
Online Optimization of
Job Parallelization in
Apache GearPump

Te Tan
of Hubei, China

Student-ID: 16-725-962
te.tan@uzh.ch

Master Thesis February 25, 2019

Advisor: Pengchen Duan,
Dr. Daniele Dell’Aglio

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

Firstly I would like to thank my supervisors Pengchen Duan and Dr. Daniele Dell’Aglio
for their patient guidance and insightful advice. They encouraged me to overcome diffi-
culties and helped me solve problems.

Secondly I would like to thank Prof. Abraham Bernstein and Dynamic and Distributed
Information Systems (DDIS) group of University of Zurich. They provided me with
resources to do experiments.

Lastly, I would like to say thank you to my family and friends, who gave me spiritual
support and motivation during the thesis.

Zusammenfassung

Die Parametereinstellung im Bereich verteilter (Streaming) Systeme ist ein beliebtes
Forschungsgebiet. Viele Lösungen wurden von der Forschungsgemeinschaft vorgeschla-
gen. Das Bayesian Optimization (BO) ist eine solche Lösung, die sich als mächtig er-
wiesen hat. Während die bestehende Methode zur Durchführung des BO-Prozesses
ist ‘offline’, die Herunterfahren des Systems sowie viele ineffiziente manuelle Schritte
braucht. In dieser Arbeit implementieren wir einen Optimierer, der BO-Optimierung
‘online’ durchführen kann. Der Optimierer wird in Apache Gearpump, einer nachricht-
engesteuerten Streaming-Engine, implementiert. Da der DAG-Vorgang zur Laufzeit die
Voraussetzung für die Online-Optimierung ist, untersuchen wir die vorhandene Funktion
von Apache Gearpump und schlagen einen verbesserten Ansatz namens Restart vor, um
Laufzeit-DAG-Vorgänge durchzuführen. Unterstützt durch den Restart-Ansatz entwer-
fen und implementieren wir JobOptimizer, der eine Online-BO-Optimierung ermöglicht.
Die Bewertungsergebnisse zeigen: mit der Beschränkung der maximalen Anzahl von Ver-
suchen, obwohl JobOptimizer den Parameterraum nicht ausreichend erforschen kann, es
kann einen besseren Parametersatz finden als zufällige Exploration. Bei vergleichsweise
größeren DAG-Anwendungen übertrifft es den Durchsatz von Linear Ascent Optimizer.

Abstract

Parameter tuning in the realm of distributed (streaming) systems is a popular research
area and many solutions have been proposed by the research community. Bayesian
Optimization (BO) is one of the them which is proved to be powerful. While the existing
way to conduct the BO process is ‘offline’ and involves shutting down the system as well
as many inefficient manual steps, in this work we implement an optimizer which is able to
do ‘online’ BO optimization. The optimizer is implemented within Apache Gearpump, a
message-driven streaming engine. As the DAG operation at runtime is the prerequisite
for doing ‘online’ optimization, we inspect into the existing feature of Apache Gearpump,
and propose our improved approach named Restart to do runtime DAG operations. Then
supported by Restart approach, we design and implement JobOptimizer, which enables
‘online’ BO optimization. The evaluation results show that: with the constraint of
maximum number of trials, although JobOptimizer is not able to explore the parameter
space adequately, it is able to find better parameter set than random exploration. It also
outperforms Linear Ascent Optimizer in terms of throughput in the case of comparatively
larger DAG applications.

Table of Contents

1 Introduction 1
1.1 Big Data Systems and Streaming processing 1
1.2 Parallelization in Streaming Applications 2
1.3 Motivation and Research Questions . 3

2 Related Works 5
2.1 Parameter Configuration of Big Data Systems 5
2.2 Bayesian Optimization and its Application 7
2.3 Applying Bayesian Optimization to Big Data Systems Configuration . . . 8

3 Apache Gearpump: A Promising Streaming Engine Built on Akka 11
3.1 Akka Actor Model . 11
3.2 Introduction to Apache Gearpump . 13

3.2.1 Gearpump Actor Architecture . 13
3.2.2 Technical Highlights of Gearpump 15
3.2.3 A few hints on our implementation 16

4 Runtime DAG Operation in Apache Gearpump 19
4.1 Dynamic DAG provided by Gearpump . 19
4.2 How can we do runtime DAG operations better? 22

4.2.1 Restart approach . 23
4.2.2 Dynamic Update approach . 25
4.2.3 Empirical comparison of two approaches 26

5 Online Optimization of Job Parallelization 35
5.1 Introduction to Bayesian Optimization . 35

5.1.1 Gaussian Process . 35
5.1.2 Acquisition function and Bayesian Optimization 36

5.2 JobOptimizer enabled by Run-Time DAG Operation 38
5.2.1 The selection of algorithm implementation 38
5.2.2 Advisor: REST service for black-box optimization 39
5.2.3 The implementation of JobOptimizer 42

5.3 Evaluation . 49
5.3.1 Optimization Capability and Behavior Analysis 50

x Table of Contents

5.3.2 Comparison Experiments . 54

6 Limitations 59

7 Future Work 61

8 Conclusions 63

A Appendix 69
A.1 The misuse of metrics in Web UI . 69
A.2 Clock Service bug . 69

x

1

Introduction

1.1 Big Data Systems and Streaming processing

Powered by the adoption of advanced information technologies such as Cloud Comput-
ing and IoT devices, the discussion of Big Data in both academic communities and the
industry has experienced an exponentially increase over years. The term ‘Big Data’ was
first used by Cox and Ellsworth (1997) to refer to the datasets which can not fit in mem-
ory or on local disk especially in the context of visualization. The easy-to-understand
definition of Big Data is the digital analysis of datasets to extract insights, correlations
and causations, and value from data. Other definitions are also given by various research
groups, such as the ‘3Vs’ definition (Volume, Variety and Velocity) proposed by Laney
(2001), and the ‘5Vs’ definition (‘3Vs’ + Validity and Value) proposed by Marr (2015).

As indicated in the book written by Maxim et al. (2017), one of the key areas of the
Big Data framework evolution, is to continuously increase the performance to meet the
demand of sub-second and real-time data analytics. This is achieved by developing and
improving streaming data processing engine.

Akidau (2015) clarified the term ‘streaming’ data to be unbounded data which is
ever-growing and infinite, as opposed to ‘batch’ data which is bounded. Processing
bounded data is quite straightforward, which only requires fetching data from a dis-
tributed file system, running it through a batch processing engine such as MapReduce,
and then writing the results back to the file system. Batch engines, although not ex-
plicitly designed for unbounded data, have been used to process unbounded data due
to the comparatively high maturity of batch engines. The most common way to deal
with an unbounded dataset with a batch engine is slicing the input data into fixed-sized
windows, then processing each of those windows as a bounded dataset. However, in
many use cases batch engine is not able to meet requirements of low latency and high
throughput. Furthermore, batch engine is usually not able to process of unordered data
with varying event-time skew. Streaming engines are specifically designed for reasoning
about time so it can exceed batch system when processing unbounded data.

Given the advantage of processing unbounded data with low latency, streaming sys-
tems are a good choice compared to batch systems when confronting following scenarios:

• Time series data flow: stream processing naturally fit with time series data (traffic
sensors data, transaction logs, social media data etc.) and can detect patterns over
time.

2 CHAPTER 1. INTRODUCTION

• Approximate results are sufficient: not a complete dataset is needed to produce an
accurate result, streaming processing is able to produce an approximate result at
lower cost.

• Data is too huge to store: sometimes the data is too huge to fit in the current
storage resources, streaming processing can handle it by doing transformation and
only keeping the useful information.

Furthermore, ‘streaming’ is also a natural model to think about and program. In
countless use cases the data are perfect streaming flow and streaming systems are the
most suitable choice to handle it. Popular use cases are production line monitoring,
supply chain optimization, fraud detection, traffic monitoring, sports live analytics and
so on.

1.2 Parallelization in Streaming Applications

Processing massive data is traditionally time-consuming. Distributed parallel computing
is the preferable way to improve the efficiency of massive data processing. Data paral-
lelism is the notion that data is distributed among nodes and therefore can be processed
in parallel. Taking the MapReduce paradigm for example, it consists of two distinct
phases: Map and Reduce. Map tasks are required to be written in such a way that
they can operate independently on a single chunk of stored data. Although this strict
limitation could sometimes be challenging for programmers, the benefit it brings is that
the tasks can be executed in a highly parallel way.

Before we explain and formulate the problem we deal with, we introduce the concept
of parallelism with the example of Apache Gearpump 1, which is the target streaming
system we inspect in the thesis. We will discuss Apache Gearpump in more detail in
Chapter 3.

The programming model for a Gearpump application is a Directed Acyclic Graph
(DAG). Users must represent their computation job as a DAG, in which a vertex stands
for a computing task and an edge represents the message path. A vertex in DAG is
called processor in Gearpump. There are three kinds of processors within a DAG of
Gearpump: sources, nodes and sinks. A source is a processor without input streams,
whose responsibility is emitting data to downstream processors. Sources are typically
used to connect a Gearpump DAG to external data sources such as web-services and file
systems. A sink is a processor without downstream processors, mainly responsible for
gathering computing results. Processors other than sources and sinks are normal nodes,
with both upstream and downstream processors. An example DAG is shown in Figure
1.1 left, which is a simple topology with only one source, one normal node and one sink.

The topology shown in Figure 1.1 left is only a logic representation of a DAG. The
programmer will determine how many instances (parallelism) of each processor will be

1Apache Gearpump(incubating): Overview, https://gearpump.apache.org/overview.html

2

1.3. MOTIVATION AND RESEARCH QUESTIONS 3

Figure 1.1: Logical and runtime representation of an example DAG in Apache Gearpump

created during runtime. Figure 1.1 right shows one possible topology of the DAG rep-
resented on the left in runtime. Two executors (each represents one JVM process) are
executing this application. The source, node and sink have 1, 3 and 2 runtime instances
respectively, which correspond to the degree of parallelization of one, three and two for
each processor.

Streaming systems provide a number of configuration parameters that allow the pro-
grammer as well as administrators to configure the system and application. One of them
is the parallelism of each DAG processor which could significantly affect the application
performance. Unfortunately, it is extremely hard for programmers to determine a ‘good’
parameter settings of parallelism in advance. Hence parameter tuning is proved to be of
great help when deciding the parameters of streaming system and application.

1.3 Motivation and Research Questions

Parameter tuning in Big Data systems is a popular research area and many approaches
are suggested by research groups. We will discuss these approaches in Chapter 2.

One of these promising approaches is the application of Bayesian Optimization (BO)
(Mockus, 1974). BO approach typically treats the system to be tuned as a black-box
function, and iteratively evaluates the objective function based on prior knowledge. We
will introduce more details about BO in Section 5.1. BO has successfully been applied
to the configuration of Apache Storm 2 by Fischer et al. (2015).

However, the existing way to conduct the BO process is complex and involves many
manual steps. This approach is what we call as ‘offline’, which means we have to do a se-
quence of iterations like this: running the application with one parameter set, gathering

2Apache Storm, http://storm.apache.org/

3

4 CHAPTER 1. INTRODUCTION

information, shutting down the system and then start a new iteration with next param-
eter set. In each iteration we have to shut down the whole system, adjusting parameter
settings (manually or with the help of program) and launch the application again. The
situation becomes worse when it comes to tuning the parallelism of application. Stream-
ing application is highly customized and we cannot figure out in advance how the DAG
looks like or how many processors it contains. Therefore the system configuration file
usually does not provide config-options for the parallelism of an application. In other
words, we need to change the parallelism of each processor by ourselves (often manually)
before each optimization iteration begins. This predicament prevents the application of
BO to real use case because it is extremely clumsy and inefficient.

Our initial ideal is to investigate how we can improve the optimization process of BO
to make it efficient and suitable for real use case. While in the context of streaming
processing, there are many parameters to be configured, we narrow down the scope and
focus on the degree of parallelism of streaming application, which greatly affects the
application performance. If we can find a better way than existing work to configure
parallelism, it can be generalized to other parameter settings. Instead of conducting the
process ‘offline’, we want to do it ‘online’ and automatically, without shutting down the
whole system and manually adjusting the parallelism of DAG.

As a comparatively new streaming engine under incubation, Apache Gearpump came
into our sights as we found that it offers a feature named ‘Dynamic DAG’ which allows
us to change the DAG of application at runtime. If ‘Dynamic DAG’ can help us do
runtime DAG operations needed for optimization, we can make the optimization process
‘online’. If ‘Dynamic DAG’ is not competent enough to support the optimization pro-
cess, we intend to improve it. Specifically we want to implement an optimizer (named
JobOptimizer) for Gearpump, which will conduct the Bayesian Optimization process
automatically and without need for shutting down the system or application. Our work
is guided by following research questions:

• RQ1 : Can ‘Dynamic DAG’ of Gearpump be used for runtime DAG operations
required by the optimization process? If not, how can we improve it?

• RQ2 : How to design and implement an optimizer which conducts Bayesian Opti-
mization at runtime (‘online’)?

• RQ3 : How does the implemented optimizer perform compared to baselines?

The rest of this thesis is organized like this: we will give a short introduction to the
related work in Chapter 2. Then we will introduce the streaming engine used in our
experiment: Apache Gearpump in Chapter 3. In Chapter 4 we will inspect into the
capability of the feature ‘Dynamic DAG’, and how we improve it to meet up our needs
for runtime DAG operations. After that we will elaborate in Chapter 5 how we design
and develop JobOptimizer, who enables ‘online’ Bayesian Optimization of parallelism
based on runtime DAG operations. The evaluation and analysis of JobOptimizer will
be shown in Section 5.3. Lastly we will briefly clarify the limitations and future work in
Chapter 6 and Chapter 7 respectively, and summarize our work in Chapter 8.

4

2

Related Works

Distributed systems specialized in big data processing do not have a long history. Dating
back to 2003 and 2004, Google introduced Google File System (GFS) and MapReduce
paradigm which became a milestone of the development of big data systems. GFS is a
distributed and fault-tolerant file system whose design goal is achieving scalable, reliable
and robust massive data storage (Ghemawat et al., 2003). MapReduce is both a powerful
programming paradigm and a distributed data processing engine, which allows users to
easily develop and run data parallel applications on a large unreliable cluster (Dean and
Ghemawat, 2004).

Apache Hadoop is an open-source project first developed by a group of researchers at
Yahoo and then managed by Apache Software Foundation 1. The two main components
of Hadoop are Hadoop Distributed File System (HDFS), which is designed to replicate
the functionality of GFS, and its own implementation of MapReduce runtime (Shvachko
et al., 2010). Various research teams have then enriched the Hadoop ecosystem by
developing many other systems such as HBase, Cassandra, Storm and Flink.

Grew from UC Berkeley, Apache Spark has gained heavy attention within the big
data realm as a new generation of data processing framework. It was designed to mit-
igate some of the disadvantages of MapReduce, specifically when it comes to using the
same dataset for iterative computing. Spark has been optimized for tasks that require
the reuse of the same dataset across multiple parallel computations such as machine
learning and data analytic tasks. Thanks to Resilient Distributed Dataset (RDD), the
abstraction for distributed data access in memory, it can achieve higher precessing speed
compared to MapReduce tasks (Zaharia et al., 2010).

2.1 Parameter Configuration of Big Data Systems

The problem of parameter configuration in the field of distributed (streaming) systems
has been studied over years. A number of cost-based models were proposed to estimate
the potential outcomes and describe the complexity of streaming systems (Cammert
et al., 2008; Daum et al., 2011; Heinze et al., 2014). Then the parameter settings of a

1Apache Hadoop, http://hadoop.apache.org/

6 CHAPTER 2. RELATED WORKS

system can be decided based on the predicted outcomes of an appropriate model. Take
the work of Heinze et al. (2014) for instance. The elastic data stream processing engine
allocates dynamically new resources with the help of scaling policies depending on the
current query load. This resource allocation involves the movement and restoring of
processors, which creates a latency spike. For the purpose of minimizing the latency
violations according to the Service-Level Agreement (SLA) in cloud computing services,
Heinze et al. (2014) introduced a model to estimate the cost of processor movements
in terms of end to end latency. The scaling decision and configuration will then be
determined according to both the utilization of resources, and the cost of doing certain
processor movement.

The foundation of the cost-based model is that we assume the relationship between
the parameters we care about, and the outcome can be described by a closed-form
model. When dealing with problems with prior knowledge, and there is a comparatively
simple relationship between parameters and the outcome, cost-model would be powerful.
However, in our case of parameter tuning, we do not know if a mathematical model exists
and well fits the system, so we treat the application as a black box.

Besides the cost model approach, another kind of approach is what Babu (2010)
named as ‘late-binding’ named. While the cost model-based approach relies on predicted
performance of an operation before the operation being performed, ‘late-binding’ delays
the setting of parameters until the operation being conducted and some results being
observed. Since we are going to do ‘online’ optimization by observing the execution of
the Gearpump application, our approach belongs to ‘late-binding’ category.

As an example of ‘late-binding’ approach, a self-tuning system was proposed by Wu
and Gokhale (2013) in order to help data scientists who are lack of expertise to tun the
Hadoop system. The proposed system, named Profiling and Performance Analysis-based
System (PPABS), is based on machine learning. After collecting the characteristics of
previous applications such as memory, CPU usage, they group these historical appli-
cations into clusters using a modified k-means clustering algorithm. Then they search
optimal configuration settings for each center of these trained clusters and label each
center with the optimal setting found. To look for the best setting of a newly-submitted
application, in the first step PPABS lets the application run, observing and gathering its
characteristics. In the second step, PPABS classifies this application into one of the clus-
ter, and loads the tuned configuration which is the optimal setting of the center of this
cluster. The entire process is done automatically after user submitting the application.

Similar to our interest, there are also studies with emphasis on extracting the appro-
priate degree of parallelization (Schneider et al., 2012; Gordon et al., 2006; Schneider
et al., 2009). Schneider et al. (2009) enabled the elasticity of operators on IBM’s System
S (a streaming processing middleware) which can adjust the parallelism of operators in
response to the dynamic streaming workload. Afterwards the same team Schneider et al.
(2012) was dedicated to developing a compiler to determine the safe parallel subgraphs
of an application DAG by doing code analysis. Based on that runtime scalability is
enabled and the parallelization is determined according to the runtime workload. Faced
with constantly-changing streaming workload, they launch the application with default
or random degree of parallelization, without paying attention to whether this initial

6

2.2. BAYESIAN OPTIMIZATION AND ITS APPLICATION 7

settings generate the best performance. Then they will adjust the parameters during
runtime. In contrast to focusing on dynamical change of input workload and adjusting
the parallelism, our research treats the input workload as static and tries to find the
best initial degree of parallelization.

Our work differentiates from both the work of Wu and Gokhale (2013) and Schneider
et al. (2009) mentioned above, in the sense that we treat the application as a black box.
Wu and Gokhale (2013) cluster applications according to the application characteristics,
and Schneider et al. (2009) analyse the application code. However, we do not look into
details of the submitted application but only observe its performance given a parameter
setting.

2.2 Bayesian Optimization and its Application

Bayesian Optimization (BO) (Mockus, 1974) has successfully been applied to configura-
tion problems where no mathematical closed-form cost model is known in advance. One
of the most popular area of its application in computer science is hyperparameter tuning
in machine learning algorithms (Bergstra et al., 2013; Snoek et al., 2012).

Snoek et al. (2012) empirically analyse a few machine learning algorithms and compare
Bayesian Optimization to existing strategies on a number of challenging problems. In
the experiments, they develop a few modified versions of Expected Improvement (EI) as
acquisition functions, namely GP EI MCMC, GP EI Opt and GP EI per second. For
example, they compare these algorithms to Tree Parzen Algorithm (TPA) on a logistic
regression classification task on the popular MNIST data. The task is choosing four
hyperparameters, the learning rate for stochastic gradient descent, on a log scale from
0 to 1, the l2 regularization parameter, between 0 and 1, the mini batch size, from 20
to 2000 and the number of learning epochs, from 5 to 2000. The result shows that GP
EI significantly outperforms TPA, finding the target minimum in less than half as many
evaluations. Another experiment is about Convolutional Neural Networks. Multi-layer
neural networks require careful tuning of numerous hyperparameters, which are usually
computationally expensive. In their work, they tune nine hyperparameters of a three-
layer convolutional network on the CIFAR-10 benchmark dataset. This model has been
carefully tuned by a human expert to achieve a highly competitive result of 18% test
error. The parameters include the number of epochs to run the model, the learning rate,
four weight costs (one for each layer and the softmax output weights), and the width,
scale and power of the response normalization on the pooling layers of the network. The
best hyperparameters found by GP EI MCMC achieve a test error of 14:98%, which is
over 3% better than the expert.

The hyperparameter tuning of machine learning algorithms shares two similarities with
the configuration of Big Data systems. Firstly, different from mathematical black-box
function optimizations, the function evaluation of machine learning problems require a
variable amount of time. For example, training a big neural network with many hidden
units could take days or even months. The function evaluation of Big Data systems in-

7

8 CHAPTER 2. RELATED WORKS

volves running the system, observation and analysis of results, so it may also take a long
time. Secondly, machine learning experiments often run in parallel on multiple cores or
multiple machines in a cluster. The same goes in running Big Data systems.

2.3 Applying Bayesian Optimization to Big Data Systems

Configuration

Despite the successful application of Bayesian Optimization in hyperparameter tuning
of machine learning algorithms, the research on applying Bayesian Optimization to the
configuration of Big Data system has rarely been reported before 2015. Fischer et al.
(2015) published a paper about applying BO to the configuration of streaming systems.
They try to find the best config-settings of Apache Storm including number of threads
per worker, number of acker tasks, number of batches being processed in parallel, number
of tuples in each batch, and the parallelism of operators. A real-world application and
three synthetic topologies are used to evaluate the usefulness of BO for configuration.
Compared to the baseline which is a naive linear-ascent optimizer, within a predefined
number of steps, the BO algorithm can find a better parameter hints which generates
much higher throughput. BO algorithm can also effectively find a better solution than
linear-ascent optimizer within a fixed number of steps when configuring other parameters
such as batch size. However, the convergence speed of BO is worse than linear-ascent
optimizer since it will explore the parameter space adequately before convergence. Sim-
ilarly, Jamshidi and Casale (2016) implement a automate-tuning tool named Bayesian
Optimization for Configuration Optimization (BO4CO) to do configuration tuning in
the context of Apache Storm. They go further than Fischer et al. (2015) in a sense that
they not only tun the configuration of the system, but also update the hyperparameter
of Gaussian Process kernel and the prior mean function during the optimization process.

Fischer et al. (2015) run BO with a fixed number of iterations and select the best
performance among those iterations. The convergence speed they measure is the number
of iteration in which the best performance occurs at the first time. In other words, this
approach does not try to find the globally optimal parameter set, and the convergence
speed does not measure how long it takes to find this globally optimal value. In our
approach, we try to find out the globally optimal value by defining convergence criteria.
Furthermore, while Fischer et al. (2015) try to optimize the parameter hints specified
in the configuration file, our work is application-oriented instead of system-oriented,
which means we do not need to specify any parameters in the system configuration file
before the application actually runs. Both Fischer et al. (2015) and Jamshidi and Casale
(2016) conduct the optimization process in a way which we call as the ‘offline’ approach.
‘Offline’ means we have to do a sequence of iterations like this: running the application
with one parameter set, gathering information, shutting down the system and then start
a new iteration with next parameter set. In each iteration we have to shut down the
whole system, adjusting parameter settings (manually or automatically) and launch the

8

2.3. APPLYING BAYESIAN OPTIMIZATION TO BIG DATA SYSTEMS
CONFIGURATION 9

application again. This inefficiency motivates us to look for an optimization solution
which is ‘online’ and automatically, without shutting down the system and manually
adjusting the parameters.

9

3

Apache Gearpump: A Promising
Streaming Engine Built on Akka

Apache Gearpump is a big data streaming engine built on Akka 1. It has become an
Apache incubator project since March 2016. Gearpump engine is event/message based.
Powered by Akka, Gearpump provides extremely high throughput and low latency. From
benchmarks it is able to process 18 million messages per second with a 8ms latency on
a 4-node cluster2. To understand how Gearpump works, first we need to know its
cornerstone: Akka. We will at first introduce Akka Actor Model and then discuss the
features of Gearpump.

3.1 Akka Actor Model

Akka is a set of open-source libraries for designing scalable, resilient systems. According
to its documentation, Akka provides multi-threaded behavior without the use of low-level
concurrency constructs like atomics or locks, transparent remote communication between
systems, and scalable high-availability architecture for building distributed systems.

The underline key of Akka’s power is its Actor model, which provides an abstraction
that makes it easier to write concurrent parallel programs. Today the challenges of
building distributed systems cannot be fully solved with the traditional Object-Oriented
Programming (OOP) model. Three crucial problems are identified when we try to
program using the traditional model in a modern multi-threaded computing architecture:

• The challenge to encapsulation: the encapsulation (protection of invariants) can
only be ensured in the case of single-thread. Multi-thread execution often leads to
corrupted internal state. The synchronization lock is an inefficient solution because
it leads to suspending of threads and risk of deadlocks.

• The illusion of shared memory : CPU cores are indeed writing to their respective
local cache instead of directly to the shared memory. Hence sharing local changes
between threads leads to the shipment of cached data which is very costly. This

1Akka, https://akka.io/
2Performance Evaluation, https://gearpump.apache.org/releases/latest/introduction/performance-
report/index.html

12
CHAPTER 3. APACHE GEARPUMP: A PROMISING STREAMING ENGINE

BUILT ON AKKA

data shipment has been made transparent through marking the variables as atomic
on JVM. As it is difficult for programmers to use the costly denotion ‘atomic’
carefully, it is more reasonable to passing necessary messages explicitly between
threads.

• The problem of work delegation: To achieve any meaningful concurrency on current
systems, threads must delegate tasks among each other. After the main thread
(who delegates a work to another) delegates a work to the worker thread, how
can it be notified even the worker thread died. If the task fails with an exception,
where does the exception propagate to? and how to recover the failed task (note
that the task state is lost due to the exception reaching to the top, unwinding all
of the call stack).

To handle these problems brought by the traditional OOP model, the Actor model is
proposed. An actor is a role who can send messages, receive messages, update its state
and change its behavior according to received message. Next we discuss the two distinct
properties in order to explain how Akka tries to solve the problems mentioned above.

Message passing instead of method calling

In OOP model, the enforcement of invariants occurs on the same thread. If multiple
threads try to access the same instance by method invocation, the encapsulation of
invariants will be violated. Instructions of the two invocations can be interleaved in
arbitrary ways, hence the intactness of invariants cannot be guaranteed.

In Actor model, actors communicate with each other by sending messages. Sending
a message does not release the control of executing thread. The actor who wants to
delegate a task to another will send a message and continue without blocking. The
receiver actor reacts to messages at its convenience and return execution when it finish
processing the current message. If results are expected, the receiver actor will reply with
another message. Specifically what happens when an actor receives a message is:

1. The receiver actor adds the message to the end of its mailbox (a queue),

2. If the receiver actor is not scheduled for execution, it is marked as ready to execute,

3. A scheduler takes the actor and starts executing it by picking (exactly) one message
from the head of the mailbox,

4. The actor updates its state and sends messages to other actors.

5. The actor is unscheduled.

The application is driven forward by each actor sending, processing and receiving mes-
sages. In this way, actors can finish more work in the same amount of time, and the
whole system can process as many messages simultaneously as the hardware can sup-
port. Encapsulation is protected as any time at most one message will be processed per
actor, and different actors work independently.

12

3.2. INTRODUCTION TO APACHE GEARPUMP 13

Figure 3.1: Actors are organized by a hierarchical supervision tree

Hierarchical supervision of actors

Actors are organized as a hierarchical tree structure (as shown in Figure 3.1). Each actor
is created and supervised by its parent actor (the root actor created by user is supervised
by system daemon actor). When an actor fails, its parent actor will be notified and it
can react to the failure. If the parent actor fails or is stopped on purpose, all of its
children will be recursively stopped. No actor dies silently. This hierarchical supervision
ensures that the error or exception is handled properly:

• If the delegated task on the receiver actor fails due to task itself, the error or
exception information will be sent as ordinary messages to the sender actor. The
sender actor then processes the message and react.

• If the receiver actor dies, its parent actor will be notified. Then the parent actor
can decide to restart its child actors on certain types of failures or stop them
completely. Restarts are kept invisible from the outside.

3.2 Introduction to Apache Gearpump

Inspired by advances brought by Akka framework, a group of engineers in Intel developed
Gearpump, a real-time big data streaming engine. Benefiting from the message-driven
architecture and actor model, Gearpump achieved very high performance with high
throughput and low latency. In this section we talk about its actor architecture and a
few feature highlights.

3.2.1 Gearpump Actor Architecture

An actor is the smallest functional unit in Gearpump system (so called ‘actor every-
where’). The simplified hierarchical structure of Gearpump actors is shown in Figure

13

14
CHAPTER 3. APACHE GEARPUMP: A PROMISING STREAMING ENGINE

BUILT ON AKKA

Figure 3.2: The simplified hierarchy of Gearpump actors (Zhong, 2014)

3.2. Note that the full actor hierarchy is much more complicated than the one shown
here, with many more functional actor roles such as executor manager, DAG manager,
Metrics services. There are two categories of actors: the cluster actors and the ap-
plication ones. The cluster actors are Master and Worker. The Master is responsible
for managing cluster resources and all applications. The Worker represents a a physi-
cal (virtual) machine who does the actual work as well as managing its own resources
and keeping reporting to the Master. The Master creates a few supportive children ac-
tors(App Manager, Worker Manager as in Figure 3.2) among whom the responsibility is
split.

Application actors mainly have following roles:

• AppMaster: Each streaming application running on Gearpump has a one-to-one re-
sponsible AppMaster actor, which manages the state of the application and sched-
ule tasks to workers.

• Executor: represents a JVM process and is the child of AppMaster. It will manage
the lifecycle of tasks and responsible for their recovery when failure occurs.

• Task: represents a thread, does the real job and is the child of Executor.

With the well-split duty among actors, the application submission process is sim-
ple. As shown in Figure 3.3, when a new application is submitted to the Master, it
will allocate a worker with sufficient resources and launch an AppMaster for the spe-
cific application. The AppMaster calculates resources required for the application and

14

3.2. INTRODUCTION TO APACHE GEARPUMP 15

Figure 3.3: The application submission processs in Gearpump (Zhong, 2014)

sends a request to the Master. After allocating resources, the AppMaster will notify
assigned workers to launch executors. Successful registration of launched executors will
be followed by starting tasks.

3.2.2 Technical Highlights of Gearpump

Here we briefly present a few attractive features of Apache Gearpump, which can help
us better understand the Akka actor model and Gearpump.

Safe work delegation and fault folerance

With the help of Akka’s hierarchical supervision tree, Gearpump has been built as a
resilient system. Firstly, the problem of work delegation mentioned in Section 3.1 has
been solved. Children actors who have been assigned with tasks from parents are liable
to report the status of the executing tasks especially when errors or exceptions occur.
The parent will decide whether and where to restart the failed tasks in case of failure.

Secondly, fault tolerance is achieved. The parent keeps watching on its children. If a
child is down due to internal errors, it will request new resource to restart it. Also, the
crashing of an actor will automatically lead to shutting-down of all its children, which
is efficient and transparent to users. For instance, each Gearpump application has its
own AppMaster. If an AppMaster crashes, Master will schedule new resources to restart
the AppMaster, important states of the application such as Global Minimum Clock(see
below) will be restored.

But what if Master itself crashes? The high availability of Master is insured by an Akka
cluster. The cluster consists of several Master nodes (typically three), who will maintain
and update a replicated Master state locally. In case of failure one standby Master node
will be activated and take over the responsibility. All workers are communicating with
a Master proxy instead of a real Master node, so the Master recovery is transparent to
workers.

15

16
CHAPTER 3. APACHE GEARPUMP: A PROMISING STREAMING ENGINE

BUILT ON AKKA

Efficient message passing

In streaming use case, the typical message size is usually less than 100 bytes per message,
which makes the efficiency of the network (bandwidth usage) very low. Another problem
is the message overhead is too big as each message sent between two actors contains the
complete long actor path.

To make as much as use of the bandwidth, the Gearpump engineers group and send
multiple messages together. Furthermore, they implemented a transportation layer
named Netty whose job is to translate the actor path. Before the message is sent,
Netty translates the complete actor path into the task id. When receiving a message,
Netty translates the actor path back from task id. Only task ids will be transported on
the wire. Hence the efficiency of message passing has been greatly improved.

At-Least-Once and Exactly-Once message delivery

Trustworthy message delivery is a prerequisite for a streaming engine. Gearpump pro-
vides configurable message delivery options, by which users can choose from At-Least-
Once message delivery mode or Exactly-Once mode. While At-Least-Once mode is
insured internally within Gearpump, Exactly-once mode needs support of resources to
do trustworthy backup of checkpoints.

At-Least-Once delivery is achieved by Global Minimum Clock(GMC) mechanism.
Global Clock Service tracks the minimum timestamp of all pending messages in the
system. Tasks update their own minimum clock during processing messages, and report
to Global Clock Service. The value of GMC indicates that all messages with a timestamp
smaller than the GMC have been successfully processed. When message loss occurs, the
GMC will not move ahead. The sender will be notified to send the lost messages again.
The GMC value is stored and updated in Master cluster. If the application crashes,
it will be restarted and initialized with the latest GMC value. Then the source will
replay message from the reloaded GMC timestamp. Exacly-Once delivery is achieved by
continuously taking snapshot of the application states and storing them into a database.
When the application is restored from checkpoints, the states will also be restored among
tasks so repeat messages can be detected.

3.2.3 A few hints on our implementation

Our target is to implement a module to enable ‘online’ optimization of Gearpump appli-
cations. The above technical characteristics about Gearpump gives us some hints about
how our module should be implemented.

Firstly, the module should be an actor or a set of actors, who dive itself or themselves
into the Gearpump actor architecture. That means the implemented actor should be
created by one of the application actors. Then the parent actor will take over the man-
agement of its lifecycle automatically without our concern. Secondly, the programming
diagram of the message-driven actor model should be followed, in which there is no

16

3.2. INTRODUCTION TO APACHE GEARPUMP 17

method invocation chain between actors. The communication among our implemented
actors, as well as between our actors and Gearpump actors should be achieved through
message passing. Thirdly, thanks to the supervision tree, we can focus on our business
logic, without worrying about the failure recovery and resource reclaim. However, the
important actor states should be stored to the Master and regularly updated. In this
way can we ensure the recovered actor is able to work from break points.

The feature most relevant to our research questions, is ‘Dynamic DAG’ which means
we can do runtime DAG operations without shutting down the system or application.
Next we will inspect into the source code of Gearpump and check if it is capable enough
to support our goal: achieving ‘online’ optimization of parallelization.

17

4

Runtime DAG Operation in Apache
Gearpump

To do automatic and ‘online’ optimization of parallelization, we decide to implement
a module named JobOptimizer. We will discuss the details of its implementation in
Chapter 5. The JobOptimizer’s job is to observe the application performance, based on
which it makes decisions about parallelisms and conduct runtime DAG modifications. It
iteratively repeats this process until some stop-conditions are met, ideally it stops when
the optimal parallelization of the application is found. In this chapter we discover the
solution for our JobOptimizer about how to conduct runtime DAG operations.

One attractive feature provided by Gearpump which is to our interest, is Dynamic
DAG. Backed by the knowledge of Akka Actor model we discussed above, we will look
into it and try to answer RQ1.

4.1 Dynamic DAG provided by Gearpump

The functionality of Dynamic DAG allows users go to the web user interface (UI) of
Gearpump after starting the web server, checking the status of the submitted application
and doing operations on the graphic DAG. An example screenshot of the graphic web UI
is shown in Figure 4.1. Possible DAG operations include modifying processor parallelism
and changing the jar file of a subgraph of DAG. Note that the functionalities of adding or
deleting processors are not yet supported as they stated in the provisioning documents.

After inspecting into the source code, we found that the Dynamic DAG feature is
realized by enabling runtime replacement of processors. The implementation involves
many actors and complex message communications. We extracted from the source code
the process of replacing a processor and drew the message passing flow as shown in Figure
4.2. AppMasterService receives HTTP request sent by user from web UI and forward
it to AppMaster. AppMaster then sends a ReplaceProcessor message to DagManager,
which is a child actor of AppMaster and responsible for most of the DAG operations.
Afterwards TaskManager communicates with JarScheduler, send the new version of DAG
and fetch the resource requirement from JarScheduler. Then the resource allocation
process begins, starting a new executor for the modified processor, and lastly tasks
which belong to the modified processor is launched.

20 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

Figure 4.1: An example of the web UI provided by Gearpump

Figure 4.2: The message passing flow of replacing a processor

20

4.1. DYNAMIC DAG PROVIDED BY GEARPUMP 21

Figure 4.3: An example of DAG processor replacement process enabled by Gearpump

To illustrate and visualize how it works we have run an example Gearpump application
provided by Gearpump. The DAG topology of this application can be seen in Figure
4.3. These two pictures are screenshots of the Gearpump web UI dashboard. Processors
are denoted by circles with its name(for example source 0) and its unique id within the
square brackets. Arrows represent the message pass channel, the thicker an arrow line
is, the higher message passing rate of this channel. There are 2 sources, 5 intermediate
processors and 5 sinks in this DAG. All processors have an initial parallelism of 1. To
observe how Gearpump change the parallelism of processors, here we want to increase
the parallelism of source 0 by 2, as shown in Figure 4.3 above. The system will start a
new executor(now there are 3 executors in contrast to 2 previously, Figure 4.3 below),
and launch a new processor(id 12) with the modified parallelism of 3. These 3 new tasks
are new instances of source 0.

Be careful that a new executor(corresponds to a JVM process) is started to launch the
changed processor no matter how small the change is. This lets other tasks unaffected
and continue to work. The benefit is obvious: modifying one processor does not disturb
others work. Figure 4.4 shows throughput of the example application. We did the
replacement operation at 10:45:55. As we replaced source 0, an observable small decrease
of source send throughput happened at 10:45:55. But the other source processor, source 1
has not been influenced, so the decrease is limited, not sharply going down to 0.

However, there are two big problems with this solution of DAG operation. Firstly each
time only one processor of the DAG is allowed to be modified. That means if we want to

21

22 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

Figure 4.4: The source send throughput and sink receive throughput of the example
application

modify parallelisms of multiple processors, we have to do it sequentially by changing one
processor at each time. Secondly, starting a new executor which involves starting a new
process is resource-consuming, especially when we want to do multiple changes required
by the optimization. Imagine that we have to change parallelisms of 5 processors, we
should repeat the replacement process 5 times and it ends up with 5 more running JVM
processes. To summarize this section as well as answering the first sub-question of RQ1,
we concluded that this Dynamic DAG feature provided by Gearpump is not sufficient
for us to conduct runtime DAG operations required by optimization due to following
drawbacks:

1. Resource consuming: each time we replace a processor, it starts a new executor.

2. Only support replacing a single processor each time, not suitable for doing exper-
iments involving multiple changes.

3. A few bugs: during the our exploration we found a few bugs, two of them are
relevant to DAG operations. We solved them with great efforts. In order to
keep the explanation of this article smooth, we will briefly mention these bugs in
Appendix.

4.2 How can we do runtime DAG operations better?

Besides the ‘online’ requirement, the new solution should also overcome the drawbacks
of the existing Dynamic DAG functionality. We propose and implement an approach
named Restart, which is the answer to the second sub-question of RQ1. Firstly, the
proposed substitution of original Dynamic DAG should be more resource-efficient than

22

4.2. HOW CAN WE DO RUNTIME DAG OPERATIONS BETTER? 23

Figure 4.5: The mechanism of Restart approach

existing one. Hence restarting a new executor for each modified processor is not prefer-
able. Secondly, the proposed solution should be able to do an operation which involves
modification of multiple processors. Generally speaking, Restart is stopping the appli-
cation and recovering it with the new DAG and old application states. By stopping the
old application and deploying a new one, we reclaim resources and allocate again which
avoids launching new executors. Furthermore, we enable the recovery of arbitrarily-
modified DAG when initializing the application by storing it to Master. Next we are
going to interpret Restart approach, and evaluate its performance with empirical studies.

4.2.1 Restart approach

Figure 4.5 illuminates the mechanism of Restart approach. In the hierarchical super-
vision tree, JobOptimizer is created by AppMaster, just as DAGManager and other
application-specific functional actors. The dash-blue arrows represent the actor parent-
hood relationship of these actors. In this way, the lifecycle of JobOptimizer is managed
by AppMaster. In the implementation of actor system, if an actor wants to send a mes-
sage to another actor, it should hold an actor reference instance of the targeted actor
(named ActorRef). ActorRef is similar to an address pointer which indicates the loca-
tion of an object. AppMaster keeps an overview of the running application and contains
all ActorRef instances of actors relevant to this application. As a child of AppMaster, it
is convenient for JobOptimizer to communicate with other actors such as Master Proxy.

The DAG operation enabled by Restart approach involves 4 steps. In the first step,
JobOptimizer saves application states to Master. As all actors related to the application
will be stopped and restart (see step 2), the intermediate states will lose during this
process. So important states must be stored to Master. Master provides an in-memory
storage service, by which applications can store key-value pairs. The key has two levels:

23

24 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

application level and attribute level. When the application submits a key-value pair to
Master, Master determines the id of this application as the first level key, then stores the
key-value pair into a map structure. Therefore the stored data from different applications
does not affect each other, and is safe because of the master high availability.

Specifically, JopOptimizer saves following states of the running application as key-
value pairs to Master cluster:

1. the new DAG: in-memory representation of the modified DAG. The new version of
DAG is constructed by JobOptimizer according to the parallelism which is decided
by an optimization algorithm.

2. transition start time: mark the timestamp of the beginning of transition. The
transition process is from the time when the new version of DAG is constructed,
to all tasks of this new DAG are started.

3. current global minimum clock (GMC): after the new DAG starts to run, the appli-
cation continues to process messages from GMC. Only messages with timestamp
larger than GMC will be processed.

4. optimization states: intermediate data of the optimization process, is discussed in
Chapter 5.

In step 2, the subtree with AppMaster as root is stopped. JobOptimzier sends a
message to AppManager who is the father of AppMaster. AppManager then stops the old
AppMaster and launch a new one. Note that the stopping process of the old AppMaster
is very efficient and require no extra human intervention thanks to the hierarchical
supervision structure of Akka Actor model. All children actors of AppMaster will be
recursively stopped after AppMaster is stopped. Right after that AppManager requests
resources from Master, and immediately start a new AppMaster (step 3). During the
start process of AppMaster, it fetches GMC from Master and create functional children
including JobOptimizer and DAGManager. Then JobOptimizer fetches transition start
time and optimization states mentioned above. DAGManager initializes itself with the
new DAG got from Master (step 4). Resources are allocated by Master according to the
new version of DAG. Now all the application actors run on the new DAG. The transition
phase ends when all tasks are started.

We can see that the scope of actors to be restarted is small (the red dash square in
Figure 4.5), involving AppMaster and its children, no influence on system-level actors or
other running applications. Furthermore, it is apparently an ‘online’ approach because
we construct and save the DAG in-memory representation, without shutting down the
system and modifying any code.

We have to point out that this approach is specifically designed for DAG application
with stateless processors. Since it stops all processors completely, all intermediate states
of processors lose. We will deal with how to save and recover states of each processor in
future work.

24

4.2. HOW CAN WE DO RUNTIME DAG OPERATIONS BETTER? 25

Figure 4.6: The mechanism of Dynamic DAG Update approach

4.2.2 Dynamic Update approach

As a comparison of our Restart approach, Dynamic Update is implemented as an en-
hanced version of the existing feature ‘Dynamic DAG’. It starts a new executor, but
launching all changed processors on the new executor instead of a single one.

The mechanism of Dynamic DAG Update is explained in Figure 4.6. The grey area
which consists of Master, AppManager and their children will not be involved. JobOp-
timizer constructs the new version of DAG, sending it to DagManager. Then similarly
to the existing feature, DagManager begins the dynamic process by starting a new ex-
ecutor and launching tasks. The difference from the original feature is that now we can
make multiple changes and a new DAG with all these changes is deployed. With this
approach, there is no need to stop the AppMaster or any other unaffected working tasks.

We give a brief comparison of pros and cons between these two ideas in Table 4.1.
But to know which one is more preferable during runtime, we have to implement them
and do experiments.

Table 4.1: A comparison between concepts of Restart and Dynamic Update approach

pros cons

Restart straightforward and simple, re-
source efficient

processors without changes will
also be stopped and recovered

Dynamic Update processors without changes can
still work, donot restart the
AppMaster hierarchy

resource-consuming(start extra
executors), complex details
during implementation

25

26 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

Figure 4.7: Topology of the randomly-generated DAG for experiment

4.2.3 Empirical comparison of two approaches

To evaluate our Restart approach against Dynamic Update approach, we conducted a
set of experiments with two different DAG topologies. The first one (Topology 1) is the
same application as shown in Figure 4.3 which is an example application provided by
Gearpump. The initial degrees of parallelization of all processors are 1.

The second topology (Topology 2) is randomly-generated with 15 processors as shown
in Figure 4.7. The topology is produced from a random DAG creation package named
‘random-dag’ available in npm 1. It is easy to install and use. For DAG creation with
random-dag, we can specify 5 parameters: max per rank (how ‘fat’ the DAG should
be), min per rank, max ranks (how ’tall’ the DAG should be), min ranks, probability
(chance of having an edge). We generate the experiment topology with max per rank
of 8, min per rank of 2, max ranks of 4, min ranks of 3 and probability of 0.1. All pro-
cessors except sources and sinks output exactly one message to downstream processors
after receiving one message from upstream processors. Note that both topologies are
composed of stateless processors.

The goal is to compare the transition time and sink receive-throughput of Restart and
Dynamic Update approach. The transition time is defined as the time duration from
the start of the DAG operation, to the time that every task including the changed ones
begin to work normally. Sink receive-throughput is the summation of throughput of all
sink processors. We do experiments both at local environment and in the cluster. Local
machine is a MacOS system with a CPU of 2.7 GHz Intel Core i5, and memory of 8G
1867 MHz. The cluster consists of two Amazon EC2 instances. The Master node is a
Linux system with 2 virtual CPUs and 8G memory and the worker node is an Ubuntu
system with also 2 virtual CPUs and 16G memory.

1random-dag package, https://www.npmjs.com/package/random-dag

26

4.2. HOW CAN WE DO RUNTIME DAG OPERATIONS BETTER? 27

Figure 4.8: The transition time of Restart and Dynamic Update for Topology 1

Transition time

We modified the source code to track the transition time of each approach and run the
application both at local environment and in the cluster. Each approach runs in both
environments 3 times and the average transition time is computed.

The testing DAG operation for Topology 1 is increasing the parallelism of source 0
by 2 and Node 0 by 1. The transition time of this operation is measured in four cases:
Restart approach running at local, Restart running in the cluster, Dynamic Update
running at local, Dynamic Update running in the cluster. The result is shown in Figure
4.8. As it indicates, running at local basically takes more time than in the cluster to
finish the transition due to the limitation of resources. The Dynamic Update approach
is more sensitive to resources, as running at local has the longest transition time(more
than 7.5 seconds) while running in the cluster has the shortest one(less than 3 seconds) in
these four cases. Even though the Restart approach takes a bit more time than Dynamic
Update when running in the cluster, it takes much less time(5.1 seconds) when running
at local.

In addition to increasing the parallelism, the optimization process also requires de-
creasing it. Although the Restart approach has capabilities of adding or removing pro-
cessors, we are not going to implement experiments on these two operations. One reason
is that as an extended solution of original feature, Dynamic Update cannot do processor
adding or removal. So there is no baseline for these two cases. The other reason is the
optimization process only involves increasing and decreasing the degree of parallelization,
no need for adding or removing processors. Taking all of these into consideration, our
experiments on Topology 2 consider two approaches (Restart and Dynamic), two kinds
of DAG operations (increase parallelism, decrease parallelism), and two deployment en-
vironments (local and cluster). The increase operation involves rising the parallelism
of Node 4 by 2 and Node 12 by 1 simultaneously. The decrease operation is reducing

27

28 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

Figure 4.9: The transition time of Restart and Dynamic Update for Topology 2

the parallelism of Node 4 by 2 and Node 12 by 1 simultaneously. The initial degrees of
parallelization of all processors and the targeted processors for operation are randomly
selected.

The average transition time of experiments on Topology 2 is shown in Figure 4.9. At
first we can see that the transition time of increasing and decreasing parallelism are
almost the same for Restart and Dynamic respectively. This comes without surprise as
these two operations in both approaches are indeed homogeneous. In Restart approach,
the newly started DAGManager fetches new DAG from in-memory storage on Master
and launches it. New DAGManager remember no previous states and does not care
what operations have been done on the previous version of DAG. All it needs to know
is how the new DAG looks like. In Dynamic case, JobOptimizer constructs a new DAG
and send the changed processors to DAGManager. All DAGManager need to know is
which processors have been changed and what is the parallelism now. There is no need
for it to know what operations have been done either.

Same as Topology 1, in Topology 2 case running at local generally takes more time
than in the cluster due to the limitation of resources. Although when running in the
cluster, the transition time of Dynamic approach is close to Restart, Dynamic Update

28

4.2. HOW CAN WE DO RUNTIME DAG OPERATIONS BETTER? 29

Figure 4.10: The transition time over 4 consecutive DAG operations for Topology 1

running at local has much longer transition process than Restart, with around 7s for
increasing parallelism and 7.1s for decreasing parallelism.

It involves sequential changes to DAG as the optimization process goes. If the Dynamic
Update approach is sensitive to resources, we could suppose that the transition time will
arise over the number of DAG operations. The reason for that is every DAG operation
leads to a new executor being started. As the number of DAG operations goes up,
so does the number of running executors. Hence there will be less and less available
resources.

To examine our assumption mentioned above, we conducted another set of experiments
on both Topology 1 and Topology 2, in which we do 4 consecutive DAG operations in
a row for each approach. Of course the sequence of operations in each running case is
kept the same. In the experiment of Topology 1, in each DAG operation we increase the
parallelism of Node 3 and Node 0 by 1. In the experiment of Topology 2, the operation
each time is increasing the parallelism of Node 1 by 1 while at the same time decreasing
the parallelism of Node 7 by 1. Targeted processors are again, randomly picked.

The results are shown in Figure 4.10 for Topology 1, and 4.11 for Topology 2, re-
spectively. Sharing the same trend, these two figures validate our assumption. In both
topologies, as the number of DAG operations goes up, the transition time of Dynamic
Update running both at local and in the cluster increase. Especially when running at
local, the transition time for Dynamic Update experiences a fast and sharp going-up.
While the time arises much more slowly when the Dynamic Update approach running
in the cluster. In contrast, the transition times of Restart approach in both local and
cluster cases are very stable as the number of operations goes up. The operations in

29

30 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

Figure 4.11: The transition time over 4 consecutive DAG operations for Topology 2

Topology 2 case generally take more time then their counterparts in Topology 1 case,
since the DAG of Topology 2 is more complex than the on of Topology 1 in terms of size
(15 processors compared to 12).

Sink receive-throughput

Gearpump provides system metrics such as send- and receive- throughput for monitoring
purpose. Each throughput value is the accumulated number of messages during a time
duration divided by this duration. As the time goes forward, the throughput value is
calculated every 5 seconds (the system default interval). We explain in Chapter 5 how
to fetch the metrics.

Experiments in this section are conducted in the cluster. In order to control the
variables of our throughput experiments, we have to gather the throughput metrics in
two approaches within the same time window. Figure 4.12 shows the schematic time
window in which we gather the throughput metrics. We first submit the application,
letting it run for while. Then both transitions in two approaches begin simultaneously.
The beginning of the transition marks the start of the time window and it ends after a
self-defined time duration.

In order to observe how DAG operations of both approaches affect throughput in long
term, we conduct one DAG operation on Topology 1 for each approach, with observation
time window as 60 seconds. The operation is increasing the parallelism of Node 3 and
Node 0 by 1. Furthermore, we also observe the influence of 3 consecutive DAG operations
on the sink throughput. This is conducted with Topology 2. Also, the DAG operations

30

4.2. HOW CAN WE DO RUNTIME DAG OPERATIONS BETTER? 31

Figure 4.12: The calculated time window of sink receive-throughput

Figure 4.13: The Sink receive-throughput after transition starts in Topology 1

31

32 CHAPTER 4. RUNTIME DAG OPERATION IN APACHE GEARPUMP

Figure 4.14: The Sink receive-throughput during 3 consecutive operations in Topology 2

are kept the same, which is increasing the parallelism of Node 1 by 1 while at the same
time decreasing the parallelism of Node 7 by 1. The interval between 3 operations are
15 seconds.

The result of Topology 1 is visualized in Figure 4.13. As we can see, the transition
time of Restart approach is about 4 seconds, which corresponds to the 0-throughput
section of the red-dot line. However, after the application being recovered, the through-
put increases dramatically in next 5 seconds and turns into slow arising after reaching
around 23000 Msg per second. In the case of Dynamic Update approach (represented by
the blue-diamond line), the throughput experiences a small decline due to the shutting-
down of old source processor, and the turning point appears after around 10 seconds,
the throughput eventually starts to arise. Note that after the transition process, the
throughput in the Restart case always outperforms the throughput in the Dynamic Up-
date case. The reason is that in the Restart case, all the tasks of recovered application
will be launched in one executor just as before, so the communication between tasks is
within the executor process which is efficient. In contrast, the application of Dynamic
Update version launched new tasks of source 0 on the new executor. So the communi-
cation between old tasks and new ones have to cross executors.

Figure 4.14 presents the sink throughput of 3 consecutive operations in Topology
2. We can see that when each DAG operation begins (corresponds to approximately
0, 15000 and 30000 in axis X), the sink throughput of Restart approach (red curve)
appears a significant drop to 0, while the throughput of Dynamic approach (blue curve)
only declines slowly and slightly. After the transition process finished, the throughput

32

4.2. HOW CAN WE DO RUNTIME DAG OPERATIONS BETTER? 33

of Restart rebounds quickly, while the one of Dynamic begins to increase slowly. This
shares the same trend as in Figure 4.13.

We can also get some information of transition time of these two approaches. The
transition time of Restart, which corresponds to time duration of 0 throughput of the
red curve, is comparatively stable. Note that the transition time is defined as the time
duration from when transition starts to the time that every processor works normally.
Hence we cannot identify the time, from when the blue curve starts to drop to when it
starts to arise, as the transition time. For example, in the topology shown in Figure 4.7,
if we change the parallelism of Node 5, the throughput curve starts to drop because the
old Node 5 is stopped immediately as the transition starts. However, Source 0 now gets
more capability to send messages to Node 0 before a new Node 5 is launched. So the
curve may start to arise as there would be more messages sent to Node 0 hence more
received by Sink 0. In one word, the arise of throughput curve does not necessarily mean
the transition process ends and new processors begin to work. Despite this mismatching,
we can still observe from the blue curve, that during the second and third transition, it
take longer for the Dynamic application to turn its throughput from dropping to rising.
This phenomenon indicates the transition time increases as the number of DAG opera-
tions goes up.

Taking all these results into account, we find that the Restart approach is superior to
Dynamic Update. Firstly, the transition time of Restart is shorter when resource is lim-
ited(running at local), and stable when doing multiple DAG operations. The hierarchical
supervision tree enables the efficient shutting-down and starting of AppMaster and its
children, which contributes a lot to the quick recovery. Secondly, the throughput perfor-
mance of Restart version application is better than the Dynamic Update one. In addition
to the fast recovery, the other reason is Dynamic Update is more resource-consuming,
which leads to more cross-executor communication between tasks.

This chapter answered RQ1, as we found that ‘Dynamic DAG’ is not competent
enough for our runtime DAG operations, and we proposed a good solution which acts
as a cornerstone of ‘online’ optimization. Next its time to implement our JobOptimizer
based on the Restart approach.

33

5

Online Optimization of Job
Parallelization

With the support from Restart approach, now we are able to implement an ‘online’
version of optimization. First we are going to shortly explain Bayesian Optimization
algorithm and the implementation we select. Then we will describe the implementation
details of our JobOptimizer, which will give the answer to our RQ2.

5.1 Introduction to Bayesian Optimization

An optimization problem is to find an input x which maximizes an objective function
f(x). Usually many techniques are based on a few assumptions of the objective function.
f(x) are assumed to have a known mathematical representation and be convex. However,
many real cases do not conform to these strong assumptions. Derivatives and convexity
are often unknown. Bayesian Optimization (BO) is a powerful algorithm for finding
the extrema of objective functions that do not have a closed-form expression, but one
can obtain observations of this function at sampled values. It is particularly useful
when derivatives are not known or the function is not convex (Brochu et al., 2010).
BO typically works by assuming the unknown function was sampled from a Gaussian
Process, and maintains a posterior distribution for this function as observations are
made.

5.1.1 Gaussian Process

Just like a Gaussian distribution is a distribution over a random variable, specified by
its mean and variance, a Gaussian Process is a distribution over functions, specified by
its mean function and covariance function. It can be represented as follow:

f(x) ∼ GP (m(x), k(x,x’)) (5.1)

m(x) is the mean function and k(x, x′) is the covariance function which is also known as
kernel. For easier understanding purpose, we can think of GP as a function. Common
functions return a value f for an input x. Instead of giving a certain value of f , GP
returns a mean and a variance of a normal distribution over possible values of f given an

36 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

x. In practice we often assume the prior mean m(x) as a constant 0. A popular choice
of covariance function is the squared exponential function shown in equation 5.2

k(xi, xj) = exp(−1

2
‖xi − xj‖2) (5.2)

Note that this kernel function approaches 1 as xi and xj get close to each other and
0 as they go further apart. The closer two inputs get, the higher kernel function value
is. To interpret what GP can be used for, let’s assume we try to describe an unknown
function f(x) and we have already evaluated its values at x1:t as f1:t, in which t is an
integer represents how many xs we have been evaluated. 1 : t is 1 to t. By fitting
x1:t and f1:t to a GP with the prior mean 0 and squared exponential kernel, we get a
multi-variant normal distribution N(0,K) in which K is computed as shown in equation
5.3. Obviously the diagonal values of K matrix is 1 (when in the noise-free environment)
and K is symmetric.

K =

k(x1, x1) . . . k(x1, xt)
...

. . .
...

k(xt, x1) . . . k(xt, xt)

 (5.3)

Next with the help of this newly fitted GP , we can predict the function value ft+1

at any given input xt+1. By the properties of GP f1:t and ft+1 are joint Gaussian dis-
tribution as described in equation 5.4. Using the Sherman-Morrison-Woodbury formula
(Sherman and Morrison, 1950), one can get the expression of posterior distribution of
ft+1 as shown in equation 5.5.[

f1:t
ft+1

]
∼ N(0,

[
K k
kT k(xt+1, xt+1)

]
) (5.4)

where

k =
[
k(xt+1, x1) k(xt+1, x2) . . . k(xt+1, xt)

]
P (ft+1|D1:t, xt+1) = N(µt(xt+1), σ

2
t (xt+1)) (5.5)

where

µt(xt+1) = kTK−1f1:t

σ2t (xt+1) = k(xt+1, xt+1)− kTK−1k

5.1.2 Acquisition function and Bayesian Optimization

Bayesian Optimization is an iterative process of computing ft+1 and update GP given
an unknown objective function f(x). Each iteration determines next input x. This op-
timization process is guided by an acquisition function, which is typically defined such
that high acquisition value corresponds to potentially high values of the objective func-
tion. To achieve potentially high objective value, maximizing the acquisition function
should suggest the x either leads to a high predicted value of f(x), or uncertainty is

36

5.1. INTRODUCTION TO BAYESIAN OPTIMIZATION 37

great at x. In other words, the acquisition function is designed to do a trade-off between
exploitation and exploration.

One example of the acquisition function is Probability of Improvement (PI) proposed
by Kushner (1964). As its name indicates, PI is the probability of improvement over
the current largest objective value f(x+), where x+ = argmaxxi∈x1:tf(xi). Hence the
expression of PI is defined as in equation 5.7, where ϕ(•) is normal cumulative distri-
bution function. However, there is a drawback of this equation, which is that it is pure
exploitation. Points that have a high probability of being greater than f(x+) will be
selected, while points which potentially give larger gains but with more uncertainty will
not. To mitigate that a small modification is made upon the equation 5.7 by adding a
trade-off parameter ξ. The PI in practice is specified as equation 5.8. This ξ encourages
the algorithm to explore, and it is decided by user. Kushner (1964) suggested a schedule
for ξ, which initialize ξ to be very high in the beginning of optimization, and reduce it
toward zero as the optimization process goes.

PI = P (f(x) ≥ f(x+)) (5.6)

= ϕ(
µ(x)− f(x+)

σ(x)
)

PI = P (f(x) ≥ f(x+) + ξ) (5.7)

= ϕ(
µ(x)− f(x+)− ξ

σ(x)
)

Another commonly used acquisition function is Expected Improvement (EI) (Mockus
et al., 1978). Suppose x∗ is the value where the maximum of the objective function
locates. Then f(x∗) is the maximum value. At the iteration of t+1, we want to find the
xt+1, such that the expectation of the distance from f(xt+1) to f(x∗) is minimized. This
xt+1 is shown in equation ??. However, we do not know the true maximum objective
value and where it locates. To overcome this problem, equation 5.9 is proposed, which
tries to find the x that maximize the expected improvement compared to the current
largest value f(x+). We can obtain a analytical expression of Expected Improvement
based on Gaussian Process as in equation 5.10, from which x is able to be computed.

xt+1 = arg min
x

E(‖ft+1 − f(x∗)‖|Dt) (5.8)

= arg min
x

∫
‖ft+1 − f(x∗)‖p(ft+1|Dn)dft+1

x = arg max
x

E(max{0, ft+1(x)− f(x+)|Dt) (5.9)

37

38 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

EI(x) =

{
(µ(x)− µ+ − ξ)Φ(Z) + σ(x)φ(Z) σ(x) > 0

0 σ(x) = 0
(5.10)

Z =
µ(x)− µ+ − ξ

σ(x)

There are a few other acquisition functions such as GP-UCB (Srinivas et al., 2010)
and Thompson Sampling (Thompson, 1933). These acquisition functions share the same
goal which is seeking a trade-off between exploitation and exploration to drive the op-
timization. The pseudocode of Bayesian Optimization is shown in Algorithm 1. Inside
the loop first a xt is computed which maximize or minimize the acquisition function u.
Then the objective value is evaluated. This observed value is the sum of f(xt) and a
noise εt. In the last step the knowledge base D1:t is added with xt and observed value
ft, and GP is updated accordingly. Note that there is no end of this for loop which
requires us to consider the ending rules in practice. In our implementation convergence
criteria is defined and discussed in Section 5.2.

Algorithm 1 Bayesian Optimization

1: for t = 1,2,... do
2: determine xt by optimization the acquisition function u over GP:
3: xt = argmaxxu(x,D1:t−1)
4: Evaluate the objective function: ft = f(xt) + εt
5: Augment data D1:t = {D1:t−1, (xt, ft)} and update GP
6: end

5.2 JobOptimizer enabled by Run-Time DAG Operation

In this section, we describe the design and implementation of our JobOptimizer. Con-
sidering integrating algorithm into our module, we will first talk about the selection of
algorithm implementation. Based on that we introduce the architecture and workflow of
JobOptimizer. Lastly more details such as objective value computation and convergence
criteria will be discussed.

5.2.1 The selection of algorithm implementation

There are two approaches of integrating algorithm into JobOptimizer. One is the tight-
embedded approach, which means embedding algorithm libraries into the Gearpump
source code. With this approach we are required to find and download the algorithm
libraries (and all dependencies), then include these libraries to Gearpump source code.
The algorithm can be imported as regular project libraries. However, this would in-
evitably increase the code complexity of Gearpump. Furthermore, Gearpump is imple-

38

5.2. JOBOPTIMIZER ENABLED BY RUN-TIME DAG OPERATION 39

mented in Scala and Java. Since most of the algorithm implementations we found are in
Python, there is compatibility problem if we want to use Python libraries in Scala code.

The other approach is the loose-coupled approach, which is setting algorithm im-
plementation as an external service. This approach allows Gearpump system and the
optimization service work independently. Instead of considering importing algorithm li-
braries into Gearpump source code, we take care of the communication between Gearpump
and optimization service. In addition to avoiding compatibility problem, this solution
brings flexibility in such a way that: any change to Gearpump system or optimization
service does not affect the other.

Table 5.1: A comparison between tight-embedded and loose-coupled approach

pros cons

Tight-embedded Enable importing algorithm
anywhere conveniently in the
project.

Compatibility issue: most
implementations are in Python,
Code complexity: complex
dependency tree has to be
included, Code redundancy:
many other functions of the
library are never used.

Loose-coupled No need to increase code
complexity, Independence:
Gearpump and service can
work independently, Flexibility:
any change of Gearpump or
service not affect the other.

Need to consider cooperation
and communication between
Gearpump and service.

The pros and cons of each solution are listed in Table 5.1. Parallelization optimization
is a good-to-have feature but not a indispensable functionality. For example, if we run
an application with very simple topology, performing an optimization might not be
necessary. Besides, in some cases users do not want to perform optimization as they
already know the best parallelization according to previous experience. So it is not a
good choice to embed the algorithm implementation into the Gearpump source code, not
to mention there may exist a complex dependency tree. To keep the source code as clean
as possible, we decide to introduce the algorithm implementation as an external service,
which cooperate with our JobOptimizer module to conduct the optimization process.

5.2.2 Advisor: REST service for black-box optimization

After investigation we decided to use a software named Advisor 1. Advisor is a sim-
plified and open source version of Google Vizier, which is a Google internal service for
performing black-box optimization. Google Vizier is used to optimize many of our ma-
chine learning models and other systems, and also provides core capabilities to Google’s

1Advisor, https://github.com/tobegit3hub/advisor

39

40 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

Cloud Machine Learning HyperTune subsystem (Golovin et al., 2017). Following advan-
tages motivated us to select Advisor as our Bayesian Optimization implementation:

• Easy to use API and SDK: Advisor provides simple REST APIs for us to interact
with the service.

• State-of-art algorithms: algorithms are well implemented.

• Easy to check optimization status: Advisor provides a Web UI to expose optimiza-
tion information to users.

• Simple process thanks to abstractions: Advisor simplifies the optimization process
by defining and using two main abstractions: Trial and Study. We introduce them
next.

A Trial is a list of parameter values x which leads to a single evaluation of f(x). A trial
has two status: ”Completed” which means x has been evaluated and the objective value
f(x) has been assigned to it, and ”Pending” which means it has not been evaluated yet. A
Study represents a single optimization run over a feasible space. Each Study contains
a configuration describing the feasible space of x, as well as a set of Trials (Golovin
et al., 2017). The work flow of Advisor (as well as Vizier) is described in Algorithm
2. client represents a user program which starts an optimization process. At first
client defines and submit a study task with configurations to Advisor. At the beginning
of optimization, client load the study from Advisor. Within the iteration, client ask
Advisor for a suggestion which is a trial containing suggested parameters. Then client
evaluate this trial by running the system being tuned with suggested parameters. Finally
the client reports the gathered results to Advisor, who will then update its model with
newly-received results.

Algorithm 2 The work flow of Advisor

1: client.LoadStudy(study config)
2: While (not client.StudyIsDone()):
3: # get a Trial for evaluation
4: trial = client.GetSuggestion()
5: # Evaluate the objective function at the trial parameters
6: metrics = RunTrial(trial)
7: # report back the results
8: client.CompleteTrial(trial,metrics)

In order to test if the Bayesian Optimization algorithm works correctly as well as
exploring the REST APIs provides by Advisor, we conducted a simple experiment. We
tries to find the maximum of a known objective function shown in Equation 5.11. The
plot of this function is shown in Figure 5.1. We can compute that the maximum of this
objective function occurs at x equals 2, which can also be observed in the figure.

f(x) = e−(x−2)
2

+ e−
(x−6)2

10 + 1
x2+1

(5.11)

40

5.2. JOBOPTIMIZER ENABLED BY RUN-TIME DAG OPERATION 41

Figure 5.1: The plot of test objective function

Next we set up and start Advisor service. According to the document, we can create a
study by posting HTTP request with form data. We use a tool named Advanced REST
Client 2 to send HTTP request to Advisor server and check the response. We can specify
attributes of the posted Form data: ”algorithm” which specify the algorithm we want
to use, ”name” of the study, ”study configuration” which is the configuration of study.
For this specific test example, the study configuration in JSON format is shown in ??.
The meaning of each attribute is explained in Table 5.2.

Listing 5.1: The study configuration of test example

{
” goa l ” : ”MAXIMIZE” ,
” randomIn i tTr ia l s ” : 3 ,
” maxTrials ” : 50 ,
”params ” : [
{

”parameterName ” : ”x ” ,
” type ” : ”DOUBLE” ,
”minValue ” : −2,
”maxValue ” : 10 ,
” sca l ingType ” : ”LINEAR”

}
]

}
\ l a b e l { l i s t : t e s t c o n f i g }

2Advanced REST Client, https://install.advancedrestclient.com/install

41

42 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

Table 5.2: Attributes of study configuration and corresponding explanation

Attributes Comments

goal goal of the optimization, ”MAXIMIZE” or ”MINIMIZE”

randomInitTrials how many random tries before suggesting based on the selected
algorithm

maxTrials the maximum number of iteration

parameterName name of the parameters

type type of the parameters, can be ”DOUBLE”, ”INTEGER”, ”CAT-
EGORICAL”, ” DISCRETE”

minValue minimum value of the parameter to try, lower boundary of the
feasible space

maxValue maximum value of the parameter to try, upper boundary of the
feasible space

scalingType scaling type suggested by user, indicates how the objective value
changes as the parameter changes, can be ”LINEAR” or ”LOG”

After posting the request of creating study, we interact with the Advisor service di-
rectly by sending HTTP request and receiving HTTP response. First we send a request
asking a trial suggestion of x from Advisor. Then an objective value at x is computed by
our Python program which implements the objective function shown in Equation 5.11.
Next we send a request with computed objective value to update the trial. These steps
are repeated until convergence. In this test case, convergence means Advisor always
suggests x which are close enough to the targeted optimal value 2.

Advisor provides a Web UI for us to monitor the optimization process. The screenshot
of trial list of this test optimization problem is shown in Figure 5.2. This table shows
the attributes of trials: study name, trial name (which algorithm it uses), parameter
values, objective values and status. The first 3 steps are random trials, gathering initial
information about the objective function. We can observe the algorithm converges after
13 iterations, when Advisor always suggests x which are very close to optimal value 2
(within the red square in Figure 5.2). This phenomenon reminds us that: the algorithm
does not know how and when to converge and stop, we have to define the convergence
criteria by ourselves. The convergence criteria of our JobOptimizer is discussed in next
section. From this test example, we also figure out what REST APIs to use in order to
conduct an optimization task. We list the APIs which we have to use in our JobOptimizer
in Table 5.3.

5.2.3 The implementation of JobOptimizer

For the purpose of answering RQ2, we are going to discuss the design and implementation
details of JobOptimzier in this subsection. As we have mentioned in Section 4.2.1,
JobOptimizer should be a child of AppMaster in the actor supervision tree. On one
hand, JobOptimizer serves each application as a functionality, just like DAGManager

42

5.2. JOBOPTIMIZER ENABLED BY RUN-TIME DAG OPERATION 43

Figure 5.2: The screenshot of trial list of test example

43

44 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

Table 5.3: REST APIs of Advisor used in JobOptimizer

URL Method Description

/v1/studies POST create a study with
given configuration,
which is in JSON for-
mat

/v1/studies/< name > DELETE delete a study whose
name is < name >

/v1/studies/< name >/suggestions POST ask for a suggestion
from a study

/v1/studies/< name >/trials/< id > PUT update a trial whose
id number is < id >

/v1/studies/< name >/trials/< id > GET get the information
of a trial, including
parameters, status
and objective value

and other functional actors. On the other, JobOptimizer need to communicate and
cooperate with other functional actors to achieve its goal. Hence it should be created
and managed by AppMaster.

JobOptimizer has three main tasks. With Advisor as an external service to give
parameter suggestion, JobOptimizer’s first task is to communicate and coordinate with
Advisor. After getting a suggestion from Advisor, its second task would be conducting
runtime DAG operation according to the suggested parameters. This is supported by
Restart approach we discussed in Chapter 4. The last task is computing the objective
value from gathered metrics, and updating the Trial in Advisor server. We design our
JobOptimizer as shown in Figure 5.3. Advisor is set up as an external web service as
shown on the left. JobOptimizer module consists of three components, which correspond
to three tasks we defined above.

JobOptimizer Client, as the name indicates, is responsible for communicating with
Advisor using REST APIs. As the data format of communication is JSON, it has to
construct JSON string for sending HTTP request, and convert received JSON objects
into Scala objects. It implements functions responsible for creating studies, asking for
suggestions and updating trials, supported by REST APIs in Table 5.3. DAG Opera-
tions component implements the Restart approach for doing runtime DAG operation.
It receives the suggested parameters from Client and transform DAG according to new
parameters. Implementation details are described in Section 4.2.1. Metrics Manipu-
lation component gathers metrics from Gearpump system and compute the objective
value from them. AppMaster has a child actor named MetricsService which contains
and reports metrics. Available metric types are receive-throughput, send-throughput,
receive-latency and process time. To fetch metrics, JobOptimizer need to send a message
named QueryHistoryMetrics to AppMaster. Then AppMaster forwards the message to

44

5.2. JOBOPTIMIZER ENABLED BY RUN-TIME DAG OPERATION 45

Figure 5.3: The architecture of JobOptimizer

MetricsService, who sends metrics as a response directly to JobOptimizer. This fetching
process is explained in Figure 5.4. We do not send QueryHistoryMetrics directly to
MetricsService, because in this way there is no need for JobOptimizer to hold an actor
reference of MetricsService. AppMaster creates and knows every functional actors, so it
is the clear and right way to send request to AppMaster.

Knowing functionalities of each component, we are going to introduce how they work
together. The workflow of JobOptimizer is draw in Figure 5.5. The ”Start” marks the
successful submission of Gearpump application. We provide configuration options for
the user to enable or disable JobOptimizer. If the JobOptimizer is enabled, AppMaster
creates an instance of JobOptimizer during initialization. The prerequisite of normal op-

Figure 5.4: How JobOptimizer fetches metrics

45

46 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

eration of JobOptimizer is that the Advisor service is set-up. If Advisor is not available,
JobOptimizer does nothing, without affecting the execution of application.

We let AppMaster send a ApplicationReady message to JobOptimizer when the ap-
plication is ready to run. The Client component of JobOptimizer then starts doing its
job by creating a study in the Advisor service. For creating the study, JobOptimizer
analyses the submitted DAG and extracts a parameter set. One parameter for each
processor of the DAG, representing the degree of parallelization of this processor. After
the creation of study, JobOptimizer start the optimization iterations. Each iteration
consists of following five steps:

1. Ask for a new Trial: Client ask Advisor for a new Trail, containing suggested
parameter values.

2. Make runtime DAG operations: runtime DAG operation is conducted with Restart
approach, a new DAG is created and made available according to the suggested
parallelization.

3. Fetch Metrics: JobOptimizer fetches metrics in the way shown in Figure 5.4.

4. Compute objective value: Metrics Manipulation component receives metrics and
compute objective value from metrics. As to what kinds of metrics is used and
how to compute the objective value, we will discuss below soon.

5. Update the Trial with objective value: Client send a request to Advisor service
to update the corresponding Trial. Advisor service updates its fitted Gaussian
Process automatically.

At the end of each iteration, JobOptimizer judges whether the optimization task is fin-
ished. The stop criteria is discussed below. If JobOptimizer determine the optimization
should be stopped, either because the optimal parameter set has been found, or the algo-
rithm failed to converge within predefined maximum steps, JobOptimizer stands by and
lets the new DAG run. Otherwise the above-mentioned five steps of iteration is repeated.

Objective value computation

To measure the performance of the application, we use the receive-throughput as the
indicator. Send-throughput, receive-latency and process time also indicates the perfor-
mance, but high receive-throughput at sink processors is a more apparent and straight-
forward goal for the application. Receive-throughput of one single sink processor or a
subset of sink processors is not enough to measure the overall performance of the DAG.

We compute the summation of receive-throughput of all sink processors at a certain
timestamp as the objective value. The metrics provided by Gearpump actually de-
pends on a package named codahale.metrics 3. codahale.metrics is able to compute

3codahale.metrics, https://github.com/codahale/metrics

46

5.2. JOBOPTIMIZER ENABLED BY RUN-TIME DAG OPERATION 47

Figure 5.5: The workflow of JobOptimizer

47

48 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

the moving-average of input values, which is used by Gearpump MetricsService to com-
pute send- and receive throughput. The time window of the moving-average used by
Gearpump is 1 minute. Therefore the receive-throughput we fetch is not instantaneous
but an computed average. In the environment of distributed computing, it is difficult
to get real-time instantaneous metrics of each component of the system. In addition,
the instantaneous values are often with great noise because of random errors or unsta-
ble network conditions. Therefore computing moving average is a appropriate way to
increase accuracy.

Although the moving-average is used, in practice the variance of metrics cannot be
removed. For example, there is difference (sometimes very large) among the receive-
throughput measured in the same condition (same DAG and same time window). Since
in Advisor’s documents we do not find the relevant information about mitigating the
influence of noise, we try to improve the measurement accuracy by extending the running
time of the application. We fetch the metrics after the application running for 1 minute.

Stop criteria

As we introduced in 5.1.2, BO has no internal stop criteria and repeats the for loop
in Algorithm 1 forever. We have to define our own stop criteria according to our own
requirements. Optimization process costs computational resources and we want the
application to run normally as soon as possible.

JobOptimizer is designed to stop its work in two cases. One is the optimal paral-
lelization has been found and the performance of application is maximized. The other is
the maximum number of predefined tries is reached but no optimal parallelization being
found. The first case is called convergence, which is JobOptimizer finds the optimal
parameter set. As shown in the Advisor example described in Subsection 5.2.2, BO does
not know when convergence occurs (when BO always suggest the points close to x equals
2), we have to determine by ourselves. In the second case, we choose the parameter set
which has been evaluated with the highest objective value to run the application.

Theoretically speaking, in our case the convergence occurs when Advisor always sug-
gest the same set of parameters. However, taking variance into consideration, some small
changes to one parameter set usually does not affect the performance greatly. Hence we
cannot assume the optimal parameter set is one specific combination of parameters with-
out tolerance of small changes. A set of combinations of parallelization, who is ‘close’ to
each other are acceptable.

To measure how ‘close’ of two numerical parameter sets, we can convert two parameter
sets into two vectors and compute their Euclidean Distance. However, suggesting two
similar parameter sets in a row might be random tries and is not persuasive enough to
conclude that the optimal parameter set is around these two. Therefore we consider a
sequence of recent consecutive suggestions, computing their relative standard deviation
(RSD). RSD is the division between standard deviation and mean of a sequence. If the
RSD is below some threshold, we think BO is suggesting points close to each other. In
terms of implementation, we use a queue to store recent trials. The length of queue can
be configured.

48

5.3. EVALUATION 49

Figure 5.6: The stop criteria of JobOptimizer

When the suggested points are close to each other, we can not consider it as con-
vergence if the metrics measured at these points vary significantly. Therefore another
relative standard deviation of receive-throughput has to be computed and compared to
a threshold, in order to determine whether the performance varies a lot. The sequence
of objective values can also be obtained from above-mentioned queue. The stop criteria
of JobOptimizer is summarized as in Figure 5.6.

Next we are going to evaluate our JobOptimizer by optimizing some example DAGs.

5.3 Evaluation

To examine whether our JobOptimizer works, how good or bad it performs as well
as answering RQ3, we conduct a series of experiments. The first set of experiments
are targeted at analysing JobOptimizer’s behavior, and investigating its capability of
optimization. To figure out how good or bad JobOptimizer behaves, in the second set of
experiments, we do comparisons between JobOptimizer and other two baseline solutions
(linear ascent and random selection), by observing their performance within a fixed
number of iterations.

We use three groups of random-generated DAGs with different size as our evaluation
applications. These three groups are named as small-, medium- and large-size group
respectively. Again these DAGs are generated from package ‘random-dag’ as the same in
Subsection 4.2.3. Each group consists of three DAGs which share the same parameters
used for their creation in ‘random-dag’. The parameters used for DAG creation are
specified in Table 5.4. The meaning of these parameters have already been introduced
in Subsection 4.2.3. Note that we use source processors to generate streaming data
without data source from outside. Hence we exclude source processors when optimizing
parallelization, as we assume the input streaming is stable.

Note in those applications, we build sources which produce messages by themselves.
These artificial sources are not able to reply messages. In these applications the at-least-

49

50 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

once message delivery is not guaranteed, since missing messages can not be resent from
sources. However, the mechanism of Clock Service gives us a way to manually check if
there exists message missing. The global clock will not advance if there occurs message
missing in the system, which can be seen from log files. We paid attention to the log
files of these applications, and found that the clock service works smoothly, hence we
know that there is no message loss in our examples. And furthermore, as we discussed
in Restart approach, the processors of these applications are stateless.

Table 5.4: Parameters used for DAG creation in random-dag package

DAG group max per
rank

min per
rank

max ranks min ranks probability

Small-size group 4 1 3 2 0.2
Medium-size group 7 2 5 3 0.15

Large-size group 10 3 7 4 0.10

Table 5.5: Configuration of JobOptimizer used in evaluation applications (RSD=relative
standard deviation)

Parameter name Value

number of random trials 3
maximum number of trials 100
threshold for RSD of trials 0.05

threshold for RSD of objective value 0.05
length of queue storing recent trials 5

The configuration of JobOptimizer used in our evaluation applications is shown in Ta-
ble 5.5. All applications run in the same cluster environment as described in Subsection
4.2.3. As optimization is a probabilistic process, we run each application 3 times and
select the best results to report.

5.3.1 Optimization Capability and Behavior Analysis

In Chapter 2 we mentioned that Fischer et al. (2015) run BO with a fixed number
of iterations and select the best performance among those iterations. There are two
drawbacks about this approach: first we do not know if the selected parameter set is
globally optimal, second we always have to run the defined number of iterations, even
though we may already find the optimal value in previous iterations. Our convergence
criteria mitigate these two drawbacks. In theory the black-box function is unknown and
we will never know if a specific value is globally optimal. However, in our case we define
that some combinations of parameters which are close to each other and generate close
performance are the globally optimal values we are looking for. That is reasonable in
a sense that if BO always gives similar suggestions, there is no better possible choice
in our optimization process. When our defined convergence is achieved, JobOptimizer

50

5.3. EVALUATION 51

can certainly stop the optimization process before maximum number of iterations are
reached.

In this first set of experiments, our goal is to analyse JobOptimizer’s behavior, and
test whether JobOptimizer can find the globally optimal value under the constraint
of maximum number of trial. Each iteration of the optimization consists of the DAG
transition stage (about 5 seconds) and the metrics gathering stage (1 minute), which
takes around 1 minutes 5 seconds. As we treat the degree of parallelization of each
processor as one parameter, the parameter space of optimization arises exponentially as
the DAG size increases. In order to make it possible to find the optimal parameter set
in reasonable time and also within the maximum number of trials (100), we limit the
maximum degree of parrallelization to be 5 in this set of experiments. Note that even
with this limitation, the parameter space is still large. For example, the parameter space
for a very small DAG with 4 processors is 54 = 625. So it is still a challenging job to
find an optimal parameter set within 100 iterations.

Table 5.6: Number of iterations needed for convergence in 9 test applications

DAG group DAG Nr. DAG Size Iterations needed Average by group

Small-size
1 7 18

19.02 6 12
3 7 27

Medium-size
4 15 65

74.55 17 >100
6 17 84

Large-size
7 36 >100

/8 40 >100
9 35 >100

We run 9 applications (3 for each group, assigned with number from 1 to 9) and
record the number of iterations they need to converge. This number is the measurement
of convergence speed. The bigger the number is, the slower convergence speed is. The
result is shown in Table 5.6. As we can see, all applications belonging to Small-size
group are able to converge within the defined maximum iterations which is 100, with
average number of iterations of 19.0. Two out of three applications in Medium-size group
are able to converge, with on average 74.5 iterations needed. The numbers of needed
iterations have large variance, indicating the optimization process is highly probabilistic
and depends heavily on specific applications. Furthermore, comparing Small group and
Medium Group, the number of iterations grows quickly as the DAG size increases, since
the dimension of parameter space arises exponentially. No application in the Large-size
group is able to converge within 100 iterations. Indeed Bayesian Optimization in high
dimensional space is identified by the research community as one of the most urgent and
challenging problem to be solved (Wang et al., 2013; Djolonga et al., 2013). To ensure
that a global optimum is found, we require good coverage of the parameter space, but as
the dimension increases, the number of evaluations needed to cover the parameter space

51

52 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

(a) Topologies of DAG Nr.2 (left) and Nr.4 (right)

(b) Topology of DAG Nr.7

Figure 5.7: Topologies of DAG Nr.2(Small), Nr.4(Medium) and Nr.7(Large)

increases exponentially.

We select one application from each group to inspect their behaviors. For Small and
Medium group, we choose Nr.2 and Nr.4 as they converge most quickly within their
respective group. For Large group, we randomly select Nr.7 as a representative. The
DAG topologies of these three application are depicted in Figure 5.7. The small DAG
only has 6 processors, in which 2 are sources. So the degrees of parallelization of other 4
processors (3 on the second layer and 1 sink on the third layer) is optimized. Similarly,
the medium and large DAG have 15 and 36 processors, with 3 and 6 sources respectively.
Hence 12 processors of the medium DAG, and 30 processors of the large DAG, are tuned.

The Web UI screenshot of trials information for tuning the small DAG is given in
Figure 5.8. The algorithm first conducts 3 random tries and converges within only 12
iterations. From the 8th iteration, Advisor always suggest the same combination of
parallelization. As we define the length of queue for storing recent trials as 5 (Table
5.5), JobOptimizer compute the relative standard deviation (RSD) of both 5 recently
suggested parameter sets and 5 recent objective values, respectively. Both computed

52

5.3. EVALUATION 53

Figure 5.8: The screenshot of trial list for small DAG example Nr.2

results are lower than predefined thresholds (0.05 as in Table 5.5). Hence JobOptimizer
determines the convergence occurs and terminates the optimization process. The opti-
mized application then runs with the globally optimal degree of parallelization, which is
{processor2 : 2, processor3 : 3, processor4 : 3, processor5 : 2} in this case.

To interpret how algorithm behaves in medium and large DAG case, we extract trials
information from Advisor Service and depict the evolution of both objective values,
and the RSD of parameter sets over number of iterations. The objective values reflect
the throughput performance of Gearpump applications, and the RSD of parameter sets
indicates how close the suggested points are to each other. These plottings shown in
Figure 5.9 tells us how these two measurements change over time. In both plottings, the
red lines represent the evolution of objective value measured by the left y axis, while the
blue lines represent the change of RSD measured by the right y axis.

The optimization process starts with 3 random trials to get some initial information
about the black-box function, represented by peaks of the RSD (blue) lines at the begin-
ning. As the parameter spaces are large (512 for medium DAG and 530 for large DAG), 3
randomly tried parameter sets are far away from each other with high probability, which
leads to the peaks of RSD lines in both depicts. Then the RSD lines sharply drop down as
the algorithm tries to pay attention to exploitation, which means the algorithm will not

53

54 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

randomly guess any more and tries to guess on the basis of current information instead.
Both RSD lines fluctuate dramatically. The local small peaks reflect the algorithm tries
to explore the points a bit far away from current trials in order to explore. However,
there is a decreasing tendency of the RSD line in the medium DAG example case, which
indicates the algorithm lowers down the scope where the globally optimal value locates.
At 65th iteration the line drops below 0.05 which is our defined threshold. In the large
DAG case, the RSD does not experience a decreasing trend, since the algorithm needs
more iterations to explore and get a better understanding of the parameter space.

The fact that RSD drops under 0.05 is not enough to trigger the detection of conver-
gence. According to our rules shown in Figure 5.6, the RSD of objective values should
also be under the threshold. In the medium DAG example, the objective value line (red)
arises quickly as the number of iterations goes up, indicating the algorithm fits a high
quality Gaussian Process which is close to the real black-box function we are exploring.
The arise slows down after around 30 iterations, and the variance of objective values
also decrease. Finally at 65th iteration, the computed RSD of objective value drops
down under 0.05. In combination with that the RSD of suggested points is also under
the threshold, JobOptimizer determines convergence occurs, and the application runs
on the best parameter set chosen from latest 5 trials. Opposed to the objective value of
medium DAG application which experiences a quick arise, the objective value of large
DAG drops down after 40th iteration. In addition, the variance of objective value line
even becomes larger after 100 iterations. Same as what RSD line tells us, the algorithm
is still in the process of heavy exploration of the parameter space in the large DAG case.

5.3.2 Comparison Experiments

In this second set of experiments, we are going to construct two baselines for the pur-
pose of evaluating how good or bad JobOptimizer behaves. We run a fixed number of
iterations of 100 as specified in Table 5.5. Two metrics are extracted from the trials in-
formation: the highest objective value which indicates the best throughput performance
enabled by the corresponding optimizer, and the number of iterations the optimizer
needs to achieve the highest objective value, which demonstrates how fast the optimizer
can find the best solution.

The first baseline optimizer is named as Linear Ascent Optimizer (LAO) which in-
creases the degree of parallelization of each processor synchronously. At the beginning
the degree of parallelization of all processors will be initialized to 1, which then is in-
creased by 1 in every iteration. Therefore the dimension of parameter space is only 1, as
all processors share the same degree of parallelization. Obviously size of the parameter
space is the number of iterations we run, which is 100. The second baseline optimizer is
called Random Exploration Optimizer (REO), whose strategy is exploring the param-
eter space by determining every trial randomly without any guidance from algorithm.
Different from LAO, REO share the same dimension and size of parameter space with
JobOptimizer.

We are going to use the same set of topologies as in last section, which consists
of Small, Medium and Large-size groups with 3 applications in each group. In order

54

5.3. EVALUATION 55

Figure 5.9: The objective value and RSD of parameters for DAG Nr.4(Medium) and
Nr.7(Large)

55

56 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

to observe convergence within reasonable number of iterations, we limit the maximum
degree of parallelization for each process to be 5 in last section. In addition to this set
of experiments, we conduct another set of experiments with JobOptimizer by extending
the limitation of parallelization to 10. This increases the parameter significantly. The
limitation for REO is also set to 10. Each application run 3 times and the best result is
taken.

In summary, we have four sets of experiments for comparison: JobOptimizer with
5 as the limitation of parallelization, JobOptimizer with 10 as the limitation of paral-
lelization, Linear Ascent Optimizer (LAO) and Random Exploration Optimizer (REO).
These optimizers are all applied to optimize 9 applications described in last section and
run for 100 iterations. The highest objective value and number of iterations needed to
achieve this value averaged by group are depicted as bar charts shown in Figure 5.10.

As we can observe from the upper chart in Figure 5.10, REO behaves the worst
among 4 optimizers, with lower objective value and much larger variance than any other
optimizers, which indicates that the random determination of parameters is not a good
optimization strategy. When applied to small DAG applications, JobOptimizers with
both 5 and 10 as the limitation of parallelization are not able to outperform LAO.
While in the Medium and Large group, both JobOptimizers can find better solutions
than LAO which lead to higher objective values (higher throughput). LAO applies an
‘one-fits-all’ strategy, which sets the same degree of parallelization for every processor of
the DAG. According to the chart, this strategy works well for applications in the Small
group, since LAO gives similar performance to JobOptimizers do. However, when the
topology gets more complex, setting homogeneous degrees of parallelization is no longer
preferred. JobOptimizers which tun the parallelism of each processor individually bring
higher throughput than LAO in both Medium and Large groups. Furthermore, even
though increasing the limitation of parallelization from 5 to 10 enables JobOptimizer
to explore in a much larger parameter space, JobOptimizer 5 perform a bit better than
JobOptimizer 10 in all three groups. This fact demonstrates that, with the constraint
of fixed number of iterations, enlarging the exploration space does not necessarily help
us get better solutions.

The second chart reflects the speed of optimizers to find the best parameter sets. For
simplicity purpose, We simplify the term ‘the number of iterations needed to achieve the
best objective value’ as ‘number of iterations’. We can see that enlarging the exploration
space increases the number of iterations significantly. JobOptimizer 10 and REO have
the same size of parameter space, which is 10 powered by the number of processors to
be tuned. Therefore both of them take much more iterations than JobOptimizer 5 and
LAO to find the best parameter set. REO takes less iterations than JobOptimizer 10
on average, while with much larger variance. LAO is the fastest Optimizer in terms of
determining the best parameter set. With the limitation of computational resources, it
is unlikely that increasing the degree of parallelization of every processor to a large num-
ber (for example 50) generates better results than comparatively small number. This
is proved by the fact that the average number of iterations needed by LAO in all three
groups are under 20, which means the best homogeneous degrees of parallelization are all
below 20. JobOptimizer 5 needs less number of iterations than REO but more than LAO.

56

5.3. EVALUATION 57

Figure 5.10: The comparison of highest objective values and number of iterations needed
among 4 optimizers averaged by group (LAO = Linear Ascent Optimizer,
REO = Random Exploration Optimizer)

57

58 CHAPTER 5. ONLINE OPTIMIZATION OF JOB PARALLELIZATION

In summary, as the answer to RQ3, with our designed convergence criteria JobOpti-
mizer is able to determine the globally optimal parameter set for small and a proportion
of medium-sized DAG applications. For larger DAG applications, convergence is not
guaranteed within the predefined maximum number of trials, because Bayesian Opti-
mization in high-dimensional space is not effective. Despite of that, JobOptimizer is
capable of finding better parameter sets within less number of iterations than Random
Exploration Optimizer (REO). Although Linear Ascent Optimizer (LAO) takes less it-
erations to determine the best parameter set, JobOptimizer can find better solutions in
the case of Medium and Large DAG applications. Furthermore, limiting the maximum
degree of parallelization can help find better solution more efficiently (less iterations) as
it decreasing the exploration space greatly.

58

6

Limitations

We identify a few limitations in our work. Firstly, although Bayesian Optimization does
not require the objective function to be smooth, the assumption of applying BO is that
the targeted black-box function is continuous. If the objective function is not continuous,
BO cannot work properly to deduce the objective value. But continuity may not always
be the case when configuring the parallelism of processors in streaming applications. To
what extent this adversely influenced our experiment results needs to be further studied.

Secondly, Bayesian Optimization is proved to be not efficient in high dimensional
space (Wang et al., 2013; Djolonga et al., 2013). This is because BO requires a good
coverage of the parameter space to ensure that a global optimum is found. However
as the dimension increases, the number of evaluations needed to cover the parameter
space increases exponentially. As we can see from Section 5.3, JobOptimizer is not
able to converge when applying to comparatively large DAG applications. Within the
constraint of time and number of iterations, JobOptimizer cannot explore the parameter
space adequately.

Lastly, our focus is on tuning the parameters of streaming applications at runtime
with the help of Bayesian Optimization. However, BO algorithm itself has hyperpa-
rameters, including the choice of Gaussian Process kernels. We just use the default
squared-exponential kernel. Our experiment performance may vary with different BO
hyperparameter settings. Despite of this, the conclusion we draw about the capability
of BO at runtime remains the same, which is BO is able to find better parameter sets
within less iterations than random exploration, and can find better parameter sets than
Linear Ascent Optimizer in the case of large DAG applications.

7

Future Work

Given the problem of inefficiency of BO working in high dimensional space, our first
interest in future work is investigating BO in high dimension. A few research teams
are trying to improve the performance of BO in high dimension. For example, Wang
et al. (2013) proposed an algorithm named Random Embedding Bayesian Optimization
(REMBO), which tries to lower down the dimension of exploration space with the help
of a random matrix. If BO in high dimension can be made more efficient, the application
of BO to large DAG applications will not be limited. We will inspect currently proposed
solutions and figure out if they can be helpful in our runtime Optimization case.

Secondly, Restart approach stops all old processors completely, the intermediate pro-
cessor states will lose. It works well in the case of applications with stateless processors.
However, many real life applications are with stateful processors. In future work we
intend to find out the way to save and recover processor states. In that way can we
make Restart approach suitable for stateful processors.

Thirdly, we focus on tuning the parallelism of Gearpump application processors in this
work, in future work we would like to generalize this approach to tuning other configu-
ration options, both global system configuration and application-specific configuration.
The modification of other parameters will also be supported by runtime operation ca-
pability. In addition, we will explore the possibility of implementing runtime operation
in other streaming engines so runtime optimization may be supported in these systems
in the future.

Lastly, JobOptimizer will only optimize the parameter when an application is sub-
mitted, under the assumption that the streaming input is static. However, in many use
cases the input of the streaming application changes over time. Hence we would like
to enable dynamic adjustment of parameters during runtime, by monitoring the input
workload and launch the optimization process repeatedly and dynamically.

8

Conclusions

The problem of parameter configuration in the field of distributed (streaming) systems
is a popular research area and has been studied over years. Many solutions have been
proposed by the research and industry community, among which Bayesian Optimization
(BO) is proved to be powerful. While the existing way to conduct the BO process is
‘offline’ and involves shutting down the system as well as many inefficient manual steps,
we design and implement an optimizer for Apache Gearpump which is able to do ‘online’
optimization.

The DAG operation at runtime is the prerequisite for doing ‘online’ optimization. In
Chapter 4, after inspection into ‘Dynamic DAG’ feature of Gearpump, we found it is
not competent enough to support our optimization process, as it is resource-consuming
and only able to modify a single processor each time. Inspired by ‘Dynamic DAG’, we
developed Restart approach which overcomes the drawbacks of ‘Dynamic DAG’ (RQ1 is
therefore answered). The strategy of Restart is stopping the application and recovering
it with the new DAG and old application states. By stopping the old application and
deploying a new one, we reclaim resources and allocate again which avoids launching
new executors. Restart approach is specifically designed for applications with stateless
processors. In the case of stateful processors, we need to figure out how to save and
recover processor states in future work. Furthermore, Restart enables the recovery of
arbitrarily-modified DAG by storing it to Master cluster. The comparison experiment
indicates that Restart is superior to the baseline approach Dynamic Update in terms of
transition time and throughput performance.

In Chapter 5, we describe the design and implementation of our JobOptimizer, which
is the answer to RQ2. In order to avoid introducing complex dependency tree and keep
the source code clean, we decide to adopt a loose-coupling architecture which makes the
implementation of BO as an external service. JobOptimzier consists of three modules:
Client which is responsible for communicating with external BO service, DAG Operations
which implements the Restart approach for doing runtime DAG operation, and Metrics
Manipulation which gathers metrics from Gearpump system and compute the objective
value. Stop criteria is also designed for JobOptimizer to determine when to stop the
optimization process.

To evaluate JobOptimizer as well as answering RQ3, we conduct a series of experi-
ments in Section 5.3. We try to analyse the optimization capability and the behavior
of JobOptimizer in the first set of experiments. We found that JobOptimizer is able to

64 CHAPTER 8. CONCLUSIONS

find the global optimum for small and a proportion of medium-sized DAG applications.
Since Bayesian Optimization in high-dimensional space is not effective, convergence is
not guaranteed within a defined number of trials in the case of large DAG applications.
From the comparison experiments, we noticed that JobOptimizer is capable of finding
better parameter sets within less number of iterations than Random Exploration Op-
timizer (REO). In addition, JobOptimizer can also find better solutions than Linear
Ascent Optimizer (LAO) in the case of Medium and Large DAG applications.

Lastly, a few limitations have been mentioned in Chapter 6. For instance the effect
of the continuity assumption of BO needs to be further studied. Our potential future
work is briefly discussed in Chapter 7. How to improve the performance of BO in high
dimensional space is one of our next research problem.

64

References

Akidau, T. (2015). Streaming 101: The world beyond batch.
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101.

Babu, S. (2010). Towards automatic optimization of mapreduce programs. Proceedings
of the 1st ACM symposium on Cloud computing, pages 137–142.

Bergstra, J., Yamins, D., and Cox, D. D. (2013). Making a science of model search:
hyperparameter optimization in hundreds of dimensions for vision architectures. Pro-
ceedings of the 30th International Conference on International Conference on Machine
Learning, 28:115–123.

Brochu, E., Cora, V. M., and de Freitas, N. (2010). A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. Cornell University, arXiv:1012.2599.

Cammert, M., Kramer, J., Seeger, B., and Vaupel, S. (2008). A cost-based approach
to adaptive resource management in data stream systems. IEEE Transactions on
Knowledge and Data Engineering, 20:230–245.

Cox, M. and Ellsworth, D. (1997). Application-controlled demand paging for out-of-
core visualization. VIS ’97 Proceedings of the 8th conference on Visualization’, pages
235–ff.

Daum, M., Lauterwald, F., Baumgaertel, P., Pollner, N., and Meyer-Wegener, K. (2011).
Black-box determination of cost models’ parameters for federated stream-processing
systems. Proceedings of the 15th Symposium on International Database Engineering
& Applications, pages 226–232.

Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clus-
ters. OSDI’04: Sixth Symposium on Operating System Design and Implementation,
pages 137–150.

Djolonga, J., Krause, A., and Cevher, V. (2013). High-dimensional gaussian process ban-
dits. NIPS’13 Proceedings of the 26th International Conference on Neural Information
Processing Systems, pages 1025–1033.

66 References

Fischer, L., Gao, S., and Bernstein, A. (2015). Machines tuning machines: Configur-
ing distributed stream processors with bayesian optimization. IEEE International
Conference on Cluster Computing, pages 22–31.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google file system. SOSP ’03
Proceedings of the nineteenth ACM symposium on Operating systems principles, pages
29–43.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017).
Gaussian process optimization in the bandit setting: No regret and experimental
design. 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1487–1495.

Gordon, M. I., Thies, W., and Amarasinghe, S. (2006). Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and operating
systems, pages 151–162.

Heinze, T., Jerzak, Z., Hackenbroich, G., and Fetzer, C. (2014). Latency-aware elastic
scaling for distributed data stream processing systems. Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, pages 13–22.

Jamshidi, P. and Casale, G. (2016). An uncertainty-aware approach to optimal configura-
tion of stream processing systems. IEEE 24th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 39–48.

Kushner, H. J. (1964). A new method of locating the maximum of an arbitrary multipeak
curve in the presence of noise. Basic Engineering, 86:97–106.

Laney, D. (2001). 3d data management: Controlling data volume, velocity,
and variety. http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-
Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.

Marr, B. (2015). Big Data: Using SMART Big Data, Analytics and Metrics To Make
Better Decisions and Improve Performance. Wiley.

Maxim, B., Heisel, M., Ali, N., Bahsoon, R., and Mistrik, I. (2017). Software Architecture
for Big Data and the Cloud. Morgan Kaufmann.

Mockus, J. (1974). On bayesian methods for seeking the extremum. Optimization
Techniques IFIP Technical Conference Novosibirsk, 27:400–404.

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of bayesian methods
for seeking the extremum. Toward Global Optimization, 2:117–129.

Schneider, S., Andrade, H., Gedik, B., Biem, A., and Wu, K.-L. (2009). Elastic scaling
of data parallel operators in stream processing. IEEE International Symposium on
Parallel & Distributed Processing, pages 1–12.

66

References 67

Schneider, S., Hirzel, M., Gedik, B., and Wu, K.-L. (2012). Auto-parallelizing stateful
distributed streaming applications. 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages 19–23.

Sherman, J. and Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix. The Annals of Mathematical Statistics,
21:124–127.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The hadoop distributed file
system. IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),
pages 1–10.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. Proceedings of the 25th International Conference on
Neural Information Processing Systems, 2:2951–2959.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2010). Gaussian process opti-
mization in the bandit setting: No regret and experimental design. 27th International
Conference on Machine Learning, pages 1015–1022.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25:285–294.

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and Freitas, N. D. (2013). Bayesian
optimization in high dimensions via random embeddings. IJCAI ’13 Proceedings of
the Twenty-Third international joint conference on Artificial Intelligence, pages 1778–
1784.

Wu, D. and Gokhale, A. (2013). A self-tuning system based on application profiling and
performance analysis for optimizing hadoop mapreduce cluster configuration. 20th
Annual International Conference on High Performance Computing, pages 89–98.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:
cluster computing with working sets. 2nd USENIX conference on Hot topics in cloud
computing, pages 10–10.

Zhong, S. (2014). Gearpump: Real-time streaming engine using akka.
http://downloads.typesafe.com/website/presentations/GearPump Final.pdf.

67

A

Appendix

In the Appendix we report some bugs we found in Apache Gearpump during our work.

A.1 The misuse of metrics in Web UI

When we were exploring the Dynamic DAG feature of Gearpump, we run an example
application and in the Web UI we changed the parallelism of two processors, which are
processor0 and processor8. Then we monitored the behavior of the application after
we changed the parallelism. However, we found from the topology dashboard that:
the old processors which are supposed to be replaced and stopped were still working.
The screenshot of this bug is shown in Figure A.1. We changed the parallelism of
processor0, the system start a new executor and launch a processor (processor12) with
the updated parallelism. Then processor0 should stop working and completely replaced
by processor12. However processor0 is still working as shown in Figure A.1.

The reason for this bug is the misuse of metrics in Web UI. We checked the metrics data
in JSON format fetched by Gearpump Web UI as shown in Figure A.2. Gearpump Web
UI use m1 which is one-minute exponentially-weighted moving average of throughput
instead of the instantaneous value to report metrics in the dashboard. Hence the reported
throughput is smooth, even when processor0 has been stopped, its throughput will not
drop down to 0 sharply, as shown in Figure A.3. That is the reason why we observe
processor0 still working after it should be stopped and replaced.

A.2 Clock Service bug

The Clock Service tracks the minimum timestamp of all pending messages in the system
and maintains a global view of minimum clock. Every task updates its local minimum
clock to the Clock Service. The Clock Service is very important to Gearpump system as
it helps detect and recover missing messages and ensure at-least-once message delivery.
The global clock maintained by Clock Service is determined by the minimum clock of
pending messages, outgoing messages and the minimum clock of each task.

During the Dynamic DAG experiment we found the Clock Service stop moving forward
and got stuck at the infinite negative value (-9223372036854775808). In order to find

70 APPENDIX A. APPENDIX

Figure A.1: The screenshot of bug within topology dashboard

Figure A.2: The metrics data in JSON format fetched by Gearpump Web UI

70

A.2. CLOCK SERVICE BUG 71

Figure A.3: The throughput of processor0 and the compute window of moving average

out the problem, we inspected the process of how Clock Service updates its watermark
(global minimum clock), as shown in Figure A.4. Each upstream task actor who wants to
send a message out will send it through an object named Subscription. A Subscription
connects the upstream (publisher) and downstream task actor (subscriber) together.
After Subscription passing a message with a watermark to subscriber, it will send a
message requesting an acknowledgement from subscriber. The subscriber then replies
with an acknowledgement message which confirming receiving the message with a specific
watermark. The Subscription will update its own minimum clock by computing the
minimum clock of all watermarks of acknowledged messages. Consequently the publisher
will update its local minimum clock with the minimum clock of subscription. Finally
the Clock Service will update the global clock with the minimum clock of publisher.

The problem occurs when we conduct a Dynamic DAG operation. When the replaced
processor is stopped, the related subscription is not removed. When the processor which
a subscription referred to is not available, a default minimum clock will be assigned to
this missing processor which is negative infinity. The consequence is the local clock of
this subscription is updated to negative infinity, which will then leads to the global clock
being updated to negative infinity. Finally the Global Clock will stop moving forward.
The key to solve this bug is simple: removing the subscription which involves replaced
processors.

71

72 APPENDIX A. APPENDIX

Figure A.4: The process of updating watermark for Clock Service

72

List of Figures

1.1 Logical and runtime representation of an example DAG in Apache Gearpump 3

3.1 Actors are organized by a hierarchical supervision tree 13

3.2 The simplified hierarchy of Gearpump actors (Zhong, 2014) 14

3.3 The application submission processs in Gearpump (Zhong, 2014) 15

4.1 An example of the web UI provided by Gearpump 20

4.2 The message passing flow of replacing a processor 20

4.3 An example of DAG processor replacement process enabled by Gearpump 21

4.4 The source send throughput and sink receive throughput of the example
application . 22

4.5 The mechanism of Restart approach . 23

4.6 The mechanism of Dynamic DAG Update approach 25

4.7 Topology of the randomly-generated DAG for experiment 26

4.8 The transition time of Restart and Dynamic Update for Topology 1 . . . 27

4.9 The transition time of Restart and Dynamic Update for Topology 2 . . . 28

4.10 The transition time over 4 consecutive DAG operations for Topology 1 . . 29

4.11 The transition time over 4 consecutive DAG operations for Topology 2 . . 30

4.12 The calculated time window of sink receive-throughput 31

4.13 The Sink receive-throughput after transition starts in Topology 1 31

4.14 The Sink receive-throughput during 3 consecutive operations in Topology 2 32

5.1 The plot of test objective function . 41

5.2 The screenshot of trial list of test example 43

5.3 The architecture of JobOptimizer . 45

5.4 How JobOptimizer fetches metrics . 45

5.5 The workflow of JobOptimizer . 47

5.6 The stop criteria of JobOptimizer . 49

5.7 Topologies of DAG Nr.2(Small), Nr.4(Medium) and Nr.7(Large) 52

5.8 The screenshot of trial list for small DAG example Nr.2 53

5.9 The objective value and RSD of parameters for DAG Nr.4(Medium) and
Nr.7(Large) . 55

74 List of Figures

5.10 The comparison of highest objective values and number of iterations
needed among 4 optimizers averaged by group (LAO = Linear Ascent
Optimizer, REO = Random Exploration Optimizer) 57

A.1 The screenshot of bug within topology dashboard 70
A.2 The metrics data in JSON format fetched by Gearpump Web UI 70
A.3 The throughput of processor0 and the compute window of moving average 71
A.4 The process of updating watermark for Clock Service 72

74

List of Tables

4.1 A comparison between concepts of Restart and Dynamic Update approach 25

5.1 A comparison between tight-embedded and loose-coupled approach 39
5.2 Attributes of study configuration and corresponding explanation 42
5.3 REST APIs of Advisor used in JobOptimizer 44
5.4 Parameters used for DAG creation in random-dag package 50
5.5 Configuration of JobOptimizer used in evaluation applications (RSD=relative

standard deviation) . 50
5.6 Number of iterations needed for convergence in 9 test applications 51

