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Abstract

Continuous Integration extended by Continuous Code Quality as a software
development practice is a popular approach for providing Software Quality
Assurance. One of the main shortcomings of this approach is that developers
only learn about insufficient code quality after their changes have been built
and analyzed. Therefore, researches examined different approaches to give
Just-in-Time quality predictions. As no systematic overview of the topic
is available, in this paper a Systematic Literature Review on the subject is
performed. The review shows that these approaches work well and are usu-
ally based on Machine Learning classifiers trained with the data of projects’
change histories.

To learn more about developers’ behaviour in Continuous Integration, a
study utilizing the change histories of projects using Continuous Integration
is conducted. For this purpose, different Machine Learning classifiers are
trained with the data from the change histories. The study shows that pre-
diction models for the behaviour of developers regarding continuous quality
control and for the build status on the build server work well. Further, the
results highlight the need for suggestion methods when code quality checks
need to be performed.



Zusammenfassung

Just-in-time Qualitatsvorhersagen, die auf der Anderungshistorie eines Pro-
jekts basieren, sind immer weiter verbreitet. Ziel dieses Verfahrens ist,
dem Entwickler einen Anhaltspunkt beziiglich der Qualitdt der zu imple-
mentierenden Anderungen zu geben. Eine genauere Recherche zu diesem
Thema zeigt, dass mehrere Ansitze gut geeignet sind, um solche Vorhersagen
zu machen, und dass maschinelles Lernen (Machine Learning) der {ibliche
Weg ist, um solche Vorhersagen zu treffen. Das Konzept der kontinuier-
lichen Integration bietet Entwicklern eine Vielzahl an Qualitdtsmessungen
verschiedener Dimensionen. Eine Studie, welche die Anderungshistorie von
Projekten mit kontinuierlicher Integration betrachtete, zeigt, dass Prognose-
modelle fiir den Build-Status auf dem Build-Server und das Verhalten der
Entwickler hinsichtlich der kontinuierlichen Qualitatskontrolle gut funktion-
ieren.
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1. INTRODUCTION

1 Introduction

Software Quality Assurance (SQA) plays a crucial role when it comes to
producing high-quality software. Therefore, a multitude of different methods
exist to assure code quality. The traditional methods are usually on package
or file level. This leads to problems when it comes to fixing a defect. It might
not be clear which developer is responsible for the change resulting in a fault,
and even if the defect can be assigned to a developer, the change may be
long in the past and no longer present in their mind |[Kamei et al., [2013].
Therefore a decrease in code quality should be detected as soon as possible.

A popular approach for solving this problem is Continuous Integration
(CI). Continuous Integration is a software development practice with the
goal of continuously integrating changes. Developers integrate their work
frequently, for example daily. These changes are then built on a build server
to ensure good code quality [Fowler, |2006]. CI has been shown to improve
software quality, release frequency and predictability [Goodman and Elbaz,
2008], whilst also reducing risks [Duvall et al [2007] and increases developer
productivity [Miller, 2008] amongst other benefits.

Frequently, a dedicated build server is used for CI. Such a server takes
commits as input and builds, tests and deploys them. Furthermore, code
quality assessment tools can be used to monitor the quality of the software
code continuously [Duvall et al., 2007]. In practice, a development pipeline
(Figure [1]) is often used to automate the Continuous Code Quality (CCQ)
process. A possible workflow in the CCQ environment could look something
like this: A developer commits his changes to a version control system,
triggering a build on the dedicated server. This server then sends the data
to the CCQ service, where a quality analysis is conducted. Thereafter, the
CCQ service sends the results of the analysis back to the build server. The
build server then decides whether the build passes or fails. This is only one
of many possible ways to use such a pipeline. Due to various reasons, only
specific commits are sent to the CCQ service in practice.

The work of |Vassallo et al.| [2018] shows that CCQ is not widely adopted
which is why researchers have been looking into faster and easier alterna-
tives. Imagine a scenario where a developer gets a prediction of the code
quality of a to be integrated change. The developer gets the chance to re-
view the code before integrating it, or he can get the assurance that the
code is indeed of good quality. In recent times, several prediction models
for such an approach have been developed |[D’Ambros et al., [2012, Zimmer-
mann and Nagappan, [2008, [Turhan et al., 2009]. In this paper, the focus
lies on predictions that are made just-in-time (JIT), or on a change level
as some papers formulate it. The goal hereby is to predict the code quality
as soon as changes are made. This gives developers the chance to improve
their work while it is still fresh in their minds.

In this paper, a systematic literature review on JIT approaches is con-
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ducted, as no systematic overview of the topic exist. The review aims to
find out which JIT approaches already exist and how they work. In a second
step, a study is conducted which examines the predictability of developer
behaviour in CI. More precisely the predictability of developers’ behaviour in
inspecting builds for code quality and their behaviour in refactoring builds’
changes is analysed. Apart from running quality checks, the build takes
a long time as such. Therefore, the predictability of the outcome of a
build before actually running it is examined. This could save developers
time and would prevent them from breaking the development pipeline. The
study utilises data extracted from CCQ pipelines to train different Machine
Learning classifiers.

The thesis follows the following structure. First, the systematic literature
review is conducted under the section related work. Then the approach and
methodology of the study are explained before the results are presented,
followed by a discussion thereof. In the end, a summary of the thesis is
given.

o ——
ommit = i i
_— - —_— Build server Gnntln;gﬂ?ualw

Developer

Version Control
System

Figure 1: CCQ Pipeline
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2 Related Work

For the related work section, a systematic literature review (SLR) on tech-
niques for Just-In-Time (JIT) code quality assurance is conducted. The
review follows the guidelines proposed by Kitchenham and Charters [2007].
As stated in their guide, the review will be performed in three stages: plan-
ning, conducting and reporting. Further snowballing is used to identify more
relevant papers. The snowballing follows the guide by Wohlin| [2014]. The
goal of the SLR is to answer the research questions stated in Table

Research  Ques- | Motivation

tion

RQ1: Which | A typical CCQ pipeline takes care of many dif-
just-in-time ferent quality assurance tasks. Depending on
quality assur- | the configuration of the various tools used, de-
ance tasks are | velopers have access to a variety of different
supported? quality metrics. This includes the number of

bugs, the identification of code smells, the com-
plexity of the source code, the proneness to at-
tacks, the need for refactoring and more. The
goal behind RQ1 is to identify which of these
metrics or combination thereof are supported by
the existing JIT approaches.

RQ2: How are | There are different possible approaches for
JIT  techniques | building a JIT quality recommendation system.
applied? The goal of this second research question is to
detect what techniques are being used. Fur-
ther, the question aims to find out what data
is used by the approaches. In case of a Ma-
chine Learning approach, it would be useful to
examine whether the model is trained on a sin-
gle project, and therefore only applies to that
project, or if the model is applicable across dif-
ferent projects.

RQ3: How did | An approach is only useful if the performance is
the  researchers | adequate. The goal of the third research ques-

validate their | tion is to find out how the performance is mea-
predictions? sured and what validation techniques are being
used.

Table 1: Research Questions
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2.1 Research Methodology

After stating the research questions (Table , the search terms (Table
were identified. The main search terms were directly derived from the re-
search question and alternative spellings and synonyms were collected to
complete the final search query. The alternative spellings and synonyms
were connected with a logical “OR” and the search terms with a logical
“AND”. This query was then used to extract papers from the stated sources.
After application of the inclusion/exclusion criteria, an initial set of papers
was retrieved.

Search Term Synonyms

Just-in-Time (“just-in-time” OR “JIT” OR “live” or “in
time” OR “change level” OR “commit level”)
Code Quality As- | (“QA” OR “bugs” OR “smells” OR “vulnera-
surance bilities” OR “defects” OR “software quality as-
surance” OR “SQA”)

Table 2: Search Terms for the Systematic Literature Review

((“Just-in-time” OR “JIT” OR “live” or “in time”
OR “change level” OR “commit level”) AND (“QA”
OR “bugs” OR “smells” OR “vulnerabilities” OR, “de-
fects” OR “software quality assurance” OR “SQA”))

Table 3: Search Query for the Systematic Literature Review

2.1.1 Resources to Be Searched
e IEEE Xplore Digital Library (https://ieeexplore.ieee.org)
e ACM Digital Library (https://dl.acm.org)
e ScienceDirect (https://www.sciencedirect.com)
e SpringerLink (https://link.springer.com)
2.1.2 Exclusion Criteria
The following criteria were used to select papers that need to be excluded.
e articles that were not written in English

e articles, which were not available in a full-text version

e articles which are not providing JIT quality predictions


https://ieeexplore.ieee.org
https://dl.acm.org
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2.1.3 Inclusion Criteria

Papers that fulfilled these criteria were included in the SLR.

e all articles written in English reporting techniques for just-in-time
quality assurance

e articles suggesting improvements of other articles

2.2 Snowballing

The snowballing procedure followed the guide by [Wohlin [2014]. The set of
initial papers was then used as the starting set for the snowballing process,
and one iteration of backward and one iteration of forward snowballing was
conducted.

Resource Number of Results
IEEE Xplore Digital Library | 1,239

ACM Digital Library 146,263
ScienceDirect 637,991
SpringerLink 63,485

Table 4: Number of Results Found for Each Resource

After applying the inclusion as well as the exclusion criteria and merging
the articles from the snowballing, the following final set of papers is included

in the SLR.

1. A large-scale empirical study of just-in-time quality assurance [Kamei
et al., 2013]

2. A Replication Study: Just-in-Time Defect Prediction with Ensemble
Learning [Young et al., 2018]

3. An Empirical Study of Just-in-time Defect Prediction Using Cross-
project Models |[Fukushima et al., |2014]

4. Classifying Software Changes: Clean or Buggy? [Kim et al., 2008]

5. Code Churn: A Neglected Metric in Effort-Aware Just-in-Time Defect
Prediction [Liu et al., 2017]

6. Deep Learning for Just-in-Time Defect Prediction [Yang et al., 2015]

7. Just-In-Time Bug Prediction in Mobile Applications: The Domain
Matters! [Catolinoj, 2017]

8. Learning from Bug-introducing Changes to Prevent Fault Prone Code
[Aversano et al., [2007]
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10.
11.

12.

13.

14.

15.

16.

Poster: Bridging Effort-Aware Prediction and Strong Classification -
A Just-in-Time Software Defect Prediction Study [Guo et al., 2010]

Predicting risk of software changes [Mockus and Weiss, 2000]
Reducing Features to Improve Bug Prediction [Shivaji et al., [2009]

Revisiting common bug prediction findings using effort-aware models
[Kamei et al., [2010]

Supervised vs Unsupervised Models: A Holistic Look at Effort-Aware
Just-in-Time Defect Prediction [Huang et al., 2017]

The prediction of faulty classes using object-oriented design metrics
[E] Emam et al., [2001]

TLEL: A two-layer ensemble learning approach for just-in-time defect
prediction [Yang et al., 2017b]

VulDigger: A Just-in-Time and Cost-Aware Tool for Digging Vulnerability-
Contributing Changes [Yang et al.l 2017a]

Dimension Attribute Description

Type of code quality tasks What code quality tasks are sup-
ported?

Used technique What technique is used for the qual-

ity assurance? Machine Learning or
something else?

Programming languages What programming languages are
supported?

Validation How are the used techniques vali-
dated?

Limitations What are the limitations of the used
approach?

2.3

Table 5: Data Extraction Form

Data Extraction

The data extraction form (Table |5) was used to extract the relevant infor-
mation from the papers and aggregate them in this section.
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2.3.1 Type of Code Quality Tasks

The type of quality tasks supported is very general for most papers, as they
only classify changes as either “free of defects” or “inducing a defect”. The
specific type of defect is often not specified and some models are applicable
to different kinds of defects. What can be observed is that almost all just-in-
time quality assurance models are focused on predicting defects rather than
vulnerabilities or smells (Figure . There is an explanation for this. It is
much harder to identify code changes that induced a vulnerability or a smell
than it is to identify a change that caused a bug. This definitely is a way to
improve existing approaches, by adding more detail to the prediction and
the capability to predict not only defects but also smells and vulnerabilities.
There is one significant distinction that can be made when looking at JIT
quality assurance models. The models are either applicable across project
or only within a particular project. This makes a difference regarding how
these JIT approaches are used for quality assurance. Most of the approaches
require training data. For approaches that only work within a project, JIT
quality assurance would thus only be available later in the project after a
sufficient amount of changes have been made. Cross-project models use data
from other projects and are therefore more flexible in their application.

o “

defects vulnerabilities defects & smells

Figure 2: Different Types of Supported Quality Assurance Tasks

2.3.2 Used Techniques

All papers included in the SLR used some form of Machine Learning ap-
proach. On a very general level, the approaches used by the different papers
for providing JIT quality assurance are roughly the same and can be de-
scribed as follows. A dataset of changes, where each change is classified
as either “free of defects” or “defect inducing”, is extracted from a project.
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These classified changes are then used to train a Machine Learning classifier,
which in turn can be applied to changes which are yet to be classified.

One of the main differences between the different approaches used is
the way they mine a dataset of classified changes, which can be used as a
training set. A few approaches used the same dataset, namely the dataset
mined by Kamei et al.| [2013]. They used the SZZ algorithm. The SZZ
goes through the changes in a code history and identifies changes that likely
induced a defect. In order to do that, the SZZ algorithm starts analysing
bug-fixing changes. The algorithm then compares the bugfixing change with
the previous change and identifies what part of the code caused the bug.
This code is then traced back to the edit that introduced this code. This
is the bug-inducing change [Sliwerski et all [2005, Neto et all [2018]. This
procedure or some variation of it was also used by other papers. [Yang
et al.| [2017a] used the approach to mine a dataset of vulnerability inducing
changes from the change history. For this kind of approach to be useful the
projects are required to have a substantial history of changes. Therefore
new projects cannot profit from this kind of JIT quality assurance.

The papers also differ in the Machine Learning classifier trained on the
retrieved data. Kamei et al. [2013] use logistic regression as a classifier on
their dataset. Several papers suggested other classifiers for the dataset or a
subset of the original dataset. For example Yang et al. [2015] suggest a deep
learning approach for the dataset and found that this classifier produces sta-
tistically significantly better results than the original classifier. Some papers
simply use a single Machine Learning classifier, but the more sophisticated
methods are shown to produce better results. These ensemble learning ap-
proaches use a combination of Machine Learning classifiers. For example
Yang et al.| [2015] introduced “Deeper” and [Yang et al.| [2017b| introduced
“TLEL”, a two-layer ensemble learner where classification trees and bagging
are used to build a random forest.

2.3.3 Supported Programming Languages

Most of the applied models can be used for several programming languages,
as the change measures used to make the predictions do not depend on
the programming language of a project. Only the history of the changes
is needed. One frequently used dataset is the one created by Kamei et al.
[2013]. It includes projects written in Java and C/C++. Some approaches
are only applicable to projects in a particular programming language, e.g
the paper by |[El Emam et al.|[2001], which uses object-oriented metrics from
Java.
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2.3.4 Validation Techniques

The validation is a critical aspect of all the approaches. Most papers use
common metrics to validate their models. The most important metrics can
be derived from the confusion matrix.

e accuracy
e precision
e recall

e Fl-measure

The validation of the papers’ various approaches shows that there is no
common best fit, but rather a most suitable approach for every individual
project. There is also the tradeoff between precision and recall. Depending
on what is considered more important for a given project a different classifier
might be chosen. For example, a classifier with high recall produces many
false alarms, which is potentially annoying for a developer, so precision is
more important from this point of view. But if it is absolutely crucial that
all defects are detected, one has to cope with the lower precision and the
higher recall.

2.3.5 Limitations

A common limitation of all approaches is that they only deliver a prediction
of the existence of a defect and not the severity or the type of the defect.

Furthermore, all the approaches are limited by the number and different
kinds of projects they use. If the projects considered are very diverse, a
potential bias can be reduced but never completely eliminated. The problem
of the potential bias is universal validity. The fact that an approach produces
good classifications in terms of performance for one kind of project does not
guarantee that it works well for every single project. Also, the number of
features is limited, and while all approaches have good argumentation as to
why they regard or disregard a particular feature, it is hard to tell which
features are most suitable in general.

2.4 Results

With the extracted data and summary of the extraction, the research ques-
tions posed in the beginning of the SLR can now be answered.

2.4.1 Supported Quality Assurance Tasks

The goal of the first research question was to find out what quality assur-
ance tasks are supported. The SLR showed that there are some promising

10
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approaches for identifying fault or defect-inducing changes. However, the
techniques fail to provide the same broad spectrum of quality assurance
metrics that a typical CCQ pipeline would. Most research focuses on de-
livering JIT predictions for a single quality assurance task. In practice, to
provide a developer with good quality assurance metrics, a combination of
different approaches would have to be used.

2.4.2 Application of JIT Techniques

The second research question was aimed at finding out how JIT techniques
are applied. The SLR clearly shows that a Machine Learning approach is the
most popular method of providing developers with JIT software quality pre-
dictions. While the initial costs of these approaches in terms of computation
time are significant, predictions with the trained model can be made quickly,
delivering genuine JIT quality predictions. Since the Machine Learning ap-
proaches need a training dataset, it is worth looking at the techniques used
to create training datasets. For the creation of the training datasets, the ap-
proaches rely on the projects’ change histories and the classification thereof.

2.4.3 Used Validation Techniques

For RQ3 the goal was to examine how the researchers validated their ap-
proaches. Since all the papers used some sort of Machine Learning classi-
fier, the question of the validation of the technique can be regarded as the
question of how the Machine Learning classifiers were validated. The SLR
concluded that the most popular metrics used to validate the classifiers are
the metrics calculated from the confusion matrix.

11
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3 Study Setup and Methodology

3.1 Study Setup

The study aims to use the data extracted from CCQ pipelines to predict
whether a commit will fail or pass once it gets built on the build server. JIT
predictions of the build status are useful information, as each build takes
time and the status information of the build reaches the developer only after
some time. With a prediction model, a prediction can be made instantly.
Further, the study analyzes the behaviour of developers, with regards to
controlling code quality on the CCQ server and refactoring. The goal of the
study is to answer the following research questions:

e RQ1 How well can the developers’ behaviour in inspecting builds for
code quality be predicted?

Vassallo et al. [2018] found that code quality inspection is performed
every 18 builds and often at the end of a sprint. The motivation be-
hind RQ1 is to find out, whether this behaviour can be predicted, and
if it can be explained.

e RQ2 How well can the developers’ behaviour in refactoring builds’
changes be predicted?

The motivation behind RQ2 is to find out - in situations where a
developer decided to refactor for a specific commit and to gain some
indications - what might have led the developer to the decision to
refactor.

e RQ3 How well can the build outcome be predicted before running the
build?

For a developer, it is critical to know whether a build passes or fails
because if the build were to fail, the developer has to improve his work
until the build passes. RQ3 aims to find out if the outcome of the build
can be predicted, so the developer would know more or less instantly
if his work needs improvement.

3.1.1 Datasets

Considered in this study are Java projects that use GitHub as VCS and
TravisCI as the build server. The projects also had to be using SonarCloud,
which is a cloud service provided by SonarQube. The histories of the CCQ
data and the build data were mined by |Vassallo et al. [2018]. The projects
vary in size and for each project, only the commits triggering a build within

12
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the period of the project being hosted both on GitHub, TravisCI and Sonar-
Qube were considered. There were datasets constructed for 45 projects. For
each project, the dataset was extended by checking the commit, which trig-
gered the build on the build server. For these commits, the features from
the VCS were extracted. To extract these features the python framework
PyDriller [Davide, 2019] was used. For each build-triggering commit, the
refactoring features were added as additional features. To extract the refac-
toring features the RefactoringMiner |Tsantalis, 2019] was used.

3.1.2 Features

The full list of features can be seen in Table [6] As illustrated in the table,
the features have different dimensions.

The following quality features were extracted from the CCQ server.
The bugs detected by SonarQube are either wrong code or code that is not
fulfilling its intended purpose. Language detection is used to automatically
identify the used programming language and invoke the corresponding ana-
lyzer. The feature used is the number of bugs found by this analzser [Det].
The complexity feature is the complexity found by cognitive complexity an-
alyzis. Cognitive complexity analysis is an improved form of the cyclomatic
complexity analysis.

The build features were mined from the build server and include the
status, whether a build passed or failed, the duration it took to build the
commit and the event type that triggered the build.

The features extracted from the VCS follow the approaches of [Kamei
et al.|[2013] and Fukushima et al.|[2014], with some deviations.

The size features were included, because prior work by [Nagappan and
Ball [2005] showed that larger changes are more likely to introduce defects.

Changes with the purpose of fixing a defect are more likely to introduce
a new defect than other changes [Graves et al., 2000], for that reason the
purpose feature was added to the list of features.

The history feature is the number of developers that previously changed
the files subject to change.

The experience features are calculated in the same way as Kamei et al.
[2013] suggested. The features were calculated according to the following
formulae. The experience is the number of commits made by a developer
before the current change. The recent experience was calculated similarly
but the changes were weighted by their age. The following formual is used:
(ni-lq—l)’ n is time measured in years. Prior research showed that developer
experience has a significant effect on the software quality [Mockus and Weiss|,
2000].

Features of the refactoring dimension include the number of refactor-
ings for each of 21 different types of refactoring. From these refactoring

13
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Source Dimension | Name | Definition
BUG bugs
CCQ server | quality CS code smells
COMP | complexity
STA status: passed or failed
Build server | build DUR duration: time it took to build
ETY event type: e.g. “push”
NF number of modified files
diffusion NU number of methods
CYC cyclomatic complexety
LA lines of code added
size LD lines of code deleted
VS LT lines of code before changes
purpose CT change type, e.g. “modify”, “fix”
history NDEV | number of developers
EXP general experience
experience | REXP | recent experience
SEXP | experience on subsystem
refactoring | REF refactoring

Table 6: List of Features

features a single feature was created, which is a binary indicator if there
were any refactorings performed in a specific commit.

3.2 Fitting the Machine Learning Classifier

This section explains how the Machine Learning classifiers were fitted to the
data with the three different classification goals.

1. Predict the status of the build: The goal of this prediction is to give
the developer an indication if a build is going to pass or fail.

2. Predict CCQ decision: This classifier gives a binary indication about
whether the developer thinks it is useful to send a build to the CCQ
server or not.

3. Predict refactoring decision: This classifier gives a binary indication
about whether the developers think refactoring is needed for a specific

commit.

For each of these three goals, three different classifiers were fitted.
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3. STUDY SETUP AND METHODOLOGY

3.2.1 Data Preparation

First, the data was prepared for the different classification goals. Depending
on what the goal of the prediction is, the features can take different roles.
For the prediction of the build status, only the feature from the VCS can
be used and the build status is the target. For predicting whether refactor-
ing is needed all the features can be used and the target is the refactoring.
For the prediction, if the build will be sent from the build server to the
CCQ server for more inspection all the features from the build server and
the VSC features are used and the target is the existence of quality checks.
The individual datasets for the specific goals are then scaled. Because the
features vary in range, magnitude and units, scaling is important for the
algorithms to work. To get rid of imbalances in the dataset SMOTE (syn-
thetic minority over-sampling technique) is used. The data is imbalanced
if a substantial majority of the training data falls under one classification.
The predictive accuracy is not an appropriate indicator of performance if
the data is imbalanced |[Chawla et al., 2002]. SMOTE adds synthetic values
for the class that is underrepresented. A synthetic datapoint is created by
determining the distance between a feature vector of a given data point and
his nearest neighbour and multiplying it by a random value between zero
and one. This gives a point on the distance between the data point and
its nearest neighbour. This data point then is added to the dataset as a
synthetic data point. This process is repeated for each data point and its
feature vector.

Feature selection is used to avoid overfitting of the model, but also for
other advantages, such as easier understanding of the model, shorter train-
ing times and defying the curse of dimensionality to improve prediction
performance [Guyon and Elisseeft] |2003)].

3.2.2 Fitting a Random Forest Classifier

A random forest is an ensemble of multiple decision trees. Each node gets
split by a random subset of the features. This ensures that the trees have low
correlation between each other. For classification, the input runs through all
the decision trees, and the resulting classification is the classification that
appears most in the classification of the decision trees |Breiman, 2001]. For
the configuration of the model parameters grid search is used. This gives
the best possible configuration of the parameters.

3.2.3 Fitting a Logistic Regression

The logistic regression model uses a logistic function (sigmoid function) to
assign a value between zero and one. This value can then be used to make
a binary classification, so all values above 0.5 are assigned to one classifi-
cation, while observations with a value below 0.5 are assigned to the other

15



3. STUDY SETUP AND METHODOLOGY

In Reality

True False

True | True Positive | False Positive
False | False Negative | True Negative

Classified as

Table 7: Confusion Matrix

classification [Harrell, [2015]. Also for the logistic regression grid search was
used to find the best parameter configuration.

3.2.4 Fitting a Neural Network

The classifier used is a multilayer perceptron (MLP), a feed-forward artifi-
cial neural network. It consists of a minimum of three layers, namely input,
hidden layer and output layer. It is possible to have multiple hidden layers
[Hansen and Salamon, 1990]. To achieve the ideal configuration of the num-
ber of these layers and to find the best parameters, grid search was used.
The model with the best parameters is then used to make the predictions.

3.3 Evaluating the Classifier

The following evaluation scores were used to evaluate the classifier. The data
was split into training and testing data. The training data was used to train
the classifier. The trained classifier was used to predict the testing data,
which could then be compared to the actual values. From this comparison,
the following evaluation metrics were calculated. For the classification, four
possible outcomes exist: Correctly classified commits, which can be true
positive and true negative. For the false classified commits, there are also
two possible outcomes. The false positive classified and the false negative
classified. For an illustration see the confusion matrix in Table [7

3.3.1 Accuracy

The accuracy is calculated as the number of correctly classified commits
out of the total number of commits. Accuracy has to be interpreted quite
carefully because it can be misleading. If an outcome appears much more
often than the other outcome, then classifying everything as that outcome
has high accuracy, but is obviously not a good model.

True Positive + True Negative
True Positive 4+ False Positive 4+ True Negative + False Negative

Accuracy =

16



3. STUDY SETUP AND METHODOLOGY

3.3.2 Recall

The recall score is the ratio of the correctly predicted, meaning the true
positives over the actual positive values.

True Positive

Recall =
eea True Positive 4 False Negative

3.3.3 Precision

The precision is the correctly positive classified commits over all positive
classified commits. As can be followed from the formulas there is a trade off
between recall and precision.

. True Positive
Precision =

True Positive 4+ False Positive

3.3.4 F1 Measure

The F1 measure is the harmonic mean of the precision and the recall.

2 x Recall x Precision

F1-M =
casure Recall 4+ Precision

The perfect value for all these evaluation metrics is one, and only values
between zero and one are possible. A value close to one is desirable.
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4 Results

The following section provides an overview of the results found by the study
and answers the research questions.

4.1 Predictability of Developers’ Behaviour in Inspecting
Builds for Code Quality

To answer RQ1, three different prediction models for predicting whether
a developer will perform code quality controls were fitted. The prediction
models were used on a test set and the resulting evaluation scores thereof
can be seen in Table |8 As can be seen in the table, developers’ behaviour
can be predicted accurately. The accuracy and recall scores are high for
all three prediction models. The precision scores are lower than the other
evaluation scores across all models. However, this does not mean that the
model is useless since the recall score is high.

When looking at the average gini importance (Figure from the random
forest classifier throughout the projects, we can see that the duration of the
build seems to have a strong influence on the prediction. Checking the
distribution of the importance of the duration feature with a boxplot shows
that the data is heavily skewed and that the feature importance for the
duration was much higher for a few projects only. This shows that duration
still is an important feature, but not as important as it might seem at first
glance. Further, it can be observed that the size features and the experience
features have a higher influence on the prediction. While experience overall
has a strong influence on the prediction, the recent experience seemingly
has more influence than the specific experience. Less important are the
diffusion features. This implies that a larger number of small changes in
many different subsystems is less likely to be checked for quality, than a
large change in one single subsystem. Generally, the model suggests that
more experienced developers tend to perform code quality checks for larger
builds. While experience overall has a strong influence on the prediction, the
recent experience seemingly has more influence than the specific experience.
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4. RESULTS

4.2 Predictability of Developers’ Behaviour in Refactoring
Builds’ Changes

To answer RQ2, three different prediction models for predicting whether a
developer will perform refactoring were fitted.

This research question could not be answered as there were not enough
datasets containing data points with refactoring. Almost all projects were
completely imbalanced, meaning that none of the built commits contained
any form of refactoring. For the two projects for which predictions could be
made (see Table@ the accuracy score was very high. This is not surprising as
the datasets are strongly imbalanced. When looking at the other evaluation
score it can be seen that the models do not perform well. Also from only
testing the prediction on two projects no conclusions can be drawn.
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4. RESULTS

4.3 Predictability of the Build Status

To answer RQ3 three different prediction models for predicting the build
status were fitted. The trained prediction models are then used on a test set
and the evaluation scores are calculated (see Table[L0]). The table shows the
four evaluation scores for each classification model and project, as well as the
average evaluation scores over all the projects. For the prediction whether
a build is going to fail, the random forest classifier and the neural network
have similar performances according to the evaluation scores derived from
the confusion matrix. The logistic regression classifier performs well, but
especially the recall is worse compared to the other two models. When
looking at the average evaluation scores for all the projects, it can be seen
that on average all models work well.

The model would be used to save developers time. It is not worth waiting
for a build to finish only to learn that it failed anyway. Equally bad would
be not to build a commit based on a prediction that it is going to fail when
in reality it would not have failed. Therefore, it is crucial for the model to
have a good recall score. Since the recall score is high for all three models,
the prediction models could be useful in practice.

In Figure [5] the average gini importance extracted from the random
forest classifier over all projects can be seen. The size features and the
experience features have the highest impact on the prediction. Specific ex-
perience does not seem to be as important as overall experience and recent
experience for predicting the build status of a build. The less important
features are the diffusion features, for example the number of modified files.

04 006 008 010 012 014
L L L L )

ool e Wosep ko ondev e rep

Figure 5: Average Gini Feature Importance for the Build Prediction
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5. DISCUSSION AND FUTURE WORK

5 Discussion and Future Work

5.1 Implications

The following points highlighted by the results of the study are discussed
further.

e Performing quality checks. The results show that developers per-
form quality checks for large changes in terms of size rather than dif-
fusion. |Vassallo et al. [2018] found that code quality checks are per-
formed in intervals and at critical points. To this result can be added,
that one of these critical points corresponds to the introduction of a
change with large size features. Further, the results show that devel-
opers consider large changes regarding diffusion to be less critical and
decide to skip quality checks for these changes. Prior work showed,
that changes with high diffusion features are more likely to induce
defects |Kamei et al., 2013]. Therefore, developers should probably
change their regime for inspecting the quality of builds.

e Time savings through build prediction. The results show that
the status of the build can be accurately predicted before it is actually
run. Developers can reduce the number of times the development
pipeline breaks and less time is spent on running builds which will
fail. Prediction models can be a valuable assistance for developers
working with CI.

5.2 Future Work

While the prediction of the build status works well and could potentially
offer developers some useful assistance when working with CI, it would be
possible to train further prediction models based on these types of datasets.
For example, the decision whether or not to perform a code quality
analysis for a specific build could be supported by a prediction model. The
practice of just checking the quality in regular time intervals or at some
expected critical point is not ideal. Real world application showed that
monitoring the quality of each build [Vassallo et al., 2018] is not very popular
and therefore also not perfect. Future work could examine under which
circumstances performing quality checks should be encouraged.
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6 Threats to Validity

This section considers threats to the validity of the conducted study.

6.1 Replicability

This threat is addressed by providing all the used data and scripts. The
material can be found on the attached CD (Appendix A).

6.2 External Validity

Although a large number of different projects are used, there are only
datasets extracted from Java projects. These projects might not be rep-
resentative of all projects. However, the limitation to one programming
language should not affect the results much, as previous work has shown
that these types of prediction models perform similarly across different pro-
gramming languages |[Kamei et al 2013]. Other features not included in
this study might have a significant effect on the prediction. Using more
features could improve the results of the predictions.

6.3 Internal Validity

The classification for the purpose feature is based on the commit messages.
Depending on how the commit messages of the individual projects are writ-
ten, a faulty classification could be extracted.

The experience features are based on the number of commits a developer
made, rather than the amount of time spent on a project. Both approaches
have their advantages and disadvantages. For this paper, it was decided
that the number of commits made is a better indicator of experience.

For the extraction of the refactoring features the RefactoringMiner li-
brary was used, which doesn’t guarantee that all cases of refactoring are
detected. What is more, the amount and types of refactorings performed
were not considered.
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7. SUMMARY

7 Summary

Continuous Integration and Continuous Code Quality checks have increased
in popularity over the recent years. The way developers use these methods
in practice shows the need for faster just-in-time quality predictions. The
systematic literature review revealed that these methods exist and are typ-
ically constructed by training a Machine Learning classifier on the change
history of a project.

In a study using data extracted from projects that implement a CCQ
pipeline, it was shown that the result of the builds on the build server can be
well predicted. Further, a prediction model showed that more experienced
developers decide to perform quality checks on larger builds. The results
conclude that build prediction could potentially be a useful tool when work-
ing with CI. Finally, this paper highlighted the need to take the guesswork
out of code quality checks.
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A. ATTACHED CD

A Attached CD

The attached CD contains all the necessary data and scripts to replicate
the results of the study. The instructions to follow can be found in the
readme.md file in the replication package.
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