
the configuration file of project crate/crate-jdbc3 more closely. The configuration file was marked
as pseudo by the participants of the study as well as by the authors, the model however evaluates
the file as genuine, as visible in the decision plot in Figure 6.13.

The decision of the evaluators can be understood by inspecting the configuration file (Figure
6.12) as follows: The configuration is rather sparse, uses an outdated entry (sudo: false), notifi-
cations are intentionally disabled, a deployment does not take place and a comment above the
install phase indicates a workaround. All in all, a justified decision.

On the other hand, visible in the decision plot, the frequent number of changes (12), the many
different contributors (6) and the long build time (1’053 s) contributes to an overall genuine clas-
sification, even though only by a small margin (pgenuine = 0.584). From this, we deduce that the
model can be fragile for certain decisions, as already shown in the precision-recall (Figure 6.3)
and RUC (Figure 6.4) curves.

Figure 6.12: .travis-yml of the software reposi-
tory crate/crate-jdbc
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Figure 6.13: Decision plot false positive

3https://github.com/crate/crate-jdbc
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6.3 Engineered repositories
As described in Chapter 3, Munaiah et al introduces REAPER, a tool that detects engineered repos-
itories. The fourth research question addresses the extent to which there is a relationship be-
tween engineered repositories and genuine configuration files. In particular, we are interested in
whether one can be inferred from the other, or whether the existence of two classifiers is justified.

6.3.1 Big data set
Since the ground truth data set is too small for this evaluation, a bigger data set with similar
projects is compiled. However, this data set is not labeled manually, instead the model will take
over this task. To obtain the projects for the larger data set, the same methodology as for the
ground truth data set has been used (Chapter 5.1). The larger data set consists of 1’252 projects
spanning across several programming languages. Since it is extracted in a similar manner, the
large data set has roughly the same characteristics (Chapter 6.1.2) as the ground truth data set
in terms of variable distribution. For each project it is evaluated whether it contains a genuine
configuration or not using the model. Table 6.4 presents the findings of the evaluation.

Ruby JavaScript Python Java C++ PHP Total

Big 23/3 21/5 24/2 19/5 21/3 24/3 132/21

Medium 18/8 12/12 17/10 12/14 21/3 24/2 104/49

Small 46/101 48/100 88/58 56/92 82/45 109/37 429/433

Popular 14/11 10/11 15/1 5/7 0/2 7/1 51/33

Total 101/123 91/128 144/71 92/118 124/53 164/43 716/536

Table 6.4: Classification matrix per language and bucket. genuine/pseudo classification

6.3.2 Reaper
To identify a potential correlation with REAPER, we evaluate for each project in the large data set
whether it is an engineered repository (according to REAPER) and compare the result with the
classification of the model. Figure 6.14 visualizes the comparison. Each project is assigned to a
quadrant depending on how it is classified by REAPER and the model.

Out of the 1’252 observations, we found a common classification in only 744 (59.42%) of the
cases. The comparison shows that there is nearly no correlation between REAPER and CINDER,
which is also shown by a very low Pearson correlation coefficient of ρ(C,R) = 0.15077. However,
it is interesting to see that when the model has identified a configuration file as genuine, 72.77%
of the time it is also found in an engineered repository. This result is not surprising, since one
can assume that a project that is seriously managed and runs Continuous Integration, also runs it
conscientiously with a genuine configuration file. Unfortunately, the opposite cannot be deduced.
If a project has been declared as engineered by REAPER, it contains a genuine configuration file
only in 62.47% of the cases.
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We attribute this to the fact that REAPER only evaluates the existence of Continuous Integra-
tion, ignoring the quality of the process itself. In addition, Continuous Integration is weighted
very weakly and only contributes at maximum 5% to the decision whether a repository is engi-
neered or not.
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Figure 6.14: Confusion Matrix between the classification of the model and REAPER.
ρ(C,R) = 0.15077

6.4 Impact on CI-based studies
The final research question (i.e., RQ5) addresses the extent to which the model affects the results of
CI-based studies, strictly speaking the validity of such studies. In doing so, we aim to show that
clearer and more valid results can be generated through a better and more appropriate selection
of projects.

We proceed as follows: In a first step, the study is reproduced on its original data. This ensures
that once the reproduction on the cleaned subset is carried out, it is valid. Next, the data set is
validated by CINDER and all projects that contains a pseudo configuration file are removed. This
is accomplished by extracting the metrics for each project which are subsequently validated by
the model. This process results in a new data set which consists only of projects with genuine
configuration files. On this data set, the study is reproduced.

In an empirical study Widder et al. have investigated the reasons why open source projects
are leaving Travis CI, one of the earliest and most popular CI tool [WVHK18]. They identified that
the projects main programming language and the size of the project plays a dominant role when
deciding to abandon Travis CI, while an increasing build complexity indicates the opposite. Their
study has been conducted by analyzing 7,276 projects that have disabled Travis CI. The selected
projects are part of a data set created by Zhao et al [ZSZ+17] in their study to explore the impact
of Continuous Integration on the development process. The data set was originally obtained by
iterating through GHTORRENT, validating for each project if Travis CI is used, and stopping at
approximately half of the projects (165,549) that exist on Travis CI (approx. 318,000 project existed
at the time of the gathering according to Travis CI). The replication of the study was performed
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using the replication package4.
When cleaning the data set, no features could be extracted for 1’434 projects (19.70%). On the

one hand, certain projects were no longer publicly accessible, on the other hand, the configuration
file was no longer part of the project. This is not surprising, since the data set is already around 3
years old. Features were successfully extracted for 5’842 projects. Of these projects, however, only
802 (11.02%) projects were able to provide evidence that they contained a genuine configuration
file. The study was then replicated on this adjusted data set. The results are visible in Table 6.5.

Original Paper Replication
Predictor Coeffs (Errors) Deviance Coeffs (Errors) Deviance

log(Project age) -0.68 (0.15)*** 21.56*** 0.48 (0.49) 0.9
log(Build duration) -0.43 (0.03)*** 226.27*** -0.16 (0.10) 2.7
log(Commits) 0.62 (0.04)*** 334.69*** 0.33 (0.11)** 8.2**
log(Contributors) 0.34 (0.05)*** 58.86*** 0.60 (0.16)*** 14.3***
log(Build jobs) -0.33 (0.06)*** 27.92*** -0.44 (0.16)** 7.0**
log(Pull requests + 0.5) -0.43 (0.02)*** 423.17*** -0.41 (0.06)*** 50.2***
log(.yml commits) 0.02 (0.04) 0.30 -0.21 (0.14) 2.3
log(.yml contributors) 0.02 (0.09) 0.07 -0.01 (0.24) 0.0

***p < 0.001, **p < 0.01, *p < 0.05 n = 7276 n = 802

Table 6.5: Results of the replication study. The left column are the original results obtained from
the paper, the right column describes the results of the replication study.

Unfortunately, when reproducing the study on the original data set, we could not reproduce
the results of the analysis of the programming languages (e.g., JavaScript vs Mean) and obtained
different values for them compared to those reported in the paper. Consequently, the evaluation
refers only to a subset of the study.

From the results one can read the following: In the cleaned data the deviations (columns
Deviance) become substantially smaller. We deduce this from the fact that the adjusted data set
contains much less noise and the results are more meaningful. Recalling the core statement of
the study: dominant factors for abandonment are build duration, the number of commits and
pull requests. While the results for commits and pull requests can be validate, the statement in
terms of build duration is significantly diminished. We attribute this result to the fact that build
duration is also an important factor in the model. We therefore assume that this was taken into
account when cleaning the data, and that the distribution of the build duration in the new data
set is more homogeneous.

4https://github.com/CMUSTRUDEL/travis-abandonment-replication
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Discussion

In this chapter, we will summarize the main results into applicable findings and link them to the
assumptions and intuitions we posed at the beginning. From this we finally derive our findings,
uncover and discuss potential threats and pitfalls and suggest further work.

7.1 Classification task
Recall the initial problem statement: the detection of genuine configuration files (i.e., RQ1 + RQ2).
The classifier has shown to demonstrate good precision in detecting whether a given configura-
tion is genuine or pseudo. Statistical analysis has also shown that, while the classifier may suffer
some recall i.e., it may not detect all genuine examples as genuine, it shows strong performance
when it comes to detecting pseudo configuration files.

Further analysis has shown that additional features i.e., from the repository level and the
pipeline level, do not add additional value to the classifier. This result is very pleasing, as the
extraction of these additional features is very time-consuming and error-prone. Thus the range of
CINDER is extremely extended. This becomes especially important when the tool is extended to
other pipeline providers. Often the access to the repository is limited or the API of the pipeline
provider is restricted.

Moreover, we have shown that it does not matter which programming language is the domi-
nant language within the pipeline. From this we can conclude that other programming languages
can be included without any loss of precision. Furthermore, this also illustrates that the metrics
are not specific towards certain programming languages and thus universally applicable to all
programming languages within the Travis-CI universe. This leads us to the first conclusion:

Finding 1 CINDER is able to detect genuine configuration files based on simple metrics
obtained by the configuration file itself.

Nevertheless, this conclusion has to be handled with great care. We identify the following
threats:

Small Sample Set Due to the low number of participants and the strong filtering (to ensure
the quality of the data set), the truth data set is rather small (n = 151). This is reflected by the
high variance of the performance metrics, which naturally weaken the results. By evaluating
the influence of different data set sizes on the performance metrics, we have shown that with
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increasing the size of the data set, the error can be reduced. Therefore, the risk can be eliminated
by expanding the data set in a future extension and providing more truth value to the classifier.

Classification Bias During the classification task, the participants took an average of 61 sec-
onds to make a decision. In that time, they inspected the configuration file, the repository, and
the Travis CI pipeline page and have subsequently made the classification. The high dropout
rate of participants, as well as the high discard rate of classifications, indicate that determining
whether a configuration date is genuine or not is not a trivial task. This struggle with the task
becomes clear from the comment of one participant: "I have a bit of a problem with the questions.
[...] I was forced to answer every question, even when I wasn’t able to find a good answer. [...] What if
substantial parts are offloaded from travis.yml to subsequent bash scripts?. Ultimately, the classification
is a personal assessment in which the experience and preferences of the participant also play an
important role. To address and mitigate this threat, we suggest that future research should deeper
and more systematic address the notion of genuine configuration files. A systematic taxonomy
would be a useful addition for future classification tasks.

7.2 Genuine configuration files
Through the help of 22 different metrics, we try to fathom the essence of a configuration file. With
the examination of the influence of the different features on the model (Chapter 6.2.2), we deter-
mined that in particular with the features lines, unique_instructions, build_time, template_similarity
and config_changes more than 70% of the model can be explained, showing that they significantly
influence the decision whether a configuration is genuine or not. In turn, this means that many of
the metrics have little to no impact on the model.

Looking at the meaning and interpretation of the most important metrics, the following pat-
tern can be observed. A high value in the metrics unique_instructions as well as lines indicate that
many actions take place within the pipeline and that the pipeline is specified more precisely. A
high value in build_duration gives a similar indication. Conversely, a low value could be inter-
preted as little activity in the pipeline. And finally, a high number of changes to the configura-
tion file indicates that the configuration is regularly maintained and adapted to the needs of the
project. We reach the following summarized conclusion:

Finding 2 A configuration file demonstrate genuineness if there is sufficient action within
the pipeline (i.e., multiple tasks such as compiling, testing, deploying, ...) and if it is regu-
larly adapted to the softwares needs.

This conclusion is also fraught with uncertainty. In addition to the classification bias, we
identify another threat: missing potential important features.

Feature-Scope With the extracted features, we made a first attempt to systematically describe
a configuration file and measure various features in terms of measurable numbers. However, we
by no means consider this compilation to be sound and complete. To improve the model, future
research should address the question of the extent to which additional metrics are discoverable
when a systematic comparison of the different pipeline providers and their configuration options
is created. We suspect that there are many more features to be discovered, especially those that
occur within the pipeline process.
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7.3 Impact on empirical research
After proving that CINDER can be used to detect genuine configuration files, and thus to qual-
itatively measure the CI process, we evaluated the implications of CINDER on the process of
conducting empirical software engineering research. For this purpose, an existing study was re-
produced and the impact of CINDER on the results was measured.

Already when filtering the data set, it became apparent that it contained a lot of noise. For only
a small portion of the projects (11%) it could be shown that these meet the quality requirements
for a genuine configuration file. This result is remarkable, but not surprising. A simple query
on the latest GHTORRENT data set reveals that only 7.75% of projects hosted on GitHub have
more than 20 commits. Consequently it is not surprising that this data set, with the absence of
meaningful filtering mechanism, also contains a lot of noise.

While some of the results could be reproduced, a subset of the results could not be reproduced.
Despite this unpleasant result, it was shown that in particular the deviations were significantly
reduced. We conclude that this is due to the fact that the filtered data set contains a higher quality.
This brings us to the last finding:

Finding 3 CINDER provides researchers with a useful tool to validate the quality of the
research data set, ensuring to only include projects that practice Continuous Integration at
a high level of quality.

Limited Expressiveness This result is obtained from the reproduction of a single study. To
what extent these findings can be applied to further empirical studies concerning CI/CD can-
not be conclusively stated, a possible error range must not be neglected. In our view, a more
systematic and in-depth analysis of several other studies is necessary to reinforce the finding.





Chapter 8

Summary

This thesis presents a novel approach for project selection for empirical software engineering
research in the context of Continuous Integration.

Inspired by REAPER, a classifier that detects engineered software repositories, we have pre-
sented CINDER, a tool to automatically detect genuine Continuous Integration configuration files.
CINDER uses as input a configuration file or a software project in which the configuration file is
located and outputs whether the given configuration file is genuine or not.

The basis for the tool is a random forest classifier, which is based on a ground truth data set.
The ground truth data set consists of 22 different metrics that describe the characteristics of a
configuration file, and a truth label. The truth label was assigned through a triple review process
by experienced developers and the authors.

We have subjected the model to various evaluations. On the one hand, we have shown that
the model performs acceptably in terms of precision and recall, both in the detection of genuine
configuration files and in the detection of pseudo ones. On the other hand, we have also shown
that there are certain limitations that need to be addressed.

Furthermore, we have investigated which features have the greatest impact on the model. It
turned out that only the features of the configuration category are necessary and that the other
feature categories do not provide any additional value. Our analysis has also shown that the
choice of programming language does not play a role. Consequently, significant action within the
pipeline and its regular adaptation is a strong indicator of the genuineness of a configuration file.

To check if there is a dependency between engineered repositories and genuine configuration
files, we examined the correlation of CInder with Reaper. We found that when a genuine configu-
ration file is detected, in most of the cases it is located in an engineered repository. By contrast it
cannot be deduced that an engineered repository necessary contains a genuine configuration file.

To build the bridge with empirical software engineering research, we reproduced a study by
Widder et al. on the reasons why repositories leave Travis CI. In the replica study, however,
we only took projects with genuine configuration files. During filtering many projects had to be
removed. The change in the data set affected the results of the study and consequently compro-
mised the validity of the study. Thus CINDER provides researchers with a useful tool to validate
the quality of the research data set, ensuring to only include projects that practice Continuous
Integration at a high level of quality.

We have shown in this thesis that the categorization of configuration files and consequently of
pipelines is an interesting and important topic in empirical software engineering research. With
CINDER we provide researchers with a crucial tool to obtain perfect project matches for their next
CI based study.
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