
Utilizing Eccentric
User Preferences and
Negative Feedback to

Improve
Recommendation

Quality

Sandro Luck
of Zürich ZH, Switzerland

Student-ID: 13-927-769
sandro.luck@gmx.ch

Thesis February 1, 2018

Advisor: Bibek Paudel

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisors Bibek Paudel
for his support, help, expertise and time he dedicated to me. I thank Prof. Dr. Abraham
Bernstein, the head of the Dynamic and Distributed Information Systems Group at the
University of Zurich, for making this project possible.

Zusammenfassung

Die Benutzerzufriedenheit in Recommender-Systemen hängt von vielen anderen Fak-
toren als dem Recall ab. Benutzer schätzen auch Qualitäten wie die Auswahlmöglichkeiten,
Neuheit und Vielfalt.
In dieser Arbeit untersuchen wir zwei verschiedene Bereiche, um die Qualität und Vielfalt
von Empfehlungen mithilfe von Collaborative Filtering zu verbessern. Im ersten Prob-
lem konzentrieren wir uns auf die Two-Class Collaborative Filterung, bei der das Ziel
darin besteht, mehr positive Items zu empfehlen und gleichzeitig die Anzahl der neg-
ativen Items an der Spitze der Empfehlungsliste zu reduzieren. Die Modellierung des
Nutzerverhaltens unter Berücksichtigung ihrer negativen Präferenzen hat gezeigt, dass
sie vielfältigere und genauere Empfehlungen liefert. In dieser Arbeit erweitern wir das
kürzlich entwickelte Collaborative Metric Learning, indem wir negative Entscheidungen
modellieren. Wir konnten mit experimentellen Resultaten zeigen, dass unsere Methode
in der Lage ist, die Qualität zu verbessern und die Anzahl der negativen Empfehlungen
zu reduzieren. Im zweiten Problem betrachten wir das Problem der Verbesserung der
Empfehlungsvielfalt. Nicht alle Benutzer bevorzugen Nischen-Empfehlungen in gleichem
Masse, und es ist wichtig, die Empfehlungen entsprechend zu variieren. Wir erforschen
das Konzept der Item Controvery und entwickeln eine neue Methode zur Generierung
von Empfehlungen. Unsere Experimente zeigen, dass unsere Methode in der Lage ist,
die Empfehlungen zu diversifizieren und in den meisten Fällen eine ähnliche oder bessere
Genauigkeit zu erzielen.

Abstract

User satisfaction in Recommender Systems is dependent on many factors other than
prediction accuracy. People also value qualities like variety, novelty and diversity. In
this work, we explore two different areas to increase the quality and diversity of recom-
mendations using well known Collaborative Filtering techniques.
In the first problem, we focus on Two-Class Collaborative Filtering, where the goal is
to recommend more positive items, while reducing the number of negative items at the
top of recommendation lists. Modeling user behavior by accounting for their negative
preference has shown to produce more diverse and accurate recommendations. In this
work, we extend the recently developed Collaborative Metric Learning by modeling neg-
ative choices. We show with experimental results on openly available datasets that our
method is able to improve recommendation quality and reduce the number of negative
recommendations at the top. In the second problem, we look at the problem of improv-
ing recommendation diversity. Not all users prefer niche items to the same extent, and
it is important to diversify recommendations accordingly. We explore the concept of
item controversy and eccentricity and develop a new method to recommend nice items
to users based on their inclination to such items. Our experiments show that our method
is able to diversify the recommendations while achieving competitive or better accuracy
in most cases.

Table of Contents

1 Introduction 1
1.1 Recommender Systems . 1

1.1.1 Collaborative Filtering . 1

1.1.2 Cold Start Problem . 2

1.1.3 Data sparsity . 2

1.2 Metric Learning . 2

1.2.1 Metrics and Distances . 3

1.3 Tensorflow . 3

1.4 Recommendation Diversity . 3

1.5 Our Contribution . 4

1.6 Thesis Outline . 4

2 Collaborative Metric Learning with Negative Feedback 5
2.1 CML . 5

2.1.1 Model Formulation . 5

2.2 CML with Explicitly Negative Feedback 6

2.2.1 Model Formulation . 9

2.2.2 Training Procedure . 9

2.3 Negative Items in Top K . 10

2.4 Ratings . 11

2.4.1 Convert Interval-based & Continuous Ratings to Binary Ratings . 11

2.5 Datasets . 12

2.5.1 Concentration . 13

2.6 Results . 14

2.6.1 Results CML-Original . 15

2.6.2 Results CML-Explicit Negative Feedback 17

2.7 Result Comparison . 19

2.7.1 Goodbooks 10k . 21

2.7.2 Movielens 1 million . 22

3 Diverse Recommendations 25
3.1 Popularity . 25

3.1.1 Controversy . 26

x Table of Contents

3.1.2 User-Controversy . 27
3.2 Item-Eccentricity . 28

3.2.1 Item-Rarity . 28
3.2.2 User-Eccentricity . 29
3.2.3 Item Eccentricity . 30
3.2.4 User Similarity for Eccentric Items 31
3.2.5 Item Similarity based on Eccentricity 32
3.2.6 Combining Item Similarity based on Eccentricity 33
3.2.7 Eccentric Item Similarity based on Eccentricity 33
3.2.8 Weighted combination . 34
3.2.9 Sigmoid Weighted Combination . 34

3.3 Results Eccentric Algorithm . 36
3.3.1 Results Pairwise Cosine Similarity 36
3.3.2 Results Eccentric Similarity . 37
3.3.3 Results Sigmoid Weighted combination 37

3.4 Result Comparison . 39

4 Limitations, Future Work and Conclusions 43
4.1 Limitations . 43
4.2 Future Work . 44
4.3 Conclusions . 44

A Appendix 49
A.1 CD-content . 49

x

1

Introduction

Machine learning has been used in a variety of fields and improving on these system adds
great value to companies and individuals. Research and development in these areas are
therefore useful and desirable.
Machine Learning can be used to improve recommendations generated by Recommender
Systems. Recommender Systems are used in a variety of fields from online-shopping to
music and movies. They have a big impact on how items are perceived and displayed to
users. These offer their users a wide variety of advantages such as decreasing the search
time and improving the user satisfaction.

To further improve these systems we recommend looking closer at the negative feed-
back and items that are not popular. This can further improve the value the system
adds to the ecosystem it is used in. Using negative feedback and so-called Eccentric
items, we created systems which aim at improving user satisfaction.

1.1 Recommender Systems

Recommender Systems are software tools and frameworks which provide suggestions
items to users [Ricci et al., 2011]. The suggestions for the items might be in different
fields. These suggestions are often related to a decision-making process, e.g. what
item to buy, listen or watch. The term, ”item” is the general term used to describe
what object is recommended to the user e.g. product, movie or book. The approaches
and techniques that are used for different classes of items might vary depending on the
userbase and items that are recommended.

1.1.1 Collaborative Filtering

Collaborative filtering (CF) is an approach used by Recommender Systems [Ricci et al., 2011].
The general concept is to collect user interactions on items which can be classified as
either positive, negative or a scale in between. This is then used to predict user interac-
tions on different items in the future (e.g. recommend movies the user might like).
Collaborative Filtering systems usually need big amounts of user-item relations to per-
form well. Several methods for applying collaborative filtering exist and many people are

2 CHAPTER 1. INTRODUCTION

actively working on creating more. We will discuss several of these methods in the follow-
ing sections and various combinations of them. In a general sense, collaborative filtering
is a process where users collaborate to filter information [Sammut and Webb, 2011].
Typically such a process needs big collections of user-item relationships, often called
datasets, which can be from various areas such as movies, books, music, financial data
and environmental data.

1.1.2 Cold Start Problem

A problem that often arises when designing Recommender Systems is the so-called cold
start problem. The cold start problem describes the situation in which a small amount or
no information about users or items are present. Thus predictions can only be made with
a high uncertainty. Often very specific algorithms and techniques can be used, which
are good under these constraints. Paying attention to this can improve user satisfaction
significantly.

1.1.3 Data sparsity

In commercial usage, Recommender Systems are based on large datasets and as a re-
sult, the user-item matrix that is used can become very big. While generally there are
algorithms that operate on sparse matrices to speed the process up, some of these al-
gorithms are only available for normal matrices. This aspect slows down learning and
increases the need for memory on the system. Also, the cold start problem is related to
this aspect since a new user will need to rate a sufficient amount of items to teach he
Recommender Systems how to capture his preferences. Often new items have a similar
problem, namely getting rated by enough users before being recommendable to other
users. These problems have to be addressed and minimized to ensure a Recommender
System’s recommendations are beneficial for a user.

1.2 Metric Learning

One recent class of methods used for Recommender systems is based on metric learning
and have shown their usage in multiple applications. Metric learning (ML) algorithms
learn distance metrics that capture relations between data.
The goal is to learn a metric or embedding that assigns a low distance value to similar
items and a big distance value to dissimilar items. These embeddings are n-dimensional
and usually contain an embedding for the users and an embedding for the items. Gener-
ally, with more dimensions, the embeddings can capture the user item relations better.
To capture this relation a metric or pseudo metric is learned. To achieve this, the pro-
gram tries to minimize the distances between items and users which belong together e.g.
which the user liked.
In the following document, we will also describe how the same approach can be used to
increase the distance between items and user, which do not belong together e.g. the user

2

1.3. TENSORFLOW 3

disliked or is likely to be disliked. The general goal of such an approach is to group items
and users in n-dimensional space. The grouping can then be used to recommend items,
which a user might not have consumed yet. Such an approach can consider multiple
things such as likes, dislikes, features or also data related to the person.

1.2.1 Metrics and Distances

The understanding of distance in combination with similarity between users and items
can add great value to machine learning algorithms including K-nearest neighbor, K-
means, Collaborative Metric Learning and SVMs [Hsieh et al., 2017]. In this work, we
will look into how the distance can be used to capture a relationship between users and
items. Especially how to use negative feedback generated by the user to improve the
value of the system. Given pairs of negative and positive item-user pairs, the goal of the
system is to learn a distance that respects and predicts these relations.

1.3 Tensorflow

Tensorflow is an open source software usable among others in combination with python
[Abadi et al., 2015]. It is developed and maintained by Google. Tensorflow is optimized
for numerical computations mainly useful for the purpose of machine learning using data
flow graphs. While the nodes in the graph represent operations the edges represent the
data arrays. The architecture allows computation on CPUs and GPUs. We especially
used the GPU approach to speed up computations.

1.4 Recommendation Diversity

Various datasets are concentrated in the sense that they have significantly more in-
teractions on the most interacted items than on the rest. In other words, the rating
distribution follows a long-tailed distribution and acknowledging the tail can be valu-
able to gain additional information [Park and Kim, 2017]. Also, often the tail items are
ignored or not considered enough to provide the users with a satisfying experience. Since
the tail items, also called Eccentric items, are far less interacted with than the popu-
lar items, they might show more user-specific preferences. This additional information
might help to distinguish the user better from other users than with the more popular
interactions.
However, not every unpopular item is valuable to every type of user. Some items are
loved by the majority of users, some are only adored by a specific type of user with a
common interest. The work of C. Park and S. Kim [Park and Kim, 2017] has shown
that there is a big percentage of items in the long tail, which could be used to make both
more diverse and more interesting recommendations to users. This is important since
only increasing accuracy not necessarily increases user satisfaction [McNee et al., 2006].
The users do not only want to see the most popular items they also want a suitable

3

4 CHAPTER 1. INTRODUCTION

amount of diverse items. To capture this, the definition of Eccentric items has been
introduced [Park and Kim, 2017]. By using the Eccentricity as a benchmark value one
can show that recommendations are more diverse.

1.5 Our Contribution

The contribution of this work is improving the original Collaborative Metric Learning
algorithm and creating an Eccentricity based Recommender System.
The Collaborative Metric Learning algorithm is improved in our work by including the
negative feedback the user gave. We represent users and items in a higher dimensional
space, and consider their distance to reflect their preference relationships, i.e, a user
prefers an item that is near in this space. Previous approaches only focus on lowering
the distance between a user and her/his preferred items, while ignoring the distance with
disliked items. We specifically model the distance with disliked items in this work. We
include the disliked items in the process and increase the distance between the user and
her/his disliked items.
Also, this work contributes a Recommender System based on Eccentricity. Eccentricity
has been overlooked in many other Recommender Systems. To improve user satisfaction
and recommendation diversity we aimed at including it into a Recommender System.
We will show that by including it into the recommendation process we can increase user
satisfaction in general by increasing the diversity of the recommendations. We will also
show that for the Eccentric users this improves the Recommender System significantly.

1.6 Thesis Outline

In Chapter 2 Collaborative Metric Learning in general is introduced. Our contribution
Collaborative Metric Learning with explicit negative feedback is described and vari-
ous aspects of the implementation of this application are discussed such as, the rating
conversion, the mathematical formulas that have been used, the datasets, the results
that have been created and certain restrictions that have influenced this application.
In Chapter 3 various aspects that affect the Eccentricity are discussed. This includes
formulas that have been used, to capture the Eccentricity. Also, a way how to construct
a Recommender Systems using these formulas is introduced and tested. In Chapter 4
the limitations that have influenced this work, mainly hardware, are discussed. Also,
the Conclusions of this work are given and additional work that is expected to improve
the value of this work will be discussed. In Appendix A the installation instructions and
contents of the CD are listed.

4

2

Collaborative Metric Learning with
Negative Feedback

Collaborative Metric Learning(CML) has been shown to generate better recommenda-
tions than other state-of-the-art systems [Hsieh et al., 2017]. CML aims at combining
CF with ML. The idea of CML is to group users and items, which are suitable for the
user by learning a user-item joint metric to encode this relationship [Hsieh et al., 2017].
This algorithm generally, ”pulls” (decreases the distance) similar pairs (item, user) closer
together in the joint user-item space. During the learning process, the users who co-liked
the same items will become closer neighbors in the learned vector space. The items which
are co-liked by the same users will become closer neighbors in the learned n-dimensional
space as well through this procedure. After execution the closest items of each user are
the items he liked previously and those liked by a user who liked similar items. Also,
features are taken into consideration to bring items with similar tags or features closer
together. The result of this algorithm is a user-item embedding, this embedding can
predict items, which a user might like by looking at the neighborhood of the user. The
neighborhood can be understood as the items which are distance wise the closest to the
user.

2.1 CML

In this section, we describe CML and the high-level concepts that are used to create
it. CML’s basic idea is that a set of user-item pairs S that are known to have positive
relationships are used to learn a user-item joint metric to encode these relationships
[Hsieh et al., 2017]. Generally one can see this process as pulling similar pairs closer
together and pushing the other pairs relatively further apart. This process will also
group users who co-liked the same items and group items which are co-liked by similar
users closer together. The closest item-neighbors of the users will become the items the
user liked and the items, which other users who share common likes, liked.

2.1.1 Model Formulation

For convenience, we state the model formulation stated in the original paper here again
[Hsieh et al., 2017]. Let rij denote user i’s rating to item j, one learns the user vector

6
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

ui ∈ Rr and item vector vj ∈ Rr such that the dot product uTi vj approximates rij
[Koren et al., 2009] . Each user and each items is represented with a user vector ui ∈ Rr
and an item vector vj ∈ Rr. Then these vectors are learned in a way that their Euclidean
distance,

d(i, j) = ui − vj

obeys user i’s relative preferences. This will result in items being liked by the users
becoming closer neighbors than items which the user did not like. The following loss
functions is used to approach this [Hsieh et al., 2017],

Lm0(d) =
∑

(i,j)

∑
(i,k)/∈S wij [m+ d(i, j)2 − d(i, k)2]+

where j is an item user i liked, k is an item he did not like and [z]+ = max(z, 0) denotes
the standard hinge loss, wij is a ranking loss weight.

2.2 CML with Explicitly Negative Feedback

We propose our new method Collaborative Filtering with Explicitly Negative Feedback
(CML-EN) which is a new model build upon the CML. CML with Explicitly Negative
Feedback (CML-EN) is similar to the CML algorithm but aims at using all feedback
given by users. While the CML algorithm only considers positive feedback e.g. a like,
our approach also considers the explicitly negative feedback given by the user e.g. a
dislike.
CML is a way to represent relationships between users in a distance by giving each a
position in n-dimensional space. Also, the items are represented by a position in space
such that their distance to the users represents if they are liked by him/her. The general
idea is to push and pull items and users. This pushing and pulling is such that they
eventually end up at positions which describes their relationships. By describing the
positions of all items and users in the embedding, we gain new possible recommendations
by looking at the closest item user pairs. This work specifically aims at pushing items
further away from users which disliked these items. This process also pushes these
items further away from users which have not yet consumed them. This decreases the
probability a user is recommended an item he dislikes.
While the original only pulls the positive items closer to the user, this approach also
pushes (increases the distance) the explicitly negative items further away from the user.
We measure the squared difference between the user’s position in the embedding and the
explicitly negative item. This difference will then be added to the loss term as described
in the section 2.2.1. This loss term will then be minimized. In other words, given a
user ui and an item he disliked in we look up the position of both in the n-dimensional
embedding space. The function EPos(ui) will return an n-dimensional vector which
describes the position of the item or user in the respective embedding space. While the
look-up functions EPos(ui) and EPos(in) are implementation wise differently, we will
treat it here such that it returns the value of the position in the embedding space for both
items and users. This can be achieved by using the function tf.nn.embedding lookup

6

2.2. CML WITH EXPLICITLY NEGATIVE FEEDBACK 7

[Abadi et al., 2015]. We then us a function to measure the distance between the two
positions using

dist(ui, in) = sqDiff(EPos(ui), EPos(in))

we are using the Squared Difference. This method of distance measuring has been chosen
to stay consistent with the CML, which also uses the squared difference to measure
distances in the embedding. To capture the relations between a disliked item and a user.
We need to define a function which decreases as the distance increases. To accomplish
this it is suitable to look at the inverse of the distance e.g. value

distance . We try to define
it such that the minimization process decreases this inverse until a certain threshold
or safety margin is reached. We want to push the item far enough to not be in the
recommendation area anymore. However, we also want this inverse not to be decreased
too much since this would push all items very far away from all users. We, therefore,
define a function,

UserNegativeDist(ui, in) = max(α
dist(ui,in)

, 1.0)

Where α is a distance tuner and describes the maximum distance the negative items
should be pushed away from the User that rated it negatively. The goal is to push the
user as far away from the item, as it is necessary for the user, to not be recommended
this item again. The value of α > 1 is the distance the item will eventually be away from
the user. It is important to notice, that the distance value if to close (which is when we
want to push it further away) will be smaller than one, to understand why this increases
the distance. This effectively means that the UserNegativeDist(ui, in) is big when the
dist(ui, in) is small. The intuition behind this is that the bigger the distance between
ui and in is, the smaller the value returned by UserNegativeDist(ui, in) becomes until
it finally reaches the minimum of 1, where increasing the distance stops and minimizing
this further is not possible. We finally add the term to our loss function which will be
described in more detail in section 2.2.1. Given a set of users U and for each user, a set
of items he did liked Ip and a set of items he disliked In,∑

u∈Ip
∑

in∈In UserNegativeDist(u, i)

which gives us the term we need to add to the loss function. The term we just described
was indented to increase the distance between users and their disliked items. This on its
own already brings improvements to the system and successfully decreases the negative
items in the users top recommendations.
To improve the system further also pushing negative items and positive items further
away from each other would be desirable. The approach to also change the distance
between items makes little sense when only working with positive items. The reasons
behind this is that decreasing the distance between items would let them lose their ”di-
rection”. With direction, we mean the dimensions which differentiate different positive
items, which were liked by the same user. However, when working both with negative
and positive feedback increasing the distance between two items which are different,
differentiates them better. We know that two items are different by looking at items the

7

8
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

same user disliked and liked. We then proceed to increase the distance between these
two. This improves the system and further decreases the disliked items in the users top
recommendations.
Additionally to the Explicitly Negative Feedback, we described before we now also gen-
erate a new pair constellation. This positive-negative pair is generated from the users
explicitly negatively and positively interacted items. This means a pair of items (ip, in)
where ip is a positively rated item and in is a negatively rated item, both items have
been rated by the same user.
More formally we define a new set Dissimilar Pairs(DP) where every element is a pair
(ip, in) ∈ DP where ip ∈ Ip and in ∈ In. DP can be calculated as the Cartesian Product
of Ip and In

DP = Ip × In

Now we sample some random element (ip, in) ∈ DP every iteration and increase the
distance between ip and in slightly. The impact of this distance change should be much
smaller then the previous changes since the pairs (ip, in) is only based on the feedback
from one user but affects two items. The approach to defining a distance suitable for
this is very similar to the approach for UserNegativeDist(ui, in). Given two items ip
and in we define,

ItemNegativeDist(ip, in) = max(α
dist(ip,in)

, 1.0)

Where α is a distance tuner and describes the maximum distance the negative items
should be pushed away from the positive item. The intuition behind this is very similar
to the intuition described for the UserNegativeDist(ui, in). The goal is to push the
item ip and in further away from each other. The value of α > 1 is the distance the item
will eventually be away from each other. It is important to notice, that the distance
value if to close (which is when we want to push it further away) will be smaller than
one, to understand why this increases the distance. This effectively means that the
ItemNegativeDist(ip, in) is big when the dist(ip, in) is small. The intuition behind
this is that the bigger the distance between ip and in is, the smaller the value returned
by ItemNegativeDist(ip, in) becomes until it finally reaches the minimum of 1, where
increasing the distance stops and minimizing this further is not possible. When stopping
at the minimum this means the item is now further away from the user. We push these
two items further away from each other since we know a user thinks one is different than
the other. In other words, we use the information the user gave us about this item to
ensure the items will be more distinct. We finally add the term to our loss function
described in 2.2.1, given the set DP ,∑

(i,j)∈DP ItemNegativeDist(i, j)

which gives us the term we need to add to the loss function. As explained in the graphical
explanation 2.1 this method adds values by decreasing the amount negative items in the
user’s neighborhood. Where the neighborhood are the items which will eventually be
recommended to him/her. Before any training has been done, some negative items are,

8

2.2. CML WITH EXPLICITLY NEGATIVE FEEDBACK 9

Figure 2.1: Graphical Explanation.

shown in red in the graphical explanation 2.1, close to the user. Our goal is to increase
the distance between these negative items and the user (blue in the figure). This is
achieved by pushing the items into the directions of the gradients, away from the user
until a threshold value is reached. This threshold is indicated in gray in the graphical
explanation. The positive items are shown in green in the graphical explanation 2.1
will be pulled closer to the user. As described also the distance between the negative
items and the positive items will be increased. The arrows show the direction of the
gradients e.g. in which directions the items will be pushed/pulled. All of this happens
in an n-dimensional space.

2.2.1 Model Formulation

Additional to the model of the original CML. We add two loss terms described in the
previous section of the model. Given a user set U and an item set the user disliked In,

Lm1(d) =
∑

u∈U
∑

i∈In UserNegativeDist(u, i)

And also given the set DP described earlier we define a second Loss function as,

Lm2(d) =
∑

(i,j)∈DP ItemNegativeDist(i, j)

2.2.2 Training Procedure

The complete objective function of the proposed model is,

min
u∗,v∗

Lm0 + λfLf + λcLc + λ0(λ1Lm1 + λ2Lm2)

Where Lf and Lc are loss terms defined in the original paper which can but do not have
to be used in combination with this method [Hsieh et al., 2017]. The Lf can be used if

9

10
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

features are present. This loss improves the model by adding feature dimensions. The Lc
describes the covariance loss. Which can improve the model by constraining the objective
but was not used in our testing process. The reason for this is that it was not recom-
mended in the original CML code. This can also be left out of the minimization process if
no features are available. Where λf , λc, λ0, λ1 and λ2 are hyperparameters which control
the weight of the loss terms. We minimize this functions us with Mini-Batch Stochas-
tic Gradient Descent (SGD) using AdamOptimizer [Kingma and Ba, 2014]. We used
AdamOptimizer instead of AdaGrad, as proposed in the original paper since the cre-
ator of CML suggested on the projects GitHub-repo that AdamOptimizer is the better
choice. The training procedure can be summarized as,

1. Sample N positive pairs from S

2. Sample N explicitly negative pairs from D

3. Sample N pairs from DP

4. For each positive pair, sample U negative items

5. For each positive pair, keep the negative item k that maximizes the hinge loss and
form a mini-batch of size N

6. Compute gradients and update parameters with a learning rate controlled by
AdamOptimizer.

7. Repeat this procedure until convergence.

2.3 Negative Items in Top K

The Top K recommendations of a user are the k ∈ N items the recommendation sys-
tem recommends to the user. A Negative Item (NI) is defined as an item which has
been recommended to the user but he does not like. Since user satisfaction with recom-
mendations is affected by the number of negative items in his top k recommendation,
improving on the Negative Items in Top K(NITK) is desirable. A low, preferably 0,
value in NITK is desirable since this would mean there are not many items in the users
top-recommendations he dislikes. We define the NITK as,

NITK = max(|NI∩TK|k , |NI∩TK||NI|)

Where set NI is the set of items the user interacted negatively with. The set TK is the
set of items the recommendation system recommends to the user, the k refers to the
size of the recommendation e.g. |TK| = k. We will use the notations NIT10 and NIT5,
which indicates that the size of k is 10 for NIT10 and 5 for NIT5 respectively. The value
NITK indicates the probability that a negative item is in the TK recommendations. A
value of 0 for NITK is desirable since this would mean that there are no negative items
in the top k recommendations which also affects precision. If not indicated the NITK

10

2.4. RATINGS 11

values given are the mean of the NITK for all users. The values in NITK are generally
low given a suitable recommendation system since most items the user dislikes should
not be in the top-recommendations. However, often users do not know about the items
they hate the most since current recommendation systems are already quite good and
will recommend the user suitable movies such that the user dislikes often movies which
are closer than the movies which are the furthest away from him.

2.4 Ratings

In most modern websites, programs, and apps the possibility to rate certain items are
present. Different rating systems exist which can mainly be divided into 5 categories.
These 5 categories are [Aggarwal, 2016]

• Continuous Ratings

• Interval-based Ratings

• Ordinal Ratings

• Binary Ratings

• Unary Ratings

While the methods we propose are mainly useful for Binary Ratings, which are very
popular and widely used. We used Interval-based Ratings for our development and
converted them into Binary Ratings to generate methods which work for Binary, Interval-
based and Continuous Ratings.

2.4.1 Convert Interval-based & Continuous Ratings to Binary Rat-
ings

While the easiest way to convert Continuous and Interval-based ratings to Binary Ratings
is to take the middle of the rating interval and classify everything above this as a like
and everything below this as a disliked. This approach is possible and works well but
can be improved by calculating,

MeanUserRating(R) =
∑
r∈R r

|R|

where R is the set of Ratings and r is a rating in the range of the interval of the rating.
We classify everything below this Mean-User-Rating as a disliked and everything above
it or equal to it as a like. The reason for this is to get a more even distribution of
likes and dislikes which benefits both training and evaluation. The main problem of
taking the mean of the rating system instead of the mean of the users ratings is that
users usually vote strongly above the mean of the rating system e.g in the Movielense
datasets the rating system ranges from 1-5 which would indicate a mean of 3 but the

11

12
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

global average is roughly around 3.5. An overview of the ratings in the datasets is shown
for Movielens and Goodbooks in table 2.1.

Table 2.1: Overview Datasets Ratings

Dataset Good
books 10k

Dataset
Movielens 20m

Dataset
Movielens 1m

Average Rating 3.92 3.52 3.58

Amount 0.5 Ratings 239’125

Amount 1 Ratings 124’195 680’732 56’174

Amount 1.5 Ratings 279’252

Amount 2 Ratings 359’257 1’430’997 107’557

Amount 2.5 Ratings 883’398

Amount 3 Ratings 1’370’916 4’291’193 261’197

Amount 3.5 Ratings 2’200’156

Amount 4 Ratings 2’139’018 5’561’926 348’971

Amount 4.5 Ratings 1’534’824

Amount 5 Ratings 1’983’093 2’898’660 226’310

2.5 Datasets

We have evaluated our result on two datasets. One being the Movielense 1 million
[Harper and Konstan, 2015] and the other one being the Goodbooks 10k dataset [Zajac, 2017].
MovieLens is a dataset provided by GroupLens Research at the University of Minnesota.
Goodbooks is a popular dataset for books and features ratings and tags from many dif-
ferent sources. For both datasets, there are ratings from 1-5 which are connected to one
user and one item. We calculated the average user rating using MeanUserRating(R)
and classified everything that is bigger or equal to this MeanUserRating(R) as a like
and everything below this average as a dislike.
For Movielense 1 million we used the plot-tags from www.themoviedb.org and for Good-
books 10k tags are already available but we only used the tags for each item which have
been mentioned at least 5 times. Since some of the aspects we tested show clearer in
bigger datasets we evaluate some aspects also on Movielens 20 million. We did not filter
the datasets initially. However, we used thresholds on how many interactions users need
to have at least. If this is the case it is mentioned in the related section. The Amount of
Users, Amount of Items and the number of Ratings for the data sets Movielens 1 million,
Movielens 20 million and Goodbooks are given in the table 2.2,

12

2.5. DATASETS 13

Table 2.2: Datasets

Amount of Items Amount of Users Amount of Ratings

Dataset Goodbooks 10k 10’000 53’424 5’976’479

Dataset Movielens 20m 27’000 138’000 20’000’000

Dataset Movielens 1m 3’952 6’040 1’000’000

2.5.1 Concentration

The concentration seems to have an effect on the performance of the algorithm. Here
concentration means the number of likes which are concentrated on the top most liked
items. Tail-liked items are the items which have been consumed by only a few users but
still are liked. Movielens and Goodbooks are both very concentrated but Goodbooks
has a lot more tail-liked items than Movielens as seen in the table 2.3 below.

(a) Movielens 1 million (b) Goodbooks 10k

Figure 2.2: Histogram items by amount of likes.

The Movielens datasets have a lot of items which are not liked a lot. The roughly 30%
least liked items in Movielens only account for around 1% of all likes. The 20% most
liked items concentrate roughly 72% of the likes on them.
The Goodbooks dataset has also a lot of items which are not liked a lot but has more
tail-liked items. The roughly 30% least liked items in Movielens only account for around
1% of all likes, while the dataset Goodbooks has 5.4% in the 30% least liked items. This
is 5 times more and has an impact on the results. The 20% most liked items concentrate
roughly 69% of the likes on them, which is also quite high but common also in other
datasets.

13

14
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.3: Table describing the distribution of likes in the datasets

Concentration Movielens 1 million Goodbooks 10k

0-10% most liked 0.1% 1.2%

10-20% most liked 0.3% 1.9%

20-30% most liked 0.8% 2.3%

30-40% most liked 1.4% 2.9%

40-50% most liked 2.4% 3.6%

50-60% most liked 4.1% 4.6%

60-70% most liked 6.8% 5.8%

70-80% most liked 11.4% 8.3%

80-90% most liked 20.4% 14.04%

90-100% most liked 52.1% 55.13%

However as we seen the 50% least likes items in Movielens account for only 5% of all
likes. The Goodbooks 50% least like items account for 11.9% which is more useful when
analyzing for the Eccentricity. If not enough likes are present on the least liked items the
chance that an item is recommended which is not very popular decreases dramatically
as we will show in Chapter 3.

2.6 Results

A good recommendations system not only needs to have optimal values in the area of
Recall and Precision. Also, the top-recommendations that a user receives or is shown
should include as little Negative items as possible (Items the user won’t like). The
reasons behind this are that our assumption is, that showing/recommending a user an
item he does not like decreases the customer satisfaction. Since customer satisfaction
eventually is more important than most other aspects of recommendation systems we
should also optimize for this.
We tested both the CML and the CML-EN algorithm on NITK. The parameters, exclu-
sive to the CML-EN, have been set to show a clear trend on the validation set. A clear
trend in this context means that we optimized such that all measured values improve
and not just one improves drastically and the other ones decline.
Both Systems have been tested with the same hyperparameters, with the exception of
those that are exclusive to the CML-EN. An overview of the hyperparameter setting can
be found in table 2.4. Namely the parameters Explicitly Negative loss scale, Explicitly
Negative-Positive-Pair loss scale, Distance tuner Explicitly Negative-Positive-Pair and
Distance tuner Explicitly Negative are exclusive to the CML-EN. The reason for this
is that they exist only in the CML-EN. Generally, if we change the hyperparameters
affecting both the CML and the CML-EN both change relatively similar. With the no-
table exception of the number of iterations, in this regard when not trained enough the
CML-EN will perform worse.
We used for this series of test a split of 33.3% train, 33.3% test and 33.3% validation for

14

2.6. RESULTS 15

the dataset. We used such a split to have more data for the evaluation which in case of
Negative items in the top recommendations needs to have a bigger test/validation set
to be clearly visible, this of course also has an influence on all other metrics. Using this
setting only users with at least 3 likes are used for evaluation but all users are used for
training. Users generally have roughly the same amount of likes and dislikes, due to the
definition of a like and a dislike we used as described earlier.
We included only tags which have at least been mentioned for 2 items in the training
process. For the Movielens dataset in general, we included tags from the dataset which
have been given to the movies by at least 5 users. The reason behind this was to exclude
some spelling errors and accidental tags which make little sense to be included. We also
added tags for the movies from the www.themoviedb.org API to increase the number
of tags available for training. In the case of goodbooks we used the tags included in the
datasets which are already of a high quality. Also, in this case, we only included the tags
which have been named at least 5 times by different users to exclude accidental spelling
errors and other problems that might decrease the quality of the tags. We run each test
3 times with random seeds and present the average in the tables. The plots have been
generated by an example run and might not represent the average exactly which are
shown in the tables.

2.6.1 Results CML-Original

The following Result was created by using the Collaborative Metric Learning [Hsieh et al., 2017]
in its original form. Our results are not as good as the author claimed in his paper for
the Movielens 20m dataset, we contacted him about it but were not answered. We as-
sume that the reason behind this is that the data filtering process is either different or
the computational resources we are able to use are smaller. Also, tags and processing of
them could have varied. The initial testing phase on the Movielens 100k set suggested
though that splitting the ratings on the users-average instead of simply picking all rat-
ing bigger than 4 had a beneficial impact on the testing, we therefore assume that even
though this is a difference to the author’s original setup it was not the main problem.
The number of features that were used has also varied compared to the author’s original
paper, which we can’t explain since we used the API suggested by imdb. The author
in his paper described he had 10’399 features, with more than 5 occurrences, for testing
with the Movielens 20 million dataset [Hsieh et al., 2017]. Using our method for accu-
mulating features only 3’942 features are created, with more than 5 occurrences. In this
sections, we will show plots of the test set the final results on the validation set and
comparison are shown in the last section.

15

16
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

(a) Recall at 50 of CML over time for good-
books10k

(b) Precision of CML over time for Good-
books10k

Figure 2.3: Result for Goodbooks10 using CML.

The left figure 2.3a shows the development of the recall at 50 over the training process.
The Recall at 50 of Goodbooks10k increases strongly in the beginning of the training
processes and after the first few hundred iterations stays almost the same. Additional
iterations bring little to no additional benefits in terms of Recall. Too few iterations,
can result in worse results as we see. The second plot shows the development of the
precision at 50 over the training process.
The Precision of Goodbooks10k at 50, as shown in figure 2.3b increases strongly in the
beginning of the training processes as the Recall but continues increasing slightly during
the following iterations. Additional iterations bring little benefits in terms of Precision
but keep to improve slightly. The Precision is already quite high in comparison to the
Recall in the beginning though.

(a) NIT50 of CML over time for Goodbooks10k (b) NIT5 of CML over time for Goodbooks10k

Figure 2.4: Result for Goodbooks10 using CML.

16

2.6. RESULTS 17

The figure 2.4a shows the development of the NIT50 over the training process. The
NIT50 described how many recommendations users got on their top-50 recommendation
which they explicitly disliked e.g. downvoted. The value increases rapidly in the begin-
ning since if the recommendations are random, like they are in the beginning, the chance
of recommending an item the user disliked is not very high. Once the recommendation
system begins to recommend sensible choices the NITK increases. Additional iterations
bring little benefits in terms of NITK but keep to improve slightly. As mentioned earlier
a low value preferably 0 is better for NITK. The values, can change relatively signifi-
cantly in comparison between epochs.
The figure 2.4b shows the development of the NIT5 over time. Similar to the NIT50 the
NIT5 describes how many negative items were in the users top-5 recommendations. A
high value in NIT5 suggests that the recommendation system is not very beneficial for
customer satisfaction since the top-5 items are almost certainly guaranteed to be seen by
the user. In the Results Comparison also NITK at other values are given. The values,
can change relatively significantly in a comparison between epochs and this difference
changes even stronger with the NIT5 than with the NIT50. The reasons behind this is
that analyzing only the top-5 is more volatile than analyzing the top-50.

2.6.2 Results CML-Explicit Negative Feedback

The following Results were created by using the Collaborative Metric Learning [Hsieh et al., 2017]
with the addition of explicitly negative items-user pairs training (CML-EN). The results
mainly differ from the original CML by having a worse Recall but improving in NITK
and Precision if tuned to perform optimally on the NITK. However, to show that the
CML-Explicit Negative(CML-EN) can also outperform the original in this matter the
hyperparameters, which are exclusive to the CML-EN, have been set to show an even
increase overall measurements. The hyperparameters exclusive to the CML-EN could
also be set, such that only NITK improves heavily but Recall decreases.
The reasons for this improvement is that by including all-feedback a user has given and
not just the likes the users have given we can gain additional information. This system
could be further improved by adding more tags. By including the user’s negative feed-
back, in particular, the embedding can be trained to increase the distance between a
user and negatively rated items to improve the recommendations.

17

18
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

(a) Recall at 50 of CML-EN over time for Good-
books10k

(b) Precision of CML-EN over time for Good-
books10k

Figure 2.5: Result for Goodbooks10 using CML-EN.

The figure 2.5a shows the development of the Recall at 50 over the training process
of the CML-EN. The Recall of Goodbooks10k increases strongly in the beginning of the
training processes and after the first few hundredth iterations stays almost the same.
Additional iterations bring little to no additional benefits in terms of Recall on this
dataset. However, in comparison to the CML the Recall improves slower and over a
longer time period.
The figure 2.5b shows the development of the Trecision at 50 over the training process of
the CML-EN. The Precision of goodbooks10k increases strongly in the beginning of the
training processes as the Recall but continues increasing slightly during the following
iterations. Additional iterations bring little benefits in terms of Precision but keep
to improve slightly. However, compared to the CML here additional training time is
desirable to reach better results.

18

2.7. RESULT COMPARISON 19

(a) NIT5 of CML-EN over time for good-
books10k

(b) NIT50 of CML-EN over time for good-
books10k

Figure 2.6: Result for Goodbooks10 using CML-EN.

The figure 2.6a shows the development of the NIT50 over the training process. Once
the recommendation system begins to recommend sensible choices the NITK increases.
This is since it is the lowest when random choices are recommended since the change of
selecting a negative item at random is fairly low. In comparison to the CML-original,
the NIT50 decreases after more training time as the minimization process decrease this
value. Additional iterations bring benefits in terms of NIT50. As mentioned earlier a
low value preferably 0 is desirable and one of the main goals of this algorithm. Therefore
training for a longer period of time for a commercial system would be desirable
The figure 2.6b shows the development of the NIT5 over time. Similar to the NIT50
the NIT5 describes how many negative items where in the users top-5 recommendations,
which are the items the user is the most likely to watch and is one of the measurements
we aimed to improve. In the Result comparison, more NITK values are given for a better
comparison. As already mentioned about the same plot for the CML this measurement
tends to change relatively strongly between epochs. This could be decreased by changing
the learning rate or increasing the strength of the negative loss values in general.

2.7 Result Comparison

This sections features the results of both the CML-Orginal and CML-Explicit negative(CML-
EN). The hyperparameters can be tuned to punish NITK stronger but this comes at the
cost of Recall. For this comparison the hyperparameters, exclusive to the CML-EN,
have been tuned to show that CML-EN can be better in all measurement and show a
clear trend. As mentioned earlier the hyperparameters, exclusive to the CML-EN, could
also be set to improve NITK stronger but hurt the Recall. We run the tests with the
hyperparameters,

19

20
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.4: Hyperparameter for tests

Hyperparameters Movielens 1 million Goodbooks 10k

Batch-size 80’000 100’000

Embedding dimension 70 100

Nr Negatives 30 30

Hidden layer dimensions 256 512

Clip norm 1.1 1.1

feature projection scale 1.0 1.0

Iterations 1500 1500

drop-out rate 0.4 0.3

Explicitly
Negative loss scale

1.25 1.5

Explicitly
Negative-Positve-Pair
loss scale

0.005 0.005

Distance tuner
Explicitly
Negative-Positve-Pair

3.5 3.0

Distance tuner
Explicitly Negative

4.0 4.0

Note that the parameters Explicitly Negative loss scale, Explicitly Negative-Positve-
Pair loss scale, Distance tuner Explicitly Negative-Positve-Pair and Distance tuner Ex-
plicitly Negative only apply to the CML-EN. Explicitly Negative loss scale affects all
the effects the explicitly negative parameters have and affects the strength at which the
values are added to the loss function. Generally the effect of the Negative loss functions,
on the loss, should be smaller than the effect of the other loss functions. The reasons
behind this is that pushing negative items too far away from the user is not desirable.
It is not desirable since often ratings are given for relatively similar movies. Relatively
similar in this context means that a user often will view movies which are from relatively
similar genres. These movies might be bad or good for the user but a user often never
sees the items that would, distance wise, be the furthest away from him.
As an example we can think of a user which watches a lot of action movies, in his rating
list most likes and dislikes will be from the action genre, the items which should be the
furthest away are the items which have absolutely no relationship with him. However,
these items are not very likely to appear in his rating list at all e.g. a Japanese romance,
which has absolutely no relation to his preference. But since he never consumes these
items, we have no information on how much he dislikes it. Therefore we should not
push an action movie he dislikes as far away from him, as an item he has absolutely no
relationship with is, away from him e.g. a Japanese romance movie.
The Explicitly Negative-Positive-Pairs loss describes how strong the effect the Negative-
Positive-Pair effect we described earlier, on the loss should be. This value has to be set

20

2.7. RESULT COMPARISON 21

very low since the information has been generated by only one user and affects two items.
The Distance tuner Explicitly Negative describes how far an item should be pushed away
from a user and should be tuned such, that the item does not appear anymore in the
user’s top-k recommendations but is not pushed too far away. The Distance tuner for Ex-
plicitly Negative-Positive-Pair describes how far the items should be pushed away from
each other, this distance should be smaller than the other distance tuner. The reason for
this is, that it affects two items but the rating has been captured by only one user and
different users might contradict each other in this decision. Therefor finding the right
value for these parameters has to be approached for each data set differently. We found
the parameters we use by performing a grid search. However the datasets Goodbooks10k
and Movielens 1 million are relatively similar and we used similar hyperparameters for
the tests.

2.7.1 Goodbooks 10k

The results for Goodbooks have been tested for both CML-original and CML-EN and
the hyperparameters, exclusive to the CML-EN, have been set to show a clear increase
in all measured values. Generally they could also be set to perform stronger in the NITK
but this would hurt the Recall. The values for Recall, Precision at 10, 20, 50, 75 and
100 are all higher with the modified CML-EN compared to the original CML which is
what was desired. The values for NITK at 1, 5, 10, 20, 30, 40, 50, 60, 70 and 80 are
all lower using the CML-EN compared to the CML in case of the NITK lower is better.
However the CML-original is faster and needs no downvotes and therefore less training
time. Also the memory usage of CML-EN is higher compared to the CML which can be
handled by using different batching and sampling.

Table 2.5: Recall Results Goodbooks 10k

Dataset Goodbooks 10k CML-Original CML-EN

Recall at 10 8.260% 9.187%

Recall at 20 13.615% 14.844%

Recall at 50 23.728% 25.682%

Recall at 75 29.372% 31.585%

Recall at 100 33.653% 36.078%

As we see the values for 10, 20, 50, 75 and 100 Recall are higher with the CML-EN
compared to the CML-original. The value for Recall at 100 for example increases by
roughly 2.425% which is a relative improvement of 7.2%. The value for Recall at 10
improved by 0.927% which is a relative improvement of 11.2%.

21

22
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.6: Precision Results Goodbooks 10k

Dataset Goodbooks 10k CML-Original CML-EN

Precision at 10 56.075% 60.948%

Precision at 20 66.878% 71.285%

Precision at 50 75.815% 79.182%

Precision at 75 77.829% 80.087%

Precision at 100 78.667% 81.534%

As we see the values for 10, 20, 50, 75 and 100 Precision are higher with the CML-EN
compared to the CML-original. The value for Precision at 100 for example increases by
roughly 2.867% which is a relative improvement of 3.6%. The value for Precision at 10
improved by 4.873% which is a relative improvement of 8.6%.

Table 2.7: NITK Results Goodbooks 10k

Dataset Goodbooks 10k CML-Original CML-EN

NIT1 3.550% 3.267%

NIT5 2.199% 1.904%

NIT10 2.055% 1.792%

NIT20 2.405% 2.123%

NIT30 3.220% 2.850%

NIT40 4.096% 3.635%

NIT50 4.932% 4.377%

NIT60 5.705% 5.087%

NIT70 6.413% 5.750%

NIT80 7.084% 6.364%

As we see the values for NIT1, NIT5, NIT10, NIT20, NIT30, NIT40, NIT50, NIT60,
NIT70 and NIT80 are lower with the CML-EN compared to the CML-original which
was the main goal of this work. The value for NIT1 for example decreased by roughly
0.283% which is a relative improvement of 8.0%. The value for NIT80 decreased by
0.72% which is a relative improvement of 10.1%.

2.7.2 Movielens 1 million

he results for Movielens have been tested for both CML-original and CML-EN and the
hyperparameters, exclusive to the CML-EN, have been set to show a clear increase in all
measured values. Generally, they could also be set to perform stronger in the NITK but
this would hurt the Recall. The values for Recall at 10, 20, 50 and 75 are all higher with
the modified CML compared to the original CML which is what was desired. However,
the value of Recall at 100 is lower which might have something to do with the distance
tuner set to low since the values for the lower Recalls are better. The values for NITK
at 1, 5, 10, 20, 30, 40, 50, 60, 70 and 80 are all lower using the CML-EN compared

22

2.7. RESULT COMPARISON 23

to the CML. However, the CML-original is faster and needs no downvotes. Compared
to Goodbooks 10k the difference in results is less significant which probably is due to
the different concentrations of interactions in the datasets. In Movielens the amount of
interactions concentrated on the top 50% of the items is significantly higher.

Table 2.8: Recall Results Movielens 1 million

Movielens 1 million CML-Original CML-EN

Recall at 10 11.642% 12.634%

Recall at 20 18.668% 19.691%

Recall at 50 32.151% 32.991%

Recall at 75 39.730% 40.261%

Recall at 100 45.764% 45.672%

As we see the values for Recall at 10, 20, 50, 75 are higher with the CML-EN compared
to the CML-original. However the result for Recall at 100 is lower. The value for Recall
at 100 decreased by roughly 0.092% which is the only value which decreased. The value
for Recall at 10 improved by 0.927% which is a relative improvement of 8.5%.

Table 2.9: Precision Results Movielens 1 million

Movielens 1 million CML-Original CML-EN

Precision at 10 62.723% 66.068%

Precision at 20 71.169% 72.412%

Precision at 50 73.737% 74.357%

Precision at 75 72.738% 73.334%

Precision at 100 71.611% 71.995%

As we see the values for 10, 20, 50, 75 and 100 Precision are higher with the CML-EN
compared to the CML-original. The value for Precision at 100 for example increases by
roughly 0.384% which is very little but increased relatively more in the other areas. The
value for Precision at 10 for example improved by 3.345% which is a relative improvement
of 5.06%.

23

24
CHAPTER 2. COLLABORATIVE METRIC LEARNING WITH NEGATIVE

FEEDBACK

Table 2.10: NITK Results in Movielens 1 million

Movielens 1 million CML-Original CML-EN

NIT1 2.569% 1.840%

NIT5 2.202% 1.896%

NIT10 3.171% 2.815%

NIT20 5.493% 5.267%

NIT30 7.919% 7.550%

NIT40 10.012% 9.793%

NIT50 12.244% 11.907%

NIT60 14.380% 13.890%

NIT70 16.357% 15.706%

NIT80 18.407% 17.640%

As we see the values for NIT1, NIT5, NIT10, NIT20, NIT30, NIT40, NIT50, NIT60,
NIT70 and NIT80 are higher with the CML-EN compared to the CML-original which
was the main goal of this work. The value for NIT1 for example decreased by roughly
0.729% which is a relative decrement of 28.0%. The value for NIT80 decreased by 0.767%
which is a relative decrement of 4.1%.

24

3

Diverse Recommendations

Often Recommender Systems aim so much at getting the Recall and Precision to a
sensible level that user satisfaction is not the main priority anymore. Users do not
only want accurate recommendations they also want diverse, surprising and interesting
recommendations [McNee et al., 2006].
Therefore also looking at recommendations, which are not very likely to appeal to the
users, since they are not very often rated, has value. One of the main reasons that affect
that recommending uncommon items to users hurt Recall and Precision, is that most
Recommender Systems never show these items to the users. With various evaluations
regarding Eccentricity, we want to show the differences among the uncommon items.
This work also aims at highlighting some of the ways that might improve the diversity.
We will also propose a method which improves recommendations for user groups, which
like more uncommon items.

3.1 Popularity

Most items have been consumed by users different amounts of times. While certain
items might have interacted with a lot, certain items may only have been interacted
with, a few times. We will classify the items which have been interacted with a lot as
mainstream and those who have been interacted with only a few times as uncommon
or niche items. Recommender Systems often recommend items which are very popular
since they are very likely to be liked by the general user. For certain users though,
which are very interested in niche items, popular recommendations are not satisfying.
Therefore considering the popularity of items, is important and can add value to the
system and increase user satisfaction.
We define popularity as the likelihood an interaction is made with a given item. We
define the set Items(I) and for every item i ∈ I we define the value iinteractions which
is the number of interactions made with this item. The popularity of an item i ∈ I is
defined as,

popularity(i) = iinteractions∑
j∈I jinteractions

26 CHAPTER 3. DIVERSE RECOMMENDATIONS

Which is the amount of interactions made with the item divided by the amount of
interactions made in the entire data set. This is the probability an item is interacted
with.

Figure 3.1: Popularity of Movielens 1 million

As we see in figure 3.1 the popularity of a few items is very high but the popularity
of most items is very low. This has a lot to do with, the concentration of the data set.

3.1.1 Controversy

Controversy is related to the ratio between likes for an item and dislikes. It can be
assumed that certain users like items which are heavily disliked by other users and vice
versa. An example might be a controversial war-documentary which certain people adore
and others dislike even though both parties like documentaries in general. Therefore
looking at the controversy of a movie is important.
An interaction we define as a rating a user made on an item, the value of this rating does
not matter. A dislike we define as a rating below theMeanUserRating(R) for an interval
based rating. A like is defined as a rating above or equal to the MeanUserRating(R).
In a binary rating system, the likes and dislikes would be given by the user directly. We
define the controversy of an item i ∈ I

controversy(i) = ilikes−idislikes
iinteractions

The controversy(i) ∈ [−1, 1], since all items that are interacted with are either liked or
disliked. A value of controversy(i) > 0 indicates that i is a good movie and a value of
controversy(i) < 0 indicates that the movie is a bad movie as perceived by the majority
of the general users. There seems to be a certain group of people that really enjoy and

26

3.1. POPULARITY 27

mainly consume items in the controversy(i) ∈ [−0.1, 0.1], which we qualified as the
controversial items. The intuition behind this definition is, that it will now only qualify
all movies which have a difference of around 20% between likes and dislikes e.g. 45 likes
and 55 dislikes. Defining it like this qualifies roughly 15% of the movies as controversial,
which we thought was suitable. These items give us the set CI which is the set of the
controversial items.

3.1.2 User-Controversy

As discussed earlier there might exist a group of users, in the respective data set, which
consumes and likes an increased number of controversial items. Each user has a set UI
which are items the user interacted with e.g. either liked or disliked. The user’s positively
interacted with items define a set UIp and the users explicitly negatively interacted with
items define a set UIn. We define now the Positive-User-Controversy of a user u

PositiveUserControversy(u) =
|CI∩UIp|
|UIp|

And the Negative-User-Controversy as

NegativeUserControversy(u) = |CI∩UIn|
|UIn|

The Positive-User-Controversy indicates how many of the items the user liked are contro-
versial. A high value indicates that a user mainly enjoys controversial items. A low value
indicates that user mainly enjoys very popular items e.g. only watches blockbusters.
The Negative-User-Controversy indicates how many of the items the user disliked are
controversial. A high value indicates that the user mainly dislikes controversial items. A
low value indicates that the user either watches very little controversial movies or likes
them more often. These numbers should be compared to the user’s User-Controversy
which is the ratio of controversial movies a user consumes

UserControversy(u) = |CI∩UI|
|UI|

A high value in User Controversy indicates the user watches mainly controversial items.
A low value in User Controversy indicates that the user barely interacts with controversial
items. In the figure 3.2, we see the Positive-User-Controversy (green) and the Negative-
User-Controversy (red). The users are ordered by the User-Controversy and on the
x-axis we see the users position in the ordering where each x is a user. The figure 3.2
tells us that there are generally more downvotes on Controversial movies than likes, this
is visible since the Negative-User-Controversy is generally higher than the Positive-User-
Controversy.

27

28 CHAPTER 3. DIVERSE RECOMMENDATIONS

Figure 3.2: Positive and negative User Controversy sorted by User Controversy, for
Movielens

3.2 Item-Eccentricity

The definition for Item-Eccentricity has been given by Park and Kim [Park and Kim, 2017].
The general idea of item Eccentricity is that there is a group of items which is loved
by a small group of users but ignored by the majority of users e.g. a french-art movie.
These items are niche items and mainly consumed by a small fan base. Park and Kim
aimed at finding these items by defining the Item-Eccentricity [Park and Kim, 2017].
This measurement helps in identifying items which are not very often consumed but can
be positively perceived by users which enjoy more niche items. We will later show how
to use this measurement to recommend Eccentric items to Eccentric users and generally
improve the diversity of the recommendations.

3.2.1 Item-Rarity

Eccentric Items are items which are only consumed by a small amount of people. There-
fore it is important to know, how often an item is consumed, compared to other items.
The definition of Item-Rarity helps to capture this relation between items and users.
The Item-Rarity is defined as [Park and Kim, 2017],

ItemRarity(i) = IR(i) = −log(|Fi|)

28

3.2. ITEM-ECCENTRICITY 29

Where |Fi| is the number of interactions (feedback’s) on the Item i. After applying
Item−Rarity(i) to all items in the Item set the resulting values are standardized to a
z-score. Where the z-score is defined as,

zscore(IR(i)) = IR(i)−µ
σ

Where µ is the population mean and σ is the standard deviation of all Item Rarities.
When using the Item-Rarity in the following definitions always the z-score of the Item-
Rarity is used.

3.2.2 User-Eccentricity

The User-Eccentricity is a value that describes how many rare items the user consumes.
It can be seen as a measurement for users, which identifies how often the user likes items
which are not often consumed by the vast majority of users. The original definition of
the User Eccentricity is [Park and Kim, 2017],

UserEccentricityu(UEu) =
∑
i∈Iu,t∈T fu,i,tİRi,t∑
i∈Iu,t∈T fu,i,t

where iu indicates the set of items that user u has consumed and the IRi, t is the item
rarity of item i in time window t. The value fu,i,t is the rating of the user u for the
item i at time t. Our definition of the User-Eccentricity is a simplified form of the
User-Eccentricity used in the Eccentric of Items paper [Park and Kim, 2017]. In our
definition, we only work with the items above or equal to the MeanUserRating(R),
since we are using only likes and dislikes and do not use the timestamps. The User-
Eccentricity of a User u is defined as,

UserEccentricity(u) = UE(u) =

∑
i∈Up IR(i)

|Up|

Where Up are the items liked by the user u. As with the Item-Rarity, these values
are standardized to the z-score and when using the User-Eccentricity in the following
definitions we always mean the z-score of it. The figure 3.3 shows the distribution of the
Eccentricity by users for the dataset Movielens 1 million.

29

30 CHAPTER 3. DIVERSE RECOMMENDATIONS

Figure 3.3: Distribution of Users by Eccentricity

3.2.3 Item Eccentricity

The Item Eccentricity is a measure of how often the item is liked by Eccentric users. It
can be seen as a measurement of how Eccentric this item is and consequentially its value
for niche items is higher. Our definition is a simplified form of the Item-Eccentricity
used by Park et al. [Park and Kim, 2017].
We simplified it to only use likes and not Interval based ratings. Also, as defined earlier
the UE(u) definition is different, apart from these two changes they are the same. The
Item Eccentricity for an item i is defined as,

ItemEccentricity(i) = IE(i) =

∑
u∈IUp UE(u)

|IUp|

Where IUp are the users who liked the item i. As with the Item-Rarity, these values
are standardized to the z-score and when using the Item-Eccentricity in the following
definitions we always mean the z-score of it. The figure 3.4 shows the distribution of the
Eccentricity by items for the dataset Movielens 1 million.

30

3.2. ITEM-ECCENTRICITY 31

Figure 3.4: Distribution of Items by Eccentricity

3.2.4 User Similarity for Eccentric Items

Current Recommender systems often recommend the most popular items to a user, since
statistically, this is far more likely to appear to the user than recommending niche item.
However, most users have a strong desire for items which do not appear to everyone but
to a small niche of users and are relatively specific e.g. samurai-movies. Therefore it is
desirable to find small subsets of niche items which appear to Eccentric users.
To find such a small subset of very specific movies, we tried to find user pairs which are
similar in the group of Eccentric items, with the goal to find another item which appears
to this group. In order to capture this Eccentric similarity of users to users we defined
the Eccentric-user-similarity (EUS(u1, u2)) as,

EUS(u1, u2) =

∑
i∈(U1p∩U2p)

IE(i)

|U1p|

Which is the sum of the Item Eccentricity of the items both liked u1 and u2 divided
by the number of likes given by u1. It is worth noting that this relation is not symmetric
e.g. EUS(u1, u2) 6= EUS(u2, u1). The reason for this is that if a user u2 liked 100 item
and u1 liked 10 items and all items liked by u1 are liked by u2. The user u1 in this
example is similar to u2 but u2 is not similar to u1. This can be used to find movies u1
might like in the set of movies u2 liked.
We started generating these numbers for the dataset Movielens 20 million and found
some niches by looking at the User pairs with the highest EUS. We were able to identify
niches such as Japanese movies from the 1940’s and Sports documentaries. However we
never fully developed an algorithm which takes this into account for recommendations,

31

32 CHAPTER 3. DIVERSE RECOMMENDATIONS

since it would be very time-consuming. An example of the highest scoring User Similarity
by Eccentricity is given in the table 3.1,

Table 3.1: Example: highest EUS, movies from the 1940’s

Gaslight (1944) Eccentricity val: -0.974012354897

Maltese Falcon, The (1941) Eccentricity val: -1.38968808205

Laura (1944) Eccentricity val: -0.934747342516

Sword in the Stone, The (1963) Eccentricity val: -1.40328736383

Enchanted April (1992) Eccentricity val: -1.18999765866

Room with a View, A (1986) Eccentricity val: -1.3025864896

First Strike (1996) Eccentricity val: -1.57568266953

Lady Vanishes, The (1938) Eccentricity val: -0.841740797953

Jewel of the Nile, The (1985) Eccentricity val: -1.38617275624

Ideal Husband, An (1999) Eccentricity val: -1.22176600613

Pelican Brief, The (1993) Eccentricity val: -1.35108680292

Yellow Submarine (1968) Eccentricity val: -1.25332845171

Muppet Movie, The (1979) Eccentricity val: -1.38667880852

I Was a Male War Bride (1949) Eccentricity val: -0.279255796273

Another Thin Man (1939) Eccentricity val: -0.418494856136

Thin Man Goes Home, The (1945) Eccentricity val: -0.321803390378

Shadow of the Thin Man (1941) Eccentricity val: -0.503684514005

After the Thin Man (1936) Eccentricity val: -0.420642989892

How to Steal a Million (1966) Eccentricity val: -0.721571595527

Adventures of Sherlock Holmes, The (1939) Eccentricity val: -0.56716496043

While it might be surprising that the Eccentricity values for the movies shown in the
table 3.1 are all below 0, which might indicate that they are not very Eccentric. How-
ever, the reason behind this is mainly that the vast majority of likes is concentrated on
the least Eccentric items e.g. the popular items.
Only recommending a movie with an Eccentricity above 0 would mean, only recommend-
ing movies with very few likes e.g. usually between 0 and 20. Also, movies which have an
Eccentricity below zero can be Eccentric. A value above zero simply indicates the item
is very Eccentric. Recommending these movies would be very diverse but not beneficial
for other measurements like the Recall, since the likelihood of recommendations being in
the user’s likes would drastically decline, when only recommending the least liked items.
This is the reason why recommending movies which are Eccentric but not extremely
Eccentric is a sensible choice.

3.2.5 Item Similarity based on Eccentricity

An Item Similarity based on Eccentricity can be useful for identifying items which are
underrated in current Recommender Systems. With underrated we mean items which

32

3.2. ITEM-ECCENTRICITY 33

are very popular with a small group of users but are for various reasons not shown to
users which might like such niche items. By defining an Item Similarity based on Eccen-
tricity we can recommend niche items to users, which suit their respective preferences.
This could be used to recommend not very well known items to users which have al-
ready consumed the most likely and popular options. In order to capture this Eccentric
Similarity of items we defined the Eccentric-Item-Similarity(EIS(i1, i2)) as,

Eccentric− Item− Similarity(i1, i2) = EIS(i1, i2) =

∑
u∈(IU1∩IU2)

UE(u)

|(IU1∩IU2)|

Where IUi is the set of the users who liked the item i. Which is the mean of the User
Eccentricity of the users which liked both Item1 and Item2. It is worth noting that in
contrast to the Eccentric User Similarity, the Eccentric Item Similarity is symmetric.
The main reason is computing this for large datasets of items is expensive. Therefore
computing it as a symmetric relationship, as we realized, is significantly faster. Trying
to define this without the symmetric usage might be an additional option and could
yield better results especially in the relationships between very popular and very niche
items.

3.2.6 Combining Item Similarity based on Eccentricity

The Item Similarity based on Eccentricity itself can mainly be used to recommend niche
items. This can be used either for recommending an Eccentric item to Eccentric users
or recommending items most users have not heard of but are similar to their respective
taste. To combine the item similarity based on Eccentricity several approaches are
feasible. Mainly these approaches will focus on combining the Eccentric approach with
other more common approaches. The reason behind this is non-Eccentric users usually do
not like Eccentric items as much as Eccentric users and therefore should be recommended
less Eccentric items.

3.2.7 Eccentric Item Similarity based on Eccentricity

We use the definition for Eccentric-Item-Similarity (EIS) and combine it into a new
Matrix I. This matrix is the similarity between items i1, i2 in regards of Eccentricity.
We define each entry i,j in I as,

I[i, j] = EIS(i1, i2)

Where in i1i2 the numbers 1,2 are the ids of the items in the dataset. We define a matrix
R which contains the ratings for the users. Each entry Rij means that the user ui liked
the item mj . To get Eccentric predictions for a user ui we multiply the matrix for the
Ratings R with the matrix for combined item similarity S to get the matrix E as,

E = R · I

Where · is the dot product between two matrices. We then for each user ui look at the i-
th row of the matrix E. By sorting the values in E we get the Top-k recommendations for

33

34 CHAPTER 3. DIVERSE RECOMMENDATIONS

a user by Eccentric item similarity. Where k describes the number of recommendations
we look at. This matrix E represents the Eccentric Recommendations. Where each
index i,j is the Eccentric recommendation strength of j for the user i.
Similarly, we combine the matrix R with an Matrix M into a new matrix P. The Matrix
M is an item-item similarity matrix. This matrix M can be created in various ways.
We used the algorithm pairwise cosine similarity to create the matrix we will use. This
matrix M is not related to Eccentricity. The matrix P is the generated as,

P = R ·M

Where · is the dot product between two matrices. By sorting the values in P we get
the Top-k recommendations for a user by pairwise cosine similarity. Where k describes
the number of recommendations we look at. This matrix P represents the non-Eccentric
Recommendations. Where each index i,j is the non-Eccentric recommendation strength
of j for the user i.

3.2.8 Weighted combination

Using the matrix Eccentric Recommendations (E) in which each entry (i,j) indicates the
Eccentric recommendations strength for a user i for the item j. One can use this matrix
E to combine it with the other matrix P . Where P is the usual recommendation matrix
based on ratings and is not related to the Eccentric approach. Each entry (i,j) in P
indicates the non-Eccentric recommendation strength for a user i for the item j (such a
matrix can be generated in various ways e.g. pair-wise-cosine-similarity). The matrices
P and E can now be combined into a new matrix L using,

L[i, j] = α ∗ E[i, j] + (1− α) ∗ P [i, j]

Where α is a hyperparameter which indicates how strong the Eccentric influence should
be on the recommendations. The symbol ∗ is the normal multiplication of two numbers.
This method can be used to add various more Eccentric recommendations to the users
top-recommendations. This can be tuned to add as much new Eccentric items to the
recommendations as wanted by the Recommender System, using the parameter α. A
higher value increases, therefore the average Eccentricity of the recommendations, while
a lower value decreases this amount. We ran tests with this methods but discovered that
it is not as suitable as the following method. We therefore will also not present results
related to this method. However, the Weighted Combination is important to understand
why the Sigmoid Weighted Combination is more suitable.

3.2.9 Sigmoid Weighted Combination

Since by definition the more Eccentric users will consume more Eccentric-items than less
Eccentric users and also less Eccentric users want more mainstream e.g. popular items
in their recommendation list (as their previously defined preferences have shown). It
would be useful and desirable to combine the Eccentric recommendations with normal

34

3.2. ITEM-ECCENTRICITY 35

recommendations in such a way that less Eccentric users get less Eccentric recommenda-
tions and the more Eccentric users get more Eccentric recommendations. This aspect is
very similar to the Weighted Combination shown previously. How much this difference
should be set to, has to be evaluated from dataset to dataset and userbase to userbase
and desired serendipity. If for example, we are talking about a movie-dataset and global
user base, mainly blockbuster will be watched and over 70% of the total interaction will
be concentrated in the top 5% of the most watched movies (example from Movielens 20
million). But if the dataset and userbase are centered around a less concentrated itemset
more Eccentricity is desirable, for example in the case of Images where only 13% of the
interaction are concentrated on the top 5% most voted items (example Flicker dataset
[Hsieh et al., 2017]).
Therefore using the User-Eccentricity, already described in the previous section, to influ-
ence the strength of the Eccentric-recommendations, is desirable. We are using the User-
Eccentricity as the strength of the slope of the sigmoid function, indicated as UE(u).
Given a user u for which the recommendation should be given. We define the formula,

sigmoid(u) = γ
1+e−UE(u)∗β

where the hyperparameters β and γ can be used to define the strength of the slope and
the ratio of Eccentric to less Eccentric recommendations. The parameter β can be used
to define the length of the transition, from non-Eccentric to the Eccentric definition, and
should be adjusted depending on the difference between the most and the least Eccentric
users. The parameter γ can be used to define the general ratio between Eccentric and
non-Eccentric recommendations e.g. how Eccentric the recommendations should be
on average. This formula has been designed in such a way that, the higher the User
Eccentricity is the higher the influence of the Eccentric recommendations become e.g.
sigmoid(u).
Using the matrix Eccentric Recommendations (E) defined before in which each entry (i,j)
indicates the Eccentric recommendation strength for a user i for the item j. One can use
this matrix E to combine it with another matrix P which is a normal recommendation
matrix and is not related to Eccentricity. Where each entry (i,j) in P indicates the
recommendations strength for a user i for an item j (such a matrix can be generated
in various ways e.g. pair-wise-cosine-similarity). The matrices P and E can now be
combined into a new matrix S.

S[i, j] = f(i, j, u) = sigmoid(u) ∗ E[i, j] + (1− sigmoid(u)) ∗ P [i, j]

where i is a user and j is an item. The position i,j is the combined similarity between
the user i for the item j. The variable u is the user for which this recommendation is
created. The symbol ∗ is a normal multiplication of two numbers. The variable u and
i are actually the same in this formula since it is the recommendation for the i-th row
which are the recommendations for the user u. We named them differently to avoid
confusion and clearly highlight that one is the index of the row and the other is a user.

35

36 CHAPTER 3. DIVERSE RECOMMENDATIONS

3.3 Results Eccentric Algorithm

We ran the tests for the Eccentric Algorithm combined with cosine pairwise similarity.
We combined as described in the previous sections the Eccentric Item Similarity with a
normal Item Similarity to generate recommendations named S. Also for the Eccentric
recommendations non-combined we ran the tests to show how it would behave if used
isolated named E. We also ran the test for the non-Eccentric recommendations named
P to have a comparison. We will now show the results of these algorithms separately
and compare them in the end.

3.3.1 Results Pairwise Cosine Similarity

We created the recommendations for users using the pairwise cosine similarity. By
sorting the values in P we get the Top-k recommendations for a user. In the following
figure 3.5, we show the average Eccentricity for the top-20 recommendations.

Figure 3.5: Distribution of Users by Eccentricity, Results using pairwise cosine similarity
only

As we see in figure 3.5 the normal pairwise cosine similarity algorithm already captures
the relations between more Eccentric users and more Eccentric items. As well as the
relationship between less Eccentric users and less Eccentric items. However, as we see
items with an Eccentricity over 0 are almost completely ignored which shows us that
roughly 50% of the movies are very rarely recommended. In the following approaches,
we aim at changing this.

36

3.3. RESULTS ECCENTRIC ALGORITHM 37

3.3.2 Results Eccentric Similarity

To see the result also if only the Eccentric recommendations are taken into considerations
we give here the results for this pure method, e.g. only using the Matrix called E
(Eccentric Recommendations) before without combination. This method is not suitable
to generate recommendations. Since it will recommend only very Eccentric items to the
users, which is good for Eccentric users but not optimal for others.

Figure 3.6: Distribution of Users by Eccentricity, Results for Eccentric Similarity only

As we see in figure 3.6 the average item Eccentricity in the top 20 recommendations
is almost entirely above 0. This means again that roughly 50% of the items are ignored
and very rarely recommended, this is wanted here. However, the most popular movies
are never recommended. This approach used isolated, therefore is not recommendable.
However, it could be used, to give users the option, to get very diverse recommendations.

3.3.3 Results Sigmoid Weighted combination

To use the Eccentric Similarity one needs to combine it with another approach. To make
use of the Eccentric recommendations, which are more diverse but hurt the Recall of the
algorithm for non-Eccentric users. This tells us that this algorithm is not entirely suitable
for non-Eccentric users. However, by combining the two methods the Recall for the
Eccentric user’s increases and the overall diversity of the recommendations become higher
than with the normal pairwise cosine similarity algorithm. We show now 3 promising
versions of the same algorithm with different hyperparameters. All of these results have
been created using the matrix S which are the recommendations for the users using
Sigmoid Weighted combination,

37

38 CHAPTER 3. DIVERSE RECOMMENDATIONS

Figure 3.7: Distribution of Users by Eccentricity Combined #1

In this version called Combined #1, shown in figure 3.7, we used a Sigmoid-strength
of 0.5 and an Eccentricity-strength of 0.2. As we see the average Eccentricity of the
recommendations increases drastically for more Eccentric users and the recommenda-
tions become more diverse. This is the most diverse setting we are presenting. However,
the results become only more diverse for the Eccentric users, which is desirable for this
group.

Figure 3.8: Distribution of Users by Eccentricity Combined #2

38

3.4. RESULT COMPARISON 39

In this version called Combined #2, shown in figure 3.8, we used a Sigmoid-strength
of 0.25 and an Eccentricity-strength of 0.1. As we see the average Eccentricity of the
recommendations increases slightly for more Eccentric users and the recommendations
become more diverse. This is the least Eccentric version we present in this section.
However again the results become only more diverse for the Eccentric users, which is
desirable for this group. The reason this version is better in comparison to the previous
version is that the Recall improves both in comparison to the pairwise and in comparison
to the Combined #1.

Figure 3.9: Distribution of Users by Eccentricity Combined #3

In this version called Combined #3, shown in figure 3.9, we used a Sigmoid-strength
of 0.3 and an Eccentricity-strength of 0.15, which is in between version combined #1 and
#2. As we see the average Eccentricity of the recommendations increases slightly for
more Eccentric users and the recommendations become more diverse. However, again
the results become only more diverse for the Eccentric users, which is desirable for this
group. The reason this version is better, in comparison to the previous versions, is that
Recall wise this is the best version we are presenting. Therefore we would recommend
this version for usage since it improves various aspects but as mentioned it depends
heavily on the used dataset and desired result.

3.4 Result Comparison

We show how the comparison of the methods for the different version of the algorithm.
While the pairwise cosine similarity is used as our base value. We run all tests 3 times
and took an average. We used a train test split of 50% to 50% which is slightly high but

39

40 CHAPTER 3. DIVERSE RECOMMENDATIONS

shows the distribution of Eccentricity of the recommendations more clearly.
The Recall for the cosine pairwise similarity algorithm isolated, is at 31.158% and can
be improved by using Combined version #3 by up to 0.243% while also increasing the
diversity. We will use the Pearson Correlations, to show that the User Eccentricity and
item Eccentricity now reflect each other better.

Table 3.2: Result comparison

Movielens
1 million

Pairwise
Eccentric
only

Combined
#1

Combined
#2

Combined
#3

Recall 31.158% 1.641% 29.331% 31.396% 31.401%

Mean Squared
Error

2.63 1.75 1.61 2.42 2.16

Variance Score 0.37 0.27 0.55 0.45 0.52

Pearson Correlation 0.611 -0.520 0.744 0.674 0.721

Hyperparameters
Sigmoid-strength 0.5 0.25 0.3
Eccentric-strength 0.2 0.1 0.15

As we see the Combined Eccentricity approach shows an increase in multiple mea-
surements and has it’s value. However, the results suggest there is a more suitable
combination method. This could be used to improve the results further and improve
on both Recall and Diversity. The Eccentricity as shown in the plots can be increase.
However, the increase in Diversity over the entire spectrum of users comes at a cost of
Recall. Therefore an approach which only improves the Diversity for Eccentric users is
desirable.

Table 3.3: Recall by Eccentric Users

Recall at 50
for Eccentric
Users

Pairwise
Combined
#1

Combined
#2

Combined
#3

0.0-0.5 Eccentricity 24.94% 21.05% 24.96% 24.02%

0.5-1.0 Eccentricity 22.52% 17.68% 22.63% 22.03%

1.0-1.5 Eccentricity 19.91% 15.82% 20.64% 20.16%

1.5-2.0 Eccentricity 18.26% 17.56% 21.50% 22.17%

2.0-2.5 Eccentricity 22.31% 27.37% 28.74% 29.70%

2.5 >Eccentricity 20.41% 34.41% 29.69% 34.14%

As we see the Recall if only measured for the Eccentric users improves more signif-
icantly in comparison with the pairwise cosine similarity version. While the pairwise
cosine similarity algorithm is still better when looking at the Users with an Eccentricity
value between 0-0.5, the improvement for more Eccentric user from Eccentricity 1.0 is
increasing. Specially when looking only at the users with an Eccentricity of 2.5 and

40

3.4. RESULT COMPARISON 41

higher the improvement becomes very strong. The relative improvement for users with
an Eccentricity of 2.5 > is an improvement of 13.72% which is a relative improvement of
67.3%. Also the Recall for user with an Eccentricity of 2.0-2.5 improves by 7.39% which
is a relative improvement of 33.1%. However it has to be kept in mind that this improve-
ment is only for a subset of the users and the Recall for Users with 0.0-0.5 decreases by
0.92% which might not be as much but since they are more users this has an impact on
the mean Recall shown in the previous table. This indicates however that there might
be a more suitable combination method that combines the advantages of both methods.
We conclude that using the Eccentric Item Similarity can increase the user satisfaction
for Eccentric users. Especially for the very Eccentric users, using such a system comes
with a significant gain in Recall and other measurements.

41

4

Limitations, Future Work and
Conclusions

4.1 Limitations

Limitations in this work were mainly dominated by the hardware. While at first, we
worked with the Movielense 100k dataset the results were even more promising. How-
ever, the Movielens 100k dataset has not many Eccentric items and most Eccentric items
are from the drama genre, which resulted in various problems in analyzing the results.
After realizing the Movielens 100k dataset is not suitable we switched to the Movielense
20 million, which was used in both papers, Measuring the Eccentricity of Items and
Collaborative Metric Learning [Park and Kim, 2017, Hsieh et al., 2017]. This dataset
is generally very interesting since it contains various different Eccentric items from
Japanese 1940’s movies to French art movies [Harper and Konstan, 2015]. However,
while running and analyzing the algorithm on this dataset the size of the matrix was
too big for the hardware I had at my disposal.
While generally, it would be possible to run the algorithm on this dataset and has been
done, some of the algorithms we used were not able to perform on sparse Matrices which
resulted in an out of memory problem. Generally working with it has been very time-
consuming and slowed down the development process.
Similar problems persisted with Movielens 20 million in the CML algorithm since we
were not able to reproduce the result the author mentioned in his paper. While gener-
ally similar results as reported in the paper by the CML author were achieved in a subset
of the Movielense 20 million. We contacted the author of the CML-paper about this
issue but were not answered we assume it could be because of the way the dataset was
filtered but this was not explained detailed in the paper. Also, the number of features
accumulated for the Movielens 20 million was not achieved by using the themoviedb.org
API and did not match the number of tags the author mentioned in his paper.
While we were able to create a prototype for User based Eccentricity algorithm, it had
various flaws and was not able to handle the Movielens 20 million dataset. Since the
time it took to create the recommendations was too long, to ensure a productive work-
flow. Also, the User Controversy seemed to be promising. However, various problems in
the execution and formal definition made it hard to include them into a Recommender

44 CHAPTER 4. LIMITATIONS, FUTURE WORK AND CONCLUSIONS

System.
The current algorithm for Eccentric Item Similarity can handle around 10’000 users and
5000 items with 16 GB of RAM. It is limited to this size and will produce no result if
tested on bigger datasets. However, if the the RAM available increases also this limit
increases. This could be improved by rewriting some aspects of the algorithm, which are
not optimized for sparse matrices.
Generally, it would have been nice to run the Item Similarity based on Eccentricity algo-
rithm on more datasets. However, due to the time, it takes to preprocess the datasets it
was too time-consuming. Also, running the CML-EN algorithm on more datasets would
have been good. However, finding datasets with a suitable format and enough features
of a good quality can be harder than expected.
Last but not least, combining the two algorithms would have been one of the goals of
this work. The problem with combining these two was that they are designed very differ-
ently, CML-EN is mainly based on tensorflow and integrating the Item Similarity based
on Eccentricity into this system would have needed more time and various new design
decisions.

4.2 Future Work

This work showed both the usage of negative feedback in Collaborative Metric Learning
and the usage of less common e.g. Eccentric items in recommendation system in general.
Future ideas for additional research that could be done would mainly be interesting in
the area of Eccentric items since there seems to be still quite some aspects of this area
which remain unexplored. The Eccentric User Similarity we defined showed promising
and interesting results which could be used to find niche items and other interesting
subsets of items in the dataset. While we were not able to explore these results further
in this work, we think that there could be value gained by exploring this. Also, the
combination method we used and tested sigmoid weighted combination is promising.
While being a more sensible choice than the weighted combinations these results could,
as the result of the Recall by Eccentric Users showed, be improved. Combining this
Eccentric approach with other more sophisticated Recommender Systems might show
interesting results too.

4.3 Conclusions

The implementation and design of the CML-EN and the Sigmoid Weighted Combination
of Eccentric items has been an educational and challenging task.
The projects most demanding aspect was the usage of the relatively new tensorflow
library and the combination of various different aspects of Computer Science, such as
statistics, machine learning and Recommender System in general.
Creating and designing a system from scratch showed the author the importance of
modularity in programs and various early design choices. Since there was no code base

44

4.3. CONCLUSIONS 45

to build upon in the Eccentricity area the author had the possibility to design and im-
plement important aspects of the application himself.
Various aspects of the tensorflow technology that had to be understood to implement
this solution showed the author many possibilities and limitations associated with this
technology. While the fundamental usage and concepts of machine learning and python
was known prior, the author had little practical experience in developing such a system.
While the languages python and the technologies tensorflow where used by the author
before he surely gained a lot of new experience and knowledge, most notably with ten-
sorflow, sk-learn, and numpy.
During the time of this project, developing and experimenting with these different tech-
nologies was always interesting and educational. The author thoroughly enjoyed devel-
oping and writing this bachelor thesis and had a lot of fun doing so.

45

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasude-
van, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,
and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.

[Aggarwal, 2016] Aggarwal, C. C. (2016). Recommender systems. Springer.

[Harper and Konstan, 2015] Harper, F. M. and Konstan, J. A. (2015). The movielens
datasets: History and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19.

[Hsieh et al., 2017] Hsieh, C.-K., Yang, L., Cui, Y., Lin, T.-Y., Belongie, S., and Estrin,
D. (2017). Collaborative metric learning. In Proceedings of the 26th International
Conference on World Wide Web, WWW ’17, pages 193–201, Republic and Canton of
Geneva, Switzerland. International World Wide Web Conferences Steering Committee.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization
techniques for recommender systems. Computer, 42(8).

[McNee et al., 2006] McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being accurate
is not enough: how accuracy metrics have hurt recommender systems. In CHI’06
extended abstracts on Human factors in computing systems, pages 1097–1101. ACM.

[Park and Kim, 2017] Park, C. and Kim, S. (2017). Measuring the Eccentricity of Items.
ArXiv e-prints.

[Ricci et al., 2011] Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recom-
mender systems handbook. In Recommender systems handbook, pages 1–35. Springer.

[Sammut and Webb, 2011] Sammut, C. and Webb, G. I. (2011). Encyclopedia of ma-
chine learning. Springer Science & Business Media.

48 References

[Zajac, 2017] Zajac, Z. (2017). Goodbooks-10k: a new dataset for book recommenda-
tions. FastML.

48

A

Appendix

A.1 CD-content

The CD contains the source code for both the Eccentricity work and the CML-EN.

1. The algorithm CML-EN is based on the original CML.

2. Eccentricity pair-wise combination algorithm.

3. The latex files to generate this report.

4. The German summary.

5. The .pdf file of this document

List of Figures

2.1 Graphical Explanation. 9
2.2 Histogram items by amount of likes. 13
2.3 Result for Goodbooks10 using CML. 16
2.4 Result for Goodbooks10 using CML. 16
2.5 Result for Goodbooks10 using CML-EN. 18
2.6 Result for Goodbooks10 using CML-EN. 19

3.1 Popularity of Movielens 1 million . 26
3.2 Positive and negative User Controversy sorted by User Controversy, for

Movielens . 28
3.3 Distribution of Users by Eccentricity . 30
3.4 Distribution of Items by Eccentricity . 31
3.5 Distribution of Users by Eccentricity, Results using pairwise cosine simi-

larity only . 36
3.6 Distribution of Users by Eccentricity, Results for Eccentric Similarity only 37
3.7 Distribution of Users by Eccentricity Combined #1 38
3.8 Distribution of Users by Eccentricity Combined #2 38
3.9 Distribution of Users by Eccentricity Combined #3 39

List of Tables

2.1 Overview Datasets Ratings . 12
2.2 Datasets . 13
2.3 Table describing the distribution of likes in the datasets 14
2.4 Hyperparameter for tests . 20
2.5 Recall Results Goodbooks 10k . 21
2.6 Precision Results Goodbooks 10k . 22
2.7 NITK Results Goodbooks 10k . 22
2.8 Recall Results Movielens 1 million . 23
2.9 Precision Results Movielens 1 million . 23
2.10 NITK Results in Movielens 1 million . 24

3.1 Example: highest EUS, movies from the 1940’s 32
3.2 Result comparison . 40
3.3 Recall by Eccentric Users . 40

