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http://www.ifi.uzh.ch/ddis





Acknowledgements

I would like to thank my thesis advisor Matthias Baumgartner of DDIS departement at
the University of Zurich. The door was always open whenever I ran into a trouble spot
or had a question about my research or writing. He consistently allowed this thesis to be
my own work, but steered me in the right the direction whenever he thought I needed
it.

Also, I would like to thank Bibek Paudel of DDIS for providing the ready to use im-
plementation of the classification task used in the thesis.

Finally, I must express my very profound gratitude to the proofreaders. All the pro-
found feedback was especially valuable to make the thesis more concise and comprehen-
sible. Thank you.





Abstract

The linking of correspondent entities between multiple knowledge graphs (KGs) is known
as entity alignment. This thesis introduces the embedding-based method Dependent
Learning of Entity Vectors (DELV) for entity alignment. In an iterative fashion, the
method learns a low-dimensional vector representation for the entities in a satellite model
in dependence of a pretrained central model. Word2vec and rdf2vec constitute the
basis for the embedding learning process. DELV is evaluated on real-world datasets,
originating from the three knowledge graphs DBpedia, Wikidata and Freebase. DELV
outperforms most of its baselines in terms of the mean rank, the hits@1 and hits@10.
While entity alignment is normally performed on two KGs, this thesis also demonstrates
how DELV can be efficiently used for alignment of unlimited KGs.





Zusammenfassung

Die Verknüpfung von sich entsprechenden Entitäten zwischen mehreren Wissensgraphen
wird als entity alignment bezeichnet. Diese Arbeit stellt die Methode Dependent Learn-
ing of Entity Vectors (DELV) für entity alignment vor. In einer iterativen Weise lernt das
Verfahren eine niedrigdimensionale Vektordarstellung der Entitäten in einem Satelliten-
modell, in Abhängigkeit von einem zentralen Modell. Word2vec und Rdf2vec bilden die
Grundlage für das Lernen der Vektordarstellungen. DELV wird auf realen Datensätzen,
basiernd auf den Wissensgraphen DBpedia, Wikidata und Freebase, ausgewertet. DELV
übertrifft die meisten Methode für entity alignment in Bezug auf hits@1, hits@10 und
den meanRank. Während entity alignment normalerweise für zwei Wissensgraphen
durchgeführt wird, demonstriert diese Arbeit, wie DELV auch für die Ausrichtung einer
unbegrenzten Anzahl an Wissensgraphen verwendet werden kann.
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Introduction

With the standardization of the Resource Description Framework (RDF) [Hayes and
Patel-Schneider, 2014], a large number of structured graph databases, also called knowl-
edge graphs (KGs), were created by numerous data providers. Such graphs can be
imagined as a set of triples, with each triple consisting of a subject, predicate and ob-
ject. A predicate links a subject to an object, e.g. “Paris, isCapitalOf, France”. Because
each provider models data to his specific needs and applies individual naming conven-
tions, the databases are isolated in principle. If we consider the entity Q762 within
Wikidata, which corresponds to /m/04lg6 in Freebase, it translates to the famous artist
Leonardo da Vinci in DBpedia. Desirably, queries against those databases should be
able to access information from the combination of all databases. Therefore, efforts were
undertaken to link them together. The Linking Open Data (LOD) cloud is a collection
of databases that are partially aligned. Databases in the LOD cloud can be clustered
into three categories: Databases which are isolated (43.89%), peripheral datasets which
are linked to some others (48.32%), and central hubs with many associated databases
(7.79%). Only 50 links to any other dataset are required for a dataset to be included in
the LOD cloud. Furthermore, about half of the linked datasets in the cloud are aligned
with no more than two other databases [Schmachtenberg et al., 2014]. This situation is
contrary to the idea of linked data, as most databases are only linked indirectly via a
mediating database. Querying of linked datasets becomes sensitive to errors in the hubs
and inefficient due to heavy load on a handful of databases. Changes in hubs are likely
to lead to inconsistencies in dependent databases. The process of linking the entities has
become known as entity alignment.

Recently, embeddings of graphs have been studied intensely [Ristoski and Paulheim,
2016, Yan et al., 2017, Ristoski et al., 2017, Zhu et al., 2017, Bordes et al., 2013]. A
graph embedding refers to a low-dimensional vector representation of each node. Var-
ious applications and methods, where graph embeddings can be used, have been iden-
tified and proposed. While most methods use the transE model [Bordes et al., 2013]
as their basis for the embedding learning process, others utilize the neural language
model word2vec [Mikolov et al., 2013a] for RDF graphs (rdf2vec) [Ristoski and Paul-
heim, 2016]. TransE constrains the construction of the vector space based on interpreting
a relation between entities as translations of vectors. Differently, word2vec and rdf2vec
use co-occurrences of word pairs in the training corpus. Both methods lead to specific
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similarity properties among embedding vectors, which can be used for comparing entities
and automated entity alignment.

This thesis answers the following question: How can the machine learning model
word2vec be adapted for automated entity alignment on multiple KGs?

A joint graph-embedding mechanism, called Dependent Learning of Entity Vectors
(DELV), has been developed. Using word2vec as a basis, DELV is able to perform en-
tity alignment among two or more KGs. Unlike many existing methods [Zhu et al.,
2017, Yan et al., 2017, Hao et al., 2016], DELV does not need to train the embeddings
simultaneously or restrict them to a unified vector space. In an iterative manner, the
embeddings for one KG, the central KG, are calculated first. Then, a second KG, the
satellite KG, will be trained in dependence of the central KG. Many advantages follow
from this iterative approach: Embeddings for unlimited satellite KGs can be learned
against a central KG without the need to retrain the latter. This also allows for entity
alignment between the satellites. Moreover, such a setup allows for computation in a
distributed and local fashion. This could be used for datasets which cannot be pub-
lished, e.g. due to licensing reasons, and avoids the need of having all datasets available
in memory and at the same time.

The first step of the thesis consists of a summary of relevant publications in the area
of entity alignment. Subsequently, the relevant concepts applied in this thesis will be
explained in detail, building the theoretical basis for the experiments. In a second step,
DELV is presented as a machine learning pipeline, illustrated with pseudo code and
further insights into the utilized algorithms. Furthermore, the different test scenarios
for DELV are defined. Then, the construction of the three real-world datasets, as well
as the resulting graph and link quality is described and assessed. The performance of
DELV is presented together with a comparison to selected baselines. Initially, DELV
will be tested on two KGs. Afterwards, a third real world KG is included in a second
experiment. The thesis concludes with a summary and an outlook.

1.1 Problem Description

The following notations, common to the field of KGs, will be used hereafter:

• Triple: A data triple consisting of an object, a relation and a subject, where both
object and subject are entities of a knowledge graph. The relation describes how
two entities are related to each other. An example is ”Paris, isCapitalOf, France”.

• Knowledge Graph (KG): A knowledge graph consists of the set of entities
and relations, forming the triples. The sum of the triples completely describes a
knowledge graph.

2
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Figure 1.1: The Experiments

• Satellite / Central: The central model is a pretrained rdf2vec model with fixed
embeddings for a given KG. A satellite is a single KG, the embeddings for which
will be trained in dependency to the central KG, using an initial alignment.

• Alignment: A set of linked, corresponding entities en and em with en ∈ satellite
and em ∈ central. A portion of the alignments is used as input to the training
procedure. The alignment ratio ranges between 0-100% and indicates how many
links, relative to the satellite KG size, have been used for training.

The two problems showed in Figure 1.1 are the main focus of this thesis. In the
first experiment, a satellite model is trained in dependence to a central model, using an
initial alignment. More specifically, the main challenge is to train vector embeddings
of a satellite model in dependence to already existing embeddings of the central model,
such that the embeddings for correspondent entities in each KG are similar. Afterwards,
the entity alignment task between the satellite and the central is evaluated.

In Experiment 2, a third KG is added as a satellite. Both satellites are trained in
dependence to the central model. But in contrast to Experiment 1, the entity alignment
is done between the two satellites. Experiment 2 can be seen as an extension of Experi-
ment 1.

The links between all three of the KGs are known, providing the ground truth to
check the predictions against. Clearly, a method knowing all the links between satellite
1/central and satellite2/central can determine the links between satellite1 and satellite2
in a transitive fashion. Therefore, the ambition is to use an alignment ratio as small as
possible.

3
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Literature

This chapter presents the relevant concepts as a basis for the introduction of DELV in
Chapter 3. First, the neural language model word2vec is explained, followed by the
concept of rdf2vec. Then, literature relating to entity alignment is summarized, and the
baselines for this thesis are presented.

2.1 Word2vec

In the field of natural language processing (NLP), a word of a vocabulary was tradi-
tionally associated with a vector in a 1-of-N or one-hot encoding. A one-hot vector
is a 1xN vector, which consists of 0s in all cells except for a single 1 that identifies
the word. Treating words as atomic units is simple and leads to robust approaches.
However, several drawbacks can be identified: High dimensionality of the vectors, data
sparsity, computational complexity and lack of notion of similarity between the word
vectors [Ristoski et al., 2017, Mikolov et al., 2013b]. In contrast, Vector Space Models
(VSMs) map semantically similar words to nearby points in a continuous vector space.
The basis for those models is the Distributional Hypothesis. It states that words in the
same context share semantic meaning. Various approaches have been derived from this
principle. They can be categorized as count-based methods (e.g., Latent Semantic Anal-
ysis (LSA)) or predictive methods (e.g., neural language models) [TensorFlow, 2017].

Word2vec, proposed in [Mikolov et al., 2013a], is a predictive neural language model
designed to create continuous vector representations of words. In contrast to one-hot
vectors, word2vec uses a distributed representation of words. The meaning of a word is
represented with respective weights, distributed among its feature vector. This allows for
low-dimensional, dense word vectors [TensorFlow, 2017,Mikolov et al., 2013b]. Although
there exist various approaches utilizing continuous and distributed vector representations
of words [Collobert and Weston, 2008,Hinton et al., 1986,Mikolov et al., 2009,Rumelhart
et al., 1986], word2vec became widely used due to its superior computational efficiency.
The next section explains the functionality of this approach.
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2.1.1 The Algorithms

The main task of word2vec is to train high quality, distributed word vectors. To this
end, two different algorithms, continuous bag of words (CBOW) and skip gram (SG),
have been proposed [Mikolov et al., 2013a]. The CBOW architecture is explained first,
followed by SG.

Continous Bag of Words (CBOW)

CBOW aims at predicting a target word wt from c context words:

p(wt | wt−c...wt+c)

The input is a 1-out-of-V vector, with V being the size of the vocabulary. The hidden
layer h (compare to Figure 2.1) results from the average of the multiplication of the
input vectors xi with the weight matrix W . As xi is one-hot encoded, this multiplication
corresponds to selecting a row in W . This leads to the following formula for the hidden
layer [Rong, 2014]:

h =
1

C

c∑
i=1

vwi

where vwi is xi W . Note that a row vwi of W correspond to the word vector for word
i. Intuitively, h is the average of all word vectors of the context words, as illustrated in
Figure 2.1.

Figure 2.1: Continous Bag of Words (CBOW) [Mikolov et al., 2013a]

To get the output layer, h is multiplied by a different weight matrix W ′, resulting in a
vector U that consists of a score uj for each word in the vocabulary. Then, those scores
are smoothed into a multinomial distribution using the softmax classifier:

yj = p(wt | wt−c...wt+c) =
eui∑V

i′=1 e
ui′

(2.1)

6
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Intuitively, applying softmax to the output layer results in a probability distribution,
predicting for all words j in the vocabulary the probability of seeing word j given the
respective context c.

Consequentially, the training objective of the network is to maximize p(wO | wI),
which is the likelihood of seeing the actual true output word wO (having index j∗ in the
output layer) given context wI :

max p(wO | wI) = max log yj∗ = uj∗ − log
V∑

j′=1

euj′ := −E (2.2)

taking E = −log p(wO | wI) as our loss function. Backpropagation and stochastic
gradient descent are used to determine the respective update functions, which can be
found in [Rong, 2014].

Skip Gram (SG)

SG can be interpreted as the inversion of CBOW. Instead of predicting a word given its
context, the context given a word is estimated (Figure 2.2).

Figure 2.2: Skip Gram (SG) [Mikolov et al., 2013a]

SG takes only one input word and calculates c multinomial distribution, also using
the softmax classifier [Rong, 2014]:

p(wc,j = wO,c | wI) = yc,j =
euc,j∑V
j′=1 e

uj′
(2.3)

with wc,j being the c-th word of the context in the output, wO,c the c-th target word
and wI the only input to the SG algorithm. The resulting update equations are derived
and explained in greater detail in [Rong, 2014].

Intuitively, the update equations for the word vectors can be understood as adding
small parts of all output layer vectors, weighted by their prediction error yj − tj , to
the respective word vector wi. In case of overestimating the probability of word wj

7
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being the correct word for given input (yj > tj), the word vector moves away from the
output vector w′j . In case of underestimation, the same word vector moves closer to
w′j [Goldberg and Levy, 2014,Rong, 2014].

2.1.2 The Optimizations

Looking at Equation 2.1 and 2.3, it becomes clear that the softmax classifier requires
computationally laborious update equations for the output layer vectors. For each train-
ing sample, the algorithm needs to iterate over the entire vocabulary to calculate the
prediction error for each word. This quickly becomes infeasible for the massive datasets
word2vec is trained on. Therefore, two independent modifications have been presented
in [Mikolov et al., 2013a]. In order to design the algorithm in a more efficient way, the
evident approach is to restrict the number of output vectors that need to be updated per
training iteration. One can distinguish softmax- and sampling-based methods. While
softmax-based approaches only modify the architecture of the softmax layer, sampling-
based methods substitute the softmax loss function completely. The two solutions used
in word2vec, the softmax-based Hierarchical Softmax (HS) and sampling-based Negative
Sampling (NS) [Ruder, 2016], are presented hereinafter. The aim will be to illustrate
these techniques, rather than explaining the mathematics. Minor optimizations used in
word2vec, such as subsampling of frequent words or common word pairs and phrases
detection, will not be discussed.

Hierarchical Softmax (HS)

The idea of hierarchical softmax is to substitute the flat softmax output layer with a
hierarchical one. HS uses a binary tree having the words as leaves. Recalling that
the main problem is to normalize over every word in the vocabulary, HS allows for a
calculation of the already normalized probability by following the respective path to
the leaf node. Note that the probabilities in the leaves are necessarily normalized in
a binary tree [Ruder, 2016]. Therefore, to calculate the probability of a word given
its context, the probabilities along the path to the word are multiplied. The following
example illustrates the idea of HS: Suppose word2vec with CBOW with HS and the
training sequence [’the’, ’dog’, ’is’, ’gone’]. ’gone’ is the target word and ’the’, ’dog’ and
’is’ form the context (Figure 2.3).

First, the input vectors for the three context words are averaged, raising h as the
hidden layer vector. To calculate the probability of the target word given its context,
one multiplies the probabilities along the path (marked in red in Figure 2.3) to the target
word:

p(gone | context) = p(left at 1 | c) p(right at 2 | c) = (1− sig(v′1h)) sig(v′2h)

with sig being the sigmoid function sig(x) = ex

ex+1 and v′n the vector representation
v′ of the inner unit at node n. As lookups in a balanced binary tree need at most log V

8
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Figure 2.3: Hierarchical Softmax (HS)

evaluations, HS reduces computational complexity per training iteration from O(V ), in
case of softmax, to O(log V ).

Negative Sampling (NS)

The basic idea of NS is to reduce the number of output vectors to update per train-
ing iteration. The goal is to update a sample only. While the correct output word,
called ’positive sample’, is always part of the sample, other words, called ’negative sam-
ples’, need to be chosen from the vocabulary, according to a probability distribution.
In [Mikolov et al., 2013b], the authors empirically determine a unigram distribution
raised to the power of 3

4 to be optimal. NS can be understood as an approximation
to Noise Contrastive Estimation (NSE) [Gutmann and Hyvärinen, 2010]. While NSE
can be shown to approximate the regular softmax as the number of negative samples k
increases, NS does not support this guarantee. It only aims at producing high quality
word vectors [Ruder, 2016]. NS takes NSE as a basis and simplifies it to produce a
loss function, which only needs to be applied for wj ∈ Wneg and the positive sample,
opposed to every word in the vocabulary. A detailed derivation of this loss function is
found in [Ruder, 2016] or [Goldberg and Levy, 2014].

Word2Vec was successfully trained on a Google News data set with around 100 billion
words and a vocabulary of 3 million words. The resulting vectors outperform word
vectors produced by traditional methods, e.g. LSA, on several test sets [Mikolov et al.,
2013a,Mikolov et al., 2013b].
Having laid out the two architectures and the main optimization techniques of word2vec,
the next section focuses on the second important framework, called rdf2vec.

9
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2.2 Rdf2vec

Rdf2vec is an approach “that uses language modelling approaches for unsupervised fea-
ture extraction from sequences of words, and adapts them to RDF graphs” [Ristoski
and Paulheim, 2016]. While “language modelling approaches for unsupervised feature
extraction [...]” refers to the described word2vec, the adaption to the RDF graphs is
illustrated in Figure 2.4. It is noteworthy that rdf2vec is based on and closely related
to [Yanardag and Vishwanathan, 2015,Perozzi et al., 2014].

Figure 2.4: The Rdf2vec Approach

Given a RDF graph, an algorithm extracts sequences of connected nodes in the graph
(see Figure 2.4). Then, instead of having sentences as input for word2vec, rdf2vec uses
those sequences of node labels as input for word2vec. In turn, word2vec yields the word
vector representations for every input node.
The question of how to extract those sequences is essential. Two different approaches,
Graph Walks and Weisfeiler-Lehman Subtree RDF Graph Kernels (WLGK), have been
proposed for sequence extraction [Ristoski et al., 2017].

Graph Walks: Utilizing the breadth-first algorithm, Graph Walks produces sequences
by exploring all connections for vertices v in a graph g. Given vertex vi, Graph Walks
recursively explores all edges ei and connected vertices. As it is impossible to gener-
ate all walks on RDF graphs due to loops, breadth first is depth limited and becomes
Depth-Limited Search, with depth d being a hyperparameter of the model. Further-
more, [Ristoski et al., 2017] remarks that with increasing size of the graph, “calculating
[...] all graph walks with a given depth d for all the entities in the large RDF graph
quickly becomes unmanageable”. This introduces a second hyperparameter walksPerN-
ode.

Weisfeiler-Lehman Subtree RDF Graph Kernels (WLGK): This state-of-the-
art kernel for graph comparison, introduced in [de Vries, 2013], “computes the number
of sub-trees shared between two (or more) graphs by using Weisfeiler-Lehman test of
graph isomorphism”. Furthermore, in [Ristoski et al., 2017] two modifications to enable

10
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the application of the algorithm on RDF graphs are added, yielding WLGK.

Although superior results for classification tasks (Naive Bayes, k-Nearest Neighbours)
and regressions have been reported using WLGK, it is only feasible for smaller datasets
due to its increased computational complexity. Rdf2vec with Graph Walks performs
closely to the standard graph substructure feature generation strategies as presented
in [Ristoski et al., 2017].

Nevertheless, rdf2vec models with Graph Walks trained on huge knowledge graphs,
such as DBpedia or Wikidata, consistently outperform standard feature generation (e.g.,
TransE, TransH or TransR) in classification, document similarity and other common
NLP tasks [Ristoski et al., 2017].

2.3 Related Work and Baselines

A broad range of approaches and applications regarding entity alignment have been pro-
posed in the last decade. While earlier methods were content-based [Suchanek et al.,
2011, Lacoste-Julien et al., 2013, Sun et al., 2017] and sometimes involved human feed-
back [Hassanzadeh and Consens, 2009], recent approaches are embedding-based and try
to represent different KGs in a way that similar entities are similarly encoded. Most
papers apply translation-based models for embedding generations, e.g. TransE [Bordes
et al., 2013]. [Chen et al., 2017, Sun et al., 2017] apply a modified TransE framework
to perform cross-lingual entity matching. [Guan et al., 2017] additionally introduces
an iterative technique and differentiates between relations and attributes while train-
ing the embeddings. In connection with the Ontology Alignment Evaluation Initiative
(OAEL) , many different ontology matching pipelines have been introduced, as described
in [Achichi et al., 2016, Cheatham et al., 2015]. As the mentioned papers focus on dif-
ferent subproblems (e.g., cross-lingual, content-based approaches) within the area of
entity alignment, it is not meaningful to compare the results of this thesis against their
performance.

Conversely, the next three papers introduce comparable methods, and are therefore
explained in more detail. All of these methods apply the translation-based method
TransE as a basis for embedding learning. TransE interprets a relation between two
entities as a constant translation between the corresponding entity vectors. Therefore,
the main task is to find the best possible solutions for the equation ~s + ~r = ~o for all
triples in the KG, with ~s, ~r and ~o being the vector representation of the subject, the
relation and the object of a triple.

In [Hao et al., 2016], a system for entity alignment, called JEwP, is proposed that
is based on the structure of the KG. This makes it independent of the content. Given
an alignment seed, the embeddings of two KGs are jointly learned in the same vector
space. The initial alignment imposes a constraint on the TransE training process and
enforces equalization of the correspondent entity embeddings over the training process.
This serves as a bridge between two KGs, partly unifying them. As a consequence,

11
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embeddings can be trained in the same vector space and similar entities end up with
similar embeddings. The authors claim that this is the first approach leveraging struc-
tural information only to perform entity alignment with a joint embedding model. The
method is tested on two different data sets. The first dataset is based on the well-known
benchmark dataset FB15K [Bordes et al., 2013]. As illustrated in Figure 2.5, the triples
of FB15K are split randomly into two sets “[...] with a large amount of overlap”. Then,
after splitting the intersecting entities into two parts, the first part can be used as an
alignment seed. The second part is used in the evaluation. It is noteworthy that this ap-
proach greatly simplifies the entity alignment problem. The entities to link are exactly
the same entities, generated according to the same design principles of Freebase and
encode the same information. This is not the case if entity alignment is done between
different KGs. The second dataset, called DB FB, is based on the two KGs DBpedia
(DB) and Freebase (FB). Based on a set of filtering rules, two graphs with 57’076 en-
tities for DB and 19’166 entities for FB are created. While it is interesting to test the
method on the simplified dataset, the second dataset DB FB can be considered as a
more realistic case.

Figure 2.5: Construction of Datasets with an Overlap [Hao et al., 2016]

A similar approach, called Iterative Entity Alignment via Knowledge Embeddings
(IEAKE), is used in [Zhu et al., 2017]. Also using TransE as a basis, embeddings for en-
tities and relations are jointly trained for two KGs with an alignment seed. Furthermore,
an optimization strategy called soft alignment is introduced. After a fixed amount of
training iterations, for all non-aligned entities in the first KG, the most similar entity in
the second KG is calculated. If the difference between the entities is smaller than a cer-
tain confidence score, the entities will be considered aligned for the rest of the training.
Therefore, the method can continuously update and find new entity alignments whilst
training. IEAKE is tested on a dataset constructed according to the same principles as
the first dataset of [Hao et al., 2016], described above. It was not tested on datasets
that are based on two different KGs.

[Cai et al., 2017] states that the performance for existing methods drop when tested on
sparse graphs, compared to dense graphs. Furthermore, the authors criticise that most

12
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methods are only tested on a single KG, using FB15K as basis. Therefore, they pro-
pose a cross-KG knowledge representation learning (KRL) method, Cross-TransSparse,
which can be applied to sparse graphs across multiple KGs. The main difference to other
approaches is a mechanism that improves the embeddings of the sparse graph by using
the rich structural knowledge of the dense graph. The method has been tested on cross
language datasets of DBpedia and on datasets that are based on FB and DB.

All three methods, i.e. IEAKE, JEwP and Cross-TransSparse, are comparable to
the approach of this thesis. Although they calculate the embeddings for the two KGs
simultaneously and in a unified vector space, they are still embedding-based approaches
like the method presented in this thesis. They will be used as baselines when evaluating
the performance of DELV.

13
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Method

As suggested in the introduction, this thesis is about testing how entities and their
counterparts among multiple KGs can be linked. Therefore, the method Dependent
Learning of Entity Vectors (DELV), explained in the the next section, was developped.

3.1 Dependent Learning of Entity Vectors (DELV)

For the training of the desired word vectors, rdf2vec and a modified word2vec will be
used. While the purpose of rdf2vec, transforming a KG into a set on sequences, is
straightforward, the modification of word2vec needs further explanation.

Figure 3.1: Visualization of β

What information word2vec encodes in its embeddings is diffuse and can be circum-
scribed in various ways: “Word vector representations capture many linguistic properties
such as gender, tense, plurality and even semantic concepts like ‘capital city of’.” [Heuer,
2016] or “[...] these monolingual embeddings have been shown to encode syntactic and
semantic relationships between language elements.” [Jansen, 2017]. For the present
purpose, the important information, that word2vec needs to capture, is the semantic
information of the input sentences. Semantic information refers to the arrangement of
words and phrases in a sentence. Applying this idea to a KG, the semantic information
equates to the structure of a KG and, therefore, the relationship among entities. Be-
cause the word vectors depend on the co-occurrence of word pairs, for two corresponding
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embeddings of different KGs to be similar, their surrounding entities and the structure
between them must be similar. But due to random initialization, even for identical KGs,
two runs of word2vec do not produce the same entity embeddings. Therefore, a number
of entities of the satellite, the initial alignments, need to be trained against the fixed
embeddings of their respective central entity embedding. Then, the rest of the entities
can adjust around those fixed entity vectors, such that word2vec produces similar and
comparable vectors for similar entities.

This argumentation implies that the success of the method is dependent on the simi-
larity of the structure of the KG. And as different KGs often model the same, real world
information, a similar structure for different KGs can be expected. But differences exist,
as they are built according to different design principles, priorities, wealth of data and
goals.

For the dependent training of the satellite, some modifications to word2vec have been
made. The goal is to train those satellite vectors, which are part of the alignment, against
their correspondent and fixed entity vector in the central model. In practice, this imposes
a constraint on the original loss function of word2vec. The new loss function, formulated
in the skip gram with negative sampling configuration (see Section 2.1), is:

min E = −log σ(v′wO
h)−

∑
wj ∈ Wneg

log σ(−v′wj
h)

s.t.
dot(vSw, v

G
w )

|| vSw || ∗ || vGw ||
≥ (1− adjustFactor) ∀ (vSw, v

G
w ) ∈ Alignment

(3.1)

with vSw being the satellite vector trained against the correspondent goal vector vGw .
The loss function stays the same as only the constraint is added. The cosine distance,
defined as cosdistance(x, y) = dot(x,y)

||x||∗||y|| , is used as the similarity measure for comparing
whether two vectors are similar. Therefore, two vectors are considered the same if their
cosine distance is (close to) 1. But two corresponding entities in different knowledge bases
can differ and should therefore not be treated as the same. Accordingly, an adjustment
factor is included which allows the vectors to capture subtle differences while training.
As it is practically impossible to determine the value of such a factor for each entity
pair between different KGs, the adjustment factor is indirectly implemented by the
parameters λ and β, as shown below. Given the new loss function, the new update
equation for the hidden layer becomes a split function:

vnewWI
= voldWI

+ (βgWI
+ (1− β) λ (vgoalWI

− voldWI
))

with gWI
being the gradient calculated through error back propagation. The new up-

date equation introduces the two new parameters λ ∈ [0, 1] and β ∈ (0, 1]. Depending
on the values of the parameters, this update function allows the satellite vectors to de-
viate from their correspondent central vectors. While λ scales down the absolute value
of the difference of the vectors, β allows the word vector to be a weighted sum of the
standard gradient from the model error and the difference in the vectors. For β = 1 the
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satellite will be trained without adjustment to a central vector, while β = 0 is equal to
directly initializing vsatelliteWI

= vcentralWI
for wI ∈ Alignment. λ should be used to scale

the goal error to a similar magnitude as the gradient. As said gradient is scaled by the
word2vec learning rate α, λ is set equal to the α.

Figure 3.1 provides an intuitive visualization of the meaning of β. Suppose two identi-
cal KGs which have the same structure and are completely linked. KG1 is the central and
KG2 the satellite model. If no alignments (β = 1) are used, DELV produces completely
independent word vectors (symbolized by perpendicular entities). β = 0 perfectly aligns
the entities and 0 < β < 1 produces similar vectors up to a certain degree. Notice that
both parameters also affect how fast an aligned entity vector adjusts to its goal vector
during the training process. How DELV is implemented in detail is shown in the next
section.

3.2 Implementation and Pipeline

Figure 3.2 illustrates the machine learning pipeline:

1. Create random walks for the satellite and central graph separately: randomWalks(depth,
walksPerNode)

2. Use the random walks for the central KG to train the central with word2vec:
w2c(randWalks Cent)

3. Use the satellite random walks and the alignments to dependently train the satellite
embeddings with the modified word2vec: w2c modified( randWalks Sat, alignment
ratio, embedings central, β, λ)

4. Evaluate the entity alignment between the central and the satellite.

Below, the implementation and the parameters for each step are discussed and il-
lustrated with pseudo code where applicable. While the random walk generation is
implemented using Java, the other steps are written in Python.

3.2.1 Graph Walks

To create the random walks, the algorithm Depth-Limited Search (DLS), similar to [Ris-
toski et al., 2017] and as stated in Figure 3.3, is used. DLS recursively creates walksPerN-
ode many random walks with a depth d for a given entity for each entity in the KG.
The depth does not include relations, e.g. the depth for the sequence “e1, r1, e2, r2, e3”
equals 3. The output is a set of random walks, which looks like [e1, e2, ..., ed]. As there
can be dead ends (entities which do not have an outgoing relation), a random walk is
only included in the output if its depth is bigger than a minimalDepth, which is fixed at
3 for all experiments. The method isValidVertex allows for any kind of filtering, such

17
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Figure 3.2: Machine Learning Pipeline

as ignoring string literals and data properties. The sequences produced are stored in a
text file for further usage as input to word2vec.

Instead of Graph Walks, which randomly produces sequences, WLGK, introduced
in [Ristoski and Paulheim, 2016] and described in Section 2.2, could have been used.
Superior results are reported for WLGK compared to Graph Walks. The problem with
WLGK is that it cannot be applied to big KGs. But the aim of this thesis is to produce
a method, which is scalable and can be applied to entire KGs. Therefore, Graph Walks
was preferred over WLGK.

3.2.2 Word2Vec

For word2vec, the well-known gensim implementation [Rehurek and Sojka, 2010] is used.
As input, word2vec expects a set of sentences which will be the set of random walks.
Multiple parameters need to be chosen when running word2vec. The most important
ones are discussed below:

• Size: Refers to the size of the hidden layer. While bigger values for the size
can lead to more accurate results, they also increase the training time. Values in
the small hundreds are generally considered reasonable [Ristoski and Paulheim,
2016,Mikolov et al., 2013b].

• Window: Refers to the context size when processing word pairs in a sentence.
E.g., using the sentence “a b c d e f g”, a window size of 1 and “d” as the target
word would yield the training pairs [dc,de], while a window size of 2 yields [db,
dc, de, df]. Notice that the effective window is randomly chosen between 1 and
window, which simulates the increased importance of words closer to the target. A
window size of 5 for the English language is common [Mikolov et al., 2013a]. But
compared to natural languages, the random walks encode information especially
dense, as they do not include words like conjunctions or numbers. Therefore, a
window size smaller than 5 should be used.

18
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Figure 3.3: Code Snippet: Graph Walks
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Figure 3.4: Code Snippet: Dependent Training of the Satellite Model

• SG: Indicates whether to use SG or CBOW as the training algorithm (see Section
2.1.1).

• Negative: Refers to the number of negative samples to use when using the nega-
tive sampling optimization technique. For large datasets a value of 2-5 is sufficient
while small datasets need between 5 and 20 negative samples [Mikolov et al., 2013a].

• Min Count: Refers to the minimum number of times a word needs to appear
in the corpus in order not to get sorted out. As multiple walks are generated for
each entity, an entity appears at least walksPerNode many times in the corpus.
Therefore, the value of min count is of no importance given that it is not bigger
than walksPerNode.

The word2vec parameters are extensively documented in the literature and will not be
discussed further.

3.2.3 Dependent Training of the Satellite Embeddings

The implementation of the dependent training process can be condensed to the following
code snippet (Figure 3.4). It shows where the word vector for an entity gets adjusted.
The ‘if’ statement implements the split function and the respective update equations
introduced in Section 3.1.

3.2.4 Evaluation

The main purpose of the entity alignment task is to state how well the entities of the
satellite model are linked to the central model. Only those entities will be considered,
which were not trained against a goal entity embedding, i.e. ∀ entity e /∈ Alignment.
The three metrics mean rank, hits@1 and hits@10 are measured. To calculate these
metrics, the cosine distance to all central entities is calculated for each entity in the
satellite, and sorted according to their distance. The first entry of the matrix is the
corresponding central entity as predicted by the model. If this prediction is correct, it
is a hit@1. Similarly, if the true correspondent entity is in the top ten of the sorted
matrix, it is a hit@10. The rank denotes the general position of the true link within the
matrix and lies between 1, the best possible rank, and the number of words in the central
vocabulary. The mean rank is calculated over all the evaluated entities. Furthermore,
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additional statistics for the rank, such as standard deviation, median, min and max,
are considered to gain insights about their distribution. Moreover, the mean rank is
compared with a random estimator which is equal to #entities central

2 .
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Experiments and Results

In this chapter, the findings of a parameter study will be discussed after explaining the
creation of the datasets. Subsequently, the results1 of the two experiments Central-
Satellite and Central-Satellite-Satellite as well as the comparison with IEAKE are pre-
sented.

4.1 Datasets

Three different KGs are needed to carry out the experiments. Furthermore, they all
have to be interlinked in order to provide a ground truth to check the link predictions
against. The three KGs DBedia (DB) [Auer et al., 2007], Wikidata (WD) [Vrandečić and
Krötzsch, 2014] and Freebase (FB) [Bollacker et al., 2008] were selected. Performing tests
on the whole KGs is not feasible at an early stage of the experiment due to the enormous
size of the KGs. Therefore, the experiments are tested on a subset of the respective
KGs. As a basis, the benchmark dataset FB15K [Bordes et al., 2013], containing 16296
entities, 1345 relations and 483142 triples, is selected. Using the SPARQL interface of
WD (https://query.wikidata.org/) and DB (https://dbpedia.org/sparql), corresponding
datasets were created, which meet the following criteria:

1. The three databases contain a similar amount of entities.

2. The entities need to be aligned.

3. The resulting graphs for each database must be connected, such that graph walks
of at least depth five are possible.

Consequently, a list of all entities in FB15K was extracted. For each entity in the list,
a SPARQL query was sent to the WD SPARQL interface, which returns the alignment
between FB and WD, and all available triples containing the entity as a subject. The
results are filtered such that only triples remain that have an object which also occurs in
FB15K. Figure 4.1 illustrates this idea for WD. Note that P646 in Figure 4.1 denotes the

1All experiments in this chapter were run on a cluster of machines, that contain 24 CPUs and 64 GB
memory each. Depending on the training data, a satellite model took between 4 and 22 hours to be
trained.
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sameAs property between FB and WD. The two filter methods within the SQL query
require the subject and the object of the triples to be an entity. Therefore, datatype
properties and string literals are filtered.

Figure 4.1: Code Snippet: Creation of the Datasets

In the same fashion, the DB subset has been created. The resulting databases are
called WD15K and DB15K. Figure 4.2 describes the statistics of the created subsets and
FB15K. The number of entities differ because certain freebase entities are not linked
to any entity in the other KGs. Furthermore, there were a number of 1:N mappings
between FB and WD, which were discarded. The difference in the number of triples is
surprising. Partly, this is explainable due to the lower number of entities in WD15K
(-15% compared to FB15K ). As a triple gets discarded if its object is not in the linked
entity list, fewer linked entities exert a double effect on the number of triples. First, all
triples with the unlinked entity as subject are excluded. Second, all triples having the
unlinked entity as object are filtered. Moreover, the big number of DB triples before
filtering is due to the triples linking entities to pictures and other medias, as well as
categories. While the DB SPARQL interface returns such triples, the WD SPARQL
interface does not. Despite the difference in the number of triples, the link quality is
good. 13725 links are available between FB and DB, 13743 between FB and WD and
13767 between DB and WD.
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Figure 4.2: Characteristics of the Datasets

4.2 Parameter Study

To determine values for the word2vec hyperparameters and the newly introduced pa-
rameters β and λ, a limited parameter study was carried out, using WD as central model
and DB and FB as satellites. Note that the resulting parameters are likely not optimal
as the parameter study is not complete and would need to be carried out for each differ-
ent central model separately. The goal of the study was to get an idea of the behaviour
of DELV. Furthermore, the combination of twelve parameters, some of them being con-
tinuous, would require considerably more computational power. Otherwise, the optimal
parameters could be determined using a gradient-based optimization technique. As SG
and negative sampling generally yields better results [Ristoski and Paulheim, 2016] than
CBOW and hierarchical softmax, SG with negative sampling will be used for the ex-
periments. The following parameters have been explored: walksPerNode, depth, beta,
layer size and negative samples. Recommended values from the literature, as described
in Chapter 3, were chosen for the other parameters. A total of 3360 experiments were
evaluated over the satellite model DB and FB.

Figure 4.3 shows the results as boxplots for the pair central WD and satellite DB. The
results for central WD and satellite FB can be found in Appendix A. While the x axis
shows the parameter of interest, the y axis plots the improvement of the achieved rank
over the random estimator in percent. E.g., if the experiment states an achieved mean
rank of 50, and we expect a random linking to achieve a mean rank of 100, the rank
improvement is 50%. For each value of the parameters, the boxplot shows the averaged
results over all other combinations of parameters. With averages and medians over 90%
for all tests, the results are a positive indication for the quality of DELV.

Clearly, walksPerNode introduces the biggest variance in the results. All character-
istics improve with rising walksPerNode. As the graph walks are created randomly, a
higher walksPerNode increases the probability that the similarity of structures, occurring
in the different KGs, manifests itself in the random walks. Therefore, the embeddings
move closer to each other, netting better results with lower volatility. The value of 70
walksPerNode are chosen for further experiments.

The depth of the random walks also improves the results. Given a sufficient window
size, the depth effectively increases the number of word pairs trained as the length of an
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Figure 4.3: Results of the Parameter Study.

input sequence to word2vec is prolonged. On the one hand, this should produce finer
word embeddings catching subtler differences in entities. On the other hand, it also
reduces the probability of same structures being represented similarly in the random
walks. A higher depth should go hand in hand with a higher walksPerNode. A depth
of 4, effectively producing random walks of length 5, is chosen. Higher values for depth
were planned to be tested. But due to the greatly increased running time, those evalu-
ations needed to be aborted.

The results are robust with respect to the layer size. Layer sizes +/- 50 from the
recommended values have been tested. The layer size becomes more important with
more entities and training data, as more features are needed to capture the differences
between the entities. Compared to word2vec models trained on corpuses of billions of
words, this experiment has a comparable small corpus in the order of millions of words.
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Because the layer size increases the training time, a small value of 150 is chosen.

As a small improvement can be observed with a rising number of negative samples,
the value of 15 is chosen. Due to time constraints, no more values could be tested.

Because β is a newly introduced parameter, it will be discussed in more detail than
the other parameters. As described in Section 1.1, β is a weight which determines
if and how fast the satellite entity vectors get adjusted to their correspondent central
vectors. It weights the error errsmax, originating from the normal word2vec softmax
backpropagation, and the error from the difference between the satellite vector and
central goal vector (errgoal). β = 0 is equal to copying the central vectors ∈ alignment
at the beginning of the training, while β = 1 does not use any information at all from
the central model. While averages and median do not vary much, the standard deviation
clearly worsens with increasing β. Looking at the norm of differences between the
satellite vectors and their respective central goal vectors, even high β result in a minimal
difference. This is explained by the fact that errgoal always points in the direction of the
fixed goal, whereas the direction of errsmax changes depending on the training sample.
Therefore, over thousands of training iterations, the satellite vector will adjust to the
value of the goal vector, thereby producing similar results. But if the diminishing learning
rate is considered, β makes a difference in the speed of the adjustment. In the end, the
β with the best performance, β = 0.1, is chosen.
The results of the parameter study are robust with respect to other satellite models.
Due to the explanations in Chapter 3 and the evidences above, the feasible parameter
set chosen for the experiments is:

• walksPerNode = 70

• depth = 4

• layer size = 150

• window = 2

• min count = 1

• epoch = 5

• negative = 15

• β = 0.1

Furthermore, skip gram with negative sampling is used for all experiments. After having
fixed a set of parameters, the results of the experiments are presented next.
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4.3 Results

This chapter presents the results and comparisons of the experiments conducted. It
is divided into three sections. First, the results of the experiment 1 are presented, in
which a single satellite is trained against a central model. Second, the performance of
DELV is evaluated if two satellites are trained against the same central model, and the
entity alignment is performed between the satellite models. Third, a comparison to the
baseline method IEAKE [Zhu et al., 2017] is drawn.

The experiments have been carried out for all combinations of central and satellite
for the chosen KGs. Only the results for the combination of central FB and satellite
DB are shown in detail, while the other results can be found in the Appendix A. As
described in Section 3.2.4, the experiments are evaluated using the metrics mean rank,
hits@1 and hits@10. Moreover, the mean rank is compared to a random estimator, that
is defined as #entities central

2 . The evluation is done for all entities that are not part of
the alignment.

4.3.1 Experiment 1: Central - Satellite

In Experiment 1, one satellite model is trained in dependence of the central model (see
Figure 1.1), with a given alignment. With a rising percentage of the alignment ratio,
the performance improves, although it simultaneously displays a diminishing utility, as
Figure 4.4 shows. Increasing the alignment ratio on low absolute levels greatly affects the
performance, while changes on high absolute levels only sparsely impact the results. For
some combinations of satellite and central, overly high alignment ratios even affect the
results negatively. However, using 95% alignment ratio leaves only about 500-750 entitiy
embeddings for the entity alignment. Therefore, we would expect higher deviations when
repeating the experiments with high alignment ratios, compared to lower ratios.

Figure 4.4: Results of Experiment 1. Central: FB, Satellite: DB

The same results, enriched with median and standard deviation of the ranks, are
presented in Figure 4.5. The improved performance with a rising alignment ratio is also
reflected in a diminishing standard deviation.

Furthermore, the median of the ranks is strictly lower than the mean, which indicates a
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Figure 4.5: Additional Statistics for Experiment 1

right-skewed distribution of the ranks. Looking at the distribution (Figure 4.6), given an
alignment ratio of 25%, 75% of the ranks achieved are below 50 whereas the mean rank
is 158. Therefore, the right-skewed distribution of the ranks implies that the average is
impaired by outliers on the right-hand side.

Figure 4.6: Distribution of the Ranks

To contextualize the results, Figure 4.7 summarizes the performance of the baselines
most comparable to DELV. The first two approaches were tested on a single KG only,
whereas the later methods were evaluated on the KGs FB and DB, as the last column
indicates. The difference is important: Testing on datasets constructed with a single KG
(see Section 2.3) simplifies the problem, thereby producing better results. Furthermore,
the datasets on single KGs were often designed with an overlap of triples, e.g. [Zhu et al.,
2017], which is neither possible nor desirable for different KGs.

The performance of DELV is comparable with Cross-KG [Cai et al., 2017], although
Cross-KG uses an alignment ratio of 60%. DELV clearly outperforms JEwP [Hao et al.,
2016] for comparable datasets. It gets outperformed by IEAKE in this comparison
although the comparison is distorted as the results for IEAKE originate from a single
KG dataset with a 50% overlap. As the authors of [Zhu et al., 2017] have published
their dataset, a more detailed comparison between the methods can be found in Section
4.3.3.

When comparing the methods, it is important to keep the conceptual differences in
mind. Those methods calculate embeddings for two KGs simultaneously and in a unified
vector space. In turn, DELV presents an iterative approach where the embeddings for
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Figure 4.7: Comparison of DELV to Baselines

the central KG are calculated first. Only then, the satellite model embeddings can be
trained in dependence to the existing central embeddings.

Figure 4.8 compares the results over the different combinations of central and satellite
models. For low alignment ratios, the performance differences between the KGs are
huge, while higher alignment ratios bring the results more into line with each other.
Looking at the combinations leading to poorer results, WD is the underperforming KG
in this test set up. Having WD as satellite leads to the poorest results, while having it as
central produces mediocre results. Likely, this is due to the reduced amounts of triples
in the WD dataset (128’498), compared to FB (483’142) or DB (619’793) as explained
in Section 4.1.

The next section presents the results of the second experiment.

4.3.2 Experiment 2: Central - Satellite 1 - Satellite 2

As shown in Figure 1.1, the idea of this experiment is to train two satellites against
the same central model, and to subsequently evaluate, how well the entity alignment
works between the two satellites (see Figure 1.1). Intuitively, worse results compared to
the first experiment are to be expected as this approach involves three different KGs.
Also, the KGs that are compared were never trained against each other. The experiment
has been carried out for all variations of the central model. While the results for the
experiment central DB, satellite 1 WD and satellite 2 FB are shown below, the other
evaluations can be found in Appendix A. Figure 4.9 shows the result for this experiment.
A minimum alignment ratio of 25% is needed to produce reasonable results. Increasing
the ratio to 50% between each of the central/satellite pairs results in a mean rank of
189, which is in the range of the results shown in the first experiment.

Again, a right-skewed distribution pulls up the mean as a comparison between mean
and median shows (Figure 4.10). The standard deviation is higher than in experiment
1, which is to be expected.

Looking at the alignments in more detail, one has to distinguish between the following
three cases (compare with Figure 4.11):

1. SameEntities: The set of links between sat1/cent is the same as the set of links
between sat2/cent. This means that if an entity e1 in sat1 is linked to its corre-
spondent entity e∗1 in cent, the correspondent entity e′1 in sat2 is also linked to e∗1
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Figure 4.8: Comparison of the Results for Different Central Models

Figure 4.9: Results for the Experiment 2. Central: DB, Satellite1: WD, Satellite2: FB

in cent. In practice, this results in having the same embedding for e1 in sat1 and
e′1 in sat2.

2. MixedEntities: The two sets of links between sat1/cent and sat2/cent are neither
disjoint nor the same.

3. DifferentEntities: The two sets of links between sat1/cent and sat2/cent are
disjoint.
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Figure 4.10: Additional Statistics for Experiment 2

Figure 4.11: The Different Alignment Cases

Intuitively, the first is the best case, the second is the likely case while the third is
the worst case performance wise. While the results presented above correspond to the
second case, Figure 4.12 shows the numbers for the other two cases with an alignment
ratio of 25%. To test those cases, the alignments have been prepared accordingly. As
expected, the cases 1 and 3 set the boundary for case 2. Moreover, the results of case 2
are close to the diffEnt case numbers. This suggests that only a few entities were linked
over all three KGs in the second case.

Figure 4.12: Performance for the Different Alignment Cases
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4.3.3 Comparison to IEAKE

This section lays out a direct comparison between DELV and IEAKE [Zhu et al., 2017].
In the first experiment, DELV was evaluated on the datasets used in this thesis. The
results in this chapter compare IEAKE and DELV on the basis of the datasets used
in their paper. After consultation with the authors and following the detailed process
described in the paper, their datasets DFB-1, DFB-2 and DFB-3 were reconstructed
and used for testing. As described in detail in Section 2.3, entity alignment on these
datasets constitute a simpler problem compared to the datasets used in experiment 1
and 2. Figure 4.13 describes the characteristics of the data sets. The overlap refers to
the amount of triples the two graphs T1 and T2 share. E.g., 50% of the triples in T1
are the same as in T2 for DFB-1. Note that compared to IEAKE, a difference in the
number of triples exists as only the training section of FB15K has been used, whereas
in IEAKE the whole FB15K was utilized.

Figure 4.13: Characteristics of the Rebuilt IEAKE Datasets

Looking at the results (Figure 4.14), DELV clearly outperforms IEAKE in terms of
the mean rank, achieving an outstanding rank of 10 on DFB-1 with a low standard
deviation of 168. Turning to hits@1 and hits@10, the picture is not as clear. While still
outperforming on DFB-1, IEAKE reports better results for DFB-2 and DFB-3. This
can be attributed to the technique of soft alignment, described in Section 2.3. After a
fixed amount of training iterations, for all non-aligned entities in the first KG, the most
similar entity in the second KG is calculated. If the difference between the entities is
smaller than a certain confidence score, the entities will be considered aligned for the rest
of the training. Therefore, IEAKE is able to continuously update and find new entity
alignments while training, whereas DELV does not include such a soft alignment process.
While this technique pushes the hits@1 and hits@10 ratios, it could also adversely affect
the mean rank if IEAKE finds wrong alignments during the training process. This is
because the incorrect alignment gets propagated for the rest of the training which likely
distorts the embeddings.

Furthermore, the author also tried to run IEAKE on the dataset used in this thesis.
Unfortunately, no meaningful results could be produced. The results were so poor,
that the author was unsure whether the performance needs to be attributed to an error
when adapting the IEAKE code to the new datasets or whether the method really
underperforms on these datasets.
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Figure 4.14: Comparison of DELV and IEAKE

4.3.4 Word Vector Evaluation

While entity alignment is the main purpose of this thesis, word2vec and rdf2vec were
originally designed to produce word vectors which can be used in standard NLP tasks
such as classification, speech recognition and so forth. Therefore, it is interesting to see
whether a satellite model still yields meaningful word vectors. A full evaluation of the
word vectors, as shown in [Ristoski et al., 2017], is out of scope for this thesis. Instead,
a classification task shall provide indications.

Figure 4.15: Classification with Respect to Freebase Categories for a Central and a Satel-
lite Model

Figure 4.15 presents the results of the classification task, in which the word vectors
of the central and satellite model were used to predict the correspondent freebase cate-
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gories for an entity. In 50% of the categories, an accuracy above 90% can be reported
while, except for two cases, an accuracy above 80% resulted for the rest. While the
satellite embeddings underperform consistently, the difference is minimal. This suggest
that the embeddings produced by DELV can still be used as high-quality word vectors
in standard NLP tasks.

Furthermore, the first seven country and capital pairs in a FB satellite model, trained
against a DB central model, have been plotted in Figure 4.16, using the dimensionality
reduction algorithm t-SNE [Maaten and Hinton, 2008]. As put in [Ristoski et al., 2017]:
“The figure illustrates the ability of the model to automatically organize entities of
different types, and preserve the relationship between different entities”. Figure 4.16
shows that the model maps similar entities, such as capital and country, close to each
other. Even more importantly, the model preserves the relationship between the entities.
Visually spoken, the distances in the plot between different country-capital pairs are
similar, which is also an indication for high quality word vectors.

Figure 4.16: Projection of Capital-Country Pairs using t-SNE
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Conclusion

In this thesis, an iterative, embedding-based, machine learning approach for entity align-
ment has been presented. The method Dependent Learning of Entity Vectors (DELV) is
based on word2vec and rdf2vec and manipulates the word2vec training process in such a
way that the similar structures of KGs are reflected in similar entity embeddings. After
summarizing relevant literature, this thesis further explored the idea and intuition be-
hind DELV. Presented as a machine learning pipeline, the implementation was explained
and illustrated using code snippet where applicable. Then, the datasets used, and their
construction, were discussed. DELV was tested on real world datasets, including up
to three different KGs. The performance of DELV is compared to similar, embedding-
based baselines. Given a comparable setup and dataset, DELV outperforms most of
the present existing, embedding-based alternatives. Also, the experiments conducted
demonstrate the feasibility of the method in the context of multiple KGs. While the
embeddings are optimized for entity alignment, they can still be used as word vectors,
as a classification task indicates.

DELV differs from previous methods due to its iterative nature, yielding multiple
advantages. Embeddings for unlimited satellite KGs can be learned against a central
KG without the need to retrain the latter. As the satellites get trained against the same
central, it is also possible to compare satellites among themselves. Moreover, DELV
allows for computation in a distributed and local fashion. This allows DELV to be used
for datasets which cannot be published (e.g. due to licensing reasons), and avoids the
need of having all datasets available in memory and at the same time.

A detailed comparison of DELV to the baseline method IEAKE showed, that while
outperforming in terms of mean rank, DELV is inferior when looking at hits@1 and
hits@10. To further improve the method, a soft alignment approach, as presented in [Zhu
et al., 2017, Cai et al., 2017], could be considered in the future. Moreover, the way in
which the graph walks are generated, could be improved as well. Currently, the paths
are produced randomly. An alternative could be that the edge selection is based on
a frequency metric. E.g., DBpedia offers a dataset called “out-degree” that includes
the number of links emerging from a Wikipedia article and pointing to another article.
A higher out-degree implies a closer relationship between the respective concepts. If
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the edge selection were based on such a metric, more meaningful sequences could be
produced, and the structure of a KG could be mapped better.
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Figure A.3: Central: DB, Satellite: WD

Figure A.4: Central: DB, Satellite: FB

Figure A.5: Central: WD, Satellite: DB
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Figure A.6: Central: WD, Satellite: FB
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A.2 Results of Experiment 2

Figure A.7: Central: DB, Satellite1: WD, Satellite2: FB

Figure A.8: Central: FB, Satellite1: DB, Satellite2: WD

Figure A.9: Central: WD, Satellite1: FB, Satellite2: DB
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A.3 Results of the Parameter Study

Figure A.10: Parameter study: Central: WD, Satellite: FB
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Figure A.11: Parameter study: Central: WD, Satellite: DB

48



List of Figures

1.1 The Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Continous Bag of Words (CBOW) [Mikolov et al., 2013a] . . . . . . . . . 6

2.2 Skip Gram (SG) [Mikolov et al., 2013a] . . . . . . . . . . . . . . . . . . . 7

2.3 Hierarchical Softmax (HS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 The Rdf2vec Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Construction of Datasets with an Overlap [Hao et al., 2016] . . . . . . . . 12

3.1 Visualization of β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Machine Learning Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Code Snippet: Graph Walks . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Code Snippet: Dependent Training of the Satellite Model . . . . . . . . . 20

4.1 Code Snippet: Creation of the Datasets . . . . . . . . . . . . . . . . . . . 24

4.2 Characteristics of the Datasets . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Results of the Parameter Study. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Results of Experiment 1. Central: FB, Satellite: DB . . . . . . . . . . . . 28

4.5 Additional Statistics for Experiment 1 . . . . . . . . . . . . . . . . . . . . 29

4.6 Distribution of the Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Comparison of DELV to Baselines . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Comparison of the Results for Different Central Models . . . . . . . . . . 31

4.9 Results for the Experiment 2. Central: DB, Satellite1: WD, Satellite2: FB 31

4.10 Additional Statistics for Experiment 2 . . . . . . . . . . . . . . . . . . . . 32

4.11 The Different Alignment Cases . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 Performance for the Different Alignment Cases . . . . . . . . . . . . . . . 32

4.13 Characteristics of the Rebuilt IEAKE Datasets . . . . . . . . . . . . . . . 33

4.14 Comparison of DELV and IEAKE . . . . . . . . . . . . . . . . . . . . . . 34

4.15 Classification with Respect to Freebase Categories for a Central and a
Satellite Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.16 Projection of Capital-Country Pairs using t-SNE . . . . . . . . . . . . . . 35

A.1 Central: FB, Satellite: DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.2 Central: FB, Satellite: WD . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.3 Central: DB, Satellite: WD . . . . . . . . . . . . . . . . . . . . . . . . . . 44



50 List of Figures

A.4 Central: DB, Satellite: FB . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.5 Central: WD, Satellite: DB . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.6 Central: WD, Satellite: FB . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.7 Central: DB, Satellite1: WD, Satellite2: FB . . . . . . . . . . . . . . . . . 46
A.8 Central: FB, Satellite1: DB, Satellite2: WD . . . . . . . . . . . . . . . . . 46
A.9 Central: WD, Satellite1: FB, Satellite2: DB . . . . . . . . . . . . . . . . . 46
A.10 Parameter study: Central: WD, Satellite: FB . . . . . . . . . . . . . . . . 47
A.11 Parameter study: Central: WD, Satellite: DB . . . . . . . . . . . . . . . . 48

50


