
When Code Completion Fails: a Case Study on
Real-World Completions

Vincent J. Hellendoorn
Department of Computer Science

UC Davis
Davis, USA

vhellendoorn@ucdavis.edu

Sebastian Proksch
Department of Informatics

University of Zurich
Zürich, Switzerland
proskch@ifi.uzh.ch

Harald C. Gall
Department of Informatics

University of Zurich
Zürich, Switzerland

gall@ifi.uzh.ch

Alberto Bacchelli
Department of Informatics

University of Zurich
Zürich, Switzerland
bacchelli@ifi.uzh.ch

Abstract—Code completion is commonly used by software
developers and is integrated into all major IDE’s. Good com-
pletion tools can not only save time and effort but may also
help avoid incorrect API usage. Many proposed completion tools
have shown promising results on synthetic benchmarks, but these
benchmarks make no claims about the realism of the completions
they test. This lack of grounding in real-world data could hinder
our scientific understanding of developer needs and of the efficacy
of completion models. This paper presents a case study on 15,000
code completions that were applied by 66 real developers, which
we study and contrast with artificial completions to inform future
research and tools in this area. We find that synthetic benchmarks
misrepresent many aspects of real-world completions; tested
completion tools were far less accurate on real-world data. Worse,
on the few completions that consumed most of the developers’
time, prediction accuracy was less than 20% – an effect that is
invisible in synthetic benchmarks. Our findings have ramifica-
tions for future benchmarks, tool design and real-world efficacy:
Benchmarks must account for completions that developers use
most, such as intra-project APIs; models should be designed to be
amenable to intra-project data; and real-world developer trials
are essential to quantifying performance on the least predictable
completions, which are both most time-consuming and far more
typical than artificial data suggests. We publicly release our
preprint [https://doi.org/10.5281/zenodo.2565673] and replication
data and materials [https://doi.org/10.5281/zenodo.2562249].

Index Terms—Code Completion, Benchmarks, Language Mod-
els

I. INTRODUCTION

Numerous studies have developed tools that can assist
programmers in common, but taxing tasks, such as fault
localization, program patching, type annotation, and API rec-
ommendation [1]–[4]. One of the most clear-cut ways in
which tools can reduce the effort of software development
for programmers is through code completion. Many tools that
suggest plausible completions of the current token, statement,
or even function have been proposed [5]–[8] and are part of
most Integrated Development Environments (IDEs).

Nearly without exception, code completion tools are eval-
uated against synthetic benchmarks, typically produced by
adding “holes” to existing code (e.g., removing an identifier)
and tasking the model with predicting the correct expres-
sion for that location using the remaining context [4], [6],
[9]–[12]. Nevertheless, there is reason to be suspicious of
synthetic benchmarks: Proksch et al. show that development

that happens locally takes place in a very different order and
context from what is eventually committed, so that simulations
in published code probably do not reflect the developer’s
working context [12], [13]. Code completion tool design could
greatly benefit from real-world insights; Robbes & Lanza
demonstrated this by using observations from a developer
study to improve their code completion tool [5].

An empirical foundation is needed to establish the character-
istics of real-world code completion usage and the objectives
that code completion tools should meet to have real-world
efficacy. Our case study provides the first step towards such
a foundation by analyzing over 15,000 completions that were
applied by 66 developers in Visual Studio in a pre-existing
dataset. We compare these completions with artificial ones,
first in terms of their characteristics and then by replicating
them with state-of-the-art code completion models, including
structured recommenders, Recurrent Neural Networks, and
dynamic n-gram models. We answer the following questions:

RQ1: How do code completions in synthetic benchmarks
compare to (applied) real-world completions?

We find that real-world completions are different from typical
artificial ones on both trivial factors, such as primarily address-
ing tokens with longer names and local variables, and more
complex ones, such as often focusing on method invocations
and field accesses from within the same project.

RQ2: Do these different characteristics affect code completion
models?

We show that state-of-the-art models have a much harder time
completing real-world queries than those on randomly sampled
tokens with similar characteristics. We outline promising fac-
tors and outstanding challenges; e.g., models that dynamically
integrate local data fare much better than static ones, but intra-
project queries remain the hardest category.

RQ3: What characteristics of real completions are overlooked
in code completion models?

Inter alia, our analysis shows that most completions are both
applied quickly and fairly predictable, apparently geared at
reducing typing effort, but the small remainder (typically in-
volving APIs) consume most of the developers’ time. Existing
models perform very poorly on the second category, suggest-

https://doi.org/10.5281/zenodo.2565673
https://doi.org/10.5281/zenodo.2562249

ing that they are optimized for repeating typical patterns but
may not provide novel insights.

Our findings inform concrete recommendations for im-
proving code completion benchmarks, tool design, and real-
world efficacy. Benchmarks should first and foremost aim to
address completions following their frequency of use, which
we characterize, showing for example that intra-project API
completions are surprisingly relevant. Code completion tools
should similarly aim to be flexible, able to integrate local
information and be aware of contexts in which they can be
(im)precise. Finally, real-world efficacy is increased precisely
by focusing on the least accurate predictions in synthetic
data: these are far more common and time-consuming in real-
world data. Crucially, our work shows that we need more
benchmarks of real code completion engines and developer
trials to promote impactful research in this field.

II. EXPERIMENTAL SETUP

Synthetic code completion benchmarks are typically created
by taking a complete program and removing a random token,
such as an identifier or method invocation [4], [9]–[12], [14].
We want to contrast such synthetic completions with real code
completions. To this end, we base our case study on a public
dataset containing code completions invoked in Visual Studio
and simulate artificial completions on the same data. This
section details our data collection and modeling setup. Our
processed and replicable code completion data, as well as our
model implementations, are publicly available [15].

A. Code Completion Data

Several tools have been developed to track developer as
they interact with the Integrated Development Environment
(IDE), such as Blaze [16], DFlow [17] and FeedBaG++ [18].
The latter is most appropriate for our purposes; FeedBag++
captures event streams in Visual Studio that include invoca-
tions of the code completion tool, as well as events for other
actions such as opening new projects, using version control
and editing a file. Change related events include snapshots
of the file in which the edit/completion took place, stored in
the form of simplified syntax trees (SST) – an AST with fully
qualified type annotations. We produce our benchmark data by
processing a public dataset of developer interactions that were
recorded with this tool [19]. In addition, we use a large dataset
of C# repositories as the training data [20]. Both datasets have
been cleaned and pre-processed as described below to allow
replication of a variety of models, including deep learning
models, cache-based models, and AST-based models, all of
which we include in this work. A full description of the
datasets is available in the original papers.

1) Benchmark Data: Our benchmark dataset contains event
streams from 86 developers (of which 66 had reproducible
completions) with varying levels of experience as they interact
with C# projects in VisualStudio. This dataset includes many
code completion events and general edit events. We extract
all completion events and their accompanying code contexts,
which contain a syntax tree of the state of the file in which the

developer triggered the completion, with a placeholder at the
current completion location. We extract the prefix, the char-
acters that were already written towards the completion, and
the ultimately selected correct completion. To be compatible
with all the models in this study, we only aim to predict the
identifier portion (e.g., the method name) of the completion.

Across these developers, we find nearly 200,000 completion
events. Of these, ca. 56% were terminated by “filtering”
(meaning the developer narrowed down the prefix by typing
more characters), 20% were canceled and 24% were ultimately
applied. This latter category is most interesting to us, as
it presents reproducible completion events. We cannot make
strong claims about the reasons for the cancellation events, but
it is safe to say that they include at least some cases in which
Visual Studio was unable to provide a useful completion (we
discuss the ramifications of this in Section IV-A).

Not all completion events contain all the information needed
to create reproducible completions. Among the applied cases,
ca. 53% did not include locality information about where the
completion took place and 32% did not store the selected
completion, but rather a generic ‘LookupObject‘ that could
not be decoded into the corresponding token after the fact.
Accounting for overlap between these categories, we extract
15,245 valid, applied completions belonging to 66 developers
for which we can fully replicate the context.

For each completion event, we extract all the surrounding
tokens from the stored syntax tree. Ideally, we would also
have access to the tokens in the other files in the project,
but these are understandably not stored in the dataset. We do
have access to any file in which an edit event or completion
event takes place, so we approximate the content of the
surrounding project by storing the latest snapshots of edited
files incrementally, thus creating a restricted view of the
project for each developer that improves over time.1

In addition to using the recorded completions as a bench-
mark, we also simulate a synthetic benchmark on the same
data; instead of completing the real missing token, we remove
another token at random from the file in which the completion
takes place and ask each model to infer it. To allow a more
fine-grained comparison, we run this simulation many times
per file and store the randomly selected token’s characteristics
(e.g., token length, syntactic type); this allows us to approx-
imate several forms of synthetic benchmarks after the fact,
specifically: completing all tokens, completing just identifiers,
and completing only API calls. Several other types of synthetic
data creation have been proposed (e.g., removing sets of
related API calls) and may be studied similarly; we selected
options representative of most work on code completion.

2) Training data: We use a public dataset of 340 C# GitHub
repositories, comprising ca. 42M lines of code, to train the
different completion tools [20]. This dataset is released with
the benchmark data and its code is stored in the same repre-
sentation (simplified syntax trees). We use a built-in method

1We have ca. two continuous weeks of observations for each developer,
demarcated by “sessions” of IDE use

that comes with the dataset to transform it back into C#,
with small adaptations to inline previously nested expressions
again and reverse the flattened representations of the simplified
syntax trees. This made it easy for us to extract lexical token
sequences corresponding to the syntax trees.

The resulting token sequences can be used by lexical token-
based models. To make training with deep learners (see
Section II-B) feasible in reasonable time, we select 10% of
the files in this dataset at random to create a corpus of ∼16M
tokens. A static vocabulary is estimated on the training data
and all events seen less than 10 times are treated as a generic
“unknown” token, to produce a vocabulary of 75,913. Both
the corpus and the vocabulary are comparable to prior work
using deep learners on source code [14] and we use them to
train both the n-gram models and deep learners.

B. Selected Code Completion Models

Our aim is not to compare and rank different completion
engines, but we are interested in understanding how the dis-
crepancies between real and artificial completion data impact
real code completion models and tools. Thus, we want to select
representative and accurate models from diverse backgrounds.

Approaches to perform code completions span a wide
spectrum of techniques, but, virtually, all intelligent code
completion models attempt to relate the context at the site of
a required completion to a context that has been observed in
some large training corpus. Completions that were applied in
similar contexts in the training data can then be recommended
in the present context. The difference between approaches
often comes down to two aspects: (1) the type of context that
is extracted, and (2) the way this context is related to contexts
seen during training. One demarcation relates to the way
information is extracted: on one side are tools that focus on
extracting rich structural features from the surrounding source
code, such as types that are being used close by. Approaches
on the other side do not explicitly select structural features at
all but instead exploit the naturally recurring patterns in source
code using text mining techniques from which useful features
can naturally emerge [9]. We select performant representatives
from both ends of this spectrum, summarized in Table I.

A grey area exists in between these extremes, including
approaches that select specific structural features of interest,
but use text mining techniques to infer a model over these
models; e.g., Bielik et al. develop a domain-specific language
over allowed contexts and learn a statistical model to predict
which context to use at test time [21]. Other models have been
proposed, both using natural language models (e.g., [4], [22],
[23]) and traditional feature selection (e.g., [5]–[7]); we leave
the analysis of such models to future work and provide our
dataset to support such efforts.

1) Structural Feature Selection: A traditional approach to
code completion, especially API recommendation, is to de-
scribe the current editing context through a set of feature
types, such as the surrounding method invocations. These
feature types are manually designed by leveraging domain-
knowledge about source code. The vocabulary of available,

TABLE I
MODELS INCLUDED IN THIS STUDY WITH CHARACTERISTICS: HOW THEY

REPRESENT CODE, WHETHER THEY CAN DYNAMICALLY LEARN NEW
PATTERNS, AND WHAT TYPES OF COMPLETIONS THEY ADDRESS.

Model Format Dynamic? Completions

BMN# [6], [7] AST No Members*
RNN [23], [24] Lexical Limited All**
n-gram [14] Lexical Yes All**

(*) We extended the implementation to support member completion
(**) Only unqualified references, no signatures.

concrete features is then established by analyzing source-
code repositories. A context is typically described by a vector
that encodes the existence of all context features from the
vocabulary, e.g., all method invocations from the vocabulary
would be mapped to 1 if they exist in the context and 0
otherwise. The same vector is created for a query to the
recommender and the proposals are inferred by relating it to
vectors seen in the training data. A well-known example of this
is the Best Matching Neighbor algorithm by Bruch et al. [6],
which uses the Euclidean distance of the present context vector
to those seen at training time to identify likely completions
(i.e., those that occurred in similar contexts).

An extension of this model was proposed by Proksch et al.,
who extended the set of structural feature types and introduce
Pattern-based Bayesian networks (PBN) as a generalization
of the binary contexts (i.e., present/not-present) to Bayesian
networks [7]. This improves inference speed and memory
consumption while yielding similar completion accuracy and
enables the integration of much more contextual information.
As the original BMN and PBN approaches were created for
Java, several extensions needed to be made for our C# training
data to allowing completions on other reference types such as
fields or properties. BMN was easier to extend for this pur-
poses, so we created an improved BMN variant, BMN#, which
(1) includes all structural features that have been introduced
by PBN, (2) widens the completion support from method
calls to all possible C# member references, and (3) supports
the completion of repeated method calls. Although BMN and
PBN are designed to propose fully qualified recommendations,
BMN# merges its proposals by identifier to be compatible with
our other models, making it an identifier completion engine.

We consider the following features to describe how a
particular type is used in the context: the enclosing class and
enclosing method name provide locality information; we store
the type and definition of the object to describe how it was
created (e.g., which constructor was called) or where it was
defined (if outside the current method, e.g., as a field, method
parameter, etc.), and we distinguish between three types of
object usage: method calls on the object, method calls in
which the object is a parameter, and accesses to one of its
type-members (i.e., events, fields, methods, and properties).

2) Linguistic Models of Code: Another class of completion
models has been inspired by computational linguistics. These
models attempt to learn a useful statistical model of a large

body of source code by capturing its most prevalent and
informative statistical patterns – typically those that allow
them to accurately predict each next token (e.g., word) given
the previous tokens. A good model is characterized by low
“surprisal” upon seeing each token, which is often measured
by its cross-entropy.2 This entropy tends to be much lower than
might be expected from the range of possible word orderings,
because natural languages group words together in meaning-
ful and restricted patterns (think of adjectives before nouns,
stylistic conventions). Work on the so-called “naturalness” of
source code has demonstrated that such models also work well
for source code, suggesting that developers treat it at least
somewhat like text [9]. This idea has been reinforced by many
studies, including fMRI scans [25]. The design of language
models to maximize predictability of the next token makes
them highly applicable to code completion. In this work, we
include two such models.

a) n-gram Model: n-gram models are count-based models
that consider only the previous n − 1 tokens (we use n = 6)
when making a prediction and have often been used as
baseline models in natural language processing due to their
scalability and surprising effectiveness. In source code, these
models were shown to be highly effective at mixing many
kinds of dynamically available information (such as tokens
in neighboring files) [14]. We thus consider both a “static”
variant, which is simply trained on the training data, and a
“dynamic” variant, which is also allowed to integrate various
sources of information that are present at test time, including:
previous completions (“completion cache”), surrounding to-
kens in the same file (“file cache”) and tokens in surrounding
files (“project cache”). We study the impact of these sources
in Section III-B. The “project cache” is necessarily limited to
files that were edited in the past (see Section II-A1), so it is
less beneficial than the nested models as in prior work.

b) Deep Learning: these models extract latent representa-
tions of text and optimize many parameters to match each
next token’s latent representation. This potentially allows them
to capture patterns with a much longer range than n-gram
models, although training these models requires substantial
regularization and their memory capacity is somewhat limited
in practice. We use a recurrent neural network (RNN) model
that is similar to those used in natural language processing and
prior work on modeling source code [14], [23]. Our RNN has
300-dimensional embeddings, two recurrent layers with 650-
dimensional GRU nodes (with drop-out regularization of 50%)
and a dense projection layer onto the vocabulary of tokens.
We train this model with an Adam optimizer, implemented in
CNTK.3 The resulting model has ca. 49M parameters, ranking
it among the larger ones trained for source code; training
required ca. 8 hours across 39 epochs on a GTX 1080 Ti GPU.
We also include a variant that learns from prior completions at
test time by training on each file after predicting the missing

2This reflects the amount of information needed to encode a token given
its context and the trained model

3https://cntk.ai

token, although its ability to do so is limited; we refer to
this version as “dynamic” and to the standard deep learner as
“static”. For brevity, we will refer to these models as RNNs.

Even though RNNs often outperform n-gram models in
typical natural language settings, we include both, because
n-gram models are sometimes a better choice for model-
ing source code. Specifically, Hellendoorn & Devanbu laid
out three software-specific challenges to address in order to
properly model source code: handling arbitrarily large and
changing vocabularies, integrating events from restricted and
changing localities, and incorporating structural information
from source code [14]. n-gram models can be taught these
things effectively (using structures such as caches [10] or
nested architectures [14]), whereas conventional RNN archi-
tectures struggle under these conditions.

C. Completion Attributes

All our completions aim to predict an identifier (without
qualified type information) from a lexical or AST context
(depending on the model) and an optional prefix. When
analyzing our results, we consider several attributes of the
completion events in our dataset.
Prefix: the characters that are already written towards narrow-

ing down the set of possible completions. This varies widely
in length, from empty in many cases (ca. 40%), to the full
identifier in others.4

Selections: each selection that the developer hovered over in
the presented list of completions is recorded, ranging from
one to dozens. The final selection is the applied completion.

Duration: the duration characteristics of both the entire com-
pletion and of each selection considered are stored. Most
completions take less than a second, but some completions
are considered for long periods (see Section III-C).

Completion Type: each completion in our benchmark data
concerns an identifier. We distinguish between them based
on the identifier’s type (project-internal, C# core library, or
third-party) and its syntactic category (class-name, method-
name, field, parameter or local variable). Primitive types are
grouped in their own category.

D. Evaluation Metrics

We evaluate the accuracy of our completion models accord-
ing to several standard metrics. We mainly consider Mean
Reciprocal Ranking (MRR), a summary metric for top-K
accuracies that averages the inverse of the ranks of each
completion. MRRs range from 0 to 1, where values closer
to 1 imply that the correct completion was often near the top
of the suggestion list.

Each model assigns a probability to all its completions
in a context, favoring some events more than others. If a
model’s top suggestion is offered with a high probability, this
can be taken as an indication of high “confidence’ in this

4The latter case may still be useful to a developer; e.g., API completions
often include a template with some arguments set to default values.

suggestion. Vice versa, if even its top recommendation has a
low probability, the model is likely uncertain. We can simulate
a completion tool with a developer-tunable confidence thresh-
old: if the model’s top probability exceeds this threshold, its
suggestion would be presented to the developer, otherwise it is
ignored. This allows us to compute precision and recall values
for various thresholds.

III. ANALYSIS

Throughout this section, we identify nine findings on the
differences between synthetic data and real-world completions,
in terms of intrinsic data characteristics (RQ1), impact on code
completion performance (RQ2), and lessons for real-world
efficacy of code completion tools (RQ3).

A. RQ1: How do code completions in synthetic benchmarks
compare to (applied) real-world completions?

In this section, we simulate different forms of artificial
completions on the same data as our real completions by
removing different types of tokens at random to complete. Our
goal here is to characterize the completions that this would
lead to. For increased stability, we ran 10 such simulations
and averaged the results. We also include some n-gram model
results to give an early indication of completion accuracy in
this artificial setting; we study the contrast with real-world
accuracy in greater detail in Section III-B and Section III-C.

1) Token Types: We start with synthetic datasets that con-
sider every token in the file as targets for completion. Ta-
ble III characterizes the tokens at issue in these artificial
completions; more than two-thirds of artificial completions
did not refer to identifiers in the source code. Instead, the
majority (57%) concerned punctuation-like tokens (e.g., oper-
ators, braces), followed by identifiers (30.4%), keywords and
numerals (10.8% and 1.8% respectively). In the real-world
data, we found only completions pertaining to identifiers.5.
Identifier completions are also harder than other tokens, as
is evident from the n-gram MRRs in the final two columns,
especially for a static model. Thus, we already see a strong
skew between artificially synthesized benchmarks and real
code completions. Fortunately, most studies involving code
completion have recognized this and focused exclusively on
predicting identifiers (or even specifically API usage), so we
will focus on this type of synthetic data next.

Finding #1: Most tokens are much easier to complete than
identifiers, but these completions are not used.

2) Identifier Types: If we instead simulate just identifier
completions, we can start by categorizing these along two
axes: 1) the syntactic type of the identifier that is to be
completed (e.g., method invocation, parameter, local variable),
and 2) the origin of the declared type of this identifier (i.e.,
primitive type, or reference to an object from the same project,

5Although Visual Studio does not offer to complete punctuation and
numerals, it is highly unlikely that such a feature would benefit developers,
as most of these tokens are very short (averaging ca. one character each)
compared to identifiers (averaging nearly 10 characters)

TABLE II
CHARACTERISTICS OF ARTIFICIAL COMPLETIONS IN TERMS OF THEIR

RELATIVE PROPORTION, THE AVERAGE NUMBER OF CHARACTERS OF THE
TOKEN TO COMPLETE, AND THE MRR ACCORDING TO A STATIC AND

DYNAMIC n-GRAM MODEL.

n-gram MRR

Type Proportion #Chars Static Dynamic

Punctuation 57.1% 1.05 61.0% 89.6%
Identifier 32.1% 9.61 15.8% 67.4%
Keyword 10.8% 4.27 45.4% 72.9%
Numerals 0.5% 1.02 48.5% 82.1%

the C# core library, or a third-party library). Figure 1 shows the
distribution characteristics of the syntactic categories, for both
artificial (left) and real (right) completions. Real code comple-
tions overwhelmingly favor method invocations, followed by
field accesses, both related to API usage. Core and external
library method invocations are particularly underrepresented
in artificial data, occurring twice as often in real life. Artifi-
cial completions show a more diverse pattern, comparatively
involving local variables and type (class) names much more
often, because those identifiers are commonly used.

The second characteristic of interest is the origin of the
declared type of the identifier to be completed. Primitive
type related identifiers (e.g., bool, string) proved the
main differentiator here, spanning 12% of completions in the
artificial dataset, but a negligible portion in real-world data.
Identifiers with these types are also the shortest of any category
(think of loop variables like ‘i’), suggesting that developers
both choose shorter names for simpler types and are unlikely
to use code completion on these names.

Among object types, however, we observe a high simi-
larity between the artificial and real completions: both con-
cern project-internal types ca. 50% of the time and core
library/third-party types ca. 25% each. In other words, com-
pared to the types they use in a file, developers do not dispro-
portionally ask for completion of publicly declared vs. project-
internal types. It is especially surprising that intra-project types
account for more than half of all completions; in fact, the most
prominent sub-category in both datasets is method invocations
within the same project, containing over a quarter of all
real-world completions. API recommendation tools that only
recommend public APIs (as is common, including BMN#)
would thus fail to address over half of the real-world queries.
Overall, no assumption commonly made when synthesizing
benchmarks (e.g., include all tokens, or only identifiers, or
only public APIs) approximates this data.

Finding #2: Typical simulations do not match real comple-
tions, overlooking e.g. intra-project API completions.

3) Typing Effort: As an example of a more simple factor,
if the purpose is to reduce key-strokes, then the number
of characters in an identifier may play a role in whether
programmers choose to use the completion engine. Thus,
punctuation and numeric tokens are unlikely to be requested,

Fig. 1. Skew of completion type prevalence between artificial and real data.

since just typing them would be equally fast (we conjectured
a similar motivation for identifiers with primitive types).
If reducing key-strokes is a motivation, one might expect
identifiers involved in real-world completions to be longer than
ones in artificial completions. We do indeed observe this effect
in our dataset: artificial completions are significantly shorter
(avg. 9.06 characters) than real ones (9.87 characters), with a
sizable effect (t-test: p � 2e−16, Cohen’s D.: 1.33).6

In the absence of controlled trials, we cannot draw con-
clusions about the relation between this result and effort. It
is possible that developers use the completion engine more
actively if they anticipate having to type longer identifiers
(thus purely saving effort), but the presence of a completion
engine may also cause them to use longer identifier names
(which can be more informative) for identifiers they intend to
use frequently, because they know that the completion engine
will help out. A mixture of these effects is probably at play.
For one, the correlation between prefix length and identifier
length in the real completion data is very weak (R2 ≈ 0.1),
so developers do not write substantially longer prefixes for
longer identifiers, suggesting that they may at least anticipate
the potential savings in typing effort. Furthermore, both the
longest identifiers and the biggest character savings (identifier
length minus prefix length) were found in project-internal
variables, which are all within the developer’s control; the
smallest were among core library references.

Finding #3: Real-world completions are also influenced by
simple motivations such as typing effort.

B. RQ2: Do these different characteristics affect code com-
pletion models?

We next study the performance of our various models on the
real code completions in our dataset. We analyze and contrast
their performance with that on artificial completions in greater
detail in Section III-C, and focus first on characterizing the
performance of these models on real-world completions.

1) n-gram models: The baseline n-gram model performs at
only 14.9% MRR. This performance goes up substantially
when incorporating local information in the dynamic model.

6Both statistics are on the log-length, as these were approximately normally
distributed.

TABLE III
PERFORMANCE OF OUR MODELS ON REAL COMPLETIONS. BMN#

PERFORMANCE IS MEASURED ACROSS THE CASES IT COULD ADDRESS.

Top-k Accuracy

Model MRR 1 5 10

n-gram – Static 14.9% 11.4% 19.0% 21.8%
– Dynamic 43.5% 32.7% 56.5% 63.6%

RNN – Static 21.5% 17.5% 26.0% 28.8%
– Dynamic 22.2% 18.2% 26.7% 29.6%

BMN#* 40.7% 30.7% 54.6% 58.8%

(*) Results on ca. 14% cases that BMN# is designed to complete

At the same time, although the static n-gram here performs
similar compared to the artificial benchmark (where it reached
15.8% MRR on identifiers, see Table III), the dynamic model
performs quite a bit worse (43% vs. 67%). This means that
many completions could not be adequately answered by the
n-gram model. Even then, it actually comes close to Visual
Studio’s own ranking performance despite the dataset’s strong
bias in its favor.7 This is not surprising: cache-based n-grams
routinely outperform IDE’s inbuilt code completion [8], [9].

The dynamic n-gram model effectively combines many
sources of “local” information. The impact of these various
sources can shed some light on where developers’ needed
recommendations come from. Figure 2 shows an ablation
analysis of the n-gram model’s performance when focusing
on specific types of locality. All components can greatly help
performance by themselves, which is similar to Robbes &
Lanza’s findings [5]. The file-cache proves to be the strongest
influence here, more than doubling the performance of the
static model. Storing previous completions proves valuable as
well, followed by including tokens from the surrounding files.8

These components appear to use overlapping information
(e.g., common API usage in a project), as the overall model
improves only 4.3% over the file-cache-only model.

2) Deep Learners: On a positive note, the static RNN out-
performs its n-gram equivalent by a substantial margin with
the same amount of training data, which reflects its superior
capacity. At the same time, its dynamic updating ability
– limited to integrating patterns from new sequences, but
not new words – barely helps the model, as nearly half of
completions are tokens not seen at training time. Deep learning
models that can learn new words (such as proper nouns)
have been proposed for natural languages [26]–[28] and these
results make it all the more pressing that such innovations are
translated to the source code domain.

Finding #4: Local context plays a large role in code com-
pletion accuracy, but still leaves many queries unanswered.

3) BMN#: This tool is different from the above models
in that it uses structured information (specifically, types in
context). It is exclusively geared towards completing method

7which is why it is not included; see Section IV-A
8Likely due to an imperfect view of project data, see Section II-A.

Fig. 2. Characterization of n-gram model’s performance with increasing
amounts of “local” information. “File” refers to a cache on other tokens in the
file, “Prev” refers to a cache on previous completions used by this developer
and “Project” refers to approximation of the project’s code (Section II-A).

invocations on a known set of public APIs and, although
our implementation of BMN# was modified to address as
many of C# language features as possible, it only provides
completions for 2,126 such invocations (out of a total 8,752).
More specifically, it completes roughly a third of third-party
API calls (with MRR of 35.1%), more than half of core library
calls (with MRR of 42.1%) and ca. 2.6% of project-internal
calls (all incorrect). Core libraries are most represented and
intra-project calls least, despite being most common in real-
world data, because the tool needs to know type signatures to
be able to complete them and is not able to learn new type
signatures (e.g., from within a project) at test time.

If we compare the n-gram and deep learner’s performance
on the subset of completions that BMN# does address, it
outperforms both models slightly (40.7% vs. 38.0% and 37.0%
MRR respectively). The deep learner is better at core method
invocations but loses on third-party library calls; the n-gram
model naturally outperforms it on internal API calls but loses
out on the other categories.9 Considering that BMN# does
not have a dynamic variant, it performs surprisingly well,
even eking out a win over the RNNs on third-party library
references. Its success is largely due to its use of structural
information, especially type information: being able to restrict
results to type-compatible completions can be a substantial
benefit. Adopting caching strategies similar to the n-gram
model could help it overcome its limitation on project-internal
method calls (although learning new vocabulary may be non-
trivial) and boost its predictive power as a whole.

Finding #5: Employing structural information can benefit
accuracy, but risks being inflexible w.r.t. local patterns.

4) Confidence: We discussed the notion of a confidence
threshold (based on the model’s top recommendation’s prob-
ability) in Section II-D. The n-gram model proves quite
amenable to that option: setting the threshold to ≥ 0.1%
already yields a precision/recall of 67%/44%, boosting perfor-
mance by more than twenty percentage points while providing
completions for slightly less than half the events. At a higher

9A hybrid was attempted in which the most confident model in every
context is allowed to predict, but this did not yield a performance gain,
suggesting that the models are similarly confident in similar contexts.

threshold of 10%, these numbers become 94%/14% and at
50% onwards the model achieves perfect precision, albeit on
only 3.2% of the remaining data. This suggests a kind of self-
awareness of the n-gram model; when it expresses confidence,
it is highly accurate. Unfortunately, it also loses a great amount
of recall in the process, which makes such a model not
quite applicable to real-world completions, though it may be
amenable to combination with other models [14] (although
attempting to combine it with BMN# was not successful).

We also investigated setting a confidence threshold for the
deep learner, but this proved largely ineffective. At best, we
were able to improve precision to ca. 23% at the cost of
substantial loss in recall. This is atypical for deep learners,
which often express a high degree of confidence in familiar
contexts and have done so in code as well [14]. However, in
our experiments, they seem to do so mainly for trivial tokens
(e.g., punctuation and simple identifiers), which span the vast
majority of tokens, but not those involved in completions. This
behavior is not useful to developers in our dataset and suggests
that deep learning based completion engines may need to be
optimized specifically for code completion on identifiers, in
the ways that they appear in real-world completions.

Finding #6: Models struggle to attain high precision in
familiar contexts without sacrificing substantial recall.

C. RQ3: What characteristics of real completions are over-
looked in code completion models?

In this analysis, we combine our insights from RQ1 and
RQ2 to analyze which discrepancies between artificial and
real-world data meaningfully impact our code completion
models. Unless otherwise noted, we focus mainly on the
dynamic n-gram model’s performance when referring to mod-
eling accuracy here, since it emerged as the strongest model
from our previous analysis.

1) Revisiting Completion Types: We revisit the different
completion types after comparing the characteristics of arti-
ficial and real completions in RQ1.

a) Method invocations: these were found to be overwhelm-
ingly more common in real-world completions. Although we
do not know of work that has quantified this before, it is
noteworthy that this type of completion has attracted particular
interest in code completion research (e.g., [4], [6], [11]),
suggesting that this pattern has not gone unnoticed in SE
research. Method invocations are also the hardest category to
our strongest model, followed by field references (which were
harder for the RNNs, but also quite rare). They also come with
the shortest average prefix (empty more than half the time,
compared to just 6% of the time for local variables), suggesting
that developers are often unsure what they are looking for.
There is an especially large rift here with artificial data, as
method completions were much easier in that dataset (more
than twice as easy to our best model).

The hardest category of method invocations, however, were
those declared in the same project (31% MRR), not third-party
invocations (34% MRR). Perhaps the ongoing development

nature of the project causes these invocations to be less
repetitive and obvious. This is also the most frequently used
type of completion, so it is pressing that completion engines
take this task seriously; API recommendation tools often focus
exclusively on popular public APIs (such as core libraries). It
is worth noting that Visual Studio actually had more difficulty
ranking external and core library method invocations. Since it
has access to type resolution, it may be easier for it to match
method invocations to the surrounding context. BMN# also has
access to type information but is unable to learn new methods
at test time, so it does not produce any useful completions
on intra-project data. A hybrid approach between type-safe
models and linguistic models may provide better performance,
though a naïve combination that we attempted did not yield
meaningful improvements.

The second aspect to completion types is where the iden-
tifier of interest was declared: inside the project, in the C#
core library or in a third-party library. The difference in
performance here is substantial. The static n-gram model
reaches only 4.5% MRR on project-internal identifiers; the
static RNN reaches 7.3%. Adding the dynamic component
boosts the n-gram’s performance, but barely the deep learner’s
(40.5% vs. 8.3%), because the current architecture it is unable
to learn new identifiers. In contrast, these models scored 53%
and 44% respectively on core library types (and 41% and 27%
on third-party types).

Finding #7: Artificial data can substantially mischaracterize
prevalence and difficulty, especially of hard completions.

2) Deep Learning for Code Completion: The static RNN
outperforms the static n-gram model, which is in line with
previous work studying the relative performance of these two
types of models [14]. The RNN especially wins out on vari-
able, parameter and field recommendations, likely helped by
its superior memory.10 At the same time, the dynamic n-gram
model is substantially better, as in the aforementioned study;
in fact, the discrepancy is even larger on real completions.
However, there is hope for the dynamic setting: the RNNs
outperformed the dynamic n-gram (and BMN#) on all core
API recommendation (methods, class names and fields). This
makes sense: these are arguably the most stable part of a
language’s vocabulary between projects.

These observations reinforce the challenges laid out in prior
work on deep neural networks for source code, but also offer
hope for a future place for deep learners in code completion:
if they can successfully learn to integrate new vocabulary, they
may be able to outperform more traditional models with their
superior memory capacity. Although such a mechanism may
be based on recent advances in NLP [26]–[28], it will likely
require substantial innovations as well, because source code’s
vocabulary (innovation) characteristics are very different from
natural languages.

10An n-gram model can only see n - 1 tokens in the past (here n = 6)

Fig. 3. The relation between the duration (binned by seconds) of a completion
and (bars) the prevalence of this duration, and (dashed line) the average
dynamic n-gram MRR for events in each duration range.

Finding #8: Deep Learners can learn superior models from
training data, but are severely limited on new data.

3) The Role of Duration: Finally, we observe a wide range
of durations (the time taken before applying the completion)
among the completions in our dataset. The majority take less
than one second (median = 927ms), but their distribution is
skewed (mean = 2, 096ms) so that some take far longer. In
fact, while 90% of completions take less than 3.76 seconds,
the remaining 10% account for more than half of the time
spent using the completion engine! This gives rise to an
important observation: code completion accuracy is almost
always measured by the fraction of cases that were correctly
completed, not the actual savings in time or effort that the
completion could bring. However, our data shows that there
are many fast (and presumably easy) completions and few
very slow, possibly much less obvious ones. These 10% slow
completions may be woefully undervalued.

Looking deeper, local variables and parameters are the
fastest completions (averaging ca. one second each), whereas
method invocations and field accesses take longest to complete
on average (2.6s and 3.1s respectively); intra-project and third-
party method completions alone accounted for 60% of time
spent using code completion (while accounting for 46% of
completions). Crucially, this is not just due to Visual Studio’s
ranking: although there is a moderate (negative) correlation
between its MRR and completion duration (Pearson’s: -0.59
across completion types),11 several completion types defy this
relation. However, our n-gram model’s MRR shows an almost
perfect inverse correlation with duration (Pearson’s: -0.92). As
Figure 3 shows, performance on slower completions drops by
more than half after three seconds (the same holds for the
RNNs), which means that most of the developer’s time would

11Xianhao & Francisco also observed on this dataset that longer completion
lists tend to increase selection time [29]; our analysis quantifies this effect.

TABLE IV
EXPLANATORY POWER, AS % OF DEVIANCE EXPLAINED, OF AN

INCREMENTAL MODEL THAT FITS THE (LOG) DURATION OF CODE
COMPLETIONS. WE INCLUDE INDIVIDUAL FACTORS (ALL SIGNIFICANT),

GROUPS OF THESE FACTORS, AND THE OVERALL MODEL (TWO VARIANTS)

Factor(s) Duration Explained

Process Factors 13.4%
Developer 12.8%
#Options 0.5%

Identifier Factors 10.9%
Completion Type 5.2%
Prefix Length 1.7%
Completion Length 5.2%

Context Factors 9.7%
Log(Count in corpus) 2.8%
In Project 0.8%
Previously Used 1.2%
In File 5.9%

All Factors 26.3%
Developer as random effect 30.5%

be spent with just 19% MRR (11% for RNNs and 24% for
BMN# on their limited subset).

To better understand the factors that affect the duration of
a completion, we built a linear regression model that incor-
porates all readily identifiable factors about the completion,
separated into Process factors, Identifier factors and Context
factors, in Table IV.12 The final rows show the explanatory
power of the overall model, both for a simple linear model
and for a variant that treats the developer as a random effect
(a mixed effect model). Many factors influence duration in our
model. Substantial differences in completion speed between
developers are the strongest individual factor, followed by
both completion type and length; longer identifiers, method
invocations, and field accesses imply longer durations, whereas
the other types produce shorter durations. Finally, having used
the identifier in the same file (and to a lesser extent, in
surrounding files or in a previous completion) are correlated
with reduced duration, which is reminiscent of our n-gram
ablation analysis.

Finding #9: Rare, difficult completions are vital to real-
world efficacy – much more so than synthetic data suggests.

IV. DISCUSSION

We studied the limitations of using synthetic benchmarks
of code completion and reported three findings regarding the
characteristics of such benchmarks, three findings pertaining
to challenges that models face on real completions, and three
findings concerning factors that are overlooked in completion
model design because of synthetic benchmarks. We discuss
the implications of these findings for future code completion
models and benchmarks.

12Specifically, we fit log-duration, as a Q-Q plot showed that durations are
log-normally distributed (albeit with slightly fat tails) in our dataset.

A. Improving Benchmarks

Findings #1 – #3 concerned differences in characteristics
between real-world and artificial completions. Although one
might hope that the real-world data follows clear patterns that
are easy to simulate (if not match the synthetic data entirely),
this is decidedly not the case. Real completions were not
clearly focused on any one group of tokens, neither in terms of
frequency, nor in terms of effort. Even relatively simple char-
acteristics, such as longer tokens occurring more frequently,
do not hold universally and are guidelines at best. Neither is
it realistic to synthesize completion benchmarks by sampling
based on the real-world token distributions that we reported
in our paper, as we found (among other issues) that method
calls were relatively easy to complete in artificial data, but
far harder in real-world data. The impact of duration further
complicates this process. Evidently, real-world benchmarks of
code completions are necessary.

Although we release the processed benchmark used in our
work for further research, [15] this benchmark data is primarily
suited for a case study such as ours; it has limited use to
quantifying the absolute performance of our tested models,
and has several more limitations (partially because it was not
specifically collected to study code completions). For one, it
is restricted to the completions that VS was able to provide;
we did not have answer-data for completions that developers
canceled. Neither does this data contain important human data,
such as the reason for these cancellations, nor the motivations
and expectations for any other completion.

There is, thus, a dire need for more real-world benchmarks
to evaluate code completion engines, underscored by our
findings and by the newfound need to understand slow and
unsuccessful completions. Like our data, such benchmarks
should aim to collect reproducible completions across several
representation types and rich meta-information regarding the
completions. We also recommend collecting qualitative infor-
mation about completions related to the developer’s objectives
and experience. This should include insights into the causes for
failed completions; e.g., was the true completion not listed, or
the query incorrect; did the developer solve it by restructuring
their code, or switch to searching online? Such information
is necessary to better understand the least successful com-
pletions, which our analysis identified were most crucial to
completion tool efficacy (both for improving accuracy and for
reducing effort). Finally, some models for code completion can
provide completions well beyond those seen in this dataset,
such as entire syntactic constructs, or comments. Developer
experiments are necessary to analyze the impact and efficacy
of such innovations, and the resulting data can be used as
benchmarks for improvements on such tools in turn.

B. Improving Tools

Our next set of findings (#4 – #6) captured factors that allow
models to succeed on real-world completions, as well as their
remaining struggle to achieve good prediction accuracy. Based
on our findings, we make several recommendations here.

Future code completion engines should include informa-
tion from the developer’s local working context, since many
completions concern this context and these completions are
remarkably difficult to provide. Even models with substantial
ability to integrate local information were only able to answer
ca. half of these queries successfully and other models failed
to learn from local information (almost) entirely. This should
especially focus on intra-project API completions, which is
ostensibly a harder problem than core/third-party API com-
pletions since much more usage data exists for the latter set.

This need for flexibility also ties into our findings on using
confidence thresholds to improve precision or create hybrid
models. Only the n-gram model was somewhat amenable to
this strategy in our analysis, but generally, the models failed to
show awareness of their own precision. Having such awareness
could be very useful both for a better developer experience
and to create tools that can employ several different types of
models depending on the context. Such hybrid tools could also
harvest the power of structured models, which in our analysis
could outperform statistical models, but were only applicable
on a small subset of completions; flexibility thus need not
come in the form of a single model. Deep learners could begin
to excel as well, if taught these properties successfully.

C. Improving Efficacy

Finally, findings #7 – #9 demonstrated that real-world
performance of code completion models could be substan-
tially distorted relative to artificial data, because the latter’s
characteristics mask areas of importance.

For one, the tokens that actually interest developers are
much harder to complete than even surrounding tokens in the
same file.13 Although developers do request some relatively
easy completions (apparently mainly to preserve typing effort),
a large proportion of their requests is relatively hard. We stress
that this cannot be seen in simulations: even accounting for
similar syntactic categories and types, real completion queries
were much harder to our models than artificial ones from the
same context. Thus, code completion engines should focus
precisely on the most difficult cases as these are likely to be
underrepresented in artificial data.

Most importantly, artificial simulations do not account for
an integral human factor: effort associated with completions.
Duration of real-world completions, which cannot be simu-
lated at all, has a large impact on the effort associated precisely
(and reasonably) with the hardest completions. Whereas typing
effort is fairly well addressed by the models in our study, at
least in terms of short-duration completions, API discovery
effort is much less so. Thus, work on code recommenders
should include developers in their evaluation to increase their
real-world impact.

D. Limitations

Our case study exclusively studies completions that Visual
Studio was able to resolve with an applied completion. This

13In fact, we found in a separate analysis that even identifiers adjacent to
the true completion token were easier to predict on average.

both means that we cannot study completions that Visual Stu-
dio did not offer, nor can we quantify our tools’ performance
on any canceled completions. The data thus provides a limited
window into the minds of developers, showing us only events
with a positive outcome (although duration adds helpful, and
indeed actionable, insights into the actual process). However,
this dataset does allow us to study the contrast with artificial
completions, as these are simulated on the same data, and
the pitfalls and challenges for these models that emerge by
contrast. Hence, this has been the focus of our study. We also
note that all our models correlated well with Visual Studio in
terms of ranking performance (MRR). As such, if canceled
events were indeed relatively hard for VS, it is unlikely that
their absence would bias our results by these being much easier
for our models.

Within these constraints, we were able to establish rea-
sonable relative differences between artificial and real-world
completions. This serves the goal of our case study, and we
were able to report a range of actionable findings based on this
data. However, these constraints do limit the usefulness of this
dataset: the performance of the tested models here should not
be taken as their absolute performance on real-world data; we
cannot measure that due to the stated limitations. This further
underscores the need for more benchmarks to support code
completion research and tool design.

V. SUMMARY

We conducted a case study comparing code completions
used by real developers with those in artificially synthesized
benchmarks. We simulated artificial completions on a dataset
of over 15,000 real-world completions invoked by 66 develop-
ers. Based on our analysis, real-world code completions have
non-trivial distributions that do not match any typical synthetic
benchmark. These differences also make them much harder to
complete for state-of-the-art models, reducing their accuracy
by half in some cases. Studying the causes for this allowed us
to identify factors that are often overlooked in completion tool
design, such as the importance of integrating local information,
such as intra-project APIs. Furthermore, real completions have
hidden characteristics that impact the actual efficacy of code
completion tools in real-world use: they disproportionally
concern less predictable tokens so that most of the developer’s
time is spent on completions on which our tools were less
than 20% accurate. We formulate several recommendations
for future code completion benchmarks, tools, and research,
mainly that new code completion tools should be evaluated on
benchmarks of real-world data and/or developer trials (which
can become benchmarks) to ensure their real-world efficacy.

VI. ACKNOWLEDGMENT

This work has received funding from CHOOSE, under the
Student Mobility scheme. Alberto Bacchelli gratefully ac-
knowledges the support of the Swiss National Science Foun-
dation, Project No. PP00P2_170529. Vincent Hellendoorn was
partially supported by the National Science Foundation, award
number 1414172, and by a Microsoft PhD Fellowship.

https://choose.swissinformatics.org

REFERENCES

[1] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and
P. Devanbu, “On the "naturalness" of buggy code,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 428–439. [Online].
Available: http://doi.acm.org/10.1145/2884781.2884848

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2012.

[3] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic
type inference with natural language support,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2016, pp. 607–618.

[4] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, vol. 1. IEEE, 2015, pp. 858–868.

[5] R. Robbes and M. Lanza, “How program history can improve code
completion,” in Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer
Society, 2008, pp. 317–326.

[6] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples
to improve code completion systems,” in Proceedings of the the 7th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering.
ACM, 2009, pp. 213–222.

[7] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with
bayesian networks,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, p. 3, 2015.

[8] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn, “Cacheca: A cache
language model based code suggestion tool,” in Proceedings of the
37th International Conference on Software Engineering - Volume 2,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 705–708.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2819009.2819143

[9] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 837–847.

[10] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 269–280. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635875

[11] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Acm Sigplan Notices, vol. 49, no. 6. ACM, 2014,
pp. 419–428.

[12] S. Proksch, S. Amann, S. Nadi, and M. Mezini, “Evaluating the evalu-
ations of code recommender systems: A reality check,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2016, pp. 111–121.

[13] S. Proksch, S. Amann, and M. Mezini, “Towards standardized evalua-
tion of developer-assistance tools,” in Proceedings of the 4th Interna-
tional Workshop on Recommendation Systems for Software Engineering.
ACM, 2014, pp. 14–18.

[19] S. Proksch, S. Amann, and S. Nadi, “Enriched event streams: A general
dataset for empirical studies on in-ide activities of software developers,”
in Proceedings of the 15th Working Conference on Mining Software
Repositories, 2018.

[14] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 763–773.

[15] “When Code Completion Fails: a Case Study on Real-World Com-
pletions - Data and Material.” https://doi.org/10.5281/zenodo.2562249,
2019.

[16] W. Snipes, A. R. Nair, and E. Murphy-Hill, “Experiences Gamifying
Developer Adoption of Practices and Tools,” in International Conference
on Software Engineering, 2014.

[17] R. Minelli, A. Mocci, R. Robbes, and M. Lanza, “Taming the IDE with
Fine-grained Interaction Data,” in International Conference on Program
Comprehension, 2016.

[18] S. Proksch, S. Nadi, S. Amann, and M. Mezini, “Enriching In-IDE
Process Information with Fine-grained Source Code History,” in Interna-
tional Conference on Software Analysis, Evolution, and Reengineering,
2017.

[20] S. Proksch, S. Amann, S. Nadi, and M. Mezini, “A dataset of
simplified syntax trees for c#,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: ACM, 2016, pp. 476–479. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2903507

[21] P. Bielik, V. Raychev, and M. Vechev, “Phog: probabilistic model for
code,” in International Conference on Machine Learning, 2016, pp.
2933–2942.

[22] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, 2013, pp. 532–542.

[23] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Proceedings of the
12th Working Conference on Mining Software Repositories, ser. MSR
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 334–345. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820518.2820559

[24] F. J. Pineda, “Generalization of back-propagation to recurrent neural
networks,” Physical review letters, vol. 59, no. 19, p. 2229, 1987.

[25] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
A. Begel, A. Bethmann, and A. Brechmann, “Measuring neural
efficiency of program comprehension,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. New York, NY, USA: ACM, 2017, pp. 140–150. [Online].
Available: http://doi.acm.org/10.1145/3106237.3106268

[26] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[27] M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and W. Zaremba,
“Addressing the rare word problem in neural machine translation,” arXiv
preprint arXiv:1410.8206, 2014.

[28] M.-T. Luong and C. D. Manning, “Achieving open vocabulary neural
machine translation with hybrid word-character models,” arXiv preprint
arXiv:1604.00788, 2016.

[29] X. Jin and F. Servant, “The hidden cost of code completion:
Understanding the impact of the recommendation-list length on its
efficiency,” in Proceedings of the 15th International Conference
on Mining Software Repositories, ser. MSR ’18. New York,
NY, USA: ACM, 2018, pp. 70–73. [Online]. Available: http:
//doi.acm.org/10.1145/3196398.3196474

http://doi.acm.org/10.1145/2884781.2884848
http://dl.acm.org/citation.cfm?id=2819009.2819143
http://doi.acm.org/10.1145/2635868.2635875
https://doi.org/10.5281/zenodo.2562249
http://doi.acm.org/10.1145/2901739.2903507
http://dl.acm.org/citation.cfm?id=2820518.2820559
http://doi.acm.org/10.1145/3106237.3106268
http://doi.acm.org/10.1145/3196398.3196474
http://doi.acm.org/10.1145/3196398.3196474

