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Zusammenfassung

Immer mehr Datenquellen erzeugen kontinuerlich und sich schnell ändernde Datenströme
und benötigen massgeschneiderte Lösungen, um unerwartete Ereignisse zu erkennen. Die
Erkennung von Ausreissern in univariaten Datenströmen findet bereits erhebliche Beach-
tung, vor allem im Finanzbereich, während die Erkennung multivariater Anomalien, ins-
besondere ohne Grundwahrheit, weniger erforscht ist. Wir präsentieren den Stand der
Forschung in der Anomalieerkennung im Allgemeinen, ihre Anwendung für Datenströme
und Techniken zur Auswertung ohne Grundwahrheit. Wir implementieren einen dichte-
basierten Clustering-Algorithmus, der multivariate Datenströme mit Mikro-Clustern
zusammenfasst, und bewerten ihn anhand von synthetischen und realen Datensätzen.
Wir schlagen eine Erweiterung des Algorithmus vor, um Trends zu berücksichtigen und
zwischen Pionieren und Ausreissern richtig zu unterscheiden. Die durchgeführten Ex-
perimente zeigten eine Leistungsverbesserung, die durch die vorgeschlagenen Trendein-
flussparameter wursacht wurde, und zeigen eine Korrelation zwischen einer intrinsischen
Dateneigenschaft und der Performanc der Anomalieerkennung, was die Abstimmung von
Hyperparametern ohne Grundwahrheit ermöglicht.





Abstract

The number of data sources continuously producing fast-changing data streams and
needing tailor-made solutions to detect unexpected events increases rapidly. Outlier
detection in univariate data streams already receives considerable attention, mainly in
financial data, while multivariate anomaly detection, especially without ground truth, is
less explored. We present state of the art in anomaly detection in general, its adoption
for data streams and techniques for evaluation without ground truth. We implement
a density-based clustering algorithm that summarizes multivariate data streams with
micro clusters, and we evaluate it on synthetic and real-world data sets. We propose
an extension of the algorithm to incorporate data drift to distinguish between pioneers
and outliers correctly. The performed experiments show a performance improvement
caused by the proposed drift-influence hyperparameters and revealed a correlation be-
tween an intrinsic data property and the anomaly detection performance, which allows
hyperparameter tuning without ground truth.
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Introduction

The number of data sources continuously producing fast-changing data streams and
needing tailor-made solutions to detect unexpected events increases rapidly. Data streams
are fast-changing and potentially infinite and produce massive amounts of temporally
ordered samples [Han and Ding, 2009]. Evolving data streams are ubiquitous, common
fields of use are applications of the Internet of Things (IoT) which continuously produce
large amount of sensor data, social media feeds, or real-time stock exchange data. In all
these fields, we can find the motivation to detect anomalous events as fast as possible,
e.g. a malfunctioning sensor or fraudulent behavior can inflict more damage the longer
they go undetected. Traditional data analysis methods can not extract the full potential
or are not applicable. E.g. conventional anomaly detection methods require the whole
data set to define normality, which conflicts with the continuity and potential infinity of
data streams.

While the data sources are often already massive data streams, the techniques used to
analyze them are not tailored for the use case. Large amounts of data are dropped early
in the process or never analyzed. We apply approaches that can overcome the challenges
of data streams and profit of their full potential.

Univariate time series receive already a decent amount of attention, mainly in financial
data. Multivariate sequential data poses greater challenges and is thus less explored. We
implement DenStream proposed by [Cao et al., 2006] to find anomalies in an evolving
multivariate data stream with arbitrary shape. The algorithm summarizes samples in a
data stream with micro clusters and adopts them to changes over time.

If a data stream contains drift, pioneer samples are marked as anomalous as long as
not enough samples lie in the pioneer region. The goal of this thesis is to improve the
anomaly detection in multivariate data streams by incorporating drift to label pioneers
as inliers and apply a state of the art solution to real data.

We introduce two additional hyperparameters and evaluate their contribution to antic-
ipate data drift and to improve the outlier detection performance. We perform multiple
experiments on synthetic data with ground truth to assess our contribution and apply
the DenStream outlier detection algorithm to real-world data to determine the value
when used in a productive environment. We perform a thorough hyperparameter anal-
ysis and show their sensitivity and influence on the used anomaly detection algorithm.
The two additional hyperparameters can improve the outlier detection performance, but
their usage comes with an increase in uncertainty. Our results support one of the two
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proposed cardinality reduction methods proposed by [Putina et al., 2018] while they
discourage the other. We found a correlation between an intrinsic algorithm property
and the performance score, which helps to tune hyperparameters when no ground truth
is available.

Chapter 2 presents the related work of stream mining and anomaly detection. It
highlights the challenges and potential solutions when performing outlier detection in
a streaming environment. We cover the methodology in Chapter 3. It presents the
knowledge discovery process and describes the fundamental algorithm. We evaluate the
algorithm properties and our contribution on synthetic data in Chapter 4. We apply
the anomaly detection algorithm to real-world scenarios in Chapter 5. We state the
limitations and deduce appropriate future work in Chapter 6. Chapter 7 concludes our
work.

2
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Related Work

This chapter covers the related work of this master’s thesis. It highlights the theoretical
foundations of knowledge discovery in data streams, anomaly detection in general and the
adaptions needed in a streaming environment. Furthermore, it introduces DenStream,
an algorithm for clustering in data streams, and its implementation to detect anomalies.

2.1 Stream Mining

Stream mining encompasses techniques centering around knowledge discovery in contin-
uous data streams. These data streams are temporally ordered, fast-changing, massive,
and potentially infinite [Han and Ding, 2009]. There are three main limiting factors in
data mining: Time, memory, and sample size [Domingos and Hulten, 2000]. More and
more applications continuously produce so much data that traditional data analysis is
unfeasible or impossible because of the aforementioned limiting factors.

Stream mining algorithms typically work with only one pass of each sample, i.e. raw
data is accessible only once. Additionally, the temporal component of the data stream
must be taken into consideration, which may induce data evolution and decaying im-
portance of a point over time. Generally, an algorithm can only use data in a limited
time window to extract relevant information [Aggarwal, 2007]. Furthermore, algorithms
typically need to deliver results (near) online, required by the temporal component and
the need of data analysts to take action as soon as possible [Khan and Fan, 2012].

Traditional data analysis techniques such as classification or clustering compare data
samples of the complete data set to reach a conclusion. In a streaming environment, ag-
gregations of past samples can represent values outside the time window to some degree.
Rolling mean and standard deviation instead of single points are examples for primitive
aggregations. Micro clusters which represent multiple points within a particular area
through their weight and influence radius is a more advanced method. Partitioning the
data space or pruning mechanisms ensures finitely many micro clusters, required because
of limited memory space [Aggarwal, 2007].
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2.2 Anomaly Detection

Anomaly detection in machine learning is the goal to find “not-normal” samples in data.
These abnormal samples are commonly referred to as anomalies or outliers. This thesis
utilizes the terms interchangeably. This section shows the characteristics of anomalies
and explains how to detect and evaluate them.

2.2.1 Characteristics of Anomalies

Anomalies have two important characteristics [Chandola et al., 2009]:

Different The features of anomalous samples are different from the features of normal
samples.

Rare The occurrence of anomalies is rare compared to normal samples.

Anomalies and noise are not the same. The distinction may vary, but anomalies
generally contain abnormalities that contain useful and true information that may arise
from the natural variation, while noise is not useful and should be removed from a
data set [Salgado et al., 2016]. [Chandola et al., 2009] describe three different types of
anomalies. They differ in the relevant scope and form:

Point Anomalies A sample is a point anomaly if it is considered anomalous on the global
scale, i.e. to all other data points. This is the simplest case, as no connections
to a neighborhood or context must be considered. E.g. the highest building of
the world, Burj Khalifa1, with a height of 828m, is much taller than the average
building and also than the second highest in the world (Shanghai Tower2 with
632m).

Contextual Anomalies A sample is a contextual anomaly if it is anomalous for a given
context but not otherwise. The context must be defined as part of the anomaly
detection process. Features can be split into contextual and behavioral. Contextual
features define the context, e.g. time or coordinates, while behavioral features are
non-contextual, e.g. number of people watching TV or temperature. In time-series
data, the focus mostly lies on contextual anomalies in consequence of the time axis.
E.g. 1 million viewers watching the TV channel SRF1 during prime time at 19:30
is normal, but 1 million viewers during the night at 04:00 is anomalous.

Collective Anomalies Multiple samples together form an anomalous collection, while
the single samples may be normal. The data points must be related to each
other to be able to form a collective anomaly. Techniques to find this type differ
significantly from the other two and are not relevant in this thesis. E.g. doors in
a building may be unlocked electronically, but all of them unlocking at the same
time is anomalous and may indicate fraudulent actions.

1https://www.burjkhalifa.ae/en/the-tower/facts-figures/
2http://www.shanghaitower.com/shanghaizhongxinEnglish/15.php

4
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2.2.2 Detection Techniques

The approaches to find anomalies can be categorized into three different anomaly detec-
tion types [Goldstein and Uchida, 2016]:

Supervised Anomaly Detection The training and test data contains fully labeled sam-
ples. The label classifies each sample into normal and abnormal. This is very
similar to a binary classification task with the difference that the classes are highly
unbalanced. Because of this difference, some classification algorithms are better
suited than others.

Semi-Supervised Anomaly Detection The training data is fully labeled as in the su-
pervised case, but it contains only normal samples and no anomalies. Thus an
algorithm can only learn the normal behavior. It detects anomalies by comparing
it to the model describing normality.

Unsupervised Anomaly Detection No labels exist on the data set. A model finds
anomalies only based on intrinsic properties such as density or distance.

[Chandola et al., 2009] highlight multiple challenges in the field of which two are
especially relevant for this thesis. First, labeled data is hard to find. Even if there exists
some ground truth, it represents only known behavior but does not prepare for possible
new approaches, e.g. the user behavior during a security attack can be very different
from case to case. This makes unsupervised anomaly detection the most common type.
Second, normality can change over time, demanding the model to adopt. Anomalies at
one point in time may become normality at another. This thesis focuses on tackling the
second challenge. From here on, we focus on unsupervised anomaly detection.

Figure 2.1: Categorization of unsupervised anomaly detection algorithms [Goldstein and
Uchida, 2016]

[Goldstein and Uchida, 2016] describe multiple types of algorithms for unsupervised
anomaly detection. The two main types are density- and cluster-based. In the first type,
samples in low-density areas are anomalous. An algorithm can compare the density
globally by calculating the anomaly score via the distance from the sample to the kth

5
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or all k nearest neighbors. Local outliers can be found with the Local Outlier Factor
(LOF) which compares the density locally with other samples in the same area. Cluster-
based algorithms determine multiple clusters and calculate the outlier score based on the
distance to these clusters. Figure 2.1 depicts a categorization of unsupervised anomaly
detection algorithms.

2.3 Anomaly Detection in Streams

A streaming environment introduces new challenges, as explained in Section 2.1. This
section explores the techniques presented in related work and shows appropriate perfor-
mance evaluation methods for anomaly detection in streams.

2.3.1 Techniques

Computationally lightweight statistical methods such as sliding threshold, extreme stu-
dentized deviate, ARIMA, and PCA are the most common methods in practice [Ahmad
et al., 2017]. Advanced model-based techniques are also possible, but require more back-
ground knowledge and adoption to the specific domain. [Mousavi et al., 2015] present
an overview of clustering methods in data streams:

Hierarchical Methods Create a taxonomy which summarizes the samples into more and
more general categories.

Partitioning Methods Construct k partitions of the data space and evaluate each by
some criterion, e.g. sum of square errors.

Grid-based Methods Separate the data space into cells through a grid, then merge the
cells to build clusters.

Density-based Methods Evaluate how close the samples lie in the areas of the data
space.

Model-based Methods Run a hypothesized model for every cluster and provides the
data that fits the model perfectly.

The main limitations - data processed only once and limited storage - reduce the
options for unsupervised anomaly detection methods. Most approaches to find anomalies
presented in literature focus on distance and density-based algorithms. [Angiulli and
Fassetti, 2007] and [Kontaki et al., 2011] find anomalies based on the neighborhood in a
sliding window - if a sample has less than k neighbors within distance R, it is an anomaly.
The size of the time-based sliding window limits the number of samples the algorithm
has to classify as inlier/outlier. Instead of distance-based, [Amini and Wah, 2010] apply
density-based clustering. [Assent et al., 2012] propose a hierarchical clustering approach
with a tuple based sliding window. The algorithm traverses the hierarchical clustering
tree until interrupted by an incoming sample. Thus, the anomaly detection gets better

6
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the more time passes until the next sample arrives. This ensures constant memory size
independent from data frequency.

2.3.2 Evaluation Techniques

Anomaly detection in data streams incorporates multiple difficulties concerning per-
formance evaluation. Anomalies are per definition rare occurrences, improvements in
predicting the rare class thus change the overall classification result only marginally.
The area under curve (AUC) of the receiver operating characteristic (ROC) curve which
is often used in classification is thus unfeasible, as it does not balance the true-positives
and true-negatives. [Davis and Goadrich, 2006] propose the use of the precision-recall
(PR) curve to evaluate the performance of highly skewed data sets.

The PR-AUC is not sensitive to biased data sets but still requires a ground truth to
evaluate the performance. However, anomaly data sets are rarely labeled, as explained in
Section 2.2.2. Evaluation of unsupervised learning is an ongoing research topic, primarily
focused on clustering algorithms. [Rand, 1971] describes four characteristics that define
the quality of a clustering algorithm:

Natural Clusters How well does the method retrieve the clusters inherent in the data?

Sensitivity How sensitive is the clustering result to small changes in the data?

Missing data How sensitive is a method to missing data?

Method comparison How different is the result when applying two methods to the same
data?

Generally, data analysts evaluate anomaly detection tasks with background knowledge
and use some known anomalies as a baseline to tune the hyperparameters and data
preparation. [Goix, 2016] proposes Excess-Mass and Mass-Volume curves to discriminate
accurately between algorithms in an unsupervised anomaly detection setting w.r.t. PR
and ROC based criteria. This solves both explained problems in anomaly detection
evaluation but still needs to be adopted by research and industry.

2.4 DenStream

This section first describes the DenStream clustering algorithm by [Cao et al., 2006].
Second, it evaluates the implementation presented by [Putina et al., 2018], which utilizes
DenStream but optimizes the algorithm to find anomalies instead of clusters. Third,
it presents the hyperparameters used in the algorithm by [Cao et al., 2006] and the
proposed improvements by [Putina et al., 2018]. The DenStream clustering algorithm
and its adoption for anomaly detection is the main foundation of this thesis.

7
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2.4.1 DenStream Clustering

DenStream clusters evolving data streams with arbitrary shapes, requires no assumption
about the numbers of clusters and can handle anomalies [Cao et al., 2006]. The algorithm
summarizes individual samples of the incoming data stream into micro clusters during
the online phase. It clusters these micro clusters into macro clusters during the offline
phase, which is initiated on user request. Micro clusters represent the summarized
samples through their weight w and radius r.

During the online phase, DenStream adds incoming samples to a micro cluster or
creates a new one if none exist in the neighborhood of the sample. Micro clusters with
weight below a certain threshold are outlier micro clusters (o-micro clusters) of Type
I. Otherwise, they are potential core micro clusters (p-micro clusters) [Aggarwal et al.,
2004]. The only way to change (i.e. promote) an o-micro cluster to a p-micro cluster is
by increasing the weight of an o-micro cluster over the threshold. E.g. some pioneers
(i.e. anomalies) establish a new settlement on an island which over time grows large
enough to be considered normal.

During the offline phase, DenStream clusters all p-micro clusters into macro clusters
with the DBSCAN algorithm [Ester et al., 1996]. All p-micro clusters that are now part
of a macro cluster are core micro clusters (c-micro cluster), hence the micro cluster prefix
“potential”, the rest are o-micro clusters of Type II. Figure 2.2 depicts the different micro
clusters in DenStream.

O-Micro Cluster
Type I

P-Micro Cluster

Sample  Merge

Online Phase

O-Micro Cluster
Type II

C-Micro Cluster

   DBSCAN

Offline Phase

P-Micro Cluster

Figure 2.2: Phases in DenStream Clustering [Cao et al., 2006]

Algorithm 2.1 shows the DenStream micro cluster maintenance algorithm by [Cao
et al., 2006]. It first tries to add a sample to a p-micro cluster. If it fails, it tries to
add the sample to an o-micro cluster of Type I or creates a new one. This may promote
the o-micro cluster because it gained enough weight. The algorithm summarizes the
samples during the merge process. It updates weight, mean, and variance by adding the
new value and reduces the old values with the decay function 2−λt, further explained in
Section 2.4.3.

2.4.2 DenStream Anomaly Detection

In DenStream clustering, anomalies are a by-product, while [Putina et al., 2018] adapt
the algorithm to focus on finding anomalies. They treat every sample that is added to an

8
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1 def denstream(ε, β, µ, λ):
2 for s in data stream:
3 # try merge sample into nearest p−micro cluster cp
4 cp = get nearest p micro cluster(s)
5 c+p = merge(cp, s, λ, sw)
6 if radius(c+p ) ≤ ε:
7 cp = c+p
8 else:
9 # try merge sample into nearest o−micro cluster co

10 co = get nearest or new o micro cluster(s)
11 c+o = merge(co, s, λ, sw)
12 if radius(c+o ) ≤ ε:
13 # check if big enough for promotion
14 if weight(c+o ) > β · µ:
15 p micro clusters.append(c+o )
16 o micro clusters.remove(co)
17 else:
18 co = c+o
19 else:
20 # new o−micro cluster
21 o micro clusters.append(c+o )

Algorithm 2.1: DenStream micro cluster maintenance [Cao et al., 2006]

o-micro cluster Type I during micro cluster maintenance as contextual anomaly. Algo-
rithm 2.2 shows the extension to capture outliers in real-time. Additionally, they present
a way to reduce the cardinality of DenStream by calculating the two hyperparameters
core weight threshold µ and maximum radius ε automatically, shown in Section 2.4.3.

17 ...
18 co = c+o
19 write real time outlier(s)
20 else:
21 # new o−micro cluster
22 o micro clusters.append(c+o )
23 write real time outlier(s)

Algorithm 2.2: DenStream outlier detection by [Putina et al., 2018], extract from Al-
gorithm 2.1

9
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2.4.3 Hyperparameters

The DenStream algorithm outlier detection( ε, β, µ, λ) by [Cao et al., 2006] uses four
different hyperparameters. These section explains their characteristics and the proposed
simplifications by [Putina et al., 2018].

Decay Factor λ

A micro cluster does not store each sample individually but summarizes them through
weight w, mean x̄ and variance σ2. The decay factor controls the influence of past
samples. The higher λ, the lower the importance of the past. The Equations 2.1 to 2.3
show the decay applied to the summarizing properties of a micro cluster at timestamp
t, with the last sample s added at timestamp tlast with weight sw and value sx.

wt = wtlast · 2
−λ·(t−tlast) + sw (2.1)

x̄t = x̄tlast +
sw · (sx − x̄tlast)

wt
(2.2)

σ2t = σ2tlast ·
wt − sw
wtlast

+ sw · (sx − x̄t) · (sx − x̄tlast) (2.3)

Maximum Micro Cluster Radius ε

The radius of a core micro cluster must be below or equal to the maximum radius ε with
ε > 0. [Putina et al., 2018] propose to calculate ε based on a set of samples taken from
the stream before the outlier detection starts and add all samples to the same micro
cluster. The largest micro cluster radius during this preprocessing then results in ε.
They recommend the dynamic threshold selection because of better recall and precision
in their experiments. This reduces the DenStream hyperparameter cardinality by one
from outlier detection( ε, β, µ, λ) to outlier detection(β, µ, λ).

Core Weight Threshold µ

The weight of a core micro cluster must be at least w ≥ µ with µ > 0 [Cao et al., 2006].
[Putina et al., 2018] proposes to set µ to the maximum possible weight of a micro cluster
(i.e. adding all points to the same micro cluster) and only set the outlier tolerance
factor β by hand. The maximum possible weight in a fixed-rate sampling stream can
be calculated by adding all samples to the same micro clusters and discount it with the
decay function f(t) = 2−λt. This leads to the geometric series shown in Equation 2.4
with limit µ+. With µ = µ+ = 1

1−2−λ , the DenStream hyperparameter cardinality
reduces by one from outlier detection( ε, β, µ, λ) to outlier detection( ε, β, λ).

10
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µ+ = 2−λ(t−t) + 2−λ(t−(t−1)) + 2−λ(t−(t−2)) + · · · (2.4a)

= 1 +
1

2λ
+

1

22λ
+ · · · (2.4b)

=

∞∑
t=0

(
1

2λ

)t
(2.4c)

=
1

1− 2−λ
since

1

2λ
< 1 for λ > 0 (2.4d)

(2.4e)

Outlier Tolerance Factor β

The outlier tolerance factor β is the threshold between o-micro clusters Type I relative
to c-micro clusters. This reduces the core weight threshold µ and leads to the concept
of potential core micro clusters, i.e. wpotential ≥ β · µ and woutlier < β · µ [Cao et al.,
2006]. P-micro cluster may then become core micro clusters or o-micro clusters Type II
during DBSCAN clustering.

11
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Methodology

This thesis heavily bases on the DenStream algorithm by [Cao et al., 2006] and its mod-
ification for outlier detection by [Putina et al., 2018]. We first established a knowledge
discovery process to follow a structured approach. Second, we prepared the data in a way
such that the algorithm can consume it correctly. Third, we implemented the DenStream
outlier detection algorithm. Fourth, we added the drift-influence hyperparameters with
the hypothesis of an anomaly detection performance increase.

3.1 Knowledge Discovery Process

[Fayyad et al., 1996] describes the Knowledge Discovery in Databases (KDD) as the act
to detect new, useful, and understandable patterns in data. It is a structured approach
that guides through the different phases of knowledge discovery.

We organized the knowledge discovery process based on CRISP-DM (CRoss-Industry
Standard Process for Data Mining). It builds on the KDD process and implements it
according to common industry requirements [Shearer, 2000]. It comprises six phases,
shown in Figure 3.1: Business Understanding, Data Understanding, Data Preparation,
Modeling, Evaluation, and Deployment.

Business Understanding defines the business objectives and success criteria used to
evaluate the project; Data Understanding delivers the data mining objectives and the
data mining success criteria. These two phases differ in a way that the first sets the goals
to satisfy the reason why the project was started, while the latter defines ways to reach
these goals through data mining. Data Preparation preprocesses data to best fit the
used models. In the Modeling phase, machine learning models are built and evaluated
by the data mining goals set previously. The last two phases consist of assessing the
whole project against the business goals and deploying the solution.

3.2 Data Preparation

The data stream needs preparation for an algorithm to work [Pyle, 1999]. DenStream
demands all features to be numerical and have the same scale to work correctly. E.g.
calculation of the micro cluster radius is not reasonable if features have differently scaled
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Business
Understanding

Data
Preparation

Data
Understanding

Modeling

Evaluation

Deployment Data 
 

Figure 3.1: CRISP-DM process diagram [Shearer, 2000]

distances. The measurement unit plays a significant role in many machine learning
models [Han et al., 2011]. We implemented two different ways to rescale our data,
min-max normalization and z-score normalization.

Min-Max Normalization Performs a linear transformation such that all values of a fea-
ture lie between the range [0, 1], based on the smallest value xmin and biggest
value xmax:

x′ =
x− xmin

xmax − xmin
(3.1)

Z-Score Normalization Normalizes the values of a feature based on the mean x̄ and
standard deviation σx. The further away from the mean, the bigger the value.
This works best with normally distributed data:

x′ =
x− x̄
σx

(3.2)

These calculations must be adapted in the streaming environment as we lack knowl-
edge about the global maxima or standard deviation. We propose two different ways to
overcome this. First, the use of a representative sample at the beginning of the stream,
based on which we calculate the normalization factors. Second, setting the factors with
domain knowledge, based on experience or future expectations.

The standard deviation of a data stream may deviate over time (i.e. heteroscedas-
ticity) and may do so differently for each feature. This introduces the problem that
the hyperparameter values like the maximum micro cluster radius ε must adapt if the
underlying data samples become closer together or further apart. We propose to tackle
this issue as future work.

14
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3.3 DenStream Implementation

We implemented the DenStream algorithm by [Cao et al., 2006] shown in Algorithm 2.1
with the additions of [Putina et al., 2018] in Algorithm 2.2 and the proposed preprocess-
ing to calculate µ and ε automatically to reduce the hyperparameter cardinality. We did
not implement DBSCAN clustering on p-micro clusters, and thus all o-micro clusters
are of Type I.

We calculate the decay factor λ based on the time needed for a point to lose half of
its weight influence, i.e. the half-life time t1/2. Equation 3.3 shows the calculation of
lambda in the case of 50% influence loss after one minute.

2−λ·t1/2 = f(t) (3.3a)

2−λ·60 = 0.5 (3.3b)

λ =
−log2(0.5)

60
(3.3c)

λ ≈ 0.0167 (3.3d)

Similar to λ, we can rearrange the definition of the outlier tolerance factor β, as shown
in Equation 3.4. We calculate it as the minimum size ζ a cluster needs for a promotion
if we add all samples consecutively to the same micro cluster.

β = ζ ∗ (1− 2−λ) (3.4)

3.3.1 Assumptions

We elicited certain assumption on which the DenStream anomaly detection relies on
to work properly. They encompass the distribution of the data points in the domain
space and the nature of the data stream. These assumptions also apply to the extended
algorithm Denstream* presented in Section 3.4.

One macro cluster Only one macro cluster exists in the data stream which may or may
not move.

Normal distribution The data is normally distributed around the macro cluster center.

Homoscedasticity The variance of the data stream does not change.

One sample at a time No two samples of the data stream have the same timestamp.

3.4 DenStream*

We added certain modifications and additions to the DenStream anomaly detection
explained in Section 2.4.1, which we will discuss in this section.

15



16 CHAPTER 3. METHODOLOGY

We record the timestamp when the algorithm promotes an o-micro cluster to a p-micro
cluster, shown in Algorithm 3.1. This allows us to evaluate the time needed to form p-
micro clusters and further analyze the characteristics of correctly and falsely promoted
o-micro clusters.

15 ...
16 o micro clusters.remove(co)
17 # promotion time for all samples
18 for x in get micro cluster samples(co):
19 write promotion time(x)
20 else:
21 ...

Algorithm 3.1: Recording promotion time, extract from Algorithm 2.1

A data set can encompass a drift direction where the mean moves into a certain
direction over time. This leads to a different outlier/inlier labeling for two samples with
the same value but different creation times. E.g. a man in Switzerland with height
179cm was an outlier in the year 18961 but is not in 19962 . The value changed from
being an outlier to an inlier over time.

We calculate the overall drift
−→
θt based on the movement of the center of all p-micro

clusters. As DenStream regards recent samples as more important than older ones, we
apply the decay factor to the previous overall drift vector and add the vector from the
overall p-micro cluster center Pt to the sample St, shown in Equation 3.5.

−→
θt = 2−λ·1 ·

−−→
θt−1 +

−−→
PtSt (3.5)

We introduce two adjustment hyperparameters that change the promotion procedure
according to the drift in the data stream, positively or negatively discriminating samples

according the cosine similarity Ψ between
−→
θt and

−−→
PtSt defined in Equation 3.6. We named

the adjusted algorithm outlier detection( ε, β, µ, λ, δ, ω) DenStream*.

Ψ(
−→
θt ,
−−→
PtSt) =

−→
θt ·
−−→
PtSt

‖
−→
θt‖‖
−−→
PtSt‖

(3.6)

3.4.1 Drift-Distance-Influence Hyperparameter δ

The drift-distance-influence hyperparameter δ adjusts the area in which samples of a
micro cluster can lie. Figure 3.2 depicts the micro cluster areas with and without drift
distance influence in a two-dimensional space. Samples that lie in the drift direction
can be further away from the micro cluster center than samples that lie in the opposite
direction. Sample S1 is a pioneer and can be merged into the micro cluster because we

11896: median 167.5cm, 95% confidence interval [165.1cm, 169.9cm] [NCD-RisC et al., 2016]
21996: median 178.4cm, 95% confidence interval [177.5cm, 179.3cm] [NCD-RisC et al., 2016]

16



3.4. DENSTREAM* 17

adjusted the area. S2 lies in the opposite direction in regards to the drift and can thus
not be merged in DenStream*. Nothing changes for S3 (outside) and S4 (inside) in the
depicted example. With this approach, we expect to adopt to drift faster and improve
the outlier detection.

We implemented this approach in DenStream* by comparing the micro cluster radius
to the maximum micro cluster radius ε, adjusted by the drift distance influence δ and
the cosine similarity Ψ as shown in Algorithm 3.2.

10 ...
11 c+o = merge(co, s, λ, sw)
12 if radius(c+o ) ≤ ε ∗ (1 + Ψ · δ):
13 # check if big enough for promotion
14 ...

Algorithm 3.2: Drift distance adjustment in DenStream*, extract from Algorithm 2.1
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S1 [0.5,1.1]

S2 [-0.6,-0.4]

S3 [-1,1]

S4 [-0.2,0.3]

drift (1,1)

Figure 3.2: Valid micro cluster areas adjusted by δ.
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3.4.2 Drift-Weight-Influence Hyperparameter ω

The drift-weight-influence hyperparameter adjusts the weight a sample adds to a micro
cluster. If the sample lies in the drift direction, it adds more weight and vice-versa.
Figure 3.3 depicts the sample weight by marker size. The weight of S1 increases because
the vector from the overall center to the sample is similar to the drift direction. S2 loses
weight because it lies in the opposite direction. The weight of S3 does not change as
its vector is orthogonal to the drift. With this approach, pioneers add more weight to
a micro cluster and should thus promote an o-micro cluster faster than samples that do
not lie in the drift direction.

We implemented this approach in DenStream* by increasing or decreasing the sample
weight sw with the drift weight influence ω and the cosine similarity Ψ as shown in
Algorithm 3.3.

9 ...
10 co = get nearest or new o micro cluster(s)
11 c+o = merge(co, s, λ, sw · (1 + Ψ · ω))
12 if radius(c+o ) ≤ ε:
13 ...

Algorithm 3.3: Drift weight adjustment in DenStream*, extract from Algorithm 2.1
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Figure 3.3: Weight of samples S1, S2, S3 adjusted by ω, depicted through blob size
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3.4.3 Outlier Score α

[Putina et al., 2018] classify samples as inliers or outliers depending on whether they are
part of a p-micro cluster or o-micro cluster. We extend this binary classification with
the outlier score α. The euclidean distance from the outlier-sample So to the center of
the closest p-micro cluster MCp close is a metric to understand how far away an outlier
lies from all the inliers. We normalize this distance with the maximum radius ε to make
the outlier scores comparable over multiple data sets with different density:

α =
‖distance(center(MCp close), So)‖

ε
(3.7)

We implemented the outlier score by calculating the distance to the next p-micro
cluster whenever a sample is labeled anomalous, as shown in Algorithm 3.4.

16 ...
17 else:
18 co = c+o
19 # calculate outlier score
20 α = outlier score(s, p micro clusters)
21 write real time outlier(s, α)
22 else:
23 # new o−micro cluster
24 o micro clusters.append(c+o )
25 # calculate outlier score
26 α = outlier score(s, p micro clusters)
27 write real time outlier(s, α)

Algorithm 3.4: Outlier score α instead of binary labeling, extract from Algorithm 2.1
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4

Evaluation

We conducted all the experiments on Ubuntu 18.02 on a Notebook with Intel Core(TM)
i5-5200U CPU running at 2.20GHz and 8GB of RAM. The computation time does not
affect the results as we treated all samples as evenly spaced by a constant time interval,
independent from the real-time passed. We used three different data sets to perform our
experiments. We optimized the DenStream hyperparameters and then evaluated the
influence of the drift-influence hyperparameters (i.e. drift-distance-influence δ and drift-
weight-influence ω). We used the PR-AUC described in Section 2.3.2 as a performance
measure. We also analyzed the time needed to promote an o-micro cluster to a p-micro
cluster.

4.1 Data

To our knowledge, there exists no benchmark data set to test multivariate time series
outlier detection methods. We regard this as a result of the general lack of labeled outlier
data sets, described in Section 2.2.2. Thus, we created data sets where we injected out-
liers. We built three synthetic data sets with the same underlying random distribution,
but the mean of each data set follows a different drift-path. The data sets have two
features x and y.

Static x, y = 0 The data contains no drift, i.e. the mean stays at the same point.

Line y = x The mean follows a straight line, i.e. the drift vector is static.

Sinus y = sin(x) The mean follows a sinus curve.

We created n = 10 000 synthetic samples in each data set and increased x by 0.004
with −4 ≤ x ≤ 4 every q = 5 steps in the line and sinus data set. We calculated the
output y based on the drift function and a given x. We added noise to every sample such
that the noisy inliers can lie everywhere in a circle within a maximum radius r around
the noiseless sample. We inject outliers as values that lie uniformly distributed as a ring
outside r and inside 2 · r.

Algorithm 4.1 shows the synthetic data set generation. We draw the distance d and
angle η from the uniform random distributions U , i.e. d ∼ U(0, r) and η ∼ U(0, 2π).
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1 for x in range(n/q):
2 for in range(q):
3 η = random(0, 2π)
4 d = random(0, 1)
5 if random(0, 1) < outlier propability:
6 # inject outlier
7 r∗ = r · (1 + d)
8 else:
9 r∗ = r · d

10 x∗ = x + cos(η) · r∗
11 y∗ = y(x) + sin(η) · r∗

Algorithm 4.1: Synthetic data set generation

We then inject an outlier with a defined probability. At the end we calculate the noisy
sample coordinates x* and y*.

We ran the experiments with a random seed to ensure consistent data over multiple
runs. Figure 4.1 depicts the three synthetic data sets (with only n = 600 for better
visualization). For the line and sinus data set, we see some points labeled as anomalies
that lie in between inliers. This is correct as these points were anomalous at creation
time and the inliers were created at a later point in time in the same area because of
drift.

4 2 0 2 4
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4

2

0

2

4

Static

4 2 0 2 4
X

Line

4 2 0 2 4
X

Sinus

Y

Figure 4.1: Synthetic data sets used in experiments - anomalies in red, drift at x = −4
in green

4.2 Experiments

For each experiment, we collected the used hyperparameters, rescaling factors, and meta-
data for repeatability and reproducibility. These values comprise the following: Time

22
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of execution, name of used data set, decay factor λ, tolerance factor β, maximum micro
cluster radius ε, drift-distance-influence δ, drift-weight-influence ω, the feature scaling
method (none, min-max normalization, z-score normalization) and the feature scaling
parameters (minimum, maximum, mean, standard deviation).

The algorithm writes every sample that is added to an o-micro cluster to the database.
It adds a promotion time to a sample if its o-micro cluster is promoted to a p-micro
cluster. An entry in the database comprises the rescaled features, the cosine-similarity
to the drift-center, the insertion time, the promotion time (if applicable), and the outlier
score.

We used the precision-recall AUC (PR-AUC) described in Section 2.3.2 as the per-
formance measure to compare the outcome of different run configurations. We first
optimized the DenStream hyperparameters decay factor λ, tolerance factor β, and max-
imum micro cluster radius ε via grid search. We further classify the anomalies into
real-time and persistent anomalies, as the interpretation of an anomaly is dependent on
the point of view.

Real time anomalies Every sample that the algorithm adds to an o-micro cluster is an
anomaly at this point of time.

Persistent anomalies Persistent anomalies are real time anomalies that are never part
of a p-micro cluster, i.e. their corresponding o-micro cluster never gets promoted.

The real-time anomalies are a superset of persistent ones, as shown in Equation 4.1.
Thus we end up with two sets of optimal hyperparameters for each data set, one opti-
mized where we compare the ground truth with every element that the algorithm adds
to an o-micro cluster (i.e. real-time outliers) and one optimized where we compare the
ground truth with every element that the algorithm did not promote to an o-micro
cluster (i.e. persistent outliers).

AllSamples ⊇ RealtimeAnomalies ⊇ PersistentAnomalies (4.1)

Thus we compare the ground truth with both interpretations of an anomaly to take
both points of view into consideration.

4.2.1 DenStream Hyperparameter Optimization

Figure 4.2 depicts the results for the grid search on the sinus data set with real-time
outliers. The hyperparameters show a correlation between each other in regards to
the PR-AUC. The best hyperparameter value for ζ with some specific ε and t1/2 is
not necessarily the best for other ε and t1/2 in regards to PR-AUC. This complicates
the process of finding optimal hyperparameters as we have to optimize multiple axes
simultaneously.

The proposed calculation of the maximum cluster radius by [Putina et al., 2018] as
described in Section 2.4.3 returned ε ≈ 0.67 for all three data sets. This value for ε is

23
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very far away from all well-performing hyperparameter-triples we found through grid-
search. Therefore we did not pursue this approach any further. Instead, we included ε
in the grid-search and set it explicitly.

We also analyzed the sensitivity of each hyperparameter to understand the influence
of each better. Therefore we set two hyperparameters to their top overall optimal values
and vary the third. Figure 4.3 shows this sensitivity analysis for the top three PR-AUC
scores on the sinus data set with real-time outliers, e.g. the sensitivity of ζ if we set
[t1/2, ε] to [28, 0.40], [34, 0.40] and [36, 0.42] in the leftmost graph.

For reasons of clarity and comprehensibility, the complete list of visualizations for all
data sets, and both real-time and persistent outliers can be found in Section A.1.
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Figure 4.2: ζ, t1/2 and ε grid search for PR-AUC on sinus data set with real-time outliers
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Figure 4.3: Sensitivity of ε, ζ and t1/2 on sinus data set with real-time outliers
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4.2.2 Experiment 1 - DenStream* Performance Influence

Hypothesis 1 The drift-influence hyperparameters δ and ω improve the PR-AUC of
DenStream*.

We analyzed the influence of distance-influence δ and weight-influence ω on the PR-
AUC of DenStream* during this experiment. We used the optimal values for the hyper-
parameters λ, β and ε, i.e. the configurations which resulted in the highest PR-AUC in
the hyperparameter analysis described in Section 4.2.1. Figure 4.4 shows the grid search
for δ and ω on the sinus data set with real-time outliers.
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Figure 4.4: Grid search on δ and ω on sinus data set with real-time outliers

Figures 4.5 to 4.7 show the performance influence of δ and ω respectively, keeping
all DenStream hyperparameters and one drift-influence hyperparameter unchanged. We
see that δ tends to reduce the PR-AUC faster than ω. The complete set of grid search
figures on the drift-influence hyperparameters can be found in Section A.2.

In the static data set, both influence factors only reduce performance. This can be
expected, as the underlying assumption of drift is not fulfilled, i.e. the data is static. We
can see an improvement for the linear drift and the sinus curve path, the most significant
for the sinus data set with real-time outliers.

We broke down the test results with the optimized drift-influence hyperparameters to
highlight cases where the two algorithms decided differently or equally about classifying
a sample as an anomaly. Tables 4.1 to 4.3 show the breakdown for the three data sets.
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Figure 4.5: Separate influence of δ and ω on static data set
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Figure 4.6: Separate influence of δ and ω on line data set
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Figure 4.7: Separate influence of δ and ω on sinus data set

Overall, the confusion matrix shows a highly unbalanced data set. For that reason, the
PR-AUC is more expressive than the ROC-AUC performance measurement, as explained
in Section 2.3.2. DenStream* improves the PR-AUC for persistent outliers in the line
data set primarily through a lower rate of wrongly labeled outliers (i.e. false negatives),
while the score for real-time outliers in the sinus data set improves because of fewer
wrongly labeled inliers (i.e.false positives).

The hypothesis holds for specific data sets. If there is drift in the data set, δ and ω
can lead to a higher PR-AUC for the right hyperparameter values. If there is no drift,
the additional hyperparameters do not improve the PR-AUC.

DenStream

Real-Time Persistent

Inlier Outlier Inlier Outlier

Inlier 9790 11 9778 23
Outlier 65 134 60 139

DenStream*

Real-Time Persistent

Inlier Outlier Inlier Outlier

Inlier 9790 11 9778 23
Outlier 65 134 60 139

Table 4.1: Static dataset: Denstream and Denstream∗ confusion matrices
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DenStream

Real-Time Persistent

Inlier Outlier Inlier Outlier

Inlier 9791 10 9792 9
Outlier 92 107 108 91

DenStream*

Real-Time Persistent

Inlier Outlier Inlier Outlier

Inlier 9791 10 9793 8
Outlier 92 107 101 98

Table 4.2: Line dataset: Denstream and Denstream∗ confusion matrices

DenStream

Real-Time Persistent

Inlier Outlier Inlier Outlier

Inlier 9763 38 9800 1
Outlier 67 132 118 81

DenStream*

Real-Time Persistent

Inlier Outlier Inlier Outlier

Inlier 9777 24 9800 1
Outlier 74 125 118 81

Table 4.3: Sinus dataset: Denstream and Denstream∗ confusion matrices

4.2.3 Experiment 2 - DenStream* Promotion Time Influence

Hypothesis 2 The drift-influence hyperparameters δ and ω reduce the time passed be-
tween the creation of an o-micro cluster and its promotion to a p-micro cluster.

We analyzed the time needed to promote an o-micro cluster to a p-micro cluster.
We expected that the drift-aware DenStream* would promote wrongly labeled real-time
outliers (i.e. false positive) faster. We compared DenStream and DenStream* in regard
to the time needed for samples to be promoted, i.e. the promotion time. We used
the optimal values for δ and ω found through grid-search, as discussed in Section 4.2.2.
Tables 4.4 to 4.6 show the samples median of the promotion time, split into correctly
(3) and wrongly (7) promoted anomalies.

Real-time Persistent

3 7
∑

3 7
∑

DS 781 11.5 735 682.5 65.5 257.5
DS∗ 781 11.5 735 118.5 40 112.5

Table 4.4: Median promotion time comparison for static data set

The hypothesis holds for the cases where δ and ω improve the performance, i.e. if there
is drift in the data set, as explained in Section 4.2.2. This is in accord with the general
observation that lower overall promotion time is an indicator for better performance.
We can observe this effect on all data sets, as shown in Figure 4.8.
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Real-time Persistent

3 7
∑

3 7
∑

DS 1047 7.5 840 1335 148 479
DS∗ 1047 7.5 840 521.5 14 287.5

Table 4.5: Median promotion speed comparison for line data set

Real-time Persistent

3 7
∑

3 7
∑

DS 627 279 580.5 510.5 24 187
DS∗ 858 90 717.5 510.5 24 187

Table 4.6: Median promotion speed comparison for sinus data set
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Figure 4.8: Median promotion time vs. PR-AUC
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4.3 Discussion

The use of PR-AUC showed the performance difference in the different algorithms set-
tings adequately, even in the highly biased data sets with an inlier-to-outlier ratio of
around 2%. Still, the inherent anomaly-property rareness leads to the conclusion that
incline and decline in performance often lie in the area of statistical uncertainty because
the absolute number of outliers remains low even for bigger data sets.

The DenStream hyperparameter optimization showed that the decay factor λ, tol-
erance factor β and maximum micro cluster radius ε can not be optimized separately
as their PR-AUC influence is not independent of the other hyperparameters. The pro-
posed calculation of ε by [Putina et al., 2018] through a test set resulted in much lower
performance scores, and therefore, we did not pursue it further. The reduction of the
hyperparameter space because of the automatic calculation of µ, as explained in Section
2.4.3 was invaluable. It reduced grid-search time significantly because we had to explore
only three dimensions instead of four.

We introduced the distinction between real-time and persistent outliers. A data ana-
lyst must decide to optimize for one or the other. It has a direct influence on the optimal
hyperparameters for the algorithm. It results in a trade-off between knowing what is
anomalous at the moment vs. what is anomalous in the longer run.

The drift-influence hyperparameters δ and ω in DenStream* showed the potential
to increase the performance of DenStream. They indicate similar behavior like the
conventional DenStream hyperparameters λ, β and ε: They should not be analyzed
separately as their PR-AUC influence is not independent and the performance is sensitive
to small changes of the hyperparameters.

We achieved the best performance increase on the sinus-path drift data set through the
modification of both δ and ω. In general, the drift-distance-influence hyperparameter δ
reduces the performance score significantly in most of the possible hyperparameter space.
The drift-weight-influence ω shows more stable behavior than drift-distance-influence δ.
We thus propose to use δ only with a reliable evaluation base as the risk for lowering
the performance score is otherwise higher than the potential gain.

We found a correlation between promotion time and performance score, especially
if we optimize the hyperparameters to find persistent outliers. Better hyperparameters
thus not only improve the probability of a correct inlier/outlier labeling. If the algorithm
promotes a sample where the underlying ground truth labels it as an inlier, an analyst
can come to the correct conclusion faster (i.e. sample is an inlier). The algorithm needs
to keep all samples of o-micro clusters in memory; thus, an improvement in promotion
time also allows for better scaling.

Although the hyperparameters show satisfying performance in a reasonably big param-
eter space, we see the need for thorough empirical evaluation before using the algorithm
on a new data set. A data analyst must apply background knowledge to decide what
kind of anomalies are interesting and what influence the time component (i.e. decay
factor λ) should have. The described correlation between promotion time to PR-AUC
can further act as a guideline.
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DenStream in Real Scenarios

We applied the DenStream algorithm in two scenarios. The different settings tested
the applicability of the algorithm with real-world data. Both data sets did not provide
ground truth. Thus, the findings act as a guideline for further research on the data
and can highlight areas where we encourage investigation. We were able to apply the
learned heuristics and provide input for the two ongoing projects. We executed the
unmodified DenStream algorithm to establish a more stable baseline for the project
partners and because the impact of the drift-influence hyperparameters could not be
evaluated without ground truth.

5.1 PigData

PigData is a collaborative research project, funded by the Swiss National Science Foun-
dation National Research Program 75 “Big Data”1. It includes several partners: the
Dynamic and Distributed Information Systems Group of the University of Zurich, the
Vetsuisse Faculty of the University of Berne and the Swiss Federal Institute for For-
est, Snow and Landscape Research (WSL). It applies Big Data methods to research the
Swiss swine and pork production industry [Berezowski et al., 2016]. Multiple indus-
try partners deliver data sets regularly with the plan of continuous data delivery. The
data contains data about veterinary visits, reproduction, slaughtering process, and meat
quality. This thesis does not include visualizations or exempts of this project for reasons
of confidentiality.

The provided data is a collection of multiple data sets that contain data over a period
of four to seven years. Many timestamps did not contain data values. They originated
from the case when no event happened, so they can be imputed with zero. The treat-
ment of missing values can have a significant impact on the DenStream performance as
micro clusters lose importance over time. For sequential data where the time between
measurements is irrelevant, the algorithm would need adjustment to treat all intervals
as equal. We executed multiple anomaly detection runs with different data grouping.
We grouped based on the data sources (e.g. all data from the slaughterhouse), point in
the life of a pig (e.g. birth and death) and all data as one data set. We continuously fed
the time sample into the DenStream algorithms to simulate the data stream.

1http://www.nfp75.ch/
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We tuned the hyperparameters based on background knowledge about some known
anomalies during the measuring time. We found multiple possible anomalous samples
and readjusted the analysis after we presented the results to the project partners. We
faced issues concerning the hyperparameter tuning because of only limited to no ground
truth. The evaluation and discussion of the found anomalies with the industry partners
happened after we finished this thesis and can thus not be included.

As future work, it would be essential to study how to make the algorithm less sensitive
to wrongly chosen hyperparameter values. We see the possibility of a hybrid anomaly
detection approach for the presented use case: First, execute a non-streaming outlier
detection method on the available static data set as they do not have the drawbacks of
a streaming environment, and then use the gained knowledge to tune the DenStream
algorithm and run it continuously.

5.2 IPTV

The data originates from one of the biggest TV-streaming providers in Europe. The data
set comprises TV sessions viewed by users over multiple days. Each session contains a
timestamp and metadata about the user type, duration, device, and location [Philipp,
2015]. We needed to rescale all values to establish comparability between the features,
as explained in Section 3.2. We reshaped the sessions into intervals of five minutes and
aggregated them according to the used device. Table 5.1 shows an exempt from the
aggregated data set. We then fed the aggregated interval results into the DenStream
algorithm to simulate a continuous data stream.

timestamp bigscreen desktop mobile tablet

t0 ∼5700 ∼4700 ∼1800 ∼1300
t1 ∼5800 ∼4500 ∼1800 ∼1300
t2 ∼5800 ∼4400 ∼1900 ∼1400
t3 ∼5900 ∼4400 ∼1800 ∼1400

Table 5.1: Exempt from IPTV data set aggregated on devices with ∆t = 5min

We tuned the hyperparameters heuristically and via grid search. We searched for
hyperparameter values in which small changes did result in only small changes in the
found outliers. Figure 5.1 shows only real-time outliers during the three analyzed days.
They appear to be connected with the day-change at midnight which terminates open
sessions. This indicates that the anomalies may be connected to the way the IPTV
provider collects the data. The outlier at 04:00 of the first day originates from the cold-
start effect as the very first samples are always real-time outliers because they must start
a new o-micro cluster.
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Figure 5.1: DenStream outlier detection on IPTV data set
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6

Limitations and Future Work

The drift-influence calculation assumes only one (macro) cluster in the data stream at
a time. Multiple clusters moving in arbitrary directions can not be represented and
may lead to wrong application of the drift-influence hyperparameters. The discussed
rescaling methods require homoscedasticity in the data stream, i.e. the variance of the
features stays the same. Otherwise, some features gain more influence than others.

We set the sample size to n = 10 000 during the evaluation to keep the duration of
grid search manageable. The rareness characteristic of anomalies results in only a small
number of samples that can be labeled outlier correctly (i.e. true-positive) so that part
of the changes in performance score can be attributed to natural variance.

We executed all experiments on synthetic data sets that we generated ourselves. Thus
the performance increase of DenStream* over DenStream anomaly detection may not
generally be applicable on other synthetic data or real-world data.

During the master’s thesis, we discovered multiple areas for future work that may
overcome some of these limitations or extend on the topic:

Improve algorithm robustness [Putina et al., 2018] proposed ways to automatically cal-
culate and adjust DenStream hyperparameters to make the algorithm more robust.
We still see potential research in this area, especially about the automatic calcu-
lation of ε through clustering of a training set instead of adding all samples to the
same micro cluster. We propose to automatically detect drift and adjust the hy-
perparameters δ and ω. Dynamically adapting hyperparameters could also tackle
the issue of heteroscedasticity, e.g. continuously adjust ε based on the mean and
variance of cluster radii.

DBSCAN The drift-influence hyperparameters δ and ω currently assume only one clus-
ter that drifts through the variable space. We propose to apply DBSCAN in
DenStream* and apply the drift-influence hyperparameters on incoming samples
based on the closest macro cluster. This also allows to evaluate samples of o-micro
cluster Type II and analyze the influence of δ and ω on this type of anomaly.

Finding root cause of an anomaly The features of a multivariate data set contribute
to the outlier score in varying degree. The interest of a data analyst often lies
in finding the justification of an anomaly. We propose further research in finding
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or improving models for the streaming environment. We see sensitivity analy-
sis, point-wise variance for every feature or combining every feature with each
other to determine which combinations create an outlier (e.g. M = {a, b, c} →
[a, b, c, ab, ac, bc, abc]) as possible directions.

Missing Values The evaluated scenarios in Chapter 5 highlighted the difficulty of miss-
ing values. While our use case allowed to impute missing values with zero because
of background knowledge, we propose research on other methods, e.g. rolling
mean, interpolation or regression, and to apply them to the DenStream anomaly
detection algorithm.
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Conclusions

The goal of this thesis was to improve the anomaly detection in multivariate data streams
by incorporating drift to label pioneers as inliers and apply a state of the art solution to
real data.

The related work in Chapter 2 explores the challenges and possible solutions for
anomaly detection in a data stream. We managed to collect previous work on the
less explored variate of stream processing, mainly about processing multivariate data
streams and how to evaluate them.

We implemented DenStream proposed by [Cao et al., 2006] to find anomalies in an
evolving multivariate data stream with arbitrary shape in Chapter 4. The algorithm
summarizes samples in a data stream with micro clusters and adopts them to changes
over time. We introduced two additional hyperparameters δ and ω that influence micro
cluster radius and weight to anticipate drift in the data stream. We introduced an outlier
score α to compare the degree of abnormality of an outlier. Additionally, we presented
ways to rearrange the decay factor λ, and the outlier tolerance factor β to make them
easier to understand heuristically.

We performed multiple experiments on synthetic data sets. First, we presented a hy-
perparameter analysis of the DenStream algorithm and evaluated their sensitivity and
influence. Second, we showed that the introduced drift-influence hyperparameters δ and
ω of DenStream* can improve the anomaly detection performance but add additional
statistical uncertainty to the result. We analyzed the two hyperparameter cardinality
reductions of DenStream proposed by [Putina et al., 2018]: Our evaluation supports
the first proposed reduction of setting the core weight threshold µ equal to the max-
imum possible micro cluster weight µ+. We discarded the second proposed reduction
of calculating the maximum cluster radius ε through test sampling because of the con-
siderable performance reduction. We found a slight correlation between the promotion
time of outliers and the performance score, which helps to tune hyperparameters when
no ground truth is available.

The two scenarios described in Chapter 5 showed the application of the DenStream
algorithm on real-world use cases. The results give insight into the data structure and
guide further research. We present a foundation to base the future analysis on, even
though the difficulty of missing ground truth persists.

With the current trend of more and more devices continuously producing data, data
streaming research will further increase in importance. The ability to automatically
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detect anomalies and to act accordingly is of high importance. We propose further
research in the area in general, especially in improving the robustness of the process to
achieve satisfying performance continually, even without ground truth.
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A

Evaluation Results

This appendix provides the complete set of plots for the conducted experiments. We
first present the hyperparameter analysis on ε, ζ and t1/2. The second section contains
the evaluation of the DenStream* drift-influence hyperparameters δ and ω.

A.1 DenStream Hyperparameter Analysis (ε, ζ, t1/2)

For each data set static, line, sinus we performed a grid search on the three hyperparam-
eters ε, ζ and t1/2. We then compared the ground truth once with the real-time anomalies
and once with the persistent anomalies and calculated the PR-AUC. Figures A.1 to A.6
show the results in one plot, Figures A.7 to A.12 use the set of best hyperparameters
and only vary one hyperparameter.
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Figure A.1: ζ, t1/2 and ε grid search for PR-AUC on static data set with real-time outliers
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Figure A.2: ζ, t1/2 and ε grid search for PR-AUC on static data set with persistent
outliers
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Figure A.3: ζ, t1/2 and ε grid search for PR-AUC on line data set with real-time outliers

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
minimum cluster size 

0.2

0.3

0.4

0.5

0.6

0.7

PR
-A

UC

maximum radius 
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

half-life time t1/2
18.00
20.00
22.00
24.00
26.00
28.00
30.00
32.00

Figure A.4: ζ, t1/2 and ε grid search for PR-AUC on line data set with persistent outliers
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Figure A.5: ζ, t1/2 and ε grid search for PR-AUC on sinus data set with real-time outliers
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Figure A.6: ζ, t1/2 and ε grid search for PR-AUC on sinus data set with persistent
outliers
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Figure A.7: Sensitivity of ε, ζ and t1/2 on static data set with real-time outliers

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
minimum cluster size 

t1/2: 44.00, : 0.34
t1/2: 46.00, : 0.36
t1/2: 46.00, : 0.36

32 34 36 38 40 42 44 46

half-life time t1/2

: 1.90, : 0.34
: 1.90, : 0.36
: 1.80, : 0.36

0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42

maximum radius 

: 1.90, t1/2: 44.00
: 1.90, t1/2: 46.00
: 1.80, t1/2: 46.00

PR
-A

UC

Figure A.8: Sensitivity of ε, ζ and t1/2 on static data set with persistent outliers
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Figure A.9: Sensitivity of ε, ζ and t1/2 on line data set with real-time outliers
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Figure A.10: Sensitivity of ε, ζ and t1/2 on line data set with persistent outliers
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Figure A.11: Sensitivity of ε, ζ and t1/2 on sinus data set with real-time outliers
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Figure A.12: Sensitivity of ε, ζ and t1/2 on sinus data set with persistent outliers
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A.2 Drift-Influence Hyperparameter Analysis (δ, ω)

For each data set static, line, sinus we performed a grid search on the two drift-influence
hyperparameters δ and ω and set the other hyperparameters (ε, ζ, t1/2) to the value of the
best previous performance. We then compared the ground truth once with the real-time
anomalies and once with the persistent anomalies and calculated the PR-AUC.
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Figure A.13: Separate influence of δ and ω on static data set with real-time outliers
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Figure A.14: Joined influence of δ and ω on static data set with real-time outliers
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Figure A.15: Separate influence of δ and ω on static data set with persistent outliers
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Figure A.16: Joined influence of δ and ω on static data set with persistent outliers
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Figure A.17: Separate influence of δ and ω on line data set with real-time outliers
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Figure A.18: Joined influence of δ and ω on line data set with real-time outliers
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Figure A.19: Separate influence of δ and ω on line data set with persistent outliers
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Figure A.20: Joined influence of δ and ω on line data set with persistent outliers
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Figure A.21: Separate influence of δ and ω on sinus data set with real-time outliers
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Figure A.22: Joined influence of δ and ω on sinus data set with real-time outliers
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Figure A.23: Separate influence of δ and ω on sinus data set with persistent outliers
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Figure A.24: Joined influence of δ and ω on sinus data set with persistent outliers
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Content of CD

This appendix lists the content of the CD attached to this master’s thesis.

• Abstract.txt (English abstract)

• Masterarbeit.pdf (Master’s thesis in PDF-format)

• online-outlier-detection.zip

– Archive (Files not in final version)

– Data (Data sets)

– Notebooks (Jupyter notebooks for evaluation)

– PurePython (Python source code)

– README.md (Description file)

• Zusfsg.txt (German abstract)
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Installation & Run Guidelines

This appendix lists the steps to run the DenStream algorithm on the synthetic and
PigData data sets and how to perform the evaluation. Further information can also be
found in the README.md file inside the folder online-outlier-detection on the attached
CD.

All source code and evaluation for the IPTV scenario lie on a remote server owned by
the Dynamic and Distributed Information Systems Group of the University of Zurich in
the folder cweber/* for reasons of confidentiality. We also did not add the PigData data
files to the attached CD.

General Installation:

1. Install Python 3.6 or newer

2. Install InfluxDB1 and create a new database called osd

3. Recommended: Install PyCharm IDE2 to run Python Code

4. Copy folder source code to a working directory or clone the git repository3

5. Install the following Python Packages with pip install: pandas, matplotlib, in-
fluxdb, jupyter, sklearn

6. Set InfluxDB configuration in PurePython/pig data.py and PurePython/path transition

7. Run DenStream or run Jupyter notebooks

Run DenStream* on Synthetic Data Sets:

• PurePython/main.py path transition [path type] [config parameter]

• Grid-Search on DenStream hyperparameters (λ, β, ε):

– e.g. PurePython/main.py path transition sinus grid hyperparameters

1https://www.influxdata.com/
2https://www.jetbrains.com/pycharm/
3https://gitlab.ifi.uzh.ch/dellaglio/online-outlier-detection
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• Grid-Search on DenStream drift-influence hyperparameters (δ, ω):

– e.g. PurePython/main.py path transition sinus grid drift realtime

– e.g. PurePython/main.py path transition sinus grid drift persistent

• Single run with custom hyperparameters and plot/noplot:

– e.g. PurePython/main.py path transition sinus plot

– e.g. PurePython/main.py path transition sinus

Run DenStream* on PigData data

• Copy PigData data sets to folder Data/PigData (not on CD)

• PurePython/main.py pig [data source]

• Run specific data set or group:

– e.g. PurePython/main.py pig organ

Create new synthetic data set:

• PurePython/main.py path creation [path type]

• Synthetic line data set:

– e.g. PurePython/main.py path creation line

Jupyter notebooks:

• Run jupyter notebook

• Hyperparameter evaluation

– Notebooks/DenstreamEvaluation.ipynb

• PigData evaluation

– Notebooks/PigData.ipynb
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