
Master Thesis
30 January, 2020

Software
Microbenchmark
Reconfiguration

Reducing Execution Time without Sacrificing
Quality

Stefan Würsten
of Stäfa, Switzerland (14-725-931)

supervised by
Prof. Dr. Harald C. Gall

Christoph Laaber

software evolution & architecture lab





Master Thesis

Software
Microbenchmark
Reconfiguration

Reducing Execution Time without Sacrificing
Quality

Stefan Würsten

software evolution & architecture lab



Master Thesis

Author: Stefan Würsten, stefan.wuersten@uzh.ch

Project period: 01.08.2019 - 30.01.2020

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich



Acknowledgements

This master’s thesis is the final milestone for my graduation. I would like to thank all those who
supported me during my studies at the University of Zürich.

I would like to thank Prof. Dr. Harald Gall for giving me the opportunity to write this master’s
thesis in the software evolution and architecture lab at the University of Zürich. Special thanks go
to my advisor, Christoph Laaber, for his amazing support and guidance in our meetings through-
out the entire six-month period. I already possessed some technological and theoretical experi-
ence in the area of performance engineering due to my master project. However, the chance to
receive weekly feedback on current problems, design decisions and the general plan for how to
answer the research questions was amazing. Without such great support, it would have been im-
possible to create such a polished result within six months. The time spent writing this master’s
thesis will remain in my memory as a period of great challenge and profound education.





Abstract

In recent years, performance testing has gained increasing popularity. Such tests measure a soft-
ware component’s execution time. Compared to traditional functional tests, it is not sufficient to
execute a test once. Instead, performance should be measured multiple times to obtain a repre-
sentative distribution. However, this results in a far more time-intensive execution.

First, we investigate how developers currently configure software microbenchmarks, includ-
ing how the proposed default values are modified and how this affects the execution time. Our
analysis reveals that software microbenchmarks are often never modified after being written.
Many projects reuse the default values for certain parameters. However, if user-defined values
are set, this often results in a shorter execution time.

Second, we investigate the consequences of dynamically determined execution configura-
tions. In regular intervals, we check the characteristics of the performance distribution and decide
whether more data points are required. We compare our novel approach with the standard exe-
cution. For a preponderant majority of software microbenchmarks, the novel approach produces
a similar performance distribution for which an A/A test cannot detect significant differences.
However, depending on the stoppage criteria, up to 82% of the execution time can be saved.
Our novel approach should help developers to shorten the time-consuming execution while still
producing a sound result.





Zusammenfassung

Die Popularität von Performance Tests ist über die letzten Jahre stetig gestiegen. Solche Tests
messen die Ausführungszeit einer Softwarekomponente. Im Vergleich zu herkömmlichen funk-
tionalen Tests genügt es aber nicht diesen einmal auszuführen. Die Performance sollte mehrfach
gemessen werden, um eine representative Verteilung zu generieren. Diese zahlreichen Aus-
führungen benötigen aber eine wesentlich höhere Ausführungszeit.

Zuerst beleuchten wir wie Entwickler aktuell solche Software Mikrobenchmarks konfigu-
rieren. Geprüft wird, inwiefern die vorgeschlagenen Standardwerte modifiziert werden und
welche Auswirkungen dies auf die Ausführungszeit hat. Unsere Untersuchung hat gezeigt, dass
Software Mikrobenchmarks häufig nur einmal geschrieben und danach nie mehr angepasst wer-
den. Viele Projekte greifen bei einigen Parametern auf Standardwerte zurück. Werden eigene
Werte verwendet, resultiert daraus häufig eine kürzere Ausführungszeit.

Anschliessend untersuchen wir die Auswirkungen, wenn statische Konfigurationen dyna-
misch bestimmt werden. In regulären Intervallen prüfen wir die Eigenschaften der Performance-
verteilung und entscheiden, ob noch mehr Datenpunkte benötigt werden. Wir vergleichen dabei
unseren neuartigen Ansatz mit dem traditionellen. Für eine überwiegende Mehrheit der Soft-
ware Mikrobenchmarks führt unsere neuartige Vorgehensweise zu ähnlichen Performancevertei-
lungen, für welche statistische A/A Tests keine signifikanten Unterschiede feststellen können.
Jedoch kann die Ausführungszeit je nach gewähltem Abbruchkriterium um bis zu 82% reduziert
werden. Unser neuartiger Ansatz soll Entwicklern helfen, die zeitintensive Ausführung zu ver-
kürzen, ohne Abstriche bei der Resultatqualität zu machen.
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Chapter 1

Introduction

Performance testing has been gaining increasing popularity in recent years. Software microbench-
marks comprise one type of performance tests, measuring the performance of small, isolated com-
ponents [34]. They are similar to unit tests, which focus on functional requirements. However,
performance tests should be executed multiple times to obtain a representative performance dis-
tribution. This results in a more time-intensive execution compared to unit tests. The question
thus becomes how benchmark execution should be configured so that a sound result is measured,
but no time is wasted. Previous work has revealed that numerous developers struggle to find ap-
propriate execution configurations [44]. Additionally, several bad practices can negatively affect
the benchmark result [13]. Writing and evaluating performance tests is not a trivial task. A proto-
type exists that attempts to automate the generation of software microbenchmarks [44]. However,
the time-consuming execution is still not eliminated with well-written benchmarks.

Furthermore, research has suggested that non-functional tests, such as performance tests,
should be automated and made part of the continuous integration pipeline [17]. However, this
poses a challenge, as the execution is costly and slows down the continuous integration feedback
cycle. Many practitioners have circumvented this problem by not executing the performance test-
ings on every build [7]. Unfortunately, a disadvantage of not executing tests on each commit is
that identifying the root cause for a problem becomes more difficult [15]. Several solutions have
already been proposed to reduce the execution time. One option involves only executing a subset
of all benchmarks on every commit [39]. With static code analysis and the historical information
of previous executions, benchmarks are selected that offer the greatest chance of introducing per-
formance regressions. Another option consists of dynamically deciding how long to execute per-
formance tests. Such statistics-based performance testing has already been implemented for load
tests [23]. Compared to the static execution, sequential testing is performed during the perfor-
mance measurement, with a stoppage rule deciding when to stop the measurement [55]. Metrics
such as the memory usage or throughput are continuously monitored [3]. In regular intervals, an
algorithm decides whether a point is reached where it is highly probable that the metric charac-
teristic does not change anymore.

Existing statistic-based performance testing approaches do not focus on software microbench-
marks. However, microbenchmarks are short-running compared to load tests, where the execu-
tion takes days. A research gap exists concerning how software microbenchmarks are config-
ured. The configuration defines how often a benchmark is executed and influences the execution
time. Additionally, it has not yet been examined whether and to what degree statistics-based
performance testing is applicable for software microbenchmarks. Additionally, while software
microbenchmarks are short-running compared to load tests, it remains unclear how much exe-
cution time can be saved, and how the execution result is affected. We assume that no universal
execution configuration exists that always offers an optimal balance between no time wasted but
a sound result still being produced. Depending on the task performed and the required resources,
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the optimal configuration varies. Manually identifying the optimal balance is time-consuming.
A more viable solution is to dynamically decide when the result is sound enough to stop the
execution.

This thesis focuses on two aspects: First, we mined 753 Java projects to obtain insights into
how developers currently deal with execution configurations. Compared to previous work [32,
52], we perform a fine-tuned investigation of which execution parameters are chosen, as well as
how they affect a benchmark’s execution time. Based on the quantitative data, we suspect that
identifying good execution configurations comprises a non-trivial task. As such, we presented a
novel approach in the second part of this work.

The effective benchmark configuration is not a priori defined. A developer simply defines an
upper-bound execution configuration and stoppage criteria. The performance-testing framework
itself measures whether the benchmark produces a sound result and then stops the execution.
Such a statistics-based approach offers the advantage of no time being wasted. We compare three
different stoppage criteria — the CoV, CI width and divergence — against the standard execution
approach in terms of result quality and execution time. The reconfigured execution produces a
high result quality if the characteristics of the resulting distribution is not significantly different
from the standard execution result.

The results indicate that software microbenchmarks are usually written once, and then never
updated. Depending on the configuration parameter, the default value is used between 55.2%
and 98.7% of the time. For 24.5% of the benchmarks, the execution configuration is not modified.
Changes in the configuration often results in a shorter execution time, and potentially less sound
results. Projects with more stars and contributors do not configure benchmarks differently. The
analysis of the statistics-based execution approach demonstrates that the divergence stoppage cri-
teria save 79.5% of the time. The divergence stoppage criteria possesses an average mean change
rate over all benchmarks of 2.4%. The overhead for the statistical testing during the execution
equals 4.32% for the divergence stoppage criteria. For most benchmarks (∼80%), the execution
result is not insignificantly changed compared to the standard execution.

Following these findings, we conclude that benchmarks are not configured as proposed by the
default values; in the majority of these cases, the execution time is reduced. A common practice
for reducing the execution time is to set the number of forks to one. However, multiple forks are
important to obtain a sound result. The empirical evaluation of the dynamic approach indicates
the execution time can be reduced and the result characteristic remains similar. The CI width
stoppage criteria do not save as much as the others, but the best results are produced. The diver-
gence stoppage criteria save more time, but the execution results differ more from the standard
execution.

1.1 Motivating Example
A project possesses 50 software microbenchmarks written in JMH — the de facto standard for
microbenchmarking in Java. An average developer is not an expert in performance engineering,
so the proposed default values of the framework are employed. This means that the execution
time of each benchmark takes 500 seconds. This results in a project test suite execution time of
6.94 hours. If five commits are performed per day, and benchmarks should be executed as part
of the continuous integration pipeline, we run into the issue that executing on a single machine
takes too long, and the queue of pending executions grows. The benchmark execution shall not
be parallelized on the same machine, as otherwise, the results are falsified, because resources are
shared. Several bare-metal machines would be required to divide the workload of executing all
benchmarks on each commit. However, physical computing resources are costly. It is unrealistic
for numerous projects to execute all benchmarks on each commit if several bare-metal machines
are necessary for benchmarking.
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Nevertheless, if all benchmarks should be executed on a single machine on each commit, the
execution time must be drastically reduced. An alternative is to execute the software microbench-
marks with the reconfiguration approach to optimize the result quality execution time trade-off.
The benchmark mode is set to reconfigure, and a stoppage criteria is chosen. With the default
stoppage criteria divergence, 79.5% of the time is saved. The result distribution is similar to
the standard execution. For over 75% of the benchmarks, the mean change rate is, at most, 2%
changed. The number of forks is reduced on average from 5 to 4.1, while the warmup time is
reduced from 50 seconds per fork to 14.1. As sound results are produced after the warmup phase,
the measurement phase is shortened from 50 to 10 seconds.

1.2 Contribution
This thesis makes the following contributions:

• We create the GitHub JMH dataset of 13’387 JMH benchmarks from 753 GitHub projects.
The dataset contains the mined execution configurations and features usage metrics.

• We extend the Bencher tool with several new features such as source code parsing or the
extraction of JMH parameters in state objects.

• We propose a statistics-based execution approach for software microbenchmarks and im-
plement a prototype in JMH.

• We empirically evaluate three different stoppage criteria in terms of result quality and exe-
cution time.

1.3 Thesis Outline
The remainder of this thesis is structured as follows: Chapter 2 provides necessary background in-
formation, including basic terms of software microbenchmarking, the JMH framework and other
works in this area. Chapter 3 presents the research questions we seek to answer. Furthermore, the
overall approach is summarized concerning how the data collection and the different evaluations
are connected. Next, we analyze the state of practice regarding how developers employ JMH in
Chapter 4. First, the data extraction is described. Afterwards, the different aspects of the execu-
tion configuration are examined. Our novel reconfiguration approach is presented afterwards in
Chapter 5. The high-level concept of how the dynamic stoppage criteria works is illustrated. Ad-
ditionally, the modified JMH version is presented. Next, an evaluation is performed to analyze
result quality and execution time. In Chapter 6, our findings are discussed and improvements
provided concerning both how developers should configure benchmarks as well as the JMH im-
plementation. Additionally, the limitation and threats of validity are elaborated. Lastly, this work
is concluded in Chapter 7, where the main findings are summarized and possible future work
presented.





Chapter 2

Background and Related Work

The following chapter introduces basic terms and discusses the central topics upon which this
thesis is based. First, performance testing and existing related works are explained. Following
this, the utilized statistic methods are presented.

2.1 Performance Testing
Performance testing describes an area in software engineering where non-functional metrics, such
as the throughput of a software component, are evaluated [56]. Compared to functional testing,
such as unit tests, performance test do not simply pass or fail; rather, the return value is a dis-
tribution of measurement values. Performance regression testing is required to verify whether
performance degradation occurred compared to the previous version. Such an execution of per-
formance regression tests often takes several hours or days [18].

Several types of performance tests exist [34]. The first group consists of performance smoke
tests. These high-abstraction tests measure end-to-end performance. A project typically possesses
one or two of such tests so as to quickly identify large performance regressions. The second group
comprises microbenchmarks. Like unit tests, they are only written for a small piece of code. An
extensive test suite is required to test each detail of the production code. One-shot-performance
tests form the next type. They are often written during development to support the decision
process, such as by comparing the same functionality of different frameworks. Often, such tests
are source code artifacts and no longer deliver an additional benefit to the project. Lastly, regular
functional tests verify the performance behavior with assertions.

In this work, we focus solely on software microbenchmarks, sometimes referred to as per-
formance unit tests [25]. Such software microbenchmarks repetitively measure the performance
of a low-level code component. Compared to load or stress tests, only short-running scenar-
ios are tested. A typical software microbenchmark tests the performance of a single method, an
algorithm implementation or a specific data structure [13]. Most frameworks execute a single
benchmark as many times as possible in a certain time period. During the execution perfor-
mance, metrics such as execution time or heap utilization are recorded. Afterward, the metrics
are aggregated and reported.

The following presents the JMH framework and studies on performance testing frameworks.
Afterwards, a microbenchmark generation approach is illustrated. Following this, alternative ex-
ecution methods are elaborated and performance testing as part of the continuous integration
pipeline discussed. Then, existing literature on misleading results and performance degradation
is detailed. Lastly, a statistics-based approach for how to dynamically stop load tests is intro-
duced.
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2.1.1 Java Microbenchmark Harness (JMH)
The Java de facto standard for microbenchmarking is JMH1, developed by the OpenJDK team. A
developer can define benchmarks through annotations. Listing 2.1 presents a modified example
benchmark from ReactiveX/RxJava. A public method is annotated with @Benchmark and can be
run via the Java API or a generated jar file, which is executed over the command line.

1 @Fork(1)

2 @Warmup(iterations = 10, time = 1, timeUnit = TimeUnit.SECONDS)

3 @Measurement(iterations = 20, time = 1, timeUnit = TimeUnit.SECONDS)

4 public class OperatorFlatMapPerf {

5 @State(Scope.Thread)

6 public static class Input extends InputWithIncrementingInteger {

7 @Param({"1", "1000", "1000000"})

8 public int size;

9 }

10

11 @Fork(2)

12 @Benchmark

13 public void flatMapIntPassthruSync(Input input) {

14 input.flowable.flatMap(new Function<Integer, Publisher<Integer>>() {

15 @Override

16 public Publisher<Integer> apply(Integer v) {

17 return Flowable.just(v);

18 }

19 }).subscribe(input.newSubscriber());

20 }

21 }

Listing 2.1: Modified JMH example benchmark from ReactiveX/RxJava

A benchmark normally possesses a certain state while measuring the performance. Such a
state can be outsourced into classes, annotated with @State as in the listing the Input class. A
benchmark uses the class where it is defined and the method arguments as state objects if they
feature the corresponding @State annotation. JMH supports parameterization of benchmarks.
Parameterized tests are a technique to execute a single test method with different parameter com-
binations multiple times [53]. Parameters are state object instance variables, which are annotated
with @Param. Each parameter accepts a set of values. In this example, three parameterization
combinations are defined. If multiple JMH parameters are present, the Cartesian product is built.
As an example, if a benchmark features the parameters a = 10, b ∈ {0, 1, 2} and c ∈ {”a”, ”b”},
this results in six parameterization combinations.

Optionally, state objects can feature methods annotated with @Setup and @Teardown to ini-
tialize and reset the environment, respectively. As an annotation property, a developer can specify
how the state object is shared (between benchmark, threads or groups) and when the fixture meth-
ods are called (before/after each trial, iteration or invocation). In the example, the state object is
shared within the thread, and no setup and tear down is defined.

In JMH, a class where benchmarks are defined, or the method itself can have optional annota-
tions to specify how to execute the benchmarks. In the example, the number of measurement iter-
ations is set with @Measurement(iterations = 20). If no execution configuration is present,
the default values are used. If a class and method annotation are present, the method annotation

1https://openjdk.java.net/projects/code-tools/jmh

https://openjdk.java.net/projects/code-tools/jmh
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Configuration parameter Abbreviation JMH version < 1.21 JMH version ≥ 1.21
Warmup forks wf 0 0
Warmup iterations wi 20 5
Warmup time wt 1 second 10 seconds
Forks f 10 5
Measurement iterations mi 20 5
Measurement time mt 1 second 10 seconds
Mode - throughput throughput

Table 2.1: Default configuration of JMH

possesses a higher priority than class annotation. The example benchmark is executed with two
forks as the value set on method level features a higher priority. A developer must not override
all configuration options. For example, no @BenchmarkMode annotation is present, so the execu-
tion is performed with the default mode. Lastly, if a benchmark is executed, optional Command
Line Interface (CLI) arguments can be passed to override the annotations. The default values of
JMH are listed in Table 2.1. In version 1.21, the default values are updated because the OpenJDK
development team found some environments and configurations that possessed a poor time-to-
performance [51]. The number of iterations is reduced, but each iteration now takes longer. The
number of forks is also reduced, because five forks are sufficient to capture the variance between
trials [50].

Figure 2.1: Execution flow of JMH for a benchmark with 2 forks, 6 warmup iterations and 8
measurement iterations [13]

Figure 2.1 summarizes the steps performed by JMH to measure the benchmark performance.
(1) First, all required state objects are initialized. Here, they are initialized before each trial.
(2) Next, the warmup iterations are executed. A developer can specify the time per iteration
@Warmup(time = 1, timeUnit = TimeUnit.SECONDS) and the number of warmup iter-
ations @Warmup(iterations = 10). Warmup iterations are identical to measurement itera-
tions, except their results are ignored for the evaluation. If a new Java Virtual Machine (JVM)
is started first, a considerable amount of just-in-time compilations is performed. Such behavior
influences the performance, which is why the data collected during the warmup phase is dis-
carded [20]. The JMH default warmup configuration may not be sufficient to reach such a steady
state. JMH does not verify and warn if no steady state is reached. (3) Next, the measurement iter-
ations are executed. During each iteration, the benchmark is called as often as possible until the
time per iteration is reached. (4) A run of steps (1) – (3) is called trial. An execution contains multi-
ple sequentially executed trials. Each trial is performed in a separate JVM to reduce the influence
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of these JVM optimizations. The number of runs is specified via the annotation @Fork(1). If
results are collected for the entire project test suite, the output is written to the console and/or
JavaScript Object Notation (JSON) file.

The warmup time is composed of two parts: First, warmup forks can be defined, where the
whole trial is not considered for the final result. The second part involves each trial’s warmup
phase, as explained previously. This provides Formula 2.1:

warmupT ime = wf ∗ (wi ∗ wt+mi ∗mt) + f ∗ wi ∗ wt (2.1)

The measurement time is simply the time where data is collected and persisted. This provides
the following:

measurementT ime = f ∗mi ∗mt (2.2)

The total execution time is the sum of warmup and measurement time. This ends in the
following:

executionT ime = warmupT ime+measurementT ime (2.3)

JMH offers two ways to avoid dead code elimination, loop optimization and constant folding
[14]. First, the computed value can be used as a method return value. However, in more complex
cases, multiple intermediate results are computed, and combining these into a return value is
not trivial [27]. For such cases, the JMH framework provides the org.openjdk.jmh.infra.
Blackhole class, which features a consume method. The blackhole can be defined as a method
argument of the benchmark and can be called multiple times inside the method body to consume
these unused intermediate results.

2.1.2 Performance Testing Frameworks in Practice
In 2017, Stefan et al. performed a quantitative study on the usage of performance testing frame-
works, providing various statistics for Java projects on GitHub [52]. First, they mined over 99’000
projects to determine which projects employed a testing framework. JMH was by far the most
common performance testing framework. However, only 0.28% of all projects implemented per-
formance tests. In a developer survey, the developers argued that the trust in results, active main-
tenance and good documentation represent the top reasons for implementing performance tests
with JMH. Developers often further claimed that they only updated benchmarks if performance
issues occurred. Only one fourth of the developers reported maintaining benchmarks as often as
other code in the project.

Stefan et al. also classified the projects into categories to determine which type of projects
often write performance tests. The most common categories were database systems, distributed
systems, algorithms and data structures. Some projects measured their own performance, while
other developers sought to compare the performance of external libraries. Comparing different
libraries or algorithms can help to make design decision more easily. As for how often developers
wanted to run benchmarks, 47% of the developers answered on each commit, and 37% only on
each release. Many developers further stated that running performance tests on each commit is
an open issue. 77% of the developers used a manual process to conduct the performance tests,
13% automated the plotting of diagrams, and only 6% employed an automated evaluation of the
performance results.

Costa et al. empirically analyzed bad practices of JMH benchmarks [13], focusing specifically
on five bad practices. The first was that, if not all intermediate results of a benchmark are returned
or consumed by a blackhole, the JVM then eliminates the dead code. The second bad practice
involved performing unsafe loops. Traversing an array of elements is fine, but the JVM is able
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to unroll loops, which is an extensive performance optimization. The third bad practice consists
of using the final keyword for the benchmark input, as constant folding can be optimized by the
compiler. The fourth bad practice concerned running fixture methods before and/or after each
invocation, as executing the setup and teardown method will highly influence the performance
result. The final practice involved setting the fork parameter of a benchmark to zero. In such a
scenario, the trials are not executed in separate JVMs, and incorrect results are thus produced.
Their analysis of 123 projects revealed that bad practices occur frequently.

In a second part of their work, they fixed some of the benchmarks to illustrate the perfor-
mance impact. As an example, for 35% of the benchmarks that do not properly use blackhole
objects or return, the intermediate results are significantly influenced and had a large effect size.
They suspected that the developer guides were not sufficient for rigorous performance testing.
An average developer lacks sufficient knowledge regarding how the JVM internally works and
does not understand the importance of avoiding these bad practices. A possible solution is to im-
prove the developer tooling. Either the Integrated Development Environment (IDE) should warn
against bad practices during the development process, or JMH should check the benchmark con-
figuration and implementation before executing them. However, it remains unclear whether a
developer can itself fix the benchmark. In the best case, JMH does automatically perform some
simple code transformation and fix common bad practices.

2.1.3 Automated Microbenchmark Generation
Rodriquez et al. suggested an approach where benchmarks are automatically generated to pre-
vent the two most common mistakes: constant folding and dead code elimination [44]. Frame-
works such as JMH simplify the measurement, but avoiding JVM optimizations remains chal-
lenging, as technical support is limited [42]. Their tool, called AutoJMH, requires an input of
which code segment should be performance tested. Their process creates a set of the software
microbenchmarks. They employed a technique called “sink maximization” to avoid dead code
elimination and constant folding. In their evaluation, they first used real-world projects to an-
alyze the limits of their automated benchmark generation approach. The main reason why the
tool was unable to generate a benchmark was an unsupported variable. A reason why AutoJMH
does not always correctly extract and wrap information would be loops. Next, they compared
the performance of auto-generated benchmarks against handwritten benchmarks. The statistical
evaluation revealed that their performance was similar. Lastly, they compared the tool-generated
benchmarks against benchmarks handwritten by engineers lacking experience in performance
engineering. AutoJMH avoided most of the mistakes made by the inexperienced developers.

2.1.4 Alternative Approaches for Executing Project Test Suites
A main issue of performance tests is that their execution is costly. However, running benchmarks
on only a nightly or weekly build complicates the root case analysis of performance degradations.
Oliveira et al. offered an approach where a subset of benchmarks is executed on each commit [39].
Their tool, Perphecy, collects static information from each commit without executing the bench-
marks. Additionally, the tool stores dynamic information on benchmarks executed in the past.
In the next step, indicator metrics are evaluated to characterize a change type. Lastly, Perphecy
identifies a benchmark-specific threshold for each indicator, later used for predictions. In their
experiment, they reduced the execution time of the test suite by 83% while continuing to detect
85% of the performance regressions.

Traditionally, performance tests are executed on bare-metal machines. Compared to virtual
environments, such a physical server offers an advantage in that no noisy neighbor negatively
influences the performance results [4]. However outsourcing computing resources to the cloud
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is cost-effective [9]. As numerous companies and projects do not execute performance tests on
dedicated hardware, executing the test on virtualized resources such as cloud infrastructure rep-
resents a realistic scenario.

Laaber et al. investigated whether it is always a bad idea to run performance tests in public
clouds [33]. They first analyzed how variable different cloud providers and their cloud types
are. Depending on the benchmark, the variability can vary widely. Some benchmarks are stable
in all environment, while others are stable nowhere, and some benchmarks are only stable on
some cloud instances. Second, they investigated whether it is still possible to detect performance
degradations with a low false-positive rate in cloud environments. In approximately 80% of the
benchmark-environment combinations, the slowdowns were detectable. However, a substantial
number of executions on multiple cloud instances was necessary to yield a low false-positive rate.

Abedi and Brecht analyzed different execution strategies in the cloud [2]. They revealed that
using a randomized, multiple interleaved trials strategy reduced the unpredictability of the re-
sults. As other jobs on the same physical machine often run in regular intervals, randomizing the
benchmark order inside a trial distributes the negative influence over all benchmarks.

2.1.5 Performance Testing and Continuous Integration

Fagerstrom et al. conducted a case study analyzing challenges of non-functional regression test
automation and offered improvements for how to master these challenges [17]. A technical chal-
lenge is that performance tests slow down the continuous integration feedback cycle. Duvall et
al. suggested running tests on each commit [15], which is impossible with such time-consuming
performance regression tests. Several practitioners mentioned in interviews that if a test fails,
it takes a considerable amount of time and effort to identify the problem introducing the error.
Another challenge is that requirements are often unclear when a non-functional test should pass
or fail. A common suggestion from practitioners is that statistical intelligence should filter out
noise, detect performance degradation based on the benchmark’s history, and predict the future
performance.

Bezemer et al. conducted a survey on how performance is addressed in DevOps [7]. Most
companies analyze the performance, but only one third conducted performance analysis at least
weekly. Performance engineering represents a complex task that requires understanding the soft-
ware life-cycle. However, companies often feature a lack of knowledge on the underlying science,
impeding their use. A less intensive performance engineering technique is desirable, requiring
less in-depth background knowledge. Lastly, performance engineering tools are not nicely inte-
grated into the DevOps pipeline. They recommended providing plugins for common continuous
integration tools, such as Jenkins2, where performance tests can be configured, automatically ex-
ecuted and evaluated.

The CSPA tool3 is a continuous integration plugin that automates the execution of software
microbenchmarks. Currently, only JMH benchmarks are supported. In the project settings, the
performance tests are configured. A subset of tests can be selected for the execution. Tests are
either executed on bare-metal machines or in the cloud. Different execution strategies are sup-
ported. Additionally, different A/A test are provided to automatically evaluate the performance
and detect degradations. After executing the performance tests, several figures and tables sum-
marize the execution and how the result differs from the previous execution.

2https://jenkins.io
3https://github.com/sealuzh/cspa-core

https://jenkins.io
https://github.com/sealuzh/cspa-core
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2.1.6 Misleading Results and Infrastructure caused
Performance Degradation

Previous studies found common patterns that cause misleading performance results [25, 48]. A
well-known issue is that a measured benchmark is not in a steady state. Warmup artifacts, such as
class loading and just-in-time compilation negatively affect the performance. Another problem is
that code is optimized by the compiler, producing non-realistic performance results. The garbage
collector and its configuration (i.e., heap size) influence the performance, as demonstrated by
Georges et al. [20].

Gil et al. investigated which factors influence the microbenchmark result [21]. One finding
was that there is no single convergence point if a benchmark is in a steady state. If the JVM is
restarted, the same benchmark produces another performance distribution, which is significantly
different. There is a range of convergence centers, which in their experiments is approximately
2% wide. This explains why multiple forks are necessary to rigorously test microbenchmarks.

If a benchmark is executed, as many confounding factors as possible should be controlled by
the developer. This produces more precise performance results. However, Harji et al. conducted
experiments revealing that the Linux kernel evolution produces performance degradations [22].
In some cases, it is reasonable to not use the latest kernel version. Updating the kernel requires
sanity checks on how the performance has changed.

Shipilev, a core developer of JMH, analyzed the granularity of the System.nanoTime()
method in 2014 [49]. Granularity refers to the time difference between two method calls with
different answers. In his experiment, the granularity equaled approximately 30 nanoseconds.
The behavior is platform-dependent on how the system clock is implemented [25]. For exam-
ple, Windows features a granularity of approximately 370 milliseconds. We can conclude that
benchmarks with an execution time of nanoseconds cannot always be measured exactly.

The program performance depends on the experimental setup. Mytkowicz et al. revealed
that the Unix environment size and the linking order create a measurement bias [37, 38]. As
an example, each memory image of a process contains environment variables such as HOME. If
the length of these (unused) environment variables is changed, this can produce performance
slowdowns. They revealed for C programs that speedups or slowdowns of 10% are possible
for the same workload. They further proposed an approach to minimize the measurement bias
with randomized setups. Curtsinger and Berger implemented this approach [12]. Code changes
such as adding a stack variable affected the order of the heap allocation, resulting in a different
performance. Their tool, called “STABILIZER”, randomizes the placement of stack frames, heap
objects and program functions during the execution. With a performance overhead of less than
7%, they eliminated significant performance slowdowns.

2.1.7 Statistics-based Load Testing
Some previous work has investigated how load tests can be previously stopped and execution
time saved. Load tests measure how a system’s response time and throughput changes if it must
handle simultaneous interaction [6]. However, it is difficult to construct test cases where perfor-
mance degradation is quickly found. Often, numerous combinations of input parameters exist.
Selecting an effective subset of input parameters represents a fundamental issue for reducing the
execution time of load tests [36]. Luo et al. accordingly developed a tool called FOREPOST, which
trains rules from the execution trace to later select effective test input data. Such an approach
helps to identify performance issue in a shorter period of time.

Alghmadi et al. presented an approach that recommends when to stop a performance load
test [3]. Such tests often run over a long period to uncover performance issues, such as memory
leaks. Their tool tracks various metrics, such as the Central Processing Unit (CPU) usage, memory
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usage and response time. The tool also periodically measures and stores these metrics. The tool
further analyzes how the absolute and delta values change over time and computes the likelihood
of repetitiveness for each metric. If it is likely that a stable point is reached, the test can be stopped.
Such an approach often stops early because the tool focuses on application internal factors [23]. If
an external factor, such as a noisy neighbor, influences the performance result, then the approach
often features low accuracy.

Kullback-Leibler Divergence

He et al. proposed a performance testing methodology called PT4Cloud with a statistical stopping
condition to dynamically determine whether the performance results seemed stable [23]. Running
performance tests always presents a trade-off between execution costs and accuracy. However,
PT4Cloud helps to manage this trade-off. The application under test is executed for a certain
time period. Afterward, sequential testing helps to determine whether the new measured data
points change the characteristic of the performance distribution compared to the previous runs.
If the characteristic difference is classified as insignificant, the execution is stopped. Otherwise,
the procedure is repeated until the difference is classified as insignificant.

Start
Step1a: Execute test for
a time interval I. Store

performance data in S1

Step1b: Calculate
performance distribution

d1 from S1

Step2a: Execute test for
a time interval I. Store

performance data in S2

Step2b: Calculate
performance distribution

d2 from S2

Step 3b:
Determine if result is stable

(p > p0)

Step 3a: Calculate
divergence p-value p

Step4: Set S1 = S1 ∪ S2
and d1 = d2Yes No

End

Figure 2.2: Workflow of the PT4Cloud methodology

Figure 2.2 illustrates the methodology workflow. First, the test is executed for a time interval
I . The resulting data points are stored in S1, and the performance distribution d1 is calculated
from S1. The Gaussian kernel density estimation technique is applied to estimate the probability
density function. Their empirical analysis revealed that partitioning the distribution into 1’000
strips is sufficient. More strips produced only slightly more accurate results, but the calculation
time also increased. In step two, the test is executed once more, and S2 and d2 are computed.

In Step 3, d1 and d2 are compared. The Kullback-Leibler divergence between the two distri-
butions is then calculated. The divergence compares two distributions P and Q over a random
variable x. The equation for how P diverges from Q is as follows:

DKL(P ||Q) =

∫
P (x)

P (x)

Q(x)
dx (2.4)
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The divergence DKL(P ||Q) produces a non-negative value between 0 and infinity. On one
hand, a value of zero means that the distributions P and Q are identical. On the other hand, a
value of infinity indicates no similarity between the two distributions. As the interpretation of
such a value is non-intuitive for most end-users, the value is transformed into a likelihood with
the following formula:

L(P ||Q) = 2−DKL(P ||Q) (2.5)

The above likelihood is not symmetric, so we define the symmetric probability p as follows:

p = L(P ||Q) ∗ L(Q||P ) (2.6)

If the probability p is above a pre-defined threshold p0, the performance distribution is deemed
stable. They utilized p0 0.9 as a threshold to decide whether their cloud performance measure-
ments are stable. If the probability p is below the threshold, more test executions are performed
until the performance is deemed stable. Before the next test execution is conducted, the operations
S1 = S1 ∪ S2 and d1 = d2 are performed.

An advantage of this methodology is that non-typical distributions, such as produced by per-
formance tests, can be compared. They presented an experimental evaluation to verify the ac-
curacy of their methodology. They utilized two different public cloud providers with different
Virtual Machine (VM) configurations and a time interval length of one week. They also provided
a technique to reduce the number of test runs. As a result, they achieved an average accuracy of
95.4%, reducing the execution time by 62%.

2.2 Statistics
The benchmark performance distribution is usually not a normal distribution. The distribution
often resembles Figure 2.3, possessing a long tail distribution. Extraordinary events are more
likely than in a normal distribution. In the language of performance tests, this means that some
data points are extreme outliers (with a factor of 10 or more). So, the analysis must take such
extreme events into account. Additionally, a minimum invocation time technically cannot be
undercut.
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Figure 2.3: Performance distribution of the benchmark org.apache.logging.log4j.perf.jmh.FileAppender
Benchmark.logbackAsyncFile from apache/logging-log4j2

2.2.1 Coefficient of Variation (CoV)
The CoV, also called relative standard deviation, refers to a descriptive statistic measuring the
distribution variability. For a distributionM , the CoV is defined asCoV (M) = µ(M)

σ(M) , where µ(M)

is the mean and σ(M) the standard deviation. The CoV has already been employed in previous
studies to compare performance variation in software engineering [33, 35]. The advantage of this
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statistic metric is the unit-less comparison of two distributions [1]. For example, in this work, we
utilize the CoV to compare the variability of benchmarks possessing various execution times. The
variability of a benchmarks with an average invocation time of one millisecond can be compared
to a benchmark of 100-nanoseconds invocation time. In this work, we do not interpret the value
as a percentage, because the value can be larger than one, which is non-intuitive.

2.2.2 Confidence Interval (CI)
Another variability metric comprises the width of a confidence interval as a percentage of the
mean. Georges et al. found that the width depends highly on the task performed by the bench-
mark [20]. In their experiments, the width converged between 1% and 3% using a 95% confidence
level. As explained above, the performance data is not normally distributed. As such, we cannot
simply calculate the confidence interval with the mean and standard deviation. We instead apply
bootstrapping with hierarchical random resampling and replacement, as proposed by Kalibera
and Jones for rigorous performance measurement of benchmarks [28, 29]. The hierarchical re-
sampling is performed on three levels: trial-level, iteration-level and invocation-level. Previous
literature suggests using 10’000 bootstrap simulations, as the Monte Carlo variation is reduced
with more samples [24]. However, this presents a trade-off between computation time and the
accuracy of the confidence interval.

2.2.3 Sequential Testing
Traditionally, an experiment is performed, after which the statistical test is computed. However,
sequential testing offers an alternative approach [55]. During the sequential hypothesis testing, a
stoppage rule is applied, enabling three decisions: accept the hypothesis, reject the null hypoth-
esis, or continue the experiment and reapply the rule later. Such an approach can decrease the
experiment’s sample size, resulting in faster execution. Frick first produced a minimum number
of measurements, and afterwards regularly checked whether the p-value was smaller than 0.01
to reject the null hypothesis or if the p-value was larger than 0.36 to accept the hypothesis [19]. In
their experiments, such a stoppage rule was 30% more efficient than the traditional approach.

2.2.4 A/A Testing
The literature on performance evaluation suggests two A/A tests to evaluate whether a perfor-
mance change between the test and the control group is significant. The first involves the over-
lapping confidence interval of the mean [20, 29]. The two groups are statistically different if no
overlap exists for the confidence interval. This approach is similar to the computation of the mean
confidence interval explained previously.

The second approach comprises a Wilcoxon rank-sum test (also called Mann-Whitney U test)
combined with an effect-size analysis [8]. The null hypothesis is that the test and control groups
feature the same performance. The tests produce a p-value that is compared with the confidence
level to decide whether or not the null hypothesis is rejected. However, for large samples, a small
change can already be statistically significant. Literature further suggests reporting the effect
size [16]. We compute the Cliff’s Delta effect size [10]. Only if both the hypothesis test and effect
size test conclude that a significant change occurred do we argue that a significant performance
change happened.
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Study Design

In this chapter, this study’s research questions are presented first. Afterward, a study overview is
provided and the project selection described.

3.1 Research Questions
Previous work has already investigated the popularity of different performance testing frame-
works for Java [52] and bad practices of JMH [13]. The performance testing literature has also
mentioned that executing microbenchmarks is time-consuming. A fine granular analysis is nec-
essary regarding the developer preferences as to how they configure software microbenchmarks.
A developer possesses different configuration parameters, which all influence the execution time.
In the first part of this thesis, we seek to more deeply understand how developers configure
benchmarks and the execution time this produces. To do so, the following research question is
defined:

RQ1: How are software microbenchmarks configured and what are their resulting execution
times?

As this first question contains various aspects, we further distinguished different sub-questions.
First, we are interested in how often developers set user-defined values and not simply use the
default configuration. This raises the question of whether some configuration options are mod-
ified more often than others. Second, we analyze, on a configuration parameter level, which
user-defined values are commonly employed. On one hand, we investigate whether configura-
tion parameters are modified in isolation. On the other hand, we explore whether projects with
more stars or contributors configure software microbenchmarks differently.

RQ1.1: Which custom software microbenchmark configurations are defined by developers?

With the chosen configuration, we can compute the execution time of an individual bench-
mark. We seek to analyze how the chosen user-defined configuration influences an individual
benchmark’s execution time. This raises a question of how often a modified configuration ends in
a shorter or longer execution time compared to the default execution time. Furthermore, we com-
pare if and how the warmup measurement proportion is changed, including whether developers
consider one of the two phases to be more important.

RQ1.2: How do custom configurations affect benchmark execution time?
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The number of benchmarks and parameterization combinations, plus the execution time of an
individual benchmark, influences the project test suite execution time. In turn, this produces the
following question:

RQ1.3: How long does it take to run the full benchmark suites of open-source projects?

Lastly, we are interested in how often a developer modifies the execution configuration of a
benchmark after its creation. Additionally, we focus on the default value update and analyze how
developers deal with the new standard configuration.

RQ1.4: How often are execution configurations modified?

In the second part of this work, we seek to reduce the execution time of the software mi-
crobenchmarks without sacrificing result quality. A dynamic reconfigured execution produces a
high result quality if the characteristics of the resulting distribution are not significantly different
from the standard execution result. We wish to apply sequential testing on microbenchmarks to
dynamically decide whether to stop the execution. Several studies have already applied stop-
page rules on load tests to reduce execution time [3, 23, 36]. However, none of them focused
on short-running performance tests. Currently, in JMH, the warmup phase possesses a fixed
size. We wish to reduce the execution time by stopping the warmup phase if a steady state is
achieved. Additionally, we seek to investigate whether the measurement phase in JMH is too
long and can be reduced. To this end, we compare three different stoppage criteria — CoV, CI
width and divergence — against the standard execution. If such a dynamic reconfiguration of
software microbenchmarks is faster, but still produces sound results, there are fewer reasons to
set user-defined execution configurations. This results in the second research question:

RQ2: Can dynamic reconfiguration of software microbenchmarks reduce the execution time
without sacrificing result quality?

The execution of a software microbenchmark is divided into two phases: warmup and mea-
surement. During the warmup phase, a benchmark should reach a steady state that later a high-
quality result is produced. The performance during the measurement phase is reported and
later evaluated. With the default JMH configuration, the warmup and measurement phase re-
quires the same amount of time. The question now becomes how long should the benchmark
performance be captured during the measurement phase under the assumption that, during the
warmup phase, a steady state is reached.

RQ2.1: How much does the length of the measurement phase matter after a steady state is
reached?

Next, we analyze if and how the performance result is affected using reconfiguration com-
pared to the standard execution. Another result characteristic is produced if, for example, the
warmup phase is stopped too early.

RQ2.2: How does reconfiguration of software microbenchmarks affect the execution result?

Lastly, we seek to compare the execution time of a benchmark with reconfigured execution
configuration against the standard approach, including how much time is saved and how large is
the performance overhead with sequential testing. Additionally, we compare the results between
the different project test suites.

RQ2.3: How much time can be saved with dynamic reconfiguration of software microbench-
marks?
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3.2 Study Subjects
We created a new dataset to analyze the state of practice execution configurations. Figure 3.1
summarizes how the dataset was generated. As baseline, we used two preexisting datasets. The
first dataset was previously used by Costa et al. to analyze bad practices in JMH [13]. The last
Google BigQuery1 snapshot from 2017 queried what GitHub projects with a JMH benchmark are
extracted. A project possesses a benchmark if org.openjdk.jmh.annotations.Benchmark
is imported and at least one method is annotated with @Benchmark. From this data source, 839
repositories were extracted.

For the second existing dataset, Java projects on GitHub were extracted if they employed a
performance testing framework, such as JMH or Caliper2. We reused only the 1’204 projects
where JMH benchmarks were found. Third, we mined Maven Central, which featured a list of
617 artifacts using JMH as dependency3. First, we crawled the artifact name from the website.
Second, we checked whether the pom file of the current version possessed a scm element. This
source code management element contained the git clone Uniform Resource Locator (URL). If the
URL pointed to GitHub, we used the repository in our third dataset. For 128 artifacts, we found
a valid source code repository on GitHub.

In the next step, we combined the three datasets. The GitHub repository name (e.g., apache/
logging-log4j2) is a unique name. As such, we could remove duplicates if a project was present in
multiple datasets. As an intermediate result, we obtained a list of 1’477 projects. Some repositories
in our dataset are forks. If the parent repository name was present in the GitHub Application
Programming Interface (API), we checked whether the parent repository was already part of our
dataset. In 69 cases, we added the parent repository to our combined dataset. As the first dataset
was from 2017, not all repositories were still available. Such projects were either removed or were
no longer public available. If we called the GitHub Representational State Transfer (REST) API,
and the response of the repository endpoint was a 404 error, we removed the project from the
dataset. Accordingly, 140 projects were removed from the dataset. Some projects were moved to
another user or organization or were renamed. However, if multiple repositories possessed the
same git clone URL in the GitHub API, we could remove all repositories that simply pointed to
another repository. From this, 32 repositories of the dataset just pointed to other repositories on
GitHub. Lastly, we removed 13 projects lacking at least one benchmark in the current commit.
Often, they still had JMH as dependency.

Forked projects bias the analysis. For example, our dataset features 40 forks of the project
netty/netty. We grouped projects by the root repository name. For each group, we must select only
one repository. However, simply choosing the root project itself is not the best solution because,
for example, the jgrapht project is no longer developed in the root repository lingeringsocket/jgrapht;
rather, the active development is performed in the fork jgrapht/jgrapht. We decided to choose
per group the project with the highest star count. Finally, we obtained a cleaned dataset of 753
projects.

For each repository, we saved the following repository metrics: number of forks, stars, watch-
ers, contributors and commits. On this bases, we can investigate differences between projects
using correlation analyses. Additionally, the git clone URL, the last commit hash plus the default
branch name were saved, as they are required for the repository mining.

1https://cloud.google.com/bigquery
2https://github.com/google/caliper
3https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core/usages

https://cloud.google.com/bigquery
https://github.com/google/caliper
https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core/usages
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Figure 3.1: Study overview

3.3 Study Overview
This section provides a study overview. Figure 3.1 summarizes the corresponding steps. The
dataset creation was described in the previous section. For the first research question, we deter-
mine a set of commits upon which the historical analysis is based. The source code parser is run
on the selected code versions. We answered the first research question based on the extracted
execution configurations and code metrics, such as the method body length. For the second part
of this work, we selected a subset of projects, listed in Table 5.2. First, all benchmarks of these
projects were executed with the standard and reconfiguration approach. Later, we compared the
different stoppage criteria against the standard execution in terms of result quality and the time
saved through this dynamic execution.



Chapter 4

Benchmark Configurations in
the Wild

In this chapter, the data collection is first described. Following this, some background properties
of the chosen projects are provided. Lastly, the results of the first research question are presented.

4.1 Approach
First, we explain how data is extracted for the first part of this study, including which tools and
heuristics are employed to obtain the information. Afterward, the historical analysis is explained.

4.1.1 Extracting Data
We cloned all repositories on 22 August 2019. For the first part of this work, we performed nu-
merous static code analyses. To this end, we utilized the Bencher tool1 to extract several metrics
and information from the source code. First, we extracted the benchmark name and class name.
Next, we extracted the configuration of each benchmark and where the value was set (on a class
or method). We further checked whether the annotations @Fork, @Warmup, @Measurement and
@BenchmarkMode were present, such as in Listing 2.1, and we read the property values. After-
ward, the Bencher checked which classes were annotated with @State. For these state objects,
the corresponding instance variables, annotated with @Param, were extracted and stored. The
Cartesian product could be calculated to obtain the number of parameterization combinations.
Furthermore, the return value and method arguments of each annotated @Benchmark method
are available. With this information, we can check whether a Blackhole or a state object is used
for the benchmark. A set of benchmarks can be grouped with the annotation @Group and a group
name that they are always executed together. The Bencher extracts the method body hash, with
which we checked whether a method implementation was changed. Lastly, it provides the num-
ber of lines per benchmark method. The source code must not always be syntactically correct, so
the parser may fail. However, while a few warnings occurred during parsing, the parser never
crashed. We created a Comma Separated Values (CSV) file where, for each benchmark, informa-
tion such as the configuration, feature usage and method hash are stored.

The Bencher project already provided a rich set of features to extract JMH information from
Java byte code. However, source code parsing was not supported. First, we implemented the
source code parsing with Eclipse JDT2 and provided the same API as the byte code parser. In a

1https://github.com/chrstphlbr/bencher
2https://www.eclipse.org/jdt

https://github.com/chrstphlbr/bencher
https://www.eclipse.org/jdt
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second step, we added several new features to both parsers. If a benchmark uses state objects
as method argument, the parser now checks whether JMH parameters are also defined in such
annotated classes. The BenchFinder interface supports two new functionalities: On one hand,
it returns a map of state objects with their defined JMH parameters. On the other hand, for a
benchmark, it returns a map of JMH parameters and the class in which they are defined.

We assume that used state objects are defined in the same project and not in an external de-
pendency that the fully qualified name resolution does not require any dependency as source or
byte code. Parsing larger projects such as apache/logging-log4j2 takes approximately 15 seconds.

JMH Version Extraction

In several analyses, the JMH version is required, because if no execution configuration is present,
the default values of the corresponding JMH version are employed. To extract the used JMH
version, we applied some simple heuristics. We traversed all files in the project directory, and if
we found a file named pom.xml, we applied the Maven rules. First, the heuristic checks every
single line for whether it contains both keywords jmh and version, because many projects use a
property variable named, for instance, jmh.version to define the JMH version. If both keywords are
found on the same line, it is checked for whether, on the same line, a valid version is found. The
version extractor starts the check with the newest version 1.213 and checks all valid versions until
it ends by 0.1. The first found version is returned. Searching in descending order is important,
because otherwise, wrong versions are extracted. For example, if a maven project possesses a
file with the line <jmh.version>1.17.2</jmh.version>, and the extractor first checks 1.17
before checking 1.17.2, the heuristic will not work properly. If the single line check does not
reveal a JMH version, the extractor checks the dependencies block. For each dependency item,
it checks whether the groupId is equal org.openjdk.jmh and the artifactId is equal jmh-core,
after which the version is extracted with the same algorithm as above.

If we found a file with the extension gradle, we applied the Gradle heuristics. First, it checks
whether a single line contains jmhVersion and a valid version number. This rules extracts the
JMH version set in the me.champeau.gradle.jmh Gradle plugin4. As the second rule, each line is
checked for whether the JMH dependency is defined. A line contains the dependency if the string
org.openjdk.jmh was found plus a valid version number.

Java Version Extraction

The Java version extraction works similarly to the JMH version extraction. The source and tar-
get versions are individually extracted. However, the only difference is that once the keyword
target and once source is used. We traversed all files in the project, and if we found a file named
pom.xml, we applied the Maven rules. First, the extractor checked whether the maven-compiler
-plugin contained the Java version as configuration property (e.g. <source>1.8</source>).
Second, the properties were checked for whether they contain <maven.compiler.source>1.8
</maven.compiler.source>. If we found a file with the extension gradle, we applied the
Gradle heuristic. The heuristic simply checks if, after the keyword sourceCompatibility (re-
spectively targetCompatibility), a valid Java version exists. After extracting the Java ver-
sion, we unified the output. For example, 8, 1.8 and JavaVersion.VERSION_1_8 all describe
values used to specify Java 8. We mapped all values to the same value 1.8. Later, we were only
interested in the Java target version. However, if only the source code version was present, the
target version was set to the same value [40].

3JMH version 1.22 was released after we cloned the repositories so if we speak from the current version we mean JMH
version 1.21

4https://plugins.gradle.org/plugin/me.champeau.gradle.jmh

https://plugins.gradle.org/plugin/me.champeau.gradle.jmh
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Commented out Benchmarks

As we also want to analyze whether a @Benchmark annotation is commented out, we created
a simple heuristic. There is no option to directly obtain the content of the comment from the
Eclipse abstract syntax tree. From the syntax tree parser, we receive only the line number where
comments exist. With the corresponding file we can read the content of the comment. We checked
line by line whether it contains @Benchmark. If the annotation was found, the heuristic that ex-
tracts the method name is applied. The heuristic searches the next public keyword in the source
code. This line contains the method name before the next opening parenthesis. A method anno-
tated with @Benchmark must be public, because otherwise, this produces an error when packag-
ing the jar file. Listing 4.1 offers an example. On the second line, the corresponding @Benchmark
annotation is found. The next line features no public keyword. On line four, the public key-
word is found. The last word before the opening parenthesis, latencySimple, is the method
name. This heuristic fails in a few cases. For example, if @Benchmark annotation is used in a
regular comment, as in the Hello World example in line 44 from JMH5, the heuristic thinks that a
valid benchmark annotation is found.

1 // @BenchmarkMode(Mode.SampleTime)

2 // @Benchmark

3 // @OutputTimeUnit(TimeUnit.NANOSECONDS)

4 // public void latencySimple() {

5 // logger.info(TEST);

6 // }

Listing 4.1: Commented out benchmark in apache/logging-log4j2

#1

March April May June

#2 #3 #6#5#4

February

Figure 4.1: Illustrative example on how sample commits are selected

4.1.2 Historical Evaluation
For such a large dataset, we cannot evaluate all commits in the history, because this would be
too time-consuming. We instead created an algorithm to reduce the number of commits. Only
commits on the default branch are considered. Figure 4.1 presents an illustrative example of how
sample commits are selected. The first and last commit are always selected — here, commit #1
and #6. Afterward, the algorithm traverses from the last commit to the first commit, and checks
at the first day of each month whether a sample commit can be determined. The closest commit
to this day is always chosen as the sample commit. Additionally, the chosen commit must be at
most half a month away. For the first of May, commit #5 is selected. Commit #4 is the nearest
commit to the first of April, but it is not selected because it is more than half a month away. So,
for the first of April, no sample commit is selected. Lastly, for the first of March, commit #3 was
chosen, because it is nearer than #2. Finally, four sample commits for the historical analysis are

5https://hg.openjdk.java.net/code-tools/jmh/file/99d7b73cf1e3/jmh-samples/src/main/
java/org/openjdk/jmh/samples/JMHSample_01_HelloWorld.java

https://hg.openjdk.java.net/code-tools/jmh/file/99d7b73cf1e3/jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_01_HelloWorld.java
https://hg.openjdk.java.net/code-tools/jmh/file/99d7b73cf1e3/jmh-samples/src/main/java/org/openjdk/jmh/samples/JMHSample_01_HelloWorld.java
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chosen. As an additional constraint, the algorithm does not traverse commits written before June
2014, because JMH then added the @Benchmark annotation, which is required by the parser.

On one hand, for large projects such as elastic/elasticsearch, the number of commits is reduced
from 47’659 to 64 commits. On the other hand, analyzing only sample commits makes the eval-
uation more complex, because we only possess two snapshots and do not know what happens
in between. The historical dataset is only used to make rough statements, such as how often a
benchmark was written and the configuration was never updated. For our needs, it was sufficient
if we knew that a change occurred, and not exactly when.

As previously mentioned, we are interested in the evolution of the benchmark methods. For
the configuration, we can simply compare whether or not it is equal to the previous one. For the
method body, several change types are possible.

• The fully qualified name of the benchmark is present for the first time in the project. So a
new benchmark was added.

• An existing benchmark was updated because the method body hash was changed.

• An existing benchmark was removed.

For a simpler interaction with the dataset, we added an extra change type, because sometimes,
a benchmark was temporarily removed and later visible again (e.g. a benchmark is commented
out temporarily). With the change type history, we can compute how often a benchmark imple-
mentation was changed.

4.2 Dataset Description
The dataset contains 753 projects with 13’387 benchmarks and 48’107 parameterization combina-
tions. Figure 4.2 presents the distribution of how many benchmarks the dataset projects possess.
A total of 400 (53.1%) projects feature less than 10 benchmarks, and 52 (6.9%) projects possess
50 or more benchmarks. So, most of projects feature only a few written benchmarks, but there
are some large projects, such as eclipse/eclipse-collections which has the most benchmarks with
515. A project possesses, on average, 18.9±40.8, and a median of seven benchmarks. Figure 4.3
presents the number of parameterization combinations per project. On average, a project pos-
sesses 70.6±303.3 and a median of nine combinations. The number of projects possessing more
than 50 benchmarks is small. However, far more projects feature over 50 parameterization com-
binations. The highest number of combinations belongs to the project msteindorfer/criterion, with
4’132 combinations.

Table 4.1 summarizes the feature usage in the mined projects. A total of 43 (6.3%) projects
feature at least one defined group where multiple benchmarks are executed together. Overall,
530 (4.0%) found benchmarks possess such a @Group annotation. Meanwhile, 3’529 (26.3%) of
the benchmarks feature a method argument where the class is a state object. A total of 20 bench-
marks set as the function argument their own class containing JMH parameters6. They wish to
use the class where the benchmark is defined as a state object. Technically, this works, but it is
not needed, as the benchmark always uses the class where it is defined as a state object if the
class is annotated with @State. Over all projects 5’319 JMH parameters are extracted. Most of
these JMH parameters (91.3%) are defined in the class belonging to the method. A total of 10’394
(77.6%) benchmarks do not use the JMH parameterization feature. If a state object features two
JMH parameters, myString1 and myString2, a developer can set an array of values for each.

6https://github.com/devexperts/dlcheck/blob/master/benchmarks/src/main/java/com/
devexperts/dlcheck/benchmarks/FineGrainedLockBenchmark.java#L96

https://github.com/devexperts/dlcheck/blob/master/benchmarks/src/main/java/com/devexperts/dlcheck/benchmarks/FineGrainedLockBenchmark.java#L96
https://github.com/devexperts/dlcheck/blob/master/benchmarks/src/main/java/com/devexperts/dlcheck/benchmarks/FineGrainedLockBenchmark.java#L96
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Figure 4.2: Number of benchmarks per project
(100% are all 753 projects)
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Figure 4.3: Number of parameterization com-
binations per project (100% are all 753 projects)

Description Metric
Benchmark is part of a group 530 (4.0%)
Method argument of the benchmark is a state object 3’529 (26.3%)
JMH parameters are defined in the class which belongs to the method 4’855 (91.3%)
Parameterized benchmark with exact one parameterization combination 538 (4.0%)
Parameterized benchmark with multiple parameterization combinations 2’455 (18.3%)
Benchmark has a non-void return type 7’154 (53.4%)
Benchmark uses Blackhole 3’062 (22.9%)
Benchmark has a non-void return type or uses Blackhole 9’682 (72.3%)
Benchmark uses Control 78 (0.6%)
Benchmark uses BenchmarkParams 2 (0.0%)
Benchmark uses IterationParams 0 (0.0%)
Benchmark uses ThreadParams 1 (0.0%)
Benchmark is defined in inner class 156 (1.2%)
Average number of benchmarks per class 4.2±6.0
Average number of benchmarks per file 4.3±6.1

Table 4.1: Feature usage metrics (100% are all 13’387 benchmarks)

For all found JMH parameters, the Cartesian product is built. If, for both JMH parameters, exactly
one value is set, only one parameterization combination is possible. A total of 538 (4.0%) bench-
marks use JMH parameters, but have exactly one parameterization combination. If, for both JMH
parameters, two values are set, four combinations are possible. Meanwhile, 2’455 (18.3%) bench-
marks possess more than one parameterization combination.

Figure 4.4 illustrates the number of combinations if more than one parameterization combina-
tion exists. A total of 76.9% of the benchmarks feature 10 parameterization combinations or fewer.
The maximum number of combinations belongs to a benchmark of apache/hive with 2’3047. Each

7https://github.com/apache/hive/tree/master/itests/hive-jmh/src/main/java/org/apache/
hive/benchmark/vectorization/operators/VectorGroupByOperatorBench.java

https://github.com/apache/hive/tree/master/itests/hive-jmh/src/main/java/org/apache/hive/benchmark/vectorization/operators/VectorGroupByOperatorBench.java
https://github.com/apache/hive/tree/master/itests/hive-jmh/src/main/java/org/apache/hive/benchmark/vectorization/operators/VectorGroupByOperatorBench.java
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Figure 4.4: Number of parameterization com-
binations (100% are 2’455 benchmarks which
have multiple parameterization combinations)
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Figure 4.5: Number of JMH parameters per
benchmark (100% are 2’993 benchmarks which
have at least one JMH parameter)

parameterization combination is executed as an individual benchmark. As such, most projects
limit the number of combinations, because otherwise, the execution takes too long. Figure 4.5
presents the distribution of how many JMH parameters a benchmark has combined over all used
state objects. Over 60% of the parameterized benchmarks possess exactly one JMH parameter
(which can have multiple values).

To avoid dead code elimination, a benchmark should either use a Blackhole, which con-
sumes intermediate results, or the computed result should be returned by the benchmark method.
53.4% of the benchmarks feature a non-void return type, and 22.9% of the benchmarks use a
Blackhole provided by JMH as the method argument. In total, 72.3% of the benchmarks use
one option (or both) to avoid JVM optimization. We performed no-call graph analysis to check
whether all intermediate results were correctly consumed. We also analyzed the usage of other
classes in JMH’s infra package. The control class is used in 78 (0.6%) cases. The three other
classes — BenchmarkParams, IterationParams and ThreadParams — are all used less than
three times.

On average, 4.2 benchmarks are defined per class. JMH enables defining benchmarks in an
inner class. As such, 156 (1.2%) benchmarks are defined in a nested class. This produces an
average of 4.3 benchmarks per file. As an extreme case, the project nickman/json-benchmark defines
all its 32 benchmarks in a single file8.

Figure 4.6 presents the length of the benchmark method bodies, where 54.3% of the bench-
marks contain only a single line. As such, the median is one line. On average, a method annotated
with @Benchmark features a length of 3.2±4.5 lines. Over 12’659 (94.6%) of the benchmarks pos-
sess less than 10 lines of code. The longest method body is 160 lines long9. We do not extract the
method body length from the source code file. The Eclipse abstract syntax tree parser provides
the method body source code. However, they use the syntax tree and always place one statement
on each line. As the lines of code offer a good predictor for McCabe’s cyclomatic complexity [26],
we can conclude that the cyclomatic complexity of most benchmarks is low and most logic is
outsourced to other methods.

8https://github.com/nickman/json-benchmark/blob/master/src/test/java/test/com/
heliosapm/benchmarks/TestBenchmark.java

9https://github.com/gameduell/eclipselink.runtime/blob/master/jsonb/src/test/java/org/
eclipse/persistence/json/bind/defaultmapping/performance/PerformanceTest.java

https://github.com/nickman/json-benchmark/blob/master/src/test/java/test/com/heliosapm/benchmarks/TestBenchmark.java
https://github.com/nickman/json-benchmark/blob/master/src/test/java/test/com/heliosapm/benchmarks/TestBenchmark.java
https://github.com/gameduell/eclipselink.runtime/blob/master/jsonb/src/test/java/org/eclipse/persistence/json/bind/defaultmapping/performance/PerformanceTest.java
https://github.com/gameduell/eclipselink.runtime/blob/master/jsonb/src/test/java/org/eclipse/persistence/json/bind/defaultmapping/performance/PerformanceTest.java
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Figure 4.6: Lines of code per benchmark
method body (100% are all 13’387 bench-
marks)
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Figure 4.7: Distribution of used JMH version
(100% are 573 projects with an extracted ver-
sion)

0 1 2 3 4 5
lag time of JMH version in last commit [years]

0

100

200

300

400

500

600

# 
pr

oj
ec

ts

0%

20%

40%

60%

80%

100%

# 
pr

oj
ec

ts
 [c

um
ul

at
iv

e 
%

]

all projects
long-lived projects
short-lived projects

Figure 4.8: Age of the used JMH version in
the last commit (100% are 573 projects with
an extracted version)
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Figure 4.9: JMH version update frequency
(100% are 573 projects with an extracted ver-
sion)

For 180 (23.9%) projects, we cannot extract a JMH version with the heuristic and ignore them
in the following analysis. Figure 4.7 presents the usage share of the JMH versions. The first public
release occurred in November 2013, and the last in May 2018. Patch versions such as 1.17.1 were
combined with the corresponding minor version 1.17 to simply the visualization.

The first small peak comes from version 0.9, so before the beta phase ended in August 2014.
The second peak comes from version 1.11, released in September 2015. Until May 2017, and the
release of version 1.19, there was normally a monthly non-patch release. However, version 1.11
was released in September 2015, and the next minor release, 1.12, occurred in April 2016. As such,
the high occurrence of 1.11 is due to this long period of time before the next non-patch release.
The most commonly used version is the current one. The projects are categorized into two groups:
If the time between the last commit and the first (sampled) commit where JMH is used is over a
year, it is classified as a long-lived project, and a short-lived project otherwise. For older versions,
the short-lived projects are outnumbered, as many of the short-lived projects are written once,
and then no longer actively developed (e.g., demo projects that show how to use JMH).
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Some projects are no longer actively developed. As such, we compared the time of the last
commit against the release date of the used JMH version. Figure 4.8 illustrates the lag time of
the used version in the last commit. Few long-lived projects possess a JMH version younger than
one year. The strong increase of 1.25 years for long-lived projects is exactly the distance between
the current version’s release date and the mining of the repositories for this study in August
2019. Previous work has revealed that numerous developers do not regularly update the used
third-party dependencies in projects [11, 31]. Over 40% of the long-lived projects employ a JMH
version older than two years. We can conclude that the JMH dependency is not an exception of
rare updated dependencies.

Figure 4.9 demonstrates how often the JMH dependency was updated. Most of the short-
lived projects are never updated. However, a small group of long-lived projects is often updated.
On one hand, the repo glowroot/glowroot performed 27 JMH dependency updates. On the other
hand, over 60% of the projects never conducted a version change. Long-lived projects updated,
on average, 1.9±2.9 times, with a median of one time.
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Figure 4.10: Distribution of used Java version
(100% are 534 projects with an extracted ver-
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Figure 4.11: Java version update frequency
since JMH is used (100% are 534 projects with
an extracted version)

Figure 4.10 illustrates the used Java target version. For 219 (29.1%) projects, neither the source
nor the target version can be extracted with the heuristic. No large difference exists between the
two groups, short- or long-lived. Only 22 (4.1%) of the projects use a Java target version newer
than 1.8. At 61.2%, version 1.8 is by far the most popular. Some projects use version 1.5 or 1.6,
where the extended support has already ended in April 2015 or December 2018, respectively [41].
Figure 4.11 demonstrates how often a project updated the Java version. Short-lived projects rarely
update the Java version. We can explain this by the maximum period of one year where the
project was maintained. For 175 (62.3%) of the long-lived projects, the Java version was also
never updated.

The Spearman correlation between the repository metrics and feature usage in Table 4.2 illus-
trates that no strong correlation exists anywhere. The feature metric is a percentage. As an ex-
ample, if a project possesses 20 benchmarks, 15 of which possess a @Group annotation, the group
metric would be 0.75. We only analyze commonly used features, because otherwise, for example,
the Control class correlation value would only depend on a few projects. Projects possessing
more stars, forks and so on tend to write a few more benchmarks and more often use blackholes.
However, we can refute the hypothesis that projects with more contributors include someone who
is an expert in performance engineering, knows how to write good software microbenchmarks,
and uses the full range of the provided JMH features.
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Stars Forks Watchers Commits Contributors
Benchmark has parameterization
combinations 0.06 0.07 0.07 -0.03 0.01

Benchmark is part of a group 0.05 0.10* 0.05 0.05 0.05
Benchmark uses Blackhole 0.10* 0.10* 0.12** 0.10* 0.13**
Benchmark has a non-void return type -0.01 -0.04 -0.00 -0.02 -0.02
Benchmark has a non-void return type
or uses Blackhole -0.05 -0.08* -0.03 -0.07 -0.05

Number of benchmarks 0.12** 0.11** 0.10** 0.17** 0.14**

Table 4.2: Spearman correlation analysis between the repository metrics as independent variables
and the feature metrics as dependent variables (correlation significant at 0.05 level *, 0.01 level **)
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Figure 4.12: Number of chosen sample commits per project (100% are all 753 projects)

Figure 4.12 illustrates the distribution of how many commits were chosen during selecting
sample commits. We count only the number of sample commits from the time when a bench-
mark was detected for the first time. A short-lived project can possess a maximum of 13 commits,
including the first commit, last commit and one commit per month. Projects with exactly one
commit are often demo projects, and not production code. Short-lived projects possess, on aver-
age, 2.6±2.0 and a median of two sample commits. For long-lived projects, we see a range of 2–63
sample commits. Some long-lived projects do not commit monthly, but exist longer than a year.
On the other hand, 26 projects possess at least 50 sample commits. They committed almost every
month and used JMH almost since the release of version 1.0. The long-lived projects possess, on
average, 22.7±16.2 and a median of 19 sample commits.

During the static code analysis of the projects, we found 287 commented-out benchmarks
in the current commit, but somewhere in the past, we tracked the benchmark as not part of a
comment. For most of the benchmarks, we did not find any hints in the code as to why the
benchmark was commented out. If we compare this number to the total number of benchmarks
found, these equal 2.1% of all benchmarks. It could be that the benchmark failed and no one knew
how to fix the issue, so it was simply commented out.
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Until now, we simplified the explanation of how a developer must set the measurement and
warmup time. He cannot just set a simple value in seconds. Time features two properties: On one
hand, the time unit comprises an enum from the type java.util.concurrent.TimeUnit,
and on the other hand, it comprises an integer value in the corresponding unit. Normally, a
developer simply sets both properties. However, 987 benchmarks only change the integer value
and not the time unit. This approach is dangerous if JMH changes the default time unit. Much
worse, however, is if only the time unit is set. We found 95 benchmarks where the warmup
and/or measurement time was not properly set. As an example, a developer sets the time unit to
milliseconds and assumes that the execution will take 10 milliseconds per iteration, as the default
integer value is 10 in version 1.21. However, if only the time unit was changed, the set time unit
is ignored, and the time per iteration remains 10 seconds. Someone who reads the execution
configuration will not know the effective execution configuration.

4.3 Results
The analysis of how JMH benchmarks are currently configured is divided into multiple subques-
tions. First, we wish to understand how often a developer sets a user-defined value and does not
use the default values. Furthermore, if user-defined values are set, we seek to determine what
values are chosen and whether we can identify a trend of popular values. Second, we want to
analyze the execution time of an individual benchmark, including how the chosen configurations
affect the execution time and whether the proportion between warmup and measurement time
changed. Additionally, we investigate the project test suite execution time. Lastly, we focus on
how often execution configurations are modified. As a special case, we study how developers
react after the JMH default values were changed in version 1.21.

4.3.1 RQ1.1: Custom Execution Configurations
A total of 3’281 (24.5%) benchmarks possessed neither a class nor a method annotation for all
seven configuration options. These benchmarks are executed exactly with the default parameters.
Table 4.3 summarizes how often an annotation is used by developers. It does not matter if a
class or method is annotated. Warmup iteration, measurement iteration and fork annotations
are present in just under half of the cases. Warmup time and measurement time annotations
are present in just over a quarter of the benchmarks, and the mode is set in a third of the cases.
However, warmup forks are set in only 180 (1.3%) of the benchmarks. Therefore, most of the
benchmarks use the default configuration and perform no warmup forks.

Configuration parameter # Annotation present
Warmup iterations 6’002 (44.8%)
Warmup time 2’880 (21.5%)
Measurement iterations 5’962 (44.5%)
Measurement time 3’704 (27.7%)
Forks 5’618 (42.0%)
Warmup forks 180 (1.3%)
Mode 8’894 (66.4%)

Table 4.3: Annotation presence in the source code (100% are all 13’387 benchmarks)



4.3 Results 29

The presence of an annotation does not exclude the case wherein the default value is set as a
user-defined value. For this analysis, the JMH version of the project is required, because other-
wise, we cannot compare the set value to the default one. For 10’816 (80.8%) benchmarks, we can
extract a JMH version. In 4’115 (38.0%) of the cases, the benchmarks already use the newest JMH
version 1.21 with the new default execution configurations. Table 4.4 illustrates how often, in the
current commit, the set value is equal to the default value of the employed JMH version.

For the warmup time, measurement time and number of forks, the default values are rarely
set as user-defined values. For the warmup and measurement iterations, behavior differs. In
earlier versions, the default value is rarely set as a user-defined value by a developer. However,
after the default execution configuration update, where the default value was changed from 20 to
5, over half of the benchmarks now set the default value as the user-defined value. We suppose
that the number of iterations was already set to five before the project was updated to version
1.21, and the annotations that are no longer required were not removed. The mode is equal to
the default mode in approximately one third of the benchmarks where an annotation is present.
For the number of warmup forks, interpretation is difficult, as few benchmarks possess such an
annotation. An analysis of the used value is more interesting.

Configuration parameter JMH version 1.20 or earlier JMH version 1.21

# Annotation
present Is default value # Annotation

present Is default value

Warmup iterations 2’422 60 (2.5%) 2’108 1’218 (57.8%)
Warmup time 1’133 0 (0.0%) 899 21 (2.3%)
Measurement iterations 2’473 238 (9.6%) 2’111 1’181 (56.0%)
Measurement time 1’420 0 (0.0%) 1’246 25 (2.0%)
Forks 2’391 26 (1.1%) 1’900 7 (0.4%)
Warmup forks 150 42 (28.0%) 28 23 (82.1%)
Mode 3’971 1’317 (33.2%) 3’144 1’288 (41.0%)

Table 4.4: Frequency that user-defined values are equal to the default value of JMH

180 benchmarks specify the number of warmup forks. Figure 4.13 illustrates which values are
chosen for the warmup fork configuration parameter. In 65 (36.1%) cases, the default value of
zero is explicitly set as a user-defined value. A total of 115 benchmarks perform warmup forks.
In 113 benchmarks, exactly one warmup fork is performed. The remaining two benchmarks are
executed with two warmup forks. In the discussion, we analyze which type of projects employ
warmup forks.

5’618 benchmarks specify the number of forks. Figure 4.14 presents the distribution of the
fork values. A total of 56 (1.0%) benchmarks set a fork value of zero. This means that forking
is disabled. Multiple trials are executed in the same JVM. However, to reduce the effect of JVM
optimizations, each trial should be executed in its own VM [13,48]. JMH warns in the console that
zero forks should only be utilized for debugging purposes. A total of 3’835 (68.3%) benchmarks
are executed with exactly one fork. Only 282 (5.0%) benchmarks use at least five forks. Compared
to the default value of five (for the current version 1.21) and 10 (for older versions), respectively,
most of the benchmarks utilize fewer forks than proposed by JMH. The project akashche/tzdata-
jmh uses 1’000 forks10, but in combination with the singleshot mode, which reduces the execution
time significantly. As such, the maximum number of forks without using the singleshot mode
equals 20.

10https://github.com/akashche/tzdata-jmh/blob/master/src/main/java/com/redhat/openjdk/
tzdata/TzDataBenchmark.java

https://github.com/akashche/tzdata-jmh/blob/master/src/main/java/com/redhat/openjdk/tzdata/TzDataBenchmark.java
https://github.com/akashche/tzdata-jmh/blob/master/src/main/java/com/redhat/openjdk/tzdata/TzDataBenchmark.java
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Figure 4.13: Distribution of the chosen
warmup fork values (100% are 180 bench-
marks where a value is present)
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Figure 4.14: Distribution of the chosen fork
values (100% are 5’618 benchmarks where a
value is present)

1 2 3 4
# modes

0

2000

4000

6000

8000

10000

12000

# 
be

nc
hm

ar
ks

0%

20%

40%

60%

80%

100%

# 
be

nc
hm

ar
ks

 [%
]

Figure 4.15: Number of modes executed (100%
are all 13’387 benchmarks)
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Figure 4.16: Chosen mode for executing
the benchmark (100% are 13’148 benchmarks
where exact one mode is performed)

JMH offers the option to select and run the benchmark with multiple modes. The @Benchmark
Mode annotation accepts a list of modes. Figure 4.15 presents how many modes are run per bench-
mark. A total of 13’148 (98.2%) benchmarks are executed with exactly one mode. The information
gain of running more than one mode is limited and does not justify the additional execution time.

Figure 4.16 presents how often which benchmark mode is chosen if exactly one mode is per-
formed. In 34.2% of the cases, no @BenchmarkMode annotation is present, and the default mode,
throughput, is selected. In 24.5%, the user-defined mode is set to throughput even if it is not
necessary. In 34.4%, the mode is changed to average time. The throughput measures the number
of operations executed per second, while the average time mode measures how long it takes to
execute one operation on average. As such, one metric presents the inverse of the other. The sam-
ple mode works similarly to the average mode, but as output, a histogram is returned, and not
the aggregated mean per iteration. A total of 4.8% of the benchmarks employ the sample mode,
while 2.2% of the benchmarks utilize the singleshot mode, where only a single invocation of the
method is run per iteration, and the cold start performance is measured. Lastly, 50 benchmarks
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selected the “all” mode, where all four modes are executed sequentially. A point-biserial corre-
lation analysis between number of forks and the usage of the singleshot mode produces a weak
positive correlation coefficient of +0.11 under the significance level of 0.01. If the singleshot mode
is used, the reduced execution time per fork is not compensated with more forks to obtain more
precise results.

Except for the warmup forks and mode, all configuration options are preferably set on the
class that belongs to the method, with 91.3% to 93.3%. The mode is set in 63.8% of the cases on
the class. The warmup fork annotation is, at 62.2%, more often set on the method itself. In 15
benchmarks, the same value is set on the method, which was already set on the class. Meanwhile,
on a method level, 38 benchmarks override the set class configuration parameter with a different
value. Therefore, overriding pre-set values is extremely rare.

Warmup
iterations

Warmup
time

Measurement
iterations

Measurement
time Forks Warmup

forks

Warmup iterations 1.00** -0.18** 0.69** -0.28** 0.03 -0.38**
Warmup time 1.00** -0.19** 0.81** -0.30** -0.54**
Measurement iterations 1.00** -0.22** 0.08** -0.81**
Measurement time 1.00** -0.26** -0.60**
Forks 1.00** -0.30**
Warmup forks 1.00**

Table 4.5: Spearman correlation analysis of user-defined values between the different configura-
tion options (correlation significant at 0.05 level *, 0.01 level **)

With a Spearman correlation analysis, we investigate whether, when one configuration option
is changed, other parameters are also changed. Table 4.5 illustrates the correlation coefficient be-
tween user-defined values. First, we see that the warmup fork parameter negatively correlates
with all other configuration options. As the warmup fork option is rarely present, the correlation
is calculated on a small dataset. Nevertheless, the usage of warmup forks reduces all other config-
uration parameters, as the additional forks are compensated with less time per fork. The number
of warmup iterations and the warmup time (respective measurement iterations and measurement
time) weakly negatively correlate. If the number of iterations is increased, the time per iteration
is rather reduced. A strong correlation exists between the number of warmup iterations and the
number of measurement iterations. The same holds for the correlation between the warmup time
and the measurement time, which also strongly correlates. If the number of forks is increased, the
warmup and measurement time is reduced, as there is a negative correlation.

Next, we seek to analyze whether the configuration options correlate with the repository met-
rics. First, we use a Spearman correlation to analyze the configuration options except for the
mode. Table 4.6 illustrates the correlation coefficients. Except for the warmup forks, only weak
correlations exist. As only eight projects feature benchmarks with warmup forks, the results de-
pend highly on the project metrics, and an interpretation is not meaningful. The number of itera-
tions and forks tends to be a bit higher for projects with more stars, forks and so on, while the time
per iteration is rather reduced. Table 4.7 illustrates that the mode is almost independent of the
repository metrics. Projects with more stars and watchers prefer the throughput a bit more than
the average time mode. We can conclude that the projects possessing higher repository metrics
do not totally differ in how they configure their benchmarks.

Lastly, we analyze whether unknown projects with few stars, contributors and so on more
often use the JMH default values. Table 4.8 illustrates only a small positive correlation between
the use of user-defined (non-default) values and the project metrics. No large difference exists
between the various configuration options.
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Stars Forks Watchers Commits Contributors

Warmup iterations 0.06** 0.08** 0.14** 0.11** 0.16**
Warmup time -0.02 -0.15** -0.17** -0.07** -0.22**
Measurement iterations 0.05** 0.09** 0.13** 0.08** 0.15**
Measurement time -0.13** -0.21** -0.18** -0.14** -0.26**
Forks 0.07** 0.10** 0.12** 0.09** 0.21**
Warmup forks -0.66** -0.22** -0.41** -0.10 -0.42**

Table 4.6: Spearman correlation analysis between the repository metrics as independent variable
and the configuration options as dependent variables (correlation significant at 0.05 level *, 0.01
level **)

Stars Forks Watchers Commits Contributors

Mode is throughput 0.15** 0.09** 0.13** -0.08** 0.01
Mode is average time -0.13** -0.08** -0.12** 0.06** 0.00
Mode is sample time -0.02* -0.02 -0.02* 0.01 -0.03**
Mode is singleshot -0.05** -0.05** -0.06** -0.05** -0.05**

Table 4.7: Point-biserial correlation analysis between the repository metrics as independent vari-
able and the configuration options as dependent variables (correlation significant at 0.05 level *,
0.01 level **)

Stars Forks Watchers Commits Contributors

At least one user-defined value is present 0.10** 0.09** 0.10** 0.10** 0.15**
Non-default warmup iteration value 0.19** 0.17** 0.18** 0.17** 0.23**
Non-default warmup time value -0.02** 0.01 -0.00 0.11** 0.15**
Non-default measurement iteration value 0.18** 0.17** 0.18** 0.11** 0.22**
Non-default measurement time value 0.17** 0.12** 0.16** 0.07** 0.17**
Non-default fork value 0.15** 0.12** 0.15** 0.09** 0.20**
Non-default warmup fork value -0.03** -0.03** -0.03** -0.02** -0.04**
Non-default mode 0.07** 0.04** 0.06** -0.02* 0.09**

Table 4.8: Point-biserial correlation analysis between the repository metrics as independent vari-
able and the binary variable if the default value was used as dependent variables (correlation
significant at 0.05 level *, 0.01 level **)
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To summarize the findings on how often default execution configuration are employed and
what other values are used, in our dataset, 24.5% of the benchmarks use the default values for all
seven configuration options. Warmup forks are set extreme rarely, while the number of iterations
and forks is set in barely half of the benchmarks as a user-defined value. We found that some
benchmarks explicitly set the default value as a user-defined value. Most of it can be traced back
to default value change in JMH version 1.21. If the number of forks is set, the chosen number is
usually smaller than the default value. In most cases, just one benchmark mode is used. The two
most popular modes consist of throughput and average time. A correlation analysis between the
configuration options revealed that they are not changed in isolation. Therefore, if the number of
warmup iterations is increased, the number of measurement iterations is also increased. However,
only a weak correlation is found between the execution configuration options and the repository
metrics, such as stars, forks and contributors.

4.3.2 RQ1.2: Benchmark Execution Time
In the previous section, we analyzed the configuration options as single isolated components.
However, all different configuration parameters influence the execution time, as demonstrated
in Formula 2.3. A developer can decrease the number of iterations while increasing the time per
iteration. In total, the execution time remains constant, but the other parameters are set. In this
section, we investigate how the execution time in total as well as the ratio between warmup and
measurement time have been changed. We ignore cases where only the singleshot benchmark
mode is used, because there, we cannot estimate the used time. For the other modes, during
an iteration, as many invocations as possible are performed in the pre-defined period, while the
singleshot mode only invocates the method once.

Measurement time

Decreased Equal Increased

W
ar

m
up

ti
m

e Decreased 4’555 (94.2%) 0 (0.0%) 27 (0.6%)

Equal 21 (0.4%) 10 (0.2%) 65 (1.3%)

Increased 0 (0.0%) 0 (0.0%) 158 (3.3%)

Table 4.9: Measurement warmup time matrix (100% are 4’836 benchmarks where non-default
configurations are used)

First, we created a measurement warmup time matrix in Table 4.9. We only analyzed a bench-
mark configuration if at least one parameter (except the mode) was changed. As such, the analy-
ses in this section are always based on 4’836 benchmarks. In 94.2% of the cases, the measurement
as well as the warmup time were decreased. As the second most common option for both phases,
the time consumption increased.

We wish to compare the consumed execution time with the default execution time. Equation
4.1 defines the ratio between the two values. A ratio of 0.25 means that the execution time was
decreased to 25% of the initial execution time.

executionT imeRatio =
execution time with chosen execution configuration

execution time with default execution configuration
(4.1)
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Figure 4.17 illustrates how the execution time change rate compared to the default values. In
10 cases, some configuration parameters are changed, but the execution time remains exactly the
same. Meanwhile, 4’576 (94.6%) benchmarks reduce the execution time. Figure 4.17a illustrates
how much the execution time of these benchmarks was decreased. The change rate on the x-axis
is 1 − executionT imeRatio as percentage. In 3’762 (77.8%) benchmarks, the execution time was
reduced by over 75%. For 1’879 (38.9%) benchmarks, the execution time diminished by over 90%.
As an extreme case, for some benchmarks, the project tzaeschke/distributed-phtree reduced the total
execution time per benchmark to 25 microseconds11. We can conclude that if the execution time
is reduced, only a few benchmarks make moderate modifications, and in most cases, the time is
massively reduced.

On the right side, we see in Figure 4.17b how much the execution time is increased. In 250
(5.2%) benchmarks, it takes longer with the chosen configuration than the default execution time.
Only 17 (3.0%) projects feature at least one benchmark where the execution time is increased.
However, if the execution time is increased, it is not just increased by a small amount. In 67
(1.3%) cases, the execution time takes 10 or more times longer. The project kiegroup/kie-benchmarks
features some benchmarks where the execution time lasted over 63 days12. We also want to note
other suspicious configurations. First, 49 benchmarks employed no warmup time. Second, two
benchmarks set the number of measurement iterations to zero13.
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(b) Increased execution time

Figure 4.17: Effective execution time of a benchmark compared to the default execution time
(100% are 4’836 benchmarks where non-default configurations are used)

Next, we investigate how the measurement time was changed compared to the warmup time.
In Formula 4.2, we defined warmup proportion. warmupTime and executionT ime are calculated
as defined in Formula 2.1 and 2.3. With the default configuration, both phases consume the same
amount of time (warmupProportion = 50%).

warmupProportion =
warmupT ime

executionT ime
(4.2)

11https://github.com/tzaeschke/distributed-phtree/blob/master/benchmark/src/main/java/
ch/ethz/globis/distindex/cloning/CloningBenchmark.java

12https://github.com/kiegroup/kie-benchmarks/blob/master/drools-benchmarks/src/main/
java/org/drools/benchmarks/session/EmptySessionWithInsertionsAndFireBenchmark.java

13https://github.com/atlanmod/NeoEMF/blob/master/benchmarks/core/src/main/java/fr/
inria/atlanmod/neoemf/benchmarks/runner/WriteOnlyRunner.java

https://github.com/tzaeschke/distributed-phtree/blob/master/benchmark/src/main/java/ch/ethz/globis/distindex/cloning/CloningBenchmark.java
https://github.com/tzaeschke/distributed-phtree/blob/master/benchmark/src/main/java/ch/ethz/globis/distindex/cloning/CloningBenchmark.java
https://github.com/kiegroup/kie-benchmarks/blob/master/drools-benchmarks/src/main/java/org/drools/benchmarks/session/EmptySessionWithInsertionsAndFireBenchmark.java
https://github.com/kiegroup/kie-benchmarks/blob/master/drools-benchmarks/src/main/java/org/drools/benchmarks/session/EmptySessionWithInsertionsAndFireBenchmark.java
https://github.com/atlanmod/NeoEMF/blob/master/benchmarks/core/src/main/java/fr/inria/atlanmod/neoemf/benchmarks/runner/WriteOnlyRunner.java
https://github.com/atlanmod/NeoEMF/blob/master/benchmarks/core/src/main/java/fr/inria/atlanmod/neoemf/benchmarks/runner/WriteOnlyRunner.java


4.3 Results 35

Table 4.10 illustrates how the warmupProportion has been changed. A total of 46.8% of the
benchmarks keep the same ratio — in other words, both parts consume the same amount of time.
For 35.4% of the benchmarks, the measurement time is increased compared to the warmup time.
Meanwhile, 17.9% of the benchmarks increase the warmup time proportionally compared to the
measurement time. Figure 4.18 demonstrates how much of the execution time is spent warming
up the benchmark. In 638 (13.24%) benchmarks, the warmup time takes 20% or less of the total
execution time. If the warmup proportion is increased compared to the default, a proportion of
66.7% or 90.9% is often chosen. There is a wide range for how the warmup proportion is chosen.
In half of the cases, the ratio is not modified. In the other cases, the chosen measurement time
takes between 0.02%14 and 99.2%15 of the total time.

Category # Benchmarks
warmupProportion < 50% 1’711 (35.4%)
warmupProportion = 50% 2’262 (46.8%)
warmupProportion > 50% 863 (17.9%)

Table 4.10: Proportion between warmup and measurement time (100% are 4’836 benchmarks
where non-default configurations are used)
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Figure 4.18: Visualization of the warmup proportion (100% are 4’836 benchmarks where non-
default configurations are used)

Next, we analyze the correlation of the used execution time, warmup proportion and project
metrics. Only a weak correlation is found. Table 4.11 illustrates the correlation values. Projects
with more stars, forks, contributors and so on allow the benchmarks run a bit longer. For the
warmup proportion, we did not detect any correlation.

14https://github.com/apache/hive/blob/master/itests/hive-jmh/src/main/java/org/apache/
hive/benchmark/vectorization/mapjoin/AbstractMapJoin.java#L72

15https://github.com/CrispOSS/prime-sieves/blob/master/src/main/java/com/github/
crisposs/sieves/benchmark/SieveBenchmark.java

https://github.com/apache/hive/blob/master/itests/hive-jmh/src/main/java/org/apache/hive/benchmark/vectorization/mapjoin/AbstractMapJoin.java#L72
https://github.com/apache/hive/blob/master/itests/hive-jmh/src/main/java/org/apache/hive/benchmark/vectorization/mapjoin/AbstractMapJoin.java#L72
https://github.com/CrispOSS/prime-sieves/blob/master/src/main/java/com/github/crisposs/sieves/benchmark/SieveBenchmark.java
https://github.com/CrispOSS/prime-sieves/blob/master/src/main/java/com/github/crisposs/sieves/benchmark/SieveBenchmark.java
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Stars Forks Watchers Commits Contributors

executionT imeRatio 0.12** 0.15** 0.16** 0.18** 0.19**
warmupProportion -0.06** -0.06** -0.00 -0.05** -0.02

Table 4.11: Spearman correlation analysis with the repository metrics as independent variables
and the ratios as dependent variables (correlation significant at 0.05 level *, 0.01 level **)

Lastly, we analyze a single benchmark, but unlike this section’s previous analyses, bench-
marks with different parameterizations are grouped together and analyzed as a single unit. There-
fore, the execution time is multiplied by the number of parameterization combinations. Figure
4.19 illustrates the execution time per benchmark with all parameterization combinations. The
median execution time equals 6.7 minutes. A total of 88.3% of these benchmarks feature a to-
tal execution time less than 10 minutes. However, for 6.3% of the benchmarks, it takes longer
than half an hour to execute all parameterization combinations. The number of a benchmark’s
parameterization combinations does not correlate with the execution time of a single parameter-
ization combination. As such, if more parameterization combinations are defined, the total time
per parameterization is not reduced.
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Figure 4.19: Execution time to run one benchmark with all parameterization combinations (100%
are all 10’816 benchmarks with a JMH version)

We can conclude most developers reduce both measurement and warmup time. The total
execution time is often drastically reduced if something in the execution configuration is changed.
The ratio between measurement and warmup time is, in 46.8% of the cases, not changed. If it is
modified, oftentimes, the warmup time is diminished compared to the measurement time. We
did not identify a strong correlation between the execution time and repository metrics.
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4.3.3 RQ1.3: Project Test Suite Execution Time
This section analyzes the execution time of not just a single benchmark, but the entire test suite.
As in the previous section, if we cannot extract a JMH version, an analysis of the test suite exe-
cution time is not possible, because we do not know the default execution configuration. If we
summarize the execution time of all benchmarks in a project, we obtain the execution time of the
project test suite. Figure 4.20 presents the project test suite execution time. For 63.7% of the test
suites, it takes less than one hour to execute all benchmarks. As numerous projects feature only
a few benchmarks and not many parameterization combinations, these microbenchmarking test
suites possess only an execution time of minutes, as illustrated in Figure 4.20a. For 19.3% of the
project test suites, the execution takes more than three hours, and 3.8% of them take longer than
12 hours, as illustrated in Figure 4.20b. For example, for eclipse/eclipse-collections, executing the
test suite takes over 16 days, because the project possesses 515 benchmarks and a total of 2’575
parameterization combinations. The median execution time of a project test suite equals 26.7 min-
utes. On one hand, the minimum test suite execution time equals 143 milliseconds for the project
protobufel/protobuf-el. On the other hand, the maximum execution time is 7.4 years for kiegroup/kie-
benchmarks. Compared to the median execution time of 138.9 minutes using the default execution
configuration, the execution time is reduced by more than a factor of five. However, a consider-
able amount of time is still needed to execute the entire project test suite.
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Figure 4.20: Visualization of the execution time over project test suites (100% are 573 projects with
an extracted JMH version)

We can summarize that the number of parameterization combinations is multiplied with the
execution time of one parameterization combination. As the Cartesian product of all JMH pa-
rameters is built, this number can quickly grow. The median execution time of 26.7 minutes dis-
guises the fact that some projects possess numerous benchmarks, resulting in a time-consuming
microbenchmarking lasting multiple hours.
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4.3.4 RQ1.4: Execution Configuration Modification Frequency
Last, we want to investigate how often a benchmark is modified after its creation. As we perform
the historical analysis only on sampled commits, we do not see every change. We select only
one commit per month. If, during a month, a benchmark was modified more than once, we can
only count it as one change. If, during a month, a benchmark was changed and the change was
undone immediately afterwards, we do not see any change. However, we can analyze how the
benchmark was changed in the long-term perspective. Additionally, we want to note that if the
fully qualified name of a benchmark was changed, the heuristic believes that a benchmark was
removed and a new one is created.

Throughout the project history, we can detect 19’211 benchmarks. Only 216 (1.1%) have an-
other benchmark configuration present somewhere in the history. Figure 4.21 illustrates the dis-
tribution of how often the configuration was changed. If a benchmark configuration was mod-
ified, there was usually exactly one modification in the history. On average, 0.01±0.11 configu-
ration modifications were performed. A total of 2’041 (10.6%) benchmarks modified the bench-
mark method body after a benchmark was created. Figure 4.22 presents how often the code was
changed. On average, a code modification occurred 0.15±0.64 times. Often, a method body was
also only modified once. We can conclude that benchmarks are usually written once, and then
never updated. If a benchmark is modified more often, the implementation is changed.
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Figure 4.21: Execution configuration modifi-
cation frequency after the benchmark creation
(100% are all 19’211 benchmarks)
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Figure 4.22: Implementation modification fre-
quency after the benchmark creation (100% are
all 19’211 benchmarks)

With the JMH update 1.21, new default execution configurations are introduced. Accordingly,
we are interested in how developers react to these new default values. The analysis is limited to
3’682 benchmarks where we have at least one commit with a pre-1.21 version and one commit
with JMH version 1.21. We take and compare the last sample commit before the version change
to 1.21 against the current commit.

In total, 3’469 (94,2%) benchmarks did not perform an active configuration change of any
parameter. In Table 4.12, we grouped the benchmarks depending on how they reacted to the
version update. The first group contains all type of changes where the developer performed an
active change to the source code. The time per warmup iterations is, with 5.05% of the config-
uration options, most often actively changed. We see that for some benchmarks, the warmup
and measurement time were actively set to the old default value ( → do). Other projects using
the old default value changed to a user-defined non-default value (do → u2). A few benchmarks
had already set the new default value before and removed the annotation after the update, as the
annotation was no longer required (dn → ).
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Warmup
iterations

Warmup
time

Measurement
iterations

Measurement
time Forks

Active change 51 (1.39%) 186 (5.05%) 49 (1.33%) 181 (4.92%) 31 (0.84%)
→ do 0 (0.00%) 68 (1.85%) 0 (0.00%) 63 (1.71%) 0 (0.00%)

u1 → u2 14 (0.38%) 0 (0.00%) 12 (0.33%) 0 (0.00%) 5 (0.14%)
do → u2 13 (0.35%) 96 (2.61%) 11 (0.30%) 96 (2.61%) 4 (0.11%)
u1 → dn 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 22 (0.60%)
do → dn 2 (0.05%) 22 (0.60%) 4 (0.11%) 22 (0.60%) 0 (0.00%)
dn → 22 (0.60%) 0 (0.00%) 22 (0.60%) 0 (0.00%) 0 (0.00%)
Passive change 2’124 (57.69%) 3’159 (85.80%) 2’119 (57.55%) 2’811 (76.34%) 2’281 (61.95%)
→ 2’124 (57.69%) 3’159 (85.80%) 2’119 (57.55%) 2’811 (76.34%) 2’281 (61.95%)

No change 1’507 (40.93%) 337 (9.15%) 1’514 (41.12%) 690 (18.74%) 1’370 (37.21%)
do → do 57 (1.55%) 266 (7.22%) 29 (0.79%) 514 (13.96%) 0 (0.00%)
dn → dn 864 (23.47%) 1 (0.03%) 834 (22.65%) 3 (0.08%) 5 (0.14%)
u1 → u1 586 (15.92%) 70 (1.90%) 651 (17.68%) 173 (4.70%) 1’365 (37.07%)

Table 4.12: Benchmark configuration reaction on the update to JMH version 1.21, 100% are 3’682
benchmarks (do = pre 1.21 default value, dn = 1.21 default value, u = user-defined value which is
not do or dn, = no annotation is present)

A majority of the benchmarks did not possess an annotation present before and after the up-
date ( → ). The developer did not actively change something, but as the default execu-
tion configuration was passively changed, a configuration modification occurred. Depending on
the configuration parameter, no user-defined value is set for between 57.55% and 85.80% of the
benchmarks. The last category features benchmarks where a value had already been set as a user-
defined value, and the value did not change. In one quarter of all benchmarks, the new default
value for the number of iterations was already set as a user-defined value and the annotation
was not removed (dn → dn). For the time per iteration, some benchmarks had manually set the
old default value before (do → do). In the future, if we conduct a survey with developers, we
should ask the developers why they set the old default value as user-defined values, as this was
not necessary. Lastly, we wish to note that, for the number of iterations and forks, some projects
set user-defined values that are not equal to the old and new default values (u1 → u1).

To summarize, only a few benchmarks changed the execution configuration to the old default
values after the update. More often, the old default value was already previously set as user-
defined value. Most of the project either did not set a user-defined, non-default value and simply
used the default values where a passive change happened, or else they had already manually set a
non-default value and nothing changed. For the warmup and measurement iterations, developers
already often used the new default values before the JMH default value update.





Chapter 5

Reconfiguration Approach

The following chapter introduces the reconfiguration approach. Afterwards, the project selec-
tion and data collection is briefly described. Lastly, the different aspects of the second research
questions are investigated.

5.1 Approach
Traditionally in JMH, a benchmark possesses a fixed warmup and measurement time. Each phase
is divided into multiple iterations. The question thus concerns how a developer can determine
the optimal length of the warmup phase. If the warmup phase is too short, no steady state is
reached, and the results are not representative. If the warmup phase is too long, time is wasted.
Theoretically, a developer can determine the optimal warmup time for each benchmark. How-
ever, depending on the hardware, the same benchmark does not require the same warmup time.
The JMH core development team solved this issue using pessimistic default values that, in most
benchmarks, wastes time but produces good results.

Our approach consists of dynamically assessing how long the warmup phase should be. A
developer simply sets an lower-bound and upper-bound warmup execution time. Between each
iteration, we check the stoppage criteria to verify whether a steady state is reached. If the stability
threshold is reached, the warmup phase is stopped and the measurement phase begins. The
measurement phase remains a fixed amount of time. We do not solely optimize the number of
warmup iterations; we also optimize the number of forks. If at least two forks are executed, we
check the stability between the forks. We apply the same stoppage criteria as for iterations in
order to check the result characteristic. If different forks possess the same measurement result
distribution, it is not necessary to execute five forks as proposed by the JMH default values.

Our approach of dynamically reconfiguring the number of warmup iterations requires several
decision points where the warmup phase is either stopped or continued. The JMH default num-
ber of warmup iterations is five in the current JMH version. The problem is that the decision of
whether the warmup phase is continued is based on the stability of the last few data points. We
decided to compare the stability of the last five data points to reduce the effect of outliers. How-
ever, if at least five data points are required, we cannot reduce the number of warmup iterations.
This results in a change of the default configuration from five 10-seconds warmup iterations to
50 one-second warmup iterations to achieve sufficient decision points. We decided to use one-
second iterations, as they were the default value in previous JMH versions.

Figure 5.1 visualizes how the reconfigured approach differs from the standard execution.
In this illustrative example, five forks with 10 warmup and 10 measurement iterations are per-
formed. The execution of the standard approach is summarized in Figure 5.1a. The visualization
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(b) reconfigured execution

Figure 5.1: Execution strategy visualization: A blue box is a warmup iteration, an orange box is a
measurement iteration, a dotted box is a skipped iteration, a green line indicates that the stoppage
criteria is reached, and a red line indicates that the result is not stable

should be read from left to right and from top to bottom. As such, the first fork is spawned and
10 warmup iterations are executed. Afterward, 10 measurement iterations are performed, and
the result of the measurement phase is stored. The next four forks are executed in the same way.
In the reconfigured execution, the number of warmup iterations and forks are dynamically de-
termined, as presented in Figure 5.1b. However, some restrictions remain. At least five warmup
iterations and two forks are executed. Therefore, the first fork is spawned and five warmup itera-
tions are executed. From now on, after each warmup iteration, the stoppage criteria are computed
and compared with the threshold. The vertical line indicates the result of the statistical evalua-
tion. After the fifth and sixth iteration, the result is not sufficiently stable, meaning that the result
characteristic still changes after each new executed iteration. However, after the seventh iteration,
the stability threshold is reached and the measurement phase begins. Exactly 10 measurement it-
erations are executed. Therefore, in the first fork, three iterations are saved, because the warmup
phase is stopped earlier. In the first statistical evaluation of the second fork, stable results are al-
ready produced. After the second fork’s measurement phase, we now additionally check whether
the results from the measurement phases over all executed forks are stable and no more forks are
necessary. The horizontal red line indicates that this is not the case, and that more forks are re-
quired. In the third fork after 10 warmup iterations, the results remain unstable. However, the
maximum number of warmup iterations is reached, and the measurement phase is started. The
command line and the output file contain a warning that, in a fork, the warmup phase was too
short and the stability threshold was not reached. After the fourth fork, the results are stable, and
the fifth forks is skipped.

5.1.1 Stoppage Criteria
In this section, we seek to explain the stoppage criteria. This includes how we measure the stabil-
ity of a performance distribution, based on which we decide on the result’s quality. A distribution
is stable if adding new data points does not change the distribution characteristics. As an exam-
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ple, Figure 5.2 presents a significant difference between the two distributions of benchmark A.
The blue coloring represents the first n iterations. Between the two distributions, one new iter-
ation n + 1 is executed. The orange coloring represents the first n + 1 iterations. A significant
mean shift occurs as the invocation time in iteration n + 1 is smaller than the previous ones. For
benchmark B, the characteristic change is too small to be significant. However, small differences
remain; for example, the standard deviation is a bit higher after n + 1 iterations.

benchmark A benchmark B

in
vo

ca
tio

n 
tim

e

performance over the first n iterations
performance over the first n + 1 iterations

Figure 5.2: Illustrative example on what stability of a distribution means

We decided to support three different stoppage criteria: The first is the CoV, where the cal-
culation is explained in Section 2.2.1. Figure 5.3 illustrates the CoV values over the number of
iterations. The value in iteration nine is the variation over the data points of the first nine iter-
ations. Depending on the benchmark task, the CoV converges to different values. We do not
analyze the absolute value. Therefore, we compute the delta between the last five points and
check whether it is below a pre-defined threshold. As an example, the CoV in iteration 13 equals
0.052. We compute the absolute difference to iteration 12 (0.039), iteration 11 (0.052), iteration 10
(0.045) and iteration 9 (0.050). The maximum delta value over the last data points equals 0.007.
We terminate the warmup phase if the maximum delta value of the last five data points is below
0.01 for the CoV.
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Figure 5.3: Illustrative example on how the stoppage criteria is computed
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The second criteria is the CI width. We modified the practice proposed by Georges [20]. They
stopped the measurement if CI width divided by the mean was smaller than 0.03. Instead, we
used bootstrapping CI, as explained in Section 2.2.2. Such CIs are more variable and often larger.
As for the CoV, we calculated the absolute delta values over the last five data points and used 0.03
as threshold. We reused the Performance (Change) Analysis tool1, which computes the CI using
bootstrapping. We always used a confidence level of 99%. The stoppage criteria employs 1’000
bootstrap simulation, as the performance overhead of the statistical evaluation would otherwise
be too large.

The final criteria is the Kullback-Leibler divergence, as previously employed by He et al. for
load tests [23] and previously explained in Section 2.1.7. We modified the computation a bit,
though. They partitioned each distribution into 1’000 strips. However, if the distribution pos-
sesses outliers, 1’000 strips are not enough. Increasing the number of strips produces a higher cal-
culation time for the kernel density estimation technique with the Gaussian kernel. We decided
to take 1’000 strips, but limit the analysis to a certain range. Our minimum point isQ1−1.5∗IQR,
and the maximum point is Q3 + 1.5 ∗ IQR, where IQR is the Interquartile Range (IQR), Q1 is the
first quartile, and Q3 the third quartile. If the average p-value of the last five comparison is larger
than the threshold of 0.99, the execution is stopped.

As the statistical evaluation is always performed between iterations, the total execution time
is higher. To reduce the computational overhead, the number of data points is reduced by only
taking a weighed sample of 1’000 points for the CoV and divergence criteria and 10’000 data
points for the CI width criteria. Additionally, outliers that are more than one magnitude higher
than the median are removed, because they exert too much influence on the mean.

5.1.2 Modified JMH Implementation
On GitHub, we provided the modified JMH implementation for version 1.212. We added an ad-
ditional benchmark mode named “reconfiguration.” We provided the three previously described
reconfiguration modes: CoV, CI width and divergence. To use the modified JMH implementa-
tion, the version must be published to the local maven repository with mvn install. Now, other
projects can reuse this version by defining a dependency with the groupId org.openjdk.jmh,
artifactId jmh-core and the version 1.21-Reconfigure.

We added new annotations, annotation properties and CLI flags. Table 5.1 lists the new possi-
bilities. First, the mode enum is extended with the option Mode.Reconfigure. Additionally, a
developer can set the minimal number of forks and warmup iterations. Then the first n - 1 statis-
tical evaluations are skipped. The reconfiguration mode is the stoppage criteria where the options
— ReconfigureMode.COV, ReconfigureMode.CI and ReconfigureMode.DIVERGENCE—
can be chosen. For each, the threshold can be set as a property in the @Reconfigure an-
notation. The CoV and CI threshold value can be any non-negative double. The divergence
threshold value must be a probability between zero and one. The existing annotation properties
@Fork(value=5), @Fork(warmups=0) and @Warmup(iterations=50) are used as upper-
bound execution configuration if the Mode.Reconfigure is executed.

Lastly, we modified the console and JSON output. Similar information is added. If a fork
is terminated earlier, the current iteration number, the stability metrics and the corresponding
threshold are printed on the console. In the file output, the stability values of the stoppage criteria
are stored. If the maximum number of forks or warmup iterations is reached, and the results are
still not stable, a warning is printed.

1https://github.com/chrstphlbr/pa
2https://github.com/stewue/jmh

https://github.com/chrstphlbr/pa
https://github.com/stewue/jmh
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Description Annotation CLI
Minimum number of forks @Fork(minValue=2) -mf 2
Minimum number of warmup forks @Fork(minWarmups=0) -mwf 0
Minimum number of warmup iterations @Warmup(minIterations=5) -mwi 5
Reconfiguration mode @Reconfigure(mode=COV) -rm cov
CoV threshold @Reconfigure(covThreshold=0.01) -rcov 0.01
CI width threshold @Reconfigure(ciThreshold=0.03) -rci 0.03
Divergence threshold @Reconfigure(kldThreshold=0.99) -rkld 0.99

Table 5.1: Added and modified JMH annotations and CLI flags

5.1.3 Project Selection
Executing benchmarks represents a time-consuming task. We cannot execute all benchmarks
found in RQ1. Instead, we selected a subset of projects where all benchmarks are executed3.
Table 5.2 summarizes the chosen projects. In total, 3’969 benchmarks are chosen to analyze RQ2.
This comprises 29.6% of the 13’387 benchmarks. The selected projects derive from different do-
mains. On one hand, there are popular projects with numerous forks and stars, and on the other
hand, smaller projects are also selected. Additionally, we also executed the benchmarks of JMH
itself and the official Java Development Kit (JDK) benchmarks from OpenJDK. The analysis is
performed on the latest released version where the commit hash is specified in the version col-
umn. The Java target version specifies the Java version employed by the project. All projects
are executed with JDK version 8, except apache/logging-log4j2, where JDK version 13 is used for
the benchmarking. The execution time column contains the time to execute all benchmarks with
the standard configuration. Some projects feature considerable difference between the effective
execution time and the execution time with the default configuration.

5.1.4 Data Collection
Previous literature has proposed executing performance tests on a bare-metal machine [5, 47].
Resources should be exclusively reserved for the benchmark execution. Our machine possesses
a 12-core Intel Xeon X5670 @2.93GHz CPU with 70 GiB memory, and it runs ArchLinux with a
Linux kernel version 5.2.9-1-1-ARCH. It uses a Samsung SSD 860 PRO SATA III disk. During the
benchmark execution, no other user-space application except ssh was run. We did not explicitly
disable hardware optimizations. We also want to note that the benchmark execution never fully
utilized the resources.

We overrode all benchmark execution configurations via CLI arguments to obtain comparable
results between different benchmarks. We executed each benchmark once with the configuration
of five forks, zero warmup iterations and 100 one-second measurement iterations. We do not
reuse the annotations present in the code, because the approach can only save time if sufficient
warmup iterations and forks are performed. For only 4 benchmarks the execution time is reduced.
For the benchmarks org.openjdk.bench.java.security.MessageDigests.digest and
org.openjdk.bench.javax.crypto.Crypto.{encrypt, decrypt} from the project jmh-
jdk-microbenchmarks the execution time is reduced from 750 to 500 seconds. For the benchmark
org.openjdk.jmh.benchmarks.ScoreStabilityBench.test from the project jmh-core-
benchmarks the custom execution time is 5’000 seconds. Later, we read the JSON output file to
obtain the data for evaluation.

3Except failing benchmarks (see Appendix C)
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5.2 Results
In this section, the different aspects of the performance result are presented. First, the effect of
shortening the measurement phase is illustrated. Next, the result quality of the reconfiguration
approach is explored. Lastly, the influence on the execution time is discussed.

5.2.1 RQ2.1: Length of Measurement Phase
Theoretically, after the warmup phase, the benchmark has reached a steady state, and one itera-
tion is sufficient to obtain a sound result. As described by Gil et al. [21], there is no single steady
state, and the results vary between different iterations. The question thus becomes how many
measurement iterations are needed to achieve a result possessing a negligible difference to the
default of 50 measurement iterations. To this end, we computed two A/A tests: First, for how
many benchmarks the Wilcoxon and Cliff’s Delta effect size test detect a significant distribution
change compared to the execution with more measurement iterations. We employ a confidence
level of 99%. If the p-value of the Wilcoxon test is smaller than 0.01, there is a significant differ-
ence. However, a significant difference between two distributions is not classified as significant
if the Cliff’s Delta effect size is negligible (|d| < 0.147), as defined by Romano et al. [45]. Second,
the CI ratio between first n measurement iterations and all 50 iterations is computed with 10’000
bootstrap simulations. If the ratio is at least 1% significantly different, we classify the distribu-
tion as significantly different. We compare 5, 10, 15, 20 and 25 iterations with the baseline of 50
measurement iterations.
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Figure 5.4: How often does a shortened measurement phase end in a significant different distri-
bution

Figure 5.4 summarizes the number of benchmarks for which the A/A tests revealed a signif-
icant difference between the first n iterations and the baseline of 50 iterations. First, we analyze
a single fork in Figure 5.4a. In 17.2% of the benchmarks, the CI ratio test revealed a significant
difference of at least 1% between the first 5 and 50 measurement iterations. The more iterations
are added, the fewer benchmarks produce significant changes. A trade-off exists between the
number of measurement iterations that result in a higher execution time and the result quality.
Running 25 measurement iterations ends in only 9.4% of benchmarks where a significant change
is detected. With only 10 iterations, the CI ratio criteria detect a difference greater than 1% for only
13.7% of benchmarks. The combination of Wilcoxon and Cliff’s Delta effect size is a bit worse with
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17.9% after 10 iterations. Figure 5.4b demonstrates that multiple forks reduce the detection rate of
significant changes for both A/A tests. Running multiple forks is important, as different steady
states are considered. Especially for the combination of Wilcoxon and Cliff’s Delta, only half as
many significant different distributions are detected. The CI ratio detection rate is also decreased
by running more forks. With the decision to run 10 measurement iterations to evaluate the recon-
figuration approach in 12.1% of the benchmarks, the shortened measurement phase results in a
significantly different distribution using the CI ratio test. After 10 iterations, the CI ratio curve is
quite flat, and running more iterations reduces the number of significant differences only slightly.

5.2.2 RQ2.2: Result Quality
For each stoppage criteria, two A/A tests are computed to compare the result quality between
the standard and reconfiguration approaches. We apply two A/A tests — the confidence interval
ratio and the combination of Wilcoxon and Cliff’s Delta effect size — as in the previous section.
There is no significant difference in CI ratio if the ratio is smaller than 1%. For the other A/A test,
the two groups significantly differ if the effect size |d|≥ 0.147 and the p-value of the Wilcoxon test
is p < 0.01.

In Table 5.3, the results of the A/A tests are summarized to illustrate how often, for each
stoppage criteria, a significantly different result is detected between the reconfigured and stan-
dard approach. Both tests identify the CoV stoppage criteria as the worse criteria of them all.
In general, the Wilcoxon and Cliff’s Delta test detect more significant changes than the CI ratio
comparison. If we examine the CI width as stoppage criteria, the CI ratio is larger than 1% in
only 12.4% of the benchmarks. The Kullback-Leibler divergence produces the best results for the
Wilcoxon and effect size test. During the evaluation, we noted that the null hypothesis of the
Wilcoxon test is often rejected, as the p-value is much smaller than 0.01, but the effect size is often
negligible.

CoV CI width Divergence
Wilcoxon + Cliff’s Delta effect size test 36.4% 28.2% 24.3%
CI ratio test 21.2% 12.4% 20.4%

Table 5.3: Significantly different result distribution between the standard and reconfigured exe-
cution

CoV CI width Divergence
Change rate 3.1%±8.1% 1.4%±3.8% 2.4%±7.4%

Table 5.4: Change rate between standard and reconfigured execution

Table 5.4 illustrates the mean change rate per stoppage criteria. Again, the CoV stoppage
criteria is the worst, with an average change rate of 3.1%. If we examine the CI width as stoppage
criteria, it offers the best average change rate at 1.4%. In between lies the divergence criteria.
Next, the CI ratio shift between the standard and reconfigured execution result is analyzed. The
Performance (Change) Analysis tool returns the mean, lower bound of the CI CIL and upper
bound of the CI CIU at the confidence level of 99%. The minimal and maximal CI ratio shift is
calculated. First, the absolute lower and upper bound is calculated in Formula 5.1 and 5.2.

CILABS
= abs(1− CIL) (5.1)

CIUABS
= abs(1− CIU ) (5.2)
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This results in the minimum and maximum CI ratio shift as defined in Formula 5.3 and 5.4.

min =

{
CIL ≤ 1 and CIU ≥ 1, 0

else, min{CILABS
, CIUABS

}
(5.3)

max = max{CILABS
, CIUABS

} (5.4)

In Figure 5.5, the minimum, mean and maximum CI ratios are visualized. The CoV have a
mean change rate of 3.3%±8.2%, a median of 0.9% and a IQR of 2.3%. The average minimum is
1.8%±6.8% and the average maximum is 5.2%±10.3%. The average mean for the CI width stop-
page criteria is 1.6%±3.9%, while the average minimum is 0.7%±3.1% and the average maximum
is 2.8%±5.3%. The median is 0.6% and the IQR is 1.1%. The divergence have an mean change rate
of 2.6%±7.8%, a median of 0.7% and a IQR of 1.7%. The average minimum is 1.5%±5.5% and the
average maximum is 4.1%±1.2%. The shift of the CI ratio demonstrates a pattern similar to the
change rate. We can conclude that the CoV criteria produces the most different results compared
to the standard approach. The CI width stoppage criteria is often a bit better than the divergence
analysis.

Figure 5.6 presents the change rate per project and stoppage criteria over all evaluated bench-
marks. In the remainder of this section, we primarily analyze the divergence stoppage criteria.
The other two stoppage criteria possess a similar characteristic. The CI width usually has a lower
change rate, while the CoV criteria is worse. For the divergence, the median change rate over all
projects is just 0.6% compared to the mean of 2.4%. Meanwhile, 78.2% of the benchmarks feature
a change rate smaller than 2%. However, the remaining benchmarks often possess change rates
of over 5%. This is possibly due to the benchmarks not being in a steady state and the warmup
phase being stopped too early. These benchmarks explain the high standard deviation of the
change rate.

Clear differences can be seen between different projects. The jmh-jdk-microbenchmarks and jmh-
core-benchmarks projects are both written by the OpenJDK development team, but by different
authors. We can expect that the OpenJDK team possesses sufficient knowledge on how the JDK
internally works and optimizes the execution in order to write good state-of-art JMH benchmarks.
However, the third quartile Q3 from the jmh-core-benchmarks project is 0.5%, while for the jmh-
jdk-microbenchmarks projects, Q3 is 1.7%. Most benchmarks of the jmh-core-benchmarks project are
simple, so no complex state objects are involved, and the benchmark method is normally only
one line long. Benchmarks of the jmh-jdk-microbenchmarks project often use larger state objects
and perform complex interactions. A high change rate does not imply that a benchmark is poorly
written. Depending on the task performed by a benchmark, the scattering of results is sized
differently.

The JCTools/JCTools project provides concurrent data structures not offered by the JDK. Lit-
erature warns that synchronization and memory sharing can affect the benchmarking perfor-
mance [25]. Wakart demonstrated that false sharing influences the JMH results [54]. The bench-
marks of JCTools/JCTools are more variable than the average benchmark. The project with by far
the highest change rate is raphw/byte-buddy. With 39 benchmarks, the project represents a small
test suite. A manual analysis of the results indicates that 18 (46%) of the benchmarks feature a
change rate smaller than 2%. We can conclude that, depending on which resources a benchmark
is using and the task performed by the benchmark, the result quality differs.

Next, we analyze whether a benchmark’s change rate correlates with the number of executed
forks. If such a correlation exists, this indicates that dynamically determining the number of forks
negatively influences result distribution. For the divergence stoppage criteria, the correlation
value equals -0.08 at a significant level of 0.01. We can conclude that dynamically reconfiguring
the number of forks exerts no negative effect on the performance result.
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Figure 5.5: CI ratio shift per stoppage criteria
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Figure 5.6: Change rate per project and stoppage criteria
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Following this, we analyze the correlation between mean invocation time and change rate. If
a positive correlation exists, this means that a benchmark with a short invocation time produces
more stable results. For the CoV and divergence stoppage criteria, we can detect a weak correla-
tion of 0.20 and 0.25, respectively, at a significant level of 0.01. A part of this can be explained by
the fact that, for benchmarks that can only be invoked a few times per second, insufficient data
points are available, producing an unstable mean invocation time from which a higher change
rate follows.

CoV CI width Divergence
After 50 warmup iterations too variable 1.0% 46.7% 0.8%
After 5 forks too variable 12.0% 37.9% 46.4%

Table 5.5: Reconfigured execution never reaches stable point

Lastly, we analyze how often the statistical evaluation does not stop within 50 iterations. Table
5.5 presents the results. Either the benchmark does not produce stable results, or the stability
threshold is too restrictive. On one hand, the divergence and CoV stoppage criteria rarely reach
the limit of 50 warmup iterations. In only 1.0% and 0.8% of the benchmarks, respectively, the
evaluation revealed that the results are too variable inside a fork. On the other hand, in 46.7%
of the benchmarks, the CI width delta is too large. A similar analysis can be conducted to check
if, after five forks, the evaluation indicates that more forks are required to obtain a stable result.
The results inside the forks are often less variable than between forks. The maximum number of
forks is, at five, relatively small. Only one fork that is significantly different blocks the evaluation
from stopping earlier. For 12.0% of the benchmarks, the CoV is too large after five forks. The
CI width delta is, at 37.9%, still larger than the threshold. The divergence criteria compares the
distribution curve. Adding one fork that is significantly a bit different exerts a greater influence
on the probability density function than on the mean and standard deviation. Therefore, for 46.4%
of the benchmarks, the divergence criteria would like to run more forks.

For most benchmarks, the result quality is not significantly different when using the recon-
figuration execution approach. The results of CI width criteria differ the least compared to the
standard execution, followed by the divergence stoppage criteria. Overall, the CoV analysis pro-
duces the worst results. Depending on the benchmark task, the difference is measurably stronger
or weaker.

5.2.3 RQ2.3: Time Saving
First, we wish to measure the performance overhead of the statistical evaluation during the exe-
cution. To this end, we execute apache/logging-log4j2 to approximate the overhead. As baseline, we
execute the benchmark with JMH version 1.21 and sample mode. Next, the test suite is executed
for each stoppage criteria with the 1.21-reconfigure version. We measured the end-to-end
execution time from the command line on a per-benchmark level. By dividing the end-to-end
value with the stoppage criteria by the baseline, we obtain the performance overhead as a per-
centage. We expect that the performance overhead is similar for all benchmarks, as the number of
data points should not strongly influence the computation time of the statistical evaluation. It is
important to note that the measured overhead factors are only valid if one-second iterations are
used and may differ with other hardware.

Table 5.6 presents the performance overhead o for each stoppage criteria. For all stoppage
criteria, the standard deviation is less than 1%. This means that no large difference exists between
benchmarks. As such, we can use the measured performance overhead o to estimate the execution
time of any benchmark.
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CoV CI width Divergence
0.88%±0.34% 10.92%±0.63% 4.32%±0.65%

Table 5.6: Performance overhead per stoppage criteria

If we compare the effective execution time of the standard execution with the estimation in
Formula 2.3, we obtain the inaccuracy of the approximation. The difference equals 1.8%±2.3%.
There are various reasons for this difference: First, the time per iteration is a minimal value. If this
limit is reached, no new invocation is started, but the running invocation is not stopped. Second,
this time also includes the overhead of the JMH framework for parsing, communication between
threads and so on.

We extended the Formula 2.3 to estimate the execution time with the reconfiguration ap-
proach. From this, we obtain Formula 5.5. The variable forks contains the set of all executed
forks, while wif refers to the number of warmup iterations taken in this specific fork.

effectiveExecutionT ime =
∑

f∈forks

(1 + o) ∗ wif ∗ wt+mi ∗mt (5.5)

As an example using the CoV stoppage criteria, we set o to 0.88%. After two forks, the exe-
cution is terminated by the stoppage criteria. In the first fork, 15 warmup iterations are required
until the statistical evaluation stops the warmup phase. In the second fork, only nine warmup
iterations are performed. The warmup iteration time as well as the measurement iteration time
is one-second. In the measurement phase, 10 iterations are executed. Therefore, the effective
execution time would be as follows:[

(1 + 0.0088) ∗ 15 ∗ 1 + 10 ∗ 1
]
+
[
(1 + 0.0088) ∗ 9 ∗ 1 + 10 ∗ 1

]
= 44.21

Project
Time saved

CoV CI width Divergence
byte-buddy 4.42h (81.7%) 2.62h (48.4%) 4.22h (77.8%)
jctools 17.42h (84.8%) 11.45h (55.7%) 17.13h (83.3%)
jmh-jdk-microbenchmarks 157.32h (82.0%) 135.57h (70.7%) 154.41h (80.5%)
jenetics 4.78h (86.0%) 3.37h (60.7%) 4.52h (81.4%)
jmh-core-benchmarks 12.76h (83.5%) 12.69h (83.1%) 12.42h (81.3%)
log4j2 54.56h (77.0%) 39.12h (55.2%) 55.96h (79.0%)
protostuff 3.43h (79.6%) 2.91h (67.7%) 3.44h (79.8%)
rxjava 147.91h (83.1%) 121.55h (68.3%) 138.68h (77.9%)
squidlib 43.07h (84.5%) 30.70h (60.2%) 41.11h (80.7%)
zipkin 6.17h (72.8%) 4.93h (58.2%) 6.59h (77.8%)
Total 451.84h (82.0%) 364.92h (66.2%) 438.48h (79.5%)

Table 5.7: Time saved per project and stoppage criteria

Formula 5.5 enables calculating the execution time with the reconfiguration approach for each
stoppage criteria. In Table 5.7, we aggregate this information per project and stoppage criteria.
The divergence and CoV saved a similar amount of time with 79.5% and 82.0%, respectively, com-
pared to the standard execution. This means that around one fifth of the initial time is utilized.
For both criteria, no large differences are identified between individual projects. The largest out-
lier is openzipkin/zipkin, where the CoV can save only 72.8% of the execution time. With the CI
width stoppage criteria, an average of 66.2% of the time can be saved. Additionally, between the
projects, large differences exist. For jmh-core-benchmarks, over 83.1% of the time be saved, but for
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Figure 5.7: Time saved compared to the default execution per stoppage criteria

the raphw/byte-buddy project, this equals only 48.4%. The CI width stoppage criteria reacts more
quickly to small characteristic changes, and thus takes longer until it stops.

Figure 5.7 illustrates how much time is saved for each stoppage criteria. As an example, 50%
or more time is saved using the CI width stoppage criteria for 69% of the benchmarks. If we
compare the different curves, we notice the following: For 25% of the benchmarks where the most
execution time can be saved, all three criteria perform equally. From now on, the CoV saves a bit
more time compared to the divergence criteria. Until 60% of the benchmarks, the CI width criteria
is not much worse than the divergence. For the last 40% of the benchmarks, the CI width takes
much more time than the other two criteria. The jump by 35% time saved for the CI width occurs
because, even if the warmup phase is never stopped earlier in all forks, time is still saved, because
we always execute only 10 measurement iterations. The triangle marker in the plot reveals the
time saved due to the reduced number of measurement iterations.

CoV CI width Divergence
Average number of warmup iterations 18.5±9.4 34.6 ±16.6 14.1±6.9
Average number of forks 3.1±1.2 3.3± 1.4 4.1±1.2

Table 5.8: Reconfigured execution characteristic

Table 5.8 presents how many iterations and forks on average are performed by each stoppage
criteria. The divergence criteria employs the fewest iterations with 14.1. A few more iterations
are conducted by the CoV criteria with 18.5. Almost twice as many iterations are performed by
the CI width approach with 34.6 iterations. The standard deviation of all three criteria is large,
because depending on the benchmark, the number of iterations varies considerably. The number
of iterations cannot be considered in isolation. If 50 iterations are necessary per fork, but only
two forks are needed, this may be better than five forks using 40 iterations. The CoV and CI
width criteria require, on average, 3.1 and 3.3 forks, respectively. It is important to note here that
we always execute at least five iterations and two forks. With 4.1 forks, the divergence criteria
executes more forks on average.

To conclude, the CoV stoppage criteria demonstrates the smallest overhead, while the CI
width possesses the largest one. Depending on the stoppage criteria, between 66.2% and 82.0% of
the execution time can be saved using the novel reconfiguration mode in JMH. Often, the number
of warmup iterations is reduced more than the number of forks.
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Discussion

In this chapter, the findings of the evaluation are discussed first. In the second segment, the
threats of validity and limitations of this thesis are addressed.

6.1 Implications and Main Lessons Learned
This section discusses the behavior patterns for how developers configure their benchmarks and
deal with long execution times. Following this, we assess the JMH implementation and its de-
fault values, and whether reconfiguration can optimize the result quality execution time trade
off. Lastly, we discuss the discovered iteration length phenomenon.

6.1.1 Behavior Patterns
We expected popular projects with numerous contributors to include someone who is an expert in
performance engineering. Such a performance engineer knows how to write and configure state-
of-the-art benchmarks. The correlation analysis revealed that projects with more stars, forks,
contributors and so on do not configure benchmarks differently and use the full power of the
JMH features. The question thus becomes why some projects consequently use features such
as blackholes and return values, while others do not. An estimated 27.7% of the benchmarks
possess neither a non-void return type nor a Blackhole. This raises the question of how JVM
optimizations are avoided. A further study should investigate how developers learned to write
software microbenchmarks and why numerous projects do not use the full power of performance
testing frameworks. A possible explanation is that not all tutorials focus on the framework’s
conceptual details and only explain the basics on how to write benchmarks.

For 24.5% of the benchmarks, the developer did not set any execution configuration. A possi-
ble explanation is that they did not know what good configurations are and did not modify the
default configuration. Another open question concerns why default values are explicitly set as
user-defined values. This can partly be explained by the default configuration update of JMH
version 1.21, where previously set execution parameters become useless, as after the update, they
are equal to the default value, but the annotations are not removed. A total of 2’268 (16.9%) of the
benchmarks set all configuration parameters (except warmup forks) even if some of the param-
eters were equal to the default value. The advantage of this is that, if JMH updates the default
configuration, the execution configuration of these benchmarks will not passively change.

The analysis of the number of forks revealed that, if a user-defined non-default value is used, a
developer often decreases the value. The most commonly chosen value is only one fork. However,
in the analysis of the reconfiguration approach, one finding was that multiple forks are important
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to cover different steady states. This raises the question of whether all developers understand
why forking is performed or whether they underrate the importance of multiple forks. We see
here a clear difference between the state-of-the-art [13, 21] and the state-of-practice. It must be
better explained to practitioners why they should be careful when reducing the number of forks.
JMH should add warning messages if the execution configurations contradict best practices.

Table 6.1 lists all projects that use warmup forks. Only eight (1.1%) of the projects feature at
least one benchmark running a warmup fork. The projects can be categorized into two groups:
The first group comprises one-shot performance tests comparing different implementations of
the same functionality. For example, dryuf/dryuf-concurrent compares the listable future imple-
mentation of the JDK with Guava1 and Spring2. Such projects are written once and not regu-
larly executed. The execution time is not a critical factor as in a continuous integration pipeline.
We want to note that dryuf/dryuf-concurrent, kvr000/zbynek-concurrent-pof and kvr000/zbynek-java-
expimplemented are all written by the same author. The second group consists of database-related
systems seeking to warm up system caches. For the remaining two projects, we cannot explain
why warmup forks should be helpful. Further analysis is necessary to investigate whether the
benchmarks which perform warmup forks produce better results compared to cases where the
same benchmarks are executed without warmup forks. In any case, the JavaDocs and help com-
mand description of JMH should be improved, because they do not sufficiently explain why
warmup forks are helpful and why they are disabled by default.

Project
# Benchmarks
performing
warmup forks

Total
# benchmarks Area

coder-press/crazy-soap 2 2 Implementation comparison
dryuf/dryuf-concurrent 50 50 Implementation comparison
kvr000/zbynek-concurrent-pof 44 44 Implementation comparison
kvr000/zbynek-java-exp 6 22 Implementation comparison
hazelcast/hazelcast 4 66 In-memory data grid
spotify/sparkey-java 5 10 Key/value storage library
svenruppert/rapidpm-microservice 2 2 Microservice framework
pdemanget/examples 2 2 Demo project

Table 6.1: Projects which perform warmup forks

The analysis of the benchmark update frequency reveals that execution configurations are
chosen once, and then no longer questioned. The method body of a benchmark is also rarely
updated. A developer can argue that if a benchmark is properly configured, no configuration
change is necessary. However, after the default configuration was changed with JMH version
1.21, we expected most projects check and modify the configurations. We did not see this phe-
nomenon in practice. However, the default execution time per benchmark was increased from
400 to 500 seconds. If a 400-second execution time was sufficient in the past, it is unclear why the
benchmark should run longer and waste time. From this, we can conclude that the developers
simply updated the JMH dependency without realizing the effect on the test suite execution time
and result quality.

It is beyond the scope of this study to examine how regular performance tests are executed.
If benchmarks are regularly executed and evaluated, incorrect configuration is more likely to be
detected and fixed. For example, the test suite of kiegroup/kie-benchmarks features a total execution

1https://github.com/google/guava
2https://spring.io

https://github.com/google/guava
https://spring.io
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time of 7.4 years. In the survey of Bezemer et al., one third of the participants performed perfor-
mance testing on at least a weekly basis [7]. An open question concerns how often microbench-
marks are executed. We have doubts that all projects regularly execute their benchmarks and
evaluate their results, as some execution configurations are obviously wrong.

To execute the reconfigured benchmarks, we reduced the measurement phase from 50 to 10
seconds, which for most benchmarks ends in a negligible performance change. Therefore, with
the reconfigured approach, more warmup time than measurement time is performed. However,
in the analysis of RQ1.2, the warmup time took longer than the measurement time in only 17.9%
of the benchmarks. Developers tend to neglect the importance of warmup phase.

A number of projects utilized an outdated JMH version. Previous research has indicated a
general problem of updating third-party dependencies [46]. An update of the JMH dependency
not only influences the library’s API; bugs are also fixed, which may affect the performance. If
benchmarks are executed on bare-metal machines, the results can be compared to historical ex-
ecutions in the same environment. However, if a dependency update affects the performance,
the results after the update can then no longer be compared with historical information that uses
an old version. Practitioners solved this problem by skipping some versions, but they occasion-
ally update to the newest version. For example, apache/logging-log4j2 updated to version 1.1.1 in
September 2014. In January 2018, they directly updated to version 1.19, and the last update in
July 2019 switched to 1.21. This raises an open questions of how many projects execute their tests
on bare-metal machines so that rarely updating JMH makes a difference.

6.1.2 Dealing with Time Intensive Executions
When evaluating the execution time, we noted that if the configuration was changed, it was often
not just moderate changes. Either the default values are extremely pessimistic, the developers
lack sufficient knowledge to select good configurations, or they realized that executing the entire
test suite takes too long, and so they deliberately reduced the parameters. The reconfiguration
approach reveals that there remains considerable room to reduce the execution time. However,
determining a priori how long the benchmark execution should take is non-trivial. For most
benchmarks, the default values are pessimistic and time is wasted. The state of practice analysis
revealed that numerous benchmarks reduce the execution time by over a factor of four. However,
an execution of one benchmark often still takes more than one minute. Executing the entire project
test suite also requires considerable time, and executing them as part of the continuous integration
pipeline remains unfeasible.

As mentioned in the previous section, the number of forks represents a popular configuration
option employed by developers to reduce the total execution time. JMH supports different bench-
mark modes to measure performance. As each additional mode increases the total execution time,
usually only one mode is employed. Analyzing benchmarks where non-default execution config-
urations are set, we observe that the median warmup time per fork equals five seconds, while the
median measurement time per fork equals eight seconds. To conclude, all configuration param-
eters are somehow utilized to reduce a benchmark’s total execution time. Typically, the number
of forks and time per iteration are reduced. However, the combination of all modified execution
parameters often ends in a considerably smaller execution time.

6.1.3 Recommendations to Developers
Based on the identified behavior patterns, we would like to remind developers of a few things:
First, always avoid JVM optimizations. Use either the Blackhole class provided by JMH or the
return value of the benchmark method to consume all intermediate results. Multiple forks also
represent an important factor for obtaining sound results, as different forks reach different steady
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states. RQ2.1 revealed that if a steady state is reached, a short measurement phase is sufficient
to obtain a sound result. Updating the JMH dependency makes the comparison with historical
execution difficult, as bugs in the framework are fixed, which may influence the performance.
Additionally, if a developer updates to a newer JMH version, he should check whether the de-
fault execution configuration was changed. If a benchmark does not possess user-defined values,
the execution configuration will be passively changed. A developer should also consider whether
the old default values should be set as user-defined values, or if the benchmarks should be exe-
cuted in the future with the new default values. The JMH sample mode offers an advantage of
enabling more rigorous performance evaluation. Microbenchmarks are not normally distributed.
The performance distribution features more details than the mean and standard deviation and
can be used as input for numerous statistical tests.

6.1.4 JMH Implementation and Default Values
We identified 94 benchmarks that run both modes, sample and average time. Technically, both
modes work similarly—only the output format differs. Additionally, the throughput can be calcu-
lated from the average time, because it is the inverse. A total of 203 benchmarks run the through-
put mode first, and afterwards the average and/or sample mode. The problem is that JMH se-
quentially processes multiple modes. However, if all four modes are selected, only two separate
executions are necessary: First, the sample mode from which the throughput and average time
can be calculated, and second, the singleshot mode, which measures the cold start performance.
We suggest that the JMH implementation should be modified.

With JMH version 1.21, the default number of forks is decreased from 10 to 5 [50]. For most
benchmarks, five forks are sufficient. However, we cannot rule out that some benchmarks may
produce better results if more than five forks are executed. Before JMH update 1.21, a single fork
possessed a warmup time of only 20 seconds. The OpenJDK development team stated two rea-
sons for changing the values with version 1.21 [51]: First, 20 one-second iterations produce noisy
data. We can confirm that 20 second warmup times per fork is not sufficient, as demonstrated
by the evaluation of the number of warmup iterations required for the reconfiguration approach.
Second, some environments feature bad time-to-performance. In some rare cases, one-second it-
erations are too short due to the large workload. However, this raises the question of whether
the default value should thus be modified for some rare cases. The evaluation of the number of
measurement iterations revealed that millions of data points are not necessary to achieve a sound
result. Therefore, the measurement phase can be shortened. One-second iterations compared to
10-second iterations offer the advantage of enabling more fine-tuned configuration modifications.

6.1.5 Result Quality Execution Time Trade-Off
Choosing good execution parameters is difficult, because developers desire to obtain meaningful
results on one hand, but on the other hand, to also not waste time. In the best case, benchmarks are
executed until sound results are produced. However, JMH does not provide any mechanism to
easily identify good execution configurations. We thus implemented an optimization that applies
stoppage criteria during the execution.

If we compare the reconfigured results with the baseline, we can determine that, depending on
the necessary result quality, such a reconfiguration is feasible. Depending on the stoppage criteria,
the performance difference varies in strength. The CI width possesses the smallest distribution
change compared to the default execution. On average, there is a mean change rate of 1.4%, but
66.2% of the time is still saved. We want to note that the utilized bootstrapping simulation was
written in Go, and a native Java implementation would require more computation time, because
Go code is directly compiled to machine code, which is faster [43].
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The CoV and the Kullback-Leibler Divergence saved a similar amount of time, while the di-
vergence results are closer to the results of the standard execution. We do not see any advantages
in the CoV stoppage criteria, because the divergence criteria are better across all aspects. The
decision of choosing the divergence or CI width stoppage criteria depends on how accurate the
result should be.

For the CI width and divergence criteria, in over one third of the benchmarks, the stoppage
criteria warns that the stability threshold was not reached after five forks. This indicates that
either the benchmark results are not stable or the stoppage criteria already reacts to small charac-
teristic differences. We compute the mean change rate for the CI width criteria and split them into
two groups. The first group comprises benchmarks where we receive a warning, and the second
group consists of benchmarks that are stable. Stable benchmarks possess a mean change rate of
1.3%±4.0%, while the other benchmarks feature a mean change rate of 1.4%±3.4%. As no large
difference exists in the mean, we suppose that the CI width stoppage criteria is sensitive to small
characteristic changes and that most benchmarks classified as not stable can be stopped after five
forks.

6.1.6 Iteration Length Phenomenon

We investigate the influence of reducing the execution time of a single iteration while simulta-
neously increasing the number of iterations. Concretely, we compare 10 10-seconds iterations
against 100 one-second iterations. The following analysis is based on the ReactiveX/RxJava and
apache/logging-log4j2 projects with a single fork.

On one hand, we compared the result quality between the two groups. In the best case, there
is no difference. Shorter iterations potentially end in more variable results. The difference be-
tween the two CoV is, on average, 0.009±0.082. Over all benchmarks, the results are minimally
more stable with shorter iterations. Next, we analyze the CI width divided by the mean with
10’000 bootstrap simulations. The average difference of the width equals 0.026±0.064. Over all
benchmarks, the CI width is smaller, but for a single benchmark, the width may grow. However,
in only 7.4% of the benchmarks, the CI width is enlarged by at least 0.01 with shorter iterations.
Conversely, it follows that in most cases, the width is roughly the same, or the width is smaller.
Lastly, we interpret the divergence criteria. We compute the p-value between the 9th and 10th
10-second iteration and between the 90th and 100th one-second iteration. The value distribution
should not change, as we are in a steady state, so we expect large p-values and a small differ-
ence between the two groups. In 85.9% of the benchmarks, the p-value difference remains less
than 0.01. We can conclude that, for most benchmarks, the result quality is on the same level
if more but shorter iterations are used. Only for some benchmarks this execution configuration
modification negatively influences the result characteristic.

On the other hand, we also compare the benchmark’s average invocation time. We expect
there to be no difference. For 71.3% of the benchmarks, the average invocation time differs by
more than 1%. Even 32.0% of the benchmarks feature a difference exceeding 5%. This behavior
is unexpected. We do not have an explanation for why changing the iteration length influences
the average invocation time. We can conclude that the average invocation time is significantly
changed if the time per iteration is shortened. However, sound results (with another mean) are
still produced.

For performance regression testing between two versions of a benchmark, this phenomenon
implies that we can only compare versions sharing the same time per iteration. Otherwise, the
mean invocation time differs solely because the benchmark execution configuration was changed.
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6.2 Threats of Validity
In this section, we discuss various topics that threaten the validity of the results.

6.2.1 Construction Validity
Construction validity concerns the study’s construction. In the first part of this work, we sought
to analyze as many projects as possible. However, we did not analyze every commit, because such
a procedure would be too time consuming. For the historical analysis, we only selected a subset
of commits from the default branch in regular intervals. Only one commit per month and project
was selected. We do not know what happened between the sampled commits. Therefore, our
findings focus on the long-term behavior. Additionally the number of code changes in the histor-
ical evaluation does not always represent the effective number, because some projects—for exam-
ple, melix/jmh-gradle-plugin the same fully qualified benchmark name multiple times in different
folders with different method hash. In this case, the number of code changes is overestimated.
Furthermore, we have not considered that a benchmark can be renamed or moved. For many
evaluations, the JMH version of the project is required to determine the default execution con-
figuration. However, the heuristic cannot always extract the version. We often ignored projects
where the extraction failed and do not analyze whether a systematic error was produced.

We estimate the execution time of benchmarks in the evaluation. However, the execution time
describes a lower-bound limit, because the set time per iteration is the minimum time spent at
each iteration [14]. In Section 5.2.3, we analyzed this factor. However, this factor remains roughly
the same for most benchmarks and can be ignored. To achieve comparable results in the second
part of this thesis, we changed the JMH version of all projects to 1.21. We cannot rule out that the
project’s development team would modify the benchmarks before updating to a new version.

To evaluate the reconfigured approach, we simply executed each benchmark once with five
forks, zero warmup iterations and 100 one-second measurement iterations. Afterward, we con-
structed the dataset for each stoppage criteria and the baseline case. As such, the number of forks
and warmup iterations of a stoppage criteria was calculated and the corresponding data points
stored. The constructed data would be similar to a separate execution. However, if a slowdown
occurred during the execution, all data sets are affected.

6.2.2 Internal Validity
The internal validity concerns the confidence of the findings. We ignored the case wherein execu-
tion configurations are overridden by CLI arguments or user-defined values are set in the code.
Potentially, there would be a readme file explaining the required CLI flags. We did not search
these. A follow-up study is required to investigate how often CLI execution configuration argu-
ments are set and whether it is a good practice to set configurations via the CLI. For only four
benchmarks the execution with the custom configuration takes longer. For most benchmarks we
increased the execution time which results in a more sound result. The repository metrics are not
always representative of a project’s popularity. For example, apache/logging-log4j2 is only a mirror
repository and features a relatively low number of stars and forks. As GitHub is the most popular
version control hosting service, it is likely that the majority of projects possess their major code
base on GitHub, and the repository metrics offer an effective indicator of project popularity.

We followed the guidelines of Georges et al. to statistically rigorous test the performance of
software microbenchmarks [20]. The tests are executed on a bare-metal machine. However, we
cannot fully exclude measurement bias. The CIs are approximated via a bootstrapping algorithm.
To mitigate Monte-Carlo noise, we utilized 10’000 bootstrap iterations in the evaluation scripts.
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However, for the stoppage criteria, 10’000 bootstrap iterations end in an over-large performance
overhead, and the sequential testing only performed 1’000 bootstrap iterations.

The modified JMH implementation and the new features in the Bencher tool can generate
functional or performance bugs. The core functionality of both is unit tested to address this threat.
For the Cliff’s Delta effect size, we always applied the threshold proposed by Romano et al. [45].
Some benchmarks may require different stoppage criteria thresholds. A further study should
evaluate the end-to-end differences of other thresholds. Additionally, we want to note that the
measured performance overhead is hardware dependent. We did not analyze the overhead factor
on other machines.

6.2.3 External Validity
External validity concerns the work’s generalizability. We only selected open-source projects on
GitHub. Further work should analyze industrial projects and other data sources for open-source
projects. Previous work has also demonstrated that the majority of projects on GitHub are ei-
ther personal or inactive [30]. We selected only one repository per project, so we ignored the
forks. Otherwise, they would skew the findings. We also did not check whether a forked project
modified the execution configuration or implementation, which would be a reason to not exclude
them. For RQ2, we evaluated only a subset of all mined projects. We attempted to select an
effective mix of application area and project size. Running more benchmarks was infeasible, be-
cause the benchmarks possess a long execution time. We focused our analysis on Java projects,
as they are long-running [32] and benefit from reducing the execution time. We selected only
projects using JMH as a microbenchmarking framework, which is the most popular one for JVM-
based languages. However, we should verify whether our findings hold for other programming
languages and frameworks. We always used the default Just-In-Time (JIT) compiler and did not
analyze other compilers, such as Graal3. Additionally, hardware optimizations were not disabled.
For the second research question, we excluded some benchmarks, as their execution failed. As
only a small number of benchmarks were ignored, we did not analyze whether a systematic error
occurred.

6.2.4 Limitations
This study’s limitations concern technical details of the implementation. In the first part of this
work, we employed a source code parser to investigate the state of practice regarding execution
configurations. However, such a parser does not always work perfectly. A main issue is that
the parser must resolve the fully qualified names. As the source code must not be syntactically
correct, the parsing process may fail. Resolving the name inside the same repository is normally
not a problem. However, resolving the fully qualified name in external dependencies requires the
dependency as a source code or jar file. We simplified the name resolution in that only names
in the same repository or the required JMH names are resolved. If a benchmark uses a state
object from an external dependency, we do not resolve it. The source code parser adds a warning
message to the log. We want to note that such a case does not occur often during the parsing.

The source code parser does not support all JMH features. For example, if a class called
AbstractStateObject features a JMH parameter, and a class ConcreteStateObject ex-
tends the abstract class and possesses a @State annotation, the parser thinks that the Concrete
StateObject class possesses no JMH parameters, but the JMH framework searches for param-
eters in the class hierarchies. With the release of version 0.9, some annotations are renamed. In
previous versions, the @Benchmark annotation was named @GenerateMicroBenchmark. The

3https://www.graalvm.org

https://www.graalvm.org
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source code parser does not support these old names, and such benchmarks are not found. An
analysis of the JMH versions reveals that only a few projects possessed an older version as 0.9 as
dependency.

The JMH version extractor uses some simple heuristics to extract the JMH version. However,
false results are sometimes produced. If a project features sub-modules, and not all modules
employ the same JMH version, a wrong version is extracted, because after a valid JMH version
was found, the heuristic stops. We assumed that all benchmarks in a project utilize the same JMH
version. For example, alesharik/AlesharikWebServer have two modules database and api, which
use JMH version 1.18, and a one module utils, which uses 1.21. Additionally, Gradle enables
declaring dynamic versions such as 1.10.+, but the heuristic thinks that this is version 1.10. The
Java version extractor works similarly to the JMH version extractor. It also faces problems with
different modules that have different Java versions defined. For example, in apache/logging-log4j2,
the benchmarks are in a sub-module utilizing Java 9 as the target version, but other sub-modules
feature a lower target version. All extractors face some problems with comments. For example, in
the gradle file of puniverse/quasar4, Java 10 is set as target version, but on the same line, a comment
contains 11 as a character sequence, so the heuristic thinks that the project runs Java 11.

4https://github.com/puniverse/quasar/blob/master/build.gradle

https://github.com/puniverse/quasar/blob/master/build.gradle


Chapter 7

Closing Remarks

This chapter summarizes this study’s contribution and provides a brief overview of the findings.
Moreover, future work is briefly explained that has not been addressed so far.

7.1 Conclusion
This thesis focused on the research gap regarding how developers configure software microbench-
marks and whether reconfiguring software microbenchmarks can reduce the execution time while
maintaining result quality at the same level. In chapter 4, we extracted the execution configura-
tion from 753 open-source projects on GitHub that use JMH as a performance-testing framework.
From the configuration, we computed the resulting execution time. In order to answer the first
research question, we answered the following sub-questions:

RQ1.1: Which custom software microbenchmark configurations are defined by developers?

Depending on the execution parameter, the developer does not override the default execution
parameter between 55.2% and 98.7% of the time. For 24.5% of the benchmarks, not even one of
seven execution parameters changed. In some cases, developers explicitly set the default values
as user-defined values. If developers modify the number of forks, often just one fork is chosen. We
did not find any strong correlation between the repository metrics and how developers configure
benchmarks.

RQ1.2: How do custom configurations affect benchmark execution time?

If the default execution configuration is not used, the benchmarks’ initial execution time is
reduced for over 94.6% of the benchmarks. For over 77.8% of the benchmarks, the execution
time is reduced by over 75%. The proportion between warmup and measurement time remains
unchanged in 46.8% of the benchmarks. However, 35.4% of the benchmarks spend more time in
the measurement phase than in the warmup phase. More popular projects reduce the execution
time only slightly less.

RQ1.3: How long does it take to run the full benchmark suites of open-source projects?

For over 37.3% of the test suites, it take longer than an hour to execute all benchmarks of a
project. One reason is that some benchmarks possess parameterization combinations. The median
execution time for the projects equals 26.7 minutes. Compared to the project test suite execution
with the default configuration, the execution time is reduced by more than a factor of five.
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RQ1.4: How often are execution configurations modified?

Once a benchmark is written, neither the benchmark configuration nor the implementation
are often modified. Only for 1.1% of the benchmarks, we detected an execution configuration
change over the project history. Projects that updated to the newest JMH version 1.21, where the
default values are modified, also rarely changed the execution configuration.

RQ1: How are software microbenchmarks configured and what are their resulting execution
times?

Typically, benchmarks are written once and then never updated. Many benchmarks reuse
some of the proposed default parameters. If the execution configuration is modified, this often
results in a lower execution time. However, most project test suites still need several minutes or
hours to execute all benchmarks.

In the second part of this report, we evaluated a statistics-based performance testing concept
for software microbenchmarks. Compared to the standard execution, we applied sequential test-
ing during the execution and decided whether a sound result was produced and if the execution
could be stopped. To evaluate the usefulness of this reconfiguration approach, we focused on the
following aspects:

RQ2.1: How much does the length of the measurement phase matter after a steady state is
reached?

For most benchmarks, reducing the length of the measurement phase ends in an insignificant
change compared to the execution using the default configuration if the benchmark was previ-
ously warmed up. Multiple forks help to reduce the number of significant differences. A mea-
surement phase lasting longer than 10 seconds per fork usually does not produce significantly
better results.

RQ2.2: How does reconfiguration of software microbenchmarks affect the execution result?

Depending on the stoppage criteria, the characteristic difference varies in strength. The CoV
always produces the worse results. The CI width criteria is often a bit better than the divergence.
Even if an A/A test detects a significant difference, for most benchmarks, the mean shift is smaller
than 2%. Meanwhile, 20% of the benchmarks are not just slightly negatively affected by the re-
configuration, and the mean shift is often over 5%.

RQ2.3: How much time can be saved with dynamic reconfiguration of software microbench-
marks?

Depending on the stoppage criteria, between 66.2% and 82.0% of the time can be saved using
the proposed reconfiguration approach. The performance overhead of the statistical evaluation
ranges between 0.88% and 10.92%. The gain in time from skipping iterations and forks is larger
than the time needed to calculate the stoppage criteria.

RQ2: Can dynamic reconfiguration of software microbenchmarks reduce the execution time
without sacrificing result quality?

Our analysis indicated that it is possible to reduce execution time by reconfiguring the execu-
tion configuration of software microbenchmarks. Depending of the stoppage criteria, the execu-
tion time can be reduced up to 82.0%. For most benchmarks (∼80%), the performance distribution
is only slightly changed, which is often insignificant. For the remaining benchmarks, the recon-
figuration can result in significantly different results.
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Additionally, we extended the Bencher tool that, on one hand, now provides a source code
parser, and on the other hand, offers more features, such as supporting parsing state objects.
We modified the JMH implementation and added a new benchmark mode called “reconfigure,”
which supports the three stoppage criteria CoV, CI width and Kullback-Leibler divergence. The
source code of the implementations and evaluation plus the intermediate result files of the evalu-
ation are publicly available on GitHub123.

We can conclude that developers do not configure benchmarks as proposed by the default
JMH values. Often, the long execution time is reduced. The reconfiguration of software mi-
crobenchmarks reduces the execution time while maintaining similar result quality. Such an ap-
proach simplifies the configuration of software microbenchmarks, because a developer simply
chooses the reconfiguration mode and the tool itself dynamically optimizes the execution config-
uration. Practitioners can use the results of our study to better configure benchmarks, such as not
reducing the number of forks or reducing the length of the measurement phase more than the
warmup phase. Framework developers on one hand possess an overview where they can add
warning messages to check the execution configurations. On the other hand, we proposed a new
benchmark mode that they can support.

7.2 Future Work
This section elaborates on possible future work. Our entire evaluation is only performed on soft-
ware microbenchmarks written with JMH. Other benchmarking implementations, such as the
framework in the Go standard library4, do not support the same configuration options. However,
the reconfiguration approach describes an abstract concept that can also be implemented with
slight modifications in other performance testing frameworks and is not limited to JVM-based
languages.

Our state of practice analysis is only conducted on source code, and developers are not in-
terviewed. We could only analyze the results and do not know the decision behind the chosen
execution configuration. A developer survey helps to understand why a strange behavior occurs
and how performance testing frameworks should be modified so that developers can more easily
utilize their full power.

During the analysis of the reconfigured benchmarks, we realized that some projects employ
parameterization combinations which produce results similar to other executions. Therefore, the
question becomes whether a tool can, based on historical information, decide which parameteri-
zation combinations of a benchmark should be executed. If two parameterization combinations
of a benchmark share the same invocation time and a similar result characteristic, we gain no
additional information from executing both combinations; it is sufficient to simply execute one of
them.

We executed the reconfigured software microbenchmarks only in a controlled bare-metal en-
vironment. An open question is thus raised as to whether such an approach is also applicable on
virtualized resources, such as public clouds. Furthermore, it is unclear whether the same stop-
page criteria threshold can be used, or if they are too strict and the benchmarks will never stop.

During the analysis of the reconfiguration approach, we executed all benchmarks of the se-
lected projects5. We never verified whether the benchmarks are well written and feature no bad
practices, as defined by Costa et al. [13]. A possible reason why some benchmarks are not stable
after 50 warmup iterations could be that they never reached a steady state.

1https://github.com/stewue/masterthesis-evaluation
2https://github.com/chrstphlbr/bencher
3https://github.com/stewue/jmh
4https://golang.org/pkg/testing
5Except failing benchmarks (see Appendix C)

https://github.com/stewue/masterthesis-evaluation
https://github.com/chrstphlbr/bencher
https://github.com/stewue/jmh
https://golang.org/pkg/testing


66 Chapter 7. Closing Remarks

A possible improvement of our approach would be to perform a sensitivity analysis. In this
analysis, a configuration parameter such as the number of measurement iterations or the stoppage
criteria threshold should be modified, and the end-to-end change should be evaluated in terms
of result quality and execution time. As an example, this could explore how would the mean
change rate and the two A/A tests react if the number of measurement iterations was reduced or
increased.

Another option would be to test other stoppage criteria or modify the existing stoppage cri-
teria. For example, the CI width metric is currently calculated over all executed iterations in the
current fork. Better results might be produced if only the last 10 iterations are considered.

We revealed that the iteration length influences the average invocation time. However, we
did not investigate the reason behind this behavior. We also did not determine whether we can
reproduce the same phenomenon with other performance testing frameworks and programming
languages, or if this represents a JMH-specific behavior.
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Acronyms

API Application Programming Interface

CI Confidence Interval

CLI Command Line Interface

CoV Coefficient of Variation

CPU Central Processing Unit

CSV Comma Separated Values

IDE Integrated Development Environment

IQR Interquartile Range

JDK Java Development Kit

JIT Just-In-Time

JMH Java Microbenchmark Harness

JSON JavaScript Object Notation

JVM Java Virtual Machine

REST Representational State Transfer

URL Uniform Resource Locator

VM Virtual Machine

XML Extensible Markup Language
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Appendix C

Ignored Benchmarks

Table C.1 contains all benchmarks which are excluded from the evaluation of RQ2. The reason
column summarizes why a specific benchmark was skipped. If a benchmark does not have any
JMH parameters, the JMH parameter column is empty. Else it is stated which parameterization
combinations were skipped.
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Appendix D

CD-ROM Content

• master_thesis.pdf
Master Thesis as PDF

• abstract.txt
Abstract in English

• zusfsg.txt
Abstract in German

• git-bencher/
Copy of the Bencher git repository1

• git-jmh/
Copy of the JMH git repository2

• git-evaluation/
Copy of the git repository which contains the evaluation data and scripts3

• raw-data/
Raw data of RQ2

• meetings/
Meeting protocols

1https://github.com/chrstphlbr/bencher
2https://github.com/stewue/jmh
3https://github.com/stewue/masterthesis-evaluation

https://github.com/chrstphlbr/bencher
https://github.com/stewue/jmh
https://github.com/stewue/masterthesis-evaluation
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