
Utilizing Eccentric
User Preferences and
Negative Feedback to

Improve
Recommendation

Quality

Sandro Luck
of Zürich ZH, Switzerland

Student-ID: 13-927-769
sandro.luck@gmx.ch

Thesis February 1, 2018

Advisor: Bibek Paudel

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisors Bibek Paudel
for his support, help, expertise and time he dedicated to me. I thank Prof. Dr. Abraham
Bernstein, the head of the Dynamic and Distributed Information Systems Group at the
University of Zurich, for making this project possible.

Zusammenfassung

Die Benutzerzufriedenheit in Recommender-Systemen h�angt von vielen anderen Fak-
toren als dem Recall ab. Benutzer sch�atzen auch Qualit�aten wie die Auswahlm�oglichkeiten,
Neuheit und Vielfalt.
In dieser Arbeit untersuchen wir zwei verschiedene Bereiche, um die Qualit�at und Vielfalt
von Empfehlungen mithilfe von Collaborative Filtering zu verbessern. Im ersten Prob-
lem konzentrieren wir uns auf die Two-Class Collaborative Filterung, bei der das Ziel
darin besteht, mehr positive Items zu empfehlen und gleichzeitig die Anzahl der neg-
ativen Items an der Spitze der Empfehlungsliste zu reduzieren. Die Modellierung des
Nutzerverhaltens unter Ber�ucksichtigung ihrer negativen Pr�aferenzen hat gezeigt, dass
sie vielf�altigere und genauere Empfehlungen liefert. In dieser Arbeit erweitern wir das
k�urzlich entwickelte Collaborative Metric Learning, indem wir negative Entscheidungen
modellieren. Wir konnten mit experimentellen Resultaten zeigen, dass unsere Methode
in der Lage ist, die Qualit�at zu verbessern und die Anzahl der negativen Empfehlungen
zu reduzieren. Im zweiten Problem betrachten wir das Problem der Verbesserung der
Empfehlungsvielfalt. Nicht alle Benutzer bevorzugen Nischen-Empfehlungen in gleichem
Masse, und es ist wichtig, die Empfehlungen entsprechend zu variieren. Wir erforschen
das Konzept der Item Controvery und entwickeln eine neue Methode zur Generierung
von Empfehlungen. Unsere Experimente zeigen, dass unsere Methode in der Lage ist,
die Empfehlungen zu diversi�zieren und in den meisten F�allen eine �ahnliche oder bessere
Genauigkeit zu erzielen.

Abstract

User satisfaction in Recommender Systems is dependent on many factors other than
prediction accuracy. People also value qualities like variety, novelty and diversity. In
this work, we explore two di�erent areas to increase the quality and diversity of recom-
mendations using well known Collaborative Filtering techniques.
In the �rst problem, we focus on Two-Class Collaborative Filtering, where the goal is
to recommend more positive items, while reducing the number of negative items at the
top of recommendation lists. Modeling user behavior by accounting for their negative
preference has shown to produce more diverse and accurate recommendations. In this
work, we extend the recently developed Collaborative Metric Learning by modeling neg-
ative choices. We show with experimental results on openly available datasets that our
method is able to improve recommendation quality and reduce the number of negative
recommendations at the top. In the second problem, we look at the problem of improv-
ing recommendation diversity. Not all users prefer niche items to the same extent, and
it is important to diversify recommendations accordingly. We explore the concept of
item controversy and eccentricity and develop a new method to recommend nice items
to users based on their inclination to such items. Our experiments show that our method
is able to diversify the recommendations while achieving competitive or better accuracy
in most cases.

Table of Contents

1 Introduction 1
1.1 Recommender Systems . 1

1.1.1 Collaborative Filtering . 1

1.1.2 Cold Start Problem . 2

1.1.3 Data sparsity . 2

1.2 Metric Learning . 2

1.2.1 Metrics and Distances . 3

1.3 Tensor
ow . 3

1.4 Recommendation Diversity . 3

1.5 Our Contribution . 4

1.6 Thesis Outline . 4

2 Collaborative Metric Learning with Negative Feedback 5
2.1 CML . 5

2.1.1 Model Formulation . 5

2.2 CML with Explicitly Negative Feedback 6

2.2.1 Model Formulation . 9

2.2.2 Training Procedure . 9

2.3 Negative Items in Top K . 10

2.4 Ratings . 11

2.4.1 Convert Interval-based & Continuous Ratings to Binary Ratings . 11

2.5 Datasets . 12

2.5.1 Concentration . 13

2.6 Results . 14

2.6.1 Results CML-Original . 15

2.6.2 Results CML-Explicit Negative Feedback 17

2.7 Result Comparison . 19

2.7.1 Goodbooks 10k . 21

2.7.2 Movielens 1 million . 22

3 Diverse Recommendations 25
3.1 Popularity . 25

3.1.1 Controversy . 26

x Table of Contents

3.1.2 User-Controversy . 27
3.2 Item-Eccentricity . 28

3.2.1 Item-Rarity . 28
3.2.2 User-Eccentricity . 29
3.2.3 Item Eccentricity . 30
3.2.4 User Similarity for Eccentric Items 31
3.2.5 Item Similarity based on Eccentricity 32
3.2.6 Combining Item Similarity based on Eccentricity 33
3.2.7 Eccentric Item Similarity based on Eccentricity 33
3.2.8 Weighted combination . 34
3.2.9 Sigmoid Weighted Combination . 34

3.3 Results Eccentric Algorithm . 36
3.3.1 Results Pairwise Cosine Similarity 36
3.3.2 Results Eccentric Similarity . 37
3.3.3 Results Sigmoid Weighted combination 37

3.4 Result Comparison . 39

4 Limitations, Future Work and Conclusions 43
4.1 Limitations . 43
4.2 Future Work . 44
4.3 Conclusions . 44

A Appendix 49
A.1 CD-content . 49

x

1

Introduction

Machine learning has been used in a variety of �elds and improving on these system adds
great value to companies and individuals. Research and development in these areas are
therefore useful and desirable.
Machine Learning can be used to improve recommendations generated by Recommender
Systems. Recommender Systems are used in a variety of �elds from online-shopping to
music and movies. They have a big impact on how items are perceived and displayed to
users. These o�er their users a wide variety of advantages such as decreasing the search
time and improving the user satisfaction.

To further improve these systems we recommend looking closer at the negative feed-
back and items that are not popular. This can further improve the value the system
adds to the ecosystem it is used in. Using negative feedback and so-called Eccentric
items, we created systems which aim at improving user satisfaction.

1.1 Recommender Systems

Recommender Systems are software tools and frameworks which provide suggestions
items to users [Ricci et al., 2011]. The suggestions for the items might be in di�erent
�elds. These suggestions are often related to a decision-making process, e.g. what
item to buy, listen or watch. The term, "item" is the general term used to describe
what object is recommended to the user e.g. product, movie or book. The approaches
and techniques that are used for di�erent classes of items might vary depending on the
userbase and items that are recommended.

1.1.1 Collaborative Filtering

Collaborative �ltering (CF) is an approach used by Recommender Systems [Ricci et al., 2011].
The general concept is to collect user interactions on items which can be classi�ed as
either positive, negative or a scale in between. This is then used to predict user interac-
tions on di�erent items in the future (e.g. recommend movies the user might like).
Collaborative Filtering systems usually need big amounts of user-item relations to per-
form well. Several methods for applying collaborative �ltering exist and many people are

2 CHAPTER 1. INTRODUCTION

actively working on creating more. We will discuss several of these methods in the follow-
ing sections and various combinations of them. In a general sense, collaborative �ltering
is a process where users collaborate to �lter information [Sammut and Webb, 2011].
Typically such a process needs big collections of user-item relationships, often called
datasets, which can be from various areas such as movies, books, music, �nancial data
and environmental data.

1.1.2 Cold Start Problem

A problem that often arises when designing Recommender Systems is the so-called cold
start problem. The cold start problem describes the situation in which a small amount or
no information about users or items are present. Thus predictions can only be made with
a high uncertainty. Often very speci�c algorithms and techniques can be used, which
are good under these constraints. Paying attention to this can improve user satisfaction
signi�cantly.

1.1.3 Data sparsity

In commercial usage, Recommender Systems are based on large datasets and as a re-
sult, the user-item matrix that is used can become very big. While generally there are
algorithms that operate on sparse matrices to speed the process up, some of these al-
gorithms are only available for normal matrices. This aspect slows down learning and
increases the need for memory on the system. Also, the cold start problem is related to
this aspect since a new user will need to rate a su�cient amount of items to teach he
Recommender Systems how to capture his preferences. Often new items have a similar
problem, namely getting rated by enough users before being recommendable to other
users. These problems have to be addressed and minimized to ensure a Recommender
System’s recommendations are bene�cial for a user.

1.2 Metric Learning

One recent class of methods used for Recommender systems is based on metric learning
and have shown their usage in multiple applications. Metric learning (ML) algorithms
learn distance metrics that capture relations between data.
The goal is to learn a metric or embedding that assigns a low distance value to similar
items and a big distance value to dissimilar items. These embeddings are n-dimensional
and usually contain an embedding for the users and an embedding for the items. Gener-
ally, with more dimensions, the embeddings can capture the user item relations better.
To capture this relation a metric or pseudo metric is learned. To achieve this, the pro-
gram tries to minimize the distances between items and users which belong together e.g.
which the user liked.
In the following document, we will also describe how the same approach can be used to
increase the distance between items and user, which do not belong together e.g. the user

2

1.3. TENSORFLOW 3

disliked or is likely to be disliked. The general goal of such an approach is to group items
and users in n-dimensional space. The grouping can then be used to recommend items,
which a user might not have consumed yet. Such an approach can consider multiple
things such as likes, dislikes, features or also data related to the person.

1.2.1 Metrics and Distances

The understanding of distance in combination with similarity between users and items
can add great value to machine learning algorithms including K-nearest neighbor, K-
means, Collaborative Metric Learning and SVMs [Hsieh et al., 2017]. In this work, we
will look into how the distance can be used to capture a relationship between users and
items. Especially how to use negative feedback generated by the user to improve the
value of the system. Given pairs of negative and positive item-user pairs, the goal of the
system is to learn a distance that respects and predicts these relations.

1.3 Tensor
ow

Tensor
ow is an open source software usable among others in combination with python
[Abadi et al., 2015]. It is developed and maintained by Google. Tensor
ow is optimized
for numerical computations mainly useful for the purpose of machine learning using data

ow graphs. While the nodes in the graph represent operations the edges represent the
data arrays. The architecture allows computation on CPUs and GPUs. We especially
used the GPU approach to speed up computations.

1.4 Recommendation Diversity

Various datasets are concentrated in the sense that they have signi�cantly more in-
teractions on the most interacted items than on the rest. In other words, the rating
distribution follows a long-tailed distribution and acknowledging the tail can be valu-
able to gain additional information [Park and Kim, 2017]. Also, often the tail items are
ignored or not considered enough to provide the users with a satisfying experience. Since
the tail items, also called Eccentric items, are far less interacted with than the popu-
lar items, they might show more user-speci�c preferences. This additional information
might help to distinguish the user better from other users than with the more popular
interactions.
However, not every unpopular item is valuable to every type of user. Some items are
loved by the majority of users, some are only adored by a speci�c type of user with a
common interest. The work of C. Park and S. Kim [Park and Kim, 2017] has shown
that there is a big percentage of items in the long tail, which could be used to make both
more diverse and more interesting recommendations to users. This is important since
only increasing accuracy not necessarily increases user satisfaction [McNee et al., 2006].
The users do not only want to see the most popular items they also want a suitable

3

4 CHAPTER 1. INTRODUCTION

amount of diverse items. To capture this, the de�nition of Eccentric items has been
introduced [Park and Kim, 2017]. By using the Eccentricity as a benchmark value one
can show that recommendations are more diverse.

1.5 Our Contribution

The contribution of this work is improving the original Collaborative Metric Learning
algorithm and creating an Eccentricity based Recommender System.
The Collaborative Metric Learning algorithm is improved in our work by including the
negative feedback the user gave. We represent users and items in a higher dimensional
space, and consider their distance to re
ect their preference relationships, i.e, a user
prefers an item that is near in this space. Previous approaches only focus on lowering
the distance between a user and her/his preferred items, while ignoring the distance with
disliked items. We speci�cally model the distance with disliked items in this work. We
include the disliked items in the process and increase the distance between the user and
her/his disliked items.
Also, this work contributes a Recommender System based on Eccentricity. Eccentricity
has been overlooked in many other Recommender Systems. To improve user satisfaction
and recommendation diversity we aimed at including it into a Recommender System.
We will show that by including it into the recommendation process we can increase user
satisfaction in general by increasing the diversity of the recommendations. We will also
show that for the Eccentric users this improves the Recommender System signi�cantly.

1.6 Thesis Outline

In Chapter 2 Collaborative Metric Learning in general is introduced. Our contribution
Collaborative Metric Learning with explicit negative feedback is described and vari-
ous aspects of the implementation of this application are discussed such as, the rating
conversion, the mathematical formulas that have been used, the datasets, the results
that have been created and certain restrictions that have in
uenced this application.
In Chapter 3 various aspects that a�ect the Eccentricity are discussed. This includes
formulas that have been used, to capture the Eccentricity. Also, a way how to construct
a Recommender Systems using these formulas is introduced and tested. In Chapter 4
the limitations that have in
uenced this work, mainly hardware, are discussed. Also,
the Conclusions of this work are given and additional work that is expected to improve
the value of this work will be discussed. In Appendix A the installation instructions and
contents of the CD are listed.

4

2

Collaborative Metric Learning with
Negative Feedback

Collaborative Metric Learning(CML) has been shown to generate better recommenda-
tions than other state-of-the-art systems [Hsieh et al., 2017]. CML aims at combining
CF with ML. The idea of CML is to group users and items, which are suitable for the
user by learning a user-item joint metric to encode this relationship [Hsieh et al., 2017].
This algorithm generally, "pulls" (decreases the distance) similar pairs (item, user) closer
together in the joint user-item space. During the learning process, the users who co-liked
the same items will become closer neighbors in the learned vector space. The items which
are co-liked by the same users will become closer neighbors in the learned n-dimensional
space as well through this procedure. After execution the closest items of each user are
the items he liked previously and those liked by a user who liked similar items. Also,
features are taken into consideration to bring items with similar tags or features closer
together. The result of this algorithm is a user-item embedding, this embedding can
predict items, which a user might like by looking at the neighborhood of the user. The
neighborhood can be understood as the items which are distance wise the closest to the
user.

2.1 CML

In this section, we describe CML and the high-level concepts that are used to create
it. CML’s basic idea is that a set of user-item pairs S that are known to have positive
relationships are used to learn a user-item joint metric to encode these relationships
[Hsieh et al., 2017]. Generally one can see this process as pulling similar pairs closer
together and pushing the other pairs relatively further apart. This process will also
group users who co-liked the same items and group items which are co-liked by similar
users closer together. The closest item-neighbors of the users will become the items the
user liked and the items, which other users who share common likes, liked.

2.1.1 Model Formulation

For convenience, we state the model formulation stated in the original paper here again
[Hsieh et al., 2017]. Let rij denote user i’s rating to item j, one learns the user vector

6
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

ui 2 Rr and item vector vj 2 Rr such that the dot product uTi vj approximates rij
[Koren et al., 2009] . Each user and each items is represented with a user vector ui 2 Rr
and an item vector vj 2 Rr. Then these vectors are learned in a way that their Euclidean
distance,

d(i; j) = ui � vj

obeys user i’s relative preferences. This will result in items being liked by the users
becoming closer neighbors than items which the user did not like. The following loss
functions is used to approach this [Hsieh et al., 2017],

Lm0(d) =
P

(i;j)

P
(i;k)=2S wij [m+ d(i; j)2 � d(i; k)2]+

where j is an item user i liked, k is an item he did not like and [z]+ = max(z; 0) denotes
the standard hinge loss, wij is a ranking loss weight.

2.2 CML with Explicitly Negative Feedback

We propose our new method Collaborative Filtering with Explicitly Negative Feedback
(CML-EN) which is a new model build upon the CML. CML with Explicitly Negative
Feedback (CML-EN) is similar to the CML algorithm but aims at using all feedback
given by users. While the CML algorithm only considers positive feedback e.g. a like,
our approach also considers the explicitly negative feedback given by the user e.g. a
dislike.
CML is a way to represent relationships between users in a distance by giving each a
position in n-dimensional space. Also, the items are represented by a position in space
such that their distance to the users represents if they are liked by him/her. The general
idea is to push and pull items and users. This pushing and pulling is such that they
eventually end up at positions which describes their relationships. By describing the
positions of all items and users in the embedding, we gain new possible recommendations
by looking at the closest item user pairs. This work speci�cally aims at pushing items
further away from users which disliked these items. This process also pushes these
items further away from users which have not yet consumed them. This decreases the
probability a user is recommended an item he dislikes.
While the original only pulls the positive items closer to the user, this approach also
pushes (increases the distance) the explicitly negative items further away from the user.
We measure the squared di�erence between the user’s position in the embedding and the
explicitly negative item. This di�erence will then be added to the loss term as described
in the section 2.2.1. This loss term will then be minimized. In other words, given a
user ui and an item he disliked in we look up the position of both in the n-dimensional
embedding space. The function EPos(ui) will return an n-dimensional vector which
describes the position of the item or user in the respective embedding space. While the
look-up functions EPos(ui) and EPos(in) are implementation wise di�erently, we will
treat it here such that it returns the value of the position in the embedding space for both
items and users. This can be achieved by using the function tf:nn:embedding lookup

6

2.2. CML WITH EXPLICITLY NEGATIVE FEEDBACK 7

[Abadi et al., 2015]. We then us a function to measure the distance between the two
positions using

dist(ui; in) = sqDiff(EPos(ui); EPos(in))

we are using the Squared Di�erence. This method of distance measuring has been chosen
to stay consistent with the CML, which also uses the squared di�erence to measure
distances in the embedding. To capture the relations between a disliked item and a user.
We need to de�ne a function which decreases as the distance increases. To accomplish
this it is suitable to look at the inverse of the distance e.g. value

distance . We try to de�ne
it such that the minimization process decreases this inverse until a certain threshold
or safety margin is reached. We want to push the item far enough to not be in the
recommendation area anymore. However, we also want this inverse not to be decreased
too much since this would push all items very far away from all users. We, therefore,
de�ne a function,

UserNegativeDist(ui; in) = max(�
dist(ui;in) ; 1:0)

Where � is a distance tuner and describes the maximum distance the negative items
should be pushed away from the User that rated it negatively. The goal is to push the
user as far away from the item, as it is necessary for the user, to not be recommended
this item again. The value of � > 1 is the distance the item will eventually be away from
the user. It is important to notice, that the distance value if to close (which is when we
want to push it further away) will be smaller than one, to understand why this increases
the distance. This e�ectively means that the UserNegativeDist(ui; in) is big when the
dist(ui; in) is small. The intuition behind this is that the bigger the distance between
ui and in is, the smaller the value returned by UserNegativeDist(ui; in) becomes until
it �nally reaches the minimum of 1, where increasing the distance stops and minimizing
this further is not possible. We �nally add the term to our loss function which will be
described in more detail in section 2.2.1. Given a set of users U and for each user, a set
of items he did liked Ip and a set of items he disliked In,P

u2Ip
P

in2In UserNegativeDist(u; i)

which gives us the term we need to add to the loss function. The term we just described
was indented to increase the distance between users and their disliked items. This on its
own already brings improvements to the system and successfully decreases the negative
items in the users top recommendations.
To improve the system further also pushing negative items and positive items further
away from each other would be desirable. The approach to also change the distance
between items makes little sense when only working with positive items. The reasons
behind this is that decreasing the distance between items would let them lose their "di-
rection". With direction, we mean the dimensions which di�erentiate di�erent positive
items, which were liked by the same user. However, when working both with negative
and positive feedback increasing the distance between two items which are di�erent,
di�erentiates them better. We know that two items are di�erent by looking at items the

7

8
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

same user disliked and liked. We then proceed to increase the distance between these
two. This improves the system and further decreases the disliked items in the users top
recommendations.
Additionally to the Explicitly Negative Feedback, we described before we now also gen-
erate a new pair constellation. This positive-negative pair is generated from the users
explicitly negatively and positively interacted items. This means a pair of items (ip; in)
where ip is a positively rated item and in is a negatively rated item, both items have
been rated by the same user.
More formally we de�ne a new set Dissimilar Pairs(DP) where every element is a pair
(ip; in) 2 DP where ip 2 Ip and in 2 In. DP can be calculated as the Cartesian Product
of Ip and In

DP = Ip � In

Now we sample some random element (ip; in) 2 DP every iteration and increase the
distance between ip and in slightly. The impact of this distance change should be much
smaller then the previous changes since the pairs (ip; in) is only based on the feedback
from one user but a�ects two items. The approach to de�ning a distance suitable for
this is very similar to the approach for UserNegativeDist(ui; in). Given two items ip
and in we de�ne,

ItemNegativeDist(ip; in) = max(�
dist(ip;in) ; 1:0)

Where � is a distance tuner and describes the maximum distance the negative items
should be pushed away from the positive item. The intuition behind this is very similar
to the intuition described for the UserNegativeDist(ui; in). The goal is to push the
item ip and in further away from each other. The value of � > 1 is the distance the item
will eventually be away from each other. It is important to notice, that the distance
value if to close (which is when we want to push it further away) will be smaller than
one, to understand why this increases the distance. This e�ectively means that the
ItemNegativeDist(ip; in) is big when the dist(ip; in) is small. The intuition behind
this is that the bigger the distance between ip and in is, the smaller the value returned
by ItemNegativeDist(ip; in) becomes until it �nally reaches the minimum of 1, where
increasing the distance stops and minimizing this further is not possible. When stopping
at the minimum this means the item is now further away from the user. We push these
two items further away from each other since we know a user thinks one is di�erent than
the other. In other words, we use the information the user gave us about this item to
ensure the items will be more distinct. We �nally add the term to our loss function
described in 2.2.1, given the set DP ,P

(i;j)2DP ItemNegativeDist(i; j)

which gives us the term we need to add to the loss function. As explained in the graphical
explanation 2.1 this method adds values by decreasing the amount negative items in the
user’s neighborhood. Where the neighborhood are the items which will eventually be
recommended to him/her. Before any training has been done, some negative items are,

8

2.2. CML WITH EXPLICITLY NEGATIVE FEEDBACK 9

Figure 2.1: Graphical Explanation.

shown in red in the graphical explanation 2.1, close to the user. Our goal is to increase
the distance between these negative items and the user (blue in the �gure). This is
achieved by pushing the items into the directions of the gradients, away from the user
until a threshold value is reached. This threshold is indicated in gray in the graphical
explanation. The positive items are shown in green in the graphical explanation 2.1
will be pulled closer to the user. As described also the distance between the negative
items and the positive items will be increased. The arrows show the direction of the
gradients e.g. in which directions the items will be pushed/pulled. All of this happens
in an n-dimensional space.

2.2.1 Model Formulation

Additional to the model of the original CML. We add two loss terms described in the
previous section of the model. Given a user set U and an item set the user disliked In,

Lm1(d) =
P

u2U
P

i2In UserNegativeDist(u; i)

And also given the set DP described earlier we de�ne a second Loss function as,

Lm2(d) =
P

(i;j)2DP ItemNegativeDist(i; j)

2.2.2 Training Procedure

The complete objective function of the proposed model is,

min
u�;v�

Lm0 + �fLf + �cLc + �0(�1Lm1 + �2Lm2)

Where Lf and Lc are loss terms de�ned in the original paper which can but do not have
to be used in combination with this method [Hsieh et al., 2017]. The Lf can be used if

9

10
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

features are present. This loss improves the model by adding feature dimensions. The Lc
describes the covariance loss. Which can improve the model by constraining the objective
but was not used in our testing process. The reason for this is that it was not recom-
mended in the original CML code. This can also be left out of the minimization process if
no features are available. Where �f ; �c; �0; �1 and �2 are hyperparameters which control
the weight of the loss terms. We minimize this functions us with Mini-Batch Stochas-
tic Gradient Descent (SGD) using AdamOptimizer [Kingma and Ba, 2014]. We used
AdamOptimizer instead of AdaGrad, as proposed in the original paper since the cre-
ator of CML suggested on the projects GitHub-repo that AdamOptimizer is the better
choice. The training procedure can be summarized as,

1. Sample N positive pairs from S

2. Sample N explicitly negative pairs from D

3. Sample N pairs from DP

4. For each positive pair, sample U negative items

5. For each positive pair, keep the negative item k that maximizes the hinge loss and
form a mini-batch of size N

6. Compute gradients and update parameters with a learning rate controlled by
AdamOptimizer.

7. Repeat this procedure until convergence.

2.3 Negative Items in Top K

The Top K recommendations of a user are the k 2 N items the recommendation sys-
tem recommends to the user. A Negative Item (NI) is de�ned as an item which has
been recommended to the user but he does not like. Since user satisfaction with recom-
mendations is a�ected by the number of negative items in his top k recommendation,
improving on the Negative Items in Top K(NITK) is desirable. A low, preferably 0,
value in NITK is desirable since this would mean there are not many items in the users
top-recommendations he dislikes. We de�ne the NITK as,

NITK = max(jNI\TKjk ; jNI\TKjjNIj)

Where set NI is the set of items the user interacted negatively with. The set TK is the
set of items the recommendation system recommends to the user, the k refers to the
size of the recommendation e.g. jTKj = k. We will use the notations NIT10 and NIT5,
which indicates that the size of k is 10 for NIT10 and 5 for NIT5 respectively. The value
NITK indicates the probability that a negative item is in the TK recommendations. A
value of 0 for NITK is desirable since this would mean that there are no negative items
in the top k recommendations which also a�ects precision. If not indicated the NITK

10

2.4. RATINGS 11

values given are the mean of the NITK for all users. The values in NITK are generally
low given a suitable recommendation system since most items the user dislikes should
not be in the top-recommendations. However, often users do not know about the items
they hate the most since current recommendation systems are already quite good and
will recommend the user suitable movies such that the user dislikes often movies which
are closer than the movies which are the furthest away from him.

2.4 Ratings

In most modern websites, programs, and apps the possibility to rate certain items are
present. Di�erent rating systems exist which can mainly be divided into 5 categories.
These 5 categories are [Aggarwal, 2016]

� Continuous Ratings

� Interval-based Ratings

� Ordinal Ratings

� Binary Ratings

� Unary Ratings

While the methods we propose are mainly useful for Binary Ratings, which are very
popular and widely used. We used Interval-based Ratings for our development and
converted them into Binary Ratings to generate methods which work for Binary, Interval-
based and Continuous Ratings.

2.4.1 Convert Interval-based & Continuous Ratings to Binary Rat-
ings

While the easiest way to convert Continuous and Interval-based ratings to Binary Ratings
is to take the middle of the rating interval and classify everything above this as a like
and everything below this as a disliked. This approach is possible and works well but
can be improved by calculating,

MeanUserRating(R) =
P
r2R r

jRj

where R is the set of Ratings and r is a rating in the range of the interval of the rating.
We classify everything below this Mean-User-Rating as a disliked and everything above
it or equal to it as a like. The reason for this is to get a more even distribution of
likes and dislikes which bene�ts both training and evaluation. The main problem of
taking the mean of the rating system instead of the mean of the users ratings is that
users usually vote strongly above the mean of the rating system e.g in the Movielense
datasets the rating system ranges from 1-5 which would indicate a mean of 3 but the

11

12
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

global average is roughly around 3.5. An overview of the ratings in the datasets is shown
for Movielens and Goodbooks in table 2.1.

Table 2.1: Overview Datasets Ratings

Dataset Good
books 10k

Dataset
Movielens 20m

Dataset
Movielens 1m

Average Rating 3.92 3.52 3.58

Amount 0.5 Ratings 239’125

Amount 1 Ratings 124’195 680’732 56’174

Amount 1.5 Ratings 279’252

Amount 2 Ratings 359’257 1’430’997 107’557

Amount 2.5 Ratings 883’398

Amount 3 Ratings 1’370’916 4’291’193 261’197

Amount 3.5 Ratings 2’200’156

Amount 4 Ratings 2’139’018 5’561’926 348’971

Amount 4.5 Ratings 1’534’824

Amount 5 Ratings 1’983’093 2’898’660 226’310

2.5 Datasets

We have evaluated our result on two datasets. One being the Movielense 1 million
[Harper and Konstan, 2015] and the other one being the Goodbooks 10k dataset [Zajac, 2017].
MovieLens is a dataset provided by GroupLens Research at the University of Minnesota.
Goodbooks is a popular dataset for books and features ratings and tags from many dif-
ferent sources. For both datasets, there are ratings from 1-5 which are connected to one
user and one item. We calculated the average user rating using MeanUserRating(R)
and classi�ed everything that is bigger or equal to this MeanUserRating(R) as a like
and everything below this average as a dislike.
For Movielense 1 million we used the plot-tags from www:themoviedb:org and for Good-
books 10k tags are already available but we only used the tags for each item which have
been mentioned at least 5 times. Since some of the aspects we tested show clearer in
bigger datasets we evaluate some aspects also on Movielens 20 million. We did not �lter
the datasets initially. However, we used thresholds on how many interactions users need
to have at least. If this is the case it is mentioned in the related section. The Amount of
Users, Amount of Items and the number of Ratings for the data sets Movielens 1 million,
Movielens 20 million and Goodbooks are given in the table 2.2,

12

2.5. DATASETS 13

Table 2.2: Datasets

Amount of Items Amount of Users Amount of Ratings

Dataset Goodbooks 10k 10’000 53’424 5’976’479

Dataset Movielens 20m 27’000 138’000 20’000’000

Dataset Movielens 1m 3’952 6’040 1’000’000

2.5.1 Concentration

The concentration seems to have an e�ect on the performance of the algorithm. Here
concentration means the number of likes which are concentrated on the top most liked
items. Tail-liked items are the items which have been consumed by only a few users but
still are liked. Movielens and Goodbooks are both very concentrated but Goodbooks
has a lot more tail-liked items than Movielens as seen in the table 2.3 below.

(a) Movielens 1 million (b) Goodbooks 10k

Figure 2.2: Histogram items by amount of likes.

The Movielens datasets have a lot of items which are not liked a lot. The roughly 30%
least liked items in Movielens only account for around 1% of all likes. The 20% most
liked items concentrate roughly 72% of the likes on them.
The Goodbooks dataset has also a lot of items which are not liked a lot but has more
tail-liked items. The roughly 30% least liked items in Movielens only account for around
1% of all likes, while the dataset Goodbooks has 5.4% in the 30% least liked items. This
is 5 times more and has an impact on the results. The 20% most liked items concentrate
roughly 69% of the likes on them, which is also quite high but common also in other
datasets.

13

14
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.3: Table describing the distribution of likes in the datasets

Concentration Movielens 1 million Goodbooks 10k

0-10% most liked 0.1% 1.2%

10-20% most liked 0.3% 1.9%

20-30% most liked 0.8% 2.3%

30-40% most liked 1.4% 2.9%

40-50% most liked 2.4% 3.6%

50-60% most liked 4.1% 4.6%

60-70% most liked 6.8% 5.8%

70-80% most liked 11.4% 8.3%

80-90% most liked 20.4% 14.04%

90-100% most liked 52.1% 55.13%

However as we seen the 50% least likes items in Movielens account for only 5% of all
likes. The Goodbooks 50% least like items account for 11.9% which is more useful when
analyzing for the Eccentricity. If not enough likes are present on the least liked items the
chance that an item is recommended which is not very popular decreases dramatically
as we will show in Chapter 3.

2.6 Results

A good recommendations system not only needs to have optimal values in the area of
Recall and Precision. Also, the top-recommendations that a user receives or is shown
should include as little Negative items as possible (Items the user won’t like). The
reasons behind this are that our assumption is, that showing/recommending a user an
item he does not like decreases the customer satisfaction. Since customer satisfaction
eventually is more important than most other aspects of recommendation systems we
should also optimize for this.
We tested both the CML and the CML-EN algorithm on NITK. The parameters, exclu-
sive to the CML-EN, have been set to show a clear trend on the validation set. A clear
trend in this context means that we optimized such that all measured values improve
and not just one improves drastically and the other ones decline.
Both Systems have been tested with the same hyperparameters, with the exception of
those that are exclusive to the CML-EN. An overview of the hyperparameter setting can
be found in table 2.4. Namely the parameters Explicitly Negative loss scale, Explicitly
Negative-Positive-Pair loss scale, Distance tuner Explicitly Negative-Positive-Pair and
Distance tuner Explicitly Negative are exclusive to the CML-EN. The reason for this
is that they exist only in the CML-EN. Generally, if we change the hyperparameters
a�ecting both the CML and the CML-EN both change relatively similar. With the no-
table exception of the number of iterations, in this regard when not trained enough the
CML-EN will perform worse.
We used for this series of test a split of 33.3% train, 33.3% test and 33.3% validation for

14

2.6. RESULTS 15

the dataset. We used such a split to have more data for the evaluation which in case of
Negative items in the top recommendations needs to have a bigger test/validation set
to be clearly visible, this of course also has an in
uence on all other metrics. Using this
setting only users with at least 3 likes are used for evaluation but all users are used for
training. Users generally have roughly the same amount of likes and dislikes, due to the
de�nition of a like and a dislike we used as described earlier.
We included only tags which have at least been mentioned for 2 items in the training
process. For the Movielens dataset in general, we included tags from the dataset which
have been given to the movies by at least 5 users. The reason behind this was to exclude
some spelling errors and accidental tags which make little sense to be included. We also
added tags for the movies from the www:themoviedb:org API to increase the number
of tags available for training. In the case of goodbooks we used the tags included in the
datasets which are already of a high quality. Also, in this case, we only included the tags
which have been named at least 5 times by di�erent users to exclude accidental spelling
errors and other problems that might decrease the quality of the tags. We run each test
3 times with random seeds and present the average in the tables. The plots have been
generated by an example run and might not represent the average exactly which are
shown in the tables.

2.6.1 Results CML-Original

The following Result was created by using the Collaborative Metric Learning [Hsieh et al., 2017]
in its original form. Our results are not as good as the author claimed in his paper for
the Movielens 20m dataset, we contacted him about it but were not answered. We as-
sume that the reason behind this is that the data �ltering process is either di�erent or
the computational resources we are able to use are smaller. Also, tags and processing of
them could have varied. The initial testing phase on the Movielens 100k set suggested
though that splitting the ratings on the users-average instead of simply picking all rat-
ing bigger than 4 had a bene�cial impact on the testing, we therefore assume that even
though this is a di�erence to the author’s original setup it was not the main problem.
The number of features that were used has also varied compared to the author’s original
paper, which we can’t explain since we used the API suggested by imdb. The author
in his paper described he had 10’399 features, with more than 5 occurrences, for testing
with the Movielens 20 million dataset [Hsieh et al., 2017]. Using our method for accu-
mulating features only 3’942 features are created, with more than 5 occurrences. In this
sections, we will show plots of the test set the �nal results on the validation set and
comparison are shown in the last section.

15

16
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

(a) Recall at 50 of CML over time for good-
books10k

(b) Precision of CML over time for Good-
books10k

Figure 2.3: Result for Goodbooks10 using CML.

The left �gure 2.3a shows the development of the recall at 50 over the training process.
The Recall at 50 of Goodbooks10k increases strongly in the beginning of the training
processes and after the �rst few hundred iterations stays almost the same. Additional
iterations bring little to no additional bene�ts in terms of Recall. Too few iterations,
can result in worse results as we see. The second plot shows the development of the
precision at 50 over the training process.
The Precision of Goodbooks10k at 50, as shown in �gure 2.3b increases strongly in the
beginning of the training processes as the Recall but continues increasing slightly during
the following iterations. Additional iterations bring little bene�ts in terms of Precision
but keep to improve slightly. The Precision is already quite high in comparison to the
Recall in the beginning though.

(a) NIT50 of CML over time for Goodbooks10k (b) NIT5 of CML over time for Goodbooks10k

Figure 2.4: Result for Goodbooks10 using CML.

16

2.6. RESULTS 17

The �gure 2.4a shows the development of the NIT50 over the training process. The
NIT50 described how many recommendations users got on their top-50 recommendation
which they explicitly disliked e.g. downvoted. The value increases rapidly in the begin-
ning since if the recommendations are random, like they are in the beginning, the chance
of recommending an item the user disliked is not very high. Once the recommendation
system begins to recommend sensible choices the NITK increases. Additional iterations
bring little bene�ts in terms of NITK but keep to improve slightly. As mentioned earlier
a low value preferably 0 is better for NITK. The values, can change relatively signi�-
cantly in comparison between epochs.
The �gure 2.4b shows the development of the NIT5 over time. Similar to the NIT50 the
NIT5 describes how many negative items were in the users top-5 recommendations. A
high value in NIT5 suggests that the recommendation system is not very bene�cial for
customer satisfaction since the top-5 items are almost certainly guaranteed to be seen by
the user. In the Results Comparison also NITK at other values are given. The values,
can change relatively signi�cantly in a comparison between epochs and this di�erence
changes even stronger with the NIT5 than with the NIT50. The reasons behind this is
that analyzing only the top-5 is more volatile than analyzing the top-50.

2.6.2 Results CML-Explicit Negative Feedback

The following Results were created by using the Collaborative Metric Learning [Hsieh et al., 2017]
with the addition of explicitly negative items-user pairs training (CML-EN). The results
mainly di�er from the original CML by having a worse Recall but improving in NITK
and Precision if tuned to perform optimally on the NITK. However, to show that the
CML-Explicit Negative(CML-EN) can also outperform the original in this matter the
hyperparameters, which are exclusive to the CML-EN, have been set to show an even
increase overall measurements. The hyperparameters exclusive to the CML-EN could
also be set, such that only NITK improves heavily but Recall decreases.
The reasons for this improvement is that by including all-feedback a user has given and
not just the likes the users have given we can gain additional information. This system
could be further improved by adding more tags. By including the user’s negative feed-
back, in particular, the embedding can be trained to increase the distance between a
user and negatively rated items to improve the recommendations.

17

18
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

(a) Recall at 50 of CML-EN over time for Good-
books10k

(b) Precision of CML-EN over time for Good-
books10k

Figure 2.5: Result for Goodbooks10 using CML-EN.

The �gure 2.5a shows the development of the Recall at 50 over the training process
of the CML-EN. The Recall of Goodbooks10k increases strongly in the beginning of the
training processes and after the �rst few hundredth iterations stays almost the same.
Additional iterations bring little to no additional bene�ts in terms of Recall on this
dataset. However, in comparison to the CML the Recall improves slower and over a
longer time period.
The �gure 2.5b shows the development of the Trecision at 50 over the training process of
the CML-EN. The Precision of goodbooks10k increases strongly in the beginning of the
training processes as the Recall but continues increasing slightly during the following
iterations. Additional iterations bring little bene�ts in terms of Precision but keep
to improve slightly. However, compared to the CML here additional training time is
desirable to reach better results.

18

2.7. RESULT COMPARISON 19

(a) NIT5 of CML-EN over time for good-
books10k

(b) NIT50 of CML-EN over time for good-
books10k

Figure 2.6: Result for Goodbooks10 using CML-EN.

The �gure 2.6a shows the development of the NIT50 over the training process. Once
the recommendation system begins to recommend sensible choices the NITK increases.
This is since it is the lowest when random choices are recommended since the change of
selecting a negative item at random is fairly low. In comparison to the CML-original,
the NIT50 decreases after more training time as the minimization process decrease this
value. Additional iterations bring bene�ts in terms of NIT50. As mentioned earlier a
low value preferably 0 is desirable and one of the main goals of this algorithm. Therefore
training for a longer period of time for a commercial system would be desirable
The �gure 2.6b shows the development of the NIT5 over time. Similar to the NIT50
the NIT5 describes how many negative items where in the users top-5 recommendations,
which are the items the user is the most likely to watch and is one of the measurements
we aimed to improve. In the Result comparison, more NITK values are given for a better
comparison. As already mentioned about the same plot for the CML this measurement
tends to change relatively strongly between epochs. This could be decreased by changing
the learning rate or increasing the strength of the negative loss values in general.

2.7 Result Comparison

This sections features the results of both the CML-Orginal and CML-Explicit negative(CML-
EN). The hyperparameters can be tuned to punish NITK stronger but this comes at the
cost of Recall. For this comparison the hyperparameters, exclusive to the CML-EN,
have been tuned to show that CML-EN can be better in all measurement and show a
clear trend. As mentioned earlier the hyperparameters, exclusive to the CML-EN, could
also be set to improve NITK stronger but hurt the Recall. We run the tests with the
hyperparameters,

19

20
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.4: Hyperparameter for tests

Hyperparameters Movielens 1 million Goodbooks 10k

Batch-size 80’000 100’000

Embedding dimension 70 100

Nr Negatives 30 30

Hidden layer dimensions 256 512

Clip norm 1.1 1.1

feature projection scale 1.0 1.0

Iterations 1500 1500

drop-out rate 0.4 0.3

Explicitly
Negative loss scale

1.25 1.5

Explicitly
Negative-Positve-Pair
loss scale

0.005 0.005

Distance tuner
Explicitly
Negative-Positve-Pair

3.5 3.0

Distance tuner
Explicitly Negative

4.0 4.0

Note that the parameters Explicitly Negative loss scale, Explicitly Negative-Positve-
Pair loss scale, Distance tuner Explicitly Negative-Positve-Pair and Distance tuner Ex-
plicitly Negative only apply to the CML-EN. Explicitly Negative loss scale a�ects all
the e�ects the explicitly negative parameters have and a�ects the strength at which the
values are added to the loss function. Generally the e�ect of the Negative loss functions,
on the loss, should be smaller than the e�ect of the other loss functions. The reasons
behind this is that pushing negative items too far away from the user is not desirable.
It is not desirable since often ratings are given for relatively similar movies. Relatively
similar in this context means that a user often will view movies which are from relatively
similar genres. These movies might be bad or good for the user but a user often never
sees the items that would, distance wise, be the furthest away from him.
As an example we can think of a user which watches a lot of action movies, in his rating
list most likes and dislikes will be from the action genre, the items which should be the
furthest away are the items which have absolutely no relationship with him. However,
these items are not very likely to appear in his rating list at all e.g. a Japanese romance,
which has absolutely no relation to his preference. But since he never consumes these
items, we have no information on how much he dislikes it. Therefore we should not
push an action movie he dislikes as far away from him, as an item he has absolutely no
relationship with is, away from him e.g. a Japanese romance movie.
The Explicitly Negative-Positive-Pairs loss describes how strong the e�ect the Negative-
Positive-Pair e�ect we described earlier, on the loss should be. This value has to be set

20

2.7. RESULT COMPARISON 21

very low since the information has been generated by only one user and a�ects two items.
The Distance tuner Explicitly Negative describes how far an item should be pushed away
from a user and should be tuned such, that the item does not appear anymore in the
user’s top-k recommendations but is not pushed too far away. The Distance tuner for Ex-
plicitly Negative-Positive-Pair describes how far the items should be pushed away from
each other, this distance should be smaller than the other distance tuner. The reason for
this is, that it a�ects two items but the rating has been captured by only one user and
di�erent users might contradict each other in this decision. Therefor �nding the right
value for these parameters has to be approached for each data set di�erently. We found
the parameters we use by performing a grid search. However the datasets Goodbooks10k
and Movielens 1 million are relatively similar and we used similar hyperparameters for
the tests.

2.7.1 Goodbooks 10k

The results for Goodbooks have been tested for both CML-original and CML-EN and
the hyperparameters, exclusive to the CML-EN, have been set to show a clear increase
in all measured values. Generally they could also be set to perform stronger in the NITK
but this would hurt the Recall. The values for Recall, Precision at 10, 20, 50, 75 and
100 are all higher with the modi�ed CML-EN compared to the original CML which is
what was desired. The values for NITK at 1, 5, 10, 20, 30, 40, 50, 60, 70 and 80 are
all lower using the CML-EN compared to the CML in case of the NITK lower is better.
However the CML-original is faster and needs no downvotes and therefore less training
time. Also the memory usage of CML-EN is higher compared to the CML which can be
handled by using di�erent batching and sampling.

Table 2.5: Recall Results Goodbooks 10k

Dataset Goodbooks 10k CML-Original CML-EN

Recall at 10 8.260% 9.187%

Recall at 20 13.615% 14.844%

Recall at 50 23.728% 25.682%

Recall at 75 29.372% 31.585%

Recall at 100 33.653% 36.078%

As we see the values for 10, 20, 50, 75 and 100 Recall are higher with the CML-EN
compared to the CML-original. The value for Recall at 100 for example increases by
roughly 2.425% which is a relative improvement of 7.2%. The value for Recall at 10
improved by 0.927% which is a relative improvement of 11.2%.

21

22
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.6: Precision Results Goodbooks 10k

Dataset Goodbooks 10k CML-Original CML-EN

Precision at 10 56.075% 60.948%

Precision at 20 66.878% 71.285%

Precision at 50 75.815% 79.182%

Precision at 75 77.829% 80.087%

Precision at 100 78.667% 81.534%

As we see the values for 10, 20, 50, 75 and 100 Precision are higher with the CML-EN
compared to the CML-original. The value for Precision at 100 for example increases by
roughly 2.867% which is a relative improvement of 3.6%. The value for Precision at 10
improved by 4.873% which is a relative improvement of 8.6%.

Table 2.7: NITK Results Goodbooks 10k

Dataset Goodbooks 10k CML-Original CML-EN

NIT1 3.550% 3.267%

NIT5 2.199% 1.904%

NIT10 2.055% 1.792%

NIT20 2.405% 2.123%

NIT30 3.220% 2.850%

NIT40 4.096% 3.635%

NIT50 4.932% 4.377%

NIT60 5.705% 5.087%

NIT70 6.413% 5.750%

NIT80 7.084% 6.364%

As we see the values for NIT1, NIT5, NIT10, NIT20, NIT30, NIT40, NIT50, NIT60,
NIT70 and NIT80 are lower with the CML-EN compared to the CML-original which
was the main goal of this work. The value for NIT1 for example decreased by roughly
0.283% which is a relative improvement of 8.0%. The value for NIT80 decreased by
0.72% which is a relative improvement of 10.1%.

2.7.2 Movielens 1 million

he results for Movielens have been tested for both CML-original and CML-EN and the
hyperparameters, exclusive to the CML-EN, have been set to show a clear increase in all
measured values. Generally, they could also be set to perform stronger in the NITK but
this would hurt the Recall. The values for Recall at 10, 20, 50 and 75 are all higher with
the modi�ed CML compared to the original CML which is what was desired. However,
the value of Recall at 100 is lower which might have something to do with the distance
tuner set to low since the values for the lower Recalls are better. The values for NITK
at 1, 5, 10, 20, 30, 40, 50, 60, 70 and 80 are all lower using the CML-EN compared

22

2.7. RESULT COMPARISON 23

to the CML. However, the CML-original is faster and needs no downvotes. Compared
to Goodbooks 10k the di�erence in results is less signi�cant which probably is due to
the di�erent concentrations of interactions in the datasets. In Movielens the amount of
interactions concentrated on the top 50% of the items is signi�cantly higher.

Table 2.8: Recall Results Movielens 1 million

Movielens 1 million CML-Original CML-EN

Recall at 10 11.642% 12.634%

Recall at 20 18.668% 19.691%

Recall at 50 32.151% 32.991%

Recall at 75 39.730% 40.261%

Recall at 100 45.764% 45.672%

As we see the values for Recall at 10, 20, 50, 75 are higher with the CML-EN compared
to the CML-original. However the result for Recall at 100 is lower. The value for Recall
at 100 decreased by roughly 0.092% which is the only value which decreased. The value
for Recall at 10 improved by 0.927% which is a relative improvement of 8.5%.

Table 2.9: Precision Results Movielens 1 million

Movielens 1 million CML-Original CML-EN

Precision at 10 62.723% 66.068%

Precision at 20 71.169% 72.412%

Precision at 50 73.737% 74.357%

Precision at 75 72.738% 73.334%

Precision at 100 71.611% 71.995%

As we see the values for 10, 20, 50, 75 and 100 Precision are higher with the CML-EN
compared to the CML-original. The value for Precision at 100 for example increases by
roughly 0.384% which is very little but increased relatively more in the other areas. The
value for Precision at 10 for example improved by 3.345% which is a relative improvement
of 5.06%.

23

24
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.10: NITK Results in Movielens 1 million

Movielens 1 million CML-Original CML-EN

NIT1 2.569% 1.840%

NIT5 2.202% 1.896%

NIT10 3.171% 2.815%

NIT20 5.493% 5.267%

NIT30 7.919% 7.550%

NIT40 10.012% 9.793%

NIT50 12.244% 11.907%

NIT60 14.380% 13.890%

NIT70 16.357% 15.706%

NIT80 18.407% 17.640%

As we see the values for NIT1, NIT5, NIT10, NIT20, NIT30, NIT40, NIT50, NIT60,
NIT70 and NIT80 are higher with the CML-EN compared to the CML-original which
was the main goal of this work. The value for NIT1 for example decreased by roughly
0.729% which is a relative decrement of 28.0%. The value for NIT80 decreased by 0.767%
which is a relative decrement of 4.1%.

24

3

Diverse Recommendations

Often Recommender Systems aim so much at getting the Recall and Precision to a
sensible level that user satisfaction is not the main priority anymore. Users do not
only want accurate recommendations they also want diverse, surprising and interesting
recommendations [McNee et al., 2006].
Therefore also looking at recommendations, which are not very likely to appeal to the
users, since they are not very often rated, has value. One of the main reasons that a�ect
that recommending uncommon items to users hurt Recall and Precision, is that most
Recommender Systems never show these items to the users. With various evaluations
regarding Eccentricity, we want to show the di�erences among the uncommon items.
This work also aims at highlighting some of the ways that might improve the diversity.
We will also propose a method which improves recommendations for user groups, which
like more uncommon items.

3.1 Popularity

Most items have been consumed by users di�erent amounts of times. While certain
items might have interacted with a lot, certain items may only have been interacted
with, a few times. We will classify the items which have been interacted with a lot as
mainstream and those who have been interacted with only a few times as uncommon
or niche items. Recommender Systems often recommend items which are very popular
since they are very likely to be liked by the general user. For certain users though,
which are very interested in niche items, popular recommendations are not satisfying.
Therefore considering the popularity of items, is important and can add value to the
system and increase user satisfaction.
We de�ne popularity as the likelihood an interaction is made with a given item. We
de�ne the set Items(I) and for every item i 2 I we de�ne the value iinteractions which
is the number of interactions made with this item. The popularity of an item i 2 I is
de�ned as,

popularity(i) = iinteractionsP
j2I jinteractions

26 CHAPTER 3. DIVERSE RECOMMENDATIONS

Which is the amount of interactions made with the item divided by the amount of
interactions made in the entire data set. This is the probability an item is interacted
with.

Figure 3.1: Popularity of Movielens 1 million

As we see in �gure 3.1 the popularity of a few items is very high but the popularity
of most items is very low. This has a lot to do with, the concentration of the data set.

3.1.1 Controversy

Controversy is related to the ratio between likes for an item and dislikes. It can be
assumed that certain users like items which are heavily disliked by other users and vice
versa. An example might be a controversial war-documentary which certain people adore
and others dislike even though both parties like documentaries in general. Therefore
looking at the controversy of a movie is important.
An interaction we de�ne as a rating a user made on an item, the value of this rating does
not matter. A dislike we de�ne as a rating below theMeanUserRating(R) for an interval
based rating. A like is de�ned as a rating above or equal to the MeanUserRating(R).
In a binary rating system, the likes and dislikes would be given by the user directly. We
de�ne the controversy of an item i 2 I

controversy(i) = ilikes�idislikes
iinteractions

The controversy(i) 2 [�1; 1], since all items that are interacted with are either liked or
disliked. A value of controversy(i) > 0 indicates that i is a good movie and a value of
controversy(i) < 0 indicates that the movie is a bad movie as perceived by the majority
of the general users. There seems to be a certain group of people that really enjoy and

26

3.1. POPULARITY 27

mainly consume items in the controversy(i) 2 [�0:1; 0:1], which we quali�ed as the
controversial items. The intuition behind this de�nition is, that it will now only qualify
all movies which have a di�erence of around 20% between likes and dislikes e.g. 45 likes
and 55 dislikes. De�ning it like this quali�es roughly 15% of the movies as controversial,
which we thought was suitable. These items give us the set CI which is the set of the
controversial items.

3.1.2 User-Controversy

As discussed earlier there might exist a group of users, in the respective data set, which
consumes and likes an increased number of controversial items. Each user has a set UI
which are items the user interacted with e.g. either liked or disliked. The user’s positively
interacted with items de�ne a set UIp and the users explicitly negatively interacted with
items de�ne a set UIn. We de�ne now the Positive-User-Controversy of a user u

PositiveUserControversy(u) =
jCI\UIpj
jUIpj

And the Negative-User-Controversy as

NegativeUserControversy(u) = jCI\UInj
jUInj

The Positive-User-Controversy indicates how many of the items the user liked are contro-
versial. A high value indicates that a user mainly enjoys controversial items. A low value
indicates that user mainly enjoys very popular items e.g. only watches blockbusters.
The Negative-User-Controversy indicates how many of the items the user disliked are
controversial. A high value indicates that the user mainly dislikes controversial items. A
low value indicates that the user either watches very little controversial movies or likes
them more often. These numbers should be compared to the user’s User-Controversy
which is the ratio of controversial movies a user consumes

UserControversy(u) = jCI\UIj
jUIj

A high value in User Controversy indicates the user watches mainly controversial items.
A low value in User Controversy indicates that the user barely interacts with controversial
items. In the �gure 3.2, we see the Positive-User-Controversy (green) and the Negative-
User-Controversy (red). The users are ordered by the User-Controversy and on the
x-axis we see the users position in the ordering where each x is a user. The �gure 3.2
tells us that there are generally more downvotes on Controversial movies than likes, this
is visible since the Negative-User-Controversy is generally higher than the Positive-User-
Controversy.

27

28 CHAPTER 3. DIVERSE RECOMMENDATIONS

Figure 3.2: Positive and negative User Controversy sorted by User Controversy, for
Movielens

3.2 Item-Eccentricity

The de�nition for Item-Eccentricity has been given by Park and Kim [Park and Kim, 2017].
The general idea of item Eccentricity is that there is a group of items which is loved
by a small group of users but ignored by the majority of users e.g. a french-art movie.
These items are niche items and mainly consumed by a small fan base. Park and Kim
aimed at �nding these items by de�ning the Item-Eccentricity [Park and Kim, 2017].
This measurement helps in identifying items which are not very often consumed but can
be positively perceived by users which enjoy more niche items. We will later show how
to use this measurement to recommend Eccentric items to Eccentric users and generally
improve the diversity of the recommendations.

3.2.1 Item-Rarity

Eccentric Items are items which are only consumed by a small amount of people. There-
fore it is important to know, how often an item is consumed, compared to other items.
The de�nition of Item-Rarity helps to capture this relation between items and users.
The Item-Rarity is de�ned as [Park and Kim, 2017],

ItemRarity(i) = IR(i) = �log(jFij)

28

