
Master Thesis
August 20, 2020

Transfer Learning for
Code Search

How Pre-training Improves Deep Learning on
Source Code

Christoph Schwizer
of Niederuzwil SG, Switzerland (09-918-210)

supervised by
Prof. Dr. Harald C. Gall

Dr. Pasquale Salza

software evolution & architecture lab

Master Thesis

Transfer Learning for
Code Search

How Pre-training Improves Deep Learning on
Source Code

Christoph Schwizer

software evolution & architecture lab

Master Thesis
Author: Christoph Schwizer, christoph.schwizer@uzh.ch
URL: chrisly-bear.github.io/tlcs
Project period: 25.02.2020 – 25.08.2020

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

https://chrisly-bear.github.io/tlcs

Acknowledgements

First of all, I would like to thank Prof. Dr. Harald C. Gall and Dr. Pasquale Salza for allowing
me to write this thesis at the software evolution & architecture lab (s.e.a.l.) and providing me
access to the university’s cloud infrastructure, which proved invaluable for experimenting with
such large machine learning models. I am especially grateful to Dr. Pasquale Salza for his support
throughout this process. His critical thinking made sure that I pursued this research with the
necessary scientific rigor.

Furthermore, I would like to express my gratitude towards the staff of the University of Zurich
Library of Natural Sciences for making their premises available to students despite the difficult
circumstances caused by the Coronavirus pandemic. Their protective measures ensured a safe
environment and offered me a welcome alternative to working from home.

Finally, my thanks go to my family, friends, and girlfriend, who supported me in all their best
ways.

Abstract

The Transformer architecture and transfer learning have marked a quantum leap in natural lan-
guage processing (NLP), improving on the state of the art across a range of NLP tasks. This thesis
examines how these advancements can be applied to and improve code search. To this end, we
pre-train a BERT-based model on combinations of natural language and source code data and
evaluate it on pairs of StackOverflow question titles and code answers. Our results show, that
the pre-trained models consistently outperform the models that were not pre-trained. In cases
where the model was pre-trained on natural language and source code data, it also outperforms
our Elasticsearch baseline. Furthermore, transfer learning is particularly effective in cases where a
lot of pre-training data is available and fine-tuning data is limited.

We demonstrate that NLP models based on the Transformer architecture can be directly applied
to source code analysis tasks, such as code search. With the development of Transformer models
that are designed more specifically for dealing with source code data, we believe the results on
source code analysis tasks can be further improved.

Zusammenfassung

Die Entwicklung des Transformers und die Einführung von Transfer Learning markierten einen
Quantensprung in der Computerlinguistik und führten zu massgeblichen Verbesserungen in einer
Vielzahl von Problemen in der Analyse natürlicher Sprache. Diese Masterarbeit untersucht, wie
diese Fortschritte genutzt werden können, um Codesuche zu verbessern. Dazu trainieren wir ein
Modell auf natürlicher Sprache und Programmiersprachen vor und evaluieren es danach auf einem
Datensatz bestehend aus StackOverflow Fragen und Antworten. Wir verwenden dafür ein Modell,
dass auf BERT basiert. Unsere Resultate zeigen, dass die vortrainierten Modelle die Modelle,
welche kein Vortraining erhielten, übertreffen. Wenn das Modell auf einer Kombination von natür-
licher Sprache und Programmiersprachen vortrainiert wurde, erzielt es ebenfalls bessere Ergebnisse
als unser Elasticsearch Modell. Es stellt sich heraus, dass Transfer Learning insbesondere dann
effektiv ist, wenn grosse Datensätze für das Vortrainieren vorhanden, die Datensätze für das Ziel-
problem aber limitiert sind.

Wir zeigen, dass Transformer Modelle direkt auf Probleme der Source Code Anlayse, wie zum
Beispiel Codesuche, angewendet werden können. Wir glauben, dass mit der Entwicklung von
Transformer Modellen, welche spezifisch für die Codesuche entwickelt wurden, die Ergebnisse von
Codesuche weiter verbessert werden können.

Contents

Acknowledgements i

Abstract iii

Zusammenfassung v

List of Figures viii

List of Tables ix

List of Listings ix

List of Acronyms ix

1 Introduction 1

2 State of the Art in Code Search 3
2.1 Code Search using Transformers . 3
2.2 Code Search using Non-Transformer Models . 3
2.3 Code Search Datasets . 4

3 Theoretical Background 7
3.1 Code Search . 7

3.1.1 Evaluation Metrics . 7
3.1.2 Related Problems . 8

3.2 The Multimodal Embedding Model . 9
3.3 Transformers, BERT, and Transfer Learning . 10

4 Approach to Evaluating Transfer Learning for Code Search 11
4.1 Datasets . 11

4.1.1 Pre-training Dataset . 11
4.1.2 Fine-tuning and Evaluation Dataset . 12

4.2 Pre-training . 12
4.3 Fine-tuning . 13

4.3.1 Experiments with Pre-trained Models . 14
4.3.2 Baselines . 18

4.4 Evaluation . 18
4.5 Threats to Validity . 18

viii Contents

5 Mining StackOverflow Data for Code Search Evaluation 21
5.1 Data Statistics . 22
5.2 Qualitative Data Analysis . 23

6 Results 25
6.1 Pre-trained Single-language Models (RQ1–RQ3) 25
6.2 Pre-trained Multi-language Models (RQ4) . 27

7 Discussion 31
7.1 Quantitative Analysis . 31
7.2 Qualitative Analysis . 32

8 Conclusion and Future Work 35

A Included StackOverflow Tags 41
A.1 JavaScript Tags . 41
A.2 Java Tags . 42
A.3 Python Tags . 45

B Results Overview 49

Contents ix

List of Figures
3.1 The multimodal embedding model architecture . 9

6.1 Evaluation of the pre-trained query encoder model 26
6.2 Evaluation of the pre-trained single-language code encoder models 26
6.3 Evaluation of the pre-trained single-language query and code encoder models . . . 26
6.4 Single-language corpus evaluation of the code models pre-trained on the TopGH

dataset . 27
6.5 Multi-language corpus evaluation of the code models pre-trained on the TopGH

dataset . 28
6.6 Single-language corpus evaluation of the code models pre-trained on the All dataset 28
6.7 Multi-language corpus evaluation of the code models pre-trained on the All dataset 29

B.1 Evaluation results of all experiments . 50

List of Tables
4.1 Size of the pre-training datasets. 12
4.2 Size of the fine-tuning datasets. 13
4.3 Pre-training hyperparameters. 14
4.4 Pre-training steps, pre-training time, and model performance after pre-training. . . 14
4.5 Experiments using a pre-trained English model for the query encoder. 15
4.6 Experiments using a pre-trained source code model for the code encoder. 15
4.7 Experiments using a pre-trained English model and a pre-trained source code model 15
4.8 Experiments using pre-trained multi-language source code models 16
4.9 Fine-tuning hyperparameters. 17
4.10 Experiments for the Elasticsearch and non-pre-trained baselines. 18

5.1 Number of StackOverflow questions after each filtering step. 22
5.2 Dataset statistics before and after filtering. 23

B.1 Statistical evaluation of all experiments . 49

List of Listings
7.1 Correct code snippet for query “Understanding Backbone.js event handler” 33
7.2 Correct code snippet for query “Is it possible to make POST request in Flask?” . . . 33
7.3 Code snippet retrieved by the multimodal embedding model (MEM) at rank 1 for

query “Is it possible to make POST request in Flask?” 33
7.4 Correct code snippet for query “When inserting objects into a type-safe heterogeneous

container, why do we need the class reference?” . 34

List of Acronyms
AST abstract syntax tree . 32
BPE byte-pair encoding . 17

x Contents

CFG control flow graph . 36
DCG discounted cumulative gain . 7
IR information retrieval . 7
LSTM long short-term memory. 4
MCMPT masked source code modeling . 31
MEM multimodal embedding model. 25
MLMPT masked language modeling . 10
MRR mean reciprocal rank. 25
NLP natural language processing . 35
NLPPT next line prediction. 31
NMT neural machine translation . 10
NSPPT next sentence prediction . 10
RNN recurrent neural network. 9
tf-idf term frequency–inverse document frequency. 18

Chapter 1

Introduction

The naturalness hypothesis of source code states that source code shows similar statistical prop-
erties as natural language [1]. It is thus possible to apply processing techniques from natural
language to source code and improve predictive performance on various code analysis tasks. In-
deed, over the last few years, there have been several applications of source code analysis, many of
which successfully applied statistical models that were originally designed for NLP, such as n-gram
models or recurrent neural networks (RNNs).

Such models need to be capable of dealing with the input data and extracting useful features
from it. For natural language, for instance, the model needs to understand the relationships
between the words in a text, such as finding the noun to which a pronoun refers or the subject
to which verb belongs. For quite a while, RNNs have been the state-of-the-art model in many
NLP sequence processing tasks. However, RNNs are limited in their ability to model long-distance
relationships between sequence tokens. Recently, the Transformer architecture has overcome this
limitation and outperforms RNNs in many NLP tasks [2–4]. However, when it comes to source code
analysis, research on Transformer-based models is still scarce. Thus, it is not clear if Transformers
are as capable at modeling source code as they are at modeling natural language. We believe that
Transformers can indeed be effective in modeling source code as the problem is related to natural
language modeling. Just as in natural language, detecting relationships between tokens in source
code, such as the relationship between variable declaration and variable access or between opening
and closing parentheses, is crucial to its understanding.

In addition to creating better language models, Transformers have become popular for their
application of transfer learning. The idea behind transfer learning is to leverage a large corpus
of data to pre-train a model and then fine-tune the model on a smaller dataset. Commonly, the
pre-training dataset is extensive, easy to acquire, but unlabeled and not closely related to the
problem we want to solve. On the other hand, the fine-tuning dataset is generally characterized
by being small, difficult to acquire, but often labeled and closely related to our problem task. The
intuition behind transfer learning is that, during pre-training, the model learns useful abstractions
of the data which are effective for solving the problem or “downstream” task. In NLP, pre-
training usually consists of learning a language model on large corpora of natural language text.
Then, this pre-trained model can be employed in any particular downstream task, such as machine
translation, sentiment analysis, part-of-speech tagging, summarization, or question answering. For
source code, the same method can be applied: Train a language model on source code (i.e., a “source
code model”), then apply it to downstream tasks, such as bug detection, authorship attribution,
summarization, or code search. The promise of transfer learning is that unlabeled data, which
often exists in abundance, can be used to train better models than would be possible with just
training it on labeled data, which is usually scarce.

The goal of this work is to further research on Transformers and their effectiveness in modeling

2 Chapter 1. Introduction

source code. In particular, we want to leverage the transfer learning capabilities of BERT, a state-
of-the-art Transformer-based NLP architecture, by pre-training it on a large source code corpus.
Because transfer learning has proven to be a valuable technique in NLP, we want to examine its
potential in source code modeling. To assess the model’s ability of extracting meaningful features
from source code, we evaluate it on a code search task. We choose code search because, as we
show in Section 3.1, it is crucial for a model to extract meaningful, semantic features in order for
it to perform well on code search. Thus, if we can show the effectiveness of Transformers and
transfer learning on code search, we can expect them to be an effective solution for other source
code analysis problems as well.

We focus on the following research questions:

• RQ1: Does a pre-trained English natural language model improve code search
performance? For a code search model to perform well, it needs to have a good understand-
ing of the user’s information need, which is expressed in the form of a natural language query.
To this end, we use a pre-trained English language model to examine whether pre-training
allows the code search model to learn better query representations and leads to better code
search results.

• RQ2: Does a pre-trained single-language source code model improve code search
performance? For the code search model to retrieve a relevant code snippet from the
search corpus for a given query, it has to build good representations of the source code
snippets in the search corpus. To answer this question, we pre-train a source code model
on a specific programming language (e.g., Java), fine-tune it, and evaluate it on data of the
same programming language (Java).

• RQ3: Does a pre-trained English natural language model in combination with a
pre-trained single-language source code model improve code search performance?
This research question is the combination of research questions RQ1 and RQ2. The hypothe-
sis is that, if a pre-trained natural language model and a pre-trained source code model both
lead to better code search performance, the combination of the two might lead to even better
performance.

• RQ4: Does a pre-trained multi-language source code model improve code search
performance? For this purpose, we will pre-train a source code model on several program-
ming languages, fine-tune it, and evaluate it on a single programming language as well as on
a multi-language search corpus.

The main contributions of this thesis are (1) the application of Transformers and transfer learning
to code search and evaluation thereof, (2) the design of custom pre-training tasks for source code
modeling and making the pre-trained source code models available to the research community,
and (3) the mining and publishing of a code search evaluation dataset from StackOverflow. The
pre-trained models and the evaluation dataset are available at chrisly-bear.github.io/tlcs.

This thesis is structured as follows: In Chapter 2, the state of the art in code search is presented
and research gaps, which this work tries to fill, are identified. Chapter 3 provides the necessary
theoretical background on code search and the BERT model. Chapter 4 specifies the exact method-
ology applied to answer each research question, while Chapter 5 explains the procedure that was
used to gather the necessary data. The results of this research are presented in Chapter 6 and
then discussed in Chapter 7. Finally, this thesis concludes in Chapter 8 with a summary of the
findings and the contributions of this work, as well as an outlook on future research in this area.

https://chrisly-bear.github.io/tlcs

Chapter 2

State of the Art in Code Search

This chapter provides an overview of the current research on code search and is divided into three
sections. Section 2.1 reviews works that make use of Transformer-based models, while Section 2.2
highlights works that use different models. Finally, the difficulties of evaluating code search and
how different evaluation datasets try to solve these are described in Section 2.3.

2.1 Code Search using Transformers
Little research has gone into the application of Transformers to code search. Husain et al. [5]
build a range of neural network models and compare their performance on the code search task.
One of their models is the BERT-based Self-Attention model. They train and evaluate their
models on pairs of docstring-code pairs mined from open-source repositories on GitHub. Even
without pre-training, the Self-Attention model shows good results when trained and evaluated on
the same dataset1. Our work closely resembles that of Husain et al. as we use the same multimodal
embedding architecture (see Section 3.2) and BERT for encoding the natural language query and
the source code snippets. The main difference to their approach is that we pre-train the encoders
before applying them to code search. Furthermore, while we also use GitHub data for pre-training,
we fine-tune and evaluate our model on StackOverflow data, which we believe better approximates
code search than docstring-code pairs.

Feng et al. [6] build on the work of Husain et al., but instead of using cosine similarity between
the outputs of two separate encoders, they concatenate the query and code sequence, feed it to a
single encoder, and measure the similarity between query and code snippet by using a summarizing
token in the output sequence. They then use this approach to pre-train their model “bimodally”,
i.e., instead of pre-training the query and code encoder separately as we do in this work, they pre-
train their single encoder on sequence pairs of natural language and source code. An important
difference to their method is that our pre-training data (mined from GitHub) is different from
our fine-tuning and evaluation data (mined from StackOverflow), which we argue reflects a more
common transfer learning scenario.

2.2 Code Search using Non-Transformer Models
Allamanis et al. [7] learn bimodal representations of source code and natural language and apply
them to code search. They train a statistical model that estimates the probability distribution

1They also evaluate their models on a manually annotated dataset. In that evaluation, the Self-Attention model
performs poorly. The authors explain this by the discrepancy between docstring and search queries.

4 Chapter 2. State of the Art in Code Search

P (C∣L), where C is a code snippet and L is a natural language sequence. They make use of a parse
tree representation of source code and evaluate their model on two retrieval tasks: (1) retrieving
source code given a natural language query and (2) retrieving a source code description given a
code snippet.

Iyer et al. [8] extend the work of Allamanis et al. by training a long short-term memory (LSTM)
neural network with attention and applying it to code summarization, i.e., generating natural
language descriptions from code snippets. While code summarization takes code as input and
generates natural language as output, they can still apply their model to code search: Given a
natural language query as input and a code snippet from the search corpus, they calculate the
conditional probability of the query being generated from the code snippet. By calculating the
conditional probability for all code snippets in the search corpus they can return the ones with
the highest probabilities. Furthermore, because their model uses attention, they can visualize on
which parts of the source code the model focuses while generating the summary tokens.

Ye et al. [9] learn token embeddings based on the Skip-gram model by Mikolov et al. [10] from
(1) texts which mix natural language and code tokens, such as programming tutorials and API
references, (2) pairs of source code and natural language, and (3) the English Wikipedia (which
also contains entries where natural language and code tokens are mixed). They evaluate their
embeddings on two code search tasks: bug localization (given a bug report, find affected source
code files) and API recommendation for StackOverflow questions. They found that using word
embeddings as additional features leads to performance improvements on the bug localization task.

Sachdev et al. [11] derive a purely token-based approach to code search. They use the fastText
algorithm [12] to learn embeddings for source code tokens. Then, they use these embeddings to
encode both the source code and the search query. The advantage of their approach is that they
do not require any labeled training data. However, this approach relies on the assumption that
source code and search queries use the same vocabulary and thus it ignores the lexical gap that
might exist between them.

Wan et al. [13] combine multiple source code representations: source code tokens, abstract
syntax trees (ASTs), and control flow graphs. By using attention, they hypothesize that the
neural network will automatically select the most useful features from the different representations.
Furthermore, the attention mechanism allows them to visualize the features on which the neural
network concentrates during retrieval. To train and evaluate their approach, they created a dataset
of more than 28 000 C code snippets and their description. They compare their results with two
other code search models and improve on both of them.

2.3 Code Search Datasets
A peculiarity of the code search problem is that it is not immediately clear how to evaluate it. For
one, there are slight differences in the specific application of code search. One can imagine that
doing code search on a company internal project or repository comes with different search intents
than searching for code on the internet. The intent for the former might be to do a refactoring of
the code. Thus, it will be more concerned with recall, i.e., finding all relevant classes in the project
which need refactoring. The latter might be aimed at finding an implementation to a programming
problem, say, how to generate random numbers in Python. In this scenario, we are probably more
interested in good precision, i.e., finding a few solutions that are relevant, rather than recall, i.e.,
finding all possible solutions.

Furthermore, even if the intent is clear, it might not be clear how relevant a search result actually
is. A search result might be relevant to one person, but less relevant to another. The relevance
might depend on the searcher’s programming style preference, e.g., if they prefer a compact code
snippet compared to a more verbose but more legible code snippet. It might also depend on

2.3 Code Search Datasets 5

the searcher’s knowledge, i.e., a more experienced developer might be satisfied with a crude code
snippet which points them in the right direction whereas a novice developer might only find results
relevant that solve exactly the problem that they had. Relevance might additionally depend on the
context in which the search is performed. For instance, a company developer might not find a code
snippet relevant because it uses a third party library which is not allowed in their company, whereas
a freelance developer might consider such a library and find the search result perfectly relevant.
Typically, the agreement among different annotators, the so-called interannotator agreement, is
measured with Cohen’s kappa coefficient κ [14]. κ is one if the annotators assign the same relevance
to all query-code pairs, and it is zero if the relevance assignments match a random allocation.

Finally, the most difficult challenge when it comes to evaluating code search is to find annotated
data. The annotated data consists of triples (q, d, r), where q is the search query, d a document
in the search corpus, in our case a code snippet, and r the relevance annotation, i.e., how relevant
document d is with regards to query q. The annotation can be binary (relevant, not relevant) or
on a scale (e.g., 1 to 5 where 1 is not relevant at all and 5 is very relevant). Ideally, for a given
set of queries Q = {q1 . . . qn} and a search corpus D = {d1 . . . dm}, the evaluation data contains
annotations for every combination of query and document. To account for the above-mentioned
differences in assessing the relevance of a code snippet, it is preferred to have several annotations
from different annotators for each query-document pair. Of course, creating such an evaluation
dataset of reasonable size is infeasible. Assuming we have n = 100 queries and a search corpus of
size m = 5 000, we would have to annotate 100 ∗ 5 000 = 500 000 samples.

Fortunately, we can reasonably evaluate a code search system even with small evaluation
datasets, e.g., by using measures such as mean reciprocal rank (MRR) or discounted cumulative
gain (DCG) (see Section 3.1.1). This approach is used in several previous works [5, 7, 8].

The same observation — namely that they are difficult to produce — can be made for training
data. However, the scarcity problem is more profound when it comes to training because deep
neural networks require a lot of data to reasonably approximate the underlying target function.
Optimally, there would exist a large annotated dataset of the described form (query, document,
annotation), which can be used for both training and evaluation of a code search system.

A common way to overcome the training data scarcity problem is to use documentation data
instead of query data. Documentation is abundantly available in source code, especially on the level
of methods, which are often well documented. By using these docstrings we can build a large enough
training corpus consisting of docstring-method pairs. This is what Husain et al. do [5]. One of their
contributions is that they provide the CodeSearchNet dataset, a benchmark for training and
evaluating code search models. It consists of over two million text-code pairs, namely methods and
their documentation, and an additional four million methods without documentation. Moreover,
Husain et al. created a human-annotated evaluation corpus consisting of 4 026 query-code pairs.
Each pair states how relevant a method is to the given query. At this time, the evaluation corpus is
not made available by the authors, which is why we mined our own training and evaluation corpus.
Contrary to the CodeSarchNet dataset, which is mined from public GitHub repositories and
consists of method-docstring pairs, our dataset was mined from StackOverflow data and consists
of pairs of question titles and code answers (see Chapter 5).

Chapter 3

Theoretical Background

The theoretical framework on which this thesis builds is explained in the following chapter. First,
the code search problem is defined in Section 3.1. Then, Section 3.2 illustrates the multimodal
embedding model (MEM). Finally, a brief overview is given of the Transfomer and BERT models
and on transfer learning in Section 3.3.

3.1 Code Search
Code search or code retrieval is the task of retrieving source code from a large code corpus given a
natural language user query (e.g., “how to convert string to int in java”). The goal of the retrieval
system is to return source code documents that are most relevant to the user query. In other words,
the semantics of the source code should correspond to the semantics of the natural language query.
The corpus may be a large public repository, such as GitHub, or it can be an organization’s private
code base.

Code search can be an effective tool for software developers. It helps them quickly find ex-
amples of how to implement a particular feature, find software libraries which provide a certain
functionality, navigate through their own code base, or even find pieces of source code which need
to be changed in order to accommodate user concerns such as feature requests or bug fixes [9,15].

Traditional retrieval systems are based on token matching. They compare the tokens in the
search query with the tokens in the search corpus’ documents and return those documents with the
biggest overlap between query tokens and document tokens (often, individual tokens are weighted
by their frequency and inverse document frequency or tf-idf [16]). This approach has proven very
useful for matching natural language queries with natural language documents, such as books or
webpages. However, when matching natural language queries with source code documents, it is
less effective. One reason for this is that the tokens in the query do not necessarily match the
tokens in the source code. For example, the query “read json data” would not find a method called
deserializeObjectFromString (tokenized into deserialize object from string) even though it
might be relevant to the query. This discrepancy between the query language and the language in
the documents of the search corpus is referred to as lexical gap or heterogeneity gap.

3.1.1 Evaluation Metrics
Typical evaluation metrics for information retrieval (IR) are recall, precision, F-measure, discounted
cumulative gain (DCG), and mean reciprocal rank (MRR).

Recall determines how many of all the relevant documents in the search corpus were retrieved.
For example, if a search returns 10 documents, 3 of which are relevant, and our corpus contains 8

8 Chapter 3. Theoretical Background

relevant documents in total, then the recall is 3/8 = 37.5%. An IR system can easily reach 100%
recall by returning the entire search corpus. For this reason, recall is sometimes limited to the first
k results (e.g., k = 10).

Precision measures how many of the retrieved documents are relevant. For example, if a
search returns 10 documents and 3 of these are relevant, then the precision is 3/10 = 30%. A
variation of precision, in which only the first k results are considered is called “precision at k”.
“Average precision” additionally accounts for the order of the search results and assigns higher
values to relevant documents that appear higher up in the list of search results, while “mean
average precision” summarizes the average precision values over several queries by their mean.

F-measure is the harmonic mean of recall and precision. IR systems commonly face a recall-
precision tradeoff. The F-measure is thus a useful metric as it considers both recall and precision.

If, instead of just being relevant or not relevant, the documents in our search results can be
judged by how relevant they are, e.g., on a scale from 1 to 5, we can evaluate our search results
using DCG. DCG takes into account both the relevance judgments of the retrieved documents
and their rank. To reach high DCG values, an IR system has to return highly relevant documents
before less relevant ones.

The metrics above only make sense if several documents in the search corpus are relevant.
If instead, there is exactly one relevant document in the corpus, the reciprocal rank is a more
suitable metric. The reciprocal rank is the inverse rank of the relevant document. For instance, if
the relevant document is returned at position 4, the reciprocal rank is 1/4 = 0.25, if it is returned
at position 1, the reciprocal rank is 1/1 = 1. The intuition behind the reciprocal rank is that,
if the relevant document appears at position k, the user has to go through k documents to find
the relevant one. At this point, the precision is 1/k, which is also the reciprocal rank. Finally,
the mean reciprocal rank (MRR) is the average of multiple reciprocal ranks, e.g., from multiple
queries.

3.1.2 Related Problems
There are two problems that are closely related to the code search problem, namely code generation
and code summarization. The methods devised in this thesis are thus relevant to these problems
as well.

Code Generation. Similarly to code search, the input to the code generation problem is also
a natural language query. However, the output is not retrieved from a corpus of existing code
snippets, but instead generated by the model itself. Thus, models which solve the code generation
problem are generative models, whereas models in code search are purely analytical models. The
code generation problem can be seen as a (neural) machine translation problem, i.e., the goal is to
translate from natural language to source code.

Code Summarization. Code summarization is the process of generating natural language from
source code. From an input-output perspective, it is the opposing problem to code search and code
generation, i.e., the input is a source code snippet and the output a natural language snippet. Like
with code generation, the models used in code summarization are generative, i.e., their goal is to
create unseen snippets of natural language. The goal of code summarization is to use the gener-
ated natural language snippet as documentation of the source code or to improve commit messages.

3.2 The Multimodal Embedding Model 9

3.2 The Multimodal Embedding Model
A multimodal embedding model (MEM) builds vector representations (“embeddings”) for each
mode, e.g., natural language and source code, such that similar concepts are located in the same
region of a shared vector space1. Recent work has relied on multimodal embeddings to overcome
the lexical gap [17,18].

Multimodal embeddings are especially useful for code search as they allow for retrieval using
a simple distance-based similarity metric, such as cosine similarity. At query time, the natural
language query is encoded into its vector representation and compared to all source code vectors in
the search corpus. Finally, the source code documents are returned as a list sorted by their distance
to the query vector in increasing order. Under the premise that the multimodal embeddings encode
semantic similarity between natural language and source code effectively, the search results at the
beginning of the list should be highly relevant to the user as they capture the meaning of their
query.

To transform a natural language query into its vector representation, the MEM runs the query
through an encoder Eq while another encoder Ec transforms a source code document into its vector
representation. More formally, Eq ∶ Q → Rd and Ec ∶ C → Rd are embedding functions, where Q
is the set of natural language queries, C is the set of source code documents, and Rd is the space
of real-valued vectors of size d. Figure 3.1 depicts the architecture of a MEM for code search.

how to convert string to int in java public int parseInt(String integer) { ...

cos

Figure 3.1: The multimodal embedding model architecture. A query is transformed into its vector representation
by the query encoder Eq. Likewise, a source code document is encoded by the source code encoder Ec.
Then, the similarity between query and source code is measured using cosine similarity between the two vector
representations.

The encoder can be any model which converts the input data into its vector representation.
In the past, recurrent neural networks (RNNs) were often used for the source code encoder [8, 17,
19–21]. In this work, we will use BERT [3] as the encoder architecture for both the source code
encoder as well as the query encoder.

1The shared vector space is also called semantic space.

10 Chapter 3. Theoretical Background

3.3 Transformers, BERT, and Transfer Learning
When the Transformer architecture was introduced, it replaced RNNs as the state of the art in
neural machine translation (NMT) [2]. RNNs process each token in a sequence sequentially. This
leads to loss of information of far-away tokens, i.e., by the time the RNN arrives at the last token,
the signal from the first token has become very small. Attention mechanisms mitigate this problem,
allowing the RNN to focus on arbitrary preceding tokens in the sequence. Despite attention, the
nature in which RNNs processe data is still sequential. The Transformer changes this by removing
recurrence and handling the entire input sequence in parallel. It achieves this by relying solely
on attention, whereby a weight for each token pair in the input sequence is calculated. This
component is called an attention head and lets the model represent relationships between tokens in
the sequence. In fact, it has been shown, that attention heads learn syntactic features of a (natural)
language, such as prepositions and their corresponding object or nouns and their determiner [22].
The Transformer proposed by Vaswani et al. uses eight attention heads, which means that more
language features can be encoded than with a single attention head.

The parallel nature of the Transformer facilitates faster training, which in turn enables training
on much larger datasets. This is a key aspect that BERT (“Bidirectional Encoder Representations
from Transformers”) [3] exploits. BERT was trained on an English corpus of 3.3 billion words. The
training tasks were masked language modeling (MLMPT) and next sentence prediction (NSPPT).
In MLMPT, some tokens in the sequence are masked by as special [MASK] symbol and the model
has to predict the token that was masked out. In NSPPT, the model is given two random sentences
from the corpus and it has to decide whether they appear in sequence of one another. These tasks
guide BERT to learn a language model of the English language. A language model can be practical
in itself, e.g., it can be used to give typing suggestions [23]. However, in the case of BERT, the
language modeling tasks were only used as parameter initialization for different training tasks,
such as question answering and language inference. The strategy of “pre-training” a model on a
different task before training (or “fine-tuning”) it on the target task is called transfer learning.
The parameter weights learned during pre-training help the model to perform better on the target
(or “downstream“) task than with random weight initialization.

BERT uses the same architecture as the Transformer with one distinction: While the Trans-
former employs an encoder-decoder architecture, BERT only uses encoders2. What sets BERT
apart from similar Transformer-based models is its bidirectionality. As opposed to Radford et
al.’s GPT model [4] which processes the input sequence only in one direction (e.g., from left to
right), BERT handles the input sequence in both directions (from left to right and from right to
left) simultaneously. This enhances the capabilities of the attention heads as they can focus on
preceding and subsequent tokens. Consequently, the token embeddings that BERT creates are
dependent on the surrounding tokens and therefore called contextualized embeddings. Contextu-
alized embeddings are more capable than context-free embeddings, such as those generated by
word2vec or GLoVe [10, 24], as they can distinguish between words that spell the same but have
different meaning (e.g., “minute” in “she pays attention to every minute detail” vs. “he was one
minute late”).

2The decoder is required for generating an output sequence, e.g., for machine translation. BERT does not
generate output sequences and is instead designed to only analyze the input sequence.

Chapter 4

Approach to Evaluating
Transfer Learning for Code

Search

To examine the effectiveness of transfer learning for code search, we devised several experiments
with different configurations of pre-training and fine-tuning data. To simulate a typical transfer
learning scenario, in which the pre-training data differs from the fine-tuning data, we used two dis-
tinct datasets. The pre-training dataset consists of function definitions from open-source projects
on GitHub, while the fine-tuning dataset contains StackOverflow questions and corresponding code
snippet answers.

The following chapter includes a description of these datasets in Section 4.1. An explanation of
the pre-training and fine-tuning setup, such as hyperparameters, training time, and hardware, is
given in Sections 4.2 and 4.3, respectively. Then, Section 4.4 details how the trained models were
evaluated. Finally, in Section 4.5, limitations of this work are discussed.

4.1 Datasets
4.1.1 Pre-training Dataset
For pre-training, we chose the CodeSearchNet [5] dataset, which was mined from GitHub repos-
itories and consists of function definitions across six different programming languages (JavaScript,
Java, Python, PHP, Go, and Ruby). We could have used any other raw source code dataset or
mined one ourselves. We decided on the CodeSearchNet dataset because it readily provides a
large set of source code samples in a machine readable format.

To reduce the noise in the pre-training data, all documentation and comments were removed
using a parser1. Otherwise, the data was not further processed.

Table 4.1 lists the size of our pre-training dataset. In addition to the dataset sizes of the
individual languages, the combined size of all datasets (All) as well as the combined size of the
three largest datasets (JavaScript, Java, and Python) (TopGH) are listed. We pre-trained models
on the JavaScript, Java, and Python datasets, the TopGH dataset, and the All dataset. To keep
the number of experiments attainable, we forwent pre-training on the smaller PHP, Go, and Ruby
datasets. Our largest dataset (All) contains around 350 million tokens. In comparison, BERT

1For parsing, we used TreeSitter (tree-sitter.github.io).

https://tree-sitter.github.io/

12 Chapter 4. Approach to Evaluating Transfer Learning for Code Search

was pre-trained on a corpus of 3.3 billion words (0.8 billion words from the BooksCorpus and 2.5
billion words from English Wikipedia) [3].

number of functions number of tokens

JavaScript 1 857 835 128 430 003
Java 1 569 889 75 654 447
Python 1 156 085 50 551 794
PHP 977 821 53 352 522
Go 726 768 37 075 579
Ruby 164 048 5 495 442

TopGH 4 583 809 254 636 244
All 6 452 446 350 559 787

Table 4.1: Size of the pre-training datasets (sorted by number of functions). The datasets that were used for
pre-training are marked in bold.

4.1.2 Fine-tuning and Evaluation Dataset
For fine-tuning and evaluation, we decided to mine our own dataset consisting of question-answer
pairs from StackOverflow. We use the question’s title as the natural language query and the
answer’s code snippets as the source code document to be retrieved from the search corpus. Refer
to Chapter 5 for a detailed description of the data mining process.

We believe that StackOverflow questions are a good proxy for search queries, especially since the
platform is mostly used for the purpose of finding code solutions. Additionally, using StackOverflow
data allows us to build a large enough dataset so that we can both fine-tune and evaluate our
models, which would have been very difficult to achieve with human annotations.

For the fine-tuning, we applied 3-fold cross-validation by splitting the entire dataset into three
equal folds and using two folds for training and one for evaluation. We further split the data from
the two training folds into 90% training and 10% validation data, leaving us with the dataset sizes
of Table 4.2.

4.2 Pre-training
The pre-training procedure on source code is identical to the pre-training of Devlin et al.’s BERTBase
model on natural language [3], with only a slight difference in the pre-training tasks: Instead of
the NSPPT task for pre-training on natural language, for source code, we apply next line predic-
tion (NLPPT). In this binary classification task, the model has to decide for any two given lines of
source code A and B, whether or not B appears directly after A. To train the model on this task, it
is fed with samples from our pre-training dataset, in which 50% of the time, line B actually follows
line A and in the other 50% of the cases, B is a randomly chosen line from the corpus and does not
immediately follow line A.

We call the MLMPT task for source code masked source code modeling (MCMPT) to make it
clear that the model is pre-trained on source code data instead of natural language. Other than
that, the MLMPT and MCMPT tasks are identical, i.e., the model has to predict masked out tokens
in the input sequence. Like Devlin et al., we selected 15% of the tokens in the input sequence for
masking. In contrast, we only used a maximum sequence length of 256 tokens, whereas Devlin

4.3 Fine-tuning 13

train valid test Total Size

JavaScript
fold 1 51 030 5 670 28 349

85 049fold 2 51 029 5 670 28 350
fold 3 51 029 5 670 28 350

Java
fold 1 42 716 4 746 23 732

71 194fold 2 42 717 4 746 23 731
fold 3 42 717 4 746 23 731

Python
fold 1 52 339 5 815 29 077

87 231fold 2 52 339 5 815 29 077
fold 3 52 339 5 815 29 077

TopFT

fold 1 146 085 16 231 81 158
243 474fold 2 146 085 16 231 81 158

fold 3 146 085 16 231 81 158

Table 4.2: Size of the fine-tuning datasets before and after the three-fold split.

et al. used 512. The reason for this is that longer sequences require exponentially more memory
during training and would thus not have fit in our GPU memory without a drastic reduction in
batch size. Moreover, as we will see in Section 5.1, the average sequence length in our fine-tuning
dataset is less than 256, so most of the samples can be encoded by our model in their entirety.
With a sequence length of 256, the maximum batch size that still fit in our GPU memory was 62.

Like Devlin et al., we tokenized the source code sequence using WordPiece tokenization [25]
using a vocabulary size of 30 522 tokens. Similar to Husain et al. [5], we kept the case information.
We second their choice to treat source code case-sensitively as case information carries a valuable
signal, such as the distinction between constants and variables or between class declarations and
method declarations.

Devlin et al. pre-trained their model for 1 million steps, which equals about 40 epochs on
their dataset. Since our pre-training datasets are much smaller (see Section 4.1.1) and we used
a different batch size and different sequence length, we adjusted the number of training steps
accordingly in order to train for about 40 epochs as well. For example, our JavaScript dataset
consists of 128 430 003 tokens. With a sequence length of 256 tokens and a batch size of 62 sequences
there are 15 872 tokens in a batch. Thus, we reach 40 epochs after pre-training for 323 665 steps
(323 665 ∗ 15 872/128 430 003). Because of the smaller number of training steps we also reduced
the number of warmup steps. Table 4.3 lists the hyperparameters we used for pre-training, while
Table 4.4 shows the number of training steps for all model configurations.

Pre-training was executed on a single Nvidia Tesla V100 GPU with 32 GB of memory and took
between 1.6 and 11 days. The individual pre-training times are shown in Table 4.4 along with the
final performance of each model on the two pre-training tasks. The high accuracy values for both
tasks suggest that pre-training was successful and the models learned useful abstractions of source
code.

4.3 Fine-tuning
The fine-tuning procedure for code search closely follows the design by Husain et al. [5]. We use the
same multimodal embedding architecture with two encoder models, one for the natural language

14 Chapter 4. Approach to Evaluating Transfer Learning for Code Search

BERTBase [3] ours

optimizer Adam Adam
learning rate 10−4 10−4

β1 0.9 0.9
β2 0.999 0.999
L2 weight decay 0.01 0.01
learning rate decay linear linear
dropout probability 0.1 0.1
activation function gelu gelu
masking rate 0.15 0.15
hidden size 768 768
intermediate size 3 072 3 072
attention heads 12 12
hidden layers 12 12
vocabulary size 30 522 30 522
maximum sequence length 512 256
batch size 256 62
learning rate warmup steps 10 000 1 000

Table 4.3: Pre-training hyperparameters compared to the original BERTBase pre-training hyperparameters.
The differing hyperparameters are marked in bold.

JavaScript Java Python TopGH All

number of training steps 323 665 190 662 127 399 641 725 883 468
training time in days 4 2.4 1.6 8 11
MCMPT accuracy 90% 87% 86% 88% 88%
NLPPT accuracy 98% 96% 98% 95% 95%

Table 4.4: Pre-training steps, pre-training time, and model performance after pre-training.

query and one for the source code snippet (see also Section 3.2), and the same training objective,
namely reducing the distance between query and code vector in the vector space.

To investigate our research questions from Chapter 1, we devised several experiments with
different combinations of pre-trained models. All experiments were run on an Nvidia Tesla V100
with 32 GB of GPU memory. A single fold (10 epochs) took between 50 minutes and 3 hours,
depending on the size of the fine-tuning dataset. We ran all experiments with 3-fold cross-validation
using the datasets from Table 4.2.

4.3.1 Experiments with Pre-trained Models
Pre-trained query model (RQ1). First, we used Devlin et al.’s [3] pre-trained English model
BERTBase (uncased), which is publicly available2, and applied it to the query encoder Eq. This
means that the weights of the query encoder were initialized with the weights of the pre-trained
English model. In this scenario, the code encoder Ec was not pre-trained, i.e., its weights were

2github.com/google-research/bert/#pre-trained-models

https://github.com/google-research/bert/#pre-trained-models

4.3 Fine-tuning 15

initialized with random values. Table 4.5 shows the experiments we conducted to assess the effect
of using a pre-trained English model on code search performance.

pre-training Eq pre-training Ec fine-tuning evaluation experiment label

English none JavaScript JavaScript [EN_no]-(JS)-{JS}
English none Java Java [EN_no]-(JA)-{JA}
English none Python Python [EN_no]-(PY)-{PY}

Table 4.5: Experiments using a pre-trained English model for the query encoder.

Pre-trained code models (RQ2). Then, we used our own pre-trained source code models (see
Section 4.2) to initialize the weights of the code encoder Ec. This time, the weights of the query
encoder Eq were initialized with random values. Table 4.6 shows our experiments for assessing the
effect of pre-trained source code models on code search performance. We limited the experiments
to cases in which the pre-training was conducted on the same programming language as the fine-
tuning. We note that cross-language learning, such as using a pre-trained Python model to fine-tune
on Java data, could make sense in a scenario where the target language is so rare that there is
not enough data available to justify pre-training. In such a scenario, however, we expect a pre-
trained multi-language source code model, i.e., a model that was trained on a mix of programming
languages, to yield better results. We examined multi-language source code models in RQ4.

pre-training Eq pre-training Ec fine-tuning evaluation experiment label

none JavaScript JavaScript JavaScript [no_JS]-(JS)-{JS}
none Java Java Java [no_JA]-(JA)-{JA}
none Python Python Python [no_PY]-(PY)-{PY}

Table 4.6: Experiments using a pre-trained source code model for the code encoder.

Pre-trained query and code models (RQ3). As a next step, we combined pre-trained query and
code models to see how well they complement each other. For these experiments, both the weights
of the query encoder Eq and the code encoder Ec were restored from the respective pre-trained
model. Table 4.7 lists the different experiment configurations.

pre-training Eq pre-training Ec fine-tuning evaluation experiment label

English JavaScript JavaScript JavaScript [EN_JS]-(JS)-{JS}
English Java Java Java [EN_JA]-(JA)-{JA}
English Python Python Python [EN_PY]-(PY)-{PY}

Table 4.7: Experiments using a pre-trained English model and a pre-trained source code model.

16 Chapter 4. Approach to Evaluating Transfer Learning for Code Search

Pre-trained multi-language code models (RQ4). Finally, we examined source code models that
were pre-trained on several programming languages. We pre-trained two such models: one on
JavaScript, Java, and Python data (TopGH) and another one on JavaScript, Java, Python, PHP,
Go, and Ruby data (All). Again, we distinguished between only pre-training the query encoder Eq,
only pre-training the code encoder Ec, and pre-training both. For these experiments, in addition to
the single-language datasets, we fine-tuned and evaluated the models on a multi-language dataset
consisting of JavaScript, Java, and Python samples (TopSO).

pre-training Eq pre-training Ec fine-tuning evaluation experiment label

English none TopSO TopSO [EN_no]-(TOP)-{TOP}

none TopGH JavaScript JavaScript [no_TOP]-(JS)-{JS}
none TopGH Java Java [no_TOP]-(JA)-{JA}
none TopGH Python Python [no_TOP]-(PY)-{PY}
none TopGH TopSO TopSO [no_TOP]-(TOP)-{TOP}
none All JavaScript JavaScript [no_ALL]-(JS)-{JS}
none All Java Java [no_ALL]-(JA)-{JA}
none All Python Python [no_ALL]-(PY)-{PY}
none All TopSO TopSO [no_ALL]-(TOP)-{TOP}

English TopGH JavaScript JavaScript [EN_TOP]-(JS)-{JS}
English TopGH Java Java [EN_TOP]-(JA)-{JA}
English TopGH Python Python [EN_TOP]-(PY)-{PY}
English TopGH TopSO TopSO [EN_TOP]-(TOP)-{TOP}
English All JavaScript JavaScript [EN_ALL]-(JS)-{JS}
English All Java Java [EN_ALL]-(JA)-{JA}
English All Python Python [EN_ALL]-(PY)-{PY}
English All TopSO TopSO [EN_ALL]-(TOP)-{TOP}

Table 4.8: Experiments using pre-trained multi-language source code models

Hyperparameters For the fine-tuning of our multimodal embedding model, we used the hyperpa-
rameters listed in Table 4.9. Since our fine-tuning procedure is very similar to the one by Husain et
al., we kept their hyperparameters whenever possible. We increased the maximum sequence length
of the code encoder to 256 because the average code snippet in our fine-tuning dataset has around
180 tokens (see Table 5.2) and because we pre-trained our code encoder with the same maximum
sequence length of 256. We kept the maximum sequence length for the query encoder at 30 tokens
as our average query contains only around 9 tokens. Thus, we do not expect better performance
with a larger sequence length. We used the LAMB optimizer instead of Adam to reduce training
time [26] and limited training to 10 epochs. In contrast, Husain et al. trained for a maximum of
500 epochs but applied early stopping, i.e., their training stopped if the MRR did not improve for
5 epochs (“patience” hyperparameter). 32 was the largest batch size that would fit in the GPU
memory of our Nvidia Tesla V100 (32 GB).

The BERT-specific hyperparameter values were mostly dictated by our pre-trained models.
For example, the English model provided by Devlin et al. was pre-trained on a vocabulary of
30 522 tokens. To keep the hyperparameters between the code and query encoder as similar as
possible, we also pre-trained our source code model on a vocabulary size of 30 522 tokens. The

4.3 Fine-tuning 17

same holds true for the hidden size and the intermediate size. The only hyperparameters we
changed from our pre-trained models were the number of attention heads and number of hidden
layers (both had a value of 12 during pre-training). We decided to use Husain et al.’s values (8 and
3, respectively) because we observed faster convergence of the models during training with those
values, presumably because of the reduced model complexity.

Husain et al. [5] ours

multimodal embedding model hyperparameters

learning rate 5 ⋅ 10−4 5 ⋅ 10−4

learning rate decay 0.98 0.98
momentum 0.85 0.85
dropout probability 0.1 0.1
maximum sequence length (query) 30 30
maximum sequence length (code) 200 256
optimizer Adam LAMB
maximum training epochs 500 10
patience 5 10
batch size 450 32

BERT-specific hyperparameters (apply to both code and query encoder)

activation function gelu gelu
attention heads 8 8
hidden layers 3 3
hidden size 128 768
intermediate size 512 3 072
vocabulary size 10 000 30 522

Table 4.9: Fine-tuning hyperparameters compared to Husain et al. The differing hyperparameters are marked
in bold. The BERT-specific hyperparameters are equal for both the query encoder and the code encoder and
listed only once for simplicity.

Vocabulary, tokenization, and capitalization. One difference between Husain et al. and our
approach is the tokenization and vocabulary building process. Because we used pre-trained models
in our experiments, we had to use the vocabulary learned by the pre-trained models since the
models’ pre-trained weights depend on their specific encoding of tokens. Husain et al., on the
other hand, did not rely on parameter weights of pre-trained models, which is why they built
a new vocabulary from the fine-tuning data (the training set). They used byte-pair encoding
(BPE) [27] for that process, while the pre-trained English model (BERTBase) built its vocabulary
using WordPiece tokenization [25]. Both BPE and WordPiece use subword information and work
very similarly in creating the token vocabulary. Hence, we do not expect the choice between BPE
and WordPiece tokenization to affect our results greatly. Still, to keep things consistent in our
experiments, we also usedWordPiece tokenization to build our vocabulary. For the pre-trained code
models, the vocabulary was built from the pre-training data, while the non-pre-trained baseline
models built their vocabulary from the training set of our fine-tuning data.

Like Husain et al. we converted all query input to lowercase and kept the case information of

18 Chapter 4. Approach to Evaluating Transfer Learning for Code Search

the source code input. The same is true for the pre-trained models: We used the uncased version
of Devlin et al.’s English model and pre-trained our own source code models case-sensitively.

4.3.2 Baselines
First, we built a simple Elasticsearch baseline with default parameters. Elasticsearch is a widely
used, open-source search engine and retrieves documents using an inverted index structure and
term frequency–inverse document frequency (tf-idf) weighting between query and document. By
default, Elasticsearch converts all text to lowercase and splits tokens based on grammar. The
intention behind this baseline is to give an estimate of what is possible with a low-effort and low-
cost, “out-of-the-box” solution and to assess the usefulness of the multimodal embedding model.

Second, we trained the multimodal embedding model without any pre-training. We used the
same hyperparameters as in Table 4.9 to make our baseline comparable to the experiments with
pre-trained models. This baseline allows us to measure the effect of transfer learning, i.e., how
much better the pre-trained models perform compared to a model trained from scratch.

Table 4.10 shows our baseline experiments. Note that the Elasticsearch model does not require
any training. It simply indexes all code snippets from the test set and retrieves them during
evaluation.

pre-training Eq pre-training Ec training evaluation experiment label

none none none JavaScript ES-{JS}
none none none Java ES-{JA}
none none none Python ES-{PY}
none none none TopSO ES-{TOP}

none none JavaScript JavaScript [no_no]-(JS)-{JS}
none none Java Java [no_no]-(JA)-{JA}
none none Python Python [no_no]-(PY)-{PY}
none none TopSO TopSO [no_no]-(TOP)-{TOP}

Table 4.10: Experiments for the Elasticsearch and non-pre-trained baselines.

4.4 Evaluation
To test our model performance, we applied the same evaluation strategy as Husain et al. [5], i.e.,
for each query in our test set we search for the correct answer among 1 000 code snippets (the
correct code snippet and 999 distractor snippets). The distractor snippets are selected randomly
from our test set. While a search corpus of 1 000 code snippets is small, a fixed search corpus size
makes our results comparable. As an evaluation measure we use MRR (see Section 3.1.1).

4.5 Threats to Validity
The following section discusses some factors that may limit the validity of our experimental design.

4.5 Threats to Validity 19

Internal validity. The biggest limitation to our experimental design comes from the nature and
quality of our evaluation dataset. While using StackOverflow questions and code answers allows
us to gather large amounts of evaluation data, we cannot be sure that they are a valid proxy for
measuring code search performance. It is possible that we measure something else instead, such as
how well our model can find the right answer among multiple possible answers to a StackOverflow
question.

Furthermore, not all questions ask for a code answer to a concrete implementation problem.
Some questions touch on more high-level, abstract topics, such as programming style or best prac-
tices. The answer to these kinds of questions may still contain code examples for demonstration
purposes. In these cases, we observe a big semantic discrepancy between the query and the corre-
sponding code snippet.

Related to this is the fact that code snippets alone might not give a comprehensive answer
to the question posed and it only make sense in the context of the surrounding natural language
explanations of the answer post. This is especially true because, for answers which contain several
code snippets, we concatenate them into one, which makes the code snippets less cohesive.

Lastly, the code snippets can contain comments, which we did not remove during pre-processing.
While we would want the comments to be included in the search results returned to the user, they
may be considered noise to our code encoder, which was pre-trained on source code where comments
were removed. The same is true for console outputs, which are not removed from the evaluation
dataset.

External validity. Our results are limited in the way that they can be generalized to other source
code analysis tasks. While problems, such as code summarization and code generation are very
similar to code search, we did not evaluate those problem tasks experimentally. This limitation
is especially true, because both those problems require generative models that produce an output
sequence (a natural language sequence in code summarization and a source code sequence in code
generation). The model we developed is only capable of finding code snippets from a corpus of
existing snippets.

Chapter 5

Mining StackOverflow Data for
Code Search Evaluation

While, with the CodeSearchNet dataset [5], we had a large enough dataset for pre-training, we
needed a different dataset for fine-tuning and evaluation. We could have used the same dataset for
all three phases (pre-training, fine-tuning, and evaluation) but not only would that have reduced
the amount of data available for each phase, it would also not reflect a typical transfer learning
scenario, in which the pre-training dataset differs from the fine-tuning dataset. For example, in
machine translation, we do not have a lot of aligned data between Urdu and English but a lot of
aligned data between French and English [28]. Thus, to build a translation model between Urdu
and English, we use the large French-English corpus for pre-training and the small Urdu-English
corpus for fine-tuning.

Furthermore, we believe that method-docstring data, of which the CodeSearchNet dataset
consists, is not very well suited for simulating code search, because docstrings are very different
from code search queries. Not only are they usually much longer than search queries, but they
are also commonly formulated only after the code has been written. The latter is fundamentally
different from a search query formulation, where, typically, the query is formulated without prior
knowledge of what a relevant search result looks like.

For the reasons above, we decided to mine our own dataset from StackOverflow. We chose
question titles as the natural language data and answers that contain code snippets as the source
code data. We can thus ensure that the pre-training data is different from the fine-tuning data (in
accordance with a typical transfer learning scenario) and that the natural language examples, i.e.,
question titles, resemble search queries that would be sent to a code search engine. For answers
that contain more than one code snippet, we concatenated all code snippets into one (separated
by a new line character). We remove all text that is not contained in the code snippet itself, i.e.,
text surrounding the code snippet.

To gather examples that are specific to a programming language, we filtered questions by
“javascript”, “java”, and “python” tags. In order to gather more data, we included partial matches
as well, which resulted in questions with tags such as “javascript-framework”, “javabeans”, or
“python-3.6” to be included in our corpus. A full list of included tags can be found in Appendix A.

We selected only question-answer pairs whose answer was an accepted answer. Because only the
question poster can mark an answer as accepted, we can assume that an accepted answer reflects
the solution that the question poster was looking for. In other words, the question poster finds
that answer relevant to his question. This is exactly the behavior we expect of a search engine:
It should return results that are relevant to the user’s query. We could have selected the highest
upvoted answer to build question-answer pairs. However, because every StackOverflow user can
upvote an answer, we do not know anything about the relevance of that answer with regards to

22 Chapter 5. Mining StackOverflow Data for Code Search Evaluation

the poster’s question intent. Thus, we believe that for a code search application, accepted answers
are better than highest upvoted answers to build question-answer pairs.

Like Husain et al. [5], we filtered out code answers which have fewer than three lines of code as
these are quite noisy. Many of them contain only library import statements or they contain code
that is not written in the target programming language, such as SQL queries, regular expressions,
or command line instructions (e.g., setting environment variables, how to start a Python program,
how to deploy a Java application to a Tomcat server). To further increase the quality of our
sample, we removed any question-answer pairs in which either the question or the answer received
fewer than three upvotes. Overall, our data mining process included the following steps:

1. Filter StackOverflow questions by “javascript”, “java”, and “python” tags.

2. Remove questions that do not have an accepted answer.

3. Remove questions whose accepted answer does not contain a code snippet (using the
<pre><code> tags). Concatenate several code snippets of the same answer into one. Discard
text outside <pre><code> tags.

4. Remove question-answer pairs where either the question or the answer has fewer than three
upvotes or where the answer contains fewer than three lines of code.

In the subsequent Section 5.1, we will discuss some quantitative measures of our dataset. Then,
in Section 5.2, a brief qualitative analysis of the dataset will be presented.

5.1 Data Statistics
Filtering all StackOverflow questions by the “javascript”, “java”, and “python” tags resulted in
about 2 million JavaScript-, 1.8 million Java-, and 1.8 million Python-related questions, of which
roughly half had an accepted answer. After removing questions whose accepted answer did not
contain at least one code snippet, questions that had fewer than 3 upvotes, whose accepted answer
had fewer than 3 upvotes, and whose code in the accepted answer had fewer than 3 lines, we were
left with 85 049 JavaScript, 71 194 Java, and 87 231 Python question-answer pairs. Table 5.1 lists
the number of samples remaining after each filtering step.

JavaScript Java Python

total questions 2 045 114 1 841 296 1 884 571
questions with accepted answer 1 105 690 934 062 984 989
accepted answer contains code snippet 861 273 533 217 655 430
3+ upvotes and 3+ lines of code 85 049 71 194 87 231

Table 5.1: Number of StackOverflow questions after each filtering step. Every row includes the filtering criteria
of the preceding rows. Thus, the last row accounts for questions that have an accepted answer and whose
answer contains a code snippet and that have three or more upvotes and three or more lines of code. The
numbers in the last row represent our final dataset sizes.

When analyzing the effects of the last filtering step (removing question-answer pairs with fewer
than three upvotes or fewer than three lines of code) in Table 5.2, we realize that, even though we
only removed questions and answers with fewer than three upvotes, the average number of upvotes
increased for each programming language by at least a factor of five for the questions and at least

5.2 Qualitative Data Analysis 23

a factor of four for the accepted answers. Furthermore, while the average question length became
slightly smaller, the average answer length became noticeably larger, both in number of tokens and
number of lines.

JavaScript Java Python

before filtering

avg. question upvotes 2.94 3.18 3.51
avg. question length (tokens) 8.74 8.62 9.08
avg. answer upvotes 4.75 5.14 5.34
avg. answer length (tokens) 175.61 203.50 165.15
avg. answer length (lines) 29.73 29.64 25.89

after filtering

avg. question upvotes 21.16 16.64 18.37
avg. question length (tokens) 8.48 8.49 8.66
avg. answer upvotes 28.96 22.61 24.13
avg. answer length (tokens) 207.39 262.99 205.90
avg. answer length (lines) 34.43 37.73 32.63

Table 5.2: Dataset statistics before and after filtering.

5.2 Qualitative Data Analysis
Because JavaScript is mostly used in web development, the JavaScript dataset contains extensive
amounts of HTML and CSS code. We observe similar noise in Java, where several answers contain
XML code (XML is a commonly used in Java programs for configuration). In Python, the most
noticeable noise are code snippets of interactive sessions, which start with >>> . Not only are
the >>> symbols different from pure code snippets, but often, these lines are followed by console
output instead of source code.

Sometimes, the code answer contains comments, which further explain the answer. It should be
noted that comments were explicitly removed from the pre-training data using a parser. Because
the code snippets in StackOverflow answers are not necessarily syntactically correct, we cannot
use a parser to remove comments from the answer snippets. We could simply exclude non-parsable
answers from the dataset, which previous work has done. But not only would that reduce the size of
our dataset, it is not necessary for our model to receive syntactically correct code because our model
is purely token based. This is one advantage over models which make use of syntactic structure in
the code such as abstract syntax trees (ASTs). Nevertheless, the fact that our pre-trained model
has not seen comments will likely affect its performance during fine-tuning.

Chapter 6

Results

In this chapter, the results from the experiments described in Chapter 4 are presented. Section 6.1
introduces the results of all experiments involving a single-language pre-trained model. Then, the
results of the pre-trained multi-language models are exhibited in Section 6.2. For each experiment,
the significance of its results compared to its baselines was assessed by a two-tailed heteroscedastic
t-test. A summary of all experiments together with their statistical evaluation can be found in
Appendix B.

6.1 Pre-trained Single-language Models (RQ1–RQ3)
In this section, the results of the experiments involving models that were pre-trained on English
natural language or on a single programming language are presented.

Pre-trained query encoder (RQ1). Figure 6.1 shows the evaluation results of the Elasticsearch
baselines (light gray), the non-pre-trained multimodal embedding model (MEM) baselines (dark
gray), and the model with the pre-trained query encoder (red). The black dots mark the mean
reciprocal rank (MRR) values of each fold in the 3-fold cross-validation. It becomes clear that the
Elasticsearch baseline performs better than the MEMs across all programming languages, reaching
MRR scores of around 0.2. In the case of JavaScript and Java, the results of the pre-trained model
are significantly lower than those of the Elasticsearch model. Compared to the non-pre-trained
baseline, however, the pre-trained model shows a slight improvement on the JavaScript and Python
dataset and a significant improvement on the Java dataset.

Pre-trained code encoder (RQ2). In Figure 6.2, the same Elasticsearch and non-pre-trained
baselines are presented as before (gray), but this time they are compared to the models with the
pre-trained code encoder (blue). We see that the pre-trained models reach similar MRR values as
the Elasticsearch models, but they exhibit higher variance across the three folds. The pre-trained
models outperform the non-pre-trained baselines on all datasets and do so significantly in the case
of JavaScript and Java.

Pre-trained query and pre-trained code encoder (RQ3). As Figure 6.3 shows, when combining
the pre-trained query encoder with the pre-trained code encoder (green), the MEM outperforms
both the Elasticsearch and the non-pre-trained baselines. All MRR values of the pre-trained models
are significantly higher than the values of the non-pre-trained baselines, and significantly higher
than the values of the Elasticsearch baselines in the case of JavaScript and Java.

26 Chapter 6. Results

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{JS}

ES-{JA}

ES-{PY}

[no_no]-(JS)-{JS}

[no_no]-(JA)-{JA}

[no_no]-(PY)-{PY}

[EN_no]-(JS)-{JS}

[EN_no]-(JA)-{JA}

[EN_no]-(PY)-{PY}

Figure 6.1: Evaluation of the pre-trained query encoder model.

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{JS}

ES-{JA}

ES-{PY}

[no_no]-(JS)-{JS}

[no_no]-(JA)-{JA}

[no_no]-(PY)-{PY}

[no_JS]-(JS)-{JS}

[no_JA]-(JA)-{JA}

[no_PY]-(PY)-{PY}

Figure 6.2: Evaluation of the pre-trained single-language code encoder models.

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{JS}

ES-{JA}

ES-{PY}

[no_no]-(JS)-{JS}

[no_no]-(JA)-{JA}

[no_no]-(PY)-{PY}

[EN_JS]-(JS)-{JS}

[EN_JA]-(JA)-{JA}

[EN_PY]-(PY)-{PY}

Figure 6.3: Evaluation of the pre-trained single-language query and code encoder models.

6.2 Pre-trained Multi-language Models (RQ4) 27

6.2 Pre-trained Multi-language Models (RQ4)
In this section, the results of the MEMs that were pre-trained on several programming languages,
are presented. First, we will focus on the models that were pre-trained on the combination of
JavaScript, Java, and Python data (TopGH dataset). Then, we will show the results of the models
that were pre-trained on the combination of JavaScript, Java, Python, PHP, Go, and Ruby data
(All dataset).

While the single-language models from Section 6.1 were only evaluated on single-language
corpora, the experiments on multi-language models were additionally tested on the multi-language
corpus TopSO consisting of StackOverflow question and answers for JavaScript, Java, and Python.

Pre-trained on TOPGH dataset. Figure 6.4 shows the results of the models that were pre-trained
on the TopGH dataset and evaluated on single-language corpora. We included the pre-trained
query models [EN_no] again for comparison (their results were already shown in Section 6.1). We
observe that all models in which the code encoder was pre-trained ([no_TOP], [EN_TOP]), show significant
improvements over the non-pre-trained baselines. Compared to the Elasticsearch baselines, the
combined pre-trained models [EN_TOP] reach slightly higher and — on Python data — significantly
higher MRR values. With the exception of search on Java data, the models in which pre-training
was applied only to the code encoder ([no_TOP]) achieve slightly higher MRR scores, albeit with
higher variance and no statistical significance.

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{JS}

ES-{JA}

ES-{PY}

[no_no]-(JS)-{JS}

[no_no]-(JA)-{JA}

[no_no]-(PY)-{PY}

[EN_no]-(JS)-{JS}

[EN_no]-(JA)-{JA}

[EN_no]-(PY)-{PY}

[no_TOP]-(JS)-{JS}

[no_TOP]-(JA)-{JA}

[no_TOP]-(PY)-{PY}

[EN_TOP]-(JS)-{JS}

[EN_TOP]-(JA)-{JA}

[EN_TOP]-(PY)-{PY}

Figure 6.4: Single-language corpus evaluation of the code models pre-trained on the TopGH dataset.

In multi-language search (Figure 6.5), it stands out that both the pre-trained and non-pre-
trained MEMs reach MRR values above 0.3 and significantly outperform the Elasticsearch baseline.
Compared to the non-pre-trained baseline [no_no]-(TOP)-{TOP}, pre-training improves multi-language

28 Chapter 6. Results

search in all cases (query encoder pre-trained, code encoder pre-trained, both pre-trained), however,
only the results of the model in which both encoders are pre-trained ([EN_TOP]) are significant. This
model is also the only one that reaches an average MRR greater than 0.4.

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{TOP}

[no_no]-(TOP)-{TOP}

[EN_no]-(TOP)-{TOP}

[no_TOP]-(TOP)-{TOP}

[EN_TOP]-(TOP)-{TOP}

Figure 6.5: Multi-language corpus evaluation of the code models pre-trained on the TopGH dataset.

Pre-trained on ALL dataset. Figure 6.6 summarizes the results of the models that were pre-
trained on the All dataset and evaluated on single-language search corpora. Again, the com-
bination of pre-training the query encoder and the code encoder yields the best results. All of
these combined pre-trained models significantly outperform their non-pre-trained baselines. Yet,
compared to the Elasticsearch baseline, they only show significant improvements in the JavaScript
and Python case. Still significantly better than the Elasticsearch baseline is the [no_ALL] when it
comes to search on Python data.

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{JS}

ES-{JA}

ES-{PY}

[no_no]-(JS)-{JS}

[no_no]-(JA)-{JA}

[no_no]-(PY)-{PY}

[EN_no]-(JS)-{JS}

[EN_no]-(JA)-{JA}

[EN_no]-(PY)-{PY}

[no_ALL]-(JS)-{JS}

[no_ALL]-(JA)-{JA}

[no_ALL]-(PY)-{PY}

[EN_ALL]-(JS)-{JS}

[EN_ALL]-(JA)-{JA}

[EN_ALL]-(PY)-{PY}

Figure 6.6: Single-language corpus evaluation of the code models pre-trained on the All dataset.

6.2 Pre-trained Multi-language Models (RQ4) 29

When looking at the results of multi-language search (Figure 6.7), we notice that the results are
nearly identical to the results of the models pre-trained on TopGH (Figure 6.5). Again, all MEMs
achieve significantly higher MRR values than the Elasticsearch baseline, with the model that was
pre-trained on both natural language and source code ([EN_ALL]) also significantly outperforming the
non-pre-trained baseline [no_no].

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{TOP}

[no_no]-(TOP)-{TOP}

[EN_no]-(TOP)-{TOP}

[no_ALL]-(TOP)-{TOP}

[EN_ALL]-(TOP)-{TOP}

Figure 6.7: Multi-language corpus evaluation of the code models pre-trained on the All dataset.

Chapter 7

Discussion

In the following Chapter, we discuss the results of our code search experiments. The discussion
is divided into two Sections: In Section 7.1, the quantitative results presented in Chapter 6 are
analyzed. Then, in Section 7.2, the results from different models in our experiments are analyzed
qualitatively on the basis of search result examples.

7.1 Quantitative Analysis
The effect of transfer learning. As has been demonstrated in Chapter 6, the pre-trained models
outperfom their non-pre-trained baselines in all experiments, thus supporting the hypotheses posed
by our research questions in Chapter 1. While models with only a pre-trained query encoder
showed minor improvements over the non-pre-trained baselines (only one result was significant), the
evidence is particularly strong in the case where a pre-trained code encoder was involved. In 7 out of
11 cases in which only the model’s code encoder was pre-trained, the results significantly improved
over the non-pretrained baselines. When both the query encoder and the code encoder were pre-
trained, the resulting MRR was always significantly higher than the non-pre-trained baselines (11
out of 11 cases). The fact, that pre-training has a positive effect on model performance means that
our pre-training tasks masked source code modeling (MCMPT) and next line prediction (NLPPT)
are suitable pre-training tasks for source code and that a sequence-to-sequence model, such as
BERT, can build effective source code models.

Pre-trained query encoder vs. pre-trained code encoder. Across all experiments, the effect of
pre-training the query encoder on natural language is smaller than the effect of pre-training the
code encoder on source code, even though the query encoder was pre-trained for much longer and
on a much larger dataset than the code encoder. We attribute this difference to the fact that
queries tend to be much shorter (around 9 tokens) than the code snippets (around 225 tokens, see
Table 5.2). BERT and the pre-training tasks (masked language modeling and next line prediction)
are designed to learn the relationships between tokens in a sequence. The shorter the sequence is,
the less impactful the learned contextual embeddings from the pre-training become. By this logic,
we expect the effect of using a pre-trained query encoder to become larger with longer query lengths.
While this assumption was not tested in this thesis, it could be verified with our StackOverflow
dataset by replacing the question title with the question body as the query sequence.

Training dataset size and performance. The pre-trained models converged at about the same
rate as the non-pre-trained model. Across all experiments, the MEM reached its minimum valida-
tion loss after one epoch and the validation MRR values plateaued after three epochs or earlier.

32 Chapter 7. Discussion

This quick convergence is in part due to the small training datasets. A small training dataset means
that the model runs out of a training signal quickly, i.e., the training loss reaches its minimum after
a few iterations and does not decrease anymore. On one hand, quick model convergence is desir-
able as it reduces training time. On the other hand, it means that the model cannot improve its
performance any further. Nevertheless, the pre-trained models outperformed the non-pre-trained
models in all our experiments, i.e., they reached higher MRR values in the same training time. We
conjecture that pre-training acts as a form of data augmentation: The pre-training dataset, despite
being different from the fine-tuning dataset, enlarges the fine-tuning dataset, thereby extending
the training signal and allowing the model to learn for longer. This claim is supported by the
fact that the difference between the pre-trained and the non-pre-trained model is much smaller
in the case where the models were fine-tuned on the larger multi-language datasets TopSO and
All (Section 6.2). The larger datasets mean that the training signal persists long enough for the
model to achieve good performance, even if it was not pre-trained. We observe the same behavior
in the work by Husain et al. [5]. When they train their BERT-based Self-Attention model on the
large PHP, Java, and Python datasets, each consisting of more than 500 000 training samples, it
outperforms the other models. However, when they train it on the smaller Ruby dataset with only
57 393 training samples, the Self-Attention model falls behind. We conclude that for problems in
which enough training data is available, pre-training may not be necessary. Finally, if pre-training
is applied, we assume that, the more similar the pre-training dataset is to the fine-tuning dataset
and the more similar the pre-training tasks are to the downstream task, the better the performance
will be during fine-tuning.

7.2 Qualitative Analysis

In the following section, we present some examples of queries and code snippets retrieved by our
best performing model [EN_TOP] and compare them to the code snippets retrieved by the Elasticsearch
baseline.

Listing 7.1 shows the correct JavaScript snippet for the query “Understanding Backbone.js event
handler”. Our pre-trained model retrieved the snippet at the first position, while the Elasticsearch
model did not retrieve the snippet at all. This example demonstrates the problem of lexical gaps
between query and code snippet and shows the limitations of classic token-matching models like
Elasticsearch. If there is no overlap between the tokens in the query and the tokens in the code,
Elasticsearch is not able to retrieve the code snippet.

Furthermore, the example validates the robustness of a purely token-based sequence model with
regards to code syntax. We observe that this code snippet does not have valid JavaScript syntax
as none of the opening braces { are matched by a closing brace } . Nevertheless, our model is
able to build a semantic representation of the code snippet that leads to a successful retrieval.
Examples like these are problematic for models that rely on syntactic features of the code snippet,
such as abstract syntax trees (ASTs).

7.2 Qualitative Analysis 33

fullsize: function(ev) {
target = $(ev.currentTarget);

fullsize: function(ev) {
var target = ev.currentTarget;
var self = this;
$('.drop-shadow').click(function(inner_ev) {

console.log(this.id); // the same as inner_ev.currentTarget
console.log(self.cid); // the containing view's CID

Listing 7.1: Correct code snippet for query “Understanding Backbone.js event handler”

In the next example, we can observe that, even when the MEM does not return the correct code
snippet, the retrieved snippet might still be relevant to the query. Listing 7.2 shows the correct
snippet to the query “Is it possible to make POST request in Flask?”, which the MEM returned at
rank 3, whereas Listing 7.3 presents the code snippet which the MEM returned at rank 1. We
notice, that both results describe an API endpoint responding to HTTP POST requests. Elas-
ticsearch returned the correct snippet only at rank 58, despite the matching tokens “POST” and
“request”.

@app.route("/test", methods=["POST"])
def test():

return _test(request.form["test"])
@app.route("/index")
def index():

return _test("My Test Data")
def _test(argument):

return "TEST: %s" % argument

Listing 7.2: Correct code snippet for query “Is it possible to make POST request in Flask?”

if __name__ == '__main__':
app.debug = True
app.run()

TypeError: 'dict' object is not callable
def api_response():

from flask import jsonify
if request.method == 'POST':

return jsonify(**request.json)

Listing 7.3: Code snippet retrieved by the MEM at rank 1 for query “Is it possible to make POST request in
Flask?”

When examining cases in which the MEM performs poorly, we mainly see examples in which the
query is about something abstract, such as a programming concept, and less about a concrete

34 Chapter 7. Discussion

implementation. Furthermore, our model struggles with queries that are very specific. Listing 7.4
shows the correct code snippet to such an abstract and very specific query (“When inserting objects
into a type-safe heterogeneous container, why do we need the class reference?”). The MEM model
retrieved this snippet at rank 165. In this particular example, the code snippet does not relate to
the query at all and was presumably used by the author to get a point across with an example.
We argue that this is more a limitation of our evaluation dataset than of our model as we expect
queries and code snippets to be much more closely related in a real world application of code
search.

Number num = new Integer(4);
System.out.println(num.getClass());
class java.lang.Integer

Listing 7.4: Correct code snippet for query “When inserting objects into a type-safe heterogeneous container,
why do we need the class reference?”

Chapter 8

Conclusion and Future Work

We have demonstrated that transfer learning is an effective method for improving code search
performance of neural networks. The impact of transfer learning is particularly noticeably in cases
where limited training data is available. Because many problems dealing with the analysis of source
code are limited by the size of the training dataset and because large code corpora can easily be
obtained from open source platforms such as GitHub, we advocate that transfer learning can lead
to improvements in other source code analysis tasks as well.

Furthermore, we have shown that state-of-the-art sequence-to-sequence models such as BERT
that were originally designed for natural language processing (NLP) tasks can successfully be
applied to problems dealing with source code data. However, due to the large number of parameters
of such models, they require extensive amounts of pre-training and fine-tuning data. In cases where
the training dataset is small, an Elasticsearch model achieves similar or better results in code search.

Moreover, we found some evidence that BERT, while being effective at modeling long sequences
with hundreds of tokens, may be limited in modeling very short ones (fewer than 10 tokens). As
search queries tend to be short, this might be a limiting factor of BERT when applied to code
search.

To enable further research into code search and transfer learning for source code analysis, we
publish our code search dataset, the pre-trained source code models, as well as the source code for
data mining, pre-training, and fine-tuning.1

The main contributions of this thesis are:

1. Demonstrated that transfer learning improves code search performance.

2. Showed that sequence-to-sequence models such as BERT are effective at source code mod-
eling if enough training data is used.

3. Pre-trained source code models on custom masked source code modeling and next line pre-
diction tasks and made the pre-trained models available to the public.1

4. Mined a code search dataset, which consists of natural language questions and code answers
and made it available to the public.1

Despite these findings, there are still open questions to address in the future. For one, our code
encoder treats source code the same as natural language, namely as a sequence of tokens. While
we have demonstrated that such a token-based model can yield good results on code search, we
expect it to perform even better if the model makes use of the highly structured nature of source

1chrisly-bear.github.io/tlcs

https://chrisly-bear.github.io/tlcs

36 Chapter 8. Conclusion and Future Work

code. This can be achieved, for example, by replacing or augmenting the token-based input to the
code encoder with input features that represent the structural information of source code, such as
ASTs or control flow graphs (CFGs).

Finally, it would be insightful to inspect BERT’s attention heads when it processes source
code. For natural language, it has been shown that the attention heads focus on specific language
constructs, such as verbs and their objects or delimiter tokens [22]. In a similar fashion, it would
be interesting and useful to understand to what source code tokens BERT attends during code
search. Such understanding of the model’s inner workings can drive the development of better
model architectures for code search and other source code analysis tasks.

Bibliography

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of software,”
in 2012 34th International Conference on Software Engineering (ICSE). IEEE, 2012, pp.
837–847.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[4] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language under-
standing by generative pre-training,” URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

[5] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “Codesearchnet chal-
lenge: Evaluating the state of semantic code search,” arXiv preprint arXiv:1909.09436, 2019.

[6] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang et al.,
“Codebert: A pre-trained model for programming and natural languages,” arXiv preprint
arXiv:2002.08155, 2020.

[7] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal modelling of source code and
natural language,” in International conference on machine learning, 2015, pp. 2123–2132.

[8] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source code using a neural
attention model,” in Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2016, pp. 2073–2083.

[9] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings to document
similarities for improved information retrieval in software engineering,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 404–415.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of
words and phrases and their compositionality,” in Advances in neural information processing
systems, 2013, pp. 3111–3119.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

38 BIBLIOGRAPHY

[11] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval on source code: a
neural code search,” in Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, 2018, pp. 31–41.

[12] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword
information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–
146, 2017.

[13] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-modal attention network
learning for semantic source code retrieval,” in 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2019, pp. 13–25.

[14] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and psychological mea-
surement, vol. 20, no. 1, pp. 37–46, 1960.

[15] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci, and A. De Lucia,
“Recommending and localizing change requests for mobile apps based on user reviews,” in
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 106–117.

[16] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval. Cam-
bridge university press, 2008.

[17] W. Guo, J. Wang, and S. Wang, “Deep multimodal representation learning: A survey,” IEEE
Access, vol. 7, pp. 63 373–63 394, 2019.

[18] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learning: A survey and
taxonomy,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 2,
pp. 423–443, 2018.

[19] Y. Hussain, Z. Huang, Y. Zhou, and S. Wang, “Deep transfer learning for source code mod-
eling,” arXiv preprint arXiv:1910.05493, 2019.

[20] R.-M. Karampatsis and C. Sutton, “Maybe deep neural networks are the best choice for
modeling source code,” arXiv preprint arXiv:1903.05734, 2019.

[21] Y. Hussain, Z. Huang, S. Wang, and Y. Zhou, “Codegru: Context-aware deep learning with
gated recurrent unit for source code modeling,” arXiv preprint arXiv:1903.00884, 2019.

[22] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does BERT look
at? an analysis of BERT’s attention,” in Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Florence, Italy:
Association for Computational Linguistics, Aug. 2019, pp. 276–286. [Online]. Available:
https://www.aclweb.org/anthology/W19-4828

[23] M. X. Chen, B. N. Lee, G. Bansal, Y. Cao, S. Zhang, J. Lu, J. Tsay, Y. Wang, A. M. Dai,
Z. Chen et al., “Gmail smart compose: Real-time assisted writing,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp.
2287–2295.

[24] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word representation,”
in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp.
1532–1543. [Online]. Available: https://www.aclweb.org/anthology/D14-1162

https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/D14-1162

BIBLIOGRAPHY 39

[25] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,
J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s neural
machine translation system: Bridging the gap between human and machine translation,”
CoRR, vol. abs/1609.08144, 2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[26] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,
and C.-J. Hsieh, “Large batch optimization for deep learning: Training bert in 76 minutes,”
arXiv preprint arXiv:1904.00962, 2019.

[27] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare
words with subword units,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, Aug. 2016, pp. 1715–1725. [Online]. Available:
https://www.aclweb.org/anthology/P16-1162

[28] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning for low-resource neural machine
translation,” arXiv preprint arXiv:1604.02201, 2016.

http://arxiv.org/abs/1609.08144
https://www.aclweb.org/anthology/P16-1162

Appendix A

Included StackOverflow Tags

The following appendix contains the tags of all StackOverflow questions that we considered in our
data mining process. The number of occurrences of each tag is denoted to the left of the tag and
the tags are ordered by that number. Please note, that the total number of samples in our final
dataset is smaller than the sum of all occurrences here because we applied some additional filtering.
See Chapter 5 for the specifics.

A.1 JavaScript Tags

1 090 854 javascript
6 621 javascript-events
2 977 javascript-objects
2 061 facebook-javascript-sdk

628 javascript-framework
347 unobtrusive-javascript
324 youtube-javascript-api
269 javascriptserializer
209 serverside-javascript
134 javascript-debugger
134 isomorphic-javascript
130 javascriptcore
108 rethinkdb-javascript
104 javascriptmvc
89 javascript-automation
88 javascript-namespaces
77 javascript-injection
76 javascript-intellisense
69 javascript-engine
36 javascript-databinding
30 javascript-import
29 log4javascript
26 asynchronous-javascript
25 parse-javascript-sdk
24 google-javascript-api
23 embedded-javascript

20 clojurescript-javascript-interop
20 javascript-security
18 javascript-globalize
16 javascript-api-for-office
13 javascript-inheritance
11 adobe-javascript
9 javascript-marked
9 esri-javascript-api
9 ews-javascript-api
9 javascript-audio-api
8 amazon-javascript-sdk
6 javascript-scope
5 javascript-oscillator
5 javascript-1.7
5 javascript-decorators
5 javascript.net
4 android-webview-javascript
4 external-javascript-library
4 shopify-javascript-buy-sdk
4 javascript-1.8
3 javascript-build
3 javascript-interop
2 javascriptservices
1 flash-javascript-api
1 braintree-javascript
1 evaluatejavascript

42 Chapter A. Included StackOverflow Tags

1 neo4j-javascript
1 javascriptools

1 telerik-javascript

A.2 Java Tags

848 945 java
15 768 javafx
12 104 java-8
5 900 java-stream
4 311 java-native-interface
3 457 rx-java
3 149 java-me
3 024 javafx-8
2 953 java.util.scanner
2 800 javafx-2
1 978 javamail
1 914 rx-java2
1 882 javabeans
1 569 java-7
1 490 javadoc
1 236 javac
1 140 java-ee-6

851 java-io
777 java-9
746 java-web-start
730 java-time
687 java.util.concurrent
561 java-2d
543 java-11
531 mongodb-java
506 javax.imageio
505 javacard
496 java-ee-7
438 google-api-java-client
403 javasound
401 java-6
377 java-bytecode-asm
357 datastax-java-driver
345 javacv
339 java-threads
318 java.util.logging
303 spring-java-config
303 r.java-file
261 javacc
259 javassist
237 wsdl2java
229 cucumber-java
227 java-3d

223 scala-java-interop
220 java-module
215 spark-java
212 java-10
209 java-home
201 java-memory-model
195 javadb
192 grpc-java
185 java-api
173 rjava
167 clojure-java-interop
159 javaagents
156 java.util.date
155 mongo-java
152 aws-java-sdk
151 java-websocket
150 javafxports
131 graphql-java
130 effective-java
125 java-metro-framework
124 java-ee-5
119 javax.mail
116 java-5
115 java-security
115 java-date
109 elasticsearch-java-api
104 mongo-java-driver
102 javafx-3d
100 jira-rest-java-api
96 java-server
89 javafx-webengine
88 javafx-11
80 java-compiler-api
79 maven-javadoc-plugin
74 java-annotations
72 java-canvas
71 drjava
71 java-stored-procedures
70 java.nio.file
68 java.util.calendar
68 java.time
67 azure-java-sdk
64 javap

A.2 Java Tags 43

64 java1.4
62 java-ee-8
60 javax
59 javaparser
56 ewsjavaapi
54 javafx-css
52 couchbase-java-api
52 php-java-bridge
51 javah
51 javapoet
51 java-12
50 google-oauth-java-client
48 java-service-wrapper
47 java.lang.class
46 protobuf-java
46 javalite
46 java.library.path
45 acm-java-libraries
45 java.time.instant
42 java-client
42 javaw
40 java-http-client
39 javacpp
39 javacompiler
38 java-14
37 javax.crypto
37 java-wireless-toolkit
36 javax.sound.sampled
36 java-13
36 java-batch
35 java-opts
35 java-melody
35 javax.comm
34 javapos
34 realm-java
33 java-ws
32 javax.sound.midi
31 facebook-java-api
31 javapns
31 javax.xml
31 java-interop
31 java-package
30 javahelp
30 javahl
28 aws-sdk-java-2.0
27 functional-java
27 im4java
25 neo4j-java-api
25 java-calendar
24 javax.ws.rs

24 javapackager
23 javax.persistence
22 java-mission-control
22 webdrivermanager-java
21 luajava
21 javax.validation
21 javax.script
21 java-collections-api
21 handlebars.java
20 java.lang
19 web3-java
19 aws-java-sdk-2.x
19 java-money
19 javafx-9
17 java-binding
17 openid4java
17 javax.swing.timer
17 javafx-tableview
17 gcloud-java
17 jruby-java-interop
17 usb4java
17 javaplot
16 hbm2java
15 stringbyevaluatingjavascr
15 pljava
15 docker-java
14 java-record
13 biojava
13 pact-java
13 java-access-bridge
13 javafx-1
13 socket.io-java-client
13 java-synthetic-methods
12 javax.json
12 oci-java-sdk
12 javahg
12 javax.activation
12 java-bridge-method
12 p4java
12 javaspaces
12 skype4java
11 java-print
11 javabuilders
11 javax.swing.text
11 javafx-bindings
11 dnsjava
10 javaapns
10 javaloader
10 java-pair-rdd
10 java2wsdl

44 Chapter A. Included StackOverflow Tags

10 asterisk-java
10 java-security-manager
10 mongodb-java-3.3.0
10 smartsheet-java-sdk-v2
10 javalin
9 javafx-gradle-plugin
9 real-time-java
9 deployjava
9 prometheus-java
9 java-runtime-compiler
9 facebook-java-sdk
9 matlab-java
8 javaquery
8 java-custom-serialization
8 java-memory-leaks
8 jslint4java
8 loadjava
7 java-micro-editon-sdk3.0
7 java-war
7 java-persistence-api
7 gdata-java-client
7 hyperledger-fabric-sdk-java
6 node-java
6 javapolicy
6 raml-java-parser
6 kotlin-java-interop
5 java-gstreamer
5 java-flow
5 java-native-library
5 java.util.random
5 rx-javafx
5 smartsheet-java-sdk-v1
5 java-deployment-toolkit
5 javafx-webview
4 javaexec-gradle-plugin
4 java-scripting-engine
4 javarosa
4 javarebel
4 java2word
4 javafx-datepicker
4 google-java-format
3 java-assist
3 java-communication-api
3 unirest-java

3 rocksdb-java
3 underscore-java
3 java-console
3 javacameraview
3 java-heap
3 rx-java3
2 javax-inject
2 sqlite4java
2 java-aot
2 javax.mail.address
2 java-failsafe
2 java-transaction-service
2 javaoptions
2 jinjava
2 java-audio
2 java-attach-api
2 javaexe
2 javafx-packager
2 sql2java
2 javasymbolsolver
2 java-text-blocks
2 mdnsjava
2 java-ee-mvc
2 java.security
1 ballerina-java-interop
1 arangodb-java
1 dropbox-java
1 oracle-java-cloud-service
1 netlib-java
1 kusto-java-sdk
1 rsocket-java
1 javax.inject
1 java-process-runtime
1 azure-java-tools
1 aws-sdk-java
1 javac-compiler-plugin
1 java-test-fixtures
1 mongodb-java-3.8
1 aws-java-sdk-dynamodb
1 portal-java
1 javax.annotation
1 pdf-java-toolkit
1 java-resources

A.3 Python Tags 45

A.3 Python Tags

767 781 python
112 319 python-3.x
49 107 python-2.7
5 814 python-requests
3 941 wxpython
3 020 ipython
2 967 python-imaging-library
2 340 python-3.6
2 027 python-import
1 808 python-asyncio
1 768 python-3.5
1 588 python-2.x
1 389 python-3.4
1 281 python-3.7
1 250 python-multiprocessing
1 247 ironpython
1 234 python-sphinx
1 224 mysql-python
1 205 python-multithreading
1 108 python-unittest
1 057 python-decorators
1 021 ipython-notebook

772 python-2.6
708 python-module
671 boost-python
650 python-3.3
605 python-datetime
594 python-idle
554 cpython
518 python-c-api
493 python-internals
488 biopython
479 python-unicode
416 python-xarray
373 google-api-python-client
348 python-docx
346 pythonanywhere
298 pythonpath
263 google-app-engine-python
241 python-telegram-bot
228 python-2.5
220 python-social-auth
219 python-tesseract
213 python-click
206 python-mock
204 python-3.2
204 python-pptx

201 python-packaging
195 python-wheel
192 python-dateutil
185 python-3.8
174 python-venv
170 gitpython
164 mod-python
150 python-c-extension
146 python-2.4
140 graphene-python
140 python-os
138 mysql-connector-python
132 python.net
131 python-behave
126 python-dataclasses
125 python-embedding
123 python-extensions
119 plotly-python
111 micropython
103 mechanize-python
100 python-sockets
98 python-typing
90 wxpython-phoenix
90 kafka-python
88 python-curses
87 python-2to3
86 python-regex
86 python-ggplot
84 opencv-python
81 vpython
80 python-cffi
79 python-importlib
77 python-webbrowser
76 python-mode
75 ipython-magic
71 rethinkdb-python
71 python-logging
69 google-cloud-python
69 ipython-parallel
68 python-ldap
68 python-hypothesis
68 plpython
67 python-jira
64 azure-sdk-python
63 python-twitter
62 python-db-api
58 python-interactive

46 Chapter A. Included StackOverflow Tags

58 python-gstreamer
58 python-collections
57 python-rq
56 python-elixir
56 qpython
55 python-datamodel
54 python-textprocessing
53 python-stackless
53 python-watchdog
51 python-fu
51 python-descriptors
51 python-sip
50 python-cryptography
49 python-appium
48 revitpythonshell
47 gremlinpython
45 python-unittest.mock
45 python-poetry
45 python-requests-html
44 python-daemon
38 couchdb-python
38 google-python-api
38 python-attrs
37 python-pika
36 influxdb-python
36 p4python
36 dnspython
36 python-imageio
36 rpython
34 pythonxy
33 python-trio
33 python-coverage
32 python-turtle
32 parallel-python
32 python-object
32 gdb-python
32 grpc-python
31 pythoncom
28 python-memcached
27 python-install
26 activepython
26 gcloud-python
26 dronekit-python
26 python-bindings
25 python-newspaper
24 python-socketio
24 python-jsonschema
23 python-pdfkit
23 pythonw
23 bpython

23 pythoninterpreter
23 python-nonlocal
22 python-magic
22 python-iris
22 python-2.3
22 pythonbrew
21 python-sounddevice
21 pythonista
21 cefpython
21 python-django-storages
20 gdata-python-client
19 python-jedi
19 python-applymap
19 qpython3
19 python-mss
19 python-exec
17 python-class
17 cocos2d-python
17 python-bytearray
17 python-keyring
16 python-chess
16 python-cmd
16 twitterapi-python
16 python-huey
15 pythoncard
15 python-bigquery
15 python-standalone
14 arrow-python
14 python-dedupe
14 kubernetes-python-client
13 ironpython-studio
13 vscode-python
13 cassandra-python-driver
13 python-performance
13 python-dragonfly
13 pythonmagick
12 python-camelot
12 python-jsons
12 gae-python27
11 python-cloudant
11 objectlistview-python
11 python-redmine
11 python-textfsm
10 pythonnet
10 six-python
10 python-black
10 python-moderngl
9 python-beautifultable
9 python-markdown
9 python-s3fs

A.3 Python Tags 47

9 python-server-pages
9 python4delphi
9 zen-of-python
9 python-3.1
9 python-sql
8 pvpython
8 rubypython
8 python-assignment-expression
8 python-2.2
8 epd-python
8 python-gearman
7 python-pool
7 python-nose
7 portable-python
7 python-envoy
7 python-netifaces
7 mne-python
7 python-sacred
6 python-aiofiles
6 pythonqt
6 python.el
6 python-responses
6 python-egg-cache
6 python-crfsuite
6 python-siphon
6 python-vlc
6 python-arrow
6 python-pbr
6 facebook-python-business-sdk
5 python-nvd3
5 python-pulsar
5 python-config
5 python-can
5 python-module-unicodedata
5 datastax-python-driver
5 python-zappa
5 python-openid
5 python-manylinux
4 python-language-server
4 python-zip
4 neo4j-python-driver
4 snap-python
4 nxt-python
4 oci-python-sdk
4 dbus-python
4 python-jose
4 intel-python
4 python-2.1
4 pythonplotter
4 python-tenacity

4 dlib-python
3 pp-python-parallel
3 re-python
3 python-fire
3 pact-python
3 python-routes
3 python-holidays
3 python-mro
3 python-pdfreader
3 adafruit-circuitpython
3 python-contextvars
2 spectral-python
2 graphql-python
2 postgres-plpython
2 python-records
2 datasift-python
2 telepathy-python
2 lifetimes-python
2 python-docker
2 openstack-python-api
2 python-visual
2 python-hdfs
2 python-antigravity
2 python-winshell
2 python-gitlab
2 python-paste
2 protobuf-python
2 python-decimal
2 python-green
2 python-onvif
2 python-pattern
2 python-requests-toolbelt
2 python-parallel
2 python-inject
1 python-control
1 intellij-python
1 keyboard-python
1 python-mockito
1 python-plyplus
1 needle-python
1 python-cachetools
1 python-billiard
1 python-blessings
1 pythonce
1 python-parsley
1 python-py
1 python-iptables
1 python-3.9
1 python-hunter
1 python-scoop

48 Chapter A. Included StackOverflow Tags

1 python-templates
1 python-windows-bundle
1 python-arango
1 python-igraph
1 python-simple-crypt
1 python-iso8601
1 python-pex
1 python-novaclient
1 confluent-kafka-python
1 python-shove

1 cf-python-client
1 hydra-python
1 python-nolearn
1 python-schematics
1 empythoned
1 python-architect
1 pybricks-micropython
1 python-bob
1 analytics-engine-python-sdk

Appendix B

Results Overview

This appendix provides an overview of the results of all experiments described in Chapter 4.
Table B.1 contains the average MRR for each experiment across its three folds. Experiments
which achieved significantly higher or significantly lower MRR scores than one of the baselines
are marked. The significance was determined by a two-tailed heteroscedastic t-test between each
pre-training experiment and its corresponding baselines. For instance, the results from experiment
[EN_TOP]-(JS)-{JS} were compared to the results from the Elasticsearch baseline ES-{JS} and the non-
pre-trained baseline [no_no]-(JS)-{JS}. Figure B.1 shows a visual representation of the results.

experiment MRR experiment MRR

ES-{JS} 0.219⭑ [no_TOP]-(PY)-{PY} 0.233⭑

ES-{JA} 0.197⭑ [no_TOP]-(TOP)-{TOP} 0.351◆

ES-{PY} 0.186⭑ [no_ALL]-(JS)-{JS} 0.176
ES-{TOP} 0.223⭐ [no_ALL]-(JA)-{JA} 0.219⭑

[no_no]-(JS)-{JS} 0.060◇ [no_ALL]-(PY)-{PY} 0.233◆⭑

[no_no]-(JA)-{JA} 0.087◇ [no_ALL]-(TOP)-{TOP} 0.352◆

[no_no]-(PY)-{PY} 0.080◇ [EN_JS]-(JS)-{JS} 0.268◆⭑

[no_no]-(TOP)-{TOP} 0.310◆ [EN_JA]-(JA)-{JA} 0.248◆⭑

[EN_no]-(JS)-{JS} 0.072◇ [EN_PY]-(PY)-{PY} 0.233⭑

[EN_no]-(JA)-{JA} 0.135◇⭑ [EN_TOP]-(JS)-{JS} 0.268⭑

[EN_no]-(PY)-{PY} 0.151 [EN_TOP]-(JA)-{JA} 0.262⭑

[EN_no]-(TOP)-{TOP} 0.321◆ [EN_TOP]-(PY)-{PY} 0.247◆⭑

[no_JS]-(JS)-{JS} 0.274⭑ [EN_TOP]-(TOP)-{TOP} 0.403◆⭑

[no_JA]-(JA)-{JA} 0.176⭑ [EN_ALL]-(JS)-{JS} 0.268◆⭑

[no_PY]-(PY)-{PY} 0.171 [EN_ALL]-(JA)-{JA} 0.209⭑

[no_TOP]-(JS)-{JS} 0.238⭑ [EN_ALL]-(PY)-{PY} 0.263◆⭑

[no_TOP]-(JA)-{JA} 0.171⭑ [EN_ALL]-(TOP)-{TOP} 0.399◆⭑

◇ significantly lower compared to the Elasticsearch baseline (p < 0.05)
◆ significantly higher compared to the Elasticsearch baseline (p < 0.05)
⭐ significantly lower compared to the non-pre-trained baseline (p < 0.05)
⭑ significantly higher compared to the non-pre-trained baseline (p < 0.05)

Table B.1: Statistical evaluation of all experiments.

50 Chapter B. Results Overview

0.0 0.1 0.2 0.3 0.4 0.5
MRR

ES-{JS}

ES-{JA}

ES-{PY}

ES-{TOP}

[no_no]-(JS)-{JS}

[no_no]-(JA)-{JA}

[no_no]-(PY)-{PY}

[no_no]-(TOP)-{TOP}

[EN_no]-(JS)-{JS}

[EN_no]-(JA)-{JA}

[EN_no]-(PY)-{PY}

[EN_no]-(TOP)-{TOP}

[no_JS]-(JS)-{JS}

[no_JA]-(JA)-{JA}

[no_PY]-(PY)-{PY}

[no_TOP]-(JS)-{JS}

[no_TOP]-(JA)-{JA}

[no_TOP]-(PY)-{PY}

[no_TOP]-(TOP)-{TOP}

[no_ALL]-(JS)-{JS}

[no_ALL]-(JA)-{JA}

[no_ALL]-(PY)-{PY}

[no_ALL]-(TOP)-{TOP}

[EN_JS]-(JS)-{JS}

[EN_JA]-(JA)-{JA}

[EN_PY]-(PY)-{PY}

[EN_TOP]-(JS)-{JS}

[EN_TOP]-(JA)-{JA}

[EN_TOP]-(PY)-{PY}

[EN_TOP]-(TOP)-{TOP}

[EN_ALL]-(JS)-{JS}

[EN_ALL]-(JA)-{JA}

[EN_ALL]-(PY)-{PY}

[EN_ALL]-(TOP)-{TOP}

Figure B.1: Evaluation results of all experiments. The black dots represent the MRR of each individual fold,
while the length of the bar equals the average MRR across all folds.

	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	State of the Art in Code Search
	Code Search using Transformers
	Code Search using Non-Transformer Models
	Code Search Datasets

	Theoretical Background
	Code Search
	Evaluation Metrics
	Related Problems

	The Multimodal Embedding Model
	Transformers, BERT, and Transfer Learning

	Approach to Evaluating Transfer Learning for Code Search
	Datasets
	Pre-training Dataset
	Fine-tuning and Evaluation Dataset

	Pre-training
	Fine-tuning
	Experiments with Pre-trained Models
	Baselines

	Evaluation
	Threats to Validity

	Mining StackOverflow Data for Code Search Evaluation
	Data Statistics
	Qualitative Data Analysis

	Results
	Pre-trained Single-language Models (RQ1–RQ3)
	Pre-trained Multi-language Models (RQ4)

	Discussion
	Quantitative Analysis
	Qualitative Analysis

	Conclusion and Future Work
	Included StackOverflow Tags
	JavaScript Tags
	Java Tags
	Python Tags

	Results Overview

