
Bachelor Thesis
August 4, 2019

Suggesting
Meaningful Method

Names
Analysing Source Code using Deep Learning

Techniques

Yves Rutishauser
of Zürich, Schweiz (16-701-658)

supervised by
Prof. Dr. Harald C. Gall

Adelina Ciurumelea

software evolution & architecture lab

Bachelor Thesis

Suggesting
Meaningful Method

Names
Analysing Source Code using Deep Learning

Techniques

Yves Rutishauser

software evolution & architecture lab

Bachelor Thesis

Author: Yves Rutishauser, yves.rutishauser@uzh.ch

Project period: 21.3.2019 - 21.9.2019

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Abstract

Good identifier names provide a high-level summary of source code and are therefore beneficial
during software maintenance. Hence, automatically suggesting descriptive and accurate method
names reduces time spent maintaining code and improves understandability and readability of
software corpora. Since source code has many similar properties to natural language many mod-
els originally developed for Natural Language Processing (NLP) are successfully applied to code.
In this thesis, I propose 2 different approaches and experiment with a total of 6 models that are
specifically adjusted to solve the method naming problem. These models learn to assign tokens to
locations (embeddings) such that tokens with similar meanings have similar embeddings. Based
on the combination of these embeddings, I can suggest accurate method names. I demonstrate
that models are more effective if partially trained on the current project than models that pre-
dict on projects completely unobserved during training. Furthermore, I show the effectiveness of
splitting a method name into sub-tokens. These models can predict neologisms (names that are
not in the vocabulary). In a quantitative analysis, I compare the different models and approaches
with different metrics. I furthermore adapt a metric, which is specifically designed for this task
and has been used in the past. Additionally, I evaluate the models with different input param-
eters and show the effectiveness of using the type, parameters, and the method body to suggest
its name. In a qualitative analysis, I discuss 8 different use cases, demonstrate visualizations and
show the limits of the proposed models.
The code and data are available on Github [12] and Zenondo [56].

Zusammenfassung

Gute Identifier-Namen bieten eine kurze Zusammenfassung des Quellcodes und sind daher bei
der Softwarewartung von Vorteil. Das automatische Vorschlagen von deskriptiven und akku-
raten Methodennamen reduziert den Zeitaufwand der Codepflege und verbessert die Verständlichkeit
und Lesbarkeit von Software. Da der Quellcode viele ähnliche Eigenschaften wie die natürliche
Sprache aufweist, werden viele ursprünglich für Natural Language Processing (NLP) entwickel-
ten Modelle erfolgreich auf Software angewendet. In dieser Arbeit schlage ich 2 verschiedene An-
sätze vor und experimentiere mit insgesamt 6 Modellen, die speziell angepasst sind, um Metho-
dennamen vorzuschlagen. Diese Modelle lernen, sogenannte Tokens an Locations (Embeddings)
so zuzuordnen, dass Tokens mit ähnlicher Bedeutung ähnliche Embeddings haben. Basierend
auf der Kombination dieser Embeddings kann ich akkurate Methodennamen vorschlagen. Ich
zeige, dass Modelle effektiver sind, wenn sie teilweise auf dem aktuellen Projekt trainiert wor-
den sind, als Modelle, die bei Projekten vorhersagen, die während des Trainings unbeobachtet
bleiben. Darüber hinaus zeige ich die Effektivität der Aufteilung eines Methodennamens in so-
genannte Sub-Tokens auf. Diese Modelle können Neologismen vorhersagen (Namen, die nicht
im Vokabular enthalten sind). In einer quantitativen Analyse vergleiche ich die verschiedenen
Modelle und Ansätze mit unterschiedlichen Messgrößen. Außerdem adaptiere ich eine Metrik,
die speziell für diese Aufgabe entwickelt wurde und in der Vergangenheit verwendet wurde.
Zusätzlich bewerte ich die Modelle mit verschiedenen Inputparametern und zeige die Effektiv-
ität der Verwendung des Typs, der Parameter und des Methodeninhalts, um den entsprechenden
Namen vorzuschlagen. In einer qualitativen Analyse liste ich 8 verschiedene Anwendungsfälle
auf, demonstriere Visualisierungen und zeige die Grenzen der vorgeschlagenen Modelle auf.
Der Code und die Daten sind auf Github [12] und Zenondo [56] verfügbar.

Contents

1 Introduction 1

2 Related Work 5
2.1 Identifier Names . 5
2.2 Language Models for Source Code . 5

3 Background 7
3.1 Language Models . 7

3.1.1 Representation of Words . 7
3.1.2 Feed-forward Neural Networks . 9
3.1.3 Recurrent Neural Networks . 10

3.2 Sequence-to-Sequence Model . 12
3.2.1 Encoder . 13
3.2.2 Decoder . 13
3.2.3 Sequence-to-Sequence with Attention . 14
3.2.4 Training . 15
3.2.5 Inference . 15

4 Data 17
4.1 Dataset . 17

4.1.1 Allamanis Dataset . 17
4.1.2 Java-small . 17

4.2 Parsing . 17
4.3 Data Preprocessing . 18

4.3.1 Rare Tokens . 19
4.4 Statistics on the Data . 20

5 Approach 23
5.1 Models . 23

5.1.1 Token Based Models . 23
5.1.2 Sub-token Based Models . 26

6 Evaluation 29
6.1 Predicting Identifier Names using Neural Networks 29

6.1.1 Evaluation of Token based Models . 29
6.1.2 Evaluation of Sub-token Based Models . 32

6.2 Token Models vs. Sub-token Models . 33
6.2.1 Qualitative Analysis . 34

vi Contents

6.3 Different Input Parameters . 43

7 Threat to Validity 45
7.1 Out-of-Vocabulary Tokens . 45
7.2 Quality of Training Data . 46
7.3 Splitting of Training and Test Set . 46

8 Implementation Details 47
8.1 Implementation of the Token Approach . 47
8.2 Implementation of the Sub-token Approach . 48

9 Conclusion 51

Chapter 1

Introduction

Maintainability of source code is important. Developers spend the majority (80%) of their time
maintaining and understanding code. As stated by Lawrie et al. [41], readers of programs have
two main sources of comprehending a piece of code: either by its comments or by its identifier
names. Because a lot of code is uncommented the importance of consistent and understandable
naming is high. Furthermore, Allamanis et al. [21] state that one-third of code reviews contain
feedback about coding conventions, indicating the programmers might not always follow them
and that team members deeply care about adherence.
Method names are especially important because "methods are the smallest named units of ag-
gregated behavior in most conventional programming languages and hence the cornerstone of
abstraction" [52]. Furthermore, if a method is used in an API, its name heavily matters, making
the library irrelevant when the functions are poorly named [22]. A method name must be capable
of giving a short summary of its functionality. But this is not an easy task: "A suitable name must
not only describe what a method is, but also what it does" [22].
Programming Language Processing [45] is a relatively new research field that aims to model, un-
derstand and process source code. Allamanis et. al [19] formulated the "naturalness" hypothesis
which states that software is not only an instruction for the computer but also a form of communi-
cation between developers. Thus, the aim is to provide a fluent communication between different
developers. Additionally, if developers can understand source code snippets written by someone
else more easily, it also reduces maintainability costs, which is an important factor of source code
projects. Similarly to Natural Language Processing (NLP), Programming Language Processing
aims to find a model that accurately represents the meaning of a sequence of words or tokens.
The problem in this work can be framed as a translation problem, that given an input (method
body, parameters, return type) the goal is to predict its method name. I propose two approaches
to tackle this matter. For the token approach, a code snippet is split in a set of tokens. The models
then assign each identifier to a low-dimensional vector space. I process these embeddings with
a recurrent unit (GRU, LSTM) to produce a final vector where I derive the final prediction. The
sub-token approach allows the model to suggest neologisms, i.e. method names it has not seen
during training. With this approach, I further split identifiers into sub-tokens (e.g. "setCancelled"
is transformed to "set", "Cancelled") [22]. This allows me to apply state-of-the-art neural trans-
lation models (Sequence-to-Sequence and Sequence-to-Sequence with Attention) to the task. In
contrast to the token models, the sub-token models predict a sequence of sub-tokens.

Motivating Task: Table 1.1 presents a code snippet along with the prediction of the models. A
human reading the code can easily label the code snippet as "setCancelled". The goal of this thesis
is to predict method names automatically. In this case, all the trained models in this work are able
to infer the correct method name. I furthermore present a visualization of the attention weights by
the most sophisticated model used in this work. The heatmap describes how the model derives

2 Chapter 1. Introduction

Motivating Task

Code Snippet
1 public void f(boolean cancel) {

2 this.cancelled = cancel;

3 }

Ground truth setCancelled
Prediction setCancelled

Attention Weights

Table 1.1: Motivating Task: a code snippet, the ground truth, the
models’ prediction and the distribution of attention weights

the method name. For example, it uses the argument "cancel" and the token "this" to infer "set".
Additional and more complex examples are presented in the qualitative analysis section.

Goal: The main contributions of the thesis are as follows:

• I frame the method naming problem as a text generation task and evaluate the effectiveness
of the token and sub-token approach on 2 different datasets. I show that a deep learning
model is much more powerful if partially trained on the source code project it later suggests
method names.

• I compare the token and sub-token models and illustrate that the latter are especially more
useful if evaluated on source code projects it has not been trained on.

• I demonstrate what kind of context information is needed to successfully predict identi-
fier names. I confirm that models are more effective if the input is composed of both the
parameters and the method body.

• I present a qualitative analysis to illustrate what the models can and cannot predict. Further-
more, I show interesting predictions made by the sub-token models that are only partially
correct. I also present a visual interpretation of the attention weights for the Sequence-to-
Sequence with Attention Sub-token Model.

Use Cases: The models in this work can be embedded in multiple ways. Consider the example
of an IT company which maintains a huge software with millions of lines of code (e.g. a bank-
ing software). The model in this work could be extended such that it highlights method names
that do not capture the semantics of its functionality. Furthermore, the model could be partially
trained on the project to comprehend its coding conventions and later be used to predict method
names of new functions. Such a tool could reduce time for maintainability and would increase
understandability and readability of the project’s source code.

3

Organization: The remainder of the thesis is organized as follows. Chapter 2 presents rele-
vant related work. Chapter 3 provides the background materials for the deep learning models.
Chapter 4 discusses the data used in this work. Chapter 5 elaborates the details of the models and
the proposed approach. In Chapter 6, I evaluate the models with a quantitative and qualitative
analysis. Chapter 7 explains the implementation details. Finally, Chapter 8 concludes the thesis.

Chapter 2

Related Work

Coding conventions are an important aspect of software engineering. They boost readability and
therefore maintainability of source code. Hence, coding conventions are standard practice [29].
Source code consists of 70% identifier names, whereas good identifier names improve readability
and comprehension of source code [21]. In a survey, Arnaoudova et. al [27] found that 68%
of 94 developers consider suggestions for identifier renaming useful. Such a tool could help in
reviewing code automatically to suggest better method names when it doesn’t match with its
functionality [26]. First, I will review related work in naming identifiers, then I will discuss related
applications.

2.1 Identifier Names
In prior work, n-gram language models have been tested with source code. n-grams count the
occurrence of consecutive words and the frequency in which they appear. But these models do
not have the capacity to learn representations that generalize beyond the training data and are
quickly overwhelmed by the curse of dimensionality [55]. Allamanis et. al [20] suggested the
naturalness hypothesis where software is a form of human communication and not simply a
command for the computer. If this hypothesis holds, software corpora can be treated similar to
language and in consequence natural language machine learning models can be applied to ana-
lyze source code [20]. Allamanis et. al [22] propose a language model which suggests method
and class names by embedding them in a low dimensional continuous space. Furthermore, Alla-
manis et. al [22] were the first to come up with a sub-token model for the method naming task.
With this approach, a method name is further split into sub-tokens (e.g. toLowerCase -> to Lower
Case). But their work omits the syntactical structure of source code. Hence Alon et. al [26] sug-
gest decomposing a code snippet into a collection of paths in its abstract syntax tree to capture
their semantic meaning. Allamanis et al. [23] represent software corpora with gated graph neural
networks. The current state-of-the-art is proposed by Alon et. al [25]. This work suggests a novel
neural attention model that leverages the syntactical structure of source code and decomposes
tokens into sub-tokens.

2.2 Language Models for Source Code
Identifier (class, method and variable) names can be seen as an extreme summary of its function-
ality [22]. Similarly, code comments provide a natural language summary of a specific source code

6 Chapter 2. Related Work

snippet. Therefore, a similar task is to predict code comments given a source code snippet. Iyer
et. al [40] used a neural attention model to generate high-level summaries of software corpora.
Wan et. al [53] improved the current state-of-the-art by encoding source code as a tree structure
and used deep reinforcement learning during decoding.
Oda et al. [46] generate pseudo-code from source code using machine translation techniques. The
goal here is to produce a more readable version of source code.
Furthermore, machine learning-based approaches have been used to find code defects. These
models assign probabilities to code snippets. Ray et. al [47] found that buggy code tends to be
less natural and therefore less probable. A difficulty here is to distinguish between code that is
just rare behavior and code that is actually buggy. Campbell et. al [30] used n-grams to localize
errors and suggest a fix.
Deep learning approaches have also been applied to code translation [20]. Recently Chen et.
al [31] tried to translate source code to another language by using a tree2tree neural translation
model. This model uses an encoder-decoder architecture to translate a sub-tree (e.g. source code
snippet in Java) to another sub-tree (e.g. source code snippet in Python).
A big problem during developing is that developers frequently copy code. This behavior results
in code clones where the same code snippet appears at different locations [20]. White et al. [54]
use recurrent neural networks to detect clones. Similar to this work, they use distributed vector
representations which is able to generalize well [20].

Chapter 3

Background

3.1 Language Models
The main goal of this thesis is to predict the method name given the corresponding method type,
parameters, and body while obeying the style conventions of the current project. We can frame
this as a text generation problem. Similarly, I want to predict token n given some context (e.g.
tokens n − 2, n − 1, n + 1, n + 2). Thus, the objective is similar to problems in natural language
processing (NLP). Therefore, I will use models in this work that have seen a wide range of success
in NLP, e.g. in speech recognition, machine language translation, and chatbots. An important
aspect of NLP is a meaningful representation of words that serves as the first layer of each model.
Hence, I will first review popular representations of words, then I will move on to the models
used in this work.

3.1.1 Representation of Words
In this section, I will discuss how words are represented in neural language models. The aim
is to find an efficient representation of words and a representation such that words with similar
semantic meaning have similar representations.

One-hot Encoded Vectors

Neural networks work with matrices of numbers because they cannot handle words. Therefore
we need to encode each unique word in a set of inputs as a one-hot encoded vector. Consider the
following 2 input sequences (adapted from [5]):

• "Have a good day"

• "Have a great day"

Therefore, vocabulary V consists of:

• V = {Have, a, good, great, day}

First, each word in the vocabulary is assigned to an index. In this example, this leads to:

• have = 1

• a = 2

• good = 3

8 Chapter 3. Background

• great = 4

• day = 5

The next step is to map the words in the vocabulary to one-hot encoded vectors. The size for each
word vector is the size of vocabulary |V|, in this case the size is 5. These vectors consist of all
zeros and one 1. The position of the 1 is defined according to its index. In the provided example
that would lead to the following vectors (where T represents the transpose):

• have = [1,0,0,0,0]T

• a = [0,1,0,0,0]T

• good = [0,0,1,0,0]T

• great = [0,0,0,1,0]T

• day = [0,0,0,0,1]T

This approach suffers from the following 2 drawbacks:

1. The length of the one-hot encoded vectors grows with the vocabulary size |V|. That means
if we add another word like "night" to the vocabulary, this would lead to words vectors of
size 6. In a very large vocabulary, this leads to very high-dimensional, sparse vectors.

2. It is not possible to show similarities between words. In this example "great" and "good" are
as different as "day" and "good".

Distributed Word Vectors

Distributed word vectors were first introduced by Bengio et. al [28] over a decade ago. Similarly
to one-hot encoded vectors, words are assigned to real-valued vectors. But in contrast to one-
hot encoded vectors, where each word in vocabulary V occupies 1 dimension, words in word
embedding methods are mapped to a low-dimensional space (the dimensions are in the size of
hundreds as opposed to the one-hot encoded vectors). The function V : Vocabulary → Rn maps
the words to a fixed high-dimensional space n which is independent of vocabulary size |V|. The
size of the embedding can be freely determined, common values are a power of 2, such as 64, 128,
256. Just for illustration purposes, I will use n = 3 here to demonstrate that this method usually
results in fewer dimensions than the corresponding one-hot encoded vectors. In the example
introduced in the last section and for n = 3 that leads to the following vectors (where T represents
the transpose):

• have = [0.2,0.3,−0.4]T

• a = [0.1,0.2,0.9]T

• good = [0.8,−0.3,0.5]T

• great = [0.7,0.5,0.8]T

• day = [0.1,0.3,−0.4]T

The vectors are initialized with small random values. These values are then learned by the
model to have meaningful vectors according to its task jointly with the other parameters of the
model using backpropagation [28]. A multiplication of vocabulary size |V| and dimension n of
each feature vector determines the number of trainable parameters for the first layer of the model.

3.1 Language Models 9

Figure 3.1: feed-forward neural network architecture (adapted from [28])

In contrast to one-hot encoded vectors, where each word is independent of any other word in the
vocabulary, distributed word vectors learn to group similar words. Word vectors have the ability
to generalize because similar words tend to have similar word vectors. A famous example shows
the power of distributed word vectors: In this vector space, "King - Man + Woman" results in a
vector very close to "Queen". In this example, "good" and "great" would end up with a similar
vector representation. Word embeddings can either be obtained from pre-trained embeddings
(e.g. word2vec [44]) or can be jointly learned together with the other parameters by the model.

3.1.2 Feed-forward Neural Networks
A simple feed-forward neural network architecture can be seen in figure 3.1. First, the input words
are assigned to distributed word vectors, described in the last section. After, the embedded word
vectors C(i) are concatenated:

x = (C(wt−1),C(wt−2), ...,C(wt−n+1)) (3.1)

Based on the concatenation, the hidden layer of the neural network computes:

z = tanh ∗ (d + Hx) (3.2)

where hyperbolic tangent tanh is applied element by element and pushes all values between −1
and 1. The last layer is computed as follows:

y = b +Uz (3.3)

The neural network computes a softmax function as an output, which guarantees the summation
to 1:

P̃(wt |wt−1,wt−2, ...,wt−n+1) =
eywt∑
i eyi

(3.4)

10 Chapter 3. Background

Figure 3.2: An unrolled recurrent neural network (adapted from [49])

Therefore, for each word in the target vocabulary the softmax function computes a probability
given its input. During training, the model adjusts the parameters of the model (b, d,W,U,H,C)
through backpropagation [22].

3.1.3 Recurrent Neural Networks

In feedforward neural networks feature vectors are processed in one go [34]. That means you
show the whole sequence to the network and turn it into a single data point. This refers to equa-
tion 3.1. The goal here is to find a better representation of an input sequence other than just a
concatenation of the input words.
Recurrent neural networks (RNNs) process the input sequence by looping through the input el-
ements while keeping a state of what came before [34]. This way, the model is able to not only
process each word independently but also compute a hidden state that is a combination of its
internal meaning and its history. More formally, for a timestep t, the hidden state is computed as
follows:

ht = tanh(Whhht−1 +Wxhxt) (3.5)

Figure 3.2 shows an illustration of a recurrent neural network architecture. The disadvantages
of RNNs are exploding or vanishing gradients during backpropagation [39]. Long Short-Term
Memories (LSTMs) or Gated Recurrent Units (GRUs) are prominent solutions to these problems.

Long Short-Term Memory

The Long Short-Term Memory cell was developed by Schmidhuber and Hochreiter and is espe-
cially designed to learn long-term dependencies [39]. Similar to RNNs, LSTMs also have a chain
like structure but in contrast to the simple single interactions between the modules, an LSTM is
connected through 4 different ways with the previous module.
At each time step t, there is an input gate (3.6), a forget gate (3.7) an output gate (3.8), a new

3.1 Language Models 11

Figure 3.3: An LSTM (adapted from [8])

memory cell (3.9), a final memory cell (3.10) and a final hidden state (3.11).

it = σ
(
xtUi + ht−1W i) (3.6)

ft = σ
(
xtU f + ht−1W f) (3.7)

ot = σ
(
xtUo + ht−1Wo) (3.8)

C̃t = tanh
(
xtUg + ht−1Wg) (3.9)

Ct = σ
(
ft ∗ Ct−1 + it ∗ C̃t

)
(3.10)

ht = tanh(Ct) ∗ ot (3.11)

An illustration of the LSTM can be seen in figure 3.3. Equations 3.6-3.9 can be seen as single
layer neural networks. The input gate looks at the previous hidden state and the current input
and outputs a number between 0 and 1, using a sigmoid nonlinearity function. The input gate
describes how much we care about the current vector, this refers to equation 3.6 and it in figure
3.3.
The forget gate looks at the previous hidden state and the current input and outputs a number
between 0 and 1 again using a sigmoid nonlinearity function. Counterintuitively, the output 0
refers to completely get rid of the last hidden state (forget the past) while the output 1 refers to
completely keep the last hidden state, this refers to equation 3.7 and ft in figure 3.3.
The output gate describes how much the cell is exposed. It serves as a filter, describing what parts
of the cell state is important for the current hidden timestep. This enables the mechanism that the
current cell may not be important for the current hidden timestep, but may become important in
the future, this refers to equation 3.8 and ot in figure 3.3. Equation 3.9 creates a new candidate
vector which could be added to the cell state (C̃t in figure 3.3). After, equation 3.10 creates the new
cell states based on how much to forget of the previous cell state and how much to keep around
from the current candidate vector (Ct in figure 3.3). Finally, the current hidden state is computed,
which is a multiplication of the normalized current cell state and the output gate, this refers to
equation 3.11 and ht in figure 3.3.

To summarize, the LSTM introduces a memory cell which can selectively forget information
from past hidden states. This memory cell is able to preserve longer dependencies than by using
simple recurrent neural networks [14].

12 Chapter 3. Background

Figure 3.4: A Gated Recurrent Unit (adapted from [8])

Gated Recurrent Unit

GRUs are very similar to LSTMs but proposed more recently [32]. In contrast to LSTMs GRUs
don’t use a cell state but use the hidden state to transfer information [32]. Also unlike the LSTM
which uses 3 gates, the GRU uses 2 gates: a reset gate and an update gate. At each time step,
there is a reset gate (3.12), an update gate (3.13), a new memory content (3.14) and a final memory
(3.15).

rt = σ
(
xtUr + ht−1Wr) (3.12)

zt = σ
(
xtUz + ht−1Wz) (3.13)

h̃t = tanh
(
xtUh + (rt ∗ ht−1)Wh) (3.14)

ht = zt ∗ ht−1 + (1 − zt) ∗ h̃t (3.15)

An illustration of the GRU can be seen in figure 3.4. The reset gate describes how to combine
the new input with the previous memory. If the reset gate is close to 0, it ignores the previous
memory and only keeps information about the new word. This refers to equation 3.12 and rt
in figure 3.4. The update gate controls how much of the past should matter now. If the update
gate is close to 1 then we copy information of the previous memory to the current memory. This
refers to equation 3.13 and zt in figure 3.4. The new memory is computed similarly to the one
of traditional RNNs (equation 3.14 and h̃t in figure 3.4). Lastly, the final memory ht is a linear
interpolation between the previous final memory ht−1 and the new memory content h̃t controlled
by the update gate zt (equation 3.15 and ht in figure 3.4). GRUs, therefore, have fewer parameters
to adjust during backpropagation while its performance is often comparable to LSTMs [35].

3.2 Sequence-to-Sequence Model
The Sequence-to-Sequence model has seen a lot of success in the past few years, for example
in speech recognition, machine language translation, and chatbots [42]. The architecture of the
model was first introduced by Cho et. al [33] as a statistical machine translation model.
The goal of the Sequence-to-Sequence model is to estimate the conditional probability of the tar-
get sequence y given an input sequence x. So given the source sentence x = I am a student the
model should assign a high probability to the target sentence y = Je suis étudiant [42]. The model

3.2 Sequence-to-Sequence Model 13

Figure 3.5: An example of a Sequence-to-Sequence Model (adapted from [42])

achieves this by using an encoder and a decoder, where the encoder and decoder are essentially
both made up of recurrent neural networks, more precisely mostly the LSTM architecture intro-
duced in section 3.1.3. An example of the model can be seen in figure 3.5.

3.2.1 Encoder
The encoder works the same as the LSTM described in section 3.1.3. Each input (a token) is
embedded using a feature vector and processed with an LSTM. The last hidden state and the last
cell state are important, they serve as a representation for the entire input sequence.

3.2.2 Decoder
The decoder is used to generate a translation, one target word at a time. This is done by con-
ditioning every hidden state ht in the decoder based on the previous hidden state ht−1, the last
hidden vector of the encoder c and the previous predicted output word yt−1. Hence, for a time
step t, the decoder of the hidden state is computed by,

ht = f (ht−1, c, yt−1) (3.16)

After the hidden state for time step t is found, similarly, the appropriate word yt is computed
by,

yt = softmax(ht, c, yt−1) (3.17)

14 Chapter 3. Background

Figure 3.6: An illustration of the Sequence-to-Sequence Model (adapted from [33])

The softmax function computes a valid probability distribution over a target vocabulary y

conditioned on the hidden state ht , the last hidden state of the encoder c and the previous target
word yt−1. This explanation can be followed by looking at the arrows in the decoder in figure 3.6.

3.2.3 Sequence-to-Sequence with Attention
In a regular encoder-decoder architecture, the model processes the input words one by one and
computes a final vector representation of the sentence. Based on this representation the decoder
extracts each word one by one using another RNN (usually an LSTM or a GRU) [1]. While this
works well for relatively short sequences, it is hard for the model to get a good input representa-
tion if the sequence is longer. A more sophisticated version of the Sequence-to-Sequence model
uses an attention mechanism during decoding. Using attention, the model is able to selectively
focus on certain parts of the input [1]. Figure 3.7 demonstrates the attention mechanism during
decoding. During decoding the word "Je", the model mostly concentrates on the source word "I" .
In a Sequence-to-Sequence Attention model, we first hand each hidden state computed during
encoding and the final hidden state to the decoder. During decoding and at each time step t, a
score function is computed that compares the last target hidden state ht−1 with each source hid-
den state et′ [9]. The score function is a scalar where a high number means that for a current time
step t, this source hidden state is important.

score(ht−1, et′) =


hT
t−1et′ dot product

hT
t−1Wet′ Luong’s multiplicative style

vT tanh (W[ht−1, et′]) Bahdanau’s additive style
(3.18)

After each score is obtained, a softmax function is applied to compute weighted values for the
attention distribution:

αts = softmax(score(ht−1, et′)) (3.19)

3.2 Sequence-to-Sequence Model 15

Figure 3.7: An example of a Sequence-to-Sequence Model with Attention (adapted from [9])

The context vector ct is then computed by summing up all weighted input hidden states:

ct =
n∑

t′=0

αtset′ (3.20)

After, the context vector ct is concatenated with the previous target embedding yt−1 and processed
with an LSTM or a GRU [11]. Therefore, for a time step t, the GRU is computed as follows:

ht = GRU
(
ht−1, [yit−1, ct]

)
(3.21)

Next, the hidden state ht is passed to an additional layer st and finally a softmax function is
applied to generate a valid probability distribution over the target vocabulary:

st = g(ht) (3.22)
pt = softmax(st) (3.23)

3.2.4 Training
During decoding of a sequence, the current word to be predicted yt heavily depends on the previ-
ous predicted word yt−1. But we cannot always rely that the decoder’s guess is the ground truth.
So during training, an important concept used is "teacher forcing" [16]. This concept uses the real
target output as the next input instead of the decoder’s guess.

3.2.5 Inference
During testing/ inference, we cannot use "teacher forcing" because the model doesn’t know the
ground truth. The simplest approach to solve this problem is to use greedy decoding by feeding

16 Chapter 3. Background

to the next step the most likely word predicted in the previous step. But if the model then makes a
small error by predicting a wrong word in the sequence, this would mess up the whole decoding.
Beam search is a better way of decoding: Instead of just keeping the best sequence generated so
far, beam search keeps track of the current top k sequences generated so far. More formally,

Ht := {(w1
1, . . . ,w

1
t), . . . , (w

k
1 , . . . ,w

k
t)} (3.24)

Consider the example from figure 3.5. If k = 3 and time step t = 2, one possibleH2 could be:

H2 := {(Je suis), (Mois suis), (Mois est)} (3.25)

For k = 3, beam search instantiates 3 copies of the network and searches the top 3 next words
based on each sequence ending up with a set of 9 sequences (candidate C3).

C3 ={(Je suis étudiant), (Je suis étudier), (Je suis suis)}
∪{(Mois suis étudiant), (Mois suis est), (Mois suis étuidié)
∪{(Mois est étudiant), (Mois est étuidié), (Mois est suis)}

From the set of candidates C3 the most probable 3 sequences are kept. In this example a
possibleH3 could be:

H3 := {(Je suis étudiant), (Je suis étudier), (Mois est étudiant)} (3.26)

This search continues until the end of the translation is reached. Then, the translation with the
highest probability is returned [11].

Chapter 4

Data

In this chapter, I present the different datasets used in this work. First, I will explain how the
projects were parsed and processed. I will also include statistics on methods.

4.1 Dataset
In this work, I use 2 different datasets to train, validate and test the models. They are deliberately
chosen to be of various sizes and composed differently.

4.1.1 Allamanis Dataset
The dataset consists of 20 active open-source software projects [22]. These projects have been
chosen because they have been used in prior work by Allamanis et. al [22] and considered to
follow good naming practices. For each project, 60% of the methods are used for training, 10% for
validation and 30% for testing [22].

4.1.2 Java-small
Java-small contains about 700K examples and was first used by Allamanis et. al [24]. It is com-
posed of 11 relatively large projects. 9 of these projects are used for training, 1 for validation and
1 for testing. Therefore, I train across multiple source code projects but predict on projects the
model has not seen before similar to Alon et. al [25].

4.2 Parsing
In a first attempt, the models have been built using a preprocessed version of the Allamanis
Dataset provided by Allamanis et. al [22]. Each Java file was processed and in a separate col-
umn, all the method names were indexed. It was hard to extract the return type, parameters
and method body of this preprocessed version precisely, therefore the original files have been
parsed again using a Java parser [6]. It was difficult to build a Java parser that is able to collect
method names of all the Java projects without resulting in stack-over-flow or out-of-memory er-
rors. Because of the size of the dataset, it was necessary to use multiprocessing. Also, to avoid
out-of-memory errors, the methods are saved in chunks of a maximum of 100k methods per file.
A sample of a Java method can be seen in listing 4.1 and its processed version in table 4.1. During

18 Chapter 4. Data

parsing, comments by developers inside method bodies have been removed.

1 @Override

2 public void channelRead(ChannelHandlerContext ctx, Object msg) {

3 if (acceptMessage(msg)) {

4 log((SpdyFrame) msg, Direction.INBOUND);

5 }

6 ctx.fireChannelRead(msg);

7 }

Listing 4.1: An example of a Method Declaration in Java

Version Method Name Type Parameters Method Body

pa
rs

ed

channelRead void
ChannelHandlerContext
ctx, Object msg

if (acceptMessage(msg))
{ log((SpdyFrame) msg,
Direction.INBOUND); }
ctx.fireChannelRead(msg);

to
ke

n-
le

ve
l

channelRead void
channelhandlercontext
ctx object msg

if acceptmessage msg log
spdyframe msg direction
inbound ctx firechannel-
read msg

su
b-

to
ke

n-
le

ve
l

channel read void
channel handler context
ctx object msg

if accept message msg log
spdy frame msg direction
inbound ctx fire channel
read msg

Table 4.1: Example of a parsed Java Method

4.3 Data Preprocessing
In my thesis, I consider 2 types of models. In a first approach, the model operates on a token-
level. This means that the method name and all identifiers used in source code are considered
to be tokens. In a second approach, the model operates on a sub-token level which implies that
tokens in source code can be further split into sub-tokens.

List of Operations The following operations have been performed for all models in order to clean
the data:

1. String values have been replaced with a separate token: For example: errormessage =
"there is an error message" is transformed to errormessage = STRINGVALUE

2. All characters are transformed to lowercase

4.3 Data Preprocessing 19

3. Special characters such as newline and {}()’,.;" have been removed

4. Abstract methods are removed from the dataset. For example:

1 public abstract int myMethod(int n1, int n2);

5. Empty methods are removed from the dataset. For example:

1 public void voidCastleRight() { }

Additionally, for the sub-token models, the tokens are split according to CamelCase or snake
case. Table 4.1 provides a sample of a preprocessed method on a token-level and a sample of
a preprocessed method according to the sub-token level respectively. For simplicity, the same
example has been used as in the parsing section (listing: 4.1).
Additionally, I have recognized a big number of project-specific method names in the Allamanis
dataset. Specifically, I have observed 1000 different "getXXX" method names. An example of such
a method name is the following:

1 public int get10() {

2 return 10;

3 }

Listing 4.2: An example of a project-specific or bad Method Name

These methods seem useless to the model and have therefore been removed from the dataset.
Table 4.2 shows the amount of abstract, empty and getXXX methods. Finally, the total amount of
training samples is shown. The amount of abstract methods are 8-10% independent of the dataset
and 1-3% of the methods are empty. More interesting is that for the Allamanis dataset nearly 1/3
of all the methods have been composed of getXXX methods. Including these methods during
training significantly impacted the training and evaluation of the model. The numbers of final
training methods in table 4.2 approximately align with the number of methods Alon et al. [25]
count in their Java-small dataset.

Type of Method Allamanis Dataset Java-small
All Methods 186694 750485
Abstract Methods 15573 90373
Empty Methods 2409 27554
getXXX Methods 51121 2
Final Training Methods 117591 632556

Table 4.2: Preprocessing of Methods

4.3.1 Rare Tokens
Rare tokens are words that occur less than a certain amount of times in the training set. This is due
to the fact that the model is not able to learn an appropriate embedding for the word if it occurs
rarely. In this work, tokens that appear less than 3 times in the training set get replaced by an
UNK token. The percentage of unknown method names can be seen in table 4.3. The Allamanis
training dataset is composed of 44% unknown method names which is significantly higher than
the Java-small dataset. This is probably due to fewer samples in the dataset. The high percentage

20 Chapter 4. Data

of unknown method names, in general, provides a strong motivation to split the method names
into sub-tokens.

Dataset Allamanis Dataset Java-small

Total UNK 51372 170050
Total Method Names 117591 632556
Percentage UNK 44% 27%

Table 4.3: Amount of Unknown Method Names during
Training

4.4 Statistics on the Data

Token Model Sub-token Model
Dataset 50% 75% 50% 75%
Allamanis Dataset 11 35 17 48
Java-small 8 30 13 45

Table 4.4: Length of method bodies

Token Model Sub-token Model
Dataset 50% 75% 50% 75%
Allamanis Dataset 2 2 2 4
java-small 2 4 2 6

Table 4.5: Length of method parameters

Sub-Token Model
Dataset 50% 75%
Allamanis Dataset 2 3
Java-small 3 4

Table 4.6: Length of method names

Table 4.4 and Table 4.5 illustrate the length of method bodies and the length of parameters
respectively. The input of the models is composed of the return type, the body and the parame-
ters of a method. In deep learning models, the input has to be of a fixed size: shorter inputs get

4.4 Statistics on the Data 21

padded with a special PAD token and longer inputs get truncated. I use the distribution of the
length of method bodies and parameters to determine an optimal input size. I use values between
the 50% and the 75% quantile.
Similarly for the sub-token model, I need to decided on the maximum length of the target se-
quence, i.e. the maximum length of sub-tokens a method name can be composed of. Likewise, I
use the distribution of the length of method names to determine a reasonable target size. Table
4.6 suggests to use values between 2 − 4.

Chapter 5

Approach

5.1 Models
In this chapter, I propose 2 different approaches to suggest method names given its type, parame-
ters, and body. For each approach, I describe different models that are being used during training
and evaluation respectively. Furthermore, for each model, the architecture and hyperparameters
are provided.

5.1.1 Token Based Models
In this section, I will introduce the models that operate on a token-level. This approach assumes
that a method name and all identifiers used in source code are tokens. Therefore, on a token level,
the goal is to predict one token (the method name) based on several input tokens (the method
body, parameters, and return type). In deep learning models, the size of the input has to be
determined beforehand and is a fixed size. For the method body, I include the first 22 tokens. For
the parameters, I include the first 4 tokens. I found that including more tokens did not improve
the results of the models. These values also align with the distribution of the length of the method
bodies and parameters, analyzed in the data section 4.4. Furthermore, I also include the return
type of the function. Therefore the size of the input is set to 27. Models with longer method bodies
or parameters are being truncated and methods with shorter parameters and method bodies are
padded with a special PAD token.
For the example introduced in the Data chapter, the input for a token based model can be seen in
table 5.1.

Feed-forward Token Model

Figure 5.1 illustrates the feed-forward Token Model architecture. It consists of an input layer, an
embedding, a flatten, a dropout layer and 2 dense layers.
Model Hyperparameters: The hyperparameters of the model have been optimized with hyperas.
Hyperas is a convenient tool to test different hyperparameter ranges for different layers [15]. The
size of the word embeddings is set to 128. After, dropout at a rate of 0.488 is added. Dropout
randomly sets some inputs to 0, which prevents overfitting [50]. Then, word embeddings are
flattened to turn the 3-dimensional tensor into a 2-dimensional tensor. A tensor is generalized
matrix which can have 0 dimensions (a scalar), 1 dimension (a vector), 2 dimensions (a matrix) or
more than 2 dimensions [18]. Flattening the tensor does not affect the batch size. Furthermore,
dropout at a rate of 0.085 is added. Dropout is a form of regularization and addresses overfitting
neural networks on the training data [51]. The main idea is to randomly "drop" (around 5 − 50%

24 Chapter 5. Approach

Version Method Name Type Parameters Method Body

to
ke

n-
le

ve
l

channelRead void
channelhandlercontext
ctx object msg

if acceptmessage msg log
spdyframe msg direction
inbound ctx firechannel-
read msg

Output Input

to
ke

n-
le

ve
l

in
pu

t

channelRead
if acceptmessage msg log spdyframe msg direction in-
bound ctx firechannelread msg void channelhandlercon-
text ctx object msg PAD PAD PAD PAD PAD PAD

Table 5.1: Example of an Input for a token based Model

Figure 5.1:
Feed-forward Token
Model

Figure 5.2: GRU Token
Model

Figure 5.3: LSTM Token
Model

5.1 Models 25

of) neurons.
The size of the dense layer is set to 70 and the Exponential Linear Unit (ELU) non-linearity func-
tion has been applied. The ELU is an activation function that speeds up neural networks and leads
to higher classification accuracies [36]. It is a generalization of the rectified linear unit (ReLU)
which also avoids the vanishing gradient problem. Unlike the ReLU, ELU uses negative values
to push the activations closer to 0.
After, dropout at a rate of 0.383 is added. The second dense layer computes a softmax non-
linearity function which produces a probability distribution over the vocabulary. The model has
been trained with a batch size of 128 over 15 epochs. The batch size determines the number of in-
puts (i.e. rows in the data) the model computes before it updates the model’s parameters through
backpropagation [17]. The epoch determines the number of times the model goes through the
entire data set [17].
Before training, random unknown method names have been removed until a rate of about 30%
unknown tokens. I did this to ensure the model is learning something beyond always or nearly
always predicting the unknown token.

GRU Token Model

The architecture for the GRU token model is similar to the feed-forward token model but instead
of showing all the input embeddings to the model at once, the word embeddings are processed by
iterating through the word embeddings and maintaining a state containing information of what
the model has seen so far [34]. The GRU token architecture can be seen in Figure 5.2.
Model Hyperparameters: The hyperparameters of the model have been optimized with hyperas
[15]. The size of the word embeddings is set to 128. Then, dropout at a rate of 0.235 is added. After,
word embeddings are processed with a GRU. The size of the GRU is set to 200 and recurrent
dropout of 0.325 is applied. Recurrent dropout randomly drops the connections between the
recurrent units [37].
Furthermore, dropout at a rate of 0.36 is added. The size of the dense layer is set to 70 and the
elu non-linearity function has been applied. Furthermore, dropout at a rate of 0.25 is appended.
The last dense layer computes a softmax non-linearity function which produces a probability
distribution over the vocabulary. The model has been trained with a batch size of 64 over 17
epochs. Before training, random unknown method names have been removed until a rate of
about 30% unknown tokens.

LSTM Token Model

The architecture for the LSTM token model is similar to the GRU token model. Figure 5.3 exem-
plifies the LSTM architecture.
Model Hyperparameters: The hyperparameters of the model have been optimized with hy-
peras [15]. The size of the word embeddings is set to 128. Then, dropout at a rate of 0.24 is
added. After, word embeddings are processed with an LSTM. The size of the LSTM is set to 200
and recurrent dropout of 0.32 is applied. Furthermore, dropout at a rate of 0.36 is added. The size
of the dense layer is set to 200 and the elu non-linearity function has been applied. Furthermore,
dropout at a rate of 0.28 is appended. The last dense layer computes a softmax non-linearity func-
tion which produces a probability distribution over the vocabulary. The model has been trained
with a batch size of 64 over 17 epochs. Before training, random unknown method names have
been removed until a rate of about 30% unknown tokens.

26 Chapter 5. Approach

Bidirectional LSTM Token Model

Unidirectional LSTMs compute a memory cell which is a summary of the past sequences. Bidirec-
tional LSTMs are trained in forward and backward directions [48]. They have initially been very
successful in speech recognition tasks [38]. The same study showed that bidirectional LSTMs are
sometimes significantly more effective than unidirectional ones.
In this work, I use the concatenation mode to combine the forward and backward output of the
2 LSTMs before they are passed to the next layer. This model is, therefore, an extension of the
LSTM Token Model.
Model Hyperparameters: The hyperparameters of the model have been optimized with hy-
peras [15]. The size of the word embeddings is set to 128. Then, dropout at a rate of 0.45 is
added. After, word embeddings are processed with a bidirectional LSTM. The size of the forward
and backward LSTMs are both set to 100, similar to the size of the word embeddings and recur-
rent dropout of 0.1843 is applied. Furthermore, dropout at a rate of 0.2 is added. The size of the
dense layer is set to 70 and the elu non-linearity function has been applied. Furthermore, dropout
at a rate of 0.2 is appended. The last dense layer computes a softmax non-linearity function which
produces a probability distribution over the vocabulary. The model has been trained with a batch
size of 128 over 30 epochs. Before training, random unknown method names have been removed
until a rate of about 30% unknown tokens.

5.1.2 Sub-token Based Models
Token based models assume that all identifiers used in source code are composed of one token.
In past work Allamanis et. al [22] proposed to split tokens further into sub-tokens according to
camelCase or snake case. Therefore, on a sub-token level, the goal is to predict a sequence of
sub-tokens that compose a method name based on input tokens. The input tokens are also split
according to camel case and snake case. Equivalent to the token based models, the input size
has to be determined beforehand. For the method body, I include the first 37 sub-tokens. For
the parameters, I include the first 6 sub-tokens. I found that including more sub-tokens did not
improve the results of the models. These values also align with the distribution of the length
of sub-tokens in method bodies and parameters respectively, analyzed in the data section 4.4.
Furthermore, I also include the return type of the function. Additionally, the size of the target
sequence has to be determined beforehand. For the method name, I decided to include the first
4 sub-tokens. Finally, special start- and end-tokens are added to the input and output sequence.
Therefore the size of the input is set to 46 and the size of the output is set to 6. Models with
longer method bodies or parameters are being truncated and methods with shorter parameters
and method bodies are padded with a special PAD token.
Table 5.2 exemplifies the input for a sub-token based model with the same sample introduced in
the dataset chapter.

Sequence-to-Sequence Sub-token Model

The Sequence-to-Sequence model consists of an encoder and a decoder. Both are composed of 2
separate LSTMs. Figure 5.4 clarifies the architecture of the proposed model.
Model Hyperparameters: The hyperparameters of the model have been optimized with talos [4].
Talos is another tool for hyperparameter optimization. It has the advantage over hyperas to be
more flexible but has less functionality. The size of the word embeddings is set to 256. After,
word embeddings are processed with an LSTM. The size of both the encoder and decoder LSTMs
is set to 250, similar to the size of the word embeddings. For both the encoder and the decoder
recurrent dropout of 0.2 and dropout of 0.2 is added.

5.1 Models 27

Version Method Name Type Parameters Method Body

su
b-

to
ke

n-
le

ve
l

channel read void
channel handler context
ctx object msg

if accept message msg log
spdy frame msg direction
inbound ctx fire channel
read msg

su
b-

to
ke

n-
le

ve
l

in
pu

t starttoken
channel read
endtoken
PAD PAD

starttoken if accept message msg log spdy frame msg di-
rection inbound ctx fire channel read msg void channel
handler context ctx object msg endtoken PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD PAD
PAD PAD PAD PAD PAD PAD PAD PAD

Table 5.2: Example of an input for a sub-token based model

Figure 5.4: Sequence-to-Sequence Sub-token Model

28 Chapter 5. Approach

Sequence-to-Sequence with Attention Sub-token Model

Similar to the Sequence-to-Sequence model, this model also consists of an encoder and a decoder.
These are composed of 2 separate GRUs. GRU’s have been chosen because they are composed of
fewer parameters than the LSTMs. This has a significant impact on the Seq2Seq Attention model
because it tends to be much slower than the regular Seq2Seq model during training.
Model Hyperparameters: Since the model’s training is very time consuming, the hyperparame-
ters were not optimized. Instead, the same values from the Sequence-to-Sequence Token Model
have been used. The size of the word embeddings is set to 256. After, word embeddings are
processed with a GRU. The size of both the encoder and decoder GRUs is set to 200, similar to the
size of the word embeddings. For both the encoder and the decoder recurrent dropout of 0.2 and
dropout of 0.2 is added.

Chapter 6

Evaluation

In this chapter, I evaluate the different approaches. Furthermore, I want to know if the token
approach or the sub-token approach is better to predict method names. Finally, I want to com-
prehend what the models’ input need to be composed of in order to predict meaningful method
names.
Therefore, I specifically focus on the following research questions:

• RQ1: How well can we predict identifier names using neural networks?

• RQ2: Are token or sub-token models better to predict identifier names?

• RQ3: What kind of context information is relevant for suggesting identifier names?

6.1 Predicting Identifier Names using Neural Net-
works

To answer RQ1, the token based models and the sub-token based models are evaluated and com-
pared using different metrics. First the top-1 and top-5 accuracies are computed to understand if
the predictions of the models would be potentially useful in a realistic setting. Furthermore the
F1-Score is computed, this represents the harmonic average of precision and recall, where F1=1
is the best score and F1=0 is the worst score. Its value is most influenced by the lowest of preci-
sion and recall [43]. Precision is the number of true positives divided by the number of relevant
results according to the model and recall is the number of true positives divided by the number
of relevant results (all samples that should have been identified) [3]. The formula of the F1-Score
is computed as follows:

F1 =
2 × Precision × Recall

Precision + Recall
(6.1)

For the sub-token models, the accuracy and an F1-Score on a sub-token level are computed.

6.1.1 Evaluation of Token based Models
This section contains the evaluation of the token based models, which includes the Feed-forward
Token Model, the GRU Token Model, the LSTM Token Model, and the bidirectional LSTM To-
ken Model. Table 6.3 shows the accuracy of the different token models. Since the percentage
of unknown method names is relatively high, it is is also included in the table. Surprisingly,

30 Chapter 6. Evaluation

the feed-forward Token Model scores the best results for both the Allamanis and the Java-small
dataset. For the Allamanis dataset, the model achieves an overall accuracy of 62.89% and an addi-
tional 2% over the GRU and the LSTM Token Model and an additional 4% over the bidirectional
LSTM Token Model. For the Java-small dataset, the overall accuracy is a bit lower: 60.78% for the
feed-forward Token Model which similarly scores 2 − 5% better than the other token models. In-
terestingly, the naive baseline to always predict UNK is more accurate overall than the individual
token models for the Java-small dataset.

Token Model Allamanis Dataset Java-small
Always predict UNK 51.53% 61.14%
Feed-forward Token Model 62.89% 60.78%
GRU Token Model 60.69% 57.16%
LSTM Token Model 60.07% 55.7%
Bidirectional LSTM Token Model 58.57% 57.4%

Table 6.1: Accuracy of Token Models

Table 6.2 illustrates the top-5-accuracy of token models which has an improvement of 18−25%
over the top-1-accuracy of the different token models for the Allamanis dataset. Similarly, the to-
ken models score a 10 − 15% higher top-5-accuracy for the Java-small dataset.

The numbers reported so far contain a bias, because the UNK token is treated like any other

Token Model Allamanis Dataset Java-small
Feed-forward Token Model 74.92% 71.18%
GRU Token Model 74.70% 71.3%
LSTM Token Model 73.27% 71.31%
Bidirectional LSTM Token Model 72.08% 71.03%

Table 6.2: Top-5-Accuracy of Token Models

method name and if the model correctly predicts UNK, accuracy improves. I therefore adapt an
F1-Score that has been used by Alon et. al [25] for a similar task before. The F1-Score is composed
of the amount of true positives, false positives and false negatives. I adjust it, such that the UNK
token is treated specially, neither completely right nor completely wrong [22]. For the F1-Score
and the Allamanis dataset, all the models achieve a similar score of 0.44 − 0.47. I report much
lower results for the Java-small dataset: The models all achieve a score between 0.19 − 0.22.
So far one could interpret these results as follows: For the inputs I pass to the model, an RNN

architecture (LSTM, GRU, bidirectional LSTM) does not have any advantage over a feed-forward
neural network architecture.
However, figure 6.1 draws a different image. It illustrates the connection between the suggestion
frequency and the accuracy of the different token models. For example, the feed-forward token
model scores an accuracy of 93.85% if only the top 0.1 predictions of the feed-forward token model
are being shown to the developer but scores an accuracy of only 37.49% if every prediction would
be shown to the end-user. This plot excludes all UNK method names in order to illustrate that the
models can also predict something useful beyond the UNK token.

6.1 Predicting Identifier Names using Neural Networks 31

Token Model Allamanis Dataset Java-small
Feed-forward Token Model 0.44 0.19
GRU Token Model 0.47 0.22
LSTM Token Model 0.46 0.22
Bidirectional LSTM Token Model 0.45 0.22

Table 6.3: F1 Score of Token Models

Interestingly, the RNN models achieve a higher accuracy if unknown method names are removed
from the dataset: If every prediction is shown to the developer, the RNN models achieve an ac-
curacy of 46 − 48%. The plot furthermore illustrates that in a realistic setting, it makes sense to
include a threshold to only show predictions above a certain probability to a potential user.

Figure 6.2 reveals a similar picture. Like for the Allamanis dataset, accuracy improves as pre-

Figure 6.1: Accuracy vs. Suggestion Frequency for the Allamanis dataset

diction confidence increases. The RNN token models score a better result than the Feed-forward
Token model independent of the chosen prediction confidence.

Unknown Method Names

We have seen that unknown method names pose a general difficulty when evaluating the token
models. It’s furthermore interesting to compare the number of unknown method names of the
Allamanis test set and the Java-small test set. Because although the Java-small dataset consists
of a bigger dictionary of method names, the test set contains a higher percentage of unknown
method names. To my understanding, this goes back to how the data is split into the training and
test set. For the Allamanis dataset, method names that appear in the test set are from the same
projects that also appear in the training set. Differently, for the Java-small dataset, method names

32 Chapter 6. Evaluation

Figure 6.2: Accuracy vs. Suggestion Frequency for the Java-small dataset

that appear in the test set are from projects the model has not seen during training.
Consider the following example: A project has an abstract method that is implemented 4 times.
According to the way the Allamanis dataset is split it is likely that 1 out of the 4 implemented
methods are contained in the test set, while the other 3 implemented methods are in the train-
ing set. This implemented method would then be known by the model, independent of its
name. Therefore, even project-specific method names are known by the models for the Allamanis
dataset. This is in contrast to the Java-small test set. The model only knows method names that
are not specific to any project. This small detail results in the significant higher F1-Score for token
models trained and evaluated on the Allamanis dataset over token models trained and evaluated
on the Java-small dataset.

6.1.2 Evaluation of Sub-token Based Models
In this section, I discuss the results for the sub-token based models which includes the Sequence-
to-Sequence Sub-token Model and the Sequence-to-Sequence with Attention Sub-token Model.
First, accuracy is computed. Although, a more interesting evaluation of the sub-token models is
the F1-score on a sub-token level adapted from Alon et. al [25]. This metric is able to also credit
the model if it partially predicted a method name correct.
For example, accuracy rewards the model if it correctly predicts "get UNK", but punishes the
model for "get UNK cache" if the correct prediction is "get UNK cache directory". The model
should be given more credits to the second example for being able to predict several sub-tokens
of the method name. Table 6.4 illustrates the different results for the sub-token based models for
the Allamanis dataset. The first column shows the accuracy of the different sub-token models.
The second column shows the accuracy of the different sub-token models where k equals the size
of beam search. I chose k to be rather large to find potential differences between greedy decoding
(k = 1) and beam search decoding (k > 1). Column 3 illustrates the F1-Score for the Sequence-
to-Sequence Sub-token Model (beam size k = 1 and k = 100) and for the Sequence-to-Sequence
with Attention Sub-token Model. Table 6.5 illustrates the different results for the sub-token based

6.2 Token Models vs. Sub-token Models 33

Sub-token Model Accuracy F1 Score
Sequence-to-Sequence Sub-token Model (k=1) 22.1% 0.44
Sequence-to-Sequence Sub-token Model (k=100) 23.25% 0.43
Sequence-to-Sequence with Attention Sub-token Model 28.85% 0.47

Table 6.4: Metrics of Sub-token Models for the Allamanis Dataset

models for the Java-small dataset. For both datasets, beam search did neither improve nor reduce
results. Similar to the evaluation of the token based models, the results I report for the Java-small
dataset are much lower than the ones from the Allamanis dataset: Accuracy for the Sequence-to-
Sequence Sub-token Model is between 12 − 14% for the Java-small dataset and between 22 − 29%
for the Allamanis dataset. Also, the F1-Score for the Java-small dataset is lower (0.32 − 0.36)
than for the Allamanis dataset (0.43 − 0.47). The Sequence-to-Sequence Sub-token Model with
Attention scores the highest results for the Allamanis dataset: The overall accuracy is 28.85% and
the F1-Score is 0.47.

Sub-token Model Accuracy F1 Score
Sequence-to-Sequence Sub-token Model (k=1) 13.26% 0.34
Sequence-to-Sequence Sub-token Model (k=100) 12.33% 0.36
Sequence-to-Sequence with Attention Sub-token Model 12.6% 0.33

Table 6.5: Metrics of Sub-token Models for the Java-small Dataset

To answer RQ1, I conclude that both token models and sub-token models are able to accurately
suggest method names. If unknown method names are excluded from the test set, the accuracy
of RNN Token Models provides a relative increase of 21% over the feed-forward Token Model.
Furthermore, the token models’ accuracy improves as their predictions’ confidence increases. For
the sub-token approach, the attention mechanism provide a relative increase of 27% in accuracy
for the Allamanis dataset and resulted in a slightly higher F1-Score. I did not observe any increase
in accuracy or the F1-Score for the Java-small dataset though. Beam search did not significantly
increase or reduce my result for both datasets.
Finally, the token and sub-token models are significantly more effective if partially trained on the
source code project they later predict on.

6.2 Token Models vs. Sub-token Models
In this section, I will compare the F1-Score of token models with the F1-Score of sub-token mod-
els in order to answer RQ2. This metric best evaluates the performance of the individual models
because it credits the sub-token models for partial correctness and doesn’t punish the prediction
of the UNK token. The F1-Score has a slight bias towards the token models because more diffi-
cult and rare method names are replaced by the UNK token and are therefore ignored. For the
Allamanis dataset, Both the best token model (GRU Token Model) and the best sub-token model
(Sequence-to-Sequence with Attention Sub-token Model) score the same F1-Score of 0.47. For the
Java-small dataset, the best sub-token model’s F1-Score (Sequence-to-Sequence Sub-token Model
with beam size k = 100) is significantly higher than the F1-Score obtained by the best token model

34 Chapter 6. Evaluation

Token Model Allamanis Dataset Java-small
Best Token Model 0.47 0.22
Best Sub-token Model 0.47 0.36

Table 6.6: F1-Score of the best Token and Sub-token
Model

(GRU Token Model).

Based on this metric, we can conclude that the token models’ performance is similar to the
performance of sub-token models if partially trained on the source code project it later predicts.
If the model’s goal is to predict on a previously unobserved source code project, the sub-token
models provide a better suggestion of method names. Nevertheless, these values can only be
compared with caution, because the F1-Score is slightly different constructed for the token and
the sub-token approach.

6.2.1 Qualitative Analysis
In this section, I will show different use-cases and illustrate what the models are able to predict
and what the models cannot predict. The goal is to better understand the strengths and weak-
nesses of predictions made by the token and sub-token based models to answer RQ2.
First, I will illustrate what the models are able to predict with 4 different examples. For each case,
the first row provides a code snippet: a method in Java. For this particular method, the goal is to
find the function name denoted as "f" (where the function name is usually placed). Row 2 presents
the ground truth. Each row (3 − 8) then shows the prediction for this specific code snippet made
by the individual models. Row 9 visualizes the attention weights by the Sequence-to-Sequence
with Attention Sub-token Model.
Table 6.7 illustrates the prediction of the different models for a short method body and method
name. The token models (feed-forward, GRU, LSTM, bidirectional LSTM Token Model) and
the sub-token models (Sequence-to-Sequence, Sequence-to-Sequence with Attention Sub-token
Model) all correctly predict "clone" as the method name. In the last row, a visualization of the
attention weights for the Sequence-to-Sequence with Attention Sub-token Model can be seen. It
illustrates the importance of the individual input sub-tokens for each generated output sub-token:
E.g. to predict the sub-token "clone", the model emphasizes most on the input sub-token "clone".
A slightly more complicated case exemplifies Table 6.8: In this example, the method name is not
already present in the method body. All models except the feed-forward model are able to pre-
dict "getItem" correctly. The attention visualization shows that to predict the sub-token "item",
the model focuses mostly on the input sub-token "position". Table 6.9 demonstrates a more dif-
ficult problem. The function name "getNodesStats" is not known by the token models. Hence,
their prediction result in the UNK token. The Sequence-to-Sequence Sub-token model predicts
the sub-token "stats", which is only partially correct. Only the Sequence-to-Sequence with Atten-
tion Sub-token Model is able to predict the complete method name correctly. Again, the last row
illustrates the attention distribution. The last example I present for which the models make a
true prediction is the most complicated one. It consists of a long method body and the method
name is composed of 4 sub-tokens (test, single, valued, field). Interesting here are the attention
weights: For the predicted sub-token "single", the model most focuses on the input sub-tokens
around "query" and "match". Next, I present 3 cases for which the method name cannot be pre-
dicted with token-based models. The method name is unknown to the model and hence out-of-

6.2 Token Models vs. Sub-token Models 35

Case 1

Code Snippet
1 public ExtendedRails f(){

2 return (ExtendedRails) super.clone();

3 }

Ground truth clone

feed-forward Token Model clone

GRU Token Model clone

LSTM Token Model clone

bidirectional LSTM Token
Model

clone

Sequence-to-Sequence Sub-token
Model

clone

Sequence-to-Sequence with Attention
Sub-token Model

clone

Attention Weights

Table 6.7: Case 1: A short method name that consists of 1 sub-token

36 Chapter 6. Evaluation

Case 2

Code Snippet
1 public Object f(int position){

2 return position;

3 }

Ground truth getItem

feed-forward Token Model getItemId

GRU Token Model getItem

LSTM Token Model getItem

bidirectional LSTM Token
Model

getItem

Sequence-to-Sequence Sub-token
Model

getItem

Sequence-to-Sequence with Attention
Sub-token Model

getItem

Attention Weights

Table 6.8: Case 2: A slightly more complicated case: The method name consists of 2
sub-tokens

6.2 Token Models vs. Sub-token Models 37

Case 3

Code Snippet
1 public ClusterStatsNodes f(){

2 return nodesStats;

3 }

Ground truth getNodesStats

feed-forward Token Model UNK

GRU Token Model UNK

LSTM Token Model UNK

bidirectional LSTM Token
Model

UNK

Sequence-to-Sequence Sub-token
Model

stats

Sequence-to-Sequence with Attention
Sub-token Model

getNodesStats

Attention Weights

Table 6.9: Case 3: The ground truth is not in the vocabulary

38 Chapter 6. Evaluation

Case 4

Code Snippet

1 @Test

2 public void f()

3 throws Exception {

4 SearchResponse searchResponse = client()

5 .prepareSearch("idx")

6 .setQuery(matchAllQuery())

7 .addAggregation

8 (extendedStats("stats")

9 .field("value"))

10 .execute().actionGet();

11 assertThat(searchResponse.getHits()

12 .getTotalHits(), equalTo(10l));

13

14 ...

15 }

Ground truth testSingleValuedField

feed-forward Token Model testUnmapped

GRU Token Model testSingleValuedField

LSTM Token Model testSingleValuedFieldPartiallyUnmapped

bidirectional LSTM Token
Model

testMultiValuedField

Sequence-to-Sequence
Sub-token Model

testSingleValuedField

Sequence-to-Sequence with
Attention Sub-token Model

testSingleValuedField

Attention Weights

Table 6.10: Case 4: A complicated use-case where the method name is composed of 4 sub-tokens

6.2 Token Models vs. Sub-token Models 39

vocabulary. Table 6.11 demonstrates this: The goal is to predict the method name "decodeInteger"
which it has never seen before. All the token models predicted UNK and are therefore not help-
ful for a potential end-user. Instead, the Sequence-to-Sequence Sub-token Model with beam size
k = 100 predicts the sub-token decode, which is at least partially correct. Another interesting

Case 5

Code Snippet

1 public BigInteger f(byte[] pArray){

2 return new BigInteger(1,

3 decodeBase64(pArray));

4 }

Ground truth decodeInteger

Token Models UNK

Sequence-to-Sequence Sub-token
Model (k = 100) decode

Table 6.11: Case 5: Partially correct prediction by the Sequence-to-Sequence Sub-token
Model with k = 100

prediction provided by the Sequence-to-Sequence Sub-token Model is demonstrated in table 6.12.
For another method name the models have never seen before (and hence the prediction from the
Token Models are UNK) the Sequence-to-Sequence Sub-token Model makes a prediction which
captures the semantical meaning of the function. For beam size k = 1 (greedy decoding), the
model predicts "getPagesCount" and for beam size k = 100, the model predicts "count" while
the ground truth is "countPages". An example for a longer function body (and hence a more
difficult task for the models) is provided in table 6.13. The ground truth in this example is "ejec-
tUserFromMeeting". This method name is not in the model’s vocabulary and the token models
therefore correctly predict the UNK token. The Sequence-to-Sequence Sub-token Model predicts
"removeUser". "Remove" and "Eject" have a similar meaning and therefore this prediction is more
useful than just UNK provided by the token models. The last example I will show is a situation
where my models are not useful to a potential end-user. Case 8 in table 6.14 is a complicated
function that is originally close to 90 lines long. It is difficult for the models to infer the method’s
functionality. The token models all predict UNK. The sub-token models also don’t predict any-
thing useful. But in this situation, the token models’ prediction is better: at least nothing is shown
to the end-user.

40 Chapter 6. Evaluation

Case 6

Code Snippet

1 private int f

2 (UploadedPresentation pres) {

3 int numPages = 0;

4 if (pageCounter == null) {

5 log.warn("No page counter!");

6 return 0;

7 }

8 numPages = pageCounter

9 .countNumberOfPages

10 (pres.getUploadedFile());

11 log.debug("There are " + numPages);

12 return numPages;

13 }

Ground truth countPages

Token Models UNK

Sequence-to-Sequence Sub-token
Model (k = 1)

getPagesCount

Sequence-to-Sequence Sub-token
Model (k = 100) count

Table 6.12: Case 6: Partially correct Prediction by the Sequence-to-Sequence Sub-token
Model

6.2 Token Models vs. Sub-token Models 41

Case 7

Code Snippet

1 public void f

2 (Map<String, String> msg) {

3 String userId = (String)

4 msg.get("userId");

5 String ejectedBy = (String)

6 msg.get("ejectedBy");

7 IScope scope = Red5

8 .getConnectionLocal()

9 .getScope();

10 application.ejectUserFromMeeting

11 (scope.getName(),

12 userId, ejectedBy);

13 }

Ground truth ejectUserFromMeeting

Token Models UNK

Sequence-to-Sequence Sub-token
Model (k = 1) removeUser

Sequence-to-Sequence Sub-token
Model (k = 100) removeUser

Table 6.13: Case 7: the Sequence-to-Sequence Sub-token Model is able to capture the
function’s semantics

42 Chapter 6. Evaluation

Case 8

Code Snippet

1 public int f

2 (File presentationFile) {

3 int numPages = 0;

4 String COMMAND = SWFTOOLS_DIR +

5 "/pdf2swf -I "

6 + presentationFile

7 .getAbsolutePath();

8

9 Timer timer = null;

10 Process p = null;

11 try {

12 timer = new Timer(true);

13 InterruptTimerTask interrupter =

14 new InterruptTimerTask

15 (Thread.currentThread());

16 timer.schedule

17 (interrupter, 60000);

18

19 p = Runtime.getRuntime()

20 .exec(COMMAND);

21 BufferedReader stdInput =

22 new BufferedReader

23 (new InputStreamReader

24 (p.getInputStream()));

25 BufferedReader stdError =

26 new BufferedReader

27 (new InputStreamReader

28 (p.getErrorStream()));

29 String info;

30 Matcher matcher;

31

32 ...

33

34 }

Ground truth countNumberPages

Token Models UNK

Sequence-to-Sequence Sub-token
Model (k = 1)

getDefaultNumCancel

Sequence-to-Sequence Sub-token
Model (k = 100) encode

Table 6.14: Case 8: Useless Predictions (by all the models)

6.3 Different Input Parameters 43

6.3 Different Input Parameters
To answer RQ3, I run the GRU Token Model and the Sequence-to-Sequence Sub-token Model
with different input parameters and evaluate them on the Allamanis dataset. I chose the GRU
Token Model because it scored the best F1-Score for the original input (RQ1). Table 6.15 illustrates
how the F1-Score changes when I adjust the input for the GRU Token Model. Row 1 represents
the optimal input (and was used to evaluate RQ1). If I only include the first 4 parameters and no
tokens from the method body, the F1-Score decreases 20.51%. Furthermore, if only the first 6 or
18 tokens of the method body are included, the F1-Score decreases 9.3% or 4.44% respectively.

F1-Score of the GRU Token Model Relative Increase

Method Body = 22
Parameters = 4
including Type

0.47 0%

Method Body = 0
Parameters = 4
including Type

0.39 −20.51%

Method Body = 6
Parameters = 0
including Type

0.43 −9.3%

Method Body = 18
Parameters = 0
including Type

0.45 −4.44%

Table 6.15: Token F1 Score for different Inputs

Table 6.16 shows a similar picture: The F1-Score decreases substantially if the model had to
predict method names solely based on the first 4 sub-tokens of the parameters. Additionally, the
F1 Score decreases 15.79% if I only include the first 6 sub-tokens from the method body and 4.76%
if only the first 18 sub-tokens are included.

I therefore conclude that an optimal model needs to know about the function’s parameters
and the method body.

44 Chapter 6. Evaluation

F1-Score of the Sequence-to-Sequence
Sub-token Model Relative Increase

Method Body = 28
Parameters = 4
including Type

0.44 0%

Method Body = 0
Parameters = 4
including Type

0.31 −41.94%

Method Body = 6
Parameters = 0
including Type

0.38 −15.79%

Method Body = 18
Parameters = 0
including Type

0.42 −4.76%

Table 6.16: Sub-token F1 Score for different Inputs

Chapter 7

Threat to Validity

In this chapter, I highlight some of the difficulties that arise when I applied deep learning models
to source code.

7.1 Out-of-Vocabulary Tokens

OOV (Out of Vocabulary) words are tokens that do not occur during training and are a general
difficulty in NLP. When applying deep learning models to source code the problem is even more
common: Identifier names, such as class, method or variable names often consist of neologisms,
i.e. a newly invented word or a new meaning for an existing word. Consider the following func-
tion. It is clear to the reader that this method returns a reversed ArrayList. The model might
have seen the function name "getReversedList" but not with the acronym "Rev" instead of "Re-
versed". Hence, during testing, the token models would replace "getReversedList" with the UNK
identifier. To mitigate this threat, I split method names into sub-tokens.

1 public ArrayList getRevList(ArrayList orig)

2 {

3 ArrayList reversed = new ArrayList();

4 for(int i= orig.size()-1; i>=0; i--)

5 {

6 Object obj = orig.get(i);

7 reversed.add(obj);

8 }

9

10 return reversed;

11 }

Listing 7.1: An example of a Neologism in a Java Method Name

Furthermore, a good model might suggest "get, reversed, list" which is an accurate suggestion.
But during evaluation, "rev" and "reversed" is considered to be wrong. To mitigate this threat, I
included a qualitative analysis of the models.

46 Chapter 7. Threat to Validity

7.2 Quality of Training Data
During training, another threat is that the model learns project-specific method naming conven-
tions or even worse the training set used during training consists of bad naming of method names.
Such an example is provided below. In the Allamanis dataset, a project (Platform Frameworks
Base) consists of 1000 "getXXX" method names. These methods are not useful for the model.
Hence, I removed these methods before training.

7.3 Splitting of Training and Test Set
To accurately evaluate a model’s performance it is important to state how the training and test set
is split across the open-source projects in the dataset. Allamanis et al. [22] split each project in a
training set (70%) and a test set (30%). Alon et. al [25] used 80% of the projects during training,
10% during validation and the rest for testing. Therefore Alon et. al [25] trained and evaluated
the models on different source code projects. Thus, I report the metrics for both datasets.

Chapter 8

Implementation Details

In this chapter, I will discuss the technologies I used and the general structure of my codebase.
All the code in this work is written with Python 3. I used the Pandas library to deal with big
data tables [10] and the Numpy library to deal with tensors (nd-Arrays) [2]. All token models are
implemented with Keras, a high-level API that runs on top of TensorFlow [7]. The Sequence-to-
Sequence Sub-token Model is also implemented with Keras. I had difficulties implementing the
attention mechanism for the Sequence-to-Sequence with Attention Sub-token Model with Keras
and therefore had to use Tensorflow (eager execution) [13]. Moreover, I tried to follow typical
system quality attributes, such that the software is maintainable, readable and extensible. All
models follow this general structure:

1. Preparation of the training data and training the model or loading a pre-trained model

2. Preparing the test set and evaluating the model

Because each experiment depends on many parameters (input size, model parameters, training
parameters) I use an external JSON configuration file which lets me quickly adjust these param-
eters. Furthermore, for each experiment I run, I create a report folder where I save the most
important metrics.
Preparation of the data and the evaluation of the models differ between the token models and the
sub-token models. Therefore, I further separate the codebase in a token approach and a sub-token
approach.

8.1 Implementation of the Token Approach
In this section, I will explain the code structure of the token approach. The top file to run any
experiment is called "run_token_model.py". I use a configuration file to specify which model
should be run, set the size of hidden states, determine the size of the input, etc.
The following paragraph is a code walkthrough of a typical experiment, where I first train a model
and then evaluate it.

First, I need to prepare the data for training. I do that by creating a dictionary of tokens for the
training data and then turn the samples into tensors which serve as the input for the model. To
not do these operations every time I want to train and evaluate a model, I save the prepared data
(Numpy nd-Arrays) and the dictionary to disk.
I ran into many memory errors when I tried to load the entire training set at once, therefore I split
the data in chunks. First, I divided the training data into chunks of the batch size (64), but this
resulted in too many I/O operations. Hence, I split the training data in chunks of 32000 samples.

48 Chapter 8. Implementation Details

After preparing the training data, I build the token model. I organized the code such that each to-
ken model implements an abstract model class. This abstract model class is only a boilerplate and
saves the architecture of the model to disk. The abstract method "build_model" is implemented
by the individual token model classes.
After the model is built, I train it. To do so, I pass the model to a newly created trainer instance.
The trainer object is independent of the specific token model. After training is completed, I save
the trained model.
Subsequently, I evaluate the freshly trained model. First, I load the test set. Thereafter, the model
makes a prediction for each sample in the test set. I then save the inputs, predictions and ground
truth to a CSV file. Afterwards, I compute the accuracy, top-5-accuracy, and F1-Score.
For faster experimentation, I added flags to my main file. It allows me to quickly adjust the con-
figuration file. Table 8.1 illustrates how the flags can be used to control the program with the
command line.

Command Description

python run_token_model.py
--model=GRU --epochs=17

Trains the GRU Token Model over 17 epochs

python run_token_model.py
--model=LSTM --batch_size=64

Trains the LSTM Token Model with a batch size of
64

python run_token_model.py
--model=GRU --data=Java-small

Trains the GRU Token Model on the Java-small
dataset

Table 8.1: Examples of running a token model with different configurations (from the
command line)

8.2 Implementation of the Sub-token Approach

Command Description

python run_seq2seq.py
--mode=eval

Evaluates on a pretrained Seq2Seq Sub-token Model

python run_seq2seq.py
--batch_size=64

Trains Seq2Seq Sub-token Model with a batch size
of 64

python run_seq2seq_attention.py
--data=Java-small

Trains a Seq2Seq Sub-token Model with the Java-
small dataset

Table 8.2: Examples of running a sub-token model with different configurations (from the
command line)

In this section, I will describe the sub-token code structure, which is similar to the token ap-
proach. For the sub-token approach it was not possible to control everything from one top file
because I ran into compatibility issues between Keras and Tensorflow’s eager execution. The fol-

8.2 Implementation of the Sub-token Approach 49

lowing paragraph is a code walkthrough of a typical experiment for the Sequence-to-Sequence
with Attention Sub-token Model, where I first train a model and then evaluate it.

First, I load the training data. I then build the Seq2Seq with Attention Sub-token Model ac-
cording to the specified settings in the configuration file. I instantiate the encoder and decoder of
the model (which are separate classes). Thereafter, I train the model. Afterwards, I evaluate the
model and save the predictions and metrics to disk.
Similarly to the token approach, I use flags for faster experimentation. Table 8.2 gives some ex-
amples of how to control the sub-token models with flags.

Chapter 9

Conclusion

Predicting accurate method names based on its functionality is not a trivial task. Intuitively, a
good model needs to be able to comprehend the method’s type, parameters, and body to mean-
ingfully label it. I suggest 6 different neural network architectures to predict methods across dif-
ferent projects. These models can be categorized in token based and sub-token based approaches.
The core idea behind the sub-token based models is to further split the method name into sub-
tokens.
I present a quantitative and qualitative analysis which give different insights on the results ob-
tained. The quantitative analysis demonstrates the strength and weaknesses of the different mod-
els with different metrics. On the other hand, it has the difficulty of not crediting the models if
they can capture the method’s functionality with different tokens. For example, if a sub-token
model predicts a synonym to the correct sub-token.
The qualitative analysis provides another insight: It illustrates what the models in this work can
predict and in which case the models’ predictions are useless.
I conclude that the models’ effectiveness depends on their practical context. For example, sub-
token models are especially useful when predicting on projects previously unobserved. Similarly,
if the developer actively asks for a method name suggestion, sub-token models should be used,
because their suggestion is often closer to the ground truth especially with more complicated
methods.
In a different setting, a more conservative model makes more sense: if the model has been par-
tially trained on a project and should now help to highlight bad method names. In this case, a
token model could be sufficient because it tends to predict the UNK identifier more often in un-
sure situations. Therefore, the model could be configured such that it only highlights particularly
bad method names where an obvious better result is at hand.
In general, the RNN token models were less effective than initially anticipated. I expected the
RNN models to have difficulties with processing the input because I omit a lot of the code snip-
pet’s structure. Therefore, I conclude that for an RNN to have substantial gain over more tradi-
tional feed-forward neural networks in analyzing source code, a significant amount of effort has
to be made to map the structure of a code snippet to a sequence. This is beyond the scope of
this thesis. Alternatives are Tree-LSTMs or graph gated neural networks that are more flexible
in learning the input’s structure than unidirectional or bidirectional LSTMs. Another difficulty
poses decoding for the sub-token models. There, deep reinforcement learning algorithms could
be used to help the model make better decisions.
To be of practical use, a tool on top of such a model could be built that serves as an extension in an
IDE and a possibility should be given to partially train the model on the current software project.

52 Chapter 9. Conclusion

Bibliography

[1] Attn: Illustrated attention. https://towardsdatascience.com/
attn-illustrated-attention-5ec4ad276ee3. Accessed: 03-07-2019.

[2] Base n-dimensional array package. http://numpy.org/. Accessed: 20-07-2019.

[3] Beyond accuracy: Precision and recall. https://towardsdatascience.com/
beyond-accuracy-precision-and-recall-3da06bea9f6c. Accessed: 09-07-2019.

[4] Hyperparameter optimization for keras models. https://github.com/autonomio/
talos. Accessed: 05-07-2019.

[5] Introduction to word embedding and word2vec. https://towardsdatascience.com/
introduction-to-word-embedding-and-word2vec-652d0c2060fa. Accessed: 22-
06-2019.

[6] Java parser and abstract syntax tree for java. https://github.com/javaparser/
javaparser. Accessed: 05-07-2019.

[7] Keras is a high-level neural networks api. https://keras.io/. Accessed: 20-07-2019.

[8] Lstm and gru – formula summary. https://isaacchanghau.github.io/post/
lstm-gru-formula/. Accessed: 22-06-2019.

[9] Neural machine translation with attention. https://github.com/tensorflow/
tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/nmt_
with_attention/nmt_with_attention.ipynb. Accessed: 03-07-2019.

[10] Python data analysis library. https://pandas.pydata.org/. Accessed: 20-07-2019.

[11] Seq2seq with attention and beam search. https://guillaumegenthial.github.io/
sequence-to-sequence.html. Accessed: 22-06-2019.

[12] Suggesting meaningful method names. https://github.com/yrutis/
suggesting-identifiers. Accessed: 22-07-2019.

[13] Tensorflows eager execution is an imperative programming environment that evaluates
operations immediately, without building graphs. https://www.tensorflow.org/
guide/eager. Accessed: 20-07-2019.

[14] Understanding lstm networks. http://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed: 22-06-2019.

https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
http://numpy.org/
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://github.com/autonomio/talos
https://github.com/autonomio/talos
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://keras.io/
https://isaacchanghau.github.io/post/lstm-gru-formula/
https://isaacchanghau.github.io/post/lstm-gru-formula/
https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb
https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb
https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb
https://pandas.pydata.org/
https://guillaumegenthial.github.io/sequence-to-sequence.html
https://guillaumegenthial.github.io/sequence-to-sequence.html
https://github.com/yrutis/suggesting-identifiers
https://github.com/yrutis/suggesting-identifiers
https://www.tensorflow.org/guide/eager
https://www.tensorflow.org/guide/eager
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

54 BIBLIOGRAPHY

[15] A very simple convenience wrapper around hyperopt for fast prototyping with keras mod-
els. https://github.com/maxpumperla/hyperas. Accessed: 30-05-2019.

[16] What is teacher forcing for recurrent neural networks? https://
machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/.
Accessed: 22-06-2019.

[17] What is the difference between a batch and an epoch in a neu-
ral network? https://machinelearningmastery.com/
difference-between-a-batch-and-an-epoch/. Accessed: 22-06-2019.

[18] What’s the difference between a matrix and a tensor? https://medium.com/
@quantumsteinke/whats-the-difference-between-a-matrix-and-a-tensor-4505fbdc576c.
Accessed: 22-06-2019.

[19] M. Allamanis, E. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big code
and naturalness. ACM Computing Surveys, 51, 09 2017.

[20] M. Allamanis, E. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big code
and naturalness. ACM Computing Surveys, 51, 09 2017.

[21] M. Allamanis, E. Barr, and C. Sutton. Learning natural coding conventions. 02 2014.

[22] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Suggesting Accurate Method and Class
Names.

[23] M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to represent programs with
graphs. 11 2017.

[24] M. Allamanis, H. Peng, and C. Sutton. A convolutional attention network for extreme sum-
marization of source code. 02 2016.

[25] U. Alon, O. Levy, and E. Yahav. code2seq: Generating sequences from structured represen-
tations of code. 08 2018.

[26] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. code2vec: Learning distributed representa-
tions of code. Proceedings of the ACM on Programming Languages, 3, 03 2018.

[27] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol, and Y.-G. Guéhéneuc.
Repent: Analyzing the nature of identifier renamings. Software Engineering, IEEE Transactions
on, 40:502–532, 05 2014.

[28] Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic language model. volume 3,
pages 932–938, 01 2000.

[29] C. Boogerd and L. Moonen. Assessing the value of coding standards: An empirical study.
pages 277 – 286, 11 2008.

[30] J. Campbell, A. Hindle, and J. Amaral. Syntax errors just aren’t natural: Improving error
reporting with language models. 11th Working Conference on Mining Software Repositories,
MSR 2014 - Proceedings, 05 2014.

[31] X. Chen, C. Liu, and D. Song. Tree-to-tree neural networks for program translation. 02 2018.

[32] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of neural ma-
chine translation: Encoder-decoder approaches. 09 2014.

https://github.com/maxpumperla/hyperas
https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/
https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://medium.com/@quantumsteinke/whats-the-difference-between-a-matrix-and-a-tensor-4505fbdc576c
https://medium.com/@quantumsteinke/whats-the-difference-between-a-matrix-and-a-tensor-4505fbdc576c

BIBLIOGRAPHY 55

[33] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical machine translation.
CoRR, abs/1406.1078, 2014.

[34] F. Chollet. Deep Learning with Python. Manning, Nov. 2017.

[35] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. 12 2014.

[36] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). Under Review of ICLR2016 (1997), 11 2015.

[37] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. 12 2016.

[38] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural networks : the official journal of the International
Neural Network Society, 18:602–10, 07 2005.

[39] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735–80,
12 1997.

[40] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Summarizing source code using a neural
attention model. pages 2073–2083, 01 2016.

[41] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. Whats in a name? a study of identifiers.
volume 2006, pages 3– 12, 07 2006.

[42] M. Luong, E. Brevdo, and R. Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

[43] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[44] T. Mikolov, G. Corrado, K. Chen, and J. Dean. Efficient estimation of word representations
in vector space. pages 1–12, 01 2013.

[45] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. Convolutional neural network over tree struc-
tures for programming language processing. 09 2014.

[46] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura. Learning to
generate pseudo-code from source code using statistical machine translation (t). pages 574–
584, 11 2015.

[47] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane, A. Bacchelli, and P. T. Devanbu. On
the "naturalness" of buggy code. CoRR, abs/1506.01159, 2015.

[48] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. Signal Processing,
IEEE Transactions on, 45:2673 – 2681, 12 1997.

[49] K. Sheng Tai, R. Socher, and C. Manning. Improved semantic representations from tree-
structured long short-term memory networks. 1, 02 2015.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

56 BIBLIOGRAPHY

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 06 2014.

[52] E. W. Høst and B. M. Østvold. Debugging method names. pages 294–317, 07 2009.

[53] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. Yu. Improving automatic source code
summarization via deep reinforcement learning. pages 397–407, 09 2018.

[54] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code fragments for
code clone detection. pages 87–98, 08 2016.

[55] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk. Toward deep learning
software repositories. pages 334–345, 05 2015.

[56] yrutis. yrutis/suggesting-identifiers: Source Code for the Bachelor’s Thesis, July 2019.

	Introduction
	Related Work
	Identifier Names
	Language Models for Source Code

	Background
	Language Models
	Representation of Words
	Feed-forward Neural Networks
	Recurrent Neural Networks

	Sequence-to-Sequence Model
	Encoder
	Decoder
	Sequence-to-Sequence with Attention
	Training
	Inference

	Data
	Dataset
	Allamanis Dataset
	Java-small

	Parsing
	Data Preprocessing
	Rare Tokens

	Statistics on the Data

	Approach
	Models
	Token Based Models
	Sub-token Based Models

	Evaluation
	Predicting Identifier Names using Neural Networks
	Evaluation of Token based Models
	Evaluation of Sub-token Based Models

	Token Models vs. Sub-token Models
	Qualitative Analysis

	Different Input Parameters

	Threat to Validity
	Out-of-Vocabulary Tokens
	Quality of Training Data
	Splitting of Training and Test Set

	Implementation Details
	Implementation of the Token Approach
	Implementation of the Sub-token Approach

	Conclusion

