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Zusammenfassung

Die Evolution von Wissensgraphen, sogenannten Knowledge Graphs, stsst in der For-
schung auf zunehmendes Interesse. Aus diesem Grund bildet diese Thesis dafur eine
Grundlage, indem sie ein Framework entwickelt, welches historische Versionen des Wiki-
data Wissensgraphen nachbildet. Um Ressourcen zu sparen extrahiert das Frame-
work einen Subgraphen aus dem Original und generiert die urspranglichen Versionen
basierend darauf. Megliche Verzerrungen durch verschiedene Sampling Methoden wer-
den analysiert und stimmen mit den Ergebnissen aus bisherigen Studienuberein. Damnaber
hinaus beschreibt diese Arbeit die verschiedenen Arten von Revisionen und wie diese
nackgangig gemacht werden kennen um eine Sequenz von frsheren Versionen des Sub-
graphen zu erhalten. Schlussendlich wird aufgezeigt, wie diese Versionen in einem Stan-
dard RDF Format zunackgegeben werden.






Abstract

Studying the evolution of knowledge graphs has become an important topic of current
research. For that purpose, this thesis provides a foundation by contributing a frame-
work that creates historic snapshots of the Wikidata knowledge graph. In order to save
resources, the framework extracts a sample out of the original graph and generates the
snapshots based on that sample. The behavior and biases of di erent traversal-based
sampling techniques are analyzed and they agree with previous observations by related
work on sampling. This work further describes the types of revisions and how they can
be undone in order to create a sequence of versions of the sampled graph in earlier stages
of its history. Finally, it demonstrates how the snapshots are returned in a standard RDF
format.
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1

Introduction

1.1 Motivation

Knowledge graphs have become ubiquitous in our daily lives. We interact with them
in various ways, although we do not obviously recognize them. While sur ng through
the internet we get product suggestions through recommender systems. When doing
a Google search not only links but also a box with auxiliary information and context
is displayed to the user. Personal digital assistants are used to answer questions or to
complete tasks the user assigned to it. Hiding behind all these interactions are knowledge
graphs which provide applications with their linked data.

Google coined the term "Knowledge Graph in 2012. Today, there exist many dif-
ferent knowledge graphs, commercial as well as open-source. Among the openly avail-
able ones, the most prominent graphs are DBpedia, Freebase, YAGO, OpenCyc and
Wikidata. These graphs arrange knowledge as networks with nodes describing things
and edges expressing the relations between them. This thesis focuses on the Wikidata
knowledge graph. Wikidata is a free collaborative knowledge base where users can con-
tribute and edit data. In a comparative study between di erent free knowledge graphs
Wikidata has shown to be one of the most complete graphs and it also stands out in
other quality aspects like trustworthiness, accuracy, accessibility and relevancy [Farber
et al., 2017].

Knowledge graphs, as well as knowledge itself, naturally evolve over time. New knowl-
edge is added, already existing knowledge may be updated or has to be corrected in cases
of wrong or unspeci ¢ information. Analyzing the evolution of knowledge graphs can
provide researchers with new discoveries. They are for example interested of how evolu-
tion a ects the services implemented on top of the knowledge graphs [Pernischowa, 2019]
or in the prediction of the occurrence or recurrence time of facts (in this context, fact
means an edge describing a relation) [Trivedi et al., 2017].

To be able to conduct research on knowledge graph evolution, all the changes a graph
experiences need to be kept track of. This can either happen by storing old versions
of the knowledge graph or by providing a change history which collects each of the
revisions individually. The maintainers of Wikidata o er both data sets. Nevertheless,
there are several di culties when working with old versions of Wikidata. First, they are

Lhttps:// www.blog.google/ products/ search/ introducing-knowledge-graph-things-not/



2 CHAPTER 1. INTRODUCTION

not available at regular intervals and second, they may contain changes over a too long
time period. Further, processing the whole Wikidata knowledge graph would require a
high amount of resources such as memory and time.

1.2 Description of Work

This motivation leads us to the goal of this thesis which is the design and implementation

of a framework for creating sequences of versioned knowledge graphs (snapshots) from
Wikidata. The framework rst extracts a sample from the current Wikidata graph to
save resources. To this objective, this work discusses and implements di erent sampling
techniques. The framework then accesses the revisions for the sampled graph from the
change history provided by Wikidata. It has to undo these revisions in their correct
order to generate a sequence of snapshots of how the sample graph looked like back
in time. Such an approach helps to overcome the obstacles discussed before as we are
aware of each individual revision. In contrast, old data dumps only contain summarized
revisions over a long time period. Furthermore, working with samples saves a lot of
computing resources. Therefore, this thesis should provide a resource-e cient, precise
tool to generate a sequence of historical snapshots from the Wikidata knowledge graph.

1.3 Outline

Chapter 2 gives an introduction into the Semantic Web with attention to Wikidata and
the way Wikidata structures its data. The third chapter analyzes di erent graph sam-
pling techniques by comparing related work. In Chapter 4 the frameworks requirements
are discussed, followed by the description of the implementation in Chapter 5. The
implementation chapter is divided into an overview of the framework and the imple-
mentation of each the sampling, the undoing of the revisions and the returning of the
snapshots. Chapter 6 then discusses the limitations of the framework, whereas Chapter
7 contains enhancements and ideas for future work. Finally, Chapter 8 concludes this
thesis with a critical re ection and a short summary.



2
Wikidata and the Semantic Web

In order to pave the way for implementing a versioning tool for Wikidata, we rst
have to take a look at the foundation concepts of the Semantic Web and how Wikidata
organizes its data. The rst section discusses the key concepts of the Semantic Web
while the second section introduces the collaborative knowledge base Wikidata which is
based on these concepts. The nal section then discusses the Wikidata data model.

2.1 Introduction to the Semantic Web

The vision of the Semantic Web is to make web data machine readable [Berners-Lee
et al., 2001]. This way, it is possible to integrate data across websites and query not
only for keywords but also contextual information. Semantic Web follows three main
design principles:

Labeled graphs model objects as nodes and edges as relations between those ob-
jects. Resource Description Framework (RDF) [Miller and Manola, 2004] is used
to formalize such logic statements.

Uniform Resource Identi ers (URISs) identify data items and their relations.

Ontologies formally describe the semantics of the data.

RDF uses resources, properties, statements and graphs as concepts. A resource de-
scribes an object with an URI which unambiguously refers to that object. Properties
(again declared with URISs) are used to express relations between resources. Statements
then specify a claim about an object. This claim is handled as a triple consisting of a
resource, a property and a value. A value, in turn, may be either another resource or
a literal (e.g. numbers, strings, dates). Such statements can further be illustrated as
graphs with the property as a label for the edge which is directed from the subject of
a statement to the object. The object may then be the subject of another statement.
This linking of data results in a knowledge graph which can be shared across di erent
applications. A simple RDF statement extracted from the Wikidata knowledge base is
represented in Figure 2.1 as a simple graph with two resource nodes and a directed edge
describing the relationship between them.
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Figure 2.1: A Simple RDF Statement

The statement in Figure 2.1 is expressed with full triple notation which means that
each URI has to be written out completely. Since such a notation would result in
many repetitions and long statements, there is a way to abbreviate URI references with
qguali ed names. A quali ed name consists of a pre x, a colon and a local name. The
pre x is assigned to a namespace URI. Therefore, resources and properties starting with
the same namespace can share the corresponding pre x. The shorthand notation of our
simple RDF statement consequently results in:

PREFIX wd:
PREFIX wdt:
wd:Q72 wdt:P17 wd:Q39 .

2.1.1 Querying the Semantic Web

To make use of the information represented in RDF, we need to be able to access relevant
data parts. For this purpose a query language is needed. SPARQL is the W3C recom-
mendation query language for RDF [Seaborne and Prud’hommeaux, 2008]. SPARQL
gueries normally consist of a set of triple patterns, namely a basic graph pattern. Such
patterns are similar to RDF, but each of the subject, property and object may be substi-
tuted with a variable. A variable is assigned a "?" at the beginning. A graph pattern for
the RDF statement in Figure 2.1 that introduces a variable for the object has therefore
the following structure: wd:Q72 wdt:P17  ?country.

Such a basic graph pattern can match with triples from the actual RDF database if
the triples are equivalent except for the variable which may be substituted with possibly
multiple results. When running above pattern over the Wikidata SPARQL endpoint,
it returns all triples where wd:Q72 is the subject and wdt:P17 is the property. In
our example graph pattern, the endpoint returns only one matching triple: wd:Q72
wdt:P17  wd:Q39

Nevertheless, for a complete SPARQL query the pre xes as well as the particular
variable(s) that we want to be returned in the result need to be de ned. Therefore, the
complete query for above graph pattern may be written as:

PREFIX wd:
PREFIX wadt:
SELECT ?country
WHERE {
wd:Q72 wdt:P17 ?country .

}
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Of course, SPARQL provides functionalities for writing more complex queries. The
SPARQL W3C recommendation pagé provides a list of those functionalities and pos-
sible query patterns. But even complex queries build up on the basis of nding triples
matching a speci ed graph pattern.

2.2 Wikidata

Wikidata 2 is the free collaborative knowledge base of the Wikimedia Foundatioh Since
its launch in October 2012, Wikidata has become one of the largest open data collec-
tions [Malyshev et al., 2018]. To make Wikidata applicable to data analysis and query
mechanisms, it follows the principles of Semantic Web technologies. As part of the Se-
mantic Web, Wikidata integrates data not only from Wikipedia but also many other
external sources resulting in a wide range of general and speci c knowledge [Erxleben
et al., 2014]. At the current time, Wikidata contains over 65 million items* and more
than 808 million statements®.

Before discussing the data model, it is important to mention several design decisions
de ning Wikidata [Vrandect and Kmtzsch, 2014]:

Open Editing and Community Control: The data as well as the schema of the data
itself are managed and controlled by the community.

Plurality and Secondary Data: Often data can not be represented as the one
ultimate truth. There has to be the possibility that one statement was true only
for a certain range of time or we may want to store one or more sources to support
our statement. Wikidata has been designed to deal with such plurality.

Multilingual Data: Wikidata is a multi-lingual project and supports over several
hundred di erent languages including dialects like Swiss German. While some data
values as numbers and coordinates are shared over languages, others as labels and
descriptions can be translated and displayed in any language supported by the
software.

Easy Access: Wikidata dumps are accessible in several formats including JSON,
Turtle and N-Triples. Therefore, the data can easily be used by external applica-
tions.

Continuous Evolution: Since Wikidata is a collaborative project, it evolves contin-
uously with its growing community.

Lhttps:// www.w3.0rg/ TR/ rdf-sparql-query/

2https:// www.wikidata.org/ wiki/ Wikidata:Main ~ _Page

Shttps:// wikimediafoundation.org/

“http:// www.wikidata.org/ wiki/ Wikidata: Statistics ~ , statistic based on snapshot from 2019-10-28
Shttps://tools.wm abs.org/ wikidata-todo/ stats.php , statistic based on snapshot from 2019-10-28
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2.3 The Wikidata Data Model

This section presents the Wikidata data structure and the way this data is represented
in RDF. Wikidata handles data about things/resources described by Wikimedia articles
such as Wikipedia, Wikivoyage, Wikisource, Wikiquote, or Wikimedia Commons. Its
main objective is to store the data and make it available in any language. Anltem
de nes what an article is about. There exist over hundred Wikipedia articles for the
item Zdrich in several languages; in contrast to Wikidata which handlesZarich as a
single item supporting di erent languages and pointing with sitelinks to each of these
articles.

Each item gets supplied with various pieces of information forming theltemDescrip-
tion . An ItemDescription contains some kind of basic information, normally sitelinks
to the corresponding page on a Wikimedia site. Furthermore, it consists of labels, de-
scriptions and aliases in diverse languages and a set &tatements about the item.
A statement is composed of a claim (e.g.Zdrich has apopulation of 414,215) and a
list of references supporting that claim. Figure 2.2 illustrates an example of a part of a
Wikidata item and its most important terms.

An essential part of an item are the aforementioned statements, they de ne detailed
characteristics and commonly consist of property-value pairs. In the Zarich example,
population is the property and the value is a number. Properties store aPropertyDe-
scription which de nes the datatype they may take as input for values. Possible data
types are strings, numbers, coordinates, other items or properties and time values. A full
list of all data types and their values is available on the Mediawiki pag€. As in RDF,
unique identi ers are used to determine entities like items and properties. Taking the
item from Figure 2.2, Internationalized Resource Identi ers (IRIS) are used to declare
the Douglas Adamsitem as Q42 and the property educated atas P69. Nevertheless,
Wikidata di ers to classic RDF datasets in making use of rei cation. RDF rei cation is
applied when there is the necessity to make statements about statements. In Wikidata,
this happens in the following cases:

Statements may themselves be the subject of property-value pairs. Such additional
pairs are called quali ers and are used to add context to a claim. In Figure 2.2,
quali ers add auxiliary information like start time, end time and kind of degree to
the main statement.

Wikidata stores supplementary information to some data values. They can be
considered as compound objects. For example, time values not only store date and
time, but also precision, timezone and the type of calendar such as Gregorian.

To support the claims made by statements, Wikidata provides the possibility to
store references. As can be seen in Figure 2.2, references also may consist of
multiple property-value pairs specifying the provenance of the reference in question.

Wikidata solves the rei cation problem by using n-ary relations. N-ary relations
implement additional, intermediate nodes and therefore can capture relations between

Shttps:// www.mediawiki.org/ wiki/ Wikibase/ DataModel
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Figure 2.2: Wikidata Item with Important Terms

more than two entities. Wikidata handles such complex relations by adding interme-
diate statement, value and reference nodes. About a tenth of all triples in Wikidata
are instantiations of just statement nodes, therefore leading to a signi cant amount of
overhead [Farber et al., 2017]. This shows that Wikidata extensively uses rei cation,
distinguishing it from many other openly available knowledge graphs.

Figure 2.3 illustrates this approach. The statement in Figure 2.3 claims that Ger-
many has a speed limit of 100 km/h. An additional quali er species the context
of this limit narrowing down the validity of the main statement for paved roads out-
side of settlements The simplest case in the illustration is wdt:P3086 Gpeed limit)
which connects the item Germany directly to a simpli ed version of the value (the
number 100). This way, properties with the namespace pre x wdt (which stands for
http://lwww.wikidata.org/prop/direct/) always behave like normal RDF triples return-
ing such simpli ed values with no context information.

As can be seen in both Figures 2.2 and 2.3, Wikidata also provides a statement rank
which is some type of built-in annotation. Ranks are important for Itering mecha-
nisms when more than one statement exists for one property. Ranks can be normal

"Source: https:// www.wikidata.org/ wiki/ Wikidata: Introduction
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Figure 2.3: Wikidata Statement and its RDF Graph Representation [Malyshev et al.,
2018]

(default), preferred or deprecated. Preferred ranks are commonly used to mark the
most up-to-date statement. The rank as well as quali ers and references can be re-
trieved by following p:P3086 to the statement node. The statement node is declared
by the pre x wds (for http://www.wikidata.org/entity/statement/), the item identi er

Q183 and a Universally Unique Identi er (UUID) de ned by Wikidata for every state-
ment. From the statement node, one can follow ps:P3086 again for a simpli ed version
of the value or psv:P3086 for the complete compound value. Depending on the type
of the value node (e.g. GlobecoordinateValue, TimeValue), corresponding properties
add the auxiliary information. In Figure 2.3, a QuantityValue node further speci es
the quantityAmount as a decimal number of 100 and the quantityUnit as kilometre
per hour. A full list of all properties for value nodes is available onlin€. These value
properties belong to the OWL ontology of Wikibase’. When following the statement
node to psn:P3068, a normalised version of the value can be accessed. The pq pre x
(for http://lwww.wikidata.org/prop/quali er/) is further used to access the quali ers.

In the example, pg:P3005 yalid in place) adds context information for the validity of
the main statement. Finally, through prov:wasDerivedFrom, one obtains the reference
node which further links to the reference details.

Next to property-value statements, Wikidata o ers the possibility to create statements
that contain no value or some values. Statements with no value indicate that a value
simply does not exist (e.g. to state that a person has no children) and has not been
forgotten or left out. Statements with some values refer to statements that have a value
for a certain property, but the value is not speci ed or unknown (e.g. a person has an
unknown date of birth).

A statement with only one quali er rapidly results in a comparatively complex RDF
graph as can be seen in Figure 2.3. The Wikidata data model produces graphs with

8https:// www.wikidata.org/ wiki/ Special: ListDatatypes
%http:// wikiba.se/ ontology#
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many, often redundant, triples. Redundant triples arise for example for normalized
values. A normalized value may be stated with the psn: pre x after a statement node
and may occur a second time after the value node for property quantityNormalized.
Furthermore, for all intermediate nodes like statement, value and reference nodes, an
additional triple declares the type of these nodes. These data model design decisions
were made to simplify query mechanisms [Malyshev et al., 2018]. Therefore, a wide
range of queries are possible, from simple to complicated.
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Graph Sampling

Graph or network sampling is a crucial part when dealing with large, real-world networks.
To analyze and create snapshots of the Wikidata knowledge graph, it is bene cial to
rst extract a sample to deal with the massive data volume. The motivation behind
sampling is execution e ciency. In order to save resources such as time and memory, it
is computationally more e cient to further process a small, but representative sample
from the original graph.

In statistics, sampling methods are techniques used to select members out of a target
population group. A representative sample accurately re ects the characteristics of a
larger population. With a representative sample, one can draw conclusions from the
sample over the population. Appropriate estimations for the population can be achieved
if the sample size is large enough and members are randomly selected. Since networks
depend on two di erent elements (nodes and links), simple random selection may not be
suitable: many network properties depend on how nodes and links are interwoven [Lee
et al., 2006]. This node-link dependence makes graph sampling a challenging task.

There exist many papers presenting di erent approaches for reducing the graph size
while still obtaining a "good" sample. Such papers not only dier in the sampling
algorithms but also in the way they de ne such a representative sample. This is not sur-
prising since graphs are characterized by many di erent properties. Being representative
can mean plenty of things depending on which graph metrics are of interest.

There is an important trade-o between the complexity of the sampling algorithm and
the complexity and size of the network [Ahmed et al., 2013]. For example, one could
formulate the problem of sampling as a minimization problem to reduce the distance be-
tween the sampled and the original graph [Hu and Lau, 2013]. Such complex algorithms
can easily ruin our primary purpose of saving resources. Thus, simpler sampling meth-
ods are generally preferred over complex ones. This chapter discusses di erent sampling
techniques from recent years.

3.1 Classes of Sampling Algorithms

Sampling techniques can be categorized into two groups, namely random sampling and
topology-based sampling. Random sampling is based on either selecting nodes or edges
at random while topology-based sampling builds up on the existing topology of the
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original graph. This section gives an overview over both groups and introduces the most
common methods.

3.1.1 Random Sampling

In classic node sampling (NS), nodes are selected independently and uniformly at random
from the original graph G [Ahmed et al., 2013]. Therefore, for a fraction of nodes
required to be in the sampled subgraphGs, each node is sampled independently with a
probability of . After all the nodes Vs are sampled, all edges amonys 2 G are added
to the edge sample sekg, resulting in an induced subgraph.

In contrast to selecting nodes, one can as well select edges independently and uniformly
at random. Classic edge sampling (ES) makes use of this strategy [Ahmed et al., 2013].
Each time an edge is selected to be i®Bs, both nodes incident to that edge are included
in the sample as well. No additional edges are added t&s than the ones chosen in the
random edge selection process. Hence, the resulting subgraph is only partially induced.

3.1.2 Topology-Based Sampling

Topology-based sampling methods start by randomly selecting a node and then recur-
sively visit one, some or all of its neighbors. This category can further be classi ed into
two subcategories: graph traversal techniques and random walks [Kurant et al., 2011].

In graph traversal techniques, nodes are visited exactly once, no encounter with pre-
viously sampled nodes is intended. The main di erence between the algorithms of this
subcategory is the order in which they visit the nodes and the number of neighbors that
are selected to be in the sample. Breadth-First-Search (BFS) rst visits all successor
nodes of the starting node, before moving onto the next level of depth. Depth-First-
Search (DFS) explores each branch to the greatest extent possible and rst samples the
leaf nodes. Other examples of graph traversal techniques include Forest Fire Sampling
and Snowball Sampling.

In random walks, the next node to add to the sample is selected uniformly at random
among the neighbors of the current node. In contrast to graph traversal techniques,
random walks generally allow revisiting nodes. Therefore, random walks may try to
sample the same node more than once.

3.2 Discussion of Related Work

This section discusses di erent sampling strategies. An overview of related work is given
by Tables 3.1 to 3.3. The papers summarized in the tables study the problem of network
sampling. Nevertheless, they di er in various aspects like sampling algorithms, against
which graph properties they compare the samples, as well as the type of networks itself.
It is therefore di cult to conclude which sampling technique provides the best results.
Still, papers generally agree on some sampling techniques to generate unsatisfactory
samples.

12
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Classic random sampling techniques su er from numerous drawbacks. For example,
node sampling does not retain the properties of graphs with power-law degree distribu-
tions [Stumpf et al., 2005]. Also, it seems reasonable that the original level of connectivity
will be lost, since only edges between sampled nodes are kept. Edge sampling techniques
have similar limitations and fail to preserve many graph properties. Samples obtained
from ES result to be too sparse and have a bias towards high-degree nodes [Leskovec
and Faloutsos, 2006][Lee et al., 2006]. Considering these drawbacks, many researchers
have studied topology-based sampling methods. An advantage of such methods is the
generation of connected topologies, even when the sample size is very small. Di erently
from random sampling, they take better into account the interdependence of nodes and
edges and they usually perform better than simple NS and ES. Therefore, the rest of
this section focuses mainly on related work for traversal-based sampling.

Breadth-First-Search has been widely used for graph sampling since it produces con-
nected samples and returns a full view of a particular region of the graph. Unfortunately,
BFS is biased towards high-degree nodes and thus, BFS samples may underestimate low-
degree nodes by two orders of magnitude [Gjoka et al., 2010]. To correct the degree bias
of BFS, one of the papers proposes a correction procedure that leads to an unbiased
estimation of the degree distribution [Kurant et al., 2011]. Another drawback of this
technique is that the sample may have di erent topological features opposed to the graph
as a whole since only some small area is represented. In contrast to BFS, Depth-First-
Search starts sampling from the last discovered node and as a consequence, samples
nodes from the periphery of the graph [Doerr and Blenn, 2013]. This results in adding
leaf nodes with low degrees rst into the sample. Hence, this algorithm drastically un-
derestimates the average node degree. Random-First-Search (RFS) is an alternative for
BFS and DFS. RFS randomly selects the next node from among the list of discovered,
but not yet sampled nodes. This method is quite similar to a random walk without
revisiting and has been shown to perform better than its two relatives [Doerr and Blenn,
2013].

A variant of BFS is Snowball Sampling (SBS). According to the classic de nition by
Goodman, SBS is similar to BFS. But in contrast to BFS which samples all neighbors
of a node, SBS randomly samples exactly a xed fraction ofn neighbors [Goodman,
1961]. If these neighbors have not been visited before, they are added to the queue to
process next. SBS has been a popular method in sociology studies for research on hidden
populations [Hu and Lau, 2013]. This is due to the fact that every person (node) can
name a numbern of his friends (neighboring nodes) in an iterating fashion. Thus, one
obtains a sample of people with similar interests useful in such studies. Similar to BFS,
this sampling method retains the network connectivity. Shortcomings of SBS are the
negative trait to pick hubs (nodes with degrees greatly above average) in short intervals
and the boundary bias. Last mentioned bias results from the problem that the nodes
sampled on the last round are missing a large number of neighbors [Lee et al., 2006].
Mostly a ected from this boundary bias is however BFS since it samples all neighbors
for each node. Respondent-driven sampling (RDS) is an approach to overcome these
biases and supplies SBS with a correction procedure [Heckathorn, 1997].

Forest Fire Sampling (FFS) makes use of a partial BFS as well as it samples only

13
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a fraction of neighbors. The algorithm starts by randomly selecting a starting node
and then "burning" a random number of its outgoing edges. The edges together with
their incident nodes are added to the sample and the process continues recursively.
Leskovic and Faloutsos showed that FFS yields good samples that accurately match
many properties of the original graph [Leskovec and Faloutsos, 2006]. The random
number of edges to be burned at each node is generated by a geometric distribution
with mean ps =(1 pr). For best results, the authors suggest 0.7 as a value fqs which
results in an average of 2.33 sampled edges per node.

The most popular and simplest version of random walk topology-based sampling meth-
ods is Random Walk Sampling (RW). RW is basically working like SBS, but with n = 1.
Therefore, at each node only one outgoing edge with its incident node is sampled. Some
papers additionally include a y-black probability. With this probability, a neighbor is
visited only with a certain probability or else, the initial node is visited again, there-
fore allowing to sample more neighbors. A typically used y-back probability is 0.15
[Leskovec and Faloutsos, 2006]. However, in contrast to SBS, RW can visit edges and
nodes again whereas SBS does not allow revisiting. A drawback of RW is the bias towards
high degree nodes and densely connected parts of the graph [Leskovec and Faloutsos,
2006][Gjoka et al., 2010].

Metropolis-Hastings Random Walk (MHRW) was designed to avoid this high-degree
bias. It modi es the probabilities to move to a neighbor to achieve a uniform degree
distribution. Initially, it starts like Random Walk by selecting the next candidate node
w uniformly at random from among the neighbors of nodev. Then, a uniformly random
number 0 p 1is generated. Ifp € then w is the next node to be in the
sample. Otherwise,w is rejected and the algorithm stays atv giving other incident
nodes a chance to be selected. This way, a neighboring node with a lower degree than
the current one will always be sampled and some of the nodes with higher degrees are
rejected. Hence, samples generated by MHRW lead to very accurate degree distributions
[Gjoka et al., 2010].

Gjoka et al. further propose Re-Weighted Random Walk (RWRW) which is supposed
to lead to accurate estimations of degree distributions as well. This method is not further
considered here as it consists simply of a Random Walk with a subsequent correction pro-
cedure. Since MHRW rejects sampling many neighboring nodes, it only slowly di uses
over the network which consecutively may result in poor estimation accuracy [Lee et al.,
2012]. Lee et al. therefore came up with another sampling method called Metropolis-
Hastings algorithm with delayed acceptance (MHDA). Normal MHRW may return to
nodes it has already visited before. MHDA remembers the previous nodes and increases
the probability to move to one of the other neighbors. MHDA is supposed to lead to
unbiased graph sampling and smaller variance than MHRW at almost no additional
costs.

Another version of a random walk based algorithm that may eliminate the bias of RW
is Frontier Sampling (FS). FS rst samples m randomly selected seed nodes. From the
list of seed nodesS, a nodev is selected with a probability of P, = Pde@’%. One of
the outgoing edges ofv is then selected uniformly at random and addied together with
its incident node w to the sample. The set of seed nodeS gets updated by replacing
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v with the newly sampled nodew and the process continues by selecting the next node
out of S. FS estimates have shown to be consistently more accurate than those of RW
and furthermore, FS is expected to maintain robust in the presence of disconnected or
loosely connected components [Ribeiro and Towsley, 2010]. Wang et al. as well proved
in experiments that both FS and MHRW keep the degree distribution well. But in
contrast to the statement of Ribeiro and Towsley, they conclude that FS (as well as
MHRW) works better for tightly connected graphs [Wang et al., 2011].

Krishnamurthy et al. take a completely di erent approach to generate a graph sample.
They use reduction techniques to not destroy already existing graph properties. The idea
is to delete edges or nodes or to contract two incident nodes and therefore ending up
with a removed edge and a merged node. Among the examined methods, DHYB-0.8
performed best [Krishnamurthy et al., 2005]. This algorithm removes with a probability
of 0.8 a random edge incident to a randomly selected node or, with a probability of
0.2 removes a randomly selected edge. Unfortunately, the authors only received good
results for reducing the size of the graph up to 70% in terms of nodes, whereas Leskovic
and Faloutsos were able to generate samples that properly matched the properties of the
whole graph for sample sizes down to 15%.

A promising sampling method belonging to the family of random sampling is called
totally induced edge sampling (TIES) [Ahmed et al., 2013]. Initially, TIES chooses
uniformly at random edges and adds the nodes incident to them to the sample. Next,
for all edges from the original graph, it checks if its incident nodes are already sampled.
If this is true, then it adds that edge to the sample. Therefore, the sample contains
all possible edges between the nodes sampled in the initial phase. The authors claim
that every graph sampling method naturally produces subgraphs with underestimated
degrees since only a subset of a nodes neighbors may be collected. They refer to this
as the downward bias. Since edge sampling results in a bias towards high degree nodes,
Ahmed et al. conclude that this upward bias helps to o set the downward bias of the
sampled degree distribution. A problem of edge sampling nevertheless is the missing
connectivity of the sample. The TIES second step, the induction, helps to recover much
of the connectivity and therefore increasing the local clustering in the sample. Ahmed
et al. were able to produce good sampling results with TIES, outperforming even FFS.
Indeed, one of the main advantages of TIES is that it samples the network sequentially.
Since many graphs do not t into main memory, sampling from large networks requires
many random disk accesses which may lead to high I/O costs. Unlike topology-based
methods, TIES does not have to explore a nhodes neighbors and therefore leading to huge
amounts of disk accesses. The sequential fashion in which TIES samples a graph is much
more cost-saving and may therefore be a suitable sampling algorithm for large networks.

The discussion of related work shows that many di erent algorithms have been studied,
but there is a lack of a fair comparison between them. The decision on how to sample a
graph nally depends on the speci c application and what requirements to the sample
are necessary.
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Reference [Doerr and Blenn, 2013] [Leskovec and Faloutsos, [Gjoka et al., 2010]
2006]
Sampling Breadth-First-Search (BFS), Random Edge Sampling (ES); RW, BFS, Metropolis-Hastings
Algorithm(s) Depth-First-Search (DFS), Random Node Sampling (NS); Random Walk (MHRW),
Random-First-Search (RFS), all | Exploration: Random Walk Re-Weighted Random Walk
without revisiting (RW), Random Jump (RJ), (RWRW)
Forest Fire (FFS)
Algorithm 100 random starting nodes Exploration: random starting 28 uniformly random initial
Input node; FF: burning probability nodes

Network Type
Graph Proper-
ties/Metrics
analyzed

Discovered
Bias

Findings

Social Network

Assortativity, Avg degree,
Correlation, Diameter, Density,
Power-law exponent

BFS overestimates high-degree
nodes while DFS underestimates
them. This results also in a bias
for density and power-law
exponent.

BFS and DFS generally perform
poorly. Good estimates are only
held for sample sizes of more
than 20-30% of the full network
size. RFS performs signi cantly
more accurate and converges to
the correct value faster.

Large networks, directed

Full set of graph properties
containing 9 di erent distribu-
tions and 5 single measures

RW, RJ are biased towards
high-degree nodes and densely
connected parts. The slope of
ES degree distribution is too
steep, samples are sparsely
connected.

FFS generally yields good
samples (with burning
probability of 0.7). Good
samples that match the
properties of the real graph are
obtained for sample sizes down
to 15%.

Social Network, undirected

Node degree, Relative size of
sampled nodes from specic
region to actual region size

BFS and RW are biased towards
high degree nodes and under-
estimate low-degree nodes by
two orders of magnitude. BFS
densely covers only some speci @
region.

The authors nd that MHRW
and RWRW perform very well,
they estimate the two
distributions of interest almost
identically to the true uniform
sample they used to validate the
samples against.

Table 3.1: Sampling Methods studied by Related Work.
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Reference [Ahmed et al., 2011] [Krishnamurthy et al., 2005] [Lee et al., 2012]

Sampling ES, NS, FFS, totally induced Deletion and contraction MHRW with delayed acceptance
Algorithm(s) edge sampling (TIES) methods (MHDA)

Algorithm FFS: Randomly selected seed - Randomly selected seed node
Input node

Network Type

Graph Proper-
ties/Metrics
analyzed

Discovered
Bias

Findings

Real-world networks,
undirected, sparse

Degree distribution, Path
length, Clustering coe cient,
Size of connected components

ES is biased towards high-degree
nodes. NS results in too
sparsely connected nodes. Any
sampling algorithm naturally
underestimates the degrees in
the degree distribution (since
only a subset is sampled).

TIES generally outperforms the
other algorithms. The upward
bias from the edge sampling
process o sets the downward
bias of the sampled degree
distribution. The induction step
helps to recover much of the

connectivity in the sample.

Internet topology graph,
undirected

Average degree and deviation,
Degree distribution, Spectral
analysis

The authors claim that with
such graph reduction methods
they do not destroy existing
graph properties, in contrast to
constructive methods which
have to reproduce the original
properties.

DHYB-0.8 (remove random edge
incident to randomly selected
node with probability 0.8, else
remove random edge) performs
best among the examined
methods. Good results were
obtained by reducing the graph
up to 70% in terms of nodes.

Real-world networks, undirected

Degree distribution, Largest
connected component

Normal MHRW can get stuck at
a node and therefore only slowly
di uses over the space. This
behavior can lead to a reduced
estimation accuracy.

MHDA is supposed to lead to
unbiased samples while also
achieving higher sampling

e ciency than MHRW.

Table 3.3: Sampling Methods studied by Related Work.
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Requirements

This chapter gives an overview of what the framework should be capable of. The fol-
lowing sections analyze the requirements for each of the tasks of sampling, creating
the snapshots and of displaying the results. The keywords "MUST", "MUST NOT",
"REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOM-
MENDED", "MAY", and "OPTIONAL" used for the requirements can be interpreted

as described in RFC 2119 [Bradner, 1997].

4.1 Requirements for Sampling

Because of the sheer volume of the Wikidata knowledge graph, the framework imple-
mented during this thesis is based on sampling. Processing the whole knowledge graph
would result in requiring huge amounts of resources like memory and time. Conse-
qguently, researchers rely on sampling techniques to study smaller subgraphs that have
similar properties as the graph they were derived from.

As discussed in Chapter 3, sampling from large graphs is possible in various ways.
There is no perfect solution, but one can conclude some appropriate approaches from
related work. For example, topology-based sampling methods result in better (e.g. in
terms of connectivity) samples than random edge or node sampling and should therefore
be preferred (see Section 3.2). Regarding the sampling process, the framework focuses
on the following requirements:

RS-1: The framework MUST extract a sample set of nodes and edges out of the
Wikidata knowledge graph.

RS-2: The sample set MUST be connected. Hence, the number of connected
components in the sample must be one.

RS-3: The framework MUST take into account constraints the user sets on the

graph sampling. These constraints include the number of vertices to be in the
sample and the setting of a seed node from where the sampling algorithm starts
collecting further nodes and edges.
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RS-4 The framework MAY take as input two seed nodes that create overlapping
samples and therefore are connected. This requirement includes nding a path
between the seed nodes.

RS-5: The framework is RECOMMENDED to create samples having similar
graph properties as the graph they are derived from.

RS-6: The system SHOULD give the user a choice among several sampling tech-
niques to choose from.

4.2 Requirements for Creating Snapshots

After collecting a connected subgraph sample from Wikidata, the actual core function-
ality of the framework consists of building snapshots. In this stage, a current sample
version is available and the framework has to create previous versions of that sample
graph. Hence, it has to access revision data and undo the changes generating a series of
shapshots while going back in time.

Wikidata o ers possibilities to get old versions of the Wikidata knowledge graph. For
example, it makes old versions of the whole data dumpsavailable. Though, these dumps
are not available at regular intervals. Wikidata also provides a SPARQL endpoint to
query the Wikidata edit history 2. This history query service allows to query the full state
of the Wikidata knowledge graph after any revision. However, we are not interested in
getting snapshots of the whole graph but only from our sample graph in order to save
resources. Besides, this query service only o ers data from the creation of Wikidata in
2012 until July 1st 2018.

What the framework needs to create those snapshots is the actual revision data of the
triples in the sampled subgraph. It could request this revision data from the Mediawiki
API 3. The framework created during this thesis, nevertheless, accesses the revision data
from a database provided by the Dynamic and Distributed Information Systems Group
(DDIS). The following requirements refer to the process of creating snapshots:

RC-1 : The framework MUST take into account constraints that the user sets on
the graph. These constraints include the number of changes in each snapshot and
a timestamp until when to create the snapshots.

RC-2 : Each snapshot SHOULD be equipped with a time interval pointing out the
range of time in which these changes applied or in which that snapshot was valid.

RC-3 : The framework MUST implement the undoing of changes in the correct
order. In this way, historic versions of the graph can be reconstructed with high
precision.

Lhttps:// www.wikidata.org/ wiki/ Wikidata: Database  _download#0Ild _JSON _and _RDF _dumps
2https:// www.wikidata.org/ wiki/ Wikidata: History ~ _Query _Service
3https:// www.mediawiki.org/ wiki/ API:Revisions
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RC-4 : The framework MUST handle the undoing of changes correctly. Therefore,
it must implement di erent undoing events (e.g. creating a statement, removing a
statement, updating a value) accurately.

4.3 Requirements for Displaying the Results

After having created the historic snapshots of the Wikidata sample graph, they have to
be presented to the user in a reasonable way. The following bullet points list up the
requirements regarding this issue:

RF-1: The framework MUST return the current sample and the corresponding
snapshots in a standard RDF format. There SHOULD be several formats available
to possibly choose from.

RF-2 : The framework SHOULD o er the possibility to return the results in a
format natively supported by NetworkX. The chosen format SHOULD NOT loose
any data or information during the transformation process.

21
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Implementation

With the knowledge about related work on sampling techniques, the way Wikidata
structures its data in RDF and the requirements de ned in Chapter 4, we can move
forward to the practical realization of the framework that creates snapshots of sampled
Wikidata knowledge. This chapter starts with an overview over the framework, before
explaining each part of it in the following sections.

5.1 Framework Overview

The framework addressed in this thesis extracts a sample out of the Wikidata knowledge
graph and creates snapshots of that sample by going back in time and undoing revisions.
Figure 5.1 displays a diagram with the data ows necessary to ful Il these tasks.

First, the user must feed the application with all the necessary information. This
includes the choice of a speci c sampling technique, the size of the sample in terms of
the number of nodes, a seed node from where the sampling technique starts, a past
timestamp until when to create the snapshots, the number of changes in each snapshot
and nally, the output format as well as the database credentials. All this information
can be entered or changed in the framework's con guration le namedcon g.ini .

Provided with these details, the framework accesses a MySQLdatabase made avail-
able by DDIS. This database stores the Wikidata data as triples with an ID for each
subject, property and object. Such a database schema makes it relatively straightfor-
ward to sample a subset of the knowledge graph with traversal-based methods. Simply
get the current node, in this case the current subject, before selecting randomly a certain
number of its neighbors, the objects. The sampling is done with the help of NetworkX,

a Python package for the creation and manipulation of networks. Sections 5.2 to 5.4 will
address the topic of sampling with NetworkX in more detail.

After having collected the nodes and edges belonging to a connected Wikidata sample
graph, the historic snapshots must be generated. This is the actual core process of the
framework. For this task, the university provides a database which stores the Wikidata
revision data. The revision data is retrieved for each subject, property tuple in the

Lhttps:// www.mysql.com/
2https:// networkx.github.io/
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Figure 5.1: Data Flow Diagram of Framework

sample from this database. Therefore, the framework can undo the changes for each
triple by going back in time and ending up with several snapshots of what the knowledge
graph sample looked like back then. This part of the implementation is explained in more
detail in Section 5.5.

The last part of the framework addresses the formatting of the output which are the
initial sample and its following snapshots. The output must certainly be returned in
a standard RDF format. This can be done by transforming the sample graph from
NetworkX to RDFLib 3, a Python package for working with RDF. With RDFLIb it is
possible to serialize the graph data into various formats. Section 5.6 describes further
how data is represented by RDFLib and which formats to return RDF documents the
framework supports.

5.2 Sampling Prerequisites

This section addresses the prerequisites for the sampling part of the framework. Section
5.2.1 introduces NetworkX which is used by the framework for the actual sampling

3https:// github.com/ RDFLib/ rd ib
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directed | multiple edges
Graph()
DiGraph() X
MultiGraph() X
MultiDiGraph() X X

Table 5.1: NetworkX Graph Types

process as discussed in Section 5.3. The schema of the database from which the Wikidata
data is retrieved is discussed by Section 5.2.2.

5.2.1 NetworkX

The framework is written in the Python 4 programming language. Therefore, the usage
of NetworkX, a Python package for creating and manipulating networks, comes handy
when dealing with graph sampling. Apart from that, NetworkX also provides algorithms
to study various graph properties for graph analysis. To generate and store the Wikidata
data, the framework rst creates an empty NetworkX graph with no nodes an no edges.
The package provides di erent types of graphs. Table 5.1 lists these four types according
to the two properties they di er.

The framework must certainly store the data in either DiGraph or MultiDiGraph since
the direction of the edges is crucial when working with RDF data. These two directed
types of graphs o er additional functions speci ¢ to directed edges such as calculating
the in- or out-degree or getting the predecessor or successor of a node. MultiGraph or
MultiDiGraph allow to add more than one edge between any pair of nodes. In Wikidata,
multiple edges between subject and object nodes are possible which is why it is logical to
initialize a MultiDiGraph for doing the sampling. Unfortunately, there is one drawback
when working with NetworkX graphs that are directed and/or allow multiple edges:
many of the algorithms provided by NetworkX are not de ned for these types. This
includes for example calculating the number of components or the clustering coe cient.
Nevertheless, it is possible to convert MultiDiGraph into the undirected standard Graph
when analyzing of such properties is of interest.

Having initialized a NetworkX MultiDiGraph, the sampling can start by adding nodes
and edges to it. NetworkX allows nodes to be any kind of hashable objects. This
prerequisite is ful lled since nodes will be lled with objects of type string. Nodes and
edges are added to the MultiDiGraph using the NetworkX functions add.node() and
add.edge() to add one node at a time or add an edge between two nodes specied as
parameters. Additionally, it is possible to add attributes to them. This is necessary
since the type (e.g quantity, globecoordinate, time) or the language tag of the object
must be stored as well to be able to transform the sample graph into a standard RDF
format with corresponding namespaces and language tags later on.

“https:// www.python.org/
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5.2.2 MySQL Database Schema

For the sampling part, the framework accesses Wikidata knowledge stored on a DDIS
MySQL database server. MySQL is an open-source relational database management
system. Figure 5.2 shows the schema of the database used for extracting the samples.

Figure 5.2: MySQL Database Schema for Retrieving Wikidata Knowledge

The data is stored in a structure called dictionary tables. The table calledtriple stores
the Wikidata data in triple form with subject, property and object similar to RDF. But
it stores each of them with identi cation numbers. Therefore, one has to query the tables
dict_suh dict_prop and dict_obj with the corresponding id to get the actual content for
each subject, property and object. The contents are stored for every table in the column
ending with " _text".

The table dict_sub consists not only of Wikidata items but also of properties since
properties as well can be the subject of Wikidata triples (e.g. for de ning a properties
constraints). Statement nodes, the ones beginning with an item identi er such as Q183
followed by a UUID, are not contained in dict_suh This results in having no information
about quali er statements or references supporting a statement.

The table containing all the properties called dict_prop contains only properties of
the P-type, as for example P31. Therefore, only the properties de ned in the Wikidata
property namespaceé are available. Properties referring to other namespaces outside of
Wikidata like label ® or description’ are not stored in dict_prop.

Shttps:// www.wikidata.org/ wiki/ Wikidata: List ~ _of _properties
Snhamespace: http:// www.w3.org/ 2000/ 01/ rdf-schemaz
"namespace: http:// schema.org/
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Dict __obj refers to the table that consists of additional information for the object IDs.
Objects can have one of six di erenttype_ids which are again speci ed further in the table
dict_type. These types are strings, wikibase-entities, quantity, globecoordinate, monolin-
gualtext and time. Objects of type monolingualtext also contain a lang.id referring to
the table dict_lang which speci es the language tags.

This database schema forms the initial situation for the actual sampling process which
is discussed in Section 5.3. Following from the description of the schema, the database
contains only direct statements for properties de ned in the Wikidata property names-
pace. Taking again the Wikidata statement from Figure 2.3, the database stores only
the triple Q183{P3086{"100"xsd:decimal, and statement nodes are not part of this
MySQL database.

5.3 Sampling Process

This section addresses the frameworks rst task: the extracting of a sample out of the
Wikidata knowledge graph.

Towards sampling, the most important requirement is the extraction of a graph sample
that is connected. Hence, sampling techniques like random node or edge sampling are
not suitable. First, they do not sample connected graphs and second, they have been
shown to produce samples which fail to preserve many graph properties (as discussed in
Section 3.2). Due to these limitations and the requirement of getting connected samples,
topology-based sampling methods are optimal for the sampling part of the framework. |
chose several of these sampling algorithms for implementation. Among the selected ones
are BFS, FFS, SBS, RFS, RW and MHRW.

This section explains the sampling process based on a more detailed description of
FFS in Section 5.3.2 and MHRW in Section 5.3.3. FFS serves as a representative of
traversal-based methods, whilst MHRW takes this position for random walks. But rst,
Section 5.3.1 clari es the general process of adding a neighboring node with its edge to
the sample graph.

5.3.1 Sampling a Neighboring Node and Edge

Nearly all topology-based sampling methods have in common that they move forward to
a neighboring node, or rather a successor node (since the Wikidata graph is directed),
of a current node. The successor and the edge leading to it are sampled and the current
node will now be one of previously sampled successor nodes to continue this process.
Because all of the algorithms applied in the framework share this idea of adding successor
nodes, Figure 5.3 summarizes this process.

While sampling neighboring nodes of a current node, the framework rst sends a query
to the table triple with the subjectid of the current node. Depending on the algorithm,
all or a certain number of (random) triples are returned. The objects of these triples
represent the neighboring nodes of the current subject node. Nevertheless, since the table
triple stores only IDs referring to other tables containing the actual values, we need some
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