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Abstract

Genetic Algorithms are a potent tool when computing an exact solution for a problem is too ex-
pensive, but a near-optimal approximation can be sufficient instead. Most Genetic Algorithms
are sequential programs that are prone to scalability issues. Increasing their performance is possi-
ble by executing resource-intensive steps in parallel, therefore reducing the required computation
time. Some previous proposals for cloud-based Genetic Algorithm distribution already provided
frameworks exploiting well-known parallelization techniques. We devised a new, more flexi-
ble framework. We propose PGAcloud, a cloud framework capable of including and executing
polyglot, i.e., multi-language, Genetic Algorithms and deploying them to a prepared cloud en-
vironment. Developers of Genetic Algorithms can include their custom implementations into a
wrapping software container, effectively deploying a local algorithm to the cloud, without wor-
rying about the underlying implementation details of the framework. Deploying a Genetic Algo-
rithm to the cloud for parallelization makes it a Parallel Genetic Algorithm. Allowing developers
to include any code into the framework directly makes our proposed framework very flexible.
PGAcloud employs an easily scalable architecture and takes care of cloud orchestration, load bal-
ancing, provisioning, and deployment of the required software containers. After any adjustments
to the provided Parallel Genetic Algorithm configuration template, the user simply needs to ex-
ecute the desired commands from the local client’s command-line interface and point out the
configuration file to be used. By basing the main capabilities of any Parallel Genetic Algorithm
computation on a user-defined configuration file, we keep the possibilities for future additions as
versatile as possible.





Zusammenfassung

Genetische Algorithmen sind ein mächtiges Werkzeug zur Problemlösung, wenn die Berechnung
einer exakten Lösung zu teuer ist, eine nahezu optimale Annäherung jeodch ausreicht. Die meis-
ten Genetische Algorithmen sind sequenzielle Programme und daher anfällig für Skalierungs-
Probleme. Ihre Leistung kann jedoch gesteigert werden, indem gewisse Ressourcen-intensive
Schritte parallel ausgeführt werden, wodurch die benötigte Rechenzeit reduziert wird. Einige
frühere Vorschläge für die Cloud-basierte Verteilung Genetischer Algorithmen haben bereits Frame-
works angeboten, welche bekannte Techniken zur Parallelisierung nutzen. Wir entwickelten ein
neues, flexibleres Framework. Wir schlagen PGAcloud vor, ein Cloud-Framework, welches poly-
glotte, d.h. mehrsprachige Genetische Algorithmen einbinden und ausführen sowie sie auf eine
vorbereitete Cloud-Umgebung verteilen kann. Entwickler von Genetischen Algorithmen können
ihre problemspezifischen Implementationen in einen Software Container einbinden, was einen
eigentlich lokalen Algorithmus in der Cloud bereitstellt, ohne sich um die darunterliegenden
Implementierungs-Details des Frameworks zu kümmern. Die Bereitstellung eines Genetischen
Algorithmus zur Parallelisierung in der Cloud macht daraus einen Parallelen Genetischen Algo-
rithmus. Den Entwicklern zu ermöglichen, Code jeglicher Art direkt in das Framework einzu-
binden, macht unser vorgeschlagenes Framework sehr flexibel. PGAcloud verwendet eine einfach
skalierbare Architektur und kümmert sich um Cloud Orchestrierung, Lastverteilung, Vorbere-
itung und Aufschaltung der benötigten Software Container. Nach allfälligen Anpassungen an
der Konfigurationsvorlage des Parallelen Genetischen Algorithmus muss der Nutzer lediglich
die gewünschten Befehle im Kommandozeilen-Interface des lokalen Clients ausführen und ihn
auf die zu verwendende Konfigurationsdatei hinweisen. Indem wir die Hauptfähigkeiten einer
jeden Berechnung eines Parallelen Genetischen Algorithmus auf einer nutzerdefinierten Konfigu-
rationsdatei basieren, halten wir die Möglichkeiten für zukünftige Ergänzungen so vielseitig wie
möglich.
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Chapter 1

Introduction

Genetic Algorithms (GAs) are an impressive tool for solving problems where directly computing
an optimal solution to a complex problem is too expensive, but a near-optimal approximation is
sufficient to solve it [2].

Although glorified by academic research in laboratory conditions, GAs usually are programs
of sequential nature, making them prone to scalability issues. Luckily, it is also in their nature to be
easily parallelizable, increasing their performance by reducing the required computation time [3,
4]. Algorithms implementing such parallelization approaches (like the “Master-Slave,” “Island,”
or “Grid” model) are known in scientific literature as forms of Parallel Genetic Algorithms, or
PGAs for short [3, 5].

Considering that computing the best approximation in a parallelized way may consume most
of the computation power available on a local machine, we can further improve the PGAs’ perfor-
mance by distributing them in the cloud and performing the computation on multiple machines.

Previous proposals for cloud-based GA distribution exploited well-known parallelization tech-
niques, and some of them provided frameworks to support the development and deployment of
distributed Genetic Algorithms [2].

With PGAcloud, this work aims to add a new, more flexible framework. Its main contributions
include supporting PGA developers in deploying their local algorithms to their preferred cloud
environment by allowing them to directly include any code into the framework without worry-
ing about the underlying implementation details. For example, this characteristic facilitates the
collaboration of multiple developers together to solve the same problem by combining each of
their respective implementations of different operators. Furthermore, supporting the integration
of polyglot programs (i.e., a program written in or combining multiple programming languages)
can be of great value when a developer finds the source code of an existing implementation for
some genetic operator that is written in any programming language and wants to integrate it into
his own approach. Features like these make our proposed framework very flexible and developer-
friendly while also employing an easily scalable architecture at the same time.

PGAcloud takes care of cloud orchestration and load balancing, provisioning, and deployment
of the required software containers. By basing the main capabilities of any PGA computation on
a user-defined configuration file, we keep the possibilities for future additions (like dynamically
changing properties or monitoring the PGA at runtime) as generic and easy as possible.
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Thesis Structure. The rest of this work is structured as follows: In the upcoming Chapter 2, we
explain the background and motivation for developing the PGAcloud framework, where Sections
2.1 and 2.2 focus on relevant concepts of previous framework propositions. In the subsequent
Chapter 3, we propose the PGAcloud framework and explain its architecture, followed by Chapter
4, which explains the prototype we devised. Section 4.1 lists the details of the technologies we
used. Then, as part of Sections 4.2 and 4.3, we illustrate the concepts of the different framework
components and shine light on some limitations and pending refinements of PGAcloud. Section
4.4 is all about our example implementation for solving the Knapsack problem. Finally, in Chapter
5, we state our conclusions, summarize our propositions, and elaborate on possible extensions
and future work.



Chapter 2

Related Work

Genetic Algorithms (GAs) are a potent tool for solving problems where directly computing an
optimal or exact solution is too expensive, but a near-optimal approximation of such an ideal so-
lution (being acquired over multiple iterations) is sufficient to solve the problem at hand [2]. The
process imitates the biological concept of evolution: evolving an initial population of individuals
(possible solutions to the problem) over many generations. Within each generation, the individ-
uals are subject to various genetic operations like mating (selection and crossover), mutation, or
the classic “survival of the fittest” (elitism and survival selection). Most importantly, “the heart
of GAs is the fitness function” [2], which computes an individual’s fitness and maps it to a nu-
meric value, finally allowing the function to evaluate or classify each individual within the entire
population [2].

Usually, GAs are programs of sequential nature, making them prone to scalability issues, pos-
sibly preventing the application of GAs in an industrial scenario [3]. Parallelization of specific
time-consuming steps is a possible way of massively increasing their performance in terms of
required computation time [4], providing a solution to the scalability problem. According to
Salza and Ferrucci [2], the “high cost of parallel architectures and infrastructures and their man-
agement” is arguably one reason why parallelized execution has not found a more prominent
application so far.

Nonetheless, Genetic Algorithms have previously been parallelized on multi-core (i.e., CPUs)
as well as many-core (i.e., GPUs) systems – successfully increasing their performance and ef-
fectiveness [6, 7]. However, as stated above, applying such solutions is often expensive. Their
achievable degree of parallelization is directly related to – and limited by – “the number of multi-
ple computational units available on the hardware” [2]. In contrast, to free the computation from
environmental restrictions, network-based technologies like cloud or grid computing are scalable
without limitation – at least in theory [8,9]. Notably, cloud computing serves as a more affordable
solution. It addresses both the hardware limitation and the cost aspect: allocating a cluster of as
many nodes as required is possible in a short time. The main advantage is that one would not
have to invest in expensive hardware, which would have to be maintained and managed [2,10,11].

Parallelization Models. In their work, Luque and Alba [5] proposed three forms of paralleliza-
tion models. For instance, the GAs characteristic of being based on an evolutionary population
allows evaluating each individual’s fitness in parallel, resulting in the global parallelization model
(also called the “Master-Slave” model). In this model, the “Master” node is responsible for the co-
ordination of the PGA computation. It maintains the population and performs genetic operations
like selection, crossover, or mutation on each individual. The parallelization occurs at the fitness
evaluation level, when the “Master” distributes the fitness computations to several “Slave” nodes
and simply collects their results. Besides that, there are other ways of exploiting parallelization,
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e.g., when performing genetic operations as part of the coarse-grained model (also known as the
“Island” model), to ultimately raise the next generation of possible solutions. The coarse-grained
model applies parallelization at the population level. More precisely, it splits the complete PGA
computation into multiple subpopulations in a “Master-Slave” fashion. These subpopulations
are called “islands,” hence the name “Island” model. To ensure genetic diversity, migration of
individuals between the islands may occur statically or dynamically [12]. A third possibility is
to combine the two strategies above to produce the fine-grained model (the “Grid” model). This
model distributes the individuals in a multidimensional grid-like fashion. Like in the “Master-
Slave” model, genetic operations are limited to the maintained subpopulation, i.e., one individual
in the grid and its immediate neighbors. Also, migration may occur between subpopulations dur-
ing selection. The algorithms implementing these approaches are known in scientific literature as
forms of Parallel Genetic Algorithms, or PGAs for short [3, 5]. The three mentioned PGA models
are not the only ones [12, 13], but the most commonly used.

From the PGA models explained above, this work focusses on the “Master-Slave” model.
Since many previous works proposed new aspects or approaches for this model, we included
the related work for the concepts that influenced the design and development of our PGAcloud
framework. The presented concepts are mainly centered around containerization and internal
communication, general PGA architecture or targeted audience and their different roles.

2.1 Parallel Frameworks for Genetic Algorithms
In their works, Di Geronimo et al. [14], and later Di Martino et al. [15], suggested using Hadoop
MapReduce to relieve programmers from the underlying implementation issues for orchestrating
a distributed computation, mostly since MapReduce is supported by most cloud providers. Some
first results of Di Martino et al. showed that the cloud environment could massively outperform
a local server. This idea was then picked up by Salza, Ferrucci, and Sarro when they proposed
elephant561, which was the “first publicly available framework based on Hadoop MapReduce” [3].

When integrating with elephant56, a developer is expected to extend specific classes defined
within the “user package” and customize them according to the problem to solve. These classes
are related to the different phases of the job, the model of individuals, and the genetic operators
[3].

Their proposed framework had several exciting concepts, three of which also influenced the
architecture of the framework resulting from this work: with elephant56 [3], Salza et al. mentioned
the usage of an initial population, which would be sent to the fitness evaluation before starting
the actual GA computation. They did not explicitly state whether a user provided this popula-
tion, or the framework randomly generated it. However, it is clear that both options are of value
to any user and thus were provided in our framework PGAcloud. In addition to the initial popu-
lation, Salza et al. [3] introduced the notion of having global properties (e.g., distinct commands
or names of message queues) being filled and distributed to the operators by the “master node.”
Providing properties to the operators makes way to two scenarios: firstly, a user might be able to
dynamically change these properties at runtime instead of statically providing them in the begin-
ning. The “master node” would be responsible for forwarding any changes to the corresponding
genetic operators. Secondly, allowing to provide any number of unforeseen, user-defined proper-
ties eases flexibility and accessibility of including different implementations of operators, possibly
extending or completely overriding the provided default implementation of the framework. The
last relevant concept by Salza et al. is the already mentioned “master node.” With elephant56,
they proposed having a single class (or node, respectively) in charge of the entire PGA workflow
(the “Driver”), which is similar to the PGAcloud implementation (the “Runner,” see Section 4.2

1https://github.com/pasqualesalza/elephant56
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on page 18). Also, the Driver is “the linking point between core and user layers and primary
interface with the developer” [3], facilitating a single point of contact.

As indicated by the core level, merely having a Driver class is not everything a distributed
PGA requires to function. It must also employ some means of storing and distributing data across
multiple nodes or containers. As one possible approach towards this, Garcia-Valdez et al. imple-
mented the EvoSpace Model [16], which consists of two main components: some repository (e.g., a
database) storing the population resulting from genetic evolution, and multiple remote workers,
which implement and execute the actual evolutionary process. Considering that there are several
such worker nodes in a cloud application that need “to be created and destroyed in seconds to
guarantee the reliability and scalability of the entire system” [2], the traditional hypervisor-based
virtualization approach for cloud computation becomes a limiting factor. Such a system generally
operates on the hardware level – contrary to container-based virtualization, which performs its
computations on the operating system level. Because of that, container-based virtualization can
provide a rather lightweight virtual environment, namely the software container. Software con-
tainers bundle related processes and isolate them from other processes, containers, or hardware
on the host machine [2]. Every container accesses the same shared kernel of the host system and
can be much smaller and more lightweight than an entire virtualized operating system [17]. With
this isolation in place, a containerized process can only see resources within this same container,
meaning that the underlying host network is the only available form of communication [2].

As a direct result, the increased parallel communication load on the network makes it a bot-
tleneck, limiting such a system’s performance. Consequently, it is not trivial to run distributed
PGAs in an on-demand fashion. The first time a genetic algorithm had been containerized using
Docker to be deployed in the cloud was with the work of [10]. Its authors highlighted that their
containerized approach allowed them to benefit from allocating resources on-demand, which is
“one of the most attractive features of cloud computing” [18].

Salza and Ferrucci adopted this idea when they designed and implemented AMQPGA2, a
novel distribution approach for cloud-based Genetic Algorithms [2]. It was part of their key goals
to keep the communication cost as low as possible, while simultaneously assisting developers
at developing and deploying their algorithms. Their proposition implements the “Master-Slave”
model and exploits container-based cloud orchestration, relying on communication via message
queues. With their container-based approach, they were able to “surpass the limitations of the
number of machines the cloud providers usually impose upon their users” [2]. The resulting
infrastructure is definable as “multi-cloud,” i.e., the infrastructure can integrate into the same
application multiple nodes allocated by different cloud providers [2]. This flexibility was made
possible through communication relying on network traffic.

Di Martino et al. [15] were among the first to focus on executing GAs in the cloud. Not only
did they suggest using Hadoop MapReduce, but they also proposed the parallelization of the GA
at three different levels: fitness evaluation, population, and individual. Their implementation,
similar to the more recent AMQPGA of Salza et al. [2], chose to parallelize the computation on
the fitness evaluation level, i.e., to evaluate the fitness of individuals in parallel. Di Martino et
al. reported significant overhead due to the resulting communication in the network [15,18]. The
communication overhead in transmitting data likely was additionally increased by choosing “the
rather verbose JSON data-interchange format” [18].

2https://github.com/pasqualesalza/amqpga
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2.2 User Roles
We already established that our framework intended to support developers in their practice of
developing and deploying GAs. To explain how we do so, we must first introduce two concepts:
the first is the concept of code integration, where a software container can include the code of a
different algorithm. In this context, the second concept is understanding the targeted audience of
the framework, splitting it into groups, and then designing the software to match their respective
roles. Similar concepts have been mentioned and implemented by Salza et al. in their work on
cCube. Although their work addresses Evolutionary Machine Learning and the intended goal was
different, cCube inspired the same user identification as was ultimately employed by PGAcloud.

In 2017, Salza et al. presented cCube3 [1], an architecture supporting its users in developing
and deploying algorithms for Evolutionary Machine Learning (EML) to the cloud. The most
notable characteristic of cCube is its microservices architecture, where user code can be integrated
into software containers without having to worry about any underlying implementation details.
Doing so allows EML developers to benefit from cloud computing and on-demand allocation of
resources, without being locked in on a particular cloud provider (Amazon Web Services4, Google
Cloud Platform5, OpenStack6, Etc.) [1]. “Collectively, cCube’s services are minimally centralized
and managed by an orchestrator” [1], whose implementation is generalized and independent of
the chosen cloud provider(s).

Their work introduced three different roles related to the cCube framework: EML algorithm
developers, EML end-users (technically unfamiliar with EML insights), and the cCube engineers
[2].

The cCube engineers’ responsibility is to expand and maintain the openly available source code
and provide the most recent functionality to interested EML developers [2].

The role of EML developers could also include researchers focusing on EML algorithm design
or development. In particular, developers could deploy EML algorithm implementations in dif-
ferent programming languages. In doing so, they would not need to inject any cCube related code
into their EML algorithm to enable cloud compatibility or capabilities. Instead, cCube is injected in
the EML algorithm’s container, where the container runs it as a daemon to manage inter-container
communication within the system. Developers are only expected to adhere to specifications of
the provided input/output interface: to successfully integrate with cCube, developers must cus-
tomize a configuration template from the cCube repository and provide it to the framework’s code
according to instructions. Their role then changes as they become end-users, starting the client
locally on their machine. Provided authorization keys for the cloud environment are sensitive
data, thus kept local and secure. After establishing a secure connection, the cCube client starts the
Docker application in the cloud, making it available for user interactions [1].

Regarding Docker containers, Salza et al. [1] write in their work on cCube:

Using Docker, we extended the development capability to allow the developer to
include source code and/or to define the algorithm’s execution environment, i.e., ev-
ery component required for learner execution in any programming language or tech-
nology, without requiring a manual development intervention. The interaction inter-
face is kept flexible by defining a wrapping interface. Therefore, the only information
required is the path and instruction on how to execute the [EML algorithm]. The
developer does not need to make the source code aware of cCube’s functionality or
parallel computation. Therefore, any algorithm can be executed in cCube. Once the

3https://github.com/ccube-eml
4https://aws.amazon.com
5https://cloud.google.com
6https://www.openstack.org



2.2 User Roles 7

container is defined, the developer only needs to build and distribute it on a Docker
Registry repository to be downloaded, executed and replicated on demand.

End-users like multi-algorithm EML application managers or non-EML literates (i.e., end-
users without the technical EML knowledge) usually treat cCube as a black box when trying to
execute large-scale EML algorithms in the cloud. Using provided cloud account credentials, cCube
allocates, provisions, and distributes the computational units. The user only needs to provide a
valid configuration by customizing the template. cCube then forwards the request to the cloud
provider(s) and orchestrates the deployed containers [1].

When the user has submitted a new job to the cluster, cCube pulls the required Docker images
from the repository (usually DockerHub, unless using a private repository), deploys the services,
and enqueues the new tasks [1]. The view on cCube from an end-user perspective is depicted in
Figure 2.1. We specifically included this figure since PGAcloud follows the same principle as cCube
regarding the end-user view.

Figure 2.1: cCube from the perspective of an end-user. The same view applies to PGAcloud end-users.
Source: [1].





Chapter 3

Framework Design

We propose PGAcloud, a framework for cloud deployment of any local implementations of Ge-
netic Algorithms written in any programming language. We can divide the architecture of our
framework into three essential units: the local Client, which can be downloaded from the PGA-
cloud repository and serves the user as an interface concerning framework-related interactions;
the cloud Manager, that receives cloud-related requests and orchestrates the software containers
in the cloud environment; multiple runs of Parallel Genetic Algorithms, deployed and computing
in parallel – fully isolated from each other.

Figure 3.1: The architecture of the PGAcloud framework. (Icons partially from [2])
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Local Client. Interaction with the framework from outside the cloud is possible through the
local Client, separated from the cloud environment. It provides a command-line interface with
commands for any interaction with the remote environment. Such interactions currently include
cloud setup and teardown (e.g., for a cloud provider who wants to set up the virtual machines),
or PGA related commands like creation, manipulation, and teardown (of specific PGAs).

To create the cloud environment and initialize the Manager, the Client provides the two com-
mands client cloud create and client cloud init. When trying to establish a secure
connection to the cloud Manager, the user must provide a path containing valid SSL certificates.
Algorithm 2 on page 29 in the appendix further explicates the generally intended workflow for
creating, running, and terminating a PGA computation.

Once the cloud is prepared and the Manager running, the user must download the PGA con-
figuration template from the Client repository. It includes the container details (e.g., which image
to use or how many instances to deploy) and other PGA related properties that can be defined.
For improved reproducibility in scientific experiments, the configuration file also includes a field
to specify a seed for seeding the random generators used in the different components. Further-
more, suppose a custom operator is implemented. In that case, there is the possibility to declare
additional file paths for files that are used by the algorithm and need to be distributed in the
cloud. Finally, the path to the configuration file must be provided as an argument to the Client
command for PGA creation, client pga create.

Cloud Management. The only access point within the cloud from the outside is the cloud Man-
ager. It provides an API for every allowed interaction and will forward requests where necessary.
The Manager container also contains the Orchestrator, whose implementation is chosen according
to the cloud provisioner (e.g., Docker or Google Kubernetes1).

The Manager receives incoming requests, parses PGA configurations and models, and uses the
Orchestrator to deploy and regulate affected PGA components according to the model or specific
modification requests (i.e., deployment, scaling, removal). To ensure isolation of unique PGA
runs, while still being able to communicate with them, the Manager is part of the “Management
Network.”

When creating a new PGA run, the user can provide paths for additional files in the config-
uration. All received files are stored on the Manager for potential future usage and, additionally,
distributed to every PGA component. This ensures that each possible customization of support-
ing services or genetic operators could access the additional files if necessary.

Parallel Genetic Algorithm. Each PGA contains a Runner instance, providing an API for PGA
related actions and serving as an anchor point accessible to the Manager. The Runner is the head
of each PGA run deployed to the cloud. However, it is not directly accessible from outside the
cloud, making the Manager the one in charge.

The Runner is part of both the “Management Network,” allowing two-way communication
with the Manager, as well as the specific “PGA Network,” containing all other PGA components.
Creating a separate network for each PGA run ensures the isolation of the components and pre-
vents communication across multiple PGAs. Contained in two networks at once, the Runner acts
as a mediator between the Manager and isolated PGA components like the genetic operators or
the database instance.

After instantiation, the Runner distributes the properties and handles the creation of an initial
population. If the user provided a file containing initial solutions, the Runner reads and parses
its contents to valid Individual objects. The resulting population is then sent directly to the Fitness
Evaluation. If no population is provided, the Runner retrieves the desired population size from the

1https://kubernetes.io
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Algorithm 1 Initializing Population
1: if initial_population then
2: Runner.parse_individuals(initial_population)
3: Runner.send_evaluation(initial_population)
4: else if not initial_population then
5: Runner.request_individuals()
6: generated← Initializer.generate_individuals()
7: for individual in generated do
8: Initializer.send_evaluation(individual)
9: end for

10: end if

configuration and delegates the generation of individuals to the Initializer. The decision tree and
corresponding actions are depicted in Algorithm 1.

Apart from that, the Runner is responsible for the PGA computation: it coordinates the work-
flow according to the given model and stores the population after each generation. The PGA
computation workflow will be split into different genetic operators. There is an algorithm for the
“Master-Slave” model in the appendix, see Algorithms 3 and 4 on page 30.

PGAcloud aimed at allowing PGA developers to include custom implementations of genetic
operators, similar to what cCube [1] can offer. Because any genetic operator could be subject to
custom implementation, we designed an omni-purpose Agent capable of wrapping any external
algorithm.

The Agent hides the integration into the actual PGA environment from the PGA developer,
who only needs to provide the required files and his implementation. He can then build upon
the Agent’s Docker image to inject the code into its container. To guide the interaction between
the Agent and the developer’s implementation, we composed a dedicated configuration file. This
file declares essential parameters like the input and output type (either “value” or “file”), the file
paths for input and output files, and – most importantly – the specific command stating how to
call the algorithm.





Chapter 4

Prototype

With the current PGAcloud implementation, we constructed a prototype offering most of the fea-
tures we want to see in a final version of the framework. The version we present in this work
contains the most critical features and is largely operational. In the upcoming Section 4.1, we list
the technologies we used to implement our prototype, explain their core concepts, and elaborate
on why we chose to exploit them. We will dive into the specifics of our prototype within the
following sections of this chapter (Sections 4.2 and 4.4). Nevertheless, some aspects are still not
fully developed and might require refactoring in the future. We point out some of these aspects
in a section dedicated to present limitations and known issues (Section 4.3).

4.1 Chosen Technologies
Docker. For orchestrating the PGAcloud environment we decided to use Docker1. The Docker
toolbox was one of the first mature products to produce, deploy, and manage software contain-
ers. Since its release in 2013, OS virtualization became more popular “due to much higher perfor-
mance and flexibility in comparison with a traditional, hypervisor-based virtualization, offering
sufficient isolation for numerous applications” [18, 19].

It isolates any created container from the underlying operating system: the container builds
upon an independent virtual file system and the code of a very basic Linux OS (not the OS itself,
however). This code allows the execution of system-related commands, e.g., modification of the
file system.

Salza and Ferruci [2] stated the following regarding containerization:

From the application perspective, there is no difference between an execution on
a dedicated machine and inside the container: the application is run in a short time
in a full isolated Linux environment and can find others only by using the network.
This reduces drastically the activities of installation and maintenance of applications:
configuration management methodologies can define the environments and the ap-
plication can be tested during the process from development to actual production ex-
ecution, in a CI fashion.

To build a container, Docker requires a blueprint of what to build, the so-called “image.”
This image contains installation instructions and the necessary code to run the application inside.
Creating such an image is possible in two ways: the first one would be to execute the desired
operations directly inside a running container and then to save its final state. The other would

1https://www.docker.com/
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be to execute a “Dockerfile,” a file containing a set of instructions that conform to a particular
syntax. The latter is usually the preferred method because a Dockerfile can be easily maintained
with the rest of the source code. After creating it, an image can be uploaded to and later be
downloaded from an online registry (either the official DockerHub2 provided by Docker itself, or
a private registry) [2].

The main advantage of using images is that they only need to be built once before uploading
it to the registry. When used for creating new containers, the installation and build operations
will not have to be repeated [2].

Initially, Docker was only able to execute containers on single machines (i.e., with Docker
Compose). The older Docker Compose would manage and deploy a containerized application
on a single host [20]. However, it did not take long for other cluster orchestrators to appear, e.g.,
Docker Swarm or Google Kubernetes, which are perfectly able to orchestrate containers in a cloud
over multiple machines [18].

PGAcloud uses Docker-Machine to provision the host nodes and Docker Swarm to orchestrate
the cloud. Using its built-in load balancing feature, Docker, through Docker Swarm, manages
the creation and execution of containers on the available machines in the cloud. “The powerful
feature of Docker of executing an entire environment makes possible the implementation of any
genetic Operator, in any preferred programming language or using any external tool” [2].

Python. Python3 is a popular and beginner-friendly programming language. It supports object-
oriented programming and is great for data processing. We chose to use Python because of its
ease-of-use and its large variety of provided tools and libraries.

Docker-Py. One of the many tools Python provides is docker-py4, the official SDK for the Docker
Engine API. It is consistently updated and maintained as an open-source project.

docker-py enables Docker-specific actions in Python, which would otherwise only be accessi-
ble on the command line. However, docker-py also had some limiting factors where its API or
underlying implementation was flawed (as any software is in some way). In some cases, it did
not allow to perform actions it was supposed to support, or simply could not provide the de-
sired functionality. Examples of this were, on the one hand, the cloud setup with Docker-Machine,
for which docker-py simply does not include the tools required for machine commands. On the
other hand, there were issues when creating or updating Docker services with Docker Secrets or
Configs, because these objects are not JSON serializable for some reason (supposedly a bug in the
underlying implementation). Additionally, for our framework implementation, we were unable
to use built-in health check methods to verify that a scaled Swarm Service has been created and is
running and ready to receive API calls. In all mentioned cases, the workaround was to write and
execute a bash script, achieving the same results on a more technical level.

Click. Click5 is a Python package providing a composable command-line interface to any user
with very little code. It is easily implemented, highly configurable, and has a wide range of
valuable features, such as command structures and hierarchy; options and arguments; supporting
paths and file existence checks; easy access to user feedback.

Flask. Flask6 is a microframework for Python, developed by the creators of Click. Using Flask,
it is possible to quickly set up a basic but powerful JSON-based REST API that is manageable

2https://hub.docker.com
3https://www.python.org/
4https://docker-py.readthedocs.io/
5https://click.palletsprojects.com/
6https://flask.palletsprojects.com/
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without unexpected complications. Because Flask avoided including mostly unused extensions,
it is lightweight and ideal for deployment in a cloud environment.

RabbitMQ. RabbitMQ7 is an open-source “message broker,” which implements the Advanced
Message Queueing Protocol (AMQP). In its purest form, RabbitMQ provides a queue able to
accept messages from a host A and forward them to host B (for simplification, the actual workings
under the hood are abstracted through the use of default exchanges). These messages can contain
either plain text or blobs of binary data. Figure 4.1 illustrates the RabbitMQ message flow.

The message exchange with the queues follows the Producer-Consumer-Pattern. “If the pub-
lisher and consumers are connected to a queue, they can communicate with each other without
actually knowing each other. It makes RabbitMQ a powerful tool for scalable distribution of tasks
since it is possible to add and remove participants without breaking the communication” [2].

In addition to this already valuable feature, RabbitMQ also provides a prepared Docker image
for easy deployment, e.g., in a containerized cloud environment. Using the message broker as the
only form of inter-container communication within a single PGA run, we are free to scale individ-
ual operators at runtime using the provided features of Docker Swarm without interrupting the
message flow. Considering that for a new container to join the computation at any given time, it
must first discover the RabbitMQ service. To ensure this, we used a static DNS name for the ser-
vice. Technically, the user can configure this name, but it is already included in the configuration
template as “rabbitMQ.”

All in all, RabbitMQ is a powerful tool for message queues. Although there might be more
recent and slimmer substitutions available, RabbitMQ is still popular and easily implemented.
The main challenge is understanding its concepts and inner workings. After that, it is all about
adequately configuring the exchanges and queues to avoid communication overhead as much as
possible.

Figure 4.1: The RabbitMQ message flow through queues. Source: [2].

7https://www.rabbitmq.com/
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Redis. Redis8 is an in-memory database storage module that allows storing data structures. A
user can perform atomic operations on the stored content. From a developer’s perspective, Redis
allows storing data in the form of integers, (serialized) strings, blobs of binary data, or lists con-
sisting of such. In combination with a custom de-/serializer, any custom object can be stored in a
Redis database.

Additionally, Redis provides an alpine docker image (i.e., an image optimized towards using
as little space as possible), one of the most popular container images in 2020 so far [21], and can
be included in many cloud environments.

4.2 Framework Components Implementation
At the current state of development, PGAcloud only supports the “Master-Slave” model for par-
allelization, although genetic operators other than the Fitness Evaluation can also be scaled. Cus-
tomization is possible with the wrapping Agent container and direct code access to the Initializer.

To demonstrate the usage of the PGAcloud framework, we included an example implementa-
tion based on the Knapsack problem (described in Section 4.4). We provided customized config-
uration files with additional properties required by our custom fitness evaluation function. As
a proof of concept, this fitness evaluation is written in Java and highlights the ability to include
external code written in any language with our proposed Agent.

Usage-wise, the PGAcloud framework is mostly closed source. Adapting it to solve different
problems requires changes to the user-provided configuration files and the Initializer component
to customize the Individual model for generating an initial population according to the specific
problem to solve. Other genetic operators should, in theory, not have to be adapted. However,
they are restricted in terms of the Individual model, which demands possible solutions be of type
string and the fitness value of type float. Also, the naming of the fields is predefined. If an external
operator made use of fields other than solutions or fitness, they would not be passed on by
default without adjustments to the Individual model.

Client. The local Client uses Docker-Machine to create and configure the cloud environment for
docker orchestration with Docker Swarm. Since Docker-Machine is not part of the regular Docker
distribution, it must be installed manually by the user in advance alongside Docker Desktop.

We decided to use Click to provide a simple command-line interface to the user. Unfortu-
nately, each Click command represents a new entry or session in the Client interaction. So, we
must somehow pass relevant information over multiple sessions. We solved this issue by storing
essential and non-retrievable information in a local context file in the YAML format. We allow
explicitly changing these context configurations with the following commands:

• client config master_host: Update the configuration for the master host (IP address
or hostname) in the cloud. If no argument is provided, it will print the current configuration.

• client config master_port: Update the configuration for the exposed port on the
master host to map to containers. If no argument is provided, it will print the current con-
figuration.

• client config certificates: Update the configuration for the path to the SSL certifi-
cates required for secure connection to the cloud master host. At the given location, the files
“ca.pem,” “cert.pem,” and “key.pem” must be found to establish a valid SSL connection. If
no argument is provided, it will print the current configuration.

8https://redis.io/
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As has been previously established, the Client and the Manager communicate over a secure
HTTPS connection, encrypted with SSL. The user needs to provide valid SSL certificates for this
connection, which we pass on to each cloud component as Docker Secrets. Those Secrets are en-
crypted by Docker and not accessible as clear text.

Regarding the chosen genetic operators, the Elitism operator is built-in and thus not optional.
It takes a certain percentage as property from the configuration file and retains this percentage of
best individuals from the population for direct integration at the end of each generation (when
Survival Selection occurs). Theoretically, the Elitism operator could be extracted as a separate con-
tainer in the PGA model. The same goes for the Survival Selection.

For regular cloud or PGA related interactions, the Client provides the following commands:

• client cloud create: Create and set up the cloud environment.

• client cloud init: Initialize the PGA Manager.

• client cloud reset: Reset the cloud by removing the PGA Manager.

• client cloud destroy: Remove the cloud environment and all its PGA contents.

• client pga create: Create a new PGA run.

• client pga start: Start computation of given PGA.

• client pga stop: Stop computation of given PGA and remove it.

• client pga monitor: Monitor computation statistics of given PGA (currently fittest in-
dividual, generation, computation time, Etc.)

• client pga pause: Pause given PGA after finishing the current generation.

Manager. The Manager represents the interface between the cloud environment and the local
Client. It provides a Flask API for communication with the Client and each PGA Runner. Its pri-
mary responsibilities include receiving requests for PGA interaction and processing or forward-
ing its contents. The Manager container also includes an abstract Orchestrator class, which defines
the desired behavior for container orchestration (i.e., creation, scaling, modification, removal)
each implementation of an Orchestrator must provide. Following the concept of “separation of
concerns,” it is irrelevant to the Manager how exactly the Orchestrator achieves this.

When creating a new PGA run, the user can provide paths for additional files in the configu-
ration. The Docker Orchestrator converts each file into a Docker Config suited to the newly created
PGA. To ensure each possible customization of supporting services or genetic operators has ac-
cess to these files, the Docker Orchestrator attaches the Docker Configs to every container related
to said PGA run.

We decided to parse the PGA model for new PGA runs in the Manager to facilitate “dumb”
containers in the “PGA Network.” Each container will receive a supplementary, tailored container
configuration file containing the PGA ID for identification and exploration purposes, as well as
the messaging source (its own queue) and target (where to send processed individuals). The only
container with a little more content is the Runner, which distinguishes different flows based on
the PGA model or configurations. With this information, the Manager delegates the creation of
required containers to the Orchestrator.

Newer versions of Docker offer configuration of different types of Docker Networks, i.e., bridge,
host, macvlan, or overlay. By introducing the dedicated PGA overlay networks, we isolate the
PGAs from each other as much as possible. This isolation allows scaling with multiple PGA runs
in parallel as well as proper handling and management. Like so, the specific containers can be
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isolated from the Manager and other PGAs, since the Manager only needs to communicate with a
PGA’s Runner. That is the reason we chose to bundle the Manager and each created Runner within
the same “Management Network,” where each Runner then serves as an intermediary to a specific
“PGA Network.”

The different stages of the workflow are implemented by the Initializer and the genetic oper-
ators (i.e., Selection, Crossover, Mutation, Fitness Evaluation). They are separately deployed or de-
stroyed by the Orchestrator and can be scaled at runtime. The different components communicate
by message queues. To ensure the stages are correctly arranged, each operator retrieves the name
of the message queue it is supposed to listen to from a customized configuration file, prepared
by the Manager when parsing the model. After processing any incoming message, the operator
reads the name of the target queue from the config file and forwards it accordingly. Transmission
of the Individual objects by message queues takes place using the JSON data-interchange format.

Runner. The Runner is the head of each PGA run deployed to the cloud and coordinates the
workflow of the PGA computation. Throughout the PGA workflow communication, we decided
to send only single Individuals. Although this produces a higher quantity of messages, the net-
work load is probably not significantly higher than when combining multiple Individuals in a
single message (the data is the same, additional headers make the difference). The only exception
to this is the Selection operator, which requires the entire population.

Providing an API to the Manager allows future additions, like implementing dynamically ad-
justable properties for an entire PGA or a single operator. However, this is only a possible exten-
sion and has not been implemented yet.

Initializer. The Initializer listens to a specific message queue for generation requests, processes
it, and sends the generated individuals to the Fitness Evaluation for an initial evaluation. It can be
scaled to reduce the time required for generating a sufficiently large population.

To reduce the loss of work in the case of a failing Initializer container, we decided to request
the generation of Individual objects by sending a single message for every individual. Changing
this back to request multiple Individuals at once would only require adjusting the messages sent
since the corresponding code on the Initializer is already in place.

Every request for generation includes Individual IDs to differentiate the random values used in
the generation process when generating at the same time (usually, random generators are based
on the current timestamp, possibly resulting in the same values when running in parallel). One
possible way to do so would be to add the ID to the random value, such that even when two
random values were identical, they could be differentiated.

Fitness Evaluation. The Fitness Evaluation listens to its queue for individuals to be evaluated. It
reads the solution property, compares it to the specific problem at hand by consulting relevant
properties (in the case of the Knapsack problem, this would include the knapsack capacity or
the weights and profits of all available items), and converts its fitness to a numeric value. After
evaluation, each individual is sent back to the Runner.

In the Knapsack demonstration, the Fitness Evaluation was implemented in Java. This imple-
mentation intended to prove that it is possible to provide the code for an external operator written
in a different language and successfully integrate it into the PGA workflow. Since it was not rel-
evant for the proof of concept, our implementation is purely functional and in no way optimized
towards quality or performance.

Selection. Once the Runner received back all individuals, it releases them to the PGA model
(Algorithm 3 in the appendix). In the case of the “Master-Slave” model, the first destination is the
Selection operator. Here, the entire population is split into pairs later used for mating.
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In the current version of the PGAcloud framework, only the “Roulette Wheel Selection” has
been implemented. However, the possibility is already provided to expand the list of available
selectors inside the container by implementing others, like the “Tournament Selection” or “Rank
Selection” [22], for example. Alternatively, after some adjustments, the entire container could be
replaced by a custom implementation wrapped by the Agent.

Crossover. The Crossover operator receives the pairs from the Selection. It crosses two individ-
uals according to the defined crossover rate, possibly producing two new offspring individuals.
Crossover then sends the final two individuals to the Mutation operator.

In the current version of the PGAcloud framework, only the “One-Point Crossover” has been
implemented. Again, it is possible to add other crossers like the “Multi-Point Crossover” or “Uni-
form Crossover” [23] to the currently available crossers. Alternatively, after some adjustments, a
custom implementation could replace the entire container.

Mutation. The Mutation operator processes any request for mutation of an individual. Like the
Crossover operator, it also retrieves the predefined mutation rate from the configuration file. If
the random generator matches the mutation rate, the individual is mutated. In the end, any
individual is directed to Fitness Evaluation.

In the current version of the PGAcloud framework, only the “Bit Flip Mutation” has been im-
plemented. Of course, the available mutators can be supplemented by other mutators, e.g., the
“Inversion Mutation,” “Scramble Mutation,” or “Swap Mutation” [24]. Alternatively, after some
adjustments, the entire container could be replaced by using the Agent to wrap a custom imple-
mentation.

Agent. The Agent is the only relevant component of our framework for integrating the algo-
rithm for a custom operator. It is required to tap into the underlying message flow and maintain
the workflow chain such that the external algorithm does not have to be bothered with that. The
Agent ensures retrieval and processing of any individual directed to the included operator and
forwarding the computation results according to the defined PGA model.

After retrieving the individual from the message queue, the Agent will create a file in the
input file path if required and write the serialized Individual to it. It then calls the operator code
with the command parameter (from the Agent configuration) on the command line. The external
algorithm’s responsibility is to write the resulting Individual to the file in the output file path.
After completion, the Agent can read the file, parse the Individual inside and send it to the next
destination in the workflow. Both files are removed after processing the individual, to ensure a
fresh start for the next request.

For more information on how to integrate an external algorithm into the Agent container,
please consult Section 4.4 about our example Knapsack implementation.

When including a custom implementation into the Agent container, using Docker’s relatively
new “multistage builds”9 results in a much slimmer Dockerfile. However, one should keep in
mind that each new layer separates any underlying container layers.

This separation is especially important if multiple different programming languages are re-
quested: when trying to build from an OpenJDK image and then basing on the Agent’s Python
image, the Java installation is no longer accessible to the Agent. In addition, defining a custom
entry point with the “CMD” statement would overwrite the Agent’s underlying entry point, effec-
tively preventing it from executing its message queue script and listening to the assigned queue.

9https://docs.docker.com/develop/develop-images/multistage-build/
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4.3 Open Refinements and Limitations
The Agent container can not be used to implement the Selection operator because the Agent is
designed to receive exactly one Individual object. The Selection operator, however, must receive an
array for the entire population.

As one of the last features, we provided a random seed configuration to improve reproducibil-
ity in scientific experiments (mentioned in Chapter 3). Unfortunately, this seed is not in use at the
current stage of development. However, it is intended for usage in any cloud component (i.e., the
Initializer and any genetic operator making use of random values).

Regarding the general aspect of software engineering, the PGAcloud framework is dependent
on being served with valid configurations. It is error-prone and unable to correctly handle faulty
configuration files or misuse by the user (either intentional or due to lack of understanding).
Nonetheless, if encountering an error is desirable, it should be handled accordingly, and proper
feedback to the user should be ensured. In general, making the code more robust is of interest
to any PGA developer. Moreover, the framework currently lacks an extensive documentation on
how to (properly) use the Client and all the possibilities of the configuration files.

As a final point, the previously mentioned error propagation from internal PGA components
upstream to the user should be refined. At this time, it is not possible to propagate any error
messages or tracebacks. In the event of a runtime exception, the user has no information on what
exactly went wrong (unless directly accessing the server logs is possible). This uncertainty is due
to the original HTTP request – which originated from the Client and was sent to the Manager –
being forwarded to the Runner. The PGA workflow it manages is entirely reliant on message
queues. Suppose any genetic operator encounters an issue while processing the individuals. In
that case, the Runner does not know about it and never will, preventing it from returning feedback
to the Manager, and lastly, the Client or user, respectively.

4.4 Example of Use
To demonstrate that our proof of concept works as intended, we provided an example implemen-
tation of the PGAcloud framework integrating a customized Fitness Evaluation operator to solve
the Knapsack problem10.

Knapsack Problem. The Knapsack problem is a well-known optimization problem that is sim-
ple enough to be used to evaluate the functionality of our framework. This problem revolves
around a hypothetical bag of limited capacity (the “Knapsack”) and a set of predefined items,
each having a certain weight and value. The goal of the problem is to achieve the highest profit
by filling the Knapsack with items, i.e., choosing some items and throwing away the rest of them.
This selection makes the Knapsack problem a multi-objective problem, optimizing the weight and
value of the selected items.

Implementation. In our example implementation, we included some custom properties in the
PGA configuration file to accommodate it to the problem at hand. We added a knapsack capacity,
a list of weights, and a list of profits (values). The combination of both lists represents the list
of items available for choosing. Since the PGA configuration properties are stored in the Redis
database, we can retrieve any required properties in every container.

To solve our Knapsack problem, we did not have to adjust any other genetic operators, so they
were hardcoded in their functioning. The “Master-Slave” model instructs the operators to send

10https : //en.wikipedia.org/wiki/Knapsack_problem
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individuals from the Runner to Selection, Crossover, Mutation, and, finally, to the Fitness Evaluation.
The last-mentioned is the only operator that was implemented with the Agent.

The full configuration file can be found in the appendix, see Listing 5.1 on page 31. Note that
the Agent’s image is not part of the provided PGA operators.

model: "Master-Slave"

operators: {

SEL: {

name: ’selection’, image: ’jluech/pga-cloud-selection’,

scaling: 2, messaging: "selection"

},

CO: {

name: ’crossover’, image: ’jluech/pga-cloud-crossover’,

scaling: 2, messaging: "crossover"

},

MUT: {

name: ’mutation’, image: ’jluech/pga-cloud-mutation’,

scaling: 2, messaging: "mutation"

},

FE: {

name: ’fitness’, image: ’jluech/pga-cloud-fitness’,

scaling: 1, messaging: "fitness"

},

}

properties: {

knapsack_capacity: 150,

item_count: 30,

items_weights: [10, 22, 33, 17, 7, 14, 16, 24, 8, 12, 30, 21, 13, 44,

25, 6, 27, 18, 9, 40, 11, 28, 3, 14, 35, 26, 50, 18, 29, 10],

items_profits: [21, 35, 25, 17, 11, 21, 8, 10, 13, 18, 29, 23, 9, 33,

54, 22, 16, 31, 20, 37, 24, 28, 7, 19, 28, 3, 43, 26, 12, 14],

}

Listing 4.1: Knapsack PGA Configuration

That is due to the Docker image of our fitness function basing on the Agent’s image, extending
and ultimately replacing it.

The full Dockerfile can be found in the appendix, see Listing 5.2 on page 33

// Copy contents to container.

COPY . /operator

WORKDIR /operator

// Start with PGAcloud Agent as base image.

FROM jluech/pga-cloud-agent:latest

// Insert agent container configuration file.

COPY --from=0 /operator/custom-config.yml /pga/custom-config.yml

// Create jar file from custom operator in PGA agent.

COPY --from=0 /operator/main /pga/main

RUN javac /pga/main/fitness/ *.java && cd /pga/main && \

jar cfe FitnessEvaluation.jar fitness.Main fitness

Listing 4.2: Fitness Evaluation Dockerfile
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To properly include our algorithm, we provided the following Agent configuration. The full
configuration is included in the appendix, see Listing 5.3 on page 34.

container_name: "fitness"

property_keys:

- {key: ’knapsack_capacity’, is_list: False}

- {key: ’items_weights’, is_list: True}

- {key: ’items_profits’, is_list: True}

input_type: "file"

output_type: "file"

input_path: "/pga/input.yml"

output_path: "/pga/output.yml"

command: "java -jar main/FitnessEvaluation.jar

capacity={knapsack_capacity} weights={items_weights}

profits={items_profits}"

Listing 4.3: Agent Configuration

With the provided command string, we request to be passed the values of our Knapsack prop-
erties. The Agent reads the property keys inside the command, retrieves the corresponding values
from the Redis database, and replaces the keys in the command with the actual values. For the
items’ weights and profits, the list items are passed as a comma-separated string.

By setting the input/output type to “file,” we instruct the Agent to write the individual it
receives from the message queue as a serialized dictionary to the given input file. Since we copied
our code into the Agent’s container, we have access to its internal file system. We can then read
the individual from the input file, parse it to an Individual object, and compute its fitness value.

double fitEval(Individual individual) {

double profits = 0;

double used_weight = 0;

double available_weight = 0;

for (int i=0; i < individual.solution.length(); i++) {

int bit = Integer.parseInt(individual.solution.substring(i, i+1));

profits += (bit * this.items_profits.get(i));

used_weight += (bit * this.items_weights.get(i));

available_weight += this.items_weights.get(i);

}

double scaled_unused_weight = available_weight

* Math.abs(capacity - used_weight);

double fitness = profits - scaled_unused_weight;

individual.fitness = fitness;

return fitness;

}

Listing 4.4: Fitness Function

The full implementation of the fitness function is located in the appendix, see Listing 5.4 on
page 35. In our fitness function, we go through the binary solution string of the individual. Each
bit defines if the item at position i (represented by the weight and value at position i of our list
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properties) will be included in the Knapsack: “1” means include, “0” means ignore (the added
profit or weight is zero). We then count the profits we achieve with this solution and the weight
of both the chosen as well as all available items. Finally, we scale the unused weight to punish
deviations from the full Knapsack capacity (also accounting for overcapacity). The fitness value
results from the achieved profits minus the scaled unused weight.

public static void main(String[] args) {

// Collect individual from input file.

Map<String, String> ind_map = input_data.get(0);

Individual individual = new Individual(ind_map.get("solution"),

Double.parseDouble(ind_map.get("fitness")));

// Parse input data and create fitness operator with it.

FitnessEvaluation fitEval = new FitnessEvaluation(profits, weights,

Double.parseDouble(argVals.get("capacity")));

// Evaluate the fitness of the given individual.

fitEval.fitEval(individual);

// Write individual with computed fitness to output file.

List<String> content = Arrays.asList(

"{",

String.format("\t\"solution\": \"%s\",", individual.solution),

String.format("\t\"fitness\": %f", individual.fitness),

"}"

);

Path file = Paths.get(output_path);

Files.write(file, content, StandardCharsets.UTF_8);

}

Listing 4.5: Fitness Evaluation Operator

Next, we update the Individual’s fitness value attribute and write it back to the output file – again
as a serialized dictionary. After terminating our algorithm, the Agent resumes its routine, reads
and parses the evaluated individual from the output file, and sends it back to the Runner. With
this, we completed the generation cycle of the “Master-Slave” PGA model.

The code for the main method of the Fitness Evaluation operator that is displayed here has
been shortened considerably. The full method can be viewed in the appendix (refer to Listing 5.5
on page 36).





Chapter 5

Conclusions

We proposed PGAcloud, a framework capable of including custom implementations of Genetic
Algorithms and deploying them to a prepared cloud environment. It addresses two kinds of
users: PGA developers and PGA end-users.

The PGA developers can access the relevant code from the PGAcloud repositories and include
their custom implementation – along with the necessary configurations or additional files – into
the Agent container, effectively deploying a local algorithm to the cloud. This algorithm does
not require any cloud capabilities or knowledge about the internal workings of the PGAcloud
framework. After including the custom operator, the PGA developer’s role changes to the role of
a PGA end-user.

A PGA end-user can interact with a finished instance of the PGAcloud framework through the
local Client. It provides templates for configuration files containing the PGA model, specification
of images to deploy the cloud components, and PGA-related properties. After any adjustments,
the user simply needs to execute the desired commands from the Client’s command-line interface
and point it to the desired PGA configuration file. Once the computation has started, PGAcloud
will take care of distributing each component and balancing the load on the cloud hosts. When
finished, the fittest individual will be reported back to the user on the command line output.

The proposed framework is currently restricting in several ways: firstly, the user must provide
valid configurations and strictly adhere to the guidelines stated in the templates. Secondly, a PGA
developer must download and adapt the Initializer repository (i.e., any model of an Individual)
when trying to implement a PGA for a different problem than the Knapsack problem. Lastly,
with the previous restriction in mind, the model for an Individual relies on specifically named
fields of a particular type, i.e., solution of type string and fitness of type float. Adding and
transmitting any other properties is not provided by default and may require changes to the code
of any genetic operator or the Agent.

With our proposition, we aimed to implement a proof of concept framework that can include
any Genetic Algorithm and deploy it to the cloud in a flexible and easily scalable way. Since this
goal is purely functional, we did not provide any notion of performance and consider correspond-
ing measurements to be out of scope (at least for now).

Future Work. The current state of the PGAcloud implementation offers many approaches for
improvements. It would be useful to extend it to support other cloud providers (e.g., AWS, Open-
Stack, Virtualbox, Etc.) or cloud orchestrators (e.g., Google Kubernetes; currently, only Docker is
operational).

Also, as there are different levels of parallelization of a GA, it would make sense to extend the
framework for other PGA models like the “Island” or “Grid” model. Besides, when implementing
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the “Island” model, there are several approaches to dynamically manage the number of islands,
as have been proposed by Dziurzanski et al. [18].

Considering that we already allow custom operators and provide the configuration for custom
models, it should also be possible to configure and deploy them.

With our example implementation, PGAcloud is limiting the application of the Agent to the
Fitness Evaluation operator. All other operators are hardcoded in their behavior and not customiz-
able. Changing this for full customization of every operator is easily possible but would require
some investments to be completed. These adjustments would concurrently allow offering differ-
ent implementations of each operator, as has already been mentioned in the description of the
resulting software products.

The original scope of this work was also to include Client commands for monitoring, manip-
ulating, or suspending/resuming an active PGA run. Adding these features would increase the
flexibility aspect of our proposed framework.

Concerning runtime manipulation of PGA runs: theoretically, using the advantages of provid-
ing an API and custom configuration files would not only allow a user to declare initial properties
for an entire PGA or a single operator but also enable changing them at runtime. Regarding this
matter, it might be useful to consult the survey of Karafotias, Hogendoorn, and Eiben [25] on
the trends and challenges of parameter control in Evolutionary Algorithms. Their work is about
tuning parameters during execution, which would potentially be possible with our approach.
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Appendix

Pseudocode Algorithms

Intended workflow for creating, running, and terminating a PGA computation:

Algorithm 2 User-Client Interactions
Require: configurations, certificates
Ensure: fittest individual

1: Client.create_cloud(cloud_config_path)
2: Client.init_cloud(certificates_path)
3:
4: pga_id← Client.create_pga(pga_config_path?) {
5: Manager.create_pga() {
6: Orchestrator.setup_pga()
7: Runner.distribute_properties()
8: Runner.initialize_population()
9: }

10: }
11: fittest_individual← Client.start_pga(pga_id) {
12: Manager.start_pga(pga_id) {
13: Runner.start_pga()
14: Runner.stop_pga()
15: }
16: }
17:
18: Client.stop_pga(pga_id) {
19: Manager.stop_pga(pga_id) {
20: Runner.abort_pga()
21: Runner.stop_pga()
22: }
23: Orchestrator.remove_pga(pga_id)
24: }
25:
26: Client.reset_cloud()
27: Client.destroy_cloud()
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Starting the PGA computation:

Algorithm 3 Start PGA: Master-Slave Model
Ensure: population

1: population← receive_individuals()
2: while not terminated do
3: store_population(population)
4: check_abort()
5: elite← apply_elitism(population)
6: release_to_model(population)
7:
8: couples← Selection.select_parents(population)
9: Selection.send_crossover(couples)

10: for couple in couples do
11: offspring ← Crossover.cross(couple)
12: Crossover.send_mutation(offspring)
13: end for
14: for individual in offspring do
15: mutated←Mutation.mutate(individual)
16: Mutation.send_evaluation(mutated)
17: end for
18: for individual in mutated do
19: evaluated← Fitness.evaluate(individual)
20: Fitness.send_runner(evaluated)
21: end for
22:
23: population← receive_individuals()
24: combine_elite(population, elite)
25: survival_selection(population)
26: check_termination()
27: end while
28: return population

Stopping the PGA computation:

Algorithm 4 Stop PGA
Require: population
Ensure: fittest

1: store_population(population)
2: fittest← retrieve_fittest(population)
3: return fittest
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Complete Listings
Full configuration file passed to the Client to solve the Knapsack problem.

// Predefined models: "Master-Slave" and "Island" (not ready yet).

// Declare custom models representing one generation cycle.

// Use "/" as separator and first/last image being the runner,

// e.g., "RUN/SEL/CO/MUT/FE/RUN"

model: "Master-Slave"

// List of inter-component services to use in the PGA,

// including their initial scaling.

// Those in uppercase are predefined default services.

services: {

MSG: {name: ’rabbitMQ’, image: ’rabbitmq:3.8-alpine’, scaling: ’’},

DB: {name: ’redis’, image: ’redis:6.0-alpine’, scaling: ’’},

}

// List of setup components, including their fixed scaling.

// Those in uppercase are predefined default setup components.

setups: {

RUN: {

name: ’runner’, image: ’jluech/pga-cloud-runner’,

scaling: 1, messaging: "generation"

},

INIT: {

name: ’initializer’, image: ’jluech/pga-cloud-initializer’,

scaling: 2, messaging: "initializer"

},

}

// List all images of operators involved, including their initial

// scaling.

// Those in uppercase are predefined default operators.

operators: {

SEL: {

name: ’selection’, image: ’jluech/pga-cloud-selection’,

scaling: 2, messaging: "selection"

},

CO: {

name: ’crossover’, image: ’jluech/pga-cloud-crossover’,

scaling: 2, messaging: "crossover"

},

MUT: {

name: ’mutation’, image: ’jluech/pga-cloud-mutation’,

scaling: 2, messaging: "mutation"

},

FE: {

name: ’fitness’, image: ’jluech/pga-cloud-fitness’,
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scaling: 1, messaging: "fitness"

},

}

// Settings for providing an initial population.

// If using "\" in the file path you should escape them with an

// additional one, like so "\\"

population: {

use_initial_population: False,

population_file_path: ’’

}

// Properties for PGA execution.

// Define at least the predefined ones (uppercase), but can also include

// custom properties for custom operators.

properties: {

USE_INIT: False,

MAX_GENERATIONS: 1500,

MAX_UNIMPROVED_GENERATIONS: 300,

MAX_TIME_SECONDS: 600,

POPULATION_SIZE: 200,

RANDOM_SEED: "",

MUTATION_RATE: 0.3,

CROSSOVER_RATE: 0.5,

ELITISM_RATE: 0.05,

knapsack_capacity: 150,

item_count: 30,

items_weights: [10, 22, 33, 17, 7, 14, 16, 24, 8, 12, 30, 21, 13, 44,

25, 6, 27, 18, 9, 40, 11, 28, 3, 14, 35, 26, 50, 18, 29, 10],

items_profits: [21, 35, 25, 17, 11, 21, 8, 10, 13, 18, 29, 23, 9, 33,

54, 22, 16, 31, 20, 37, 24, 28, 7, 19, 28, 3, 43, 26, 12, 14],

}

// Define here any custom file paths. Use the following scheme

// <unique_key>: ’<file_path>’

// Do NOT use the key "population" for it will be used for the initial

// population file defined above.

// If using "\" in the file paths you should escape them with an

// additional one, like so "\\"

custom_files: {

demo: ’C:\dev\PGAcloud\demo.yml’,

}

Listing 5.1: Complete Knapsack PGA Configuration
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The Dockerfile of our custom Fitness Evaluation.

// Define custom operator image.

FROM openjdk:14-alpine

MAINTAINER "Janik Luechinger janik.luechinger@uzh.ch"

// Copy contents to container.

COPY . /operator

WORKDIR /operator

// Start with PGAcloud Agent as base image.

FROM jluech/pga-cloud-agent:latest

MAINTAINER "Janik Luechinger janik.luechinger@uzh.ch"

// Install java in python image.

RUN apt-get update && \

apt-get -y upgrade && \

echo oracle-java14-installer shared/accepted-oracle-license-v1-2

select true /usr/bin/debconf-set-selections && \

echo "deb http://ppa.launchpad.net/linuxuprising/java/ubuntu focal

main" tee /etc/apt/sources.list.d/linuxuprising-java.list && \

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys

73C3DB2A && \

apt update && \

apt-get -y upgrade && \

apt install -y oracle-java14-installer

RUN java --version

// Insert agent container configuration file.

COPY --from=0 /operator/custom-config.yml /pga/custom-config.yml

// Create jar file from custom operator in PGA agent.

COPY --from=0 /operator/main /pga/main

RUN javac /pga/main/fitness/*.java && \

cd /pga/main && \

jar cfe FitnessEvaluation.jar fitness.Main fitness

Listing 5.2: Complete Fitness Dockerfile
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Presented below is the full configuration of the Agent container to include our implementation
of the Fitness Evaluation.

// Copy this file into "/pga/custom-config.yml" once inside

// the container.

// Provide the name of the operator to the agent for config retrieval.

// Use the corresponding name of the PGA config given to the client cli.

container_name: "fitness"

// Declare keys of properties to look for inside the database (properties

// you require for calling your code).

// Remove the brackets and list them like so

// (leave brackets for an empty list):

// property_keys:

// - {key: ’<prop_key>’, is_list: True|False}

property_keys:

- {key: ’knapsack_capacity’, is_list: False}

- {key: ’items_weights’, is_list: True}

- {key: ’items_profits’, is_list: True}

// Declare how to receive the individual and how to provide the output of

// your computation.

// Choose: input type ["file" || "value"]

// and output type ["file" || "console"].

// If "file" is chosen, provide a file path to the corresponding file

// (not required for other types).

input_type: "file"

output_type: "file"

input_path: "/pga/input.yml"

output_path: "/pga/output.yml"

// State how to call your code, including potential parameters.

// If you require additional properties, declare them using the related

// key used to retrieve it from the DB.

// Contents of lists will be passed as a comma-separated string, without

// whitespaces between consecutive elements.

// "... param={PROP_KEY}"

command: "java -jar main/FitnessEvaluation.jar

capacity={knapsack_capacity} weights={items_weights}

profits={items_profits}"

Listing 5.3: Complete Agent Configuration
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Our implementation of the fitness function.

double fitEval(Individual individual) {

double profits = 0;

double used_weight = 0;

double available_weight = 0;

for (int i=0; i < individual.solution.length(); i++) {

int bit = Integer.parseInt(individual.solution.substring(i, i+1));

profits += (bit * this.items_profits.get(i));

used_weight += (bit * this.items_weights.get(i));

available_weight += this.items_weights.get(i);

}

System.out.println(String.format("Profits: %.2f", profits));

System.out.println(String.format("Used Weight: %.2f", used_weight));

System.out.println(String.format("Available Weight: %.2f",

available_weight));

double scaled_unused_weight = available_weight

* Math.abs(capacity - used_weight);

System.out.println(String.format("Scaled Unused Weight: %.2f",

scaled_unused_weight));

double fitness = profits - scaled_unused_weight;

individual.fitness = fitness;

return fitness;

}

Listing 5.4: Complete Fitness Function
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This is the Main method of our Fitness Evaluation operator.

public static void main(String[] args) {

// Collect individual from input file.

List<Map<String, String>> input_data = new ArrayList<>();

try {

File inputFile = new File(input_path);

Scanner inputReader = new Scanner(inputFile);

while (inputReader.hasNextLine()) {

String line = inputReader.nextLine();

line = line.replace("{", "");

line = line.replace("}", "");

line = line.replace("\"", "");

String[] fields = line.split(",");

Map<String, String> data = new HashMap<>();

for(String field : fields) {

String[] key_value = field.split(":");

String key = key_value[0].strip();

String value = key_value[1].strip();

data.put(key, value);

}

input_data.add(data);

}

inputReader.close();

} catch (FileNotFoundException e) {

System.out.println("Provided file was not found.");

e.printStackTrace();

}

Map<String, String> ind_map = input_data.get(0);

Individual individual = new Individual(ind_map.get("solution"),

Double.parseDouble(ind_map.get("fitness")));

System.out.println(String.format(

"Evaluating individual ’%s’", individual.solution)

);

// Parse input data and create fitness operator with it.

// Passed in as arguments like so "capacity=150"

or "profits=1,5,2,4,3"

Map<String, String> argVals = new HashMap<>();

for(String arg : args) {

String[] keyVal = arg.split("=");

String key = keyVal[0];

String val = keyVal[1];

argVals.put(key, val);

}

String profitsStr = argVals.get("profits");

String[] profitsArr = profitsStr.split(",");
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ArrayList<Integer> profits = new ArrayList<>();

for(String profit : profitsArr) {

profits.add(Integer.parseInt(profit.strip()));

}

String[] weightsArr = argVals.get("weights").split(",");

ArrayList<Integer> weights = new ArrayList<>();

for(String weight : weightsArr) {

weights.add(Integer.parseInt(weight.strip()));

}

FitnessEvaluation fitEval = new FitnessEvaluation(profits, weights,

Double.parseDouble(argVals.get("capacity")));

// Evaluate the fitness of the given individual.

fitEval.fitEval(individual);

System.out.println("Evaluated individual with fitness: "

+ individual.fitness);

// Write individual with computed fitness to output file.

try {

List<String> content = Arrays.asList(

"{",

String.format("\t\"solution\": \"%s\",",

individual.solution),

String.format("\t\"fitness\": %f", individual.fitness),

"}"

);

Path file = Paths.get(output_path);

Files.write(file, content, StandardCharsets.UTF_8);

} catch (IOException e) {

System.err.println("Caught IOException: " + e.getMessage());

e.printStackTrace();

}

}

Listing 5.5: Complete Fitness Evaluation Operator
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