
Creation of a Catalog of
Web Streams

Deniz Sarici
of Zurich ZH, Switzerland

Student-ID: 13-935-002
deniz.sarici@uzh.ch

Thesis July 5, 2019

Advisor: Daniele Dell’Aglio

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank Dr. Daniele Dell’Aglio for his guidance and constructive feedback
throughout the writing of my thesis. I’m grateful for the support and opportunity to
have worked with him and was able to learn a lot during the last few months.

Zusammenfassung

Daten werden vermehrt als Datenstrom veröffentlicht und sind nicht mehr nur in statis-
cher Form verfügbar. Da Daten zusätzlich in immer kürzeren Abständen generiert wer-
den, wird das Speichern und Verarbeiten von Daten erschwert. Im Zusammenhang mit
Linked-Data gibt es Bemühungen deren Prinzipien für statische Daten, auf dynamische
Daten zu übertragen. In einem ersten Schritt wurden RDF-Streams kreiert, um die
Publikation von Streams über das Internet zu modellieren. Dazu wurde das Frame-
work TripleWave entwickelt, um das Streamen von diesen RDF-Daten zu ermöglichen.
TripleWave veröffentlicht neben den Daten ebenfalls Metadaten, die dem Anwender In-
formationen über die gestreamten Datensätze zur Verfügung stellt. Doch bisher hat
TripleWave kein standardisiertes Vokabular verwendet. Um diese Lücke zu beheben,
integrieren wir das Vokabular VoCaLS in TripleWave. VoCaLS ist ein Ansatz, um
Streaming-Services wie TripleWave mit standardisierten Termen beschreiben zu können.

Die Technologie für das Streamen von Datensätzen ist schon reif genug. Jedoch fehlt es
an einem Katalog, der das Entdecken von solchen Streams ermöglicht. Deshalb entwick-
eln wir einen Katalog für Web-Streams und folgen dabei den Linked-Data-Prinzipien.
Um die Funktionalität des Kataloges zu demonstrieren, streamen wir Datensätze mit
TripleWave und katalogisieren diese. Dazu erweitern wir TripleWave um die program-
mierbare Interaktion mit dem Katalog.

Abstract

Data is increasingly published as a stream of data and is no longer published as only
as a static dataset. Moreover, the data is being published in shorter intervals, making
the storage and processing of data more difficult. There’s an ongoing effort in aligning
Linked Data principles for static data with the streaming dynamic data. RDF streams
were created in a first step to model the publication of streams over the web. TripleWave
is a framework to publish and manage those RDF streams. TripleWave also exposes
metadata about itself and the data being streamed. But TripleWave initially used ad-
hoc vocabulary that was not based on existing vocabularies. Therefore, we modify
TripleWave to adopt the VoCaLS vocabulary for its metadata. VoCaLS proposes a
standardized way for describing services for the publication, consumption and processing
of web streams.

The technology for streaming datasets is in place. However, there’s a lack of discover-
ability for web streams. Thus, we create a catalog of web streams that serves as a portal
for users and machines to discover streams on the web. To demonstrate the capabilities
of the catalog we search and select suitable datasets to be streamed and put them into
the catalog. We use TripleWave to publish those streams and extend TripleWave to
interface with the catalog.

Table of Contents

1 Introduction 1

2 Related work 3
2.1 Open Data . 3
2.2 Linked Data . 5

2.2.1 RDF . 6
2.2.2 RDF Serialization . 7
2.2.3 Applications . 9

2.3 Publication . 9
2.4 Streaming Linked Data . 10

3 Requirements 13
3.1 TripleWave . 13

3.1.1 TripleWave Interface . 13
3.1.2 Streaming Datasets with JRML . 14

3.2 Catalog . 15
3.2.1 Functional Requirements . 15
3.2.2 Non-functional Requirements . 17

4 Architecture 19
4.1 Overview . 19
4.2 Publishing data streams . 20
4.3 Consuming TripleWave Streams . 20
4.4 Message Brokers . 21

4.4.1 Kafka Producer . 22
4.4.2 Kafka Output . 22
4.4.3 MQTT Broker . 23

4.5 CKAN . 23

5 Changes to TripleWave 25
5.1 Vocabulary . 25
5.2 Pushing the metadata to the catalog . 28
5.3 TripleWave Config . 30

5.3.1 Advertise endpoints . 30

x Table of Contents

5.3.2 Adding Catalog Information . 31
5.4 Changes to JRML . 31

5.4.1 Discard invalid values . 31
5.4.2 Update data source URL . 33

6 Creation of the Catalog 35
6.1 Requirements Analysis . 35
6.2 Extending CKAN . 36
6.3 Creating a catalog entry . 37

6.3.1 Creating Additional Fields . 37
6.3.2 Mapping to CKAN fields . 40
6.3.3 Displaying the Stream Descriptor 40
6.3.4 Machine-readable Version . 43
6.3.5 Creating a preview of the Stream 43

6.4 Additional Modifications . 45
6.4.1 Accessibility . 45
6.4.2 About page . 45
6.4.3 Visual Appearance . 45

6.5 Deploying the Catalog . 47

7 Datasets 49
7.1 Survey . 49

7.1.1 Updating previous surveys . 49
7.1.2 Adding new Datasets . 50

7.2 Deployment . 52
7.2.1 Selection . 54
7.2.2 Railway Traffic Information . 56
7.2.3 Air Quality Zurich (AQZH) . 56
7.2.4 Weather Stations Zurich (WSZH) 57
7.2.5 Locations and Availability of Charging Stations (LACS) 57

8 Conclusions 59

A Appendix 67
A.1 CKAN . 67

A.1.1 Install CKAN from source . 67
A.1.2 Install the CKAN plugin . 67
A.1.3 Create User and API Key . 68
A.1.4 Solr . 68

A.2 Kafka . 70
A.3 Creating the web streams . 70

A.3.1 TripleWave and JRML . 71
A.3.2 MQTT Broker . 71
A.3.3 Kafka Connectors . 71

x

1

Introduction

The Web of Data is about publishing data on the web and linking points of data together.
Such links may connect data points within a dataset or across two different datasets.
Connecting data through links allows a person or machine to search for related data
(Berners-Lee, 2006). The data can be accessed and traversed by following the HTTP
URIs in the resource description. The Resource Description Framework (RDF) 1. serves
as a standard format for publishing data on the web. RDF uses URIs to describe the
relationship between two resources.

One example for publishing data in this way is the Linking Open Data cloud2. It
exposes over a thousand interconnected datasets that are managed and published by
different organizations (Dell’Aglio et al., 2017). Barbieri and Della Valle (2010) observe
that data on the Web is increasingly represented as a stream of data rather than a static
dataset. A stream is a sequence of data elements and is often paired with corresponding
timestamps to order the described events. Barbieri and Della Valle (2010) regard this
kind of data as transient and do not propose to store the data indefinitely. To consume
a data stream, the stream is continuously queried over time. Particularly in the context
of the Internet of Things (IoT) data elements are created in very short time intervals
and often lose their value with time (Dell’Aglio et al., 2017). Mauri et al. (2016) propose
the framework TripleWave to publish and manage data streams on the web. Triple-
Wave fetches and transforms data sets into RDF graphs and pushes them to registered
consumers.

In parallel, VoCaLS (Tommasini et al. (2018)) defines a vocabulary to describe and
advertise such data streams on the web. A common vocabulary for describing access
points of web streams and their capabilities allows decentralized and automated discov-
ery. We therefore use VoCaLS to describe streaming services such as TripleWave in a
unified way. This is helpful for cataloging and monitoring those services on the web
(Tommasini et al., 2018).

The goal of this thesis is the creation of a catalog of web streams for hosting stream
descriptions in a central repository. The catalog serves as a portal for users to discover
web streams and find out how to connect to them. Each entry in the catalog contains
information about the streaming service and metadata about the data being streamed.

1https:// www.w3.org/ RDF/ (accessed 2019-06-03)
2https:// lod-cloud.net/ (accessed 2019-06-03)

https://www.w3.org/RDF/
https://lod-cloud.net/

2 CHAPTER 1. INTRODUCTION

The view of the catalog is available as a HTML page and as unformatted, serialized
RDF text. To further increase accessibility to the data, we offer a preview of the stream
directly through the browser. We present a list of requirements for the catalog and
peripheral systems in Chapter 3.

There are already systems for hosting metadata on the market. However, they do lack
the capability of handling linked data out of the box and are built for static datasets
primarily. Furthermore, we need to make the interface of the catalog accessible to
TripleWave. To create the catalog of web streams we extend CKAN3: a tool that’s used
for hosting Open (Government) Data websites.

In order to populate the catalog with stream entries we use TripleWave to publish
the web streams. We modify TripleWave to describe the stream and the dataset itself
using VoCaLS and other existing vocabulary. The second feature we to add TripleWave
is the automatic registration of the stream through the catalog’s API. We summarize
the changes to TripleWave in Chapter 5. The creation of the web streams is based on
previous work of Muntwyler (2017) and Bernhaut (2018). In the process of selecting
datasets to be streamed, we update their surveys on Open Government Datasets and
look for newly published datasets that are suitable for streaming. We show the results
of the survey and the selection of datasets for streaming in Chapter 7. In order to
fetch and transform the data we use the TripleWave module JRML Bernhaut (2018).
For the distribution of the web streams we deploy Apache Kafka and reuse some of
the connectors developed by Muntwyler (2017). Since TripleWave supports the MQTT
protocol, we also set up a MQTT message broker in the backend. We explain the setup
in Chapter 4. Finally we deploy TripleWave, the message brokers and the catalog on a
virtual machine on the servers of the university.

3https:// ckan.org/ about/ (accessed 2019-06-03)

2

https://ckan.org/about/

2

Related work

This section is about the related work. We start by introducing the principles and
concepts of open data and then follow up with looking at the open government data
initiative. Afterwards we will look at linked data in general and cover its application
with open data. The latter is also referred to as linked open data (LOD). The second part
will describe the components for publishing and streaming linked data. This includes
the vocabularies used and some of the technology to enable the spreading of linked
data on the web. We finish with presenting the supporting tools used in this project.
Those tools may not have been built to work in conjunction with linked data, but their
functionalities match our requirements for the architecture. Amongst the described
tools are Apache Kafka, the MQTT protocol and the Comprehensive Knowledge Archive
Network (CKAN).

2.1 Open Data

Open data is a concept that “data and content can be freely used, modified, and shared
by anyone for any purpose” (Open Knowledge International, 2015). The essential fea-
tures of open data are

• Availability and access: the data must be easily accessible in modifiable form
and should be downloadable via the Internet.

• Re-use and redistribution: the terms of use must allow re-use and redistribution
of the data, including the mixing and aggregation of different datasets.

• Universal participation: anyone can participate in using and distributing the
data

An important goal of the definition of open data is interoperability, meaning that
data from different datasets can be mixed together in order to create better products and
services (Open Knowledge International, 2015). Murray-Rust (2008) relates this term to
a movement in the scientific community for making academic data freely accessible and
allow the aggregation of such data without explicit permission required. In his example,
scientists can access shared data about molecules and use the combined data to gain

4 CHAPTER 2. RELATED WORK

more insights. Another emerging trend is the government publishing information and
making it accessible to the public (Maali et al., 2010).

Open government data (OGD) builds on the concept that open data should be freely
available to anyone and that the people can use and redistribute the data in any form.
Most government owned institutions collect and produce data in the process of doing
their work. The large volume of data gathered by the government makes this kind of
data particularly interesting.

Nowadays, the data is primarily published on portals that act as entry points to all
open datasets of the respective institution. Examples of such portals are data.gov1 in the
US, data.gov.uk2 in the UK, opendata.swiss3 in Switzerland and also open data portals
of municipalities, e.g. Zurich4. In most cases, there is also metadata published. That
information may include publishers, the language of the data, further information about
the data, its update interval, file formats and more (Maali et al., 2010).

Data published by governments is available for many categories such as administration,
agriculture, finances and environment. The data itself comes in many formats, such as
CSV, JSON, XML or sometimes in a less reusable format like PDF (Maali et al., 2010).
On top of presenting a front end for the user, the portals may also offer (meta)data
in formats that enable automatic machine processing, for example, RDFa or JSON-LD
embedded into the webpage (Maali et al., 2010).

OGD helps the citizens understand how their governments work, increases trans-
parency of the administrations and holds them accountable for its actions. Furthermore,
the publication of data and eased access to it, may lead to further insights about the
processes in the government (Shadbolt et al., 2012). Ubaldi (2013) additionally sees
OGD supporting economic growth, as an opportunity for entrepreneurship built on the
OGD and as a source of social innovation.

In order to increase the quality of OGD, an Open Data Maturity assessment has been
started at EU level. The European Data Portal has been assessing and monitoring the
various open data portals and policies in the countries of the European Union and some
other European countries such as Switzerland (Carrara et al., 2017). Furthermore, the
European Data Portal enables access to datasets by searching and filtering datasets
directly5 and by searching metadata using SPARQL queries6.

OGD faces many challenges in making the data accessible. For improving the search
over multiple datasets, there need to be common formats to enable such queries. In
order to increase the interoperability of those datasets, Maali et al. (2010) propose a
standardized interchange format for the machine-readable representation of the data.
Such representation helps web crawlers to better interpret the web pages. For example,
Google Search uses structured data to understand what a web page is about7. The

1https:// www.data.gov/
2https:// data.gov.uk/
3https:// opendata.swiss
4https:// data.stadt-zuerich.ch/
5https:// www.europeandataportal.eu/ data/ en/ dataset (accessed 2019-03-13)
6https:// www.europeandataportal.eu/ sparql-manager/ en/ (accessed 2019-03-13)
7https:// developers.google.com/ search/ docs/ guides/ intro-structured-data (accessed 2019-03-17)

4

https://www.data.gov/
https://data.gov.uk/
https://opendata.swiss
https://data.stadt-zuerich.ch/
https://www.europeandataportal.eu/data/en/dataset
https://www.europeandataportal.eu/sparql-manager/en/
https://developers.google.com/search/docs/guides/intro-structured-data

2.2. LINKED DATA 5

supported formats are JSON-LD, Microdata and RDFa. A common vocabulary also
allows the decentralized publishing of catalogs and can also be used as a manifest for
digitally archived data (Maali et al., 2014).

A showcase of OGD is the interactive article published in the Swiss newspaper Tages-
Anzeiger that shows the punctuality of the public transport in the city of Zurich 8. The
authors make use of the large dataset about arrival and departure times published in
Zurich’s open data portal9. The datasets lists all target-actual arrival and departure
times in a publicly accessible CSV files. Similarly, the Transport for London (TfL)
freely releases datasets under the Open Government License for developers and other
interested parties on their website10. Stone and Aravopoulou (2018) show in their case
study how the TfL make their data available through public APIs, static files and direct
feeds. The data includes for example real-time arrival-time, time tables and network
performance. The data can then be consumed by client applications such as Google
Maps, Apple Maps and Bus Times London11. The availability of live data helps the
TfL’s customers to plan and adjust their routes accordingly. This does not only save
time and money, but also helps avoiding congestion in the network by showing capacity
and expected utilization of the routes (Stone and Aravopoulou, 2018).

Another use case of OGD is the publication of data from environment sensors. Boyle
et al. (2013) survey monitoring sensors across the city of London that publish data
containing information about the weather, air quality, river levels, water quality, etc.

2.2 Linked Data

In the previous section we talked about approaches to enable the interoperability between
different datasets. One of the solutions is based on principles of Linked Data to connect
the datasets. First, we introduce the principles of Linked Data and then cover the related
work in the field.

In the web there are lots of documents. Those documents can be accessed by following
hyperlinks within the documents. To find relevant data, search engines are valuable
resources since they index those documents and apply some algorithms to retrieve and
rank the most relevant pages given a user query (Brin and Page, 1998). Whilst the initial
web documents did not contain any structure or semantics, the adoption of Linked Data
has enabled connecting data inside documents and between different documents (Bizer
et al., 2011). Linked Data uses the web to make links between data elements. The data
published under Linked Data principles is machine-readable, has a well-defined meaning
and can be interconnected to other data elements (Bizer et al., 2011). In order to connect
raw data on the web, Berners-Lee (2006) proposes a set of practices for publishing data

8https:// www.stadt-zuerich.ch/ portal/ de/ index/ ogd/ anwendungen/ 2016/
so-pnktlich-ist-ihre-vbz-linie.html (accessed 2019-03-13)

9https:// data.stadt-zuerich.ch/ dataset/ vbz-fahrzeiten-ogd (accessed 2019-03-13)
10https:// tfl.gov.uk/ info-for/ open-data-users/ . The License enables the users to use the data in

their own software and services. Retrieved 2019-03-13.
11https:// www.emeraldinsight.com/ doi/ full/ 10.1108/ BL-12-2017-0035 (accessed 2019-03-13)

5

 https://www.stadt-zuerich.ch/portal/de/index/ogd/anwendungen/2016/so-pnktlich-ist-ihre-vbz-linie.html
 https://www.stadt-zuerich.ch/portal/de/index/ogd/anwendungen/2016/so-pnktlich-ist-ihre-vbz-linie.html
https://data.stadt-zuerich.ch/dataset/vbz-fahrzeiten-ogd
https://tfl.gov.uk/info-for/open-data-users/
https://www.emeraldinsight.com/doi/full/10.1108/BL-12-2017-0035

6 CHAPTER 2. RELATED WORK

on the web:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL)

4. Include links to other URIs. so that they can discover more things.

The Uniform Resource Identifiers (URIs) represent an entity on the web, starting with
http://. If two entities have the same URI, they represent the same resource. To get
more information about a resource, its URI can be resolved over the HTTP protocol.
An URI can also be used to identify and name a relationship between two entities (Bizer
et al., 2011). URIs may also contain a hash sign (#). The part that is followed by the
hash sign is also called fragment identifier. The fragment identifier refers to a term that
is described in the linked document. In this case the URI references a real-world object,
and not the web page itself (Heath and Bizer, 2011).

2.2.1 RDF

In addition to URIs, Linked Data uses the Resource Description Framework (RDF)12 to
describe the entities and their relationships in the web. RDF is graph-based data model
and represents data as statements in the form of subject – predicate – object. A
single statement is also called a triple, and a graph usually consists of a set of triples.
The subject is a URI identifying the entity that the statement is about, and the predicate
specifies how the subject and the object are related to each other. Finally, the object is
either a URI representing a resource or a simple literal value (e.g. a string, a number or
a date) (Heath and Bizer, 2011). The latter have an RDF literal as the object. Those
kinds of triples can be used to describe the name of a person for example (Listing 2.1).
Literals can be further divided into plain and typed. A plain literal is a string and
an optional language tag, identifying the language used. Typed literals come with a
datatype URI to describe the datatype of the literal (Heath and Bizer, 2011). In the
case of RDF links, the triple consists of three URIs. The predicate URI is used to
describe the relationship between the resources (Listing 2.2). Heath and Bizer (2011)
further distinguish RDF links by the location of the subject and object. An internal
RDF link references resources in the same data source, whereas an external RDF link
connects the subject to an object in a different data source.

12https:// www.w3.org/ RDF/ (accessed 2019-06-13)

6

https://www.w3.org/RDF/

2.2. LINKED DATA 7

http :// example . org\#spiderman
http :// xmlns . com/ f o a f /0 .1/name
”Spiderman”

Listing 2.1: A literal triple with a plain string

http :// example . org\#spiderman
http ://www. p e r c e i v e . net / schemas/ r e l a t i o n s h i p /enemyOf
http :// example . org\#green−gob l in

Listing 2.2: RDF (internal) Link

Additionally, a subject or an object may also be a blank node. Blank nodes do not
identify specific resources (in contrast to URIs and literals) and are limited in scope.
They make a statement about a resource that exists, but do not identify any particular
thing13. Since blank nodes are limited in scope, it’s not possible to use them for linking
different datasets. It is also difficult to merge data from different datasets, since there
is no common key to join on. Hence Heath and Bizer (2011) suggest avoiding the use of
blank nodes where ever possible.

To further describe the meaning of objects and relationships, languages such as the
RDF Schema Language (RDFS)14 are used. Such RDFS vocabularies contain defini-
tions about classes and properties, for example the class Dog and the property hasColor.
RDFS can also be used to describe the relationship between classes and between prop-
erties. We can for example specify that Dog is a subclass of Animal or that hasColor
has the color class as range (Heath and Bizer, 2011).

Bizer et al. (2011) consider reusing terms from popular RDF vocabularies as a good
practice. Some examples are Friend of a Friend (FOAF)15, SKOS16 and Dublin Core17.
If two different URIs refer to the same thing, we can use the owl:sameAs relation between
them18. Shadbolt et al. (2012) use this to increase linkage between different datasets
that use different terms for the same thing.

2.2.2 RDF Serialization

To store and share RDF graphs we then require a serialization format adhering to the
RDF syntax. An example of serialization is RDF/XML19. However, the syntax is re-
garded as difficult to read for humans.

13https:// www.w3.org/ TR/ 2014/ REC-rdf11-mt-20140225/ #blank-nodes (accessed 2019-03-17)
14https:// www.w3.org/ TR/ 2014/ REC-rdf-schema-20140225/
15http:// xmlns.com/ foaf/ spec/
16https:// www.w3.org/ TR/ swbp-skos-core-spec/
17http:// dublincore.org/
18https:// www.w3.org/ TR/ owl-ref/ #sameAs-def
19https:// www.w3.org/ TR/ rdf-syntax-grammar/

7

https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/#blank-nodes
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/swbp-skos-core-spec/
http://dublincore.org/
https://www.w3.org/TR/owl-ref/#sameAs-def
https://www.w3.org/TR/rdf-syntax-grammar/

8 CHAPTER 2. RELATED WORK

Another format is RDFa20. It allows to embed RDF triples in HTML documents as
attributes, without affecting the rendered view the users get. In the following example,
the h2 and p tags are annotated with property attributes to give machines further
information about the kind of information they enclose. The about attribute is used
to name the subject of the statements.

<div about="http://example.org/posts/trouble"

<h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>

<p>Date: 2011-09-10</p>

</div>

with the resolving triples

<http://example.org/posts/trouble> <http://purl.org/dc/terms/title>

"The Trouble with Bob" .

<http://example.org/posts/trouble> <http://purl.org/dc/terms/created>

"2011-09-10" .

The Turtle21 format is used to describe an RDF graph in plain text and comes close to
natural language. To avoid typing long URIs repeatedly again, Turtle uses the @prefix

notation to abbreviate URIs. In this case somePrefix gets replaced with the URI specified
on the @prefix line.

@prefix somePrefix: <http://www.perceive.net/schemas/relationship/> .

<http://example.org\#green-goblin> somePrefix:enemyOf

<http://example.org\#spiderman> .

N-triples22 are a subset of Turtle where each line must contain a subject, predicate and
object without the use of prefixes. This results in larger file sizes, but has the advantage
that each line is parse-able itself (Heath and Bizer, 2011). Another format is JSON-
LD23, a JSON-based serialization for Linked Data. JSON-LD can either be embedded
into a website, enclosed by <script type="application/ld+json"> or just published
as serialized JSON. The Internet Movie Database (IMDb) uses this to describe movies
on their web page, for example the movie Frozen II24 has the following embedded:

<script type="application/ld+json">{

"@context": "http://schema.org",

"@type": "Movie",

"url": "/title/tt4520988/",

"name": "Frozen II",

20https:// www.w3.org/ TR/ rdfa-primer/
21https:// www.w3.org/ TR/ turtle/
22https:// www.w3.org/ TR/ n-triples/
23https:// www.w3.org/ TR/ json-ld/
24https:// www.imdb.com/ title/ tt4520988 (accessed 2019-06-13)

8

https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/json-ld/
https://www.imdb.com/title/tt4520988

2.3. PUBLICATION 9

"genre": [

"Animation",

"Adventure"

]

}

</script>

2.2.3 Applications

Bizer (2009) attribute the starting point of putting Linked Data into the web to the
Linked Open Data (LOD) project. The Linked Data community has since then been
identifying datasets and converting them to RDF for publication. Early participants
were mainly researchers at universities. Later, larger organizations such as BBC and
Thomson Reuters followed foot (Heath and Bizer, 2011). BBC in that case started by
publishing data about their programs and about the music that was running on their
radios. They also interlinked the data with an open-license music database and with
DBpedia (Bizer, 2009).

Auer et al. (2007) built DBpedia as a tool to extract data from Wikipedia and put it
into a set of linked data called DBpedia. In DBpedia, the resource identifiers return a
RDF description of the resource if a machine accesses it. Otherwise a HTML view of the
resource is provided. Furthermore, Morsey et al. (2012) extend DBpedia by processing
the wikistream output of Wikipedia live. This synchronizes DBpedia with Wikipedia
continuously. Ayala et al. (2017) use DBpedia to identify complementary products, e.g.
a cartridge and a printer. Their models manage to predict complementary products
solely based on the meta-data of the products (titles, descriptions, categories, etc.) and
do not rely on previous customer’s transactions.

Valsecchi et al. (2015) provide a map-like visualization to give the user an overview
and feeling of the datasets. The tool gives an overview of the dataset, but also allows
zooming in further to discover more details25.

2.3 Publication

Shadbolt et al. (2012) identify following challenges for integrating open data into the
web of linked data. First, one must find appropriate datasets with an open license for
applications. Then there need to be good join points for connecting diverse datasets and
integrating them into the linked-data web. At last, there should be client software to
use the data in order to create a meaningful representation for a user. There’s also the
Comprehensive Knowledge Archive Network (CKAN) to provide an entry point to the
user. CKAN serves as a platform for publishing and discovering open data26. Neumaier
et al. (2017) address those issues in their example of making a linked open data portal.
Their work exposes and connects metadata descriptions on the open data portals by

25http:// wafi.iit.cnr.it/ lod/ dbpedia/ atlas/
26https:// ckan.org/

9

http://wafi.iit.cnr.it/lod/dbpedia/atlas/
https://ckan.org/

10 CHAPTER 2. RELATED WORK

encoding the metadata in standard vocabularies such as DCAT and schema.org. They
further build a SPARQL endpoint for querying the data. SPAQRL is an RDF query
language.

2.4 Streaming Linked Data

A data stream is a sequence of digitally encoded signals containing information27. Se-
queda and Corcho (2009) introduce the concept of Linked Stream Data in the context of
the growing number of sensors publishing data on the web. Those sensors publish data
in short time intervals and commonly records numerical values such as time, geolocation,
humidity and other physical measurements.

Triples streamed by the sensors may not be stored forever, and need to be processed
on the fly. In this case, queries need to be continuously executed on the stream once
registered. To continuously query those RDF data streams, Barbieri and Della Valle
(2010) propose an extension of SPARQL28 called C-SPARQL. SPARQL itself is a query
language for RDF. The C-SPARQL query computes the results in a specified time in-
terval and over a window of time and then generates an RDF stream. Barbieri and
Della Valle (2010) define an RDF stream as an ordered sequence of (Triple, timestamp)-
pairs. Timestamps may not be unique, but they should not decrease. The streamed data
triples are part of some Instantaneous Graph (i-graph) determined by their timestamp.
The so-called Stream Graph (s-graph), on the other hand, contains the metadata that
describes the stream. Such metadata may contain information about the last update of
the stream or pointers to the i-graph instances (Barbieri and Della Valle, 2010).

In order to increase accessibility, Barbieri and Della Valle (2010) further provide a
RESTful interface to control the C-SPARQL engine and its queries. This allows clients
to register, start, stop and delete queries on RDF streams processed by the engine.
Similar extensions of SPARQL are EP-SPARQL by Anicic et al. (2011) and CQELS by
Le-Phuoc et al. (2011).

For linked sensor data, Taelman et al. (2016) propose a less expensive alternative to
RDF stream processing query engines such as C-SPARQL. Their solution is tailored
towards the processing of sensor data. Barnaghi et al. (2010) present the Sense2Web
platform to publish linked-sensor-data to the web. Users can publish and link their data
to existing resources on the platform. To perform queries on the data, the platform
exposes a SPARQL endpoint. One presented use case is a map application that joins
location data with sensor data in the proximity of a location. Unlike Barbieri and
Della Valle (2010), updates of the data were not in the scope of the project.

Balduini et al. (2013) report on using the streaming linked data framework (SLD) to
analyze information from the social web during city-scale events (e.g. Olympic Games).
The different venues and involved people make this particularly interesting. SLD uses
RDF to model the data and C-SPARQL to process and analyze the data. For example,

27https:// www.its.bldrdoc.gov/ fs-1037/ dir-010/ 1451.htm (accessed 2019-03-18)
28https:// www.w3.org/ TR/ sparql11-query/

10

https://www.its.bldrdoc.gov/fs-1037/dir-010/_1451.htm
https://www.w3.org/TR/sparql11-query/

2.4. STREAMING LINKED DATA 11

the live stream of locations can then be used to generate a heat map and visualize the
flow of the crowd.

So far the presented approaches have not focused on the publication and offloaded
the task of managing the stream publication to the developers. Therefore, Mauri et al.
(2016) propose TripleWave as a generic tool to create and distribute RDF streams on
the web. TripleWave can either transform non-RDF input into an RDF stream or create
time-annotated datasets form RDF streams. The output of TripleWave is a stream in
the JSON-LD format. For non-RDF datasets, TripleWave makes use of the RDB to
RDF mapping language (R2RML29), which allows to map relational databases to RDF
datasets. With the TripleWave extension JRML of Bernhaut (2018) it is also possible
to define the mapping in a RML-like notation using JavaScript objects. Regarding RDF
datasets, TripleWave supports different running modes, such as replay and endless. A
static dataset with time-annotations for example, can be replayed in the order of the
triple’s timestamps. This can be used to benchmark and test applications that deal with
that kind of data. Moreover, it is also possible to loop the replay over and over again
(Mauri et al., 2016).

The output of TripleWave can then be consumed by either a WebSocket client or by
a MQTT-Client. This enables the client to choose whether to receive the data by a
push or to pull the data from a MQTT broker (Mauri et al., 2016). The output schema
follows Barbieri and Della Valle (2010)’s proposition to put the stream data elements
into Instantaneous Graphs (i-graphs) and expose the metadata through a separate graph
called stream graph (s-graph). The stream graph is accessible by a HTTP request on the
stream endpoint and allows flexible aggregation of stream metadata of the TripleWave
instances Mauri et al. (2016).

In the interest of creating a common vocabulary for streaming data catalogs, Tom-
masini et al. (2018) propose the Vocabulary for Cataloging and Linking Streams (Vo-
CaLS). VoCaLS extends vocabularies such as DCAT, Dcterms and VoID that were pri-
marily created with static data in mind. Thus, VoCaLS aims to bridge the gap between
static datasets and streamed datasets. VoCaLS is divided into three modules. The Vo-
CaLS Core module enables the description of streams, such as license, access URL and
the output format. In addition, the Service Description module is used to describe the
offered services and capabilities of streaming service. The third module, Provenance,
allows to track the transformation of the stream, such as describing mapping operators
(Tommasini et al., 2018).

29https:// www.w3.org/ TR/ r2rml/

11

https://www.w3.org/TR/r2rml/

3

Requirements

The following section is divided into requirements for the backend systems for streaming
data, and for the catalog serving the metadata of the streams. The backend consists
of TripleWave instances with the integrated JRML module Bernhaut (2018) that is
responsible for fetching and transforming the datasets on a fixed schedule and finally
forwarding it to TripleWave.

In Section 3.1 we discuss the requirements for publishing the stream and its metadata
to the catalog. In Section 3.2 we list the requirements for the catalog. In order to
accomplish these goals, we identify the following requirements. The words ”must”,
”should” and ”may” are used in accordance with RFC-2119 (Bradner, 1997).

3.1 TripleWave

Initially we identify the requirements to stream datasets found on open data portals and
what interfaces TripleWave must offer to interact with the catalog. The goal is to review
whether those requirements are already met by TripleWave and JRML. If not, we will
extend TripleWave or JRML.

3.1.1 TripleWave Interface

RT1 TripleWave must create a description of the stream.

The stream description must contain all the relevant metadata (e.g. title, descrip-
tion, license, source, endpoints) of the stream. The vocabulary used should reuse
existing vocabulary as much as possible.

RT2 TripleWave must push the description to the catalog.

TripleWave must actively push the stream description to a service or to the catalog
directly. Before pushing the stream description, TripleWave must check whether
the stream is already registered at the catalog. Based on the catalog’s response,
TripleWave either sends a create or update catalog entry command to the catalog
endpoint.

14 CHAPTER 3. REQUIREMENTS

RT3 TripleWave must serve the stream to multiple clients.

TripleWave or another service must serve the stream to multiple clients. Triple-
Wave must use the address specified in the configuration and include the endpoint
addresses in the stream description.

Should another service be used to supply clients with the stream, TripleWave must
publish the addresses through the stream description as well.

RT4 TripleWave must grant access to clients outside the intranet.

Clients outside the internal network must be able to access a TripleWave stream.

RT5 The backend setup should be manageable

TripleWave already allows us to spawn a new child process for each data set and
keeps the configuration in one file. If new services are introduced, they should be
similarly managed.

3.1.2 Streaming Datasets with JRML

The requirements for JRML are explained in detail by Bernhaut (2018). RB1 and RB2
refer to the basic requirements of JRML. We identify two new requirements RB3 and
RB4 during the creation of web streams using JRML.

RJ1 JRML must support CSV, JSON and XML data sources

Most open data on the web does not come in a format for linked data. Thus, it is
necessary for TripleWave to be able to transform the most common data formats
into RDF triples.

RJ2 JRML must fetch data periodically

The creator of the stream must be able to specify a time interval for scheduling
the retrieval of the data source.

RJ3 JRML should discard data records containing invalid values

Some datasets contain invalid records that should not be published over the stream.
For example, the fine dust measurements dataset on the Austrian portal1 uses -
999 for invalid entries. Since it is impossible to automatically identify all kinds of
invalid values, we limit the scope of this requirement to discard only a set of null
values that is specified by the developer. Those null values should be passed to
JRML before the start-up.

RJ4 JRML should be able to update the data source url

Some data source endpoints may change their URL over time, e.g. generating a new
path for each month. More commonly, an endpoint may accept query parameters
by appending a query string at the end of the URL.

1https:// www.data.gv.at/ katalog/ dataset/ 8b057f32-1312-40ae-ae51-9aa0a0d372ca (accessed 2019-
06-14)

14

https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca

3.2. CATALOG 15

This allows to apply initial filtering of the dataset on the server side of the data
source. Consequently, we reduce network traffic and processing power on our side.

A common use case is the filtering by date, e.g. ?publishDate=today where today
gets evaluated just before sending the request to retrieve the original data source.

3.2 Catalog

The catalog requirements should help identifying a suitable software framework to build
the web stream catalog. There are already frameworks in use for hosting static datasets
and metadata. Thus, we are confident to extend such a framework to fit our requirements
and do not need to start from scratch.

We do not explicitly require a neat visual styling of the site. But since our initial
survey of frameworks for creating catalogs indicated the possibly to create templates of
web pages, we are confident to satisfy visual requirements. The portal must be accessible
for automatic and human agents. Therefore, the portal has to supply different views of
the catalog. Furthermore, a human agent might want to see a preview of the data stream
before accessing the endpoints directly. The platform needs to store the metadata but
does not need to store the data itself. Instead the platform should point the clients to
the stream endpoints.

We begin with the functional requirements and then list the non-functional ones.

3.2.1 Functional Requirements

In this section we describe the functional requirements for the catalog. First, we shortly
define the actors that interact with the catalog.

We name publisher the entity that creates a catalog entry. I.e. the publisher pushes
(meta)data to the catalog over the network using some sort of API. The developer is
responsible for adapting and extending the catalog’s functionality. For example, defining
how the data received from the publisher is parsed or designing and modifying the
layout of the web pages. The administrator manages the publication of datasets through
interfaces provided by the catalog and does not modify the source code of the catalog.
Lastly the user is the human or machine that reads the catalog and possibly wishes to
connect to the stream.

RC1 The catalog must provide an API for registering a stream.

There must be an interface where a publisher can register a stream and push the
metadata to the catalog.

RC2 The catalog should provide functionality for updating streams.

It should be possible to update the metadata of the stream via an API. We want
to use such a functionality to update the corresponding catalog entry each time
TripleWave is restarted.

15

16 CHAPTER 3. REQUIREMENTS

RC3 The catalog must create static URLs.

When a new page is created for a new dataset, the URL must remain unchanged.
This allows a publisher to update the dataset later by using the URL or part of it
as an identifier.

RC4 A catalog’s page URL must uniquely identify a single dataset

When a new page for a stream is created, a unique URL for that page must be
generated or inferred from the data pushed to the catalog. If inferred URL already
exists on the catalog an error must be returned to the publisher. Returning an
error is important because TripleWave must update the dataset if it already exists.

RC5 The developer must be able to create new data fields.

The schema of the metadata on the catalog side must be modifiable. Should new
fields be required that are not available in the catalog, the catalog must be able to
create new fields with the corresponding name.

RC6 The catalog must hook into creation of a dataset.

It must be possible to parse the input from a dataset creation or update and map
the input data to the catalog’s internal representation. E.g. dct:title could be
mapped to the title field of the catalog.

RC7 The catalog must be able to parse data in RDF.

TripleWave already publishes its metadata in an RDF serialization format. To
reuse this component, we want to do the mapping of the metadata fields on the
catalog’s side. Hence, the registering stream does not need to know everything
about our catalog’s internal mapping.

RC8 The catalog must recognize labels for predicates.

The publisher may define a human-readable version for predicate names. When
the catalog shows the metadata to a human user, the catalog must prefer the label
over the predicate’s URI. This does not affect the machine-readable version of the
stream descriptor.

RC9 The catalog should provide human-readable names for common predi-
cates by default.

Some resources appear in every dataset. In order to not repeat the label decla-
rations for each dataset, the catalog should support some sort of default labels.
Those labels should have a lower precedence than labels defined by the publisher.

RC10 The catalog must be customisable.

In order to show the metadata in a format suited for web streams, it must be
possible to change the content of the web page.

16

3.2. CATALOG 17

RC11 The catalog must provide means to find datasets.

For exploring the catalog, the catalog must functionality to find datasets. A user
must be able to search the catalog by keywords. Furthermore, the catalog must
provide a list of datasets on the catalog.

RC12 The catalog must give a preview of the stream.

The catalog should enable the user to see a preview of the data stream. On opening
the preview, the catalog must retrieve that latest message and deliver updates as
soon as possible.

RC13 The catalog should explain how access web streams

Even though the RDF description of the endpoints are descriptive enough to access
those web streams, the user may not know what kind of client software to use to
consume those streams. The catalog should therefore provide some sort of manual
for accessing web streams.

RC14 The catalog may pull metadata periodically.

The catalog may pull the metadata from TripleWave in a specified interval.

RC15 The developer may create a new page.

The catalog may allow administrators to create new pages rather than only using
default pages.

3.2.2 Non-functional Requirements

RN1 The catalog must be open source and free software.

Anyone should be able to freely modify and extend the software.

RN2 The catalog must have documentation online.

There must be a documentation for using, extending and deploying the catalog
available.

17

4

Architecture

In this chapter we present the overall architecture of the catalog and the systems in the
backend for delivering the web streams. Section 4.1 gives an overview of the complete ar-
chitecture with the catalog and the publishing of the streams. In Section 4.2 we describe
the role of TripleWave and JRML in publishing streams and show the consumption of
streams in Section 4.3. In Section 4.4 we proceed with explaining the setup of the Kafka
and MQTT broker. Finally, in section 4.5 we give a brief overview of CKAN.

4.1 Overview

The core of this project is to create a catalog of web streams. In order to create and
publish the catalog we use the Comprehensive Knowledge Archive Network (CKAN),
serving the catalog web pages and handling the retrieved metadata from TripleWave.
The catalog serves as an entry point for users and machines to discover web streams and
access information about those streams. An overview of the architecture is depicted in
Figure 4.1.

We use TripleWave to pull, transform and publish linked data as a web stream. The re-
sulting output stream is then forwarded to two different message brokers over the network
(a Kafka and an MQTT broker). We use message brokers as intermediaries because they
can serve as a single access point for clients. The endpoints of the message brokers are
included in the stream description and are listed on the catalog. Muntwyler (2017) used
Kafka for the scalability and modularity, allowing the publisher to increase the number
of open connections by dynamically adding more brokers to the cluster. Further, using
a widely-used broker further reduces the effort required to manage stream consumption,
because there are existing libraries handling it. Additionally, we add an MQTT broker
to leverage TripleWave’s support of the MQTT protocol and to increase the number of
access methods for clients. In our implementation TripleWave automatically pushes its
stream description to the catalog via the CKAN API1. The API exposes CKAN’s core
features and most allows us to create and update data entries of the catalog.

1https:// docs.ckan.org/ en/ 2.8/ api/

https://docs.ckan.org/en/2.8/api/

20 CHAPTER 4. ARCHITECTURE

Figure 4.1: Overview of all components

4.2 Publishing data streams

TripleWave is a tool to publish RDF streams to the web. TripleWave may be fed with ex-
isting RDF streams or can be used together with JRML to transform non-RDF datasets
to an RDF stream. We use TripleWave together with JRML to pull the data from the
original source and transform the data to a stream. The creation and publication of
web streams is shown more closely in figure 4.2. JRML is a result of Bernhaut (2018)’s
thesis and allows to define the transformation of the data in a purely declarative way.
It is a Node.js module that maps data to linked data and has an integrated harvesting
functionality that fetches and transforms the data on a schedule and feeds it to Triple-
Wave. We decided to use JRML together with TripleWave because it is convenient to
use and saves time and effort in mapping the data on the web to linked data. JRML
can transform CSV, XML and JSON formatted data into an RDF stream that is then
processed and published by TripleWave.

4.3 Consuming TripleWave Streams

Unlike static datasets, the data cannot be downloaded at once. The consumer has
to continuously listen the publisher of the data stream. TripleWave’s final output is
an RDF stream over HTTP using chunked transfer encoding, over WebSockets and
MQTT (Mauri et al., 2016). Chunked transfer encoding divides the data stream a
series of disjoint chunks. Those chunks arrive independently from each other at the
target location. This is required to keep the connection to the client open and allows to
transfer data of unknown size2. Alternatively, TripleWave uses the WebSocket protocol

2https:// tools.ietf.org/ html/ rfc7230#section-4.1 , (accessed 2019-04-19)

20

https://tools.ietf.org/html/rfc7230#section-4.1

4.4. MESSAGE BROKERS 21

and acts as a WebSocket server3. The WebSocket protocol provides a single connection
for traffic in both directions. Most importantly, it allows the server to push messages to
the client without the client putting a request in first. The MQTT output is published to
the MQTT broker listening to the endpoint declared in the TripleWave settings. Clients
can then subscribe to web streams through the MQTT broker.

Figure 4.2: Overview of TripleWave (source: Bernhaut (2018))

4.4 Message Brokers

We deploy Apache Kafka4, a distributed streaming platform, to achieve higher through-
put and to serve multiple streams on the same endpoint (Muntwyler, 2017). This meets
requirement RT3 (serving the stream to multiple clients) from Section 3.1. Kafka uses
the publish-subscribe mechanism to distribute streams of messages across topics. A topic
is a feed name to which messages are published. A message in this case represents a
single RDF graph of TripleWave in JSON-LD from a single data retrieval. A client can
then choose to subscribe to messages of a specific topic. We assign a unique topic to
each web stream in order to let the client decide which web streams to consume.

The red part of Figure 4.3 shows the flow of the stream across Kafka. In Section 4.4.1
we describe the component that forwards TripleWave’s output to the Kafka cluster;
then we show the consumer side that listens to the Kafka topics and forwards it to
our consumer components in Section 4.4.2. Finally, we introduce the MQTT broker in
Section 4.4.3.

3https:// tools.ietf.org/ html/ rfc6455 , (accessed 2019-04-19)
4https:// kafka.apache.org/ (accessed 2019-04-18)

21

https://tools.ietf.org/html/rfc6455
https://kafka.apache.org/

22 CHAPTER 4. ARCHITECTURE

4.4.1 Kafka Producer

The Kafka producer is responsible for forwarding TripleWave’s RDF stream output to
the Kafka cluster. It is a Node.js process that listens to the WebSocket servers of each
TripleWave instance and publishes the incoming web streams under the corresponding
topic on the Kafka cluster.

The WebSocket connections and data transformations are handled by Primus5. Primus
is a wrapper for managing communication through different WebSocket frameworks. For
our needs we only require a simple WebSocket server. We primarily use Primus because
of its ability to reconnect to the server and its built-in parser functionality. The parser
is needed to stringify the JSON output from TripleWave.

4.4.2 Kafka Output

The WebSocket Consumer component (Figure 4.3) subscribes to requested Kafka topics
on behalf of clients and forwards the message streams to the client using the same
WebSocket connection from the client request. We use Primus to create a WebSocket
server that handles the incoming requests and subscribes to the corresponding topics.
The client may request a specific topic by encoding the name of the topic in the request.

As a second access method is the EventSource interface6 to handle server-sent events
(SSE). We provide this access method because it’s particularly easy to implement on the
client side and because it’s designed for continuous data streams.

Figure 4.3: Overview of the message brokers

5https:// github.com/ primus/ primus (accessed 2019-04-19)
6https:// developer.mozilla.org/ docs/ Web/ API/ EventSource (accessed 2019-04-19)

22

https://github.com/primus/primus
https://developer.mozilla.org/docs/Web/API/EventSource

4.5. CKAN 23

4.4.3 MQTT Broker

MQ Telemetry Transport (MQTT)7 is a lightweight messaging protocol that allows
publishing and subscribing to topics. MQTT supports basic quality of service (QoS)
settings for delivering messages to the clients. TripleWave in this case publishes messages
at the QoS level 0. This means messages are delivered at best-effort and may arrive once
or not at all at their target destination. Level 0 may be used for temperature readings
where the latest message matters the most. If all messages must arrive, the publisher
must use QoS level 1 that guarantees at-least-once delivery (Hunkeler et al., 2008).
Analogous to the Kafka topic, we use the identifying name of the dataset as the topic
name.

4.5 CKAN

We use CKAN8 to create our platform and publish our metadata. We believe CKAN
meets the requirements of our catalog9. CKAN is published under the GNU Affero
General Public License (AGPL10). CKAN is built with Python11 and uses the web
frameworks Pylons and Flask12 to serve the web pages. For its database CKAN uses
PostgreSQL as a database. CKAN interacts with PostgreSQL through SQLAlchemy (an
object-relational mapper).

As shown in Figure 4.1 TripleWave pushes the stream descriptor (the streams meta-
data in RDF) to CKAN. Even though CKAN has a web user interface to publish data,
we do not use it at all. Instead we interact with CKAN exclusively through its API13.
The CKAN API provides access to all CKAN’s core features. The API allows us to read,
create and update datasets programmatically. As a result, we do not have to register web
streams ourselves and are able to use data that’s already available from the TripleWave
configuration.

CKAN also has the capability to store data itself14. Data storage is not a requirement
of our catalog, therefore we omit setting up any of the components related to it.

7https:// mqtt.org/ (accessed 2019-04-18)
8https:// ckan.org/ (accessed 2019-04-21)
9https:// ckan.org/ (accessed 2019-04-18)

10https:// www.gnu.org/ licenses/ agpl-3.0.html (accessed 2019-04-18)
11https:// ckan.org/ developers/ about-ckan/ (accessed 2019-04-21)
12https:// github.com/ ckan/ ckan/ wiki/ Migration-from-Pylons-to-Flask (accessed 2019-04-21)
13https:// docs.ckan.org/ en/ 2.8/ api/ index.html (accessed 2019-04-21)
14https:// docs.ckan.org/ en/ 2.8/ maintaining/ filestore.html (accessed 2019-04-21)

23

https://mqtt.org/
https://ckan.org/
https://ckan.org/
https://www.gnu.org/licenses/agpl-3.0.html
https://ckan.org/developers/about-ckan/
https://github.com/ckan/ckan/wiki/Migration-from-Pylons-to-Flask
https://docs.ckan.org/en/2.8/api/index.html
https://docs.ckan.org/en/2.8/maintaining/filestore.html

5

Changes to TripleWave

In this section we introduce the modifications and extensions of TripleWave and the
JRML module to meet the requirements in Section 3.1 and Section 3.1.2. The added
features enable TripleWave to interact with the catalog. Section 5.1 introduces the
changes to the vocabulary that TripleWave uses to describe its stream. In Section 5.2
we then show how TripleWave registers itself at the catalog; in Section 5.3 we adapt the
TripleWave configuration according to the added features. In Section 5.4 we list minor
changes applied to JRML.

5.1 Vocabulary

Streams on the web require ways to describe their metadata and access points on the
web. Unlike static datasets, web streams are more dynamic and offer different kind of
mechanism for consuming and processing streams on the web. Therefore, using catalog
vocabulary designed for static datasets (e.g. dcat) is not enough (Tommasini et al., 2018).
Instead, we need to use vocabulary geared towards streaming linked data. TripleWave
previously used its own ad-hoc vocabulary sld1 and switched parts to rsd later. To use
standard vocabulary and to increase interoperability with other potential services, we
adopt Tommasini et al. (2018)’s Vocabulary & Catalog of Linked Streams (VoCaLS).

The use of VoCaLS concerns requirement RB1 (see Section 3.1). Further, we reuse
other existing vocabulary as much as possible when encoding the metadata of the web
stream. Mauri et al. (2016) refer to TripleWave’s stream description as sGraph for stream
graph, but we use ”stream description” or ”stream descriptor” to be closer to VoCaLS.

First, we replace sld and rsd terms with terms from VoCaLS wherever possible. Next,
we add new vocabulary that is present in VoCaLS and not in TripleWave to further
enrich the metadata. In a third step, we encapsulate the previous stream description
(the sGraph) in the new stream descriptor as a dcat:Dataset.

In dcat terms, a Dataset describes ”A collection of data, published or curated by
a single agent, and available for access or download in one or more formats.”2. As a
result, we can describe the stream descriptor itself and introduce the notion of a catalog

1http:// streamreasoning.org/ ontologies/ SLD4TripleWave (accessed 2019-04-21)
2https:// www.w3.org/ TR/ vocab-dcat-2/ #Class:Dataset (accessed 2019-04-23)

http://streamreasoning.org/ontologies/SLD4TripleWave
https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset

26 CHAPTER 5. CHANGES TO TRIPLEWAVE

of stream descriptions (Tommasini et al., 2018). On top of that it allows us to distinguish
metadata about the original dataset, and data that has been added by the catalog. For
example dcat:modified can be used to indicate when the catalog has been updated last3.

VoCaLS is built on top of other vocabularies that are primarily concerned with static
and stored data in mind. They do not provide all the terms necessary to adequately
describe web streams. VoCaLS seeks to close that gap. We further use the following
vocabularies:

• Data Catalog Vocabulary (DCAT, dcat) is an RDF vocabulary describing
data catalogs on the web (Maali et al., 2010). VoCaLS extends the terms Distri-
bution, Dataset and Catalog.

• Dublin Core Terms (DCterms, dct)4 is a set of generic metadata terms such
as title, description and publisher

From VoCaLS we add the following terms:

• vocals:StreamDescriptor that indicates a stream descriptor, i.e. the metadata
about a web stream It is a sub-class of dcat:Catalog. The StreamDescriptor is
exposed by TripleWave and is pushed to our catalog

• vocals:RDFStream represents an RDF web stream. It is a a sub-class of vo-
cals:Stream, which represents any kind of stream. The related dcat super-class
of a stream is dcat:Dataset.

• vocals:StreamEndpoint the endpoint that a client can use to consume the data
generated by the stream. It is a sub-class of dcat:Distribution.

• vocals:hasEndpoint is a predicate for adding an endpoint to a web stream

• vsd:CatalogService to show that the service is providing catalog metadata.

vocals belongs to the core-vocabulary of VoCaLS and vsd provides terms to character-
ize services (Tommasini et al., 2018). Figure 5.1 shows an overview of our stream descrip-
tor incorporating the VoCaLS vocabulary. In Listing 5.1 we show the example we used
as a basis for creating TripleWave’s stream descriptor. The empty prefix resolves to the
declared base URI. For example :TempStream with base http:// example.org/ sensors#
resolves to http:// example.org/ sensors#TempStream.

3https:// www.w3.org/ TR/ vocab-dcat/ #class-dataset (accessed 2019-04-21)
4http:// www.dublincore.org/ specifications/ dublin-core/ dcmi-terms/ (accessed 2019-04-21)

26

http://example.org/sensors#
http://example.org/sensors#TempStream
https://www.w3.org/TR/vocab-dcat/#class-dataset
http://www.dublincore.org/specifications/dublin-core/dcmi-terms/

5.1. VOCABULARY 27

:TempSensorStreamDesc

:TempStream

vocals:StreamDescriptor

vsd:CatalogService

dcat:dataset

rdf:type

rdf:type

Figure 5.1: The stream descriptor for a stream of temperature sensor data

Figure 5.2 shows the RDFStream endpoint. We add dct:source to the RDFStream
node to specify the original data source.

:TempStream

”Title”
”Publisher” ”Description”

vocals:RDFStream

:TempStreamEndpointWS

:TempStreamEndpointMQTT

:TempStreamSource

dct:title dct:publisher dct:description

rdf:type

vocals:hasEndpoint
vocals:hasEndpoint

dct:source

Figure 5.2: An RDFStream containing two different endpoints

In Figure 5.3 we show a stream representing a single endpoint. As shown in the figure,
we define the license for each endpoint. This is in agreement with dcat defining the license
for each dcat:Distribution, even if the catalog’s license applies to all distributions in the
catalog5.

Listing 5.1 shows Tommasini et al. (2018)’s stream description applied to one of our
own webstreams in the turtle format. Because Tommasini et al. (2018) do not specify
a term for the protocol used, we use vocalsd:protocol. There’s also no term to define
the topic of an MQTT endpoint. Hence we introduce vocalsd:topic. For our WebSocket
endpoint we do not have to specify a topic because each TripleWave stream has its own
address with the topic encoded in the URL.

@pref ix : <http :// example . org /PLS#> .
@base <http :// example . org /tw/ parking#> .

: ParkingStreamDesc a voca l s : StreamDescr iptor , vsd : Cata logServ i ce ;

5https:// www.w3.org/ TR/ vocab-dcat/ #Property:catalog license (accessed 2019-04-21)

27

https://www.w3.org/TR/vocab-dcat/#Property:catalog_license

28 CHAPTER 5. CHANGES TO TRIPLEWAVE

:TempStreamEndpointMQTT

vocals:StreamEndpoint
”mqtt”

:MQTT

CC BY 4.0

frmt:JSON-LD
”Topic”

rdf:type vocalsd:protocol dcat:accessURL

dct:license

dct:formatvocalsd:topic

Figure 5.3: A StreamEndpoint

dcat : datase t : ParkingStreamZurich .
: ParkingStreamZurich a voca l s : RDFStream ;

voca l s : hasEndpoint : ParkingStreamEndpointZurich ;
dct : t i t l e ” Parking Zurich ” ;
dct : p u b l i s h e r ”PLS Park l e i t sy s t em AG” ;
dct : d e s c r i p t i o n ” Informat ion about parking spaces in Zurich ” .

: ParkingStreamEndpointZurich a voca l s : StreamEndpoint ;
dct : l i c e n s e <https : // creativecommons . org / publicdomain / zero /1.0/> ;
dct : format frmt :JSON−LD ;
voca l sd : p ro to co l ”ws” ;
dcat : accessURL ”ws :// example . org / p l s zh /” .

Listing 5.1: RDF stream and endpoint description; some prefixes omitted (source: Tommasini
et al. (2018)).

5.2 Pushing the metadata to the catalog

To address requirement RT2, TripleWave pushes the stream descriptor to the catalog by
creating a dataset entry on CKAN. CKAN stores the stream descriptor as a whole and
maps some of the metadata to its own internal representation should there be a matching
field (e.g. the title of a dataset). A dataset in CKAN’s terms contains metadata and
resources which hold the data itself6. TripleWave only pushes metadata to CKAN and
does not create any resources on the catalog. Because TripleWave’s ”datasets” on CKAN
only contain metadata, we use ”dataset” and ”catalog entry” interchangeably.

More specifically, TripleWave utilizes the CKAN API methods package show, pack-
age create and package update7. Package refers to dataset in this case.

TripleWave first checks if there is already an existing dataset entry for its stream by
using package show. This method uses the name of the stream as a unique identifier

6https:// docs.ckan.org/ en/ 2.8/ user-guide.html#datasets-and-resources (accessed 2019-04-21)
7https:// docs.ckan.org/ en/ ckan-2.7.3/ api/ index.html (accessed 2019-04-21)

28

https://docs.ckan.org/en/2.8/user-guide.html#datasets-and-resources
https://docs.ckan.org/en/ckan-2.7.3/api/index.html

5.2. PUSHING THE METADATA TO THE CATALOG 29

and returns the stored metadata as a dictionary. If the entry already exists, TripleWave
sends a request to the URL of package update with the updated dictionary. Otherwise
package create is called. The corresponding sequence diagram is shown in Figure 5.4.
The metadata dictionary is named data dict in the figure.

Figure 5.4: TripleWave registering the stream

To create a dataset using CKAN’s API, we require six parameters. The first parameter
is the name of the dataset. This parameter has to be unique on CKAN’s side and serves
as a primary identifier for a dataset on the catalog. The 2nd parameter streamdescriptor
is the stream descriptor that’s already been generated by TripleWave. The 3rd parameter
labels holds the labels for the predicates of the stream descriptor and the 4th parameter
use default labels enables TripleWave to use the default labels of the catalog itself. A
label definition has the form R rdfs:label L and means that L is a human readable
version of R8. We implement the label definitions on the publisher side, because different
streams might chose different labels in some cases. However, we aim to keep the labels
consistent across all of our published web streams.

The 5th parameter sets the original source of the dataset because that information
is not present in the stream description. Finally, the 6th parameter owner org is the
name of the organization on CKAN that creates and owns the datasets on CKAN.
All parameters are either read from the TripleWave configuration file or generated by

8https:// www.w3.org/ TR/ rdf-schema/ #ch label (accessed 2019-04-21)

29

https://www.w3.org/TR/rdf-schema/#ch_label

30 CHAPTER 5. CHANGES TO TRIPLEWAVE

TripleWave (e.g. the stream descriptor).
We specifically chose not to specify other dataset properties for CKAN (such as li-

cense) in the package dictionary that is pushed to CKAN because we handle this on
CKAN’s side when parsing the stream descriptor. This way, TripleWave does not need
to know about CKAN’s internal representation of the data. For example CKAN uses
three properties to desribe the license. license id, license title, license url and finally
isopen to indicate whether a license is open or not in reference to the open definition9.
TripleWave on the other hand stores the license as a resource identified by a URL (i.e.
a dct:LicenseDocument10).

5.3 TripleWave Config

TripleWave’s configuration is stored in a JavaScript file and gets imported by TripleWave
as a JavaScript object that is passed to all functions that require it (Bernhaut, 2018).
We change two parts of TripleWave’s configuration. First we change the way TripleWave
stores the endpoints of the stream. The second change provides the option to add more
metadata to the stream description.

5.3.1 Advertise endpoints

Originally, TripleWave used the WebSocket and MQTT settings to create the endpoints
(i.e. start a WebSocket server with the given settings) and also to advertise them in the
stream description for clients on the Internet. This avoids the duplication of settings if
both internal and external endpoints are the same. However, we recognize that some
endpoints should not be accessible from the outside. For example, we use TripleWave’s
WebSocket output only internally and provide web access on another endpoint that
connects to the Kafka broker. Therefore we add the property external that is containing
information about all externally accessible endpoints, which are added to the stream
description of TripleWave. As shown in Listing 5.2 and 5.3, we adhere to the original
schema to describe those endpoints and omit the unnecessary parts. We chose to preserve
the structure of the internal server settings although wrapping them into an internal may
be better for showing intent. This way, we preserve compatibility with older versions of
TripleWave.

ws : {
enabled : true ,
s t r e a m l o c a t i o n : ’/ stream ’
port : 8100 ,

9https:// opendefinition.org/ od/ 2.1/ en/ (accessed 2019-05-11)
10http:// dublincore.org/ specifications/ dublin-core/ dcmi-terms/ 2012-06-14/ ?v=terms#

LicenseDocument (accessed 2019-05-11)

30

https://opendefinition.org/od/2.1/en/
http://dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/?v=terms#LicenseDocument
http://dublincore.org/specifications/dublin-core/dcmi-terms/2012-06-14/?v=terms#LicenseDocument

5.4. CHANGES TO JRML 31

address : ’ws : // l o c a l h o s t :8100/ tw/stream ’
}

Listing 5.2: Internal endpoint settings

e x t e r n a l : {
ws : {

port : 8200 ,
address : ’ws : // example . org :8200/ twave ’

}
}

Listing 5.3: External endpoint settings

For the catalog we use the external settings to advertise our three endpoints that are
not created by TripleWave. (a) MQTT over WebSocket for the preview stream in the
browser, (b) the WebSocket consumer that lets clients subscribe to Kafka topics, and
(c) the EventSource interface.

5.3.2 Adding Catalog Information

Data about a catalog API endpoint where the request to create an entry is sent to, is
new to TripleWave. Thus we put all properties that are related to the catalog into a new
top-level property catalog. Further, we add fields to add more metadata to the stream
description of TripleWave. The catalog property is purely optional and if its not present,
TripleWave will not attempt to connect to any catalog. This maintains compatibility
with older TripleWave versions. Table 5.1 shows all available settings.

5.4 Changes to JRML

In this section we introduce changes to JRML in order to meet the newly added require-
ments in Section 3.1.2. We also increased the version of the JRML dependency jsonld
because the old version caused installation errors on our end. In a final step we update
the readme file to reflect the changes.

5.4.1 Discard invalid values

This change addresses requirement RJ3, making JRML discard invalid values. Some
datasets contain invalid values for data that is not available yet or could not be measured.

31

32 CHAPTER 5. CHANGES TO TRIPLEWAVE

Properties Description

catalog.apiEndpoint The endpoint of the catalog API for cre-
ating and updating entries

catalog.apiKey The API key for the catalog

catalog.owner org Required CKAN field for the owner orga-
nization of a dataset

catalog.use default labels Boolean for using the catalog’s default la-
bels

catalog.labels The path to the label file, turtle format-
ted. This value is eventually replaced with
the file’s content before being pushed to
the catalog.

catalog.name The name of the stream. The catalog uses
this field to generate the URL of the cata-
log entry. Hence the name must be unique

catalog.title The title of the stream

catalog.publisher The publisher of the stream

catalog.description The description of the stream

catalog.license The license of the stream

catalog.source The original source of the dataset being
streamed

catalog.format The format of the stream (e.g. JSON-LD)

Table 5.1: Catalog settings

We decide to exclude such records in our data stream. Consequently we need to reliably
filter invalid data. Our main goal is to filter values that have been explicitly set to some
kind of designated value by the publisher.

Data publishers use different notations, e.g. ”null”, ”N/A”, ””, or even designated
numbers such as 999. Especially the last example shows that it is difficult to catch and
omit all values marked as invalid reliably.

Bernhaut (2018) solves this problem by writing a transformer function that receives
a string and then returns the transformed string. The transformer function receives the
original data source string and modifies it before passing it to the corresponding parser.
Since the transformer function can be defined in the JRML configuration for each data
source, this is an efficient way to filter some of the low hanging fruits. This approach
works particularly well with CSV formatted data because the individual records are

32

5.4. CHANGES TO JRML 33

separated by a newline. Therefore, our transformer can work on the raw string and
remove each line that contains an invalid value. For JSON and XML we need to first
parse the string and construct an object, filter the parts containing invalid values and
then convert the object back to a string again.

We attempted to use the transformer option in our initial attempt. However, we had
to write a lot of code for each individual dataset that could possibly contain invalid
values.

Hence, we propose to add the option to specify invalid values for each dataset in
the JRML configuration as a list of strings. We then delegate the filtering to another
component of JRML.

The filtering is implemented in the part where JRML produces the N-Quads11 that
get passed to TripleWave. N-Quads serializes RDF in plain text and each triple can be
parsed independently because there are no prefixes and base URLs used for compaction.

In the JRML codebase the modification is located at readPredicateObjectMap of the
transformer.js component. This function reads all triple objects and then discards any
invalid value in the object position. We do not change the functions reading the subjects
and predicates, because we do not expect them to contain invalid values and have valid
object values at the same time.

5.4.2 Update data source URL

We change JRML to make it possible to update the data source URL before each request.
Some APIs accept queries encoded in the URL in the form ”key=value”. The query
component of an URL begins at the first question-mark (”?”) and ends at the number
sign (”#”) or at the end of the URL (see also RFC398612).

The initial version of JRML only accepts a static string for the location of the data
source. Consequently it is not possible to pass dynamic values, such as today’s date for
example, as a query value to the API.

In order to update the data source URL we extend JRML by adding the possibility to
define dynamic values for any query parameter in the URL. We achieve this by letting
users define key-value pairs in the configuration. The value may be a function that
returns a part of the URL that should be updated between requests. JRML will then
evaluate the values before each request and transform the key-value pairs into a valid
query string. The generated query string has the form ”?key1=value1&key2=value2”
and gets appended to the static part of the URL. The generated string starts with a
question-mark (”?”) if the static URL does not already contain one. Otherwise the string
starts with a ”&”. This change addresses requirement RJ4 from Section 3.1.2.

11https:// www.w3.org/ TR/ n-quads/ (accessed 2019-04-21)
12https:// tools.ietf.org/ html/ rfc3986#section-3.4 (accessed 2019-05-11)

33

https://www.w3.org/TR/n-quads/
https://tools.ietf.org/html/rfc3986#section-3.4

6

Creation of the Catalog

In this chapter we present the catalog of web streams. The goal of the catalog is to expose
web streams created by a streaming service like TripleWave on the web. It serves as a
portal to discover web streams and explains users how to connect to those web streams.
The catalog collects the stream metadata it receives from the TripleWave instances and
creates a catalog entry for each web stream. The catalog itself is not responsible for
streaming and hosting data other than metadata itself. The catalog also does not need
any knowledge of the streaming service, because the catalog accepts any data pushed
to its API. We separate the concerns of streaming and hosting metadata in order to
maintain interoperability of both components in other system configurations.

To create the catalog, we use CKAN as a basis. CKAN is a data management system
that is generally used for publishing (meta)data for static datasets. It is widely used
for creating Open Government Data portals such as opendata.swiss, data.gov.uk and
data.gov due to its extendibility (Shadbolt et al., 2012). As discussed in the requirements
chapter in Section 3.2, CKAN already fulfills some of the requirements for creating and
updating a catalog entry for metadata. We describe in Section 6.1 which requirements
are met, and which require modification and extension of CKAN. Since CKAN publishes
data in units called ”datasets”1, we use this word interchangeably with the term ”catalog
entry”. A dataset contains a description of a single web stream that is published by
TripleWave or any other streaming service that may use CKAN as a catalog.

The rest of the chapter is structured as follows: in Section 6.2 we describe the CKAN
architecture and explain how we chose to extend the code base of CKAN to create a
catalog for web streams. We then follow-up with describing the process of creating an
entry for a web stream on the catalog in Section 6.3. Creating a preview of the stream
is explained in Section 6.3.5. Afterwards we show minor changes to CKAN, such as
changing the visual styling of the catalog, in Section 6.4. Section 6.5 concludes this
chapter by giving a quick overview of the deployment of the catalog.

6.1 Requirements Analysis

We use the functional requirements from Chapter 3 and compare them to CKAN’s base
functionality. CKAN meets the following requirements without further modification:

1https:// docs.ckan.org/ en/ 2.8/ user-guide.html#datasets-and-resources (accessed 2019-05-13)

opendata.swiss
data.gov.uk
data.gov
https://docs.ckan.org/en/2.8/user-guide.html#datasets-and-resources

36 CHAPTER 6. CREATION OF THE CATALOG

API for registering a stream (RC1) and for updating a stream (RC2). For those we can
use the same API as for creating and updating a static dataset on CKAN. When creating
a dataset, CKAN creates a static URL for the dataset. This satisfies RC3. Since CKAN
uses the name of the dataset in the URL (supplied by the creation request through the
API) and verifies its uniqueness, RC4 is met as well.

The remaining requirements need an extension of CKAN. The rest of the chapter
focuses on the implementation of new features that meet those requirements. Creat-
ing new metadata fields (RC5) is described in Section 6.3.1. The implementations for
hooking into the creation of a dataset (RC6) and parsing the RDF metadata input from
TripleWave (RC7) are listed in Section 6.3.2. The procedures for using human readable
labels instead of full URIs (RC8, RC9) are drawn out in Section 6.3.3. In Section 6.3.5
we discuss RC12 for providing a preview of the stream. Finally, the requirements RC10
and RC11 are related to rendering the web page and their developments discussed in
Section 6.4.

6.2 Extending CKAN

Based on the requirements analysis we develop a design package for CKAN, because the
base package provides only little customization features out of the box. Examples are
setting the title of the page, adding a site logo and appending custom CSS2.

A CKAN extension is a Python package that allows us to override CKAN’s default
behaviour and add new features3. An overview of CKAN’s architecture is shown in
Figure 6.1; a package can extend all layers of CKAN. However, we follow CKAN’s
guidelines for writing extension code and do not touch the model’s part at all. For
creating a catalog entry on CKAN the package parses the data we get from TripleWave,
map it to the correct fields and let CKAN deal with lower layers of data storage and
retrieval. When the data is then retrieved from storage, we have access to the data and
can manipulate it before it is passed to the HTML template or format it in the template
itself. The gray part in Figure 6.1 shows the layers our plugin modifies. We do not
modify CKAN’s own logic functions: we define functions that are executed on top or
instead of them.

Since CKAN already has an API for creating catalog entries, we must hook into the
creation of such an entry. The data for the catalog is passed as a Python dictionary.
CKAN provides ways to intercept that dictionary before or after certain events, by
hooking into the logic calls and modifying the data passed to those logic functions. To
do this, we implement the so called ”plugin interfaces”4. Those implementations are
then managed by CKAN and get called at events they are bound to. For example,
the after create method of the package controller interface is called each time anyone
creates a new package (catalog entry in our case). We use this to map TripleWave’s

2https:// docs.ckan.org/ en/ 2.8/ sysadmin-guide.html#customizing-look-and-feel (accessed 2019-05-
12)

3https:// docs.ckan.org/ en/ 2.8/ extensions/ tutorial.html (accessed 2019-05-12)
4https:// docs.ckan.org/ en/ 2.8/ extensions/ plugin-interfaces.html (accessed 2019-05-12)

36

https://docs.ckan.org/en/2.8/sysadmin-guide.html#customizing-look-and-feel
https://docs.ckan.org/en/2.8/extensions/tutorial.html
https://docs.ckan.org/en/2.8/extensions/plugin-interfaces.html

6.3. CREATING A CATALOG ENTRY 37

metadata representation to CKAN’s own representation. The package show is called
each time someone requests a view of the catalog entry through the web page or through
the API.

In order to render the view of the web pages, CKAN uses Jinja25 HTML templates.
Jinja2 is a template engine for Python and allows us to combine dynamic data with
static HTML. By creating a template file with the same name in the plugin, we can
override or extend the default templates of CKAN. The templates are structured in a
hierarchy and a child template inherits from the parent. This allows us to hide unused
CKAN elements and show some web stream specific elements instead on specific parts
of the page. Templates also have access to helper functions that can be defined by the
plugin. Those functions have access to the metadata stored on CKAN and can be used
to modify the data before the web page is rendered to the user. We use this to parse
and render some of the data that has not been mapped to the CKAN data model. For
example, for displaying the stream description in Section 6.3.3. Figure 6.2 shows the
implemented interfaces and helper components of the plugin. The interaction with the
CKAN components is omitted in the Figure.

6.3 Creating a catalog entry

In this section we explain how a catalog entry is created (in CKAN terms this is the
creation of a dataset). We essentially describe what happens after TripleWave pushes
the data in the form of a JSON object. In Section 6.3.1 we list the new fields we created
for the catalog and in Section 6.3.2 we handle the mapping to already existing fields
on CKAN. Section 6.3.3 describes the parsing and view of the stream descriptor that
TripleWave pushes to the catalog.

6.3.1 Creating Additional Fields

In CKAN the metadata is stored and displayed in the form of field-value pairs. CKAN
comes with a list of standard fields that can be used to show some of the metadata of the
catalog entry, such as the author, publication date and license information. The fields of
TripleWave’s stream description that have an equivalent on CKAN are directly mapped
to CKAN’s data model. For example, the title and note fields of a CKAN dataset have
the stream description equivalents dct:title and dct:description. For the other metadata
fields, we create new CKAN fields by extending the DatasetForm interface that allows
us to update and modify the available fields of a dataset. The additional fields are
important because we can access them within other CKAN modules. For example, the
stream descriptor field is accessed by the module that creates the HTML code for the
web page. Fields are also indexed and searched by the search functionality of CKAN.
Because our portal is only supposed to show datasets of type ”web stream”, we override
the default dataset schema.

5http:// jinja.pocoo.org/ (accessed 2019-06-06)

37

http://jinja.pocoo.org/

38 CHAPTER 6. CREATION OF THE CATALOG

Figure 6.1: CKAN architecture
(source: https:// docs.ckan.org/ en/ 2.8/ contributing/ architecture.html)

We do not to map each field in the stream description to CKAN directly, because
CKAN stores the fields as field-value pairs represented by a string each. This does
not give any room for storing lists or nested data structures as required by our stream
description. The stream metadata may contain any number of triples. For example,
listing the stream endpoints requires a list of objects, where each object contains a set of
triples describing a single stream endpoint. Such a nested structure requires a lot of effort
to map to a field-value schema. Therefore, we decide to store the stream description
in a CKAN field as a serialized JSON-LD string that is pushed to the catalog. The
stream description is then parsed on the fly each time a catalog entry is requested (see
also Section 6.3.3). This applies to catalog reads through the browser as well as reads
through the CKAN web API.

On the web page we use labels to provide a human-readable version of a predicate
URI. The labels provide a human-readable version for predicate names in the RDF
triples. For example, http:// w3id.org/ rsp/ vocals#hasEndpoint is displayed as ”has
Endpoint”. We add default labels to the catalog for the predicates used to describe our
web streams, so we do not have to define them separately in each stream configuration.

38

https://docs.ckan.org/en/2.8/contributing/architecture.html
http://w3id.org/rsp/vocals#hasEndpoint

6.3. CREATING A CATALOG ENTRY 39

Figure 6.2: Plugin components

But a publisher may want to override those labels or use labels for predicates without
a default labels. Thus, CKAN must accept labels from the publisher and store them
somewhere. Analogous to storing the stream descriptor, we store the labels as a serialized
string in a new field labels. To make it possible to completely disable default labels, we
add a new boolean field to CKAN: use default labels.

Lastly, we add an extra field original source to link to the original publication site of
the data being streamed. We use this distinctly from the Dublin Core term dct:source6

because we link to the portal and not directly to the source data itself. Furthermore, it
allows a user to search the catalog with such a source URL to check if there is a web
stream for the corresponding dataset of an Open Data Portal.

In summary, following dataset fields are created on CKAN:

• streamdescriptor the stringified version of the stream descriptor.

• labels the stringified version of the labels.

• use default labels boolean for using the catalog’s preset labels

• original source the page for the original data source

6http:// udfr.org/ docs/ onto/ dct source.html (accessed 2019-05-13)

39

http://udfr.org/docs/onto/dct_source.html

40 CHAPTER 6. CREATION OF THE CATALOG

6.3.2 Mapping to CKAN fields

In order to map the catalog fields that have a CKAN equivalent, we implement the
package controller interface that hooks into the creation and modification of a dataset7.
When the catalog entry is created or updated, the catalog parses the stream descriptor
and maps those elements to the corresponding CKAN fields. The mapping is shown in
Table 6.1.

RDF Class Property CKAN dataset field

vocals:RDFStream dct:title title
vocals:RDFStream dct:description notes
vocals:RDFStream dct:publisher publisher
vocals:StreamEndpoint dct:license license url

Table 6.1: RDF stream description to CKAN mapping

The title, description and the publisher are extracted from the data the publisher
pushes to the catalog. We save the dct:license in the license url field because we ex-
pect a resource identifier pointing to the license of the stream. On top of the license
URL, CKAN provides three additional license fields: (i) license id : for CKAN internal
purposes, (ii) license title: a human-readable version of the license and (iii) isopen: a
boolean to indicate whether the dataset is open according to the Open Knowledge Defi-
nition8. We develop a function to infer those three fields from the given license url and
populates the fields during the creation of a dataset.

6.3.3 Displaying the Stream Descriptor

The stream descriptor (or sGraph in Mauri et al. (2016)) contains all the metadata
exposed by TripleWave. It is accessed by two different parts of the catalog: when
TripleWave registers or updates itself at the catalog, and when the catalog is displayed
on the web page or retrieved through the CKAN web API.

Since a stream description does not only contain information about the dataset, but
also about the streaming service and about endpoints, we cannot list them in a single
metadata table like CKAN does. We thus create a table of field-value pairs for each
subject in the stream description. The tables for each subject are displayed on the
primary page of the corresponding dataset on CKAN. Since we do not store the other
metadata values directly in a CKAN field, we need to parse the stream descriptor each
time a dataset page is rendered by the catalog. This might not be optimal from a
performance point of view. But this enables the catalog to show more than a fixed set of
triples, which would not be possible if we only used CKAN fields. The stream descriptor
may for example contain an arbitrary number of endpoints. We parse the serialized

7https:// docs.ckan.org/ en/ 2.8/ extensions/ plugin-interfaces.html#ckan.plugins.interfaces.
IPackageController (accessed 2019-06-10)

8https:// docs.ckan.org/ en/ ckan-2.7.3/ api/ legacy-api.html (accessed 2019-05-13)

40

 https://docs.ckan.org/en/2.8/extensions/plugin-interfaces.html#ckan.plugins.interfaces.IPackageController
 https://docs.ckan.org/en/2.8/extensions/plugin-interfaces.html#ckan.plugins.interfaces.IPackageController
https://docs.ckan.org/en/ckan-2.7.3/api/legacy-api.html

6.3. CREATING A CATALOG ENTRY 41

stream descriptor with the RDF library rdflib9. The library allows us to navigate the
graph and iterate over triples that match a specified pattern of subject, predicate and
object. We then aggregate all field-value pairs for each subject separately and send
them to the template. We provide an alternative view in RDF, namely in JSON-LD and
Turtle (see also Section 6.3.4).

Since the triples have no inherent order, we show the higher-level objects in the JSON-
LD formatting of the stream description first. Thus we use the order vocals.StreamDescriptor
> vocals.RDFStream > vocals.StreamEndpoint > the rest. Since a catalog entry is a
stream descriptor that describes an RDF stream that has a set of endpoints, the order
is somewhat natural as well.

In the web page view of the catalog entry we prefer labels over URIs for all predi-
cates. Labels pushed by the publisher (e.g. TripleWave) have higher precedence than
the default labels we defined in the catalog. The default labels are mostly the terms
stripped from their respective prefix URI. For example vocals:hasEndpoint becomes just
has Endpoint. A catalog entry of a selected web stream is shown in Figure 6.3.

9https:// github.com/ RDFLib/ rdflib (accessed 2019-05-13)

41

https://github.com/RDFLib/rdflib

42 CHAPTER 6. CREATION OF THE CATALOG

Figure 6.3: The stream description as shown on the catalog

42

6.3. CREATING A CATALOG ENTRY 43

6.3.4 Machine-readable Version

For the purpose of exposing the catalog data to machines, we provide the original RDF
representation of the stream in the JSON-LD and Turtle formats. Contrary to the table
view of subjects, we move the RDF representation to a separate web page. The pages
can be reached by appending .ttl or .json-ld to the URL of the dataset page. We set
the content-type header to ”application/json” and ”text/turtle” respectively in order to
facilitate the download of the metadata by machines. The final endpoint has the form:

https://<ckan-host>/dataset/{dataset id}.{format}

In order to create a new page on CKAN, we must modify the routes as shown in
Figure 6.1 by implementing the CKAN routes interface. The routes interface connects
a route with a function that then returns the catalog and sets the appropriate headers
for the response.

6.3.5 Creating a preview of the Stream

The preview of the stream is supposed to give the user an idea of the data being streamed
and also gives away the kind of triples that are being streamed. It is directly accessible
through the web browser on the catalog. The preview also serves as an easy access point
for users unfamiliar with building WebSocket and MQTT clients. The user is free to
pause or stop the stream at any time and can cycle through past messages. Because
the broker stores the last message, the user does not have to wait for the next event
message to arrive. We use the MQTT broker because we have direct access to it (unlike
Kafka that requires a connector) and because the broker makes it easy to retrieve the
last message. Retrieving the last message is especially helpful for streams that publish
data in long intervals. Since TripleWave includes a timestamp in the stream element, it
is still possible to distinguish between old messages and messages that have just arrived.

The preview of the stream is a JavaScript client that connects to the MQTT broker
in the backend. This way we move some of the processing required to the client and off
the server. We use a MQTT library that works in the browser and subscribes to our
MQTT broker through a WebSocket connection. The JavaScript library used for the
client is mqtt.js10. Since the browser cannot open a MQTT connection directly, our
broker must be able to communicate over WebSockets. In this case the browser wraps
the MQTT packet into a WebSocket packet and lets the WebSocket protocol handle the
data transfer.

In the backend we utilize the Node.js module aedes11 as our MQTT broker. The
broker can handle direct MQTT connections as well as WebSocket connections. We use
Aedes because it provides WebSockets off the shelf. The mosquito broker on the other
hand would require us to enable WebSocket in the compilation settings and then require

10https:// github.com/ mqttjs/ MQTT.js (accessed 2019-05-08)
11https:// www.npmjs.com/ package/ aedes (accessed 2019-05-08)

43

https://github.com/mqttjs/MQTT.js
https://www.npmjs.com/package/aedes

44 CHAPTER 6. CREATION OF THE CATALOG

us to compile our own mosquitto package. Mosquitto’s WebSocket support is currently
disabled at compile time12.

Figure 6.4 shows the preview of the stream on the catalog page.

Figure 6.4: Preview of the stream on the catalog

12https:// mosquitto.org/ man/ mosquitto-conf-5.html (accessed 2019-04-18)

44

https://mosquitto.org/man/mosquitto-conf-5.html

6.4. ADDITIONAL MODIFICATIONS 45

6.4 Additional Modifications

This section lists minor modifications of the catalog web page. We hide unused CKAN
features, add an about page, and change the visual appearance of CKAN. All of the
changes are done on the template level (see Figure 6.2) by creating template files that
override the defaults. The names of the templates can be retrieved from the CKAN
repository on Github13.

6.4.1 Accessibility

To be compliant with the Open Data principles, we do not require registration for viewing
datasets and subscribing to the stream. Thus, we remove the login and register buttons
form the CKAN view. Nevertheless, we must leave the login-page accessible because
the API key for creating a new catalog entry on CKAN is only retrievable via the web
interface14.

The homepage of the catalog serves as the central portal to explore those datasets
available on the site. We leave the homepage of the catalog unmodified for the most
part. It shows the most recently added datasets and search box prominently shown in
the middle. The modified homepage is shown in Figure 6.5. The user may either search
for a dataset using the search box or navigate to a list of all available datasets. In
addition, there is a list of selected datasets on the homepage. The most recent datasets
are selected by default, but it is possible to show a set of ”featured” datasets.

6.4.2 About page

The about page provides a short description of CKAN. We also use this page to describe
this project and the related work in Bernhaut (2018) and Muntwyler (2017) in order to
give a full overview of the web streams featured in the catalog. Lastly, we give practical
advice for accessing the web streams featured in the catalog. We do this by showing an
example for available each access method.

6.4.3 Visual Appearance

Figure 6.5 shows the homepage of the catalog. The primary goal of the visual part is
to hide CKAN features that are not available to users of our site. Apart from the login
and registering we also hide the unused buttons for the manual creation and editing of
a dataset to reduce clutter on the web page. Furthermore, we remove the social section
(Facebook, Twitter) and follower count for the datasets.

We also want to align the catalog website’s visuals to the university’s websites, since
the catalog is published on the servers of the university. In order to create a similar
styling to the universities current website15, we adopt the color palette of the website

13https:// github.com/ ckan/ ckan/ tree/ master/ ckan/ templates (accessed 06-28-2019)
14https:// docs.ckan.org/ en/ ckan-2.7.3/ api/ #authentication-and-api-keys (accessed 2019-06-04)
15https:// www.uzh.ch/ (accessed 2019-05-16)

45

https://github.com/ckan/ckan/tree/master/ckan/templates
https://docs.ckan.org/en/ckan-2.7.3/api/#authentication-and-api-keys
https://www.uzh.ch/

46 CHAPTER 6. CREATION OF THE CATALOG

and include the university’s logo on top of each page. For specifying the style, we create
our own CSS file and host it within our CKAN instance16.

Figure 6.5: The catalog homepage serving as an entrypoint for discovering web streams

16https:// docs.ckan.org/ en/ 2.8/ theming/ fanstatic.html (accessed 2019-05-16)

46

https://docs.ckan.org/en/2.8/theming/fanstatic.html

6.5. DEPLOYING THE CATALOG 47

6.5 Deploying the Catalog

CKAN uses the Web Server Gateway Interface (WSGI) to forward requests on the web
server to the CKAN web application. We use the Apache HTTP Server17 as the web
server.

The whole deployment process is documented in detail in the appendix section of this
thesis. A description of this and other available deployment methods is accessible on
CKAN’s documentation page18.

17https:// httpd.apache.org/ (accessed 2019-05-16)
18https:// docs.ckan.org/ en/ ckan-2.7.3/ maintaining/ installing/ deployment.html) (accessed 2019-

05-16)

47

https://httpd.apache.org/
https://docs.ckan.org/en/ckan-2.7.3/maintaining/installing/deployment.html)

7

Datasets

In this chapter we describe Open Government datasets that we selected to be streamed by
TripleWave and to be pushed to the catalog. The goal is to demonstrate the capabilities
of the catalog and to update the data surveys of the previous work. We focus on Open
Government Data because the datasets are published under licenses that allow free
distribution and transformation of the data.

Since Muntwyler (2017) and Bernhaut (2018) already created extensive surveys on
Open Government Data, we focus our search on datasets that have been added since then.
The method and results are described in Section 7.1. Afterwards we select the datasets
to be streamed with TripleWave and to be published on the catalog. In Section 7.2 we
transform and deploy the datasets to RDF following the 5-star deployment scheme for
Open Data (Berners-Lee, 2006).

7.1 Survey

In this section we go through the list of datasets found in the previous work of Muntwyler
(2017) and Bernhaut (2018) and update the metadata of their listed datasets. We then
add new datasets to the survey and create a preliminary list of datasets to be streamed
with TripleWave and to be included in the catalog.

7.1.1 Updating previous surveys

There were necessary updates to the survey. For example, the license of ”Luftmessnetz:
aktuelle Messdaten Wien”1 went from CC BY 3.0 AT to CC BY 4.0 AT. Some resources
are no longer available under the listed addresses. All three resource addresses for
”Wartezeiten in den Magistratischen Bezirksämtern Wien”2 are not longer available.
A search on the open data portal did not yield any new address URL either. The

1https:// www.data.gv.at/ katalog/ dataset/ d9ae1245-158e-4d79-86a4-2d9b3defbedc (accessed 2019-
05-19)

2https:// www.data.gv.at/ katalog/ dataset/ e38cdef5-f993-4e6f-919e-ac68d26d727d (accessed 2019-
05-19)

https://www.data.gv.at/katalog/dataset/d9ae1245-158e-4d79-86a4-2d9b3defbedc
https://www.data.gv.at/katalog/dataset/e38cdef5-f993-4e6f-919e-ac68d26d727d

50 CHAPTER 7. DATASETS

”Parkplätze API (Beta)”3 changed the endpoint URL and now requires an API key to
access the data.

7.1.2 Adding new Datasets

We extend the surveys by searching on the following open data portals.

• https:// opendata.swiss the central catalogue for Open Government Data made
available to the general public.

• https:// data.stadt-zuerich.ch the data catalogue for the city of Zurich

• https:// opentransportdata.swiss data on public transport in Switzerland

• https:// data.sbb.ch/ pages/ home/ the SBB open data portal

• https:// www.data.gv.at the Austrian open data portal

• https:// www.govdata.de the German open data portal

We search for new datasets with the keywords on the open data portals listed below:

• real-time

• Echtzeit (real-time)

• Aktuell (latest)

• Messwerte (measurements)

• Arrival, Departure

• General Transit Feed Specification (GFTS)4

In our results we do not include datasets with less than three stars according to
Berners-Lee’s five stars of open data5. This excludes documents in proprietary and
formats such as pdf and xls format as well as data published under a non-open license.
We do this to narrow down our candidates for streaming.

We use the last two elements to look for transport information datasets that are
frequently updated. Transit Feed Specification (GFTS) is a common format for public
transportation schedules linked with geographical information. It is for example used by
maps.google.com and map.geo.admin.ch to display real-time transport information on
top of a map. Given the recency and update frequency of such data records, they would
make a good web stream.

3https:// mcloud.de/ web/ guest/ suche/ -/ results/ detail/ 1cc0f0c6-f0fd-45a6-97f7-ca2061dc0eef (ac-
cessed 2019-05-19)

4https:// developers.google.com/ transit/ gtfs/ (accessed 2019-05-19)
55stardata.info (accessed 2019-05-21)

50

https://opendata.swiss
https://data.stadt-zuerich.ch
https://opentransportdata.swiss
https://data.sbb.ch/pages/home/
https://www.data.gv.at
https://www.govdata.de
https://mcloud.de/web/guest/suche/-/results/detail/1cc0f0c6-f0fd-45a6-97f7-ca2061dc0eef
https://developers.google.com/transit/gtfs/
5stardata.info

7.1. SURVEY 51

On the Swiss portals we find two new datasets. Table 7.1 shows the metadata for
performance measurements of the fiber optic network of the city of Zurich. The mea-
surements are 15 in apart and are published daily. Because of this discrepancy between
the publication and the measurement interval we do not consider this dataset for stream-
ing.

Title Zürich Glasfasernetz Leistungsdaten
Publisher Elektrizitätswerke des Kantons Zürich (EKZ)
Description Network Performance Data (Up- and Downstream) in the fiber

optic network of the city of Zurich in bits
License https:// opendefinition.org/ licenses/ cc-zero/
Source https:// data.stadt-zuerich.ch/ dataset/ ewz leistungsdaten

zuerinet
Publication Frequency daily
Time interval of records 15 minutes
Format CSV

Table 7.1: Zurich fiber optic network performance data

The Rail Traffic Information (Table 7.2) dataset provides a web API for retrieving the
most important traveler information on public transport traffic in Switzerland. Examples
are cancelled or diverted trains. Since such data is updated frequently and contains
pertinent information for travelers, we add the dataset to our catalog of web streams.
We verify that the license allows free processing and publication of the data.

Title Rail Traffic Information
Publisher SBB Personenverkehr
Description Rail traffic information that is updated every five minutes.
License https:// data.sbb.ch/ terms/ terms-of-use
Source https:// data.sbb.ch/ explore/ dataset/ rail-traffic-information/

information/
Publication Frequency every five minutes
Time interval of records varying
Format JSON

Table 7.2: Rail traffic information

51

https://opendefinition.org/licenses/cc-zero/
https://data.stadt-zuerich.ch/dataset/ewz_leistungsdaten_zuerinet
https://data.stadt-zuerich.ch/dataset/ewz_leistungsdaten_zuerinet
https://data.sbb.ch/terms/terms-of-use
https://data.sbb.ch/explore/dataset/rail-traffic-information/information/
https://data.sbb.ch/explore/dataset/rail-traffic-information/information/

52 CHAPTER 7. DATASETS

On the Austrian Open Data portal, we find a dataset providing real-time public trans-
port information in GTFS real-time (Table 7.3) and data gathered by several kind of
measurement stations located in the upper regions of Austria (Table 7.4). On the Ger-
man Open Data portal, we find three new datasets. Locations of public rental bikes
in Table 7.5, Charging stations for electrical vehicles shown in Table 7.6 and real-time
transport information in Table 7.7.

Title GFTS Real-Time Vienna
Publisher City of Vienna
Description Real-time information about Vienna’s public transport.
License https:// creativecommons.org/ licenses/ by/ 4.0/
Source https:// www.data.gv.at/ katalog/ dataset/

add66f20-d033-4eee-b9a0-47019828e698
Publication Frequency continuously
Time interval of records varying
Format JSON

Table 7.3: Vienna GTFS

Title Luftgüte- und meteorologische Messwerte
Publisher Land Oberösterreich
Description Current measurements of air pollutants, temperature and other

meteorological parameters.
License https:// creativecommons.org/ licenses/ by/ 3.0/ at/
Source https:// www.data.gv.at/ katalog/ dataset/

1acd5fbf-1f85-4692-847c-45fb2fb0606c
Publication Frequency 30 minutes
Time interval of records 30 minutes
Format CSV, JSON

Table 7.4: Air quality and meteorological data in Upper Austria

7.2 Deployment

For the datasets deployed by Muntwyler (2017) and Bernhaut (2018) we adopt their
proposed mapping and get the metadata from the open data portals. Since the trans-
formation of datasets is not the main part of our thesis, we chose to take some of the
existing mappings from Muntwyler (2017) and Bernhaut (2018). Additionally, we create
mappings for some of the new datasets from Section 7.1. Each retrieval of a dataset
generates a new RDF graph that contains the elements mapped to RDF. We follow
Barbieri and Della Valle (2010)’s proposal to map each stream item to the RDF graph
with the schema http:// example.org/ stream name/ timestamp. In JRML this is defined

52

https://creativecommons.org/licenses/by/4.0/
https://www.data.gv.at/katalog/dataset/add66f20-d033-4eee-b9a0-47019828e698
https://www.data.gv.at/katalog/dataset/add66f20-d033-4eee-b9a0-47019828e698
https://creativecommons.org/licenses/by/3.0/at/
https://www.data.gv.at/katalog/dataset/1acd5fbf-1f85-4692-847c-45fb2fb0606c
https://www.data.gv.at/katalog/dataset/1acd5fbf-1f85-4692-847c-45fb2fb0606c
http://example.org/stream_name/timestamp

7.2. DEPLOYMENT 53

Title Real-time location of Rental Bikes
Publisher Stadtwerke Bonn
Description Real-time location information about rental bikes in the city of

Bonn.
License http:// www.opendefinition.org/ licenses/ cc-by
Source https:// www.govdata.de/ web/ guest/ suchen/ -/ details/

standorte-von-fahrradern-realtime-fahrradmietsystem
Publication Frequency continuously
Time interval of records N/A
Format XML

Table 7.5: Public bike locations in the city of Bonn

Title Locations and Availability of Charging Stations
Publisher Stadtwerke Bonn
Description Location and real-time availability information about charging

stations for electrical vehicles.
License http:// www.opendefinition.org/ licenses/ cc-by
Source https:// www.govdata.de/ web/ guest/ suchen/ -/ details/

standorte-elektrotankstellen-e-ladesaulen-realtime-verfugbarkeit
Publication Frequency continuously
Time interval of records N/A
Format JSON

Table 7.6: Locations and availability of charging stations

Title GFTS Real-Time Rhein-Sieg Transport Network
Publisher Verkehrsverbund Rhein-Sieg
Description GFTS real-time data for the Rhein-Sieg transport network and

neighbouring networks. Updated every minute.
License http:// www.opendefinition.org/ licenses/ cc-by
Source https:// www.govdata.de/ web/ guest/ suchen/ -/ details/

echtzeitdaten-opnv-bus-und-bahn
Publication Frequency every minute
Time interval of records N/A
Format Protocol Buffers, txt

Table 7.7: GFTS real-time Rhein-Sieg Transport Network

in the graphMap configuration element. We already described pushing the metadata in
Section ?? and Section 6.3.

53

http://www.opendefinition.org/licenses/cc-by
https://www.govdata.de/web/guest/suchen/-/details/standorte-von-fahrradern-realtime-fahrradmietsystem
https://www.govdata.de/web/guest/suchen/-/details/standorte-von-fahrradern-realtime-fahrradmietsystem
http://www.opendefinition.org/licenses/cc-by
https://www.govdata.de/web/guest/suchen/-/details/standorte-elektrotankstellen-e-ladesaulen-realtime-verfugbarkeit
https://www.govdata.de/web/guest/suchen/-/details/standorte-elektrotankstellen-e-ladesaulen-realtime-verfugbarkeit
http://www.opendefinition.org/licenses/cc-by
https://www.govdata.de/web/guest/suchen/-/details/echtzeitdaten-opnv-bus-und-bahn
https://www.govdata.de/web/guest/suchen/-/details/echtzeitdaten-opnv-bus-und-bahn

54 CHAPTER 7. DATASETS

7.2.1 Selection

In our selection process for streaming datasets we look for following characteristics: First
the dataset format should be supported by JRML (namely JSON, XML and CSV). This
is technically not necessary since JRML allows full-source transformation, but this would
add more complexity to our transformation function in the JRML configuration. JRML
allows a transformation by letting us define a function that gets then applied to the
retrieved source right before passing it to the transformer. Secondly, the dataset should
be updated at least once an hour with preference given to datasets that are updated
more frequently.

In order to test our new features devised from the JRML requirements from Sec-
tion 3.1.2 the dataset should contain invalid values (e.g. ”null”, ”N/A” or ””) or support
querying the endpoint by encoding the query parameters in the URL. In the table they
are labelled as 3a and 3b respectively. Table 7.8 lists the selected datasets. Table 7.9
contains the links to the original catalog entry on the respective Open Data portals.

Dataset Characteristics

Car Parking Zurich (CPZH)1 1, 2, 3a
Zueri Rollt (ZR)1 1, 2

Fine Dust PM10 (FAU)2 1, 2, 3a
Global Radiation (GAU)2 1, 2, 3a
Rainfall Tirol (NTAU)2 1, 2

Car Parking Kleve (PKDE)2 1, 2
Recent Ozone Measurements Austria (AOAU) 1, 2

Rail Traffic Information (RTI) 1, 2, 3b
Air Quality Zurich (AQZH) 1, 2, 3a

Weather Stations Zurich (WSZH) 1, 2, 3b
Locations and Availability of Charging Stations 1, 2

Table 7.8: Selected datasets: some mappings from 1Muntwyler (2017) and 2Bernhaut
(2018)

54

7.2.
D

E
P

L
O

Y
M

E
N

T
55

Dataset Source

Car Parking Zurich (CPZH) https:// data.stadt-zuerich.ch/ dataset/ parkleitsystem
Zueri Rollt (ZR) https:// data.stadt-zuerich.ch/ dataset/ mietvelo-verfuegbarkeit
Fine Dust PM10 (FAU) https:// www.data.gv.at/ katalog/ dataset/ 8b057f32-1312-40ae-ae51-9aa0a0d372ca
Global Radiation (GAU) https:// www.data.gv.at/ katalog/ dataset/ f9e40f30-8ac6-43e2-9ee7-f72b712ea9e1
Rainfall Tirol (NTAU) https:// www.data.gv.at/ katalog/ dataset/ 44720e90-c2de-497b-8162-3810206dd011
Car Parking Kleve (PKDE) https:// www.govdata.de/ web/ guest/ suchen/ -/ details/ parkleitsystem-stadt-kleve
Recent Ozone Measurements Austria (AOAU) https:// www.data.gv.at/ katalog/ dataset/ 8b3b3cdf-2be6-4f0b-8c86-f6be67e5b002
Rail Traffic Information (RTI) https:// data.sbb.ch/ explore/ dataset/ rail-traffic-information/ information/
Air Quality Zurich (AQZH) https:// data.stadt-zuerich.ch/ dataset/ luftqualitaet-stunden-aktuelle-messungen
Weather Stations Zurich https:// data.stadt-zuerich.ch/ dataset/ sid wapo wetterstationen
Locations and Availability of Charging Stations http:// ckan.www.open.nrw.de/ dataset/ 0d701d4a-1255-4301-b362-d08f375e8e1a

Table 7.9: Links to the original data source

55

https://data.stadt-zuerich.ch/dataset/parkleitsystem
https://data.stadt-zuerich.ch/dataset/mietvelo-verfuegbarkeit
https://www.data.gv.at/katalog/dataset/8b057f32-1312-40ae-ae51-9aa0a0d372ca
https://www.data.gv.at/katalog/dataset/f9e40f30-8ac6-43e2-9ee7-f72b712ea9e1
https://www.data.gv.at/katalog/dataset/44720e90-c2de-497b-8162-3810206dd011
https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-stadt-kleve
https://www.data.gv.at/katalog/dataset/8b3b3cdf-2be6-4f0b-8c86-f6be67e5b002
https://data.sbb.ch/explore/dataset/rail-traffic-information/information/
https://data.stadt-zuerich.ch/dataset/luftqualitaet-stunden-aktuelle-messungen
https://data.stadt-zuerich.ch/dataset/sid_wapo_wetterstationen
http://ckan.www.open.nrw.de/dataset/0d701d4a-1255-4301-b362-d08f375e8e1a

56 CHAPTER 7. DATASETS

7.2.2 Railway Traffic Information

The Railway Traffic Information (RTI) dataset describes incidents on the trail traffic
system in Switzerland. Incident examples are interruptions, cancellations, diversions
and construction work.

The subject for the transformation in this case is the unique record id generated by
the publisher and represents a single message about an incident. Updates concerning
an already existing incident get a new record id and are published as a new record. We
therefore publish only data that’s been newly added to the dataset since the last element
streamed (now minus five minutes) to avoid duplicate messages and do not need to check
for records older than five minutes.

In order to test the dynamic URL generation described in Section 5.4.2 we filter
the records by date on the server side of the API. The API does not support filtering
by date natively, but allows full text search and comparison on individual data fields.
Since the date is in the form YYYY-MM-DD the comparison operators can be used to
compare dates. Thus, we append the following query parameter to the end of the URL:
?q=(published>{getDate}). ”getDate” in that case is a function that returns the current
date minus five minutes right before JRML schedules the GET request.

We use the Dublin Core Terms6 for the metadata. For validitybegin and validityend we
did not find a suitable vocabulary and thus used our own. All terms created by us have
the form http:// streamreasoning.org/ 〈dataset-name〉/ . Table 7.2 shows the mapping of
the dataset.

Subject Predicate Object

srrti:{recordid} dct:title {title}
srrti:{recordid} dct:description description

srrti:{recordid} dct:issued {record timestamp}ˆˆxsd:date

srrti:{recordid} dct:publisher {author}
srrti:{recordid} dct:source {link}
srrti:{recordid} srrti:validitybegin {validitybegin}ˆˆxsd:date

srrti:{recordid} srrti:validityend {validityend}ˆˆxsd:date

srrti:{recordid} dct:description {description html}

Table 7.10: The mapping of the RTI dataset:
prefix srrti: http:// streamreasoning.org/ rti/

7.2.3 Air Quality Zurich (AQZH)

The AQZH7 dataset contains hourly updated measurements of the air quality measured
at multiple locations in Zurich. We follow Bernhaut (2018)’s approach and use the

6http:// purl.org/ dc/ terms
7https:// data.stadt-zuerich.ch/ dataset/ luftqualitaet-stunden-aktuelle-messungen (accessed 2019-05-

27)

56

http://streamreasoning.org/<dataset-name>/
http://streamreasoning.org/rti/
http://purl.org/dc/terms
https://data.stadt-zuerich.ch/dataset/luftqualitaet-stunden-aktuelle-messungen

7.2. DEPLOYMENT 57

QBOAirbase8 vocabulary to describe the air quality in this dataset. This ontology
proposed by Galárraga et al. (2017) uses an observation to denote a measurement of a
single pollutant at a specific location at a specific time. We therefore use the QBOAirbase
vocabulary to describe the air quality measurements. For the geospatial location of the
station we use the Basic Geo Vocabulary (WGS)9. The mapping is shown in Table 7.11.

Subject Predicate Object

air:observation/AU{timestamp}#{station} air:schema/station sraqzh:{station}
air:observation/AU{timestamp}#{station} wgs84 pos:lat {latitude}
air:observation/AU{timestamp}#{station} wgs84 pos:long {longitude}
air:observation/AU{timestamp}#{station} air:schema/pm10 {measurement}ˆˆxsd:decimal

air:observation/AU{timestamp}#{station} air:schema/O3 {measurement}ˆˆxsd:decimal

air:observation/AU{timestamp}#{station} air:schema/NO2 {measurement}ˆˆxsd:decimal

Table 7.11: The mapping of the AQZH dataset:
prefix sraqzh: http:// streamreasoning.org/ aqzh/
prefix air: http:// qweb.cs.aau.dk/ airbase/ ,
prefix wgs84 pos: http:// www.w3.org/ 2003/ 01/ geo/ wgs84 pos#

7.2.4 Weather Stations Zurich (WSZH)

The WSZH10 datasets contain measurements of the weather stations in Mythenquai and
Tiefenbrunnen. For fetching the data, we use the provided web API Tecdottir11 to
query for the most recent measurements for each station. This way we do not have to
download the whole dataset repeatedly. We accomplish this by setting the maximum
age for the records to be retrieved to ten minutes. In order to pass the current time
to the fetch request, we use the query string feature introduced in Section 5.4.2 that
sets the startDate parameter to now - 10 min. We did not find any suitable vocabulary
for this dataset. Thus, we create new terms in the http:// streamreasoning.org/ wszh/
namespace. The mapping is shown in Table 7.12.

7.2.5 Locations and Availability of Charging Stations (LACS)

This dataset holds information about the locations and availability of charging stations
for electrical vehicles close to the city of Bonn. Because each station in this dataset
has multiple chargers and each charger has a unique ID, we create a subject for each
charger. Therefore, we create a a subject map for the stations and for the chargers
called Electric Vehicle Supply Equipment (EVSE)12. The predicate hasEVSE indicates

8http:// qweb.cs.aau.dk/ qboairbase/ (accessed 2019-05-27)
9https:// www.w3.org/ 2003/ 01/ geo/

10https:// data.stadt-zuerich.ch/ dataset/ sid wapo wetterstationen (accessed 2019-05-27
11urlhttps://tecdottir.herokuapp.com/docs/ (accessed 2019-05-27)
12https:// support.chargecloud.de/ hc/ de/ articles/ 115002326585-Was-ist-eine-EVSE-Operator-ID-

(accessed 2019-06-10)

57

http://streamreasoning.org/aqzh/
http://qweb.cs.aau.dk/airbase/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://streamreasoning.org/wszh/
http://qweb.cs.aau.dk/qboairbase/
https://www.w3.org/2003/01/geo/
https://data.stadt-zuerich.ch/dataset/sid_wapo_wetterstationen
https://support.chargecloud.de/hc/de/articles/115002326585-Was-ist-eine-EVSE-Operator-ID-

58 CHAPTER 7. DATASETS

Subject Predicate Object

srwszh:{timestamp}#{station} srwszh:air temperature {air temperature}
ˆˆxsd:decimal

srwszh:{timestamp}#{station} srwszh:air temperature {unit}

srwszh:{timestamp}#{station} srwszh:water temperature
{water tempera-
ture}
ˆˆxsd:decimal

srwszh:{timestamp}#{station} srwszh:water temperature unit {unit}
srwszh:{timestamp}#{station} srwszh:wind speed avg 10min {wind speed}

ˆˆxsd:decimal
srwszh:{timestamp}#{station} srwszh:wind speed unit {unit}
srwszh:{timestamp}#{station} srwszh:wind direction {wind direction}

ˆˆxsd:decimal
srwszh:{timestamp}#{station} srwszh:wind direction unit {unit}

Table 7.12: The mapping of the WSZH dataset:
prefix srwszh: http:// streamreasoning.org/ srwszh/

to which station a charger belongs. For the address of the charging stations we use the
schema.org13 vocabulary. For the location we use WGS again. We did not find any
vocabulary for electrical vehicle charging stations. Therefore, we create new terms for
hasEVSE and status. Table 7.13 shows the mapping.

Subject Predicate Object

srlacs:station/{timestamp}#{id} schema:name {name}
srlacs:station/{timestamp}#{id} schema:streetAddress {address}
srlacs:station/{timestamp}#{id} schema:addressLocality {city}
srlacs:station/{timestamp}#{id} schema:postalCode {postal code}
srlacs:station/{timestamp}#{id} wgs84 pos:lat {latitude}
srlacs:station/{timestamp}#{id} wgs84 pos:long {longitude}
srlacs:station/{timestamp}#{id} srecs:hasEVSE {evse uid}

srlacs:evse/{timestamp}#{evse uid} srecs:status {status}

Table 7.13: The mapping of the charging stations dataset:
prefix srlacs: http:// streamreasoning.org/ lacs/ ,
prefix schema: http:// schema.org/

13https:// schema.org

58

http://streamreasoning.org/srwszh/
http://streamreasoning.org/lacs/
http://schema.org/
 https://schema.org

8

Conclusions

Data on the web has become more dynamic in the recent years and has been published
as a stream of data, rather than a static dataset. Consequently, following the Linked
Data principles is no longer enough. Further, the access methods for data have changed
and new requirements for the description of web streams have emerged. TripleWave,
a streaming framework, addresses this issue and enables streaming linked data on the
web. TripleWave makes use of the VoCaLS vocabulary for providing metadata about
the stream. With the technology in place, we aim to publish a set of streams on the web
and provide a central catalog that hosts the stream descriptions. The catalog serves as a
central entry point for discovering web streams and enables sharing data amongst people.
This thesis builds on the work of Muntwyler (2017) and Bernhaut (2018) who published
web streams with TripleWave among other things. This thesis main contribution is
the creation of a catalog of web streams and interfacing TripleWave with the catalog.
The catalog itself remains independent from TripleWave, and accepts input from other
services as well.

Because one of the evaluated frameworks already met some of the requirements for the
catalog, it was not necessary to build a catalog from scratch. We created the catalog by
developing an extension for the Comprehensive Knowledge Archive Network (CKAN)
that is widely used as a catalog for Open Government Data Shadbolt et al. (2012). On
the backend we used TripleWave and its JRML module for fetching, transforming and
publishing the original dataset sources.

For creating the catalog, we followed the schema of static datasets that are published
on CKAN. Each stream is represented on CKAN by a dataset entry. Such an entry
contains all the metadata for a specific stream. The metadata includes information
about the stream and about the data itself. Using the catalog, a user can find out how
to connect to the stream. TripleWave publishes its metadata as an RDF graph serialized
in JSON-LD and pushes it to the catalog. This results in either a new or updated entry
in the catalog. We mapped some of the metadata directly to existing CKAN fields (e.g.
title, description and license). Because not all metadata did fit directly into CKAN’s
default field-value schema, we extended the schema and the web page view of the catalog.
We did this by creating a table of field-value pairs for each subject in TripleWave’s stream
description.

We created a stream preview that connects the user’s browser directly to the MQTT
broker on the backend using a JavaScript library. We did this to lower the barrier for

60 CHAPTER 8. CONCLUSIONS

accessing web streams and to show consumers the schema of the stream without requiring
a separate client. Since some streams generate new event items long times apart and
consumers should not have to wait for a preview, we stored the latest retrieved message
for each stream. The catalog also offers a description on how to connect to the published
data streams.

In order to test and showcase the catalog we first searched for relevant datasets to be
streamed. The surveys of Muntwyler (2017) and Bernhaut (2018) served as a starting
point and were updated if necessary. Looking forward, we searched for new datasets to
increase the survey of web streams. On the Swiss portals we found two new datasets
that are suitable for streaming. Most of the recently published data has a static kind of
nature with long update intervals. Consequently, we focused our search on the Austrian
and German Open Government Data portals. In order to select the datasets to be
streamed we first defined requirements based on JRML’s transformation capabilities. In
the process of transforming datasets, we also identified new requirements for JRML. In
order to test the new features of JRML we further favored datasets requiring the new
functionality of JRML in our selection.

For the purpose of publishing the datasets through TripleWave we extended the vo-
cabulary in two places. First, we introduce the VoCaLS vocabulary constructed by
Tommasini et al. (2018). This enables TripleWave to describe its stream with a well-
defined and published vocabulary that is partially an extension of the dataset catalog
vocabulary dcat. In this work we focused on the VoCaLS-core module for metadata1, but
it should be noted that VoCaLS also supports other services and provides description
for stream provenance as well. Secondly, we constructed the vocabularies for streaming
the data itself. We reused existing vocabulary as much as possible. Only when we did
not find any suitable terms, we created our owns. To increase the number of published
datasets on the catalog we also took over some of the existing mappings of Muntwyler
(2017) and Bernhaut (2018) that matched our selection criteria.

In the backend we deployed TripleWave instances. We sourced the output of Triple-
Wave to two message brokers. Each stream item ends up as a JSON document published
under a topic associated to a specific dataset. The MQTT broker directly listens to the
MQTT output of TripleWave. We also adopted Muntwyler (2017)’s Kafka approach and
transform the WebSocket output of TripleWave to the Kafka broker. We use a Web-
Socket producer to transform and forward the TripleWave output to the Kafka broker.
On the client side we provide interfaces for EventSource and a WebSocket connection.

In conclusion, the catalog meets almost all of the requirements listed in Chapter 3.
However, the catalog does not pull the metadata from TripleWave periodically (RC14),
instead the metadata must be pushed by TripleWave. The catalog could be extended
to support continuously polling TripleWave instances to check their liveliness. Further,
the documentation for the CKAN plugin (RN1) is limited to this thesis and readme
files in the source code folder. Regarding the creation of vocabularies for web streams,
we faced the same challenges as Muntwyler (2017) and did not find suitable terms for
every dataset, and thus had to construct our own vocabulary. Further, we did not

1https:// ysedira.github.io/ vocals/ docs/ core/ index-en.html (accessed 2019-05-30)

60

https://ysedira.github.io/vocals/docs/core/index-en.html

61

rigorously test the user experience of the catalog web site. However, CKAN’s base
templates are adjusted for different screen sizes and browsers. Visiting the pages on the
latest Chrome and Firefox with a laptop and a mobile phone did not yield any breaking
pages. Nevertheless, we cannot ensure compatibility with all browsers. For example, the
preview of the stream requires a lot of text area and could lead to issues on devices with
a small display resolution.

So far, the catalog enables discovery and access of web streams. The catalog view
orders the known metadata terms in a logical way. Other terms are appended at the
end of the page with no inherent order. For the future, the catalog could be extended
by adding more common data catalog vocabulary to the catalog to fix the order of
appearance. For example, VoCaLS has the terms for describing processing capabilities
of a service. In addition, the catalog could be extended to allow the evaluation of simple
queries on the web streams available. We think this further lowers the barriers to entry
for accessing web streams. Another idea is to support more protocols for data sources.
We found several datasets about real-time public transport information in the protocol
buffers2 format, and thus we think it is beneficial to support such format on TripleWave
and/or JRML. We should further think about increasing the quality of the web streams
on the catalog and reuse more existing vocabulary mapping the data source to stream
items. Ultimately, the catalog depends on the quality of the entries as a whole.

2https:// developers.google.com/ protocol-buffers/ (accessed 2019-06-28)

61

https://developers.google.com/protocol-buffers/

References

Anicic, D., Fodor, P., Rudolph, S., and Stojanovic, N. (2011). Ep-sparql: a unified
language for event processing and stream reasoning. In Proceedings of the 20th inter-
national conference on World wide web, pages 635–644. ACM.

Auer, S., Berners-Lee, T., Bizer, C., Capadisli, S., Heath, T., Janowicz, K., and
Lehmann, J., editors (2017). Proceedings of the Workshop on Linked Data on the
Web (LDOW), number 1809 in CEUR Workshop Proceedings, Aachen.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. (2007).
Dbpedia: A nucleus for a web of open data. In The semantic web, pages 722–735.
Springer.

Ayala, V. A. A., Cheng, T.-N., Alzoghbi, A., and Lausen, G. (2017). Learning to identify
complementary products from dbpedia. In Auer et al. (2017).

Balduini, M., Della Valle, E., Dell’Aglio, D., Tsytsarau, M., Palpanas, T., and Con-
falonieri, C. (2013). Social listening of city scale events using the streaming linked
data framework. In International Semantic Web Conference, pages 1–16. Springer.

Barbieri, D. F. and Della Valle, E. (2010). A proposal for publishing data streams as
linked data-a position paper.

Barnaghi, P., Presser, M., and Moessner, K. (2010). Publishing linked sensor data.
In CEUR Workshop Proceedings: Proceedings of the 3rd International Workshop on
Semantic Sensor Networks (SSN), Organised in conjunction with the International
Semantic Web Conference, volume 668.

Berners-Lee, T. (2006). Linked data. https:// www.w3.org/ DesignIssues/ LinkedData.
html . Retrieved 2019-03-08.

Bernhaut, E. (2018). Publication of linked data streams on the web. Bachelor Thesis,
University of Zurich.

Bizer, C. (2009). The emerging web of linked data. IEEE intelligent systems, 24(5):87–
92.

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

64 References

Bizer, C., Heath, T., and Berners-Lee, T. (2011). Linked data: The story so far. In
Semantic services, interoperability and web applications: emerging concepts, pages
205–227. IGI Global.

Boyle, D. E., Yates, D. C., and Yeatman, E. M. (2013). Urban sensor data streams:
London 2013. IEEE Internet Computing, 17(6):12–20.

Bradner, S. (1997). Key words for use in RFCs to Indicate Requirement Levels. RFC
2119, RFC Editor.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. Computer networks and ISDN systems, 30(1-7):107–117.

Carrara, W., Radu, C., and Vollers, H. (2017). Open data maturity
in europe 2017. Retrieved from the European Data Portal website:
https://www.europeandataportal.eu/sites/default/files/edp landscaping insight report n3 2017.pdf.

Dell’Aglio, D., Le Phuoc, D., Lê Tuán, A., Ali, M. I., and Calbimonte, J.-P. (2017). On
a web of data streams. In DeSemWeb@ ISWC.

Galárraga, L., Mathiassen, K. A. M., and Hose, K. (2017). Qboairbase: The european air
quality database as an rdf cube. In International Semantic Web Conference (Posters,
Demos & Industry Tracks).

Heath, T. and Bizer, C. (2011). Linked data: Evolving the web into a global data space.
Synthesis lectures on the semantic web: theory and technology, 1(1):1–136.

Hunkeler, U., Truong, H. L., and Stanford-Clark, A. (2008). Mqtt-s—a publish/subscribe
protocol for wireless sensor networks. In 2008 3rd International Conference on Com-
munication Systems Software and Middleware and Workshops (COMSWARE’08),
pages 791–798. IEEE.

Le-Phuoc, D., Dao-Tran, M., Parreira, J. X., and Hauswirth, M. (2011). A native
and adaptive approach for unified processing of linked streams and linked data. In
International Semantic Web Conference, pages 370–388. Springer.

Maali, F., Cyganiak, R., and Peristeras, V. (2010). Enabling interoperability of govern-
ment data catalogues. In International Conference on Electronic Government, pages
339–350. Springer.

Maali, F., Erickson, J., and Archer, P. (2014). Data catalog vocabulary (dcat). W3c
recommendation, 16.

Mauri, A., Calbimonte, J.-P., Dell’Aglio, D., Balduini, M., Brambilla, M., Della Valle, E.,
and Aberer, K. (2016). Triplewave: Spreading rdf streams on the web. In International
Semantic Web Conference, pages 140–149. Springer.

Morsey, M., Lehmann, J., Auer, S., Stadler, C., and Hellmann, S. (2012). Dbpedia and
the live extraction of structured data from wikipedia. Program, 46(2):157–181.

64

References 65

Muntwyler, P. (2017). Increasing the number of open data streamson the web. Bachelor
Thesis, University of Zurich.

Murray-Rust, P. (2008). Open data in science. Serials Review, 34(1):52–64.

Neumaier, S., Umbrich, J., and Polleres, A. (2017). Lifting data portals to the web of
data. In Auer et al. (2017).

Open Knowledge International (2015). The open definition 2.1.

Sequeda, J. F. and Corcho, O. (2009). Linked stream data: A position paper. TODO.

Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W., et al.
(2012). Linked open government data: Lessons from data. gov. uk. IEEE Intelligent
Systems, 27(3):16–24.

Stone, M. and Aravopoulou, E. (2018). Improving journeys by opening data: the case
of transport for london (tfl). The Bottom Line, 31(1):2–15.

Taelman, R., Heyvaert, P., Verborgh, R., and Mannens, E. (2016). Querying dynamic
datasources with continuously mapped sensor data. In Proceedings of the ISWC 2016
Posters & Demonstrations Track co-located with 15th International Semantic Web
Conference (ISWC 2016).

Tommasini, R., Sedira, Y. A., Dell’Aglio, D., Balduini, M., Ali, M. I., Le Phuoc, D.,
Della Valle, E., and Calbimonte, J.-P. (2018). Vocals: Vocabulary and catalog of
linked streams. In International Semantic Web Conference, pages 256–272. Springer.

Ubaldi, B. (2013). Open government data: Towards empirical analysis of open govern-
ment data initiatives. OECD Working Papers on Public Governance, No. 22.

Valsecchi, F., Abrate, M., Bacciu, C., Tesconi, M., and Marchetti, A. (2015). Dbpedia
atlas: Mapping the uncharted lands of linked data. In Bizer, C., Auer, S., Berners-Lee,
T., and Heath, T., editors, Proceedings of the Workshop on Linked Data on the Web
(LDOW), number 1409 in CEUR Workshop Proceedings, Aachen.

65

A

Appendix

This section describes the installation and deployment of the catalog and TripleWave.
The files are located on the CD in the repositories folder and path references in
relation to the CD in this section are relative to this path. This has been deployed on a
Debian and Ubuntu VM.

A.1 CKAN

The catalog is located at http:// 130.60.155.163 and the development version is reachable
at http:// 130.60.155.163:5000 . In order to install and use the catalog we need to do:

1. Install CKAN from source

2. Install the CKAN plugin and register it

3. Create an admin account on CKAN

A.1.1 Install CKAN from source

For creating the catalog we use CKAN 2.8.2. We follow https:// docs.ckan.org/ en/ 2.8/
maintaining/ installing/ install-from-source.html . The base folder does not necessarily
have to be in the /usr/lib folder and can be located anywhere. We also do not use
solr-jetty and instead use Solr 6.5.0.

A.1.2 Install the CKAN plugin

The plugin is named webstreamsuzh.

On the CD the repository is placed in the folder ckan-stream. The plugin should be
installed with pip to maintain the correct folder structure. If using git or copy from CD:
the folder name must be ckanext-webstreamsuzh and is in the CKAN src folder (e.g.
/usr/lib/ckan/default/src).

http://130.60.155.163
http://130.60.155.163:5000
https://docs.ckan.org/en/2.8/maintaining/installing/install-from-source.html
https://docs.ckan.org/en/2.8/maintaining/installing/install-from-source.html

68 APPENDIX A. APPENDIX

. /usr/lib/ckan/default/bin/activate

IF prod

pip install -e git+https://gitlab.ifi.uzh.ch/dellaglio/ckan-stream/#egg=ckanext-webstreamsuzh

ELSE IF development

git clone https://gitlab.ifi.uzh.ch/dellaglio/ckan-stream.git

cd ckanext-webstreamsuzh

python setup.py develop

pip install -r dev-requirements.txt

FINALLY restart CKAN

cd /usr/lib/ckan/default/src/ckan

paster serve /etc/ckan/default/production.ini

If the plugin is not registred, check if the ckan.plugins in the ini-file /etc/ckan/default/production.ini
contains the pluging name. E.g. ckan.plugins = default, ..., webstreamsuzh

A.1.3 Create User and API Key

Create an admin account within the CKAN virtualenv

Enter the virtual environment

. /usr/lib/ckan/default/bin/activate

paster sysadmin add twave email=twave@localhost name=twave \

-c /etc/ckan/default/production.ini

The API key is required to push data to the catalog. Since the login is hidden we must
go to <ckan-host.com>/user/login to get to the login page. Login with the credentials
specified at the user creation above. The API key is shown in the profile page in the
bottom left. At this stage we can also create an organization on CKAN, because each
dataset must belong to an organization on CKAN.

A.1.4 Solr

We follow the following guide to install and configure Solr. The Solr configuration files
are also on the CD in solr-6.5.0.

https:// github.com/ ckan/ ckan/ wiki/ Install-and-use-Solr-6.5-with-CKAN .

Since Solr keeps changing the schema for the search, it’s important to take a Solr
version that is compatible with CKAN’s schema (e.g. 6.5.0).

Solr-6.5.0 can be downloaded from https:// lucene.apache.org/ solr/ .

Then run the following instructions:

68

https://github.com/ckan/ckan/wiki/Install-and-use-Solr-6.5-with-CKAN
https://lucene.apache.org/solr/

A.1. CKAN 69

tar xzf solr-6.5.0.tgz solr-6.5.0

cd solr-6.5.0/bin

Create a core for CKAN

./solr create -c ckan

We then need to modify the schema for CKAN. The modified files are also on the CD
at solr-6.5.0/ckan/conf.

cd solr-6.5.0/server/solr/ckan/conf

vim solrconfig.xml

Insert into <config> root element following line

<schemaFactory class="ClassicIndexSchemaFactory"/>

delete the following two elements

<initParams path="/update/**">

<lst name="defaults">

<str name="update.chain">add-unknown-fields-to-the-schema</str>

</lst>

</initParams>

<processor class="solr.AddSchemaFieldsUpdateProcessorFactory">

<str name="defaultFieldType">strings</str>

<lst name="typeMapping">

<str name="valueClass">java.lang.Boolean</str>

<str name="fieldType">booleans</str>

</lst>

<lst name="typeMapping">

<str name="valueClass">java.util.Date</str>

<str name="fieldType">tdates</str>

</lst>

<lst name="typeMapping">

<str name="valueClass">java.lang.Long</str>

<str name="valueClass">java.lang.Integer</str>

<str name="fieldType">tlongs</str>

</lst>

<lst name="typeMapping">

<str name="valueClass">java.lang.Number</str>

<str name="fieldType">tdoubles</str>

</lst>

</processor>

69

70 APPENDIX A. APPENDIX

then remove the file managed-schema

rm managed-schema

link the CKAN schema.xml from the CKAN source folder, e.g.
ln -s /ckan/default/src/ckan/ckan/config/solr/schema.xml schema.xml

Then (re)start solr by
solr-6.5.0/bin/init.d/solr restart

In CKAN’s configuration production.ini set the Solr URL to
localhost:8983/solr/ckan.

A.2 Kafka

We follow the Apache Kafka quickstart guide on https:// kafka.apache.org/ quickstart to
set up the Kafka broker.

If the environment has low amount of RAM available, you can decrease the JVM heap
size for the Zookeeper and Kafka. Both read the environment variable KAFKA HEAP OPTS.

tar -xzf kafka_2.12-2.2.0.tgz

cd kafka_2.12-2.2.0

export KAFKA_HEAP_OPTS="-Xmx128M -Xms64M"

nohup bin/zookeeper-server-start.sh config/zookeeper.properties > zklog &

nohup bin/kafka-server-start.sh config/server.properties > kafkalog &

We further did changes to the server.properties in order to save disk space on the
VM.

log.retention.minutes=15

enable.auto.commit=false

offsets.retention.minutes=1

log.segment.bytes=1048576

log.cleaner.dedupe.buffer.size=31457280

A.3 Creating the web streams

For streaming and connecting the output to the brokers we require the following com-
ponents:

• triplewave

70

https://kafka.apache.org/quickstart

A.3. CREATING THE WEB STREAMS 71

• triplewave-jrml

• mqtt broker

• kafka connectors

We use the Node.js module pm2 to manage all of our Node.js processes. A process can
be started with pm2 start <name>.

A.3.1 TripleWave and JRML

First clone the triplewave and the triplewave-jrml repository. Then

1. go to the triplewave folder and npm install and npm link

2. go to the triplewave-jrml folder and npm install and npm link

3. go back to the triplewave folder and npm link jrml to make jrml available to
triplewave

Then go to the TripleWaveConfig folder and run triplewave from there triplewave

or pm2 start triplewave.
Triplewave uses by default the tw config.js to get its configuration. Any other

configuration can be specified by running triplewave with -c <path to config>

A.3.2 MQTT Broker

We use the Node.js module aedes as our MQTT broker.
Go to the mqtt folder and run npm install. Then simply run node aedes.js or

pm2 start aedes.js.

A.3.3 Kafka Connectors

The Kafka connectors are located in the kafka folder. Again run npm install and run
each .js file within that folder directly with node or pm2.

71

List of Figures

4.1 Overview of all components . 20
4.2 Overview of TripleWave (source: Bernhaut (2018)) 21
4.3 Overview of the message brokers . 22

5.1 The stream descriptor for a stream of temperature sensor data 27
5.2 An RDFStream containing two different endpoints 27
5.3 A StreamEndpoint . 28
5.4 TripleWave registering the stream . 29

6.1 CKAN architecture (source: https:// docs.ckan.org/ en/ 2.8/ contributing/
architecture.html) . 38

6.2 Plugin components . 39
6.3 The stream description as shown on the catalog 42
6.4 Preview of the stream on the catalog . 44
6.5 The catalog homepage serving as an entrypoint for discovering web streams 46

https://docs.ckan.org/en/2.8/contributing/architecture.html
https://docs.ckan.org/en/2.8/contributing/architecture.html

List of Tables

5.1 Catalog settings . 32

6.1 RDF stream description to CKAN mapping 40

7.1 Zurich fiber optic network performance data 51
7.2 Rail traffic information . 51
7.3 Vienna GTFS . 52
7.4 Air quality and meteorological data in Upper Austria 52
7.5 Public bike locations in the city of Bonn 53
7.6 Locations and availability of charging stations 53
7.7 GFTS real-time Rhein-Sieg Transport Network 53
7.8 Selected datasets: some mappings from 1Muntwyler (2017) and 2Bernhaut

(2018) . 54
7.9 Links to the original data source . 55
7.10 The mapping of the RTI dataset: prefix srrti: http:// streamreasoning.

org/ rti/ . 56
7.11 The mapping of the AQZH dataset: prefix sraqzh: http:// streamreasoning.

org/ aqzh/ prefix air: http:// qweb.cs.aau.dk/ airbase/ , prefix wgs84 pos:
http:// www.w3.org/ 2003/ 01/ geo/ wgs84 pos# 57

7.12 The mapping of the WSZH dataset: prefix srwszh: http:// streamreasoning.
org/ srwszh/ . 58

7.13 The mapping of the charging stations dataset: prefix srlacs: http://
streamreasoning.org/ lacs/ , prefix schema: http:// schema.org/ 58

http://streamreasoning.org/rti/
http://streamreasoning.org/rti/
http://streamreasoning.org/aqzh/
http://streamreasoning.org/aqzh/
http://qweb.cs.aau.dk/airbase/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://streamreasoning.org/srwszh/
http://streamreasoning.org/srwszh/
http://streamreasoning.org/lacs/
http://streamreasoning.org/lacs/
http://schema.org/

	Introduction
	Related work
	Open Data
	Linked Data
	RDF
	RDF Serialization
	Applications

	Publication
	Streaming Linked Data

	Requirements
	TripleWave
	TripleWave Interface
	Streaming Datasets with JRML

	Catalog
	Functional Requirements
	Non-functional Requirements

	Architecture
	Overview
	Publishing data streams
	Consuming TripleWave Streams
	Message Brokers
	Kafka Producer
	Kafka Output
	MQTT Broker

	CKAN

	Changes to TripleWave
	Vocabulary
	Pushing the metadata to the catalog
	TripleWave Config
	Advertise endpoints
	Adding Catalog Information

	Changes to JRML
	Discard invalid values
	Update data source URL

	Creation of the Catalog
	Requirements Analysis
	Extending CKAN
	Creating a catalog entry
	Creating Additional Fields
	Mapping to CKAN fields
	Displaying the Stream Descriptor
	Machine-readable Version
	Creating a preview of the Stream

	Additional Modifications
	Accessibility
	About page
	Visual Appearance

	Deploying the Catalog

	Datasets
	Survey
	Updating previous surveys
	Adding new Datasets

	Deployment
	Selection
	Railway Traffic Information
	Air Quality Zurich (AQZH)
	Weather Stations Zurich (WSZH)
	Locations and Availability of Charging Stations (LACS)

	Conclusions
	Appendix
	CKAN
	Install CKAN from source
	Install the CKAN plugin
	Create User and API Key
	Solr

	Kafka
	Creating the web streams
	TripleWave and JRML
	MQTT Broker
	Kafka Connectors

