
Identity Management for a
Blockchain-based Certificate

Issuance

Vasileios Koukoutsas
Zurich, Switzerland

Student ID: 16-718-991

Supervisor: Christian Killer, Eder John Scheid
Date of Submission: March 2nd, 2020

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Academic certificates have major relevance in the labor market, signaling capability, and
the level of education and skills of the recipient. Unfortunately, recent years have seen
an increase in fraud, ranging from inflating academic grades to fake diplomas. A counter-
measure use-case applicable to academic certificates is Proof-of-Existence (PoE), which
effectively timestamps a certificate, thus, proving the existence of exactly this certificate,
without leaking information about its content (the certificate’s data). Prior work pre-
sented the initial requirements for a solution targeted at the University of Zurich [1], an
essential building block of such a solution is identity and access management (IAM).
The goal of this master’s thesis is to design and implement a suitable private distributed
ledger (DL) solution with an integrated identity and access management module. The re-
sulting solution is intended to be used in the Swiss Educhain service [2] to satisfy the main
requirement of the various stakeholders, which is the issuance and verification of digital
certificates utilizing blockchain technology. The Proof-of-Concept (PoC) implementation
is evaluated against the identified requirements and the prototype’s functionality. This
master’s thesis provides a blockchain-based identity and access management solution as
an integral part of the produced Swiss Educhain PoC implementation.

i

ii

Zusammenfassung

Akademische Abschlüsse haben eine grosse Bedeutung für den Arbeitsmarkt, da sie die Fä-
higkeit und das Bildungsniveau des Empfängers signalisieren. Leider haben in den letzten
Jahren die Betrugsfälle mit gefaelschten Diplomen zugenommen. Eine Gegenmassnahme,
die auf akademische Zertifikate anwendbar ist, ist Proof-of-Existence (PoE). Mit PoE wird
ein Zertifikat mit einem Zeitstempel versehen und so die Existenz genau dieses Zertifikats
nachgewiesen, ohne dass Informationen über den Inhalt durchsickern. In vorhergegange-
nen Arbeiten wurden die ersten Anforderungen für eine Lösung an der Universität Zürich
vorgestellt [1]. Ein wesentlicher Bestandteil einer solchen Lösung ist das Identitäts- und
Zugriffsmanagement.
Das Ziel dieser Masterarbeit ist es, eine geeignete Lösung mit einem Distributed Ledger
(DL) und integriertem Identitäts- und Zugriffsmanagementmodul zu entwerfen und zu
implementieren. Die daraus resultierende Lösung soll im Swiss Educhain Projekt [2] einge-
setzt werden, um die Hauptanforderung der verschiedenen Requirements zu erfüllen, dazu
gehört die Ausstellung und Verifizierung von digitalen Zertifikaten unter Verwendung der
Blockchaintechnologie. Die Implementierung eines Proof-of-Concepts (PoC) wird anhand
der identifizierten Requirements und der Funktionalität des Prototyps evaluiert. Diese
Masterarbeit bietet eine blockchainbasierte Identitäts- und Zugriffsmanagementlösung als
integralen Bestandteil der resultierenden Swiss Educhain PoC Implementierung.

iii

iv

Acknowledgments

I am grateful to Simon Müller for our close collaboration that resulted in the successful de-
velopment of the Swiss Educhain PoC. I want to thank Christian Killer for his continuous
support and guidance, as well as Eder John Scheid for his valuable feedback. Moreover, I
want to thank Prof. Dr. Burkhard Stiller for the opportunity to work on this thesis and
the Swiss Educhain project. Lastly, I want to thank my family for their endless help and
support throughout the duration of my studies.

v

vi

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 3

1.3 Thesis Outline . 4

2 Background 5

2.1 Blockchain . 5

2.2 Identity . 6

2.2.1 Digital Identity . 6

2.2.2 Self-Sovereign Identity . 7

2.3 Identity and Access Management . 8

2.3.1 Access Control . 8

2.3.2 Access Control Models . 10

3 Related Work 11

3.1 Swiss Educhain Previous Work . 11

3.2 SWITCH . 11

3.2.1 SWITCH edu-ID . 12

3.2.2 Shibboleth . 14

3.3 Corda . 15

3.3.1 Corda Accounts . 16

vii

viii CONTENTS

4 System Design 19

4.1 Stakeholders . 19

4.2 Requirements . 20

4.2.1 Functional Requirements . 20

4.2.2 Non-Functional Requirements . 22

4.3 Architecture . 23

4.3.1 Candidate Solutions . 24

4.3.2 Architecture Solution . 25

4.3.3 MVP Functionality . 27

4.4 Identity and Access Management . 28

4.4.1 Identity Candidate Solutions . 28

4.4.2 Identity Chosen Solution . 30

4.4.3 Persistent ID . 34

4.4.4 Target Audience . 34

4.4.5 Role Assignment . 34

4.4.6 User Access Control . 34

4.4.7 Authorization Policy . 36

4.4.8 Application Accounts . 37

5 Implementation 39

5.1 Integration with SWITCH edu-ID . 39

5.1.1 Shibboleth Installation and Configuration 39

5.1.2 HTTPS Configuration . 40

5.1.3 Shibboleth Access Control . 41

5.1.4 Attributes . 42

5.2 Code Structure . 43

5.3 CorDapp . 43

5.3.1 Swiss Educhain Application Accounts 44

CONTENTS ix

5.3.2 Corda Accounts & Node Identity Service 44

5.3.3 Educhain Account State . 45

5.3.4 Educhain Account Contract . 46

5.3.5 Educhain Account Flows . 47

5.4 Spring Boot . 50

5.4.1 AJP Connector . 50

5.4.2 Controller . 51

5.4.3 Frontend Interface . 52

6 Evaluation 55

6.1 Requirements Fulfillment . 55

6.2 MVP Evaluation . 57

6.3 IAM Evaluation . 59

7 Conclusion & Future Work 61

7.1 Conclusion . 61

7.2 Future Work . 62

Abbreviations 71

List of Figures 72

List of Tables 73

A Installation and Configuration Guidelines 77

A.1 System Requirements . 77

A.2 Deployment . 77

B Code Repository Structure 79

C Contents of the CD 81

x CONTENTS

Chapter 1

Introduction

Academic certificates have major relevance in the labor market, signaling capability, and
the level of education and skills of the recipient. Unfortunately, recent years have seen an
increase in fraud, ranging from inflating academic grades to fake diplomas. Even several
organizations focus on providing illegitimate academic degrees and diplomas (also called
diploma mills). Estimating globally the number of individuals with fake diplomas is a
hard task. In 2015, estimations indicated that about 41% of job applicants presented
falsified information about their education in the US (United States) [3]. In 2017, it is
estimated that about 500 fake doctoral diplomas are sold monthly in the US [4]. Thus, the
release and verification of academic certificates is a known problem, tackled by academia
[2], [1], [5], [6], and also private companies.

Public blockchains can be considered tamper-proof, transparent, without any centralized
control, and they offer applications to a wide range of domains [1]. The main use-case
applied to academic certificates is the Proof-of-Existence (PoE), e.g., by first generating a
unique cryptographic hash digest of a certificate and then publishing that hash to a public
blockchain, effectively timestamping the certificate, thus, proving the existence of exactly
this certificate, without leaking information about its content, typically the certificate’s
data. Recognizing the potential benefits of such a blockchain-based approach, prior work
presented the initial requirements for a solution targeted at the University of Zurich (UZH)
[1], an integral part of such a solution is identity and access management (IAM).

1.1 Motivation

Providing a trustworthy, decentralized, and publicly available data storage solution, public
blockchains have become a disruptive technology that has seen interest across academia
and industries alike. Many interesting projects (blockchain-based or otherwise) have ex-
plored the possibility to digitally verify diplomas to counteract the trend of fake degrees.

Blockcerts [5] is an initiative by the Massachusetts Institute of Technology (MIT) to
create an open standard for issuing and verifying credentials on the Bitcoin blockchain.
The system is now in use at MIT [5] and empowers graduates to use the service through a

1

2 CHAPTER 1. INTRODUCTION

mobile app [7]. Similar to that approach, the National Research and Education Network
of Greece (GRNET) [8] also persists diploma hashes to a public blockchain. However, the
GRNET project [16] differs from Blockcerts because not only hashes of diplomas can be
stored, but also the entire verification process. Therefore, verification requests, successful
or unsuccessful proof and the forwarding of the result to its requester are steps that will
be stored. Another mentionable initiative is led by the Trust::Data Consortium [9] from
MIT, aiming to provide safe distributed computation, enabling privacy-preserving data
sharing [9]. Further, University of Nicosia (UNIC) [6] initiated a blockchain-based project
to issue and verify academic certificates. UNIC aims to digitize and decentralize their
internal processes issuing their first academic certificates as a Proof-of-Concept (PoC).

Generally, the same approach can be found in almost all related and blockchain-based
work of academic certification. Most projects only persist the hash of the certificate into
the public blockchain, while the certificate data is then sent to the recipient, who can share
it with others, such as an employer. These credentials can be used to create the same
fingerprint that can be found in the blockchain and, thus, verify its veracity. The amount
of related work tackling the problem of academic certification highlights its necessity.

The main goal of this master’s thesis is to design and implement a suitable private DL
(Distributed Ledger) solution with an integrated identity and access management module.
The resulting solution is intended to be used in the Swiss Educhain service [2] to satisfy the
main requirement of the various stakeholders identified in Section 4.1, which is the issuance
and verification of digital certificates utilizing blockchain technology. This master’s thesis
provides a blockchain-based identity management for the individual user roles described
in Section 4.4.5.

The key goals for this thesis are:

Requirements Engineering:
Elicit requirements by evaluating the current process of certificate issuance. Based
on this process, propose improvements and a system that could be used by multiple
educational institutions, recipients and verifiers with the new Swiss Educhain design.

Investigate the suitability of multiple Blockchain platforms for blockchain-
based identity management:
The comparison and evaluation of different identity management and DLs [10], [11]
should be documented and support the decision for a specific platform and archi-
tecture.

Research the individual requirements with regards to Privacy, Security and
Verifiability:
With regard to the proposed Swiss Educhain IAM requirements and the publication
of hashes, evaluate from a privacy, security and verifiability perspective, evaluate
potential risks and problems, but also advantages.

Design and Architecture:
Design of identity management and application accounts with a good user experience
(UX) in mind. Create an architecture fulfilling previously determined properties
(e.g. identities owned by the Recipient).

1.2. DESCRIPTION OF WORK 3

Proof-of-Concept (PoC) Evaluation:
Evaluate the implemented approach considering its prior defined properties and
desired functionality.

Code Delivery and Testing:
Source code needs to be well-documented, open-source and readable. The PoC is to
be tested with appropriate methods.

Documentation and Report:
The steps of the initial analysis, its results, design decisions, prototyping, and the
evaluation approach as well as its outcome are documented in this thesis report.

Furthermore, where possible the system design and implementation should try to follow
an approach that allows re-usability, easy-of-use and globally available technologies.

1.2 Description of Work

The focus of this master thesis is the design and implementation of a suitable identity
and access management (IAM) in a blockchain-based certificate issuance process [2]. This
work is done in close cooperation with Simon Müller’s master’s thesis [12], that is focusing
on the aspect of the verification process in the Swiss Educhain process.

In the first stage, research is conducted on the relevant related work on identity and
access management and research work within academia. The already elicited require-
ments such as the ones described in Table 4.1 are evaluated from a technical perspective
and complemented by new requirements identified belonging to the scope of the Swiss
Educhain project. Moreover, the first stage includes the evaluation and possibilities to
integrate existing legacy systems and identities with such a new Swiss Educhain service [2].

The second stage concerns the design and implementation of an application that can be
used by the Issuer (e.g. an UZH employee) to generate academic certificates and publish
them on a private and public blockchain. The architecture was discussed during periodical
meetings with the advisor to examine the feasibility of the proposal; additionally a close
contact was maintained continuously with the related master thesis on ”Design and Imple-
mentation of a Data-Agnostic Structure for Blockchain Proof-of-Existence”. The outcome
is a working PoC that adheres to the designed solution with a detailed description and
reasoning of any implementation decisions taken.

The final stage of this master thesis covers an evaluation with respect to its achieved
properties and a discussion of the implemented PoC. The results are contrasted to the
thesis goals. This report includes the motivation and problem description, background
information, related work, design decisions, implementation details, evaluation, and con-
clusion.

4 CHAPTER 1. INTRODUCTION

1.3 Thesis Outline

The thesis report is structured as follows:

Chapter 2 shortly visits fundamental blockchain concepts and explains in detail back-
ground identity concepts.

Chapter 3 details related work, such as, the SWITCH identity federation, key concepts
of the Corda distributed ledger, and the Corda Accounts library.

Chapter 4 presents the design of the Swiss Educhain service, enumerating different
options and the chosen solution. It also includes the requirements, stakeholders and
roles identified, as well as the reasoning behind all the decisions made.

Chapter 5 presents the implementation details for the identity and access management
(IAM) of the Swiss Educhain service.

Chapter 6 evaluates the individual requirements against the implemented solution and
provides a high-level evaluation of the IAM solution.

Chapter 7 concludes this work with final considerations and identifies future IAM work.

Appendix A provides installation and configuration guidelines for Swiss Educhain.

Appendix B presents a simplified directory tree structure of the Swiss Educhain code.

Chapter 2

Background

In this chapter, technical background of concepts needed to understand the work in this
thesis is covered. Identity management concepts such as digital identity, identity access
management, access control and access control models are explained.

2.1 Blockchain

Blockchain refers to the technology that was used by Satoshi Nakamoto in [13] as the
underlying building block of Bitcoin. It is based on the proposed solution to the problem
of time-stamping data as described in [14], which uses hashes of data and links them in a
chain, later on referred to as a chain of blocks (or block chain) data structure introduced
in 1991. Satoshi’s paper and Bitcoin’s implementation created an ever-growing ecosystem
with multiple projects initially forked from Bitcoin as alternative cryptocurrencies (or alt-
coins). A lot of enthusiasts envisioned general-purpose blockchain platforms which could
potentially be used in a variety of use cases other than cryptocurrencies, such as, tok-
enization of assets, e-voting, supply chain, notarization, intellectual property protection,
peer-to-peer financial transactions or settlements, and digital evidence [15]. To enable
the creation of diverse applications, several blockchain platforms have been developed, as
either public platforms targeting end-users or private aiming to support the enterprise
sector [16].

The terms public and private in relation to blockhain platforms refer to the ability of
an entity to be able to participate freely in the network. Participation to a blockchain
platform might refer to any of several activities, such as, accessing the blockchain net-
work freely, running an independent node or keeping a copy of the distributed ledger,
participating in the consensus mechanism and executing functionality.

A public blockchain is defined as a platform where anyone can participate and perform the
activities stated above with no access control. Analogously, a private blockchain is defined
as a platform where entities can only participate if they are granted access by the platform
owner. The terms permissioned and permissionless, in relation to Swiss Educhain and the
scope of this thesis, refer to the permission to write in the distributed ledger. Figure 2.1

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: Blockchain deployment types, based on [17]

presents a high-level separation of the different blockchain platform types with respect to
access control.

For the Swiss Educhain service, a hybrid approach has been chosen to combine a public
permissionless blockchain with a private permissioned blockchain. The need for a private
permissioned blockchain platform derives from the architectural requirements analysis in
Section 4.2. For the scope of this thesis and the identity management of Swiss Educhain
participants only the private permissioned blockchain is relevant.

2.2 Identity

Identity and access management (IAM) is a vast topic that consists of a plethora of
processes, frameworks and technical implementation solutions. In this section, the foun-
dational theoretical background of identity is explained with an emphasis only on the
aspects that are relevant to this work. In Section 2.3 Identity and Access Management is
explained in more detail.

2.2.1 Digital Identity

The notion of identity is a subject that precedes the digital era and can be defined as
something different depending on the unique perspective from which it is examined [18],
[19]. When identity is mentioned in this work it refers to the digital identity as seen from
the prism of information technology and computer science.

An informal way to describe what is an identity would be the set of unique characteristics
or attributes of an entity (human or not) which can uniquely identity this entity and

2.2. IDENTITY 7

differentiate it from other ones. As stated in [20] by Grassi et al., ”a single definition
is widely debated internationally”, therefore the following definition aims to explain the
concept rather than provide a formal definition. According to [21] a digital identity is
defined as:

”. . . an online or networked identity adopted or claimed in cyberspace by an individual,
organization or electronic device. These users may also project more than one digital
identity through multiple communities. A digital identity is linked to one or more
digital identifiers, like an email address, URL or domain name.”

As it is inherently very hard to prove ownership of a digital identity and associate it with
a specific entity (human or technical), especially over the Internet or any network, various
processes and techniques have been developed as a potential solution to prevent identity
impersonation and other attacks [20]. A brief high-level overview of such processes and
frameworks is presented in Section 2.3.

2.2.2 Self-Sovereign Identity

A traditional identity, digital or not, is usually verified by an identity provider (in digital
systems) or by an authority such as a government or a trusted third party to uniquely
map an identity to an entity and prevent impersonation. The official documents or the
digital accounts are issued on behalf of the entity, which is the identity owner, and handed
over to them after a verification procedure is completed. An unconventional and different
paradigm has emerged historically known as self-ownership or individual sovereignty
through various political philosophies such as liberalism and anarchism [22]. Stemming
from these, a more recent evolution of this notion is the self-sovereign identity (SSI).

Christopher Allen in [23] identifies four distinct phases in the evolution of identity:

1. Centralized Identity administrative control by a single authority or hierarchy,

2. Federated Identity administrative control by multiple, federated authorities,

3. User-Centric Identity individual or administrative control across multiple au-
thorities without requiring a federation,

4. Self-Sovereign Identity individual control across any number of authorities.

According to Allen [23] a formal definition what is self-sovereign identity cannot be pro-
posed, but he enumerates a set of principles that are meant to ”. . . provoke a discussion
about what is truly important.”:

1. Existence - users must have an independent existence.

2. Control - users must control their identities.

3. Access - users must have access to their own data.

8 CHAPTER 2. BACKGROUND

4. Transparency - systems and algorithms must be transparent.

5. Persistence - identities must be long-lived.

6. Portability - information and services about identity must be transportable.

7. Interoperability - identities should be as widely usable as possible.

8. Consent - users must agree to the use of their identity.

9. Minimalization - disclosure of claims must be minimized.

10. Protection - the rights of users must be protected.

Partial realizations of the self-sovereign identity vision have been technically possible uti-
lizing, blockchain, decentralized systems, consensus algorithms and applied cryptography.
Some popular self-sovereign identity platforms include Sovrin [24], uPort [25] and ShoCard
[26]. A detailed explanation and analysis of the platforms is provided in [27].

2.3 Identity and Access Management

The existence of digital identities and their usage in computing systems, created the need
to effectively manage digital accounts, verify their owners, provide fine-grained access to
resources and allow for account lifecycle management via create, read, update and delete
(CRUD) operations.

Identity and access management (IAM) is defined by Gartner [28] as:
”. . . the discipline that enables the right individuals to access the right resources at the
right times for the right reasons.”

In order for any IAM system to provide access to users to different resources, distinct
steps need to be executed as part of the overall access control process. These steps can
be identified in a high-level as Identification, Authentication and Authorization; a detailed
explanation of the access control process is given in Section 2.3.1. There exist multiple
ways to implement this functionality, resulting in different access control models, the more
relevant ones to this thesis’ work are explained in Section 2.3.2. How accounts or roles
are created is not analyzed in this chapter since it is a subjective matter greatly affected
by the system’s design and requirements.

2.3.1 Access Control

Access control in the computer security context, can be described as the process through
which users are granted access and certain privileges to systems, resources or information
based on a set of credentials, assumed role or identity characteristics [29], [30], [31]. The
access control process has three distinct steps:

2.3. IDENTITY AND ACCESS MANAGEMENT 9

Identification
In computing systems, identification can be informally described as the ability to
uniquely identify a user’s account and associate it with an entity, (e.g. with a unique
username for digital systems or an access card for physical access), with several more
formalized definitions listed in [32].

Authentication
Authentication ”. . . refers to an electronic process that allows for the electronic iden-
tification of a natural or legal person. Additionally, authentication may also confirm
the origin and integrity of data in electronic form, such as the issuance of a digital
certificate to attest to the authenticity of a website.” [33]. In general, authentication
can be performed against three authentication factors:

Knowledge this includes passwords or passphrases, a personal identification num-
ber (PIN) or a response to a pre-selected security question.

Ownership this includes something that a user possesses, e.g. an access card, an
one-time password (OTP) token or a specific phone number.

Inherence this could be something that a user is, e.g. biometric identifiers such
as facial, fingerprint or retinal pattern recognition. [33]

Using one or more of the aforementioned factors, there are four main types of
authentication, described below in order based on the increasing levels of security
as explained in [33]:

Single-factor uses only one of the components, it is considered a method easily
susceptible to impersonation or replay attacks and is not preferred in most
modern systems.

Two-factor (2FA) combines two factors, e.g. something a user has and something
a user knows, is considered safer and is available to the majority of computing
systems.

Multi-factor (MFA) is similar to 2FA but combines more than two authentica-
tion factors to achieve enhanced security.

Strong Authentication was requested by the European Banking Authority (EBA)
[34] to provide enhanced security for financial customers. It provides specific
requirements such as, usage of a minimum of two mutually independent
factors and at least one element that is non-reusable and non-replicable.
A detailed opinion on the elements of strong authentication is provided in a
report published by the EBA [35].

Authorization
Authorization ”. . . refers to the process of granting privileges to processes and, ul-
timately, users.” [36]. Authorization always succeeds authentication, after a user’s
claim of account ownership has been confirmed, the user is granted access to a set
of resources based on either account information, assumed roles, membership in a
group or organization, or other authorization rules [37].

10 CHAPTER 2. BACKGROUND

2.3.2 Access Control Models

A variety of access control models exists to serve diverse purposes and implement unique
custom access control management policies. Briefly defined are the models related to this
work:

Attribute-based Access Control (ABAC) is defined as ”An access control method
where subject requests to perform operations on objects are granted or denied based
on assigned attributes of the subject, assigned attributes of the object, environment
conditions, and a set of policies that are specified in terms of those attributes and
conditions.” [38].

Role-Based Access Control (RBAC) is defined as ”Access control based on user
roles (i.e., a collection of access authorizations a user receives based on an explicit
or implicit assumption of a given role). Role permissions may be inherited through
a role hierarchy and typically reflect the permissions needed to perform defined
functions within an organization. A given role may apply to a single individual or
to several individuals.” [39], [40].

Chapter 3

Related Work

Related work that had a direct or influencing impact on the design and implementation
of this master’s thesis’ work is analyzed in this Chapter including topics such as, single
sign-on (SSO), the Security Assertion Markup Language (SAML), the Shibboleth project,
the SWITCH edu-ID identity provider, the Corda distributed ledger (DL) and the Corda
accounts library [41], [42], [10], [43].

3.1 Swiss Educhain Previous Work

The work for Swiss Educhain is based on the preliminary work conducted by Jerinas
Gresch in [44], where a detailed analysis of the diploma issuance process in UZH was
performed. The high-level requirements, the stakeholders and a high-level architecture
with a working proof-of-concept (PoC) was the produced outcome. Through this, the
formalized proposal for the Swiss Educhain project came to fruition [2] with a more
technical architecture [1]. The work for the Swiss Educhain service in this thesis, which
is in close collaboration with the work in [12], considers previous work but follows a
greenfield approach not constrained by any previous assumptions or decisions. The main
aim is to design and create an end-to-end digital service that also encapsulates the digital
issuance of a diploma, in contrast with previous work where diploma issuance is designed
to occur in the legacy system. More information on the design and implementation of the
Swiss Educhain service is provided in Chapters 4 and 5.

3.2 SWITCH

SWITCH is a Swiss foundation that provides a variety of information technology services
to the academic community, mainly in the areas of network, security and identity manage-
ment [45]. The identity management offerings, namely SWITCHaai (Authentication and
Authorization Infrastructure) and SWITCH edu-ID, provide access to academic services
in a secure manner [46]. The relationship between SWITCH, SWITCHaai and SWITCH
edu-ID as part of the federation [47] is depicted in Figure 3.1.

11

12 CHAPTER 3. RELATED WORK

Figure 3.1: SWITCH identity federations [48].

3.2.1 SWITCH edu-ID

SWITCH edu-ID is the logical evolution of SWITCHaai and will eventually replace it
as the single identity solution across academic organizations and services in Switzerland.
SWITCH edu-ID builds upon existing infrastructure and leverages the SWITCHaai wide
adoption and backwards compatibility. Several advantages for organizations, services and
users make the adoption of SWITCH edu-ID attractive [49]:

Organizations

Organizations don’t need to operate an own IdP (Identity Provider).

Covers also guests, not only regular students and collaborators.

Organizations can realize their one-identity-concept.

Organizations and their users keep the control over their data.

Organizations can use features implemented once and at one place. [50]

Services

High security (SWITCHaai basis, controlled guidelines and high-quality attributes).

Less administration effort.

Compatibility with SWITCHaai, Switzerland and internationally. [51]

Users

One identity for all academic services, lifelong, user-controlled and secure.

Simple and safe to use with transparent data quality and forwarding. [52]

From a technical point of view, SWITCH edu-ID aims to make a shift from a role-based
to a persistent identity model, with one long-living digital identity for the user. A

3.2. SWITCH 13

user has more control over their data, and the responsibility to provide accurate data
and to verify fields of the account individually, a visual representation of the user account
in SWITCHaai and SWITCH edu-ID is shown in Figure 3.2. A user who is no longer
member of a university and has no other affiliation(s) retains the private, user managed
part of a SWITCH edu-ID identity [53].

Figure 3.2: User account structure with two affiliations, compared in aai and edu-ID [53].

The authentication functionality is delegated to the SWITCH edu-ID identity provider
(IdP), which manages the accounts’ lifecycle, and delivers the requested subset of at-
tributes to different services. Universities will no longer be the identity providers, but
will act as attribute authorities (AAs) and will assign roles and access rights to users
through attribute values. This enables attribute aggregation for users with multiple af-
filiations and the users keep a persistent account independent to duration of their affil-
iation with an organization. A detailed technical comparison of SWITCH edu-ID and
SWITCHaai is available in [54].

SWITCH edu-ID is operated by SWITCH and is built upon multiple components that offer
different pieces of functionality as shown in the architecture diagram in Figure 3.3. It is
also tightly integrated with Swiss universities and academic institutions, but technically
allows non-academic users and service providers to be part of the ecosystem as well.
The most important notion in the SWITCH edu-ID ecosystem is the affiliation which
determines the nature of the relationship between a user and one or more organizations.
The user’s edu-ID account can be created before or after an affiliation to an organization is
linked and duplicate accounts are automatically detected (through the matriculationNr

attribute which is unique per person across universities) and can be merged into one.

The Swiss Educhain is a Service Provider (SP) in the SWITCH edu-ID ecosystem and
aims to provide a service initially to edu-ID users affiliated with UZH as students and
later on to members of multiple organizations, details on the design and functionality are
provided in Chapter 4. To access a service, a user authenticates through the central edu-
ID IdP. All the user managed attributes and the linked affiliation organizational attributes
are collected by the aggregator, and only the ones requested by the service are chosen.
Finally, after a user has given consent, the attributes are transmitted to the service [53].

14 CHAPTER 3. RELATED WORK

Figure 3.3: SWITCH edu-ID component architecture [53].

3.2.2 Shibboleth

Shibboleth is an open source software that implements the Security Assertion Markup
Language (SAML) standard. It consists mainly of two major parts, an identity provider
(IdP) and a service provider (SP). The most used scenario includes a third component,
usually a web browser to complete a web single sign-on (SSO). A simple sequence diagram
that shows the high-level steps of the web single sign-on process in Shibboleth is depicted
in Figure 3.4.

Service Provider
(Swiss Educhain)

User Agent
(Web Browser)

Identity Provider
(SWITCH edu-ID)

Request Resource

(Determine the IdP)

Redirect to SSO

Request SSO

(Identify the User)

Respond with XHTML

Request Assertion

Redirect to Resource

Request Resource

Grant Access

1

2

3

4

5

6

7

8

Figure 3.4: Web single sign-on sequence diagram.

3.3. CORDA 15

Shibboleth IdPs and SPs exchange authentication, authorization and configuration infor-
mation between them securely via an (usually encrypted) xml metadata file. The IdPs
and SPs in the metadata file typically form a federation similar to the ones visualized in
Figure 3.1. A federation is used to denote a trust relationship between the participating
members. The security of messaging between IdP and SPs is handled through cryptog-
raphy at various steps of the process. For example, SAML messages are usually digitally
signed, and encrypted. [55]

3.3 Corda

Corda is a distributed ledger technology platform that can be categorized as a private
permissioned blockchain (in this context the term blockchain refers to Corda’s terminology
and not the technical term) according to the classification described in Section 2.1. Corda
is offered as open source software [56], developed and maintained mainly by R3 [57], a
dedicated enterprise blockchain software firm, along with additional contributions from
the community [58], [59].

Figure 3.5: Corda node architecture [60]

The Corda key concepts as identified in [61] and which are relevant to Swiss Educhain are
shortly described:

The network - the ecosystem that Corda exists in.

The ledger - the ledger, and how facts on the ledger are shared between nodes.

16 CHAPTER 3. RELATED WORK

States - the states represent shared facts on the ledger.

Transactions - the transactions update the ledger states.

Contracts - the contracts govern the ways in which states can evolve over time.

Flows - the flows describe the interactions that must occur to achieve consensus.

Whitelist - the classes in the whitelist can be deserialized.

When one builds a custom Corda Decentralized Application (CorDapp), the CorDapp
will have state, transaction, contract and flow classes. Nodes on the Corda network are
instances that run the Corda DJVM (Deterministic JVM) [62] which can host one or
more CorDapps simultaneously. Corda offers a lot of different pieces of functionality that
run in the background in the form of services and are exposed to the CorDapps via the
ServiceHub as depicted in Figure 3.5.

Initially, R3 targeted financial institutions and business-to-business (B2B) transactions as
the main use case for the platform. This naturally influenced Corda’s design and func-
tionality resulting in what is the main differentiating factor between Corda and other
public or private blockchain platforms, it being the lack of a broadcast mechanism. This
technically is translated in the existence of multiple smaller ledgers and the lack of a single
global ledger in the network [63]. Corda uses a point-to-point messaging system instead
of a gossiping mechanism, transaction data are only shared to the participants of a trans-
action, and sharing is performed only on a need-to-know basis. Notary might also gain
access to the the data in order to be able to validate a transaction if needed, transactions
can also be validated without access to any of the participants’ data, depending on the
type of transaction and contract rules [64], [65].

3.3.1 Corda Accounts

Until recently inside the Corda network identities, were mapped to a single deployed node
instance, this design came from the original perception that the Corda network would be
used for business-to-business (B2B) transactions between entities belonging to a certain
business network. This assumed that each entity would be able to deploy and operate an
own node, something that is not the case in most applications. After high demand from
the community and to be able to offer competitive functionality, R3 introduced the Corda
Accounts SDK (Software Development Kit) library [66] [43].

Figure 3.6: Account based node vault partition [43].

Accounts are a logical subset inside a node’s vault as shown in Figure 3.6. The vault can
be described as a node’s encrypted storage. Unlike the nodes, the accounts do not have a

3.3. CORDA 17

unique identifier at the network level, they inherit the node’s CordaX500Name. Accounts
need to be managed at the application level to make them identifiable and use them
to represent different entities and transact. Figure 3.7 shows the different transaction
options for accounts. Three different options exist, account-to-account transaction inside
the same node, account-to-node transaction and account-to-account transaction between
accounts that are hosted in different nodes.

Figure 3.7: Account transaction types [43].

It is important to note that the Accounts library is not part of the main Corda release
but can be optionally added as a dependency and used by a CorDapp. There is also the
option to use accounts in some nodes of the network only, allowing for a hybrid setup. In
the current Swiss Educhain service implementation only account-to-account transactions
between accounts that reside in the same node are executed. A more detailed explanation
on the design and implementation of application level accounts is provided in Chapters 4
and 5.

18 CHAPTER 3. RELATED WORK

Chapter 4

System Design

The requirements elicitation and the system design of the Swiss Educhain service proved to
be a challenging but quite rewarding process. Previous work conducted in [44] was taken
into consideration, but a greenfield approach was chosen. The initial requirements were
re-evaluated and complemented with new functional and non-functional requirements,
which were refined as implementation progressed. Research, design and implementation
phases, entailed valuable interactions with stakeholders (e.g. workshop with the SWITCH
edu-ID program lead Christoph Graf, communication with UZH IdP (Identity Provider)
administrator August Yannikis) and reaching out to the open source technical communi-
ties to comprehend how to best take advantage of the latest features, when documentation
deemed to be insufficient [67], [68], [69].
In Section 4.1, the main stakeholders are identified, architectural requirements are elicited
and produced, split into two distinct categories, functional and non-functional. Section
4.3 lists the different high-level design options for the Swiss Educhain service, the chosen
solution, as well as a proposal for the overall governance model. Finally, Section 4.4 is en-
tirely focused on the identity and access management (IAM) part of Swiss Educhain and
enumerates the different candidate approaches complemented by their individual evalu-
ation, a detailed presentation of the engineered solution and the reasoning behind each
decision.

4.1 Stakeholders

This is joint text with Simon Müller [12].

Based on the stakeholder analysis conducted in [44], stakeholders are analyzed from a
technical perspective and mapped to different roles of the Swiss Educhain system. The
main stakeholders and participants identified are:

Swiss Educhain Governance Body
The Swiss Educhain is governed from the UZH Blockchain Center [70] as a Free
and Open Source Software (FOSS) project. The UZH Blockchain Center has the
responsibility to onboard Issuing Organizations to the service.

19

20 CHAPTER 4. SYSTEM DESIGN

Issuing Organization
Issuing Organization can be any educational institution or company that has been
onboarded to the service and is given the right to issue diplomas, certificates of
work history or other credentials that can be independently verified and included in
a recipient’s CV (Curriculum Vitae) or resume.

Issuer
The Issuer is an individual that is officially associated with an issuing organiza-
tion and has been granted the right to issue digital certificates on behalf of this
organization.

Recipient
Recipient is any individual that has an account in the Swiss Educhain service,
receives educational or other credentials and can be associated with one or more
Issuing Organizations. Each Recipient holds a single Swiss Educhain account that
is mapped to only one real world identity.

System Administrator
The System Administrator is responsible for user administration, system mainte-
nance and rollout of new system versions. The System Administrator has root
access but has no right to issue credentials.

Verifier
Verifier is anyone that verifies a credential using the public permissionless blockchain.
Verifiers are completely anonymous as they can verify any credential independently.

Contributor
Contributor is anyone that contributes to the project in a technical or non-technical
fashion. Contributors include developers and extend to persons that add value to
the project via any activity such as performing beta testing, writing documentation,
reporting bugs, participating in discussions etc.

This ends the text jointly written with Simon Müller [12].

4.2 Requirements

This is joint text with Simon Müller [12].

In addition to the requirements identified in [44] the requirements in Sections 4.2.1 and
4.2.2 have been elicited.

4.2.1 Functional Requirements

Further functional requirements proposed for the Swiss Educhain project are:

Some of the functional requirements are described in more detail:

4.2. REQUIREMENTS 21

Requirement Description
RQ1 Only authorized individuals are allowed to issue diplomas.
RQ2 Diploma data should be confidential to its Recipients.
RQ3 Process of issuing and verifying diplomas should abstract technical complexities.
RQ4 Multiple diplomas should be processable in batch.
RQ5 Verification capabilities should be accessible to anyone.
RQ6 Diplomas should be verified autonomously.
RQ7 Graduates should receive their diplomas in a digital format.

Table 4.1: Initial Educhain Requirements based on [1]

Requirement Description
RQ8 Recipients should have a unique identification.
RQ9 Recipients should be the only ones that have the right to disclose

issued credentials.
RQ10 Recipient’s account should persist over time and be independent of

any association with an Issuing Organization.
RQ11 Registration needs identity verification.
RQ12 Issuers should be able to revoke diplomas.
RQ13 The governance model of the Swiss Educhain system must be defined.
RQ14 Issuing should create an unchangeable audit trail.
RQ15 Data owner is responsible for data backup. System should provide an

option for a participants’ data to be exported.
RQ16 Multisig transactions should be possible.
RQ17 System processes data in a text-based format.
RQ18 Allow for identity details to change (e.g. name, address).
RQ19 The process to onboard Issuing Organisations to the Swiss Educhain

service needs to be examined and defined.
RQ20 User accounts need to be associated with one or more Issuing Orga-

nizations.

Table 4.2: Swiss Educhain Functional Requirements

RQ8
Any Recipient should be uniquely identified and use a single account that is used
to receive diplomas, certificates, certificate of employment etc. issued from multiple
issuing organizations.

RQ9
Issued diplomas and other digital credentials should be entirely owned by the recip-
ient and not the institution/company that issues them. This will allow for complete
control of someone’s data and enable a granular voluntary peer-to-peer read-only
disclosure (temporary or permanent).

RQ10
The cease of operation of any Issuing Organization should not affect the Recipi-

ent’s account, it must also be ensured that no individual other than the System
Administrator has the ability to suspend or lock a Recipient’s account.

RQ11

22 CHAPTER 4. SYSTEM DESIGN

The user account creation process (or user registration) needs to be defined, and
map one single real-world identity to a unique digital identity. As part of this process
the need for a Know-Your-Customer (KYC) process or identity verification should
be examined.

RQ12
Issuers of a digital credential must be able to revoke it if there is proof that the
Recipient acquired it maliciously or by falsifying information.

RQ16
Multisig refers to the technical ability for multiple parties to sign a transaction.

RQ17
Any produced files such as PDFs (Portable Document Format) must be converted
to a text-based format (i.e. using base64 conversion) and included in a JSON
(JavaScript Object Notation) file/structure.

RQ18
Recipient should be able to request an update to his data.

RQ20
The association of user accounts to one or more Issuing Organizations must be
defined, this includes the assignment of specific roles for members within a certain
Organization such as credential Issuer and Recipient.

4.2.2 Non-Functional Requirements

The Swiss Educhain system is intended to provide a service to a plethora of organizations
such as universities, government departments and employers of different sizes, in diverse
jurisdictions and of varying technology maturity level. This creates the need for a system
that fulfills these non-functional requirements:

4.3. ARCHITECTURE 23

Requirement Description
RQ21 Verifier must be able to verify the diploma even when the private

environment is not available.
RQ22 Easy to use from a user perspective, with a simple UX/UI and

straightforward functionality.
RQ23 Easy to install, configure, deploy, operate, monitor and maintain from

a System Administrator’s perspective.
RQ24 Uses technologies that are freely available, popular, well-established

and mature.
RQ25 Has as few as possible technology requirements and dependencies both

in terms of hardware and software.
RQ26 Can be easily integrated with existing IT infrastructure and is cross-

platform compatible.
RQ27 Is not dependent on state-of-the-art technologies such as Containers,

Cloud etc.
RQ28 System should support multiple issuing organizations.
RQ29 High-level access control must be defined for the different kind of

identities participating in the system.
RQ30 Can be modularly enhanced by existing functionality.
RQ31 Data that are disclosed peer-to-peer should not be broadcasted.
RQ32 All transactions in the system should be signed and the identity of

any action initiator should be verifiable.

Table 4.3: Swiss Educhain Non-Functional Requirements

This ends the text jointly written with Simon Müller [12].

4.3 Architecture

This Section discusses the chosen high-level architecture for Swiss Educhain. This work
was done in close collaboration with [12] using common decision criteria, the IAM specific
architecture is explained in Section 4.4. Some important factors and goals taken into
consideration during this design phase include:

Requirements fulfillment
The chosen solution should partially or completely fulfill the majority of the archi-
tectural requirements identified in Section 4.2.

Real-world application
The Swiss Educhain service is planned to be eventually deployed as a real-world
service for members of academia, with the aspiration to serve additional use cases
in the future. In contrast to other projects or proof-of-concepts that are created as
part of a thesis or an academic project, this work will continue to be developed and
improved upon until it is production ready.

24 CHAPTER 4. SYSTEM DESIGN

Privacy, Security and Verifiability
Swiss Educhain must handle sensitive user data, thus, it is crucial that information
is stored and transferred securely and disclosed strictly on a need-to-know basis
only. Actions such as issuing or blacklisting diplomas must be auditable, with the
identity of any action initiator easily verifiable.

Simple development and operation
As students are the main contributors and the service will be operated under the
academic umbrella, it is essential that no specialized knowledge is required to be
able to develop, maintain and operate the service. This would also mean that a
strong preference to open source, well documented and widely adopted technologies
should be given.

Extensible modular architecture
New features’ development, easy integration with existing or future external com-
ponents and uncomplicated co-hosting of the service with other systems should be
enabled. To achieve this goal, a modular loosely coupled architecture should be de-
signed, so components can interact using clearly defined interfaces that encapsulate
and hide the chosen functionality implementation(s).

Based on the guidelines and goals mentioned above, an appropriate solution is chosen in
Section 4.3.2 and the implementation details are mentioned in Chapter 5.

4.3.1 Candidate Solutions

After conducting initial research and taking into consideration possible technical solutions
and available technologies, two major options were identified for the Swiss Educhain
service which are explained in this Section.

Governance Model

This is joint text with Simon Müller [12].

The Swiss Educhain ecosystem is comprised of a variety of institutions and stakeholders
as identified in 4.1. This creates challenges and different options for the governance model
to be chosen.

Two different governance and operational models have been determined:

Option 1: Global Network
A global network is deployed, where different organizations are onboarded. A pro-
cess to identify accredited institutions and to allow them to participate in the system
as Issuers must be defined and explored both in technical and non-technical as-
pects. The system is operated and governed by the UZH Blockchain Center which
is responsible for administration, support and new functionality.

4.3. ARCHITECTURE 25

Advantages
Only one user account for each Recipient.
Unified update and upgrade rollout.
Low administration and operational effort.

Disadvantages
Forced update and upgrade policy.
More complex identity management.

Option 2: Per-institution Network
Each institution deploys and operates an independent instance of the FOSS Swiss
Educhain service. The service is entirely operated and governed by each institution
which is responsible for administration, support and new functionality.

Advantages
More control over the system.
Independent update and upgrade rollouts.

Disadvantages
High administration and operational effort.
Users need new account for each institution.
Institution’s cease of operation results in unexpected system termination.

After weighing advantages and disadvantages between option 1 and option 2, the Global
Network governance and operational model was the preferred choice. A global network
from a technical perspective simplifies the deployment and operation of the system. As-
suming that the Swiss Educhain service will be adopted by multiple institutions a global
standardized network will simplify the user administration and reduce significantly the
overhead of operating multiple parallel instances of the system.

This ends the text jointly written with Simon Müller [12].

4.3.2 Architecture Solution

This is joint text with Simon Müller [12].

After the initial analysis of the previously elicited requirements the resulting Swiss Educhain
high-level architecture is depicted in Figure 4.1.

Identity Management

Issuer &
Recipient Switch Edu-ID Swiss Educhain

Private
Corda Network

Public
Ethereum Network

SSO Verify Frontend Verifier

Diploma Verification

CRUD

Figure 4.1: Swiss Educhain high-level architecture.

26 CHAPTER 4. SYSTEM DESIGN

The high-level architecture as shown in 4.1 illustrates the logically separated steps and
processes entailed in the end-to-end issuance and verification of a diploma.

Initially, the diploma Issuer and Recipient register to the Swiss Educhain service with
their SWITCH edu-ID account which integrates through the Shibboleth web single sign-
on (SSO) implementation. The Swiss Educhain service leverages Spring Boot and the
Corda distributed ledger (DL) to execute core functionality, such as, executing signed
transactions, storing account and diploma information in states, and permitting Issuers

to issue diplomas to Recipients.
Corda was chosen as the private permissioned blockchain due to the excellent compatibility
with other system components, such as Apache and the AJP connector. Futhermore, it
is written in Kotlin same as the Spring Boot webserver simplifying development and it
offers extensive up-to-date documentation. Then, the issued diplomas can be hashed and
published, individually or in batches, to the public Ethereum ledger via a Solidity smart
contract which offers additionally the option to blacklist an already published diploma. As
a last step in the issuance process verification can occur independently and anonymously
by any person or organization.

To achieve the minimum required functionality for a proof-of-concept implementation
as described in Section 4.3.3, a plethora of components and different technologies were
combined. A detailed architecture of the Swiss Educhain components is depicted below
in Figure 4.2.

SWITCH edu-ID shibd

Apache WebServer

mod_proxy_ajp mod_shib
Attributes

Spring Boot

Tomcat

AJP
Connector

Frontend

Controller

Corda

ServiceHub

CorDapp

Services

Contracts

Flows

States

Figure 4.2: Swiss Educhain component architecture.

Figure 4.2 outlines the inner workings of the Swiss Educhain application component and
depicts in detail all interactions down to the module level.

4.3. ARCHITECTURE 27

As it can be seen in Figure 4.2, the Swiss Educhain service is dependent on the ac-
count information provided by SWITCH edu-ID. SWITCH edu-ID relays attributes from
a logged-in user to shibd, the Shibboleth daemon service, through the mod_shib the
Apache Webserver Shibboleth module. With this configuration in place, Apache is able
to disclose the user account attributes via the Apache JServ Protocol (AJP) over the
mod_proxy_ajp module when requested by the Spring Boot application server. An em-
bedded Tomcat server resides inside the Spring Boot application that is listening to and
serving all call requests, over the custom AJP Connector, from and to the Apache Web-
server. The embedded Tomcat server hosts the Frontend over which a logged-in user
interacts with the Swiss Educhain service. Additionally, in the Spring Boot application
relies the Controller which exposes various RESTful endpoints to the Frontend and the
Tomcat server.
When the controller receives a request that requires a connection to Corda it calls the
Corda ServiceHub via a Remote Procedure Call (RPC) operation. Within Corda, Service-
Hub is the main orchestrating entity can be viewed as an entry point. It routes all requests
to the appropriate service or flow that are part of the Corda Decentralized Application
(CorDapp). Services and flows execute transactions based on the contract rules, store
or update information on states and cryptographically ensure the overall system privacy,
security and actions verifiability.

This ends the text jointly written with Simon Müller [12].

4.3.3 MVP Functionality

This is joint text with Simon Müller [12].

The following functionality has been identified as the minimum required for a PoC version
of Swiss Educhain:

Identity management
Two types of identities should be supported, Issuers and Recipients.
Define process of creating a new account.
Define data structures for the Educhain account data.
Define access control rules for general access to the service.
Define application level access control for Issuers.
Fetch student details to create Corda identities.
Detect student detail changes and update Educhain account automatically.

Data Structures
Define an appropriate data structure for storing data related to a diploma.
Allow digital diploma hashing and publishing on a public blockchain.
Allow existing diplomas to be digitally signed and published.
Publish diplomas in batch.
Blacklist diplomas.

Web Interface
Issue diploma by uploading JSON.

28 CHAPTER 4. SYSTEM DESIGN

View received diplomas (all users).
View issued diplomas (only Issuers).
Issuer should be able to perform all actions from the frontend.
Provide a simple login and logout interface.

Operations
Define build, installation and deployment process.
Encryption for data in transit and data at rest.
Cross-platform compatibility.

This ends the text jointly written with Simon Müller [12].

4.4 Identity and Access Management

With Corda as the chosen private permissioned blockchain technology to be used, an
end-to-end IAM system must be designed, implemented and tightly integrated to offer
appropriate access controls. During the design process, several options were considered
and evaluated against technical and non-technical criteria to achieve an optimal solution
with little or no compromises.

As identified in Section 4.1, the Swiss Educhain service has only two distinct types of
roles, an Issuer and a Recipient. The role of a user is determined through their current
active scoped affiliation (student, staff etc.) with one or more organizations. It is also
possible that a user is at the same time both an Issuer and a Recipient assuming the
two linked affiliations are not in the same organization.

4.4.1 Identity Candidate Solutions

To ensure the requirements fulfillment and the Swiss Educhain service success, it is essen-
tial to choose the best way to implement an IAM solution. There are three main candidate
implementation approaches:

1. Creation of a completely custom IAM solution using Corda, operating an own IdP.

2. Leveraging an existing CorDapp Identity solution, which integrates Corda with pub-
lic third-party IdPs [71].

3. Integration with a federated IdP service, and mapping of IdP accounts with the
Swiss Educhain CorDapp accounts.

Assessment of the different approaches’ suitability for Swiss Educhain:

Own IdP
Creation and operation of an own IdP, is well-suited for complex IAM requirements
of organizations that need to manage diverse roles, user groups and access rights.

4.4. IDENTITY AND ACCESS MANAGEMENT 29

As identified in Section 4.1 the Swiss Educhain service needs to only accommo-
date for two kind of accounts Issuers and Recipients. Designing, implementing
and operating an own IdP, comes with a lot of overhead, such as user onboarding,
KYC verification, account lifecycle management, sensitive data handling, regulatory
compliance (e.g. GDPR) and generic technical maintenance activities.

Third-party identity CorDapp
A third-party CorDapp, offers out-of-the-box integration with one or more public
IdPs. This choice caters best to an application that aims to easily acquire access
to, and onboard as many users as possible, targeting a wide audience. Some con-
siderations with this approach include technical dependencies, degree of adoption,
whether the solution is Free and Open Source Software (FOSS), and what is the
provided licensing or support amongst others.

Integration with a federated IdP
Integrating with a federated IdP solution offers a simple and straightforward way for
a service provider to gain access to a special interest audience and users from multiple
organizations, which participate in the federation. SWITCH edu-ID is the evolution
of the sole identity provider (SWITCHaai) of the swiss academic community. A
walkthrough of the detailed benefits for users, service providers and organizations
using SWITCH edu-ID is given in Section 3.2.1. Possible drawbacks of using a
federated IdP include a tight dependence on the quality and availability of the
services provided by the IdP, lack of new feature implementation, no flexibility for
customization, and the admission that provided user’s data quality is accepted via
a chain of trust [72].

For the Swiss Educhain service needs, integration with SWITCH edu-ID is the approach
that provides most benefits with few to almost none significant drawbacks. The following
advantages are particularly important for Swiss Educhain:

� One unique, long-lived and user-controlled identity for users.

� Sensitive user data are not stored on the Swiss Educhain service, data and fine-
grained attributes are only disclosed on a need-to-know basis during login.

� Less administration, no need to onboard organizations or users and verify their de-
tails. Verification, access rights and data updates are performed by the organizations
for affiliations and by edu-ID for personal user data.

� Swiss Educhain can be used by any user very easily through Web SSO.

� High security standards implemented and enforced from SWITCH centrally.

� Interoperability with SWITCHaai, Switzerland and internationally.

SWITCH edu-ID features

In addition to the traditional core IdP service functionality, SWITCH edu-ID offers a wide
range of advanced features to enhance security, privacy and interoperability for all users,
service providers and organizations that participate in the SWITCH community. The

30 CHAPTER 4. SYSTEM DESIGN

most important features relevant to the current or future state Swiss Educhain service
are:

Advanced password policy
Enforces minimum password strength, rejects compromised passwords and complies
with NIST recommendations [73].

Multi Factor Authentication
Available in the form of SMS, or Time-based one-time passwords (TOTP) with the
addition of one-time recovery codes [74].

Attribute quality
Individual level of assurance for each attribute with three distinct levels (low, medium,
high), which are expressed in the meta-attribute swissEduIDAssuranceLevel [75].

Extended Attribute Modes
Potential to request attributes from the personal part of the identity, from linked
current affiliations and group membership information [76].

Technical Accounts
Support for technical accounts [77].

Link Composer
Allows service providers to compose links for various flows such as the attribute
completion flow and the login flow [78], [79], [80].

Testing
A test version is provided (test.eduid.ch) to run tests in an isolated environment,
the federation is AAI Test (allows linking production SWITCHaai identities) [81].

4.4.2 Identity Chosen Solution

As the preferred solution, integration with the federated SWITCH edu-ID IdP is chosen.
Swiss Educhain participates in the federation as a Service Provider (SP) under UZH as
its Home Organization, with an appropriate service Resource Description in the SWITCH
AAI Resource Registry [82].

EPFL ETH UZH

SWITCH edu-ID

Swiss Educhain

Attribute
Provider

Attribute
Provider

Attribute
Provider

Longterm
IdP

Service
Provider

User

Figure 4.3: SWITCH-Swiss Educhain architecture based on [83].

test.eduid.ch

4.4. IDENTITY AND ACCESS MANAGEMENT 31

In Figure 4.3 the high-level IAM architecture between Swiss Educhain, SWITCH edu-ID
and the Attribute Providers is shown. The user only has a single unique long term identity,
hosted and operated by SWITCH edu-ID, which can be used to create affiliation(s) with
one or more Organizations. The Organizations act as attribute providers and attest that a
certain individual has a specific role. Service Providers become members of the federation
and register as Resources in the SWITCH AAI Resource Registry. Based on the approved
Resource description and after the user’s disclosure consent, only the required attributes
are sent to the Service Provider by the edu-ID IdP. Attribute values are always fetched
in real-time from all Attribute Providers and updated if needed before sent to the Service
Provider. Figure 4.4 depicts an overview of the Resource Registry tool.

Figure 4.4: Resource Registry overview [84].

Swiss Educhain has registered as a Resource in the AAI Test federation with Home Orga-
nization the University of Zurich test IdP. For the architecture shown in Figure 4.3 to be
operational a certain level of trust needs to exist between the federation participants [85].
Trust in this context refers to information or data released from one federation participant
to another, and that an entity trusts another means that the data (attributes) received
are accepted as correct, complete and previously verified either directly from the data
source or through a chain of trust.

Figure 4.5 shows the trust relationships relative to the Swiss Educhain service. SWITCH
edu-ID is the trusted root in the federation, thus trusted by everyone. There exists a
two-way trust relationship between Attribute Providers and SWITCH edu-ID, a result
of the gradually built trust during the onboarding of Organizations to the federation, a
process that entails multiple steps and has a duration of several months [86]. The identity
data transferred are logically structured in the form of attributes.

Attributes are the main building block of SWITCH edu-ID and SWITCHaai identities.
They offer a comprehensive and standardized way to structure user information and assist
in simple attribute-based access control (ABAC) policy implementation, a concept previ-
ously introduced in Section 2.3.2. A SWITCH edu-ID identity consists of the following
parts [87]:

Personal part - mandatory for all accounts, it must contain at least first name, last

32 CHAPTER 4. SYSTEM DESIGN

SWITCH edu-ID Swiss Educhain

Attribute
Provider

Longterm
IdP

Service
Provider

User

UZH

Figure 4.5: Swiss Educhain trust relationships.

name and an email address.

Current affiliation - added to an account when the user becomes a member of an orga-
nization (e.g. student or staff). May contain none, one or more current affiliations,
and all current affiliations are created and managed by the respective organizations.

Former affiliation - a current affiliation is transformed into a former affiliation when an
individual leaves an organization. The set of former affiliations acts as the affiliation
history of an individual.

Group memberships - an identity’s group memberships are represented in the enti-

tlement attribute.

Figure 4.6: Classic and Extended Attribute models for Service Providers [88], [76].

The differences in the way a Service Provider can request, and access user attributes is
shown in Figure 4.6. In the classic model, the service would either get the attribute as-
sertion A or B, depending on the user’s choice in the discovery service or the affiliation
selection, a service can get only one part at a time. There may be cases where a ser-
vice requires attributes from multiple home organizations simultaneously. This is possible
in the extended model, where a service can potentially get a SAML assertion for at-
tributes in the small bold red boxes in different parts of the identity. Swiss Educhain
is using the extended model because it needs to fetch all current scoped affiliations

4.4. IDENTITY AND ACCESS MANAGEMENT 33

(swissEduIDLinkedAffiliation attribute) of the users. Users login with their edu-ID
account and all the attributes that are requested by Swiss Educhain are updated with the
current values and then disclosed. The extended model login flow is shown in Figure 4.7
and contrasted side by side with the classic model, where an affiliation is chosen before
logging into a service.

Figure 4.7: Classic and Extended models login flows [89].

The two distinct roles that can be assumed by the Swiss Educhain service users are Issuer
and Recipient. In order to be able to distinguish amongst two kinds of users and issue
a diploma the following attributes must be disclosed:

commonName (cn) - user’s common name (first name, last name).

mail - preferred email address to be used to send messages to this person.

matriculationNumber - the unique long-lived matriculation number of a student.

swissEduIDLinkedAffiliation - a list of organizational scoped-affiliations (e.g. stu-
dent@uzh.ch, staff@ethz.ch).

persistentID - a privacy-preserving user identifier shared between the Identity Provider
(IdP) and the Service Provider (SP).

34 CHAPTER 4. SYSTEM DESIGN

4.4.3 Persistent ID

The persistentID attribute is generated by the IdP when the user accesses a specific SP
for the first time. It is stored in a relational database when the IdP is configured as the
SWITCHaai deployment guides instruct. If no database is configured, a new value will
be computed every time using the predefined salt. As it is persistent, the value remains
the same for all further sessions between the same user and the same Service Provider.
For different Service Providers, different Persistent IDs are generated for a given user.
Therefore, the Persistent IDs cannot be used to correlate user data, even if several Service
Providers tried to aggregate data. This results in better user privacy [90].

4.4.4 Target Audience

The target audience of the Swiss Educhain service is considered to be any edu-ID user
which has at least one linked affiliation and a matriculation number. Linked affiliations
are affilitations between edu-ID users and Organizations (acting as Attribute Providers),
and should not be confused with the plain affiliation attribute which is the affiliation
between a user and SWITCH edu-ID directly.

4.4.5 Role Assignment

The activities of role assignment, management and revocation are outside of the Swiss
Educhain system boundary. Roles should be strictly assigned and managed by the orga-
nizations, it is their sole responsibility to ensure that only the correct users are assigned
the corresponding affiliation(s) which are interpreted by Swiss Educhain into the two dis-
tinct roles of Issuer and Recipient. Through the edu-ID IdP, Swiss Educhain is always
provided with the latest up to date values of all the user account attributes. The most
important attribute is swissEduIDLinkedAffiliation which holds all the current ac-
tive user affiliations with one or more organizations, the values should only be present
while the affiliation lasts, as soon as a user leaves an organization the affiliation should
be marked as a former affiliation by edu-ID and the value removed from the attribute.

4.4.6 User Access Control

A user has different interactions and relationships with the Service Provider (Swiss
Educhain), the Identity Provider (SWITCH edu-ID) and the Attribute Provider(s)
(Organization(s)). In Figure 4.8 the login sequence steps are shown for a new session,
this includes the different levels of access controls with the SP and the IdP. Even though
the User Experience is excellent and the Web SSO works seamlessly, there are a lot of
prerequisites, established processes and well-defined steps happening in the background
to ensure privacy, security and verifiability.

4.4. IDENTITY AND ACCESS MANAGEMENT 35

User

User

SP

SP

IdP (edu-ID)

IdP (edu-ID)

Organizations

Organizations

Request protected resource

Pass SAML message from SP, Login, Start IdP session

Redirect to IdP w. SAML message

Respond with latest attribute values

User Indentification/Authentication

Request attribute values

Send SAML message containing attributes destined for the SP

POST SAML from IdP to SP

Filter Attributes for SP

Decrypt SAML

SP Authentication

Alternative

[Allowed to access service]

[Not Allowed]

SP Authorization

Return Issuer frontend

Access Denied

Alternative

[isIssuer]

[isRecipient]
Return Recipient frontend

Figure 4.8: Swiss Educhain login sequence diagram based on [91].

Initially, the user tries to visit the Swiss Educhain service (https://educhain.csg.uzh.
ch/app/), the mod_shib Apache module in the SP checks if a valid session exists to access
the protected location relative to the base url (e.g. /app/), details on the implementa-
tion are provided at Chapter 5. Since there is no active session the user is redirected
to the IdP to login and authenticate, carrying also a SAML message from the SP which
requests certain attributes. In other federated Web SSO scenarios the SP conducts a
WAYF (Where Are You From) step to discover the IdP which holds the user’s identity,
while in the SWITCH edu-ID scenario the IdP is unique and already known to the SP
(https://login.test.eduid.ch/).
The user reaches the IdP and needs to perform the identification and authentication steps
(usually using a username and password). After the user successfully authenticates, the
IdP updates all the attributes and linked affiliations of the user by sending requests to
the Organizations that act as Attribute Providers. Once all the attributes have been re-
ceived, the IdP performs any necessary updates internally and then consults the Resource
Registry, to filter the attributes based on the SP Resource Description and the active
Attribute Release Policy Settings. Then, the SAML response is encoded and sent back to
the user to be forwarded to the SP, this response only contains the attributes that the SP
is allowed to request and that are available. The user is shown a comprehensive message of
which attributes will be disclosed to the SP. After providing consent, the SAML response
is forwarded to the SP together with a new request to access the protected resource.
The SP decrypts the message, verifies the IdP signature and depending on the ABAC
policy in effect, allows or denies access to the resource. User identification is done with
the persistentID to preserve privacy, and authentication is inherited from the authenti-

https://educhain.csg.uzh.ch/app/
https://educhain.csg.uzh.ch/app/
https://login.test.eduid.ch/

36 CHAPTER 4. SYSTEM DESIGN

cation statement produced by the IdP (possibly also stating if it was 1FA, 2FA or MFA).
Swiss Educhain has two levels of authorization, the service-level authorization which de-
termines if a user should be granted access to the service in general and the application-
level authorization which determines what actions the user will be allowed to perform. A
detailed description is provided below.

4.4.7 Authorization Policy

Service-Level Authorization
The service level policy is stored in the Apache Webserver configuration and uses
the mod_shib module (which integrates the local Shibboleth daemon with Apache)
to check the received values and enforce the policy.

Rules: (Require All)

Valid Session
A valid shibboleth session needs to be active between the SP and the user,
this means the user has authenticated with the IdP, the SP has validated the
received authentication statement and a new session was created.

Linked Affiliation exists
At least one linked affiliation exists, checked through the swissEduIDLinkedAf-
filiation attribute which needs to have at least one value.

Matriculation number exists
The user’s matriculation number needs to be present and valid; the validity and
non-duplication is ensured by SWITCH edu-ID. Attribute matriculationNr

holds the value. In Swiss academia the matriculation number is only generated
once and is used across organizations when needed.

If all the above conditions are true, Apache creates a session and sends a request
to the Spring Boot embedded Tomcat server through the AJP protocol as shown in
Figure 4.2. If any of the conditions is not satisfied access is denied and the user is
redirected to an error page by the Shibboleth handler.

Application-Level Authorization
The application level policy only determines the role the user will assume. The two
distinct application roles are Issuer and Recipient as defined in Section 4.1. It
must be clarified, as mentioned in detail in Section 4.4.5, that Swiss Educhain does
not manage any user accounts nor is able to assign access rights or affiliations on
behalf of any Organization.

Rules:

Recipient
Recipient is the role that is assigned by default to all the users that have
access to the service. There is no additional check to verify that a user should
assume the role of a Recipient, this is ensured from the check performed by
Shibboleth and Apache.

4.4. IDENTITY AND ACCESS MANAGEMENT 37

Issuer
An Issuer has elevated access rights and is able to issue diplomas to one or
more Recipients individually or in batch. To identify someone as an Is-

suer the CorDapp checks the swissEduIDLinkedAffiliation attribute for
the values staff@uzh.ch or faculty@uzh.ch. For the Swiss Educhain to be
released to production and Organizations to be able to assign the role of Is-

suer a new value should be available in the swissEduIDLinkedAffiliation

attribute, issuer (e.g. issuer@uzh.ch, issuer@epfl.ch). The values of
staff and faculty are used for the purpose of the MVP implementation.

A view of the frontend interface is shown in Figure 5.4 in Chapter 5.

4.4.8 Application Accounts

The extensive integration with SWITCH edu-ID has been described and the solution
design has been presented. It is essential to define the mapping amongst edu-ID identities
with Swiss Educhain application accounts. Figure 4.9 shows the information flow and
granular identity mapping of parts for the various entities.

SWITCH edu-ID
Personal Part

Current Affiliations

Org: UniA

Org: UniB

Affiliation

Affiliation

User

Swiss Educhain
Educhain Account

Corda Account

persistentID

cn

mail

matriculationNumber

swissEduIDLinkedAffiliation

issuer

recipient

isAllowedToIssue

name

host

UUID

Figure 4.9: Information flow and identity mapping.

User
The user provides personal and contact information to the affiliated Organizations
and the edu-ID IdP. Information provided by the user is not trusted by default
and must be always verified, either digitally or via in-person verification. The user

38 CHAPTER 4. SYSTEM DESIGN

owns and manages the personal part of the edu-ID account, following a user-centric
approach.

Organizations
Organizations no longer act as a complete identity provider which hosts and manages
the users’ accounts. In the edu-ID architecture, they host only the affiliations that
exist with users, entrusting the user identity management responsibility to edu-ID.
Thus, they act as Attribute Providers to edu-ID, by assigning individual roles and
access rights using the attribute values. In other use cases, the relationship with edu-
ID can be two way, but from Swiss Educhain’s perspective the flow of information
is only unidirectional.

edu-ID IdP
Edu-ID is the central root of trust of the SWITCH federation and is the sole IdP,
serving all the other entities. Edu-ID acts as a data provider and a source of trust
for Swiss Educhain. It provides only the relevant (and approved for release) parts or
attributes of a user’s identity to the service. Apart from the information depicted,
edu-ID holds a wide variety of metadata and a history of all the former affiliations
of a user.

Swiss Educhain
Swiss Educhain acts solely as a consumer of information from a single data source,
the edu-ID IdP. A strong trust relationship is assumed, to treat all user data dis-
closed as authentic, complete and valid. Internally, specific attributes are used to
provide two levels of authorization and identify a user (persistentID). A Corda ac-
count is created to be used in transactions and is logically mapped one-to-one with
the EduchainAccount. The Educhain account is stored as a Corda state with specific
attributes and is updated if needed after every login. The persistentID attribute
acts as the primary key and is used to perform all account related activities. More
information on the implementation of accounts is provided at Chapter 5.

Chapter 5

Implementation

As described in Chapter 4 several design decisions were made to address the core func-
tionality requirements. With Corda chosen as the private permissioned blockchain plat-
form, an appropriate IAM solution was engineered as described in Section 4.4. Section
5.1 goes through the high-level necessary technical steps for Swiss Educhain to integrate
with SWITCH edu-ID. Section 5.2 describes the parts of the codebase relevant to Swiss
Educhain’s IAM solution. Section 5.3 demonstrates how the identity management part of
Swiss Educhain is implemented in the CorDapp code. Lastly, Section 5.4 demonstrates
the implementation details of the Spring Boot essential sub-components. High-level in-
formation and guidelines on how to install and configure the Swiss Educhain are provided
in Appendix A.

5.1 Integration with SWITCH edu-ID

As already analyzed in Section 4.4.2 the chosen IAM solution is participation in the
SWITCH federation and integration with SWITCH edu-ID. Swiss Educhain participates
as a Service Provider (SP) and needs to implement certain technical integration steps as
described in the next Sections.

5.1.1 Shibboleth Installation and Configuration

The Shibboleth Service Provider software needs to be installed to the server that hosts
the Swiss Educhain service. The Swiss Educhain service is hosted on an Ubuntu Server
provided by the Communications Systems Research Group (CSG) at the Department
of Informatics. The service can be accessed at https://educhain.csg.uzh.ch/app/.
Figure 5.1 shows how the Shibboleth SP daemon integrates with Webservers.

39

https://educhain.csg.uzh.ch/app/

40 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Shibboleth daemon integration [92].

The Shibboleth Service Provider consists of a daemon shibd running on all major op-
erating systems and a web server module mod_shib which is natively supported by the
Apache HTTPD server. The Service Provider can protect any web server content by
enforcing user authentication [92]. Detailed step-by-step instructions for the installation
and configuration of the Shibboleth Service Provider (SP) 3.0, as well as instructions on
how to register an SP at the Resource Registry are provided by SWITCH [93], [94].

5.1.2 HTTPS Configuration

To provide integrity, security and confidentiality the Swiss Educhain service uses HTTPS
traffic. This requires an SSL/TLS (Secure Sockets Layer, Transport Layer Security) Cer-
tificate by a trusted CA (Certificate Authority). Swiss Educhain uses certbot to create
and renew automatically certificates signed by Let’s Encrypt [95], [96].

1 RewriteEngine on

2 RewriteCond %{ SERVER_NAME} =educhain.csg.uzh.ch

3 RewriteRule ^ https ://%{ SERVER_NAME }%{ REQUEST_URI} [END ,NE,R=permanent]

Listing 5.1: Excerpt of the apache2/sites-enabled/educhain.conf file.

Once the certificate has been created, Apache is configured to redirect all http requests
to https. Listing 5.1 shows the Rewrite directives which are defined inside the port 80
VirtualHost configuration.

1 SSLEngine On

2 SSLProxyEngine On

3 SSLCertificateFile /etc/letsencrypt/live/example.com/fullchain.pem

4 SSLCertificateKeyFile /etc/letsencrypt/live/example.com/privkey.pem

5 Include /etc/letsencrypt/options -ssl -apache.conf

Listing 5.2: Excerpt of the apache2/sites-enabled/educhain-le-ssl.conf file.

5.1. INTEGRATION WITH SWITCH EDU-ID 41

In Listing 5.2 Apache is configured to turn on the SSL engine, the absolute paths are
set for the generated certificate and private key, and the options-ssl-apache.conf file
is imported from the /etc/letsencrypt/ directory. This configuration file allows for
further customization of the SSL protocol, the ciphersuite and enabling or disabling com-
pression amongst other options.
To ensure that communication is secure between Apache and Spring Boot, SSL needs
to be configured for the AJP Connector as seen in Figure 4.2 and explained in detail
at Section 5.4.1. As mentioned in the guidelines provided in Appendix A, a PKCS12
(Public-Key Cryptography Standards 12) certificate needs to be generated based on the
valid SSL certificate, instructions on how to create it are given in [97]. The variables in
Listing 5.3 need to be set in the application.properties file of the clients module,
so Spring Boot is able to use the keystore.

1 server.ssl.key -store = /path/keystore.p12

2 server.ssl.key -store -password = notapassword

3 server.ssl.keyStoreType = PKCS12

4 server.ssl.key -alias = mytomcat

Listing 5.3: Spring Boot embedded server SSL properties.

5.1.3 Shibboleth Access Control

When configuration is in place for all the components to communicate securely and Swiss
Educhain has been registered and integrated as a Service Provider, access controls can be
defined through Shibboleth.

1 <Location /app/>

2 AuthType shibboleth

3 ShibRequestSetting requireSession true

4 ShibUseEnvironment On

5 <RequireAll >

6 Require shib -attr swissEduIDLinkedAffiliation ~ .*@.*

7 Require shib -attr matriculationNumber ~ .*

8 </RequireAll >

9 </Location >

Listing 5.4: Access control for /app/ location based on Shibboleth attributes.

The configuration in Listing 5.4, stored in apache2.conf, sets the following requirements
to allow access to the protected resource in https://educhain.csg.uzh.ch/app/:

� A valid active Shibboleth session.

� Shibboleth should use the environment to disclose attributes instead of the headers.
This affects the way Spring Boot retrieves the already disclosed attributes which
reside in Apache. More details on this process are provided in Section 5.4.1.

� Each user should have at least one linked affiliation with an Organization and the
matriculation number should be present. If only one of the two is true, then access
is denied.

https://educhain.csg.uzh.ch/app/

42 CHAPTER 5. IMPLEMENTATION

The above access control is an implementation of the Service-level authorization as defined
in Section 4.4.7. More examples of Shibboleth Service Provider access control rules are
provided in [98].

5.1.4 Attributes

As already described in detail in Section 4.4.2 several attributes are necessary for Swiss
Educhain to function. Swiss Educhain states in the Resource Description in the SWITCHaai
Resource Registry (RR) which attributes are required and which are desired. Required
are the core attributes which are available from all Organizations and desired are other
attributes. If an attribute is neither required nor desired by the SP, then it will not be
disclosed at all. Swiss Educhain attributes:

commonName (cn) - core, required.

mail - core, required.

persistentID - core, required.

matriculationNumber - other, desired.

swissEduIDLinkedAffiliation - other, desired.

Shibboleth checks only if matriculationNumber and swissEduLinkedAffiliation exist
and have the proper value, because these attributes are not guaranteed to be present in a
user’s account. The Spring Boot module can request the value of one or more attributes by
calling the request.getAttribute() method and specifying the attribute to be fetched
by name. An example of all the attributes disclosed in a session are shown in Figure 5.2.

Figure 5.2: SSO session attributes disclosed to Swiss Educhain.

5.2. CODE STRUCTURE 43

5.2 Code Structure

The Swiss Educhain service in its core is developed as a CorDapp (Corda Decentralized
Application). The codebase has been based on the CorDapp Kotlin template [99] and was
expanded to meet the MVP functionality needs both for the identity management and
the verification process.

The main code modules of the service are:

clients
This is the Spring Boot component and it contains:

- the web frontend code, which is written in HTML and AngularJS,

- the embedded Tomcat Server (with the attached AJP connector),

- the Controller exposing RESTful endpoints to interact with the CorDapp.

contracts
This is a CorDapp component and contains the Contracts and States definitions.

verification frontend
Contains the verification frontend files, it is written in plain HTML and JavaScript.

workflows
This module contains the majority of the CorDapp functionality:

- the flows for Account and Diploma functionality,

- RPC startable queries to retrieve data from the node Vault,

- the Identity and Ethereum node services,

- the Solidity smart contract.

The CorDapp consists of two code modules, namely contracts and workflows. There
are two reasons behind this decision. Firstly, the contract JAR is attached to a transac-
tion and independent upgrades, so producing it separately reduces its size significantly.
Secondly, contracts have constraints and upgrading is complex, therefore decoupling
contract code from flow code allows flows to be upgraded independently.
A high-level file structure of the code is presented in Appendix B, and the complete Swiss
Educhain source code can be found in the contents of the accompanying CD. In the fol-
lowing Sections, only the functionality strictly related to identity and access management
is analyzed, a detailed analysis on the functionality related to the verification process is
provided in Simon Müller’s work [12].

5.3 CorDapp

The application logic and core functionality of the Swiss Educhain is implemented as a
CorDapp. Same as any other CorDapp, it needs to have a few building blocks to be
complete such as states, contracts, flows and (optionally) services.

44 CHAPTER 5. IMPLEMENTATION

5.3.1 Swiss Educhain Application Accounts

As previously explained in Section 4.4.2 to create an Educhain application account some
fields are retrieved through attributes, some fields are populated inside the CorDapp and a
one-to-one mapping to Corda technical accounts must be defined. Figure 4.9 demonstrates
the different fields and the exact data flow. To provide debugging information in the web
frontend the sections of Educhain Accounts and Corda Accounts are displayed as shown
in Figure 5.3.

Figure 5.3: Educhain and Corda accounts frontend sections.

5.3.2 Corda Accounts & Node Identity Service

As analyzed in Section 3.3.1 the Corda Accounts library offers the possibility to create
technical Corda accounts with only three fields:

name - can be set during the account creation (type String),

host - is of type Party and is the identity of the node hosting the account,

identifier - is a UUID (Universally Unique Identifier) value automatically generated of
type UniqueIdentifier.

To create new accounts the createAccount(name: String) function is used which is
defined in the KeyManagementBackedAccountService class [43]. Listing 5.5 shows the
Corda account state and creation function. After a Corda account has been created it
can no longer be updated. The Corda accounts need to be leveraged from the application
to create any custom accounts lifecycle or identity and access management solutions.

5.3. CORDAPP 45

1 @BelongsToContract(AccountInfoContract ::class)

2 data class AccountInfo(

3 val name: String ,

4 val host: Party ,

5 val identifier: UniqueIdentifier

6)

7 @Suspendable

8 override fun createAccount(name: String): CordaFuture <StateAndRef <

AccountInfo >> {

9 return flowAwareStartFlow(CreateAccount(name))

10 }

Listing 5.5: Corda AccountInfo state and createAccount function.

To facilitate a standardized and easily accessible way to create Corda accounts an identity
service was created. Corda services run on a single node and offer functionality inside the
node, they are initialized automatically when the node boots up, and they can only be
called from within a flow or from another service through the serviceHub interface [100].

1 @CordaService

2 class EduChainIdentityService(private val serviceHub: AppServiceHub):

SingletonSerializeAsToken () {

3 @Suspendable

4 fun createIdentityServiceAccount () : StateAndRef <AccountInfo > {

5 val name: String = "identityService"

6 try { // Check if account already exists

7 require(serviceHub

8 .cordaService(KeyManagementBackedAccountService :: class.java)

9 .accountInfo(name).none

10 {serviceHub.myInfo.legalIdentities.contains(it.state.data.host)})

11 } catch (ex: Exception){

12 println(ex.message)

13 return serviceHub.cordaService(KeyManagementBackedAccountService ::

class.java).accountInfo(name).get (0)

14 } // Creates and returns the identityService account

15 return serviceHub.accountService.createAccount(name)

.toCompletableFuture () .getOrThrow ()

16 }

17 }

Listing 5.6: Educhain Identity Service.

Listing 5.6 shows the service definition and the only service method createIdentity-

ServiceAccount. This method is used to create the hardcoded Corda identity service
account if does not exist. The identityService account is in turn used by the (Cre-

ate|Update)EduChainAccountFlow to create the Educhain accounts during the flow’s
execution.

5.3.3 Educhain Account State

The EduchainAccountState holds the information of a user’s account. The account is
created based on a user’s unique identifier which is the persistentID attribute generated

46 CHAPTER 5. IMPLEMENTATION

by edu-ID to enable Swiss Educhain to identify a user. The code of this state can be seen
in Listing 5.7.

1 @BelongsToContract(EduChainAccountContract ::class)

2 data class EduChainAccountState(val persistentID: String ,

3 val cn: String ,

4 val mail: String ,

5 val matriculationNumber: String ,

6 val swissEduIDLinkedAffiliation: String ,

7 val issuer: AnonymousParty ,

8 val recipient: AnonymousParty ,

9 val isAllowedToIssue: Boolean) : ContractState {

10 override val participants get() = listOf(issuer , recipient)

11 }

Listing 5.7: Code of EduChainAccountState.

The annotation in Line 1 signals that any modification of the EduChainAccountState by
a flow must obey the rules defined in the EduChainAccountContract. The contract’s rules
and code is provided in Listing 5.8. The first five attributes disclosed by SWITCH edu-ID
have been described in Section 4.4.2. A description for the fields that are generated by
the CorDapp is given:

issuer - the Corda account of the issuer of the Educhain account, of type Anonymous-

Party is a public key representation of the actual account.

recipient - the Corda account of the recipient of the Educhain account, of type Anony-

mousParty is a public key representation of the actual account.

isAllowedToIssue - determines if a user is an Issuer or not, it is generated in the
(Create|Update)EduChainAccountFlow. It is always checked for validity by the
load-account endpoint during each new session or webpage refresh.

5.3.4 Educhain Account Contract

The EduChainAccountContract is used by the EduChainAccountState and defines the
possible actions that can modify an EduChainAccountState. The contract defines two
possible commands Create and Update, which is derived from the high-level solution de-
sign that only allows for accounts to be created or updated. Currently, Educhain account
deletion is not implemented to ensure there is transparency, traceability and verifiability
of actions in the diploma issuance and verification process.

1 class EduChainAccountContract : Contract {

2 interface Commands : CommandData {

3 class Create : TypeOnlyCommandData (), Commands

4 class Update : TypeOnlyCommandData (), Commands

5 }

6 @Throws(IllegalArgumentException ::class)

7 override fun verify(tx: LedgerTransaction) {

8 val command = tx.commands.requireSingleCommand <Commands >()

5.3. CORDAPP 47

9 val output = tx.outputsOfType <EduChainAccountState >() .single ()

10
11 when (command.value) {

12 is Commands.Create -> requireThat {

13 "No inputs should be consumed when creating an EduChain account."

using (tx.inputs.isEmpty ())

14 "Only one output state should be created when creating an EduChain

account." using (tx.outputs.size == 1)

15 val eduChainAccount = tx.outputStates.single () as

EduChainAccountState

16 "The account creator and account owner cannot have the same

identity." using

17 (output.participants [0] != output.participants [1])

18 "Only account creator and account owner may sign the account create

transaction." using

19 (command.signers.toSet () == output.participants.map { it.owningKey

}.toSet ())

20 }

21 is Commands.Update -> requireThat {

22 //Same as Create but allows one input state.

23 }

24 }

25 }

26 }

Listing 5.8: Code of the EduChainAccountContract.

There are four rules defined by the contract for the Create command as seen in Listing
5.8:

- No inputs should be consumed when creating an Educhain account.

- Only one output state should be created when creating an Educhain account.

- The account creator and account owner cannot have the same identity.

- Only account creator and account owner may sign account create transaction.

The same rules apply to the Update command with the only difference being one input
state is expected, which will be consumed and marked as historic, to produce one output
(updated) state.

5.3.5 Educhain Account Flows

Corda flows are the mechanism that encapsulates the core business logic of a CorDapp.
Simon Müller in [12] provides an excellent skeleton of the Swiss Educhain flows in the
form of pseudo-code, including a list of the main flow functionality. The pseudo-code is
provided in Listing 5.9.

48 CHAPTER 5. IMPLEMENTATION

1 @InitiatingFlow

2 @StartableByRPC

3 class Flow(private val exampleName: String ,

4 private val exampleId: UUID) : FlowLogic <ReturnObject >() {

5 companion object {

6 /* ProgressTracker steps are defined here

7 * They can be used during flow execution to track progress. */

8 object FIRST_STEP : ProgressTracker.Step("First step")

9 object SECOND_STEP : ProgressTracker.Step("Second step")

10 fun tracker () = ProgressTracker(

11 FIRST_STEP ,

12 SECOND_STEP)

13 }

14 override val progressTracker = tracker ()

15 @Suspendable

16 override fun call(): ReturnObject {

17 progressTracker.currentStep = FIRST_STEP

18 /* Business logic of the flow is contained here.

19 * - Checking requirements ,

20 * - Choosing the notary ,

21 * - Requesting the public keys for the accounts ,

22 * - Creating the transaction (input , output , command , attachment),

23 * - Gathering the signatures from all parties for the transaction ,

24 * - Finalising the transaction. */

25 progressTracker.currentStep = SECOND_STEP

26 return ReturnObject ()

27 }

28 }

29 @InitiatedBy(Flow::class)

30 class FlowResponder(val counterPartySession: FlowSession) : FlowLogic <Unit >() {

31 @Suspendable

32 override fun call() {

33 /* The response flow called as part of finalising a transaction.

34 * Not every flow uses a response flow.

35 * Code here typically involves verifying the transaction and recording the states. */ }

36 }

Listing 5.9: Pseudo-code of a typical Corda flow [12].

CreateEduChainAccountFlow

1 // Retrieve the notary identity from the network map.

2 val notary = serviceHub.networkMapCache.notaryIdentities [0]

3 // Create or Fetch identityService account ’s UUID

4 val issuingAccountId: UUID = serviceHub.cordaService(EduChainIdentityService :: class.java)

.createIdentityServiceAccount () .state.data.identifier.id

5 // Retrieve the issuing/receiving accounts and their public keys

6 val issuingAccount = accountService.accountInfo(issuingAccountId)

7 ?: throw FlowException("No account for ID $issuingAccountId found in vault.")

8 val receivingAccount = accountService.createAccount(name = persistentID)

.toCompletableFuture () .getOrThrow ()

9 val issuingAccountAnonParty = subFlow(RequestKeyForAccount(issuingAccount.state.data))

10 val receivingAccountAnonParty = subFlow(RequestKeyForAccount(receivingAccount.state.data)

)

11 // Check if an account has diplomas to be issued in the Waiting List

12 val diplomasIssuedFromWaitingList = mutableListOf <StateAndRef <DiplomaState >>()

13 val diplomaList = subFlow(CheckDiplomaWaitingListForMatriculationNumber(

matriculationNumber))

14 for (diploma in diplomaList) {

15 val diplomaIssuer = accountService.accountInfo(diploma.state.data.issuer.owningKey)

16 if (diplomaIssuer?.state?.data?.identifier?.id == null) {

17 // should not happen

18 continue

19 }

20 val diplomaState=subFlow(IssueDiplomaToAccountFromWaitingList(diploma ,

21 diploma.state.data.diplomaAttachment ,

22 diploma.state.data.diplomaHash ,

23 diplomaIssuer.state.data.identifier.id ,

5.3. CORDAPP 49

24 receivingAccount.state.data.identifier.id))

25 diplomasIssuedFromWaitingList.add(diplomaState)

26 }

27 System.out.println("Diplomas issued from waiting list: ${

diplomasIssuedFromWaitingList.size}")

28 // Determine if the account owner is allowed to issue

29 val issuersAffiliation=listOf <String >("faculty@uzh.ch","staff@uzh.ch")

30 val hardCodedIssuers=listOf <String >("16718991", "12715389", "12345678")

31 var isAllowedToIssue=false

32 for (it in issuersAffiliation) {

33 if (swissEduIDLinkedAffiliation.contains(it)) {

34 isAllowedToIssue = true }

35 }

36 if(hardCodedIssuers.contains(matriculationNumber)) isAllowedToIssue=true

37 // Create the transaction components.

38 val outputState = EduChainAccountState(persistentID , cn, mail , matriculationNumber ,

swissEduIDLinkedAffiliation , issuingAccountAnonParty , receivingAccountAnonParty ,

isAllowedToIssue)

39 val command = Command (EduChainAccountContract.Commands.Create (), listOf(

issuingAccountAnonParty.owningKey , receivingAccountAnonParty.owningKey))

40 // Create a transaction builder and add the transaction components

41 val txBuilder = TransactionBuilder(notary = notary)

42 .addOutputState(outputState).addCommand(command)

43 // Sign the transaction.

44 val locallySignedTx = serviceHub.signInitialTransaction(

45 txBuilder , listOfNotNull(issuingAccountAnonParty.owningKey ,

receivingAccountAnonParty.owningKey))

46 // Create a session with the other party.

47 val counterPartySession = initiateFlow(receivingAccount.state.data.host)

48 // Obtain the counterparty ’s signature and add to locally signed transaction

49 val receiverSignature = subFlow(CollectSignatureFlow(locallySignedTx , counterPartySession

, receivingAccountAnonParty.owningKey))

50 val signedByCounterParty = locallySignedTx.withAdditionalSignatures(receiverSignature)

51 // Return fully signed transaction

52 return subFlow(FinalityFlow(signedByCounterParty , listOf(counterPartySession).filter

53 { it.counterparty != ourIdentity }))

Listing 5.10: Code snippet of the CreateEduChainAccountFlow.

As shown in detail in Listing 5.10 the following steps are executed in order with syn-
chronous calls:

1. The notary’s identity is retrieved from the network map.

2. identityService account’s UUID is created or fetched.

3. Issuing and receiving accounts are retrieved and their public keys.

4. It is checked if an account has diplomas to be issued in the waiting list.

5. It is determined if the account owner should be allowed to issue.

6. Transaction components are created.

7. A transaction builder is created, and the transaction components are added.

8. A session is created with the counterparty.

9. Counterparty’s signature is obtained and added to the locally signed transaction.

10. Fully signed transaction is returned.

UpdateEduChainAccountFlow

The UpdateEduChainAccountFlow flow is quite similar to the CreateEduChainAccount-

Flow flow, with a few distinct differences in the steps involved. The code implementation

50 CHAPTER 5. IMPLEMENTATION

of UpdateEduChainAccountFlow is omitted as Listings 5.9 and 5.10 provide a quite thor-
ough walkthrough. The UpdateEduChainAccountFlow high-level steps are:

1. The notary’s identity is retrieved from the network map.

2. The Educhain account to be updated and its state are retrieved.

3. identityService account’s UUID is created or fetched.

4. Issuing and receiving accounts are retrieved and their public keys.

5. It is checked again if the account owner should be allowed to issue.

6. Transaction components are created, including an input state to be consumed.

7. A transaction builder is created and the transaction components are added.

8. A session is created with the counterparty.

9. Counterparty’s signature is obtained and added to the locally signed transaction.

10. Fully signed transaction is returned.

5.4 Spring Boot

The Spring Boot component acts as a bridge between the end user and the CorDapp
backend as shown in Figure 4.2. The AJP connector acts as a highway to serve the
frontend and fetch attributes exposed using the Shibboleth environment. The frontend is a
single webpage serving both Issuers’ and Recipients’ needs, and the controller exposes
well-defined backend CorDapp functionality to the frontend via REST API (Application
Programming Interface) endpoints. These three sub-components are analyzed further in
this Section from the IAM perspective.

5.4.1 AJP Connector

The AJP connector is normally used in high-traffic scenarios to optimize performance
between one or more webservers behind an Apache instance. In the Swiss Educhain ser-
vice use case, it is preferred to provide a safer way to disclose the attributes through
the environment instead of using http headers. It is defined based on custom proper-
ties and then added to the existing Tomcat connectors. Listing 5.11 shows the properties
defined and the method that creates a new Context and adds it to the Tomcat connectors.

1 @Bean

2 open fun servletContainer (): ServletWebServerFactory? {

3 val tomcat: TomcatServletWebServerFactory = object :

TomcatServletWebServerFactory () {

4 override fun postProcessContext(context: Context) {

5 val securityConstraint = SecurityConstraint ()

6 securityConstraint.userConstraint = "CONFIDENTIAL"

7 val collection = SecurityCollection ()

5.4. SPRING BOOT 51

8 collection.addPattern("/*")

9 securityConstraint.addCollection(collection)

10 context.addConstraint(securityConstraint)

11 }

12 }

13 tomcat.addAdditionalTomcatConnectors(redirectConnector ())

14 return tomcat

15 }

16 var maxSize = 50000000

17 open fun redirectConnector (): Connector? {

18 val connector = Connector("AJP/1.3")

19 connector.scheme = "https"

20 connector.port = 8009

21 connector.secure = true

22 connector.uriEncoding = "UTF -8"

23 connector.allowTrace = false

24 connector.maxPostSize = maxSize

25 connector.maxSavePostSize = maxSize

26 connector.redirectPort = 8443

27 return connector

28 }

Listing 5.11: Code of the AJP Connector.

The connector uses the port 8009 following common practice. The scheme is set to
https and requires that the connection is secure. Furthermore, the maximum POST size
is increased to allow for multiple attributes to be disclosed simultaneously. Apache con-
figuration also needs to be updated to serve traffic through the ajp protocol. Listing 5.12
shows the directive added to the educhain-le-ssl.conf file. It should be noted that
the ajp protocol is used instead of the http(s) and that it is not possible to use both
simultaneously.

1 ProxyPass /app/ ajp:// localhost :8009/ app/

Listing 5.12: Apache AJP proxy directive.

5.4.2 Controller

The Controller is used as an intermediate to expose REST API endpoints to the web
frontend and communicate with the CorDapp backend. The base path for all REST
requests is https://educhain.csg.uzh.ch/app/api/. The main endpoints relevant to
the identity and access management functionality are:

load-account

� Runs every time a new session is initiated. Checks if an Educhain account exists
with the edu-ID user’s persistentID, if it does not exist it is created, or if it
exists but the attributes need to be updated they are updated. The endpoint calls
(Create|Update)EduChainAccountFlow.

� Method: GET

https://educhain.csg.uzh.ch/app/api/

52 CHAPTER 5. IMPLEMENTATION

my-account

� Returns the user’s EduchainAccountState.

� Method: GET

edu-accounts

� Returns a list of all the existing Educhain accounts’ states.

� Method: GET

own-accounts

� Returns a list of all the existing Corda accounts.

� Method: GET

me

� Returns the node’s identity.

� Method: GET

All account related API calls use the GET method, no account related fields need nor
should be sent to the controller by the user or the frontend. Account information are
fetched directly from edu-ID in the form of attributes for each session.

5.4.3 Frontend Interface

This is joint text with Simon Müller [12].

The Swiss Educhain frontend is the main interactive part of Swiss Educhain. As soon as
the user logs in via the edu-ID login screen, he is greeted by the Educhain frontend. It is
a simple one-page website built with AngularJS [101] and styled with Bootstrap [102].
In the top left corner, the name of the node of the current connection is shown. Next
to the node name the button ’Issue diploma’ is placed. If the user that is logged in is
not allowed to issue, it will be grayed out. The same applies to the ’Unsigned Diplomas’
button next to it. The ’Logout’ button in the top right logs out of the Swiss Educhain
service and SWITCH edu-ID. Figure 5.4 shows the frontend with one issued diploma and
two received diplomas.

5.4. SPRING BOOT 53

Figure 5.4: Swiss Educhain frontend.

The view of the frontend is dedicated to showing information about the diplomas and the
accounts available on the Corda node. The accounts are mainly shown for demonstration
and debugging purposes. In a productive environment, only diplomas should be shown.
The frontend has the following four main parts:

My Issued Diplomas
Shows a list of all issued diplomas by the logged-in account. This also includes
diplomas for which the Ethereum transactions have not yet been signed. Selected
information contained in the DiplomaState is shown for each entry in the list.
Additionally, for every list entry that has been fully signed (i.e. broadcasted on the
Ethereum network) there is also a button to blacklist the diploma, which will also
exit the corresponding DiplomaState.

My Received Diplomas
Shows a list of all received diplomas by the logged-in account. Selected information
contained in the DiplomaState is shown for each entry in the list.

Corda Accounts
Shows a list of all Corda accounts on the node. Information about each account
is provided within the list entry. This is only for demonstration and debugging
purposes.

Educhain Accounts
Shows a list of all Educhain accounts created on the node. Information about
each account is provided within the list entry. This is only for demonstration and
debugging purposes.

Clicking on the ’Issue Diploma’ button will open a popup from where the Issuer can
choose between a simple diploma issuance, extending an already existing diploma, issuing
a batch of diplomas or broadcasting a transaction that was signed offline. The ’Unsigned
Diplomas’ button allows an Issuer to download a CSV (Comma-Separated values) file
containing all the unsigned transactions that were generated by issuing a diploma air-
gapped.

This ends the text jointly written with Simon Müller [12].

54 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

The goal of this chapter is to evaluate the Swiss Educhain requirements and their fulfill-
ment in terms of functionality, security, privacy and verifiability. A short assessment of
the Identity and Access Management (IAM) solution design and implementation is also
provided.

6.1 Requirements Fulfillment

Based on the produced Proof-of-Concept, the individual requirements are evaluated for
both the identity and verification part of Swiss Educhain. The PoC was developed to
satisfy as many requirements as possible and most importantly to provide the Minimum
Viable Product (MVP) functionality as defined in Section 4.3.3.

This is joint text with Simon Müller [12].

Evaluation of individual requirements:

RQ01 - Access controls are in place that read the swissEduIDLinkedAffiliation at-
tribute and allow issuing certificates if the value is staff@uzh.ch or faculty@uzh.ch.

RQ02 - Only the Issuer and the Recipient of a diploma have access to the data.

RQ03 - Frontend abstracts all technical complexities included in the issuance process.

RQ04 - There is a dedicated button for batched diploma issuance.

RQ05 - The smart contract is on a public blockchain and the verification frontend is
accessible by anyone.

RQ06 - Anyone can verify a diploma without the use of a specific frontend, only by
hashing the file and calling the contract.

RQ07 - Any Recipient can download their issued diploma(s).

RQ08 - Each Educhain user is issued a unique identifier for the Swiss Educhain service
from SWITCH edu-ID, which is the persistentID attribute.

55

56 CHAPTER 6. EVALUATION

RQ09 - This requirement is partially fulfilled because the Issuers could disclose the
Recipients’ issued credentials without their approval. Even if the diploma state
would be leaked, there is no way to know to whom the diploma was issued. It
should be technically enforced that the Recipients are the only one that can
disclose their credentials.

RQ10 - Users’ accounts are managed from the SWITCH edu-ID identity provider and
not from the issuing organizations.

RQ11 - When a user links their account through an issuing organization’s identity
provider the issuing organization account can only be created if the identity ver-
ification has been completed which includes registering in person. This ensures
there is a chain of trust through the linked affiliations.

RQ12 - Diplomas can be revoked by using the blacklisting functionality for the diploma
in question.

RQ13 - This requirement is partially fulfilled because in Section 4.3.1 a proposed gover-
nance process is described. This model has not been reviewed or accepted by all
the stakeholders participating in the Swiss Educhain project, it might be updated
in the future to meet their needs.

RQ14 - In Corda DLT all transactions are recorded in the ledger and cannot be individ-
ually deleted or tampered with by any party.

RQ15 - Any Recipient can download their issued diploma(s).

RQ16 - Corda and Ethereum both technically enable multi-sig transactions.

RQ17 - The system processes data at all levels in a text format.

RQ18 - This requirement is partially fulfilled because Swiss Educhain accounts are up-
dated automatically each time a user logs in with the latest values of the SWITCH
edu-ID account attributes. The nature and the extent of the possible changes to
a user’s account are dependent on and limited by the account management capa-
bilities offered by SWITCH edu-ID.

RQ19 - The process for an issuing organization to utilize Swiss Educhain is defined and
dependent on the organization’s integration with the SWITCH edu-ID identity
management system.

RQ20 - Only users associated with at least one issuing organization are allowed to use
the Swiss Educhain service.

RQ21 - Verification is performed over a public blockchain and is accessible by everyone.

RQ22 - The user can easily register, access and use the service via a single web interface.

RQ23 - This requirement is partially fulfilled because it uses open source technologies
with widely available documentation, but improvements can be implemented to
make the building and deployment process simpler.

RQ24 - The main technologies used by Swiss Educhain (Apache Webserver, Shibboleth,
Spring Boot, Java) are freely available, popular, well-established and mature.

RQ25 - The main technologies used by Swiss Educhain (Apache Webserver, Shibbo-
leth, Spring Boot, Java) can be operated in most Unix distributions or Windows
versions.

6.2. MVP EVALUATION 57

RQ26 - This requirement is partially fulfilled because the application can be easily inte-
grated and is cross-platform compatible as it is built on Java. But, the identity
part of the Swiss Educhain service needs to be manually configured and it requires
a Service Provider onboarding to the SWITCH edu-ID registry.

RQ27 - The Swiss Educhain service does not require any specific state-of-the-art tech-
nology to be operational.

RQ28 - This requirement is fulfilled, but as already mentioned the organizations need to
onboard to SWITCH edu-ID.

RQ29 - The high-level access control is defined through Shibboleth and provides access
to the service only to either Issuers or Recipients based on their accounts’
disclosed attributes from SWITCH edu-ID.

RQ30 - Both Corda and Spring Boot can be easily extended with existing functionality.

RQ31 - Corda does not broadcast by default. Data are disclosed only on a need-to-know
basis.

RQ32 - All transactions are signed, and the public key of the signers is known. Further
steps are needed to map the public key to the Educhain account.

This ends the text jointly written with Simon Müller [12].

As seen in the list above, only five out of thirty-two requirements were not completely
fulfilled and only partially satisfied. The non-fulfillment of RQ18 and RQ26 has been
accepted as a technical limitation deriving from the choice of SWITCH edu-ID as the
identity provider for Swiss Educhain. Future work to fulfill requirements RQ9, RQ13 and
RQ23 is proposed in Section 7.2.

6.2 MVP Evaluation

The MVP functionality defined in Section 4.3.3 was fully implemented in the PoC imple-
mentation. An evaluation of the identity management relevant parts is provided, the data
structures part is omitted as it is evaluated thoroughly in [12]. Functionality implemented
and its relation to the MVP requirements:

Identity Management

- Two types of identities should be supported, Issuers and Recipients.
The identities are supported and the role distinction is based on the isAllowedToIssue
field in the EduChainAccountState.

- Define process of creating a new account.
A new SWITCH edu-ID can be easily created by a user in (test).eduid.ch.

- Define data structures for the Educhain account data.
The Educhain account data are represented as a Corda state in EduChainAccountState

and is logically mapped to a Corda account as shown in Figure 4.9.

(test).eduid.ch

58 CHAPTER 6. EVALUATION

- Define access control rules for general access to the service.
Service-level access control has been defined using attributes swissEduIDLinkedAffil-
iation and matriculationNumber. It is enforced by Apache using the configuration
shown in Listing 5.4.

- Define application level access control for Issuers.
By default, all users are Recipients, elevated access rights are provided to Issuers by
checking the swissEduIDLinkedAffiliation attribute for the values staff@uzh.ch

or faculty@uzh.ch inside the CorDapp flow execution. The isAllowedToIssue value
is updated accordingly in the EduChainAccountState state.

- Fetch Student details to create Corda identities.
The necessary attributes commonName, mail, matriculationNumber, persistentID

and swissEduIDLinkedAffiliation are retrieved from SWITCH edu-ID.

- Detect student detail changes and update Educhain account automatically.
Detail changes are automatically detected and updated, if needed, by the load-account
endpoint which is called every time a new session is initiated, or the webpage is re-
freshed.

Web Interface

- Issue diploma by uploading JSON.
Feature has been implemented and can be executed through the Issue button.

- View received diplomas (all users).
Received diplomas can be viewed by all users in the My Received Diplomas part of
the frontend as shown in Figure 5.4.

- View issued diplomas (only Issuers).
Issued diplomas can be viewed only by Issuers in the My Issued Diplomas part of
the frontend as shown in Figure 5.4.

- Issuer should be able to perform all actions from the frontend.
All actions can be executed from the web interface through the single webpage and the
provided buttons.

- Provide a simple login and logout interface.
Login is provided by test.eduid.ch where the user is redirected automatically after
visiting https://educhain.csg.uzh.ch/app/ and logout is provided by the Logout

button on the top right corner of the web interface.

Operations

- Define build, installation and deployment process.
The process was defined, and the guidelines are provided in Appendix A.

- Encryption for data in transit and data at rest.
Encryption is used end-to-end in all the system components (as shown in Figure 4.2)
for data in transit or at rest.

- Cross-platform compatibility.
Cross-platform compatibility is achieved partially for all the components except inte-
gration with SWITCH edu-ID which is an accepted limitation.

https://educhain.csg.uzh.ch/app/

6.3. IAM EVALUATION 59

6.3 IAM Evaluation

The chosen IAM solution is for Swiss Educhain to participate as a Service Provider (SP)
in the SWITCH identity federation as explained in detail in Section 4.4.2. Users do not
assume any role explicitly, they use the attributes of their account to gain the access
required to assume the conceptual role (Issuer or Recipient). A pure ABAC (Attribute
Based Access Control) model is followed with two levels of authorization service-level and
application-level which determine who should access the service and once authorized to
access what actions are allowed to be performed respectively as defined in Section 4.4.7.
The integration with SWITCH and the implementation of application-level accounts was
a complex process that required well-defined scenarios, clear requirements and a solu-
tion architecture consisting of tightly coupled components. Long term benefits, security,
privacy and verifiability were prioritized over faster solutions such as creating a custom
application level IdP or using a third-party service to integrate with public IdPs. Signif-
icant advantages of the participation in the SWITCH federation and advanced features
that can be utilized are listed in Section 4.4.1.
Apart from the advantages certain limitations need to be taken into consideration. Swiss
Educhain can only consume data that is available, can be produced in the form of at-
tributes from the Attribute Providers and are supported by SWITCH edu-ID. To create
a new value for existing attributes (e.g. issuer for swissEduIDLinkedAffiliation) the
service must inform the Organization and the edu-ID to adapt for such a change. There
is a strong dependency on the SWITCH federation for new feature(s) implementation, for
the quality of provided services and interfederation interoperability adoption. An impor-
tant drawback of the Swiss Educhain implementation is the difficulty to add new roles
and adapt if the basic use case scenario changes in the future. While the presented so-
lution fulfills entirely the requirements and implements all the necessary functionality for
the MVP, adding a new role requires several adaptations in the Resource Registry, the
Shibboleth and Apache configuration as well as in the Spring Boot and CorDapp source
code.

60 CHAPTER 6. EVALUATION

Chapter 7

Conclusion & Future Work

7.1 Conclusion

The work conducted in this thesis and the produced outcome was done in close collabo-
ration with Simon Müller [12]. The Swiss Educhain service built upon the foundational
analysis conducted in [44]. A greenfield approach was taken to define the stakeholders,
strict functional and non-functional requirements, as well as research to design and im-
plement the Swiss Educhain service from scratch. While the foundational parts of the
Swiss Educhain were researched, designed and implemented together with [12], this thesis
focused on the identity and access management (IAM) part and Simon Müller’s thesis on
the diploma issuance and verification process [12].
The work conducted to create the Swiss Educhain service was of an exploratory nature.
As such, the goals were initially defined only on a high-level with the first target being
to define the requirements, research possible technologies or approaches, and most im-
portantly, assess the feasibility of such a use case implementation. The requirements,
stakeholders, governance and MVP (Minimum Viable Product) functionality were all de-
rived and refined through consequent iterations of conceptual testing against basic and
corner use cases.
With the requirements well-defined the search for appropriate technical designs and solu-
tions followed. A significant challenge was that any potential design needed to not only
satisfy the individual requirements but also allow for tight integration between the IAM
and verification functionality of Swiss Educhain. Two major decision points were choos-
ing Corda as the private permissioned blockchain and SWITCH edu-ID as the Identity
Provider.
The resulting PoC (Proof-of-Concept) implementation satisfied all the MVP functional-
ity requirements providing a robust set of features. Only a few requirements were not
completely fulfilled mainly due to two reasons, either lack of time to further advance de-
velopment, or due to the dependence of the Swiss Educhain service to external entities
such as the University of Zurich and SWITCH edu-ID. In the next Section, the identified
future work relative to the IAM part of the Swiss Educhain service is discussed.

61

62 CHAPTER 7. CONCLUSION & FUTURE WORK

7.2 Future Work

In the scope of this thesis and the implementation of the PoC, the main goals can be
considered as completed. A few of the requirements were only partially or not fulfilled as
analyzed in Section 6.1. Future work for requirements not completely fulfilled:

RQ9: Recipients are the only ones that can disclose issued credentials.
Could be implemented in the future, but a feasibility study needs to be conducted
first, to assess if enforcement is possible from a technical standpoint.

RQ13: The governance model of the Swiss Educhain system must be defined.
A candidate model has been proposed in Chapter 4 but it needs to be reviewed,
updated if needed, and approved by the stakeholders.

RQ23: Easy to install, configure, deploy, operate, monitor and maintain from
an System Administrator’s perspective.
Appendix A provides simple guidelines around installation, configuration and de-
ployment. Monitoring and maintenance were not examined as part of the PoC, best
practices could be easier identified after Swiss Educhain is released and tested by
users. Room for improvement exists in the installation, configuration and deploy-
ment process, automation of the various steps could be beneficial.

During the system design and implementation phases different ideas on how the service
could be improved came across. Due to time limitations and prioritization of implementing
the MVP functionality they were not examined in depth or not at all. Valuable future
work for Swiss Educhain in the field of IAM includes:

UZH onboarding to SWITCH edu-ID.
It is of essential importance that UZH is onboarded to SWITCH edu-ID, as this will
unlock further possibilities, the features listed in Section 4.4.1 and the high-level
benefits for organizations described in [50].

Creation of issuer value for the affiliation attribute.
Because the issuer value is not available, as Issuers are identified all members
of an organization with the staff or faculty affiliation. Issuer’s access rights
should be explicitly appointed to an individual with a pre-defined expiration date.

Four eye principle implementation.
The system as implemented in the PoC allows all Issuers to issue one or more
diplomas without any check. The four-eye principle could be used to require an
approval before a diploma is issued. This would minimize human errors and prevent
malicious behavior from an Issuer.

Diploma issuance on behalf of a specific organization.
Further functionality must be implemented to restrict Issuers to be able to issue
diplomas only on behalf of a certain organization. Identifying the organization can
be done from the swissEduIDLinkedAffiliation attribute value which is of the
form <affiliation>@<organization> (e.g. staff@uzh.ch).

7.2. FUTURE WORK 63

Improved audit trail.
All actions performed in the Swiss Educhain service are traceable through the Corda
distributed ledger. The identities of the users are represented by their public keys
(new ones generated for each transaction). An automated process which creates a
human-readable audit trail log should be implemented.

Attribute quality.
SWITCH edu-ID offers an assurance level for each attribute via the swissEduIDAs-

suranceLevel attribute. The option to require a minimum level of assurance for
attributes used by Swiss Educhain should be also explored.

MFA enforcement.
Multi-factor authentication (MFA) can be enforced by SWITCH edu-ID if requested
from the Service Provider, this feature should be utilized to increase security.

64 CHAPTER 7. CONCLUSION & FUTURE WORK

Bibliography

[1] Jerinas Gresch et al. “The Proposal of a Blockchain-Based Architecture for Trans-
parent Certificate Handling”. In: Business Information Systems Workshops. Ed. by
Witold Abramowicz and Adrian Paschke. Cham: Springer International Publish-
ing, 2019, pp. 185–196. isbn: 978-3-030-04849-5.

[2] Christian Killer. “EduChain - Proposal of Requirements and Architecture”. In:
Zürich, Switzerland, June 2019.

[3] Nicholas Mwaniki Musee. “An academic certification verification system based on
cloud computing environment”. Thesis. 2015. url: http://erepository.uonbi.
ac.ke/handle/11295/90179 (visited on 02/24/2020).

[4] Diploma Mills 9 Strategies for Tackling One of Higher Education’s Most Wicked
Problems. WENR. Dec. 12, 2017. url: https : / / wenr . wes . org / 2017 / 12 /

diploma-mills-9-strategies-for-tackling-one-of-higher-educations-

most-wicked-problems (visited on 02/24/2020).
[5] Digital diplomas | MIT Registrar. url: https://registrar.mit.edu/transcripts-

records/digital-diplomas (visited on 02/24/2020).
[6] Blockchain Certificates. Institute For the Future. url: https://www.unic.ac.

cy/iff/blockchain-certificates/ (visited on 02/24/2020).
[7] Blockcerts Wallet - Apps on Google Play. url: https://play.google.com/

store/apps/details?id=com.learningmachine.android.app&hl=en (visited
on 02/24/2020).

[8] Amy Castor. Cardano Blockchain’s First Use Case: Proof of University Diplomas...
Bitcoin Magazine. Jan. 2, 2018. url: https://bitcoinmagazine.com/articles/
cardano-blockchains-first-use-case-proof-university-diplomas-greece

(visited on 02/24/2020).
[9] Home Page | Trust :: Data. url: https://trust.mit.edu/ (visited on 02/24/2020).

[10] Corda | Open Source Blockchain Platform for Business. Corda. url: https://
www.corda.net/ (visited on 02/08/2020).

[11] Hyperledger Wiki. url: https://wiki.hyperledger.org/ (visited on 02/24/2020).
[12] Müller Simon. Design and Implementation of a Data-Agnostic Structure for Blockchain

Proof-of-Existence. Mar. 2, 2020.
[13] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: (), p. 9.
[14] Stuart Haber and W. Scott Stornetta. “How to Time-stamp a Digital Document”.

In: J. Cryptol. 3.2 (Jan. 1991), pp. 99–111. issn: 0933-2790. doi: 10 . 1007 /

BF00196791. url: http : / / dx . doi . org / 10 . 1007 / BF00196791 (visited on
10/07/2019).

65

http://erepository.uonbi.ac.ke/handle/11295/90179
http://erepository.uonbi.ac.ke/handle/11295/90179
https://wenr.wes.org/2017/12/diploma-mills-9-strategies-for-tackling-one-of-higher-educations-most-wicked-problems
https://wenr.wes.org/2017/12/diploma-mills-9-strategies-for-tackling-one-of-higher-educations-most-wicked-problems
https://wenr.wes.org/2017/12/diploma-mills-9-strategies-for-tackling-one-of-higher-educations-most-wicked-problems
https://registrar.mit.edu/transcripts-records/digital-diplomas
https://registrar.mit.edu/transcripts-records/digital-diplomas
https://www.unic.ac.cy/iff/blockchain-certificates/
https://www.unic.ac.cy/iff/blockchain-certificates/
https://play.google.com/store/apps/details?id=com.learningmachine.android.app&hl=en
https://play.google.com/store/apps/details?id=com.learningmachine.android.app&hl=en
https://bitcoinmagazine.com/articles/cardano-blockchains-first-use-case-proof-university-diplomas-greece
https://bitcoinmagazine.com/articles/cardano-blockchains-first-use-case-proof-university-diplomas-greece
https://trust.mit.edu/
https://www.corda.net/
https://www.corda.net/
https://wiki.hyperledger.org/
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
http://dx.doi.org/10.1007/BF00196791

66 BIBLIOGRAPHY

[15] 20 Blockchain Use Cases for 2018 You Should Know. url: https://hackernoon.
com/20-blockchain-use-cases-for-2018-you-should-know-f7d2919c191d

(visited on 10/08/2019).
[16] Top Blockchain Platforms to watch out in 2019. url: https://hackernoon.com/

top-blockchain-platforms-to-watch-out-in-2019-aa80e336a426 (visited on
10/08/2019).

[17] Bruno Rodrigues et al. “A Technology-driven Overview on Blockchain-based Aca-
demic Certificate Handling”. In: Blockchain Technology Applications in Education.
Ed. by Ramesh Sharma, Hakan Yildirim, and Gulsun Meric. Pensilvania, U.S.A:
IGI Global, Jan. 2020, pp. 1–290. isbn: 978-1-522-59478-9. doi: 10.4018/978-
1- 5225- 9478- 9. url: https://www.igi- global.com/book/blockchain-

technology-applications-education/221313.
[18] Identity - Sociology, Oxford Bibliographies. url: https://www.oxfordbibliographies.

com/view/document/obo-9780199756384/obo-9780199756384-0025.xml (vis-
ited on 02/04/2020).

[19] Identity - APA Dictionary of Psychology. url: https://dictionary.apa.org/
identity (visited on 02/04/2020).

[20] Paul A Grassi, Michael E Garcia, and James L Fenton. Digital identity guidelines:
revision 3. NIST SP 800-63-3. Gaithersburg, MD: National Institute of Standards
and Technology, June 22, 2017, NIST SP 800–63–3. doi: 10.6028/NIST.SP.800-
63- 3. url: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-63-3.pdf (visited on 02/04/2020).
[21] What is a Digital Identity? - Definition from Techopedia. Techopedia.com. url:

https://www.techopedia.com/definition/23915/digital-identity (visited
on 02/04/2020).

[22] Lawrence Frederick Kohl. The Politics of Individualism: Parties and the Ameri-
can Character in the Jacksonian Era. Google-Books-ID: sY2iEA6piHcC. Oxford
University Press, Feb. 7, 1991. 279 pp. isbn: 978-0-19-536183-4.

[23] The Path to Self-Sovereign Identity. url: http : / / www . lifewithalacrity .

com/2016/04/the-path-to-self-soverereign-identity.html (visited on
02/05/2020).

[24] Home - Sovrin. url: https://sovrin.org/ (visited on 02/05/2020).
[25] uPort - Tools for Decentralized Identity and Trusted Data. url: https://www.

uport.me/ (visited on 02/05/2020).
[26] ShoCard: The Premier Blockchain-Based Mobile Identity Platform. url: https:

//shocard.com/ (visited on 02/05/2020).
[27] Paul Dunphy and Fabien A.P. Petitcolas. “A First Look at Identity Management

Schemes on the Blockchain”. In: IEEE Security & Privacy 16.4 (July 2018), pp. 20–
29. issn: 1540-7993, 1558-4046. doi: 10.1109/MSP.2018.3111247. url: https:
//ieeexplore.ieee.org/document/8425607/ (visited on 02/05/2020).

[28] Identity And Access Management (iam). Gartner. url: https://www.gartner.
com/en/information-technology/glossary/identity-and-access-management-

iam (visited on 02/08/2020).
[29] What is Access Control? - Definition from Techopedia. Techopedia.com. url: https:

//www.techopedia.com/definition/5831/access-control (visited on 01/29/2020).
[30] James A. Martin. What is access control? A key component of data security. CSO

Online. Aug. 21, 2019. url: https://www.csoonline.com/article/3251714/

https://hackernoon.com/20-blockchain-use-cases-for-2018-you-should-know-f7d2919c191d
https://hackernoon.com/20-blockchain-use-cases-for-2018-you-should-know-f7d2919c191d
https://hackernoon.com/top-blockchain-platforms-to-watch-out-in-2019-aa80e336a426
https://hackernoon.com/top-blockchain-platforms-to-watch-out-in-2019-aa80e336a426
https://doi.org/10.4018/978-1-5225-9478-9
https://doi.org/10.4018/978-1-5225-9478-9
https://www.igi-global.com/book/blockchain-technology-applications-education/221313
https://www.igi-global.com/book/blockchain-technology-applications-education/221313
https://www.oxfordbibliographies.com/view/document/obo-9780199756384/obo-9780199756384-0025.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199756384/obo-9780199756384-0025.xml
https://dictionary.apa.org/identity
https://dictionary.apa.org/identity
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63-3
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://www.techopedia.com/definition/23915/digital-identity
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://sovrin.org/
https://www.uport.me/
https://www.uport.me/
https://shocard.com/
https://shocard.com/
https://doi.org/10.1109/MSP.2018.3111247
https://ieeexplore.ieee.org/document/8425607/
https://ieeexplore.ieee.org/document/8425607/
https://www.gartner.com/en/information-technology/glossary/identity-and-access-management-iam
https://www.gartner.com/en/information-technology/glossary/identity-and-access-management-iam
https://www.gartner.com/en/information-technology/glossary/identity-and-access-management-iam
https://www.techopedia.com/definition/5831/access-control
https://www.techopedia.com/definition/5831/access-control
https://www.csoonline.com/article/3251714/what-is-access-control-a-key-component-of-data-security.html

BIBLIOGRAPHY 67

what-is-access-control-a-key-component-of-data-security.html (visited
on 02/08/2020).

[31] What is access control? - Definition from WhatIs.com. SearchSecurity. url: https:
//searchsecurity.techtarget.com/definition/access-control (visited on
02/08/2020).

[32] identification - Glossary | CSRC. url: https://csrc.nist.gov/glossary/term/
identification (visited on 02/08/2020).

[33] Digital Authentication - the basics. url: https://www.cryptomathic.com/news-
events/blog/digital-authentication-the-basics (visited on 02/05/2020).

[34] Payment Services Directive (PSD2): Regulatory Technical Standards (RTS) en-
abling consumers to benefit from safer and more innovative electro. European Com-
mission - European Commission. url: https://ec.europa.eu/commission/
presscorner/detail/en/MEMO_17_4961 (visited on 02/08/2020).

[35] EBA publishes an Opinion on the elements of strong customer authentication under
PSD2. European Banking Authority. June 21, 2019. url: https://eba.europa.
eu/eba-publishes-an-opinion-on-the-elements-of-strong-customer-

authentication-under-psd2 (visited on 02/08/2020).
[36] Barbara Y. Fraser. Site Security Handbook. url: https://tools.ietf.org/html/

rfc2196#section-4.4 (visited on 02/08/2020).
[37] IBM Knowledge Center - Authorization Rules. url: https://www.ibm.com/

support/knowledgecenter/SSPREK_9.0.0/com.ibm.isam.doc/base_admin/

concept/con_tamauthorule.html (visited on 02/08/2020).
[38] Vincent C. Hu et al. Guide to Attribute Based Access Control (ABAC) Definition

and Considerations. NIST SP 800-162. National Institute of Standards and Tech-
nology, Jan. 2014, NIST SP 800–162. doi: 10.6028/NIST.SP.800- 162. url:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

162.pdf (visited on 02/08/2020).
[39] role-based access control (RBAC) - Glossary | CSRC. url: https://csrc.nist.

gov/glossary/term/role_based-access-control (visited on 02/08/2020).
[40] Joint Task Force Transformation Initiative. Security and Privacy Controls for

Federal Information Systems and Organizations. NIST SP 800-53r4. National In-
stitute of Standards and Technology, Apr. 2013, NIST SP 800–53r4. doi: 10.

6028 / NIST . SP . 800 - 53r4. url: https : / / nvlpubs . nist . gov / nistpubs /

SpecialPublications/NIST.SP.800-53r4.pdf (visited on 02/08/2020).
[41] Shibboleth Consortium Privacy Preserving Identity Management. url: https://

www.shibboleth.net/ (visited on 02/02/2020).
[42] SWITCH edu-ID - SWITCH. url: https://www.switch.ch/edu-id/ (visited on

02/01/2020).
[43] Corda Accounts Library. url: https://github.com/corda/accounts (visited on

10/17/2019).
[44] Jerinas Gresch.“An Educational Blockchain for the University of Zurich (UZHBC)”.

MA thesis. Zurich, Switzerland: Universität Zürich, Aug. 2018. url: https://
files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/ma-jerinas.pdf.

[45] Foundation - About us - SWITCH. url: https : / / www . switch . ch / about /

foundation/ (visited on 02/09/2020).
[46] Authentication - Services - SWITCH. url: https://www.switch.ch/services/

aai/ (visited on 02/09/2020).

https://www.csoonline.com/article/3251714/what-is-access-control-a-key-component-of-data-security.html
https://www.csoonline.com/article/3251714/what-is-access-control-a-key-component-of-data-security.html
https://searchsecurity.techtarget.com/definition/access-control
https://searchsecurity.techtarget.com/definition/access-control
https://csrc.nist.gov/glossary/term/identification
https://csrc.nist.gov/glossary/term/identification
https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics
https://www.cryptomathic.com/news-events/blog/digital-authentication-the-basics
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_17_4961
https://ec.europa.eu/commission/presscorner/detail/en/MEMO_17_4961
https://eba.europa.eu/eba-publishes-an-opinion-on-the-elements-of-strong-customer-authentication-under-psd2
https://eba.europa.eu/eba-publishes-an-opinion-on-the-elements-of-strong-customer-authentication-under-psd2
https://eba.europa.eu/eba-publishes-an-opinion-on-the-elements-of-strong-customer-authentication-under-psd2
https://tools.ietf.org/html/rfc2196#section-4.4
https://tools.ietf.org/html/rfc2196#section-4.4
https://www.ibm.com/support/knowledgecenter/SSPREK_9.0.0/com.ibm.isam.doc/base_admin/concept/con_tamauthorule.html
https://www.ibm.com/support/knowledgecenter/SSPREK_9.0.0/com.ibm.isam.doc/base_admin/concept/con_tamauthorule.html
https://www.ibm.com/support/knowledgecenter/SSPREK_9.0.0/com.ibm.isam.doc/base_admin/concept/con_tamauthorule.html
https://doi.org/10.6028/NIST.SP.800-162
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
https://csrc.nist.gov/glossary/term/role_based-access-control
https://csrc.nist.gov/glossary/term/role_based-access-control
https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.SP.800-53r4
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://www.shibboleth.net/
https://www.shibboleth.net/
https://www.switch.ch/edu-id/
https://github.com/corda/accounts
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/ma-jerinas.pdf
https://files.ifi.uzh.ch/CSG/staff/rodrigues/extern/theses/ma-jerinas.pdf
https://www.switch.ch/about/foundation/
https://www.switch.ch/about/foundation/
https://www.switch.ch/services/aai/
https://www.switch.ch/services/aai/

68 BIBLIOGRAPHY

[47] Christoph Graf. The SWITCH identity federation - a look beyond its borders.
SWITCH Identity Blog. Apr. 24, 2018. url: https://identityblog.switch.
ch/2018/04/24/the-switch-identity-federation-a-look-beyond-its-

borders/ (visited on 02/14/2020).
[48] Service Description - SWITCH edu-ID - SWITCH. url: https://www.switch.

ch/edu-id/about/terms/ (visited on 02/09/2020).
[49] SWITCH edu-ID - SWITCH Benefits. url: https://www.switch.ch/edu-

id/#benefits (visited on 02/09/2020).
[50] For organisations - SWITCH edu-ID - SWITCH. url: https://www.switch.ch/

edu-id/organisations/ (visited on 02/09/2020).
[51] For services - SWITCH edu-ID - SWITCH. url: https://www.switch.ch/edu-

id/services/ (visited on 02/09/2020).
[52] For users - SWITCH edu-ID - SWITCH. url: https://www.switch.ch/edu-

id/users/ (visited on 02/09/2020).
[53] Architecture - For organisations - SWITCH edu-ID - SWITCH. url: https://

www.switch.ch/edu-id/organisations/architecture/ (visited on 02/09/2020).
[54] Swiss edu-ID vs. SWITCHaai - About - Swiss edu-ID - SWITCH Projects. url:

https://projects.switch.ch/eduid/about/swiss-edu-id-vs.-switchaai/

(visited on 02/09/2020).
[55] SAML and Shibboleth. url: http://sites.utoronto.ca/security/projects/

shibboleth.htm (visited on 02/09/2020).
[56] corda/corda. original-date: 2016-10-06T08:46:29Z. Feb. 8, 2020. url: https://

github.com/corda/corda (visited on 02/09/2020).
[57] R3 | Blockchain & DLT Software Development Company. R3. url: https://www.

r3.com/ (visited on 02/09/2020).
[58] Advance Corda by Contributing Code. Corda. url: https://www.corda.net/

contribute-code/ (visited on 02/09/2020).
[59] Connect with Our Blockchain Community. Corda. url: https://www.corda.net/

community/ (visited on 02/09/2020).
[60] Nodes – R3 Corda Master documentation. url: https://docs.corda.net/key-

concepts-node.html (visited on 02/11/2020).
[61] Key concepts – R3 Corda Master documentation. url: https://docs.corda.

net/key-concepts.html (visited on 02/11/2020).
[62] Deterministic JVM – R3 Corda Master documentation. url: https://docs.

corda.net/key-concepts-djvm.html (visited on 02/11/2020).
[63] The network – R3 Corda Master documentation. url: https://docs.corda.net/

key-concepts-ecosystem.html (visited on 02/11/2020).
[64] The ledger – R3 Corda Master documentation. url: https://docs.corda.net/

key-concepts-ledger.html (visited on 02/11/2020).
[65] Contracts – R3 Corda Master documentation. url: https://docs.corda.net/

key-concepts-contracts.html (visited on 02/11/2020).
[66] Unlocking New Opportunities with Accounts on Corda. Corda. Nov. 18, 2019. url:

https : / / www . corda . net / blog / unlocking - new - opportunities - with -

accounts-on-corda-2/ (visited on 02/11/2020).
[67] Shibboleth - Users - Shibboleth 3 attributes not exposed from Apache 2.4 as en-

vironment variables | Threaded View. url: https://shibboleth.1660669.n2.

https://identityblog.switch.ch/2018/04/24/the-switch-identity-federation-a-look-beyond-its-borders/
https://identityblog.switch.ch/2018/04/24/the-switch-identity-federation-a-look-beyond-its-borders/
https://identityblog.switch.ch/2018/04/24/the-switch-identity-federation-a-look-beyond-its-borders/
https://www.switch.ch/edu-id/about/terms/
https://www.switch.ch/edu-id/about/terms/
https://www.switch.ch/edu-id/#benefits
https://www.switch.ch/edu-id/#benefits
https://www.switch.ch/edu-id/organisations/
https://www.switch.ch/edu-id/organisations/
https://www.switch.ch/edu-id/services/
https://www.switch.ch/edu-id/services/
https://www.switch.ch/edu-id/users/
https://www.switch.ch/edu-id/users/
https://www.switch.ch/edu-id/organisations/architecture/
https://www.switch.ch/edu-id/organisations/architecture/
https://projects.switch.ch/eduid/about/swiss-edu-id-vs.-switchaai/
http://sites.utoronto.ca/security/projects/shibboleth.htm
http://sites.utoronto.ca/security/projects/shibboleth.htm
https://github.com/corda/corda
https://github.com/corda/corda
https://www.r3.com/
https://www.r3.com/
https://www.corda.net/contribute-code/
https://www.corda.net/contribute-code/
https://www.corda.net/community/
https://www.corda.net/community/
https://docs.corda.net/key-concepts-node.html
https://docs.corda.net/key-concepts-node.html
https://docs.corda.net/key-concepts.html
https://docs.corda.net/key-concepts.html
https://docs.corda.net/key-concepts-djvm.html
https://docs.corda.net/key-concepts-djvm.html
https://docs.corda.net/key-concepts-ecosystem.html
https://docs.corda.net/key-concepts-ecosystem.html
https://docs.corda.net/key-concepts-ledger.html
https://docs.corda.net/key-concepts-ledger.html
https://docs.corda.net/key-concepts-contracts.html
https://docs.corda.net/key-concepts-contracts.html
https://www.corda.net/blog/unlocking-new-opportunities-with-accounts-on-corda-2/
https://www.corda.net/blog/unlocking-new-opportunities-with-accounts-on-corda-2/
https://shibboleth.1660669.n2.nabble.com/Shibboleth-3-attributes-not-exposed-from-Apache-2-4-as-environment-variables-tt7644981.html

BIBLIOGRAPHY 69

nabble.com/Shibboleth-3-attributes-not-exposed-from-Apache-2-4-as-

environment-variables-tt7644981.html (visited on 02/15/2020).
[68] kotlin - Corda Service Failed to Instantiate. Stack Overflow. url: https : / /

stackoverflow.com/questions/59433434/corda-service-failed-to-instantiate

(visited on 02/15/2020).
[69] corda - How to Query if an Account exists by name. Stack Overflow. url: https:

//stackoverflow.com/questions/59431400/how-to-query-if-an-account-

exists-by-name (visited on 02/15/2020).
[70] UZH Blockchain Centre. url: http://blockchain.uzh.ch/ (visited on 10/12/2019).
[71] R3 Marketplace | Identity Solutions. url: https://marketplace.r3.com (visited

on 02/13/2020).
[72] The Beer Drinker’s Guide to SAML. Duo Security. url: https://duo.com/blog/

the-beer-drinkers-guide-to-saml (visited on 02/14/2020).
[73] Lukas Haemmerle. Secrets of the edu-ID passwords. SWITCH Identity Blog. Aug. 13,

2019. url: https://identityblog.switch.ch/2019/08/13/secrets-of-edu-
id-passwords/ (visited on 02/14/2020).

[74] Two-Step Login - For services - SWITCH edu-ID - SWITCH. url: https://www.
switch.ch/edu-id/services/two-step-login/ (visited on 02/14/2020).

[75] Attribute Quality - Attribute Model - For services - SWITCH edu-ID - SWITCH.
url: https://www.switch.ch/de/edu-id/services/attributes/quality-
levels/ (visited on 02/14/2020).

[76] Extended Model - Attribute Model - For services - SWITCH edu-ID - SWITCH.
url: https://www.switch.ch/de/edu-id/services/attributes/extended-
model/ (visited on 02/14/2020).

[77] Rolf Brugger. Technical Accounts. SWITCH Identity Blog. Feb. 1, 2019. url:
https://identityblog.switch.ch/2019/02/01/technical-accounts/ (visited
on 02/14/2020).

[78] Link Composer - For services - SWITCH edu-ID - SWITCH. url: https://www.
switch.ch/de/edu-id/services/link-composer/ (visited on 02/14/2020).

[79] Attribute Completion Flow - Link Composer - For services - SWITCH edu-ID
- SWITCH. url: https : / / www . switch . ch / de / edu - id / services / link -

composer/attribute-completion-flow/ (visited on 02/14/2020).
[80] Login flows - Link Composer - For services - SWITCH edu-ID - SWITCH. url:

https://www.switch.ch/de/edu-id/services/link-composer/login-flows/

(visited on 02/14/2020).
[81] Testing - APIs and technical guides - For organisations - SWITCH edu-ID -

SWITCH. url: https : / / www . switch . ch / edu - id / organisations / tech /

testing/ (visited on 02/14/2020).
[82] SWITCH - AAI Resource Registry - Home. url: https://rr.aai.switch.ch/

menu.php (visited on 02/15/2020).
[83] The Swiss edu-ID - The persistent Swiss academic digital identity. url: https://

projects.switch.ch/export/sites/projects/eduid/.galleries/documents/

1_20140813_Swiss_edu-ID_V2.pdf (visited on 02/15/2020).
[84] Resource Registry - Tools - Support - SWITCHaai - SWITCH. url: https://www.

switch.ch/aai/support/tools/resource-registry/ (visited on 02/15/2020).
[85] Federation - About - SWITCHaai - SWITCH. url: https://www.switch.ch/

aai/about/federation/ (visited on 02/15/2020).

https://shibboleth.1660669.n2.nabble.com/Shibboleth-3-attributes-not-exposed-from-Apache-2-4-as-environment-variables-tt7644981.html
https://shibboleth.1660669.n2.nabble.com/Shibboleth-3-attributes-not-exposed-from-Apache-2-4-as-environment-variables-tt7644981.html
https://shibboleth.1660669.n2.nabble.com/Shibboleth-3-attributes-not-exposed-from-Apache-2-4-as-environment-variables-tt7644981.html
https://stackoverflow.com/questions/59433434/corda-service-failed-to-instantiate
https://stackoverflow.com/questions/59433434/corda-service-failed-to-instantiate
https://stackoverflow.com/questions/59431400/how-to-query-if-an-account-exists-by-name
https://stackoverflow.com/questions/59431400/how-to-query-if-an-account-exists-by-name
https://stackoverflow.com/questions/59431400/how-to-query-if-an-account-exists-by-name
http://blockchain.uzh.ch/
https://marketplace.r3.com
https://duo.com/blog/the-beer-drinkers-guide-to-saml
https://duo.com/blog/the-beer-drinkers-guide-to-saml
https://identityblog.switch.ch/2019/08/13/secrets-of-edu-id-passwords/
https://identityblog.switch.ch/2019/08/13/secrets-of-edu-id-passwords/
https://www.switch.ch/edu-id/services/two-step-login/
https://www.switch.ch/edu-id/services/two-step-login/
https://www.switch.ch/de/edu-id/services/attributes/quality-levels/
https://www.switch.ch/de/edu-id/services/attributes/quality-levels/
https://www.switch.ch/de/edu-id/services/attributes/extended-model/
https://www.switch.ch/de/edu-id/services/attributes/extended-model/
https://identityblog.switch.ch/2019/02/01/technical-accounts/
https://www.switch.ch/de/edu-id/services/link-composer/
https://www.switch.ch/de/edu-id/services/link-composer/
https://www.switch.ch/de/edu-id/services/link-composer/attribute-completion-flow/
https://www.switch.ch/de/edu-id/services/link-composer/attribute-completion-flow/
https://www.switch.ch/de/edu-id/services/link-composer/login-flows/
https://www.switch.ch/edu-id/organisations/tech/testing/
https://www.switch.ch/edu-id/organisations/tech/testing/
https://rr.aai.switch.ch/menu.php
https://rr.aai.switch.ch/menu.php
https://projects.switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_Swiss_edu-ID_V2.pdf
https://projects.switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_Swiss_edu-ID_V2.pdf
https://projects.switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_Swiss_edu-ID_V2.pdf
https://www.switch.ch/aai/support/tools/resource-registry/
https://www.switch.ch/aai/support/tools/resource-registry/
https://www.switch.ch/aai/about/federation/
https://www.switch.ch/aai/about/federation/

70 BIBLIOGRAPHY

[86] Adoption - For organisations - SWITCH edu-ID - SWITCH. url: https://www.
switch.ch/edu-id/organisations/adoption/ (visited on 02/15/2020).

[87] Attribute Model - For services - SWITCH edu-ID - SWITCH. url: https://www.
switch.ch/edu-id/services/attributes/ (visited on 02/15/2020).

[88] Classic Model - Attribute Model - For services - SWITCH edu-ID - SWITCH.
url: https://www.switch.ch/edu-id/services/attributes/classic-model/
(visited on 02/15/2020).

[89] Rolf Brugger. Services and Swiss edu-ID. June 29, 2017. url: https://projects.
switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_

Swiss_edu-ID_V2.pdf (visited on 02/15/2020).
[90] Using Persistent ID as a User Attribute - Service Provider - Guides - SWITCHaai

- SWITCH. url: https://www.switch.ch/aai/guides/sp/persistentid/
(visited on 02/16/2020).

[91] How Shibboleth Logins Work | NC State Shibboleth. url: https://docs.shib.
ncsu.edu/docs/shibworks.html (visited on 02/16/2020).

[92] Service Provider - Guides - SWITCHaai - SWITCH. url: https://www.switch.
ch/aai/guides/sp/ (visited on 02/22/2020).

[93] Shibboleth SP Installation - Service Provider - Guides - SWITCHaai - SWITCH.
url: https://www.switch.ch/aai/guides/sp/installation/?os=ubuntu
(visited on 11/10/2019).

[94] Shibboleth SP Configuration - Service Provider - Guides - SWITCHaai - SWITCH.
url: https://www.switch.ch/aai/guides/sp/configuration/ (visited on
11/10/2019).

[95] Certbot - Ubuntubionic Apache. url: https://certbot.eff.org/lets-encrypt/
ubuntubionic-apache (visited on 02/22/2020).

[96] Let’s Encrypt - Free SSL/TLS Certificates. url: https://letsencrypt.org/

(visited on 02/22/2020).
[97] KeyChest - Let’s Encrypt certificate into Java JKS. url: https://keychest.net/

stories/lets-encrypt-certificate-into-java-jks (visited on 02/20/2020).
[98] SP Access Rules - Service Provider - Guides - SWITCHaai - SWITCH. url:

https://www.switch.ch/aai/guides/sp/access-rules/ (visited on 02/25/2020).
[99] corda/cordapp-template-kotlin. original-date: 2017-07-05T15:59:56Z. Feb. 4, 2020.

url: https : / / github . com / corda / cordapp - template - kotlin (visited on
02/20/2020).

[100] Dan Newton. Corda Services 101. Aug. 19, 2018. url: https://lankydan.dev/
2018/08/19/corda-services-101 (visited on 02/23/2020).

[101] AngularJS - Superheroic JavaScript MVW Framework. url: https://angularjs.
org/ (visited on 02/22/2020).

[102] Bootstrap. url: https://getbootstrap.com/ (visited on 02/22/2020).

https://www.switch.ch/edu-id/organisations/adoption/
https://www.switch.ch/edu-id/organisations/adoption/
https://www.switch.ch/edu-id/services/attributes/
https://www.switch.ch/edu-id/services/attributes/
https://www.switch.ch/edu-id/services/attributes/classic-model/
https://projects.switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_Swiss_edu-ID_V2.pdf
https://projects.switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_Swiss_edu-ID_V2.pdf
https://projects.switch.ch/export/sites/projects/eduid/.galleries/documents/1_20140813_Swiss_edu-ID_V2.pdf
https://www.switch.ch/aai/guides/sp/persistentid/
https://docs.shib.ncsu.edu/docs/shibworks.html
https://docs.shib.ncsu.edu/docs/shibworks.html
https://www.switch.ch/aai/guides/sp/
https://www.switch.ch/aai/guides/sp/
https://www.switch.ch/aai/guides/sp/installation/?os=ubuntu
https://www.switch.ch/aai/guides/sp/configuration/
https://certbot.eff.org/lets-encrypt/ubuntubionic-apache
https://certbot.eff.org/lets-encrypt/ubuntubionic-apache
https://letsencrypt.org/
https://keychest.net/stories/lets-encrypt-certificate-into-java-jks
https://keychest.net/stories/lets-encrypt-certificate-into-java-jks
https://www.switch.ch/aai/guides/sp/access-rules/
https://github.com/corda/cordapp-template-kotlin
https://lankydan.dev/2018/08/19/corda-services-101
https://lankydan.dev/2018/08/19/corda-services-101
https://angularjs.org/
https://angularjs.org/
https://getbootstrap.com/

Abbreviations

2FA Two-Factor Authentication
AAI Authentication and Authorization Infrastructure
ABAC Attribute Based Access Control
AJP Apache JServ Protocol
API Application Programming Interface
CA Certificate Authority
CorDapp Corda Decentralized Application
CRUD Create Read Update Delete
CSG Communications Systems Research Group
CSV Comma-Separated values
CV Curriculum Vitae
DJVM Deterministic Java Virtual Machine
DL Distributed Ledger
DLT Distributed Ledger Technology
EBA European Banking Authority
FOSS Free and Open Source Software
GDPR General Data Protection Regulation
GRNET Greek Research and Technology Network
GUID Globally Unique Identifier
IAM Identity and Access Management
IFI Department of Informatics
JAR Java ARchive
JSON JavaScript Object Notation
KYC Know Your Customer
MFA Multi Factor Authentication
MIT Massachusetts Institute of Technology
MVP Minimum Viable Product
NTP Network Time Protocol
NIST National Institute of Standards and Technology
OSS Open Source Software
OTP One Time Password
PDF Portable Document Format
PIN Personal Identification Number
PDF Portable Document Format
PKCS12 Public-Key Cryptography Standards 12
PoC Proof-of-Concept

71

72 ABBREVIATONS

PoE Proof-of-Existence
RBAC Role Based Access Control
REST Representational State Transfer
RR Resource Registry
RQ Requirement
RPC Remote Procedure Call
SAML Security Assertion Markup Language
SDK Software Development Kit
SHA Secure Hash Algorithm
SSI Self-Sovereign Identity
SSL Secure Sockets Layer
SSO Single Sign On
SP Service Provider
TLS Transport Layer Security
TOTP Time-based one time password
UI User Interface
UUID Universally Unique Identifier
UNIC University of Nicosia
UX User Experience
UZH University of Zurich
WAYF Where Are You From

List of Figures

2.1 Blockchain deployment types, based on [17] 6

3.1 SWITCH identity federations [48]. 12

3.2 User account structure with two affiliations, compared in aai and edu-ID
[53]. 13

3.3 SWITCH edu-ID component architecture [53]. 14

3.4 Web single sign-on sequence diagram. 14

3.5 Corda node architecture [60] . 15

3.6 Account based node vault partition [43]. 16

3.7 Account transaction types [43]. 17

4.1 Swiss Educhain high-level architecture. 25

4.2 Swiss Educhain component architecture. 26

4.3 SWITCH-Swiss Educhain architecture based on [83]. 30

4.4 Resource Registry overview [84]. 31

4.5 Swiss Educhain trust relationships. 32

4.6 Classic and Extended Attribute models for Service Providers [88], [76]. . . 32

4.7 Classic and Extended models login flows [89]. 33

4.8 Swiss Educhain login sequence diagram based on [91]. 35

4.9 Information flow and identity mapping. 37

5.1 Shibboleth daemon integration [92]. 40

5.2 SSO session attributes disclosed to Swiss Educhain. 42

5.3 Educhain and Corda accounts frontend sections. 44

5.4 Swiss Educhain frontend. 53

73

74 LIST OF FIGURES

List of Tables

4.1 Initial Educhain Requirements based on [1] 21

4.2 Swiss Educhain Functional Requirements 21

4.3 Swiss Educhain Non-Functional Requirements 23

75

76 LIST OF TABLES

Appendix A

Installation and Configuration
Guidelines

This is joint text with Simon Müller [12].

A.1 System Requirements

To facilitate the development of the Swiss Educhain service a server was set up in the
internal CSG (Communications Systems Group) infrastructure of the department of In-
formatics. Swiss Educhain has several dependencies and system requirements, which are
explained below:

OS Requirements
A medium-sized Ubuntu server (implementation tested on 4 CPUs 2.4 GHz with 4
Gb of memory), which is capable of running multiple Java instances.

Software Dependencies

Zulu Java OpenJDK 8 (tested on version 1.8.0 232)

Apache HTTP Server (tested on version 2.4.29)

Spring Boot (tested on version 2.0.2.RELEASE)

Shibboleth (tested on version 3.0.4)

Valid SSL certificate (tested with LetsEncrypt)

A.2 Deployment

The code of Swiss Educhain is based on the Kotlin CorDapp example template provided
in [99]. To build the Swiss Educhain software components, the Gradle build agent is used.
Before deployment a PKCS12 (Public-Key Cryptography Standards - 12) certificate needs

77

78 APPENDIX A. INSTALLATION AND CONFIGURATION GUIDELINES

to be generated based on the valid SSL certificate, instructions on how to create it are
given in [97]. The instructions on how to build the Swiss Educhain code are as follows:

� Corda Nodes:

1. Fill the configuration file additional.conf with the correct information. The
file is found in the root directory.

2. Execute in root directory: ./gradlew deployNodes

3. JAR, configuration and database files will be created inside /build/nodes

folder.

� Frontend:

1. Fill the configuration file application.properties with the correct informa-
tion. The file is found in the clients/src/main/resources directory.

2. Execute in root directory: ./gradlew runTemplateServer

3. The clients-VERSION.jar file will be created inside the /clients/build/libs
folder.

After successfully building the code, the service can be deployed by following these steps:

� Copy the produced clients-VERSION JAR file to the server.

� Copy the nodes folder containing the two corda.jar files for PartyA and Notary

to the server together with the configuration files produced (node.conf, persis-
tence.mv etc.)

� Execute command nohup java -jar corda.jar & from the same directory where
it was copied to, inside the Notary folder.

� Execute command nohup java -jar corda.jar & from the same directory where
it was copied to, inside the PartyA folder.

� Execute command nohup java -jar clients-VERSION.jar & from the same di-
rectory where it was copied to. The frontend will exit automatically if it doesn’t
detect any running Corda nodes.

This ends the text jointly written with Simon Müller [12].

Appendix B

Code Repository Structure

This is joint text with Simon Müller [12].

The following directory tree represents a simplified structure of the Swiss Educhain code
that is included with the CD. For the sake of readability, folders and files that are not
directly relevant have been left out.

educhain-code

clients

src/main

kotlin/ch/educhain

bean

webserverFolder contains Kotlin code for frontend.
resources

static

app.js..................................Frontend JavaScript code.
index.htmlFrontend HTML code.

application.propertiesProperties file for frontend.
resources

contracts

src/main/kotlin/ch/educhain

contractsFolder contains the Swiss Educhain contract code.
states........................Folder contains the Swiss Educhain states.

verification_frontend...Folder contains the code for the verification frontend.
workflows

src/main

java/ch/educhain/solidity........Contains the contract wrapper code.
kotlin/ch/educhain

flows..........................Contains all the Swiss Educhain flows.
services....................Contains all the Swiss Educhain services.

additional.conf............................Configuration file for Corda node.
educhainSign.sh................................Shell script for offline signing.

This ends the text jointly written with Simon Müller [12].

79

80 APPENDIX B. CODE REPOSITORY STRUCTURE

Appendix C

Contents of the CD

abstract.txt - abstract in English.

educhain-configuration - contains Educhain configuration files.

educhain-code - contains the Swiss Educhain code.

intermediate-presentation.pdf - contains the slides for the intermediate presentation.

thesis.pdf - this thesis report as PDF.

report - contains LATEXsources of this thesis, including all figures.

zusammenfassung.txt - abstract in German.

81

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Blockchain
	Identity
	Digital Identity
	Self-Sovereign Identity

	Identity and Access Management
	Access Control
	Access Control Models

	Related Work
	Swiss Educhain Previous Work
	SWITCH
	SWITCH edu-ID
	Shibboleth

	Corda
	Corda Accounts

	System Design
	Stakeholders
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Architecture
	Candidate Solutions
	Architecture Solution
	MVP Functionality

	Identity and Access Management
	Identity Candidate Solutions
	Identity Chosen Solution
	Persistent ID
	Target Audience
	Role Assignment
	User Access Control
	Authorization Policy
	Application Accounts

	Implementation
	Integration with SWITCH edu-ID
	Shibboleth Installation and Configuration
	HTTPS Configuration
	Shibboleth Access Control
	Attributes

	Code Structure
	CorDapp
	Swiss Educhain Application Accounts
	Corda Accounts & Node Identity Service
	Educhain Account State
	Educhain Account Contract
	Educhain Account Flows

	Spring Boot
	AJP Connector
	Controller
	Frontend Interface

	Evaluation
	Requirements Fulfillment
	MVP Evaluation
	IAM Evaluation

	Conclusion & Future Work
	Conclusion
	Future Work

	Abbreviations
	List of Figures
	List of Tables
	Installation and Configuration Guidelines
	System Requirements
	Deployment

	Code Repository Structure
	Contents of the CD

