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Zusammenfassung

Die Transformation der Demokratie in das digitale Zeitalter beschäftigt die Forschung
seit geraumer Zeit. Ihre zentrale Stütze, die politische Partizipation des Elektorats in
wiederkehrenden Abstimmungen, ist da keine Ausnahme. Die Kryptographie erforscht
daher verschiedenste Ansätze zur sicheren elektronischen Abstimmung. Jedoch ist das
in den Allgemeinen Menschenrechten garantierte Recht auf vertrauliche Wahlen keine
Selbstverständlichkeit und auf dem elektronischen Weg nicht einfach umzusetzen. Wei-
tere Bedürfnisse, wie die universelle Verifizierbarkeit einer jeden abgegebenen Stimme,
sind oft von gegensätzlicher Natur. Nicht nur mit dem gestiegenen Misstrauen gegenüber
freien und sicheren Abstimmungen durch die aufgetauchten Unregelmässigkeiten während
den letzten präsidialen Wahlen in den Vereinigten Staaten von Amerika ist es von zentra-
ler Bedeutung, die Integrität des Abstimmungsresultats sicherzustellen. Verteilte Systeme
und ihre Konsensfindung haben daher mit dem enstandenen öffentlichen Interesse an
Blockchains ein neues Forschungsgebiet gefunden: die Zusammenführung von elektroni-
schen Abstimmungen auf verteilten Systemen. Das föderalistische politische System der
Schweiz bildet eine solche dezentralisierte Topologie und eignet sich daher hervorragend
für ein elektronisches Abstimmungssystem, das seine Aufgaben über mehrere Autoritäten
verteilt. Zusammen können Kantone sowie Gemeinden ein dezentralisiertes Netzwerk bil-
den, auf welchem die Abstimmungssoftware ausgeführt wird. Eine zentrale Entität wird
so nicht benötigt. Daher schlägt diese Arbeit zum ersten Mal ein Blockchain-basiertes
elektronisches Abstimmungssystem vor, welches jedem Stimmberechtigten erlaubt, die
verschlüsselte Repräsentation seiner Stimme mithilfe eines kenntnisfreien Beweises auf
ihre Gültigkeit zu verifizieren, ohne gleichzeitig das Wahlgeheminis zu beeinträchtigen.
Durch das lineare Verhalten der dazu benötigten kryptografischen Verfahren eignet sich
das vorgestellte Protokoll auch für nationale Wahlen. Jedoch ist es noch nicht vollstän-
dig Ende-zu-Ende verifizierbar. Protokollerweiterungen können die dazu erforderlichen
Schritte jederzeit nachliefern.
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Abstract

Democracy in the digital age has attracted a lot of public attention in recent years. Its
fundamental principle of participating in electoral processes is not an exception. How-
ever, transforming analogue procedures to their digital counterparts often require specific
concepts, such as cryptography, on which enabling technologies are built. Indeed, crypto-
graphic research has a long history of designing secure electronic voting systems. However,
bringing the human right of secrecy in voting to electronic systems is difficult. Other prop-
erties, such as the possibility of verifying universally that any vote counted was indeed the
decision made by a voter, are often conflicting and a trade-off must be found. With the
recent distrust in free and secure elections in the United States of America, it has become
even more important to guarantee the integrity of any election. With the raise of pub-
lic interest in blockchains, research around distributed systems and consensus algorithms
have found a new field of application: Bringing secure electronic voting to decentralised
systems. Switzerland with its federal political structure is a perfect fit for implementing an
electronic voting system where trust is distributed among multiple authorities. Together,
cantons and even municipalities can build a decentralised network running the election
software, avoiding a central entity which needs to be trusted. Thus, this thesis proposes
the first blockchain-based electronic voting system providing cast-as-intended verifiability.
By using a non-interactive zero-knowledge proof of knowledge, any voter can verify that
his or her encrypted vote represents the chosen decision while still maintaining the secrecy
of the ballot. In addition, any required cryptographic material can be generated in linear
time to the number of voters, making the outlined system suitable even for large scale
elections. As the presented prototype is not yet fully end-to-end verifiable, extensions to
the current protocol can provide these features in the future.
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Chapter 1

Introduction

Participating in votes and elections is a phenomenon which has been around for many
centuries. However, different means have been used to cast a vote. From spoken word,
raising hands, papyrus or paper, a multitude of representations for a ballot have been
known and used. In the last two decades, also electronic ways for casting a vote have been
evaluated and introduced in electoral processes. Estonia has seen legally-binding electronic
voting since 2005, and also Switzerland has been experimenting with electronic voting
channels since the beginning of the 21st century. Although some suggest electronic voting
increases voter turnout, others state only insignificant changes have been observed. With
electronic voting channels, questions of trust arise when submitting intangible ballots.
Democracies with their checks and balances may already provide trusted means of voting.
However, the recent presidential election of the United States of America in 2016 has shown
that also in long living democracies trust issues in elections occur [41]. In other countries,
transparent electronic voting systems are even considered the only means of conducting
trustful elections [38]. Instead of relying on the honesty of one administering governmental
entity, decentralised structures with independent implementations of a particular process
cannot only distribute the risk of being attacked successfully, but might also increase
the immediacy of a voter’s participation in the election. Starting with the publication
of Bitcoin [51], a peer-to-peer electronic cash system, in 2008, decentralised systems and
distributed consensus algorithms have seen a revived public interest. Its fundamental data
structure, an append-only chain of blocks, shows great potential to many researchers and
investors.

1.1 Motivation and Description of Work

Recently, there have been attempts to implement electronic voting on top of such a de-
centralised structure, removing the need to trust a single authority. Although well-known
properties exist in the research literature for evaluating pivotal requirements, few works
aim at designing approaches which consider them. In particular, coercion-resistance and
receipt-freeness, ballot secrecy, and verifiability of each submitted vote must be taken
into account [8, 43]. In 2013, Switzerland has released new regulations which define the

1



2 CHAPTER 1. INTRODUCTION

requirements any electronic voting system must met in order to be certified for host-
ing legally-binding elections [25]. With Switzerland’s federal structure, one fundamental
requirement for decentralised electronic voting is already recognised: Distributing parts
of the voting process to multiple authorities. Thus, establishing a similar structure for
an electronic voting system seems to be the only logical consequence. By allowing the
municipalities and cantons providing part of the electronic infrastructure, a decentralised
peer-to-peer network could be created. Thus, this work is twofold: First, current available
approaches to cast-as-intended verifiability are researched, compared, and evaluated with
respect to a decentralised electronic voting system. Second, the best fitting approach is
implemented by using a single-purpose blockchain as its fundamental data structure.

1.2 Thesis Outline

In cryptography, much research has been conducted which targets electronic voting. Con-
sequentially, different approaches have been undertaken to introduce electronic voting
systems worldwide. A short overview of them is provided at the beginning of Chapter
2. It further outlines some properties any electronic voting system should consider before
presenting an overview of cryptographic fundamentals on how to achieve them. This chap-
ter concludes with approaches to previous blockchain-based electronic voting systems. In
Chapter 3, the architecture of a blockchain-based implementation for an electronic voting
system is discussed. Chapter 4 then discusses the implementation-specific details which
are evaluated in Chapter 5. A summary of the work achieved and suggested improvements
is given in Chapter 6.



Chapter 2

Background and Related Work

Participating in direct democratic processes from remote places was known already back
in the Roman Empire, either by raising the voice or clapping swords [59]. With the raise
of reliable postal services, votes could be transported to their place of destination [34].
Although used in Switzerland until today, submitting votes over an electronic channel
also has experienced a rise in the last years. Electronic voting is known in various distinct
kinds but is sometimes shaped into new forms by combining a set of unique features. In
[52], four types of electronic voting are classified: (1) Ballot Scanning Technology which
attempts to scan physical ballot papers directly at a polling station; (2) Direct Recording
Electronic (DRE) Voting Systems that describe electronic devices at polling stations on
which a voter can directly input his choice; (3) Internet Voting which allows to vote
in uncontrolled environments at nearly any place on the world; and (4) Hybrid forms
which use the centralised counting mechanism of Internet voting but combine it with the
controlled environment of polling stations.

2.1 Electronic Voting Landscape

Electronic voting is a relatively new practical field. From 1996 to 2007, only a total of 136
elections used a form of remote electronic voting [47]. Since then, advances in technology
have lead to further trials and binding votes, however.

2.1.1 Electronic Voting around the World

In Europe, efforts for introducing electronic voting have succeeded in few countries. Es-
tonia is one example. Based on their previously established usage of a digital identity
called SmartID, Estonian citizens can submit votes over the Internet [58]. Also in the
United States of America, multiple attempts have been made. Although electronic voting
is widely used by means of Email and Fax [42], the National Institute of Standardization
and Technology (NIST) has suggested that further research and development is required
to make voting over the Internet feasible [39]. In many developing countries, interest in

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1: Distribution of English research articles with respect to electronic voting in
developing countries [38]

experimenting with electronic voting systems is present. In 2016, [38] has performed a lit-
erature review, counting the number of scientific articles written in English and published
with respect to electronic voting on a country basis. The results are shown in Table 2.1.
Based on this, the authors analyse a common theme among the articles suggesting that
credible elections can only made possible by technology.

2.1.2 Electronic Voting in Switzerland

In Switzerland, multiple experiments on electronic voting systems have been performed
as well. In 2000, a project evaluating opportunities, risks, and the feasibility of electronic
voting has been initiated on request of parliamentary motions [24]. In this context, the
cantons of Geneva, Neuchâtel and Zurich attempted to provide their citizens with im-
plementations of electronic voting [23]. Although allowed initially only for canton-wide
elections, all three systems managed to perform nationwide votes as soon as 2004 (Geneva)
and 2005 (Neuchâtel and Zurich). Based on this success, the disjoint consortium Vote
êlectronique was founded in 2009 with seven cantons [24]. Four years later, in 2013, new
federal regulations [25] introduced thresholds up to how many percent of the electorate
is allowed to vote electronically. These thresholds are bound to a set of requirements an
electronic voting system has to meet in order to be admitted for cantonal and nationwide
elections. Based on these requirements, the Federal Council of Switzerland decided not
to admit the project of the consortium for a nationwide vote. Following this decision, the
consortium was disbanded [57]. Subsequently, the canton of Neuâtel has joined his forces
with The Swiss Post in developing an electronic voting system since both were using an
implementation of the Spanish vendor Scytl. Only the implementation of the canton of
Geneva has also seen continued development. This situation remains until today.

2.2 System Properties

According to [43], the following properties should be considered for private and verifiable
elections performed on electronic voting systems. Besides of listing constitutional require-
ments of electronic voting systems and their consequences as done in [43], [36] also outlines
user requirements and use-cases. A less common attribute is described as accessibility, a
property primarily focused by the end-users of an electronic voting system. It aims at
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providing an indiscriminate way of submitting votes for a wide range of users with highly
different characteristics. [3] has identified further attributes a voting system should fulfill:
Among others, soundness of a voting system describes its ability to guarantee the absence
of faulty processes and illegitimate operations. The location-independent participation of
a voter in the election is further addressed in the property of mobility [3].

2.2.1 Ballot Secrecy

A requirement for establishing electronic voting in the context of democratic election
processes is secrecy1 in voting. Importantly, this property is also stated in Article 21 of
the Universal Declaration of Human Rights [62]. Related to ballot secrecy is the ability
of having a free-choice during the vote. In [55], it is formalised as “Ballot secrecy: A
voter’s vote is not revealed to anyone”. With establishing ballot secrecy in an electronic
voting system, new challenges emerge which must be coped with. Submitting a vote in an
uncontrolled environment (as opposed to a polling station) allows a voter being observed
and its choices made public. In addition, systems creating a link between a vote and
a voter should ensure that decryption is not considered safe due to assumptions in the
cryptographic algorithms, as such constraints can change with future developments [8].
This property is known as everlasting privacy [50] or unconditional privacy [17].

2.2.2 Coercion-Resistance and Receipt-Freeness

Related to ballot secrecy are the properties of coercion-resistance and receipt-freeness.
The first is fulfilled for a voting system “if there exists a way for a coerced voter to cast
her vote such that her coercer cannot distinguish whether or not she followed the coercer’s
instructions”[8]. Hence, it is crucial to prevent forced abstention, where a voter is hindered
from submitting his choice; forced surrender of credentials by which a coercer can obtain
the secret credentials to participant in a vote as the voter; and forced randomisation,
in which the coercer dictates the voter to choose always the same choice. Attempts to
solve one of these constraints often fail with respect to the two others. Instead, coercion
evidence can be obtained by systems allowing to submit multiple votes with the same
credentials [8].

Receipt-freeness is closely related to coercion-resistance: A voting system leaking infor-
mation on what options voters have selected provides a channel of useful information to
the adversary. Thus, receipt-free systems ensure that: “a voter is unable to prove how she
voted even if she actively colludes with a coercer and deviates from the protocol in order
to try to produce a proof” [8].

1The term ballot privacy and ballot secrecy is often used interchangeably. However, to be consistent
with the notion in [55], we adopt its reasoning to “avoid confusion with other privacy notions, such as
receipt-freeness and coercion resistance” [55] and prefer ballot secrecy over ballot privacy.
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2.2.3 Verifiability

Once a vote is cast it must be ensured that it still represents the actual choice made
by a voter, i.e. whether the vote was casted as intended. As opposed to paper ballot
voting, electronic devices may alter votes invisibly to the end-user or they even might
execute a different protocol from the one expected. This assurance is often referred to
as verifiability. Whereas [46] differentiates between individual, universal and eligibility
verifiability, end-to-end verifiability is also mentioned in the literature [43].

Individual Verifiability According to the definition from [46], electronic voting systems
providing individual verifiability ensure that “a voter can check that her own ballot
is included in the election’s bulletin board.”

Universal Verifiability Widening that view to further parties other than the voter her-
self, such as election observers, universal verifiability is outlined by [46] as the pos-
sibility that “anyone can check that the election outcome corresponds to the ballots
published on the bulletin board.”

Eligibility verifiability Electronic voting systems further need to ensure the eligibility
of submitted votes, a feature referred to from the authors of [46] as “anyone can
check that each vote in the election outcome was cast by a registered voter and
there is at most one vote per voter.”

End-to-End Verifiability Whereas individual, universal and eligibility verifiability cen-
tre around systems trying to provide a high degree of privacy while still being ver-
ifiable, end-to-end verifiability focuses on practical verifiability while maintaining
strong privacy notions. End-to-end verifiability is fulfilled if voters can verify the
three attributes [43]:

• cast-as-intended: “her choice was correctly denoted on the ballot by the
system”

• recorded-as-cast: “her ballot was received the way she cast it”

• tallied-as-recorded or counted-as-recorded: “her ballot counts as re-
ceived”

In the research literature, these verifiability notions have seen attempts by which they are
formalised, such as [17, 46].

2.2.4 Incompatibility of Properties

In [17], a formal definition of some of the above properties is outlined. In particular,
these are unconditional privacy, receipt-freeness, and universal verifiability. Based on this
formalism, they state two incompatibilities as Theorem 5 and Theorem 6 of their work,
which are depicted in the following excerpts:
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Theorem 5. “In the standard model, it is impossible to build a voting scheme that simul-
taneously achieves the universal verifiability and the unconditional privacy unless
all the voters actually vote.” [17]

Theorem 6. “If there exists a function h such that Bi = h(P, Vi, vi, ri), where vi is the
vote of the voter Vi, ri a possibly random value chosen by Vi, and P some public in-
formation, then the universal verifiability and the receipt-freeness properties cannot
be simultaneously achieved without additional assumptions.” [17]

Thus, the goal of any voting system is to find a suitable trade-off between simultaneously
providing privacy and verifiability [43].

2.2.5 Approaches to Cast-as-Intended Verifiability

Voting Codes One approach followed by Pretty Good Democracy (PGD), consists of
requiring users typing voting codes to choose a particular voting option [54]. After
the vote is submitted, an acknowledgement code must be verified for the submitted
choice.

Return Codes and Plaintext Equivalent Tests Similarly to voting codes, return codes
allow for cast-as-intended verifiability. However, return codes do not require to spec-
ify codes for choosing a voting option but are usually verified after the chosen values
have been sent to a voting server.

An improvement of the Norwegian voting protocol outlined in [33] allows to type
in a plain representation of the given voting options. As the chosen voting options
have been received by the voting server, return codes are generated on a further
system and returned to the voting server. The codes are then forwarded to the
client device. By using a previously obtained confirmation value, the voter indicates
that the retrieved return codes match the ones previously retrieved: A procedure on
the client device generates a confirmation message which is again sent to the voting
server, where a finalisation code is generated and returned to the voting device. This
code has again to be verified with a previously specified value by the voter.

A similar approach is outlined in [37]: Oblivious Transfer is used as its underlying
cryptographic protocol. In the simplest variant, this protocol consists of two parties,
a sender and a receiver. The sender holds a defined set of messages of which some
can be selected by the receiver. It is noteworthy, that by using this protocol, the
sender will not know which messages the receiver has selected while the receiver
has no knowledge about the values of the non-selected messages. The protocol is
initiated by having the receiver querying the sender for a particular message. In
turn, a response is delivered from the sender to the receiver which can be opened
by the receiver. As in the return code scheme, a verification code sheet is generated
on a voter-basis using the hash values of a number of points Pi,s of a particular
polynomial pi, with s = 1, 2, ..., n voting options. During the vote casting process,
a query is initiated by the voting platform to retrieve corresponding values which
open to the points Pi of the polynomial of the voter. By computing the hash of
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the retrieved points and comparing the resulting values with the initially obtained
verification codes, the voters can ensure that their votes were cast as intended.

However, this approach was to be found as being flawed in [12]. The same authors
also published a different approach of using return codes than [33]: Although this
protocol also includes the phases of verifying return codes and typing in verification
codes, the verification process on the voting server is different. It utilises Plaintext-
Equivalent-Tests (PETs) which represent a zero-knowledge protocol for verifying
that two ciphertexts hold the same plaintext value. In the particular instance pre-
sented, one ciphertext is submitted by the voter whereas the other is reconstructed
by values subject to the verification codes generated initially.

Universal Cast-as-Intended Verifiability The previously outlined approaches are all
highly interactive and require a voter willing and able to participate in all phases
of the voting process. The authors of [31] therefore propose a single-pass voting
scheme, characterised by a single interaction of the voter with the voting system,
the submission of the ballot. As before, codes tied to a specific voting option for
a particular user are generated during registration. These values are hashed and
a subset of them are used during the vote casting step to form a Non-Interactive
Zero-Knowledge Proof of Knowledge (NIZKPK). Such a proof is not only verifiable
by the voters themselves but also allow for public verification.

Assumptions

All of the approaches assume explicitly [12, 33, 37] or implicitly [31] a public append-
only data structure to which the voting authorities can write particular cryptographic
material. Further, some of the approaches [33, 37] allow only for one vote to be submitted
by the same voter, whereas the others do not limit themselves to this restriction. [31,
33, 37] further explicitly state that the list of voting options must be predefined, whereas
[12] assumes this implicitly. To provide cast-as-intended verifiability, [33] and [37] support
single-voting only, where a voter can only submit his choices once during the election. In
the work of [31], the party distributing the appropriate cryptographic material needs to
be honest. Similar, [12] states that the printing facility of the voting cards is trusted.

Comparative Criteria

Table 2.2 outlines a brief overview of the different approaches. Most of the protocols
require more than one interaction with the voting system to allow for cast-as-intended
verification (Interactive). In addition, these protocols may be bound to a specific ap-
proach of how votes must be processed. Only [37] does not require a specific underlying
mechanism to tally votes but postpones a concrete integration to a specific implementa-
tion. [12] even presents corresponding security proofs which they claim are independent of
the voting mechanism used. Further, some of the approaches directly include a method to
validate the votes for their appropriate message domain during processing. The security
attributes coercion-resistance and receipt-freeness are not focused in the outlined papers
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Protocol Interactive Supports Limitations

Return Codes [33] Yes Shuffling [33]
No duplicates,
Blank Vote,
Synchronization

[18]

NIZKPK [31] No
Mix-nets,
Homomorphic Tallying [31]

–

Return Codes
on OT [37]

Yes n/a [37] Invalid Votes [12]

Return Codes
with PETs [12]

Yes
Mix-nets,
Homomorphic Tallying

–

Table 2.2: Cast-as-intended mechanisms in comparison

and are thus omitted as comparison criteria. Two of the mentioned approaches have secu-
rity issues: For the work presented in [33], a security analysis has been performed in [18].
Among others, the authors noticed an issue where a voter has to be prevented of voting
twice for the same voting option ki (of n total ones). In addition, a usability concern was
raised, which arises when a voter has to submit different return codes for an abstained
voting option. The presented protocol further looses its cast-as-intended property as soon
as a voter submits a vote twice to the voting system, which could occur when multiple
instances of the server must be deployed. In addition, [12] described an attack on [37]
where an adversary can submit invalid votes which are only detected once they have been
decrypted (and the link to the ballot and voter is lost).

2.3 Cryptographic Fundamentals

The field of cryptographic research has found applications in various different technologies.
As such, it often has been an enabler for providing data integrity and privacy. The
resulting cryptographic tools are also widely integrated in electronic voting systems to
ensure secure and private elections. Where data is encrypted and operations are performed
on such representations, new means of verifying its opaque contents need to be applied.
In this section, a short introduction into the cryptographic primitives used in this thesis
is given.

2.3.1 Finite Cyclic Groups

In the following, most arithmetic operations are calculated over a finite, cyclic group
instead of just the set of all integers Z. As cyclic groups and the operations on them may
be unfamiliar to the reader, a short excerpt of necessary algebraic facts is given. Where
not stated differently, these are taken from [45].
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Definition 1 - Group.

A group is a pair (G, ?), where G is a set and ? is a binary operation over G, such that
the following axioms hold.

1. The binary operation is associative. ∀a, b, c ∈ G|a ? (b ? c) = (a ? b) ? c.

2. There is an element e ∈ G such that for all a ∈ G we have e ? a = a ? e = a, i.e. the
neutral element e of (G, ?).

3. For all x ∈ G, there exists a y ∈ G (x−1) such that x ? y = y ? x = e, i.e. the inverse
element y.

Definition 2 - Finite Cyclic Group.

A group G is called cyclic if there exists a g ∈ G, such that for all h ∈ G, there exists
an x ∈ Z such that gx = h. In this case, g is called the generator of G, and we write
G = 〈g〉. In addition, one can state that “only finite cyclic groups are of the form Zn for
some integer n”. [45]

2.3.2 Homomorphic Encryption in the ElGamal Cryptosystem

Often, a cryptosystem is only considered cryptographically secure with assumptions on
the computational complexity of certain operations. The ElGamal cryptosystem [30]
explicitly relies on the computational hardness of finding the discrete logarithm of gx for
large numbers x in finite fields, such as the finite cyclic groups outlined above.

Some cryptosystems further provide the property of homomorphism, which is a mapping
between two algebras of the same type, whereas the type can be a cyclic group, among
others. With respect to electronic voting, such a homomorphism can be applied by using a
cryptosystem, mapping operations on plaintext votes ⊕ to operations on encrypted votes
⊗ [43]. Consider two plaintext messages m1,m2 of the set of all messages M , then the
homomorphic operation is defined as:

∀m1,m2 ∈M, enc(m1 ⊕m2) = enc(m1)⊗ enc(m2)

Based on this relation, one can define the operation ⊕ as multiplication and ⊗ as the
addition over the corresponding type, i.e. the finite cyclic group. This allows to calculate
the final tally on encrypted votes, without the need of decrypting each ciphertext to its
plain text vote.

The public-key cryptosystem of ElGamal provides such an additive homomorphism. With
having the fundamental computation assumption in mind, encryption and decryption can
be performed as outlined in Definition 3. Although ElGamal is originally created with a
multiplicative homomorphism, homomorphic addition can also be performed, as specified
in Definition 4.
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Definition 3 - Encryption and Decryption.

Define the message space of all valid plain-text votes to be in the cyclic subgroup G of
order q of (Zp)

∗, with q being co-prime to p and g being the generator of G. Then,

1. Create a private key by selecting a random number x from the uniformly distributed
set
{

1, ..., q − 1
}

and keep x secret.

2. Create the corresponding public key, by calculating h = gx. Make the set
(
G, q, g, h

)
public.

3. Encrypt a message m ∈ Zp using r ∈uniform Zp with the public key h by calculating
the shared secret s = hr = (gx)r = gxr. Then, the resulting ciphertext is defined as
E(G,H) =

(
gr, gm · s

)
.

4. Decrypt a ciphertext E(G,H), by recalculating the secret s = Gx = (gr)x = grx

and gm = H · (s−1) = gm · hr · (gxr)−1 = gm · gxr · g−xr with s−1 being the modular
multiplicative inverse of s. Then, solve the discrete logarithm in order to obtain m.

Definition 4 - Homomorphic Addition.

Then, having obtained two ElGamal ciphertexts E(m1) and E(m2), the homomorphic
addition is defined as follows:

E(m1) · E(m2) = E(G1, H1) · E(G2, H2)

= E(gr1 , gm1 · hr1) · E(gr2 , gm2 · hr2)
= E(gr1+r2 , gm1+m2 · hr1+r2)

= E(m1 +m2)

2.3.3 Non-Interactive Zero-Knowledge Proofs

Encrypted representations are a source of distrust to voters. Just by visibly inspecting
such a sequence of characters, a voter will not be satisfied that his vote is still accurately
represented. In addition, when using homomorphic encryption, votes are mapped into
the domain of the cyclic group. As such, election authorities cannot be ensured to count
only votes of the appropriate range: Consider an election with a single binary voting
option. Then, a voter could not only encrypt valid votes, i.e. yes or no which are mapped
into the domain values of 1 and 0, respectively, but also any other numeric value, such
as 22. Thus, proofs for valid votes are required. By using a cryptographic tool called non-
interactive zero-knowledge proof, it is possible to verify such properties without revealing
anything about the actual choice a voter has made [10]. Whereas Definition 5 is due to
[35], Definition 6 is taken from [10] and Definition 7 from [45].
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Prover Verifier

committment
challenge

response

Figure 2.1: The three moves of a Σ-protocol

Definition 5 - Interactive Proof System.

Let L be a language over (0, 1)∗. Let (A,B) be an interactive protocol with the two
Interactive Turing machines (ITM) A and B. We say that (A,B) is an interactive proof
system for L if we have the following:

1. For each k, for sufficiently large x in L given as input to (A,B), B halts and accepts
with probability at least 1 − |x|−k. (The probabilities here are taken over the coin
tosses of A and B.)

2. For each k, for sufficiently large x not in L, for any ITM A′, on input x to (A′, B),
B accepts with probability at max |x|−k. (The probabilities here are taken over the
coin tosses of A′ and B.)

Remark: The above probability for error can be decreased, say to smaller than 2−|x|, by
the standard technique of repeating the protocol many times and choosing to accept by
majority vote.

Such interactive proofs can be combined with the property of zero-knowledge:

Definition 6 - Zero-Knowledge.

Zero-knowledge guarantees that the proof gives no knowledge, but the validity of the
theorem.

In short, an interactive proof system can be seen as “games played between two play-
ers, Prover and Verifier, who can talk back and forth” [10]. In the above definition, the
two parties are represented by the interactive Turing machines A and B. In the follow-
ing, only a subset of such interactive proofs will be necessary. In particular, these are
three-move-protocols, often referred to as Σ-protocols [21], which have the exchange of
information between the two parties, verifier and prover as outlined in Figure 2.1. Such
interactive protocols can be made non-interactive by using the Fiat-Shamir heuristic [32].
The following illustration is taken from [45]: If a prover wishes to prove the validity of a
statement x, it first generates a commitment y and a challenge c = H(y, x) whereas H is
defined as a suitable cryptographic hash function. It further generates a response s based
on the commitment y and challenge s created before.
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genesis a1 a2 a3 a4 a5 a6

c3 c4 c5 c6

b4

d4

Figure 2.2: A chain of blocks with its canonical chain marked in red

Then, the triple (y, c, s) is representing a static proof of the validity of x. In other words,
the hash function H ensures that the challenge is computed after the commitment has
been chosen. The security of this proof is based on the Random Oracle Model (ROM)
which assumes that the hash function H behaves as a random oracle [45].

Definition 7 - Random Oracle.

A random oracle is a deterministic function whose output is uniformly distributed in its
range.

Using these cryptographic primitives one can construct proofs ensuring a vote is valid
and represent the choice of the voter without the necessity of revealing the plaintext vote.
These are outlined in more detail in Chapter 3.

2.4 Blockchain

Where trust in an intermediary authority is at stake, transparency in its workings is key.
In elections, voters need to trust the established processes and their government acting as
such intermediary. Instead of trusting such an intermediary, a distributed system could
be used to store votes in a transparent and verifiable way. By appending votes to a
distributed and nearly immutable append-only data structure, a common source of trust
can be built [11]. As blockchains accumulate transactions into blocks and append them
to a distributed view of truth, a chain of information is built. Such a chain is depicted
in Figure 2.2 whereas the common agreed view of information is built by the changes
stored in the blocks marked in red. As its name suggests, a blockchain is a sequence of
blocks, each holding a collection of transactions. Among other fields, a block always holds
a reference to its parent. Transactions in turn contain the actual payload by which the
common agreed truth is built [64].

2.4.1 Consensus Algorithms

In distributed systems, a number of independent and distributed parties work together
to achieve a common goal. Connections between these can fail, i.e. messages can be
discarded, corrupted or new messages may be delivered. This arbitrary behaviour is often
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generalised under the term of Byzantine Failures [19]. The resulting problem of finding
an agreement in distributed systems has been recognised already back in 1982 and was
described in terms of the Byzantine Generals Problem [48].

Blockchains as an epitome of distributed systems naturally suffer from the same issues. In
[64], a comparison of different blockchain architectures and their consensus algorithms has
been presented. The authors distinguished between permissionless blockchains which al-
low everyone to participate in the consensus process, and permissioned blockchains which
restrict write access to a well-known committee of nodes. Membership is granted based on
defined policies and its formation can be either static with a non-changing set of members,
or dynamic where committee members are added and removed [6]. Based on the partici-
pation allowance, these types of blockchains are often called open and closed, respectively.
Due to resulting architectural properties, both types follow different approaches to reach
consensus. For permissionless blockchains, Proof-of-Work (PoW), Proof-of-Stake (PoS),
Delegated Proof-of-Stake (DPoS) and Ripple know concrete implementations, among oth-
ers. Permissioned blockchains use, non-exhaustively, Practical Byzantine Fault Tolerance
(PBFT), Proof-of-Authority (PoA) or Tendermint as their consensus algorithm [22]. A
more extensive overview of blockchains with their supported consensus algorithms is pro-
vided in [11]. [4] compared blockchains with respect to various performance attributes.

In [33], blockchains are described to be a trusted system. As such, they have to ensure
dependability, a term subsuming non-exhaustively reliability, availability, safety, and in-
tegrity [5]. Thus, [33] further states that “blockchains replicate data only for resilience,
not for scalability”. In [6], consensus protocols are considered in terms of (1) liveness
which is subdivided into validity and agreement, and (2) safety with its sub-dimensions
integrity and total order. Both, (1) and (2), refer to atomic broadcast, a concept describ-
ing a sequence of two asynchronous events. These are broadcast and deliver, whereas the
first is invoked by a node attempting to broadcast a message, and the latter is invoked by
the broadcast protocol delivering the message to a local application running on the node.
Then, validity ensures that if a node is broadcasting a message, it is also delivered by the
node. Agreement states that if a message is delivered by a correct node, the same message
is eventually delivered by every correct node. Integrity further guarantees only-once deliv-
ery for a particular message and therefore allows for deriving that the sender of a message
has previously broadcast the message. Eventually, total order refers to all correct nodes
extracting the same order of messages. Crash-tolerant consensus protocols provide these
properties while maintaining a threshold of crashed nodes whereas in byzantine consensus
nodes actively working against the common goal are tolerated [15] . As such, transactions
cannot be considered to be valid in general but require validation.

Further, the work of [6] refers to consensus as being an “’agreement’ by all nodes, not
’choice’”. As such, consensus is not considered a voting protocol due to an adversary
being able to control the order of messages sent to the system.

Permissionless Consensus

In PoW, a computationally hard problem has to be solved by any participant in the
network to allow for incorporating transactions into the blockchain. Instead of working
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constantly on such a computationally hard problem, PoS allows network participants to
incorporate transactions in proportion to a specified type of stake. Whereas PoS is reflect-
ing a direct democracy for its consensus, DPoS uses elected representatives. Due to the
reduced number of nodes which have to confirm a transaction, an improved confirmation
time is promised. In Ripple, server subnetworks decide whether a transaction should be
incorporated into the blockchain. Contrary, client nodes only transfer funds. Whenever
a transaction needs to be confirmed, a server node asks a set of others which can agree or
deny the transaction. If more than 80% agree, the transaction is approved [64].

Permissioned Consensus

The family of Byzantine Fault Tolerant (BFT) algorithms follows a different approach
to reach consensus. By using a messaging scheme, network nodes attempt to agree on
incorporating a transaction into the blockchain. To protect the network against nodes
publishing malicious transactions, a voting mechanism is often put into place, allowing
for removal of such nodes.

Practical Byzantine Fault Tolerance (PBFT) describes a message schema requiring 3f +1
node replicas, for f faulty nodes. It operates as follows: A client sends an operation on
a replicated state machine to its primary node. This, in turn, forwards the operation to
its replicas. Eventually, replicas send the result of the operation back to the client which
acknowledges as result the value of f + 1 same responses [16].

Proof-of-Authority (PoA) is claimed to provide performance improvements over general
BFT protocols due to its lighter message exchange. In a PoA scheme, n trusted nodes
are allowed to mine blocks in a round-robin manner, from which n

2
+ 1 need to be honest.

To elect a node as a primary which is allowed to mine a single block, time is divided into
steps. Then, each node can calculate whether its his turn to mine at each given point in
time [22].

Tendermint requires three consecutive steps (forming a round) in order to agree on a new
block: pre-vote, pre-commit, and commit. In each, a 2

3
majority of nodes has to be found

which agree on the problem statement. In each round of following these steps, validator
nodes start by deciding whether they submit a pre-vote for a proposed block. If a node
receives the necessary majority of pre-votes stated above, it broadcasts a pre-commit
message. Again, if the node has received a majority of such messages, it validates the
block and publishes a commit message. Eventually, if the majority of commit messages
is reached, a node accepts the block [13].

Avalanche is a recent proposal of a BFT algorithm which utilizes confidence counters to
decide on the validity of a transaction. Nodes build up these counters by querying the
confidence values of a transaction from a fixed amount of other peers. A transaction will
receive a so-called chit, if it is the preferred transaction of the queried node and all its
ancestor transactions are preferred as well. In case a chit is received as result from the
query, the confidence value of a transaction is increased. Consensus is achieved by defining
a threshold of confidence by which a transaction is said to be agreed on [53].
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Consensus in Voting

Voting in a democratic setting requires central coordination, at least up to the extent of
agreeing on the voting question, the voting period, and the decision of a voter’s eligibility.
Thus, permissionless consensus does not provide much value. Permissioned consensus,
however, allows for capitalising on a countries democratic structure. Often, the role of
a voting authority can be split up among a set of different electoral parties, such as
counties, cantons or even municipalities. Similarly, a scenario where representatives of
political parties cooperate to administer a voting is possible.

2.5 Related Work

As of today, The Swiss Post distributes its solution for electronic voting with an implemen-
tation based on return codes. Votes can be submitted by prior authorisation to the voting
server. Based on the received ballot, a set of return codes is generated and transmitted
to the voter. Then, the return codes must be verified by the voter before submitting a
confirmation message to the voting server again. Subsequently, a finalisation code is gen-
erated, stored and sent back to the voter. A vote is considered to be successfully received
if the finalisation code matches an equivalent on the printed voting card [33]. Its competi-
tor, the canton of Geneva, uses a similar end-user process but a different implementation.
Before votes are decrypted and tallied, they are mixed and partially decrypted by a set
of voting authorities. These partially decrypted values are then retrieved by an election
administrator and converted back to plain-text values. Then, these values are summed
up to calculate the final tally [37].

Whereas multiple approaches have been developed to perform electronic voting on con-
ventional systems, only few practical implementations are available which combine voting
with the realm of distributed ledgers. In 2017, [49] has presented a feasibility study of a
boardroom voting solution based on a smart contract running on the Ethereum blockchain.
It represents the public bulletin board where all required election information is stored.
Votes are encrypted prior to sending them to the Ethereum network. Further, a 1-out-
of-2 zero-knowledge proof ensures that the encrypted vote contains either a zero or one
vote. The entire voting process includes a setup, sign-up, commit (optional), vote, and
tally phase, of which the sign-up, commit, and vote phase have to be performed by the
voter. Participants have to announce their private voting key during the sign-up phase
and then commit to their chosen voting option by publishing a hash of their encrypted
vote. Eventually, they send the encrypted vote and the zero-knowledge proof in a transac-
tion to the smart contract. As stated in their work, the major drawback of the presented
solution roots in the self-tallying voting protocol used, which allows the last voter to abort
the entire election. The authors cope with this issue by providing a financial incentive
for each voter when they complete the entire voting process. As each voter has access
to the public bulletin board, they claim to provide recorded-as-cast and cast-as-intended
verifiability. Counted-as-record should be fulfilled as each party can recompute the tallied
result. However, there is no formal proof given, supporting the stated verifiability claims.



2.5. RELATED WORK 17

In the same year, [63] has proposed an electronic voting solutions based on ring signatures
on the Bitcoin blockchain. After a two-step registration phase, the voter is signed up for
participating in the election. During voting, each participant has to retrieve all public
keys of all other voters which he will use in combination with its own private key in order
to sign the chosen election option. A commitment is then sent to the Bitcoin address of
the election authority. To tally, the voting authorities collect all retrieved transactions
and verify their signature. If they are valid, the corresponding counter for a particular
candidate option is increased. The author claims to have fulfilled individual verifiability,
but no formal proof is provided.

In spring 2018, Agora [1] has performed a trial voting on their blockchain-based imple-
mentation of an electronic voting system for the presidential elections in Sierra Leone. As
registered election observers, members of Agora were allowed to manually register votes
in 280 polling stations [1, 2].
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Chapter 3

Architecture

This work attempts to allow voters to take political action in an uncontrolled environment,
such as the Internet. Therefore, it is best categorised as Internet Voting within the
classification of New Voting Technology introduced by [52]. As such, the system requires
at least two bodies operating different components in any election1: Voting authorities
which operate a component to manage, store and tally votes and code executed on the
Voters’ end-clients, such as a computer or mobile device.

In the Swiss federation, cantons and municipalities are independent bodies [26]. Hence,
they implement the right to vote independently and according to their constitution [27].
Considering this legal structure for an electronic voting system, independence of these
bodies with a simultaneous cooperation for the common goal of providing secure elections
to their citizens can be ensured. Thus, the system to design should capitalise on this
structure and involve the different bodies in providing key components of the infrastruc-
ture.

This chapter is structured as follows: First, general considerations with respect to the se-
curity of a voting systems are outlined. Then, requirements based on these considerations
are noted. Section 3.4 elaborates on assumptions which narrow the scope of this work.

3.1 Design Considerations

A large set of attack vectors exists for electronic voting systems, not only with respect
to the network operating the storage layer and the tallying process but also on the client
devices running the end-user software. This thesis focuses primarily on verifying that the
cast vote is indeed representing the voter’s choice. Thus, a brief outline of some attack
vectors affecting this security property in particular is given in the following.

1Although the word election and vote are semantically different, in the former meaning electing repre-
sentatives and the latter meaning voting on some (binary) question, they are often used interchangeably
among the literature. In the following, this difference is relaxed as well, letting both terms refer to a vote
on a specific question.

19
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3.1.1 Secure Connections

Connections between participants of the voting system’s communication network should
be secure. In [43], sender-anonymous channels and untappable communication channels
are outlined as requirements for a secure voting process. Whereas the first guarantees
that a sender cannot be identified by the receiver of a message, the latter ensures that no
party but the sender and receiver“can learn anything about the communication, including
whether communication occurred or not” [43].

3.1.2 Malicious Client

In order to alter the result of the final tally, the client software which allows a voter to
submit his decisions is naturally a targeted victim. Attacks against voting clients would
have a high impact on the voting outcome. Thus, it is of great significance that this risk
can be minimised. There are two places where the software for the submission of the
vote could run. On the one side, the client software could be hosted on the controlled
infrastructure and provided by the voting authorities. On the other side, software could be
distributed to the end-users and directly executed on their own devices. Both approaches
have their advantages and shortcomings and offer different attack vectors.

Consider the latter case, where a malicious client participates in the voting process ob-
taining the cryptographic credentials of the user who runs the client application of the
election software. To place a successful attack, the adversary would require to modify
the client software binary so that it may alter the typed in decision as well as adjusting
any validation checks put into place. Additionally, the attacker would ideally hide any
attempt of tampering with the end-user’s vote. Such an application running directly on
an end-user client can be subject to integrity protection which verifies the application’s
integrity before executing it. This can include different strategies, such as white-listing
or black-listing applications or using digital signatures for the application’s binaries. In
fact, these strategies find their applications in Apple’s Gatekeeper2.

The former setting, in which the voting authorities provide the client software to the user,
suffers from an additional attack vector. Not only the integrity of the software executed by
the end-user must be ensured but also the communication between the end-user and the
infrastructure provided by the voting authorities. Web-applications as a way of providing
the client software to the voters, pose a special risk for tampering with users’ data as
a browser’s execution can be influenced by installed extensions. This is also recognised
in work published by Scytl, the company developing The Swiss Post’s e-voting system
[20]. Scytl outlines two possibilities to verify the integrity of the browser application’s
code: (1) Signing the code using public key cryptography, which is impractical due to
missing standards and (2) utilising the W3C Subresource Integrity3 recommendation to
verify the integrity of JavaScript code linked in the HTML document rendered by the
browser, which is not yet fully implemented by all browser vendors and does not allow
verifying the integrity of the file in which the sub-resource’s fingerprints are defined.

2https://support.apple.com/en-us/HT202491
3https://www.w3.org/TR/SRI/

https://support.apple.com/en-us/HT202491
https://www.w3.org/TR/SRI/
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Despite these limitations, trust is put into their voting clients [20]: On the one side,
secure connections to the browser are enforced when loading the web application’s code.
On the other hand, integrity checks on the server distributing the source files are executed.
In addition, a dedicated JavaScript application downloads source code as a regular HTTP
client and compares the received code with respect to a prior generated baseline. In their
conclusion, a trade-off in favour of a less integer but more interoperable system with better
user-experience is made [20]:

“In comparison to Java implementations, the overall security of Javascript
voting clients is similar, whereas the user experience and interoperability is
largely better since these clients are much lighter and multi-platform than the
Java ones. A browser with Javascript support is the only usage requirement.
The fact that there is no dependency with the Java Runtime Environment
(JRE) has extensively reduced the usability and interoperability problems, as
well as the exposure to critical security bugs, associated to the former Java im-
plementations. Regarding the security, the only disadvantage is the Javascript
implementation lacks the support for signing the code. However, additional
security measures mitigate this issue, e.g. remote code integrity validation
services and use of verifiable voting protocols allowing the voter to verify the
vote cast with independence of the voting client logics.”

3.1.3 Malicious Network Participants

In any service offering public interfaces, it is key that their consumers follow the protocol
rules for interaction. As interacting clients are often not controlled by the entity providing
these interfaces, enforcing valid requests is hard. However, requiring only integer clients is
considered too restrictive. Instead, public interfaces must be able to handle inappropriate
or even invalid requests.

Transaction Censorship

When submitting transactions to a single network node only, the node itself could pretend
to not have received the vote at all, eventually filtering unwanted decisions from being
considered in the final tally. Therefore, the voting system would not consider the new
vote. However, the incentive for such a behaviour is low: If the vote is encrypted and
the voter’s identity is not disclosed to the node receiving the vote (e.g. by using masked
identifications), it’s strategy would result in arbitrarily dropping requests and therefore
not being able to affect the final tally in any particular outcome.
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Identity Spoofing

A more significant issue is encountered when adversarial nodes attempt to announce ar-
bitrary votes to the voting system. As clients submit information about their identity
which allows for verifying their eligibility, nodes could also use the set of eligible voter
identities to announce transactions on behalf of them. By following the standard proce-
dure to announce transactions to voting system, they may not distinguish where the vote
initially originates from.

3.1.4 Tallying in Switzerland’s Federal System

Although an established democracy guarantees honesty of its executive bodies to some
extent, considering a malicious player is still important. To counteract attacks on elections
performed electronically, the Swiss law requires to consider many properties used in the
research literature. Among others, [25] states that a risk assessment must be performed for
ballot secrecy, coercion-resistance, and receipt-freeness. If further defines that for targeting
up to 50% of the cantonal electorate, cast-as-intended, and cast-as-recorded verifiability
must be guaranteed. Any electronic voting system involving more than half of the cantonal
electorate must further ensure counted-as-recorded verifiability [25].

In Switzerland, the tallying process is within the responsibility of the cantons for national
elections [27]. Often, voting registers are maintained on a cantonal basis. As this caused
major issues in trial elections [9], such a federalistic topology should be considered during
a requirements elicitation phase.

3.2 Requirements

As discussed in the literature for electronic voting and further also defined as a basic
requirement for electronic voting in Switzerland, it is essential that the voting system
ensures verifiability of a vote.

Cast-as-intended, recorded-as-cast, and counted-as-recorded verifiability
must be guaranteed by the voting system.

(R1)

Submitting a vote privately is essential to account for Article 21 in the Universal Decla-
ration of Human Rights.

Ballot secrecy should be guaranteed. (R2)
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The voting protocol must allow voters to participate in an election without having to
perform a complex registration and setup phase prior to submitting their votes.

The steps of the voting protocol should therefore be comparable to the ones
a voter has to accomplish for paper-based voting.

(R3)

In addition, the voting protocol must ensure that voting is free of charge to allow voting
without financial preliminaries. As pre-funding any kind of account is an additional
administrative burden, it should be avoided.

Approaches requiring pre-funding of a voter account should be avoided. (R4)

3.3 System Topology

Voting is an act of trust in the electoral processes. Client-server architectures often imply
that a single authority operates and maintains a particular system. In addition, access
to storage layers is rarely allowed to an external party. Observing elections within such a
setup relies on having transparent system providers in place which grant access to crucial
system components. In contrast, open peer-to-peer networks require any participating
party to behave according to a common protocol and therefore need a certain amount
of coordination. However, in such a network each partaker is generally allowed to have
the same view on the network’s information. Changing the system’s topology from a
client-server to a peer-to-peer network may be a critical source of transparency for the
electronic projection of the electoral processes: Not only the single authority providing
the infrastructure of the system would be required to be malicious but an orchestrated
set of participants.

As political interests often span many distinct affairs and are scattered among multiple
parties representing one view or another, they would form an appropriate distributed
system provider with a common interest: Performing secure and valid electronic elections.
Coordination between them, however, could be a tedious task: As there are various topics,
it might be hard to determine which interest groups should be involved in providing
the entire system’s infrastructure. Thus, one could approach this issue by involving all
individuals of an electorate in providing the infrastructure together. Although more people
are experienced in using software today than ever, not all might be willing or able to setup
a part of the voting system by themselves just for submitting a single choice.

By using already established but decentralised structures for providing the required in-
frastructure, the workload of setting up the electronic voting system can be taken away
from the individual voter or party. Having such structures represented by the federalistic
members of the democratic system in Switzerland (i.e. municipalities within cantons,
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cantons within the confederation), these would form an ideal network of providers of
the voting system. And yet they would still be able to perform independent votes on
a cantonal or nationwide level. Therefore, a peer-to-peer network in which each canton
or municipality would run a single peer, represents an appropriate fit for providing the
voting infrastructure.

Maintaining durable connections between nodes in a distributed system is not a straight-
forward task: Nodes can disconnect from the peer-to-peer network at any time due to
many reasons. Therefore, using a protocol for cast-as-intended verifiability, which re-
quires only a few interactions, is preferable. Indeed, the protocol outlined in [31] allows to
submit a vote in a single step and is thus considered a good fit for this problem statement.

3.4 Assumptions

Prior assumptions can impact any systems architecture as they affect which design deci-
sions are derived [14]. Documenting them prior to specify a particular system and thus
making them explicit is key. In the following, central premises are outlined, taking into
account some of the legal requirements of Switzerland.

In any election performed in Switzerland, every eligible participant is restricted to cast
only a single vote [28]. This contrasts from approaches to coercion-resistant systems which
only count the last submitted decision [8].

Every single voter is allowed to cast a single vote only. (A1)

To ensure A1, every voter needs to be uniquely identified. This does, however, not neces-
sarily imply public verifiable links between voters and their votes.

Every person of the electorate is uniquely identified. (A2)

As the number of Swiss cantons and municipalities change rarely, the authorities of an
election are assumed to be known and fixed in their representation. Therefore, a peer-to-
peer network operating the system’s infrastructure does not need to take into account a
procedure in which participants can be added or removed.

The nodes in the peer-to-peer network providing the election system’s
infrastructure are fixed and known prior to performing the vote.

(A3)
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When votes are submitted from an end-user device, such as a browser or native application,
connections to the voting system must be confidential.

The connection between an end-user’s voting device and the voting network
is secured against wiretapping.

(A4)

Although multi-way elections and limited votes are preferable over simple binary votes
in the long-term, the architecture of the designed system will focus on binary votes only.
Although providing a cast-as-intended verifiability proof for a binary vote may not change
heavily from one allowing multi-way elections, such a requirement may pose challenging
requirements on the tallying process.

The submitted votes are of binary nature. (A5)

These five assumptions compose the cornerstones for the envisioned design of electronic
voting on a blockchain. By making them explicit, reasoning on technical approaches
becomes more concrete.

3.5 Public Bulletin Board

In electronic voting systems, a variety of data is usually made available on a public
accessible storage: Not only public-private key-pairs used for encrypting votes but also
information required for providing verifiability or proofs for the validity of the final tally.
According to [43, 44], such a public bulletin board (PBB) provides the following properties:

1. It is an append-only data structure, i.e. information cannot be modified or altered.

2. It is public in the sense of being searchable by anyone.

3. It is consistent in its view for anyone accessing its information.

As a decentralised voting system is preferable in Switzerland as it is projecting its feder-
alistic structure (cf. Section 3.3), a public distributed ledger providing a consistent view
without having a single leader can act as a PBB. By using an appropriate implementation
it is not only an append-only datastructure, searchable by anyone but also eventually
consistent.

Considering Assumption A3, a permissioned setting can be used for achieving consensus,
whereas each canton or municipality is running a single blockchain node. Implementations
exist which provide private group-based (consortium) consensus, such as Ethereum with
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its Turing-complete smart contract platform [11]. However, this smart contract platform
poses a pair of limitation to perform cryptographic operations: (1) The available data
types are only capable of storing a limited number of bytes and (2) are not yet supporting
an implementation for big integers. This makes electronic voting using the ElGamal
cryptosystem with finite cyclic groups infeasible as it relies on a large enough prime
number as its modulus. In addition, computations on this platform can use at most a
callstack depth of 10244. For verifying proofs defined in cyclic fields, this might be too few.
However, a custom blockchain can take into account these limitations and work around
them from the very beginning.

3.6 Consensus

Finding an appropriate algorithm for reaching consensus in a permissioned blockchain
setup is not straightforward. In PBFT, PoA and Tendermint, duplicated votes (cf. A1 )
must be detected on application level, allowing even invalid votes to be incorporated
into the global state of the voting system. In contrast, Avalanche provides the notion of
conflicting transactions and thus transitive conflict sets, which can be defined application-
specific but operate directly on the protocol level. With respect to electronic voting with
a single submission, transactions could contain the vote of a particular user Tn,i and a
conflict set PT could be defined as containing all k transactions from the same user Tn
which were submitted before or after the i-th one:

PT =
{
Tn,0, . . . , Tn,j, . . . Tn,k

}
\
{
Tn,i
}
, for i = 0, 1, 2, . . . , k and

j = 0, 1, 2, . . . , k and ∀i 6= j
(3.1)

The peer-to-peer network can then be utilised to build up confidence values for each
transaction. The transaction with the highest confidence value of the conflict set would
then be considered as the counting vote. Despite this preferable mechanism, considering
Avalanche as consensus algorithm for a voting system comes with certain drawbacks:
Avalanche itself does not directly impose the typical tree-like data structure for its data
store, and thus, only a partial order is guaranteed between transactions [53].

As the Practical Byzantine Failure Tolerance algorithm replicates state machines, the
electronic voting system should be built on top of such. However, state machines may
not necessarily be required to implement electronic voting systems. Tendermint with its
voting procedure for finding consensus on the next block is also quite complex. On the
other hand, Ethereum’s proof-of-authority algorithm Clique5 provides a straight-forward
way to implement consensus for blockchains due to its simplistic protocol and is thus a
good starting point to reach consensus in a PoA setting. Although it originally comes with
mechanisms to vote on the set of authority nodes allowed to sign blocks of transactions,
this ability is not required in the electronic voting system as by Assumption A3 and can
therefore be discarded.

4https://solidity.readthedocs.io/en/v0.4.21/security-considerations.html
5https://github.com/ethereum/EIPs/issues/225

https://solidity.readthedocs.io/en/v0.4.21/security-considerations.html
https://github.com/ethereum/EIPs/issues/225


3.6. CONSENSUS 27

a1

a2 a3

a4

a5a6

(a) Epoch 1: a1 is leader, a2, a3 are co-leaders
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(b) Epoch 2: a2 is leader, a3, a4 are co-leaders

Figure 3.1: Clique’s leader election with signer limit set to two

3.6.1 Leader and Co-Leader

In Clique, time is split up in periods of fixed length, defined as a system parameter. In
each period, a well-defined set of nodes is authorised to sign blocks: A leader and a number
of co-leaders. Each one is allowed to sign and broadcast blocks. Algorithm 1 specifies
how a node recognises its leader role: By using the current block number and the total
number of nodes, it calculates whether its index is currently seen as a leader. Algorithm
2 defines whether a node is allowed to be a co-leader of the current leader. Its index must
be in the range of the leader index plus one and the maximum number of blocks any node
can sign consecutively. In Figure 3.1, the block period is set to two, so that always two
co-leaders exist in each epoch.

Algorithm 1: isLeader : Returns true, if the node is a leader for the current epoch.
False otherwise.

Data: SIGNER IDX, the index of of the node in the list of authorised nodes;
SIGNER COUNT , the total number of authorised nodes;
BLOCK NUMBER, the number of the current block.

begin
return SIGNER IDX = BLOCK NUMBER mod SIGNER COUNT

Algorithm 2: isCoAuthority : Returns true, if the node is a co-authority for the
current epoch. False otherwise.

Data: SIGNER IDX, the index of of the node in the list of authorised nodes;
SIGNER COUNT , the total number of authorised nodes;
SIGNER LIMIT , the number of consecutive blocks out of which a signer
may only sign one; BLOCK NUMBER, the number of the current block.

begin
lowerBound ←

(
BLOCK NUMBER mod SIGNER COUNT

)
+ 1

upperBound ← lowerBound + SIGNER LIMIT
return SIGNER IDX ∈

[
lowerBound, ..., upperBound

]
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3.6.2 Transactions and Blocks

Whenever a node receives a new transaction, the node validates the transaction for cor-
rectness of its parameters. In addition, the node verifies that the transaction does not
exist yet and avoids processing the transaction if it is already known in its local data store.
Eventually, if the node is a leader or co-leader, it appends the transaction to the local
store T containing all transactions which should be appended to a block once a period
has ended. Then, the received transaction is broadcast to all other networks participants
to ensure that (1) the leader or other co-leaders learn about the transaction, and (2) to
avoid race conditions between blocks of a leader not containing the transaction and a
block from the co-leader containing the transaction.

Algorithm 3: onTransactionReceive: Invoked whenever a transaction is received
from another signer

Data: ti: The transaction sent to the node, T the set of transactions to form a
block of

begin
if !isValid(ti) then

return
if isKnown(ti) then

return
if isLeader() ‖ isCoAuthority() then
T ← T ∪ ti

broadcast(ti)
return

A similar mechanism is applied when a block is received, broadcast from any of the
authorised signers. This procedure is outlined in Algorithm 4: Each block is verified
for its validity, i.e. whether it is signed appropriately and whether the references of the
transactions as well as the block are correct. Eventually, the new block is appended to
the canonical chain.

Algorithm 4: onBlockReceive: Invoked whenever a block is received by a node.

Data: BSi , the block B signed by signer Si.
begin

if !isValid(BSi) then
return

append(BS)
return

3.6.3 Block Signing

Signing a block is only attempted if an authorised node is currently either a leader or
a co-leader. Then, the node waits until the period of the current epoch has ended and
immediately builds the block with all known transactions. To reduce the number of forks
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occurring when both the leader and its co-authorities announce a block at the same time,
co-authorities are urged to delay their broadcast by a small amount of time, allowing the
other nodes to receive the block from the leader first.

Algorithm 5: sign: The signing loop of any node

Data: ti: The transaction sent to the node, T the set of transactions to append to
a block

begin
while true do

isLeader ← isLeader()
isCoAuthority ← isCoAuthority()
if ! isLeader ‖ ! isCoAuthority then

continue
nextRun ← parentBlock.timestamp + block.period
if now < nextRun then

continue
if ! isLeader then

sleep()

B ← createBlock(T )
BS ← signBlock(B)
append(BS)
broadcast(BS)

3.6.4 Missing Transactions

Eventually, as a node can be out-of-sync with parts of the network, it may receive blocks
referencing a parent which the node has not yet learned about. In such a case, it can
query the node from which it has received the block, as the sender is guaranteed to know
the parent as it has referenced it. This procedure can be repeated until the querying node
finds a parent block referenced which it stores locally.

3.6.5 Forks and Fork Resolution

As multiple authorities can propose their blocks in a particular epoch, forks in the
blockchain can occur [22]. In Ethereum, the Greedy Heaviest-Observed Sub-Tree (GHOST)
protocol [56] is used to resolve such conflicts. In short, it chooses the heaviest subtree
of each block for building the main chain, for a specific notion of weight. By assigning
weights to each block such that the block of the leader weighs more than the ones of its
co-authorities, the main chain can be constructed. By further taking into account the
number of so-called uncle blocks, i.e. all other children of the grandparent of the block
considered, blocks which have been referenced multiple times as a parent are preferred
during traversal. Consider the chain shown in Figure 3.2 and suppose the GHOST proto-
col takes into account the number of direct uncles and children as its weight parameter.
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Figure 3.2: A chain of blocks with its heaviest chain marked in red

Starting from the blocks with the lowest height, node c4 has a weight of 2 as it has one
child and one uncle (a3). Node c3 has a weight of 3, as it has three children but no uncle.
The weight for node a3 is the number of its children, i.e. 1. Hence, the decision on the
branch at a2 is made in favour for c3 as its weight (3) is heavier than the one from a3 (1).

To further make preference for blocks which have been signed by a leader, Clique specifies
a doubled weight for blocks being signed by a leader. In particular, Ethereum’s Clique
implementation is calculating up to seven levels6 ahead for computing the number of
uncles of a block.

3.7 Data Model

Although the broader concept of blocks and transactions are common in blockchains,
their meaning differs highly depending on the use cases they support in their specific
fields. Thus, a brief overview of the created data model is given in the following.

3.7.1 Transactions

A transaction is the actual payload of the blockchain. Besides a hash of the content
identifying the transaction, it stores information of what kind of payload is embodied
and the payload itself. Thus, the set (TV o, TV , TV c) of transaction types defines what is
intended by the payload it contains. The transaction specifying TV o indicates that all
further received transactions should be considered as votes submitted after the election
period has started. TV c defines a transaction which indicates that the voting period has
ended and the election has been closed from accepting any further transactions. TV is the
actual voting transaction containing an actual vote from an end-user.

3.7.2 Blocks

A block is the body in which a set of transactions is contained. A block contains a
timestamp at which it was created, the transactions as payload, and a hash referring

6https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization

https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization
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Figure 3.3: The parties involved in the election’s different phases

to the identifier of its parent. Therefore, the chain of blocks can be built. The genesis
block is a special block instantiation and specifies all system-relevant parameters for the
blockchain. As such, it is used as root of the blockchain and the hash of its contents
forms the first reference to which all direct child-blocks refer to. Any change applied to
the configuration of the genesis block or to the content of all other blocks will lead to a
different hash and therefore a different chain of blocks.

3.8 Voting Protocol

This thesis is, to our best knowledge, the first public implementation of a voting system
supporting universal cast-as-intended verifiability on a blockchain. However, the core
voting protocol is mostly adopted from [31] which defines the main protocol steps as
outlined in this section. Figure 3.3 shows the five main parties involved in the voting
protocol: (1) The election authorities, such as the participating municipalities or cantons,
(2) the registrar, maintaining the voter registry and deciding about a voter’s eligibility
to take part in the election, (3) the voter who desires to submit his or her vote, (4) the
voting device which is operated by the voter in order to cast a ballot, and (5) the bulletin
board which is used as public accessible storage.

3.8.1 Setup of the Election

Protocol 1 - Setup:
{}
→
{
SV I, S̃V I, PV I, σ,

(
ske, pke

)}
.

The Setup protocol generates a public-private key-pair for the additive variant of the
ElGamal cryptosystem. It consists of its private key ske and the corresponding public



32 CHAPTER 3. ARCHITECTURE

key pke. In addition, it defines the space of secret universal cast-as-intended verification
(UCIV) information (SV I), the corresponding space of voting-option dependent secret

UCIV information S̃V I, and the space of of public UCIV information PV I. In addition,

the functions σv : SV I → S̃V I mapping the secret UCIV information to a voting-option
dependent secret UCIV information are specified [31].

3.8.2 Registration of Voters

Protocol 2 - Register:
{
vid, V, pke

}
→
{

(ucivs, ucivp)
vid
}
.

The Register protocol generates the private and public UCIV information for a particular
voter, based on its voter id vid, the set of voting options V , and the public election
key pke. This protocol is invoked by a registrar who is acting independently from the
voting authorities assigning the voter id vid to the voters. Consider a scenario in which
the election authorities know which identity is identified by vid. In such a case, the
authorities would be able to link the encrypted vote with the vid as the vid is submitted
in the ballot. Since the authorities are also in possession of the election private key ske,
the plaintext vote could be revealed and assigned to the identity masked by vid.

3.8.3 Casting a Vote

Protocol 3 - Cast:
{
vid, v,

(
σv(ucivs), ucivp

)vid
, pke

}
→
{
Cvid,M vid, V vid

}
.

As shown in Figure 3.3, an indicator is published on the bulletin board specifying that
the voting application is accepting ballots prior to allow voters casting a vote. Then,
for creating a ballot, the voting application requires the voter id vid, the selected voting
option v, and the election public key pke. In addition, it receives as protocol input the
output of the evaluation of the voting-option dependent function on the secret UCIV in-
formation σv(ucivs) as well as the corresponding public UCIV information ucivp. With
these arguments it generates the homomorphic additive ElGamal ciphertext Cvid. Corre-
spondingly, it generates a universal cast-as-intended verification proof V vid as described
in more detail in [31]. A membership proof is guaranteeing that the encrypted vote either
represents a zero or one, ensuring that only valid binary votes are submitted to the bul-
letin board. This property can be alternatively formulated as having a vote which is in
the range

[
0, 1
]
. The proof itself is constructed as a Σ-protocol as shown in Figure 3.4.

By using the technique outlined in Section 2.3.3, the interactive three-move proof is made
non-interactive and added as M vid along the cast-as-intended proof and the encrypted
vote to the ballot. Then, the ballot is sent to the PBB.
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Figure 3.4: The Σ-protocol of the [0, 1] range membership proof for an additive homo-
morphic ElGamal ciphertext (G,H) = (gr, hr · gm) with r chosen randomly [45]

3.8.4 Calculating the Final Tally

Protocol 4 - Count:
{(
Cvid,M vid, V vid

)∗
, ske

}
→
(
Ts, To, Ti

)
.

Before the voting authorities are calculating the final tally, the voting application must
stop any further votes from being counted. Therefore, the indicator of having the vote
opened must be terminated with a corresponding one specifying the election has been
closed. Then, to calculate the final tally, the set of all triples

(
Cvid,M vid, V vid

)∗
received

on the PBB and the election private key ske are required as input arguments. Then,
by homomorphically summing up all valid ciphertexts, the total number of voters having
supported the voting question is obtained as Ts. By subtracting the total supporting
votes from the total number of votes received, the opposing vote count is calculated To.
As there might be ballots which should not be counted since the proofs contained in
them are invalid, a total of invalid ballots is counted in Ti. Then, the triple

(
Ts, To, Ti) is

considered the final tally T .
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Chapter 4

Implementation

Figure 4.1: Diagram of all packages building up the electronic voting system

The instantiation of the previously described architecture is structured into four main
packages as shown in Figure 4.1. The package crypto_rs provides the arithmetic founda-
tion on which the additive homomorphic ElGamal cryptosystem is built. In addition, the
implementations of non-interactive zero-knowledge proofs are contained. generator_rs

creates all necessary cryptographic parameters, such as the private and public UCIV infor-
mation and the election public-private key-pair. node_rs provides the PBB implemented
as a blockchain whereas client_rs provides all functionality to administrate and partic-
ipate in the election. All packages are implemented in Rust1, “a systems programming
language that . . . prevents segfaults, and guarantees thread safety” [61].

1https://www.rust-lang.org/en-US/
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4.1 crypto-rs

The crypto_rs package provides an implementation of modular arithmetic in cyclic
groups, an ElGamal ciphertext and a corresponding key-pair, and the NIZKPK to verify
the ciphertexts.

4.1.1 Modular Arithmetic

pub struct ModInt {

/// The value.

pub value: BigInt ,

/// The modulus.

pub modulus: BigInt

}

Listing 4.1: Modular arithmetic data struture ModInt

In order to operate on a finite cyclic group, modular arithmetic is required. Since Rust

does not come with a well supported library providing such functionality, an adoption of
AdderInteger2 is used. It is named ModInteger to represent its mathematical properties.
Based on the BigInt implementation from https://github.com/rust-num/num, all basic
arithmetic operations are redefined for modular arithmetic based on the data structure
defined in Listing 4.1.

Inverse (a−1): The inverse of a−1 mod c is only defined for values of a which are co-
prime to c, i.e. have no common divisor. Then, the modular inverse can be found
using the Extended Euclidean Algorithm for finding the greatest common divisor of
a and c.

Negation (−a): −a mod c = (c− a) mod c.

Addition (+): (a+ b) mod c = [(a mod c) + (b mod c)] mod c.

Subtraction (−): (a− b) mod c = [(a mod c)− (b mod c)] mod c.

Multiplication (·): (a · b) mod c = [(a mod c) · (b mod c)] mod c.

Division (/) There is no division operation in modular arithmetic. However, there are
modular inverses which can be used instead by exploiting the fact that a · 1

a
= 1.

Therefore, the division in modular arithmetic can be defined as a mod c
b mod c

= [(a
mod c) · (b−1 mod c)] mod c.

Exponentiation (ˆ): (ab) mod c = [(a mod c)b] mod c.

2https://github.com/FreeAndFair/evoting-systems/tree/master/EVTs/adder

https://github.com/rust-num/num
https://github.com/FreeAndFair/evoting-systems/tree/master/EVTs/adder
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4.1.2 ElGamal Homomorphic Encryption

Based on ModInt, the additive variant of the homomorphic ElGamal ciphertext is specified
as a data structure containing onlyG,H and the random number r used during encryption.
Then, the encryption, decryption, and homomorphic addition are implemented as specified
in Definitions 3 and 4.

4.1.3 ElGamal Range Proof

In order to transform the ElGamal range proof (see Figure 3.4) to its non-interactive
form, the requests and responses between the verifier and the prover must be abstracted.
This abstraction is achieved by hashing the commitment and the corresponding value.
The triple consisting of the commitment, the value, and the obtained hash are then the
static proof for the value for which the proof was made. As there are numerous values that
could be considered valid in a range proof, multiple applications of this procedure must be
executed as shown in Algorithm 6. However, not only the generation of the proof requires
multiple iterations, but also the verification procedure, as depicted in Algorithm 7.

4.1.4 Cast-as-Intended Verification Proof

Similarly to the range proof, the cast-as-intended verification proof is made non-interactive
as well. Here as well, multiple iterations must be invoked, one for each available voting-
dependent secret UCIV information (ucivs). This is outlined in Algorithms 8 and 9.

4.2 generator-rs

The generator_rs binary is able to generate all required cryptographic material, such as
the private and public UCIV information and the election key-pair. However, creating a
new ElGamal key-pair is not yet cryptographically safe: As of today, there is no safe prime
generator available for the used BigInt abstraction. In other words, the prime modulus p,
its co-prime q as well as the private key x are currently hard-coded. Thus, generator_rs
is a best-effort solution for being able to process the entire voting procedure. However,
this must be replaced once an implementation is available.

In addition to generating an election key-pair, this package is further able to generate
a set of public and secret UCIV information (ucivs, ucivp)

∗. For ease of this proof-of-
concept implementation, the voting option dependent function σv is already applied to
the set of secret UCIV information ucivs. Since computing the logarithm of a particular
number is considered computationally expensive in the ElGamal cryptosystem, σv is the
exponentiation function F (x) = gx as proposed in [31].
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Algorithm 6: Creation of a non-interactive zero-knowledge proof of knowledge for
proving that an ElGamal ciphertext is within the domain D.

Data: ElGamal public key parameters p, g, h, Plaintext m, Ciphertext E = (G,H),
Domain D of valid messages

{
0, 1
}

.
begin

sb← g‖h‖G‖H
t ∈random Zq−1
for i ∈ |D| do

if Di = m then
si ← 0
ci ← 0
yi = gt

zi = ht

else
si ∈random Zq−1
ci ∈random Zq−1
yi ← gsi ·G−ci
zi ← hsi ·

(
H
g

)−ci
c← Hash(sb, y1, z1, y2, z2)
c0 ← c− c1 − c2
sDm ← c0 · r + t
cDm ← c0

return s1, s2, c1, c2

Algorithm 7: Verification of a non-interactive zero-knowledge proof of knowledge
ensuring that the encrypted ciphertext value is within a given domain D.

Data: ElGamal public key parameters p, g, h, Ciphertext E = (G,H), Domain D
of valid messages

{
0, 1
}

, proof parameters s1, s2, c1, c2.
Result: True, on a valid proof for the specified ciphertext. False otherwise.
begin

sb← g‖h‖G‖H
for i ∈ |D| do

yi ← gsi ·G−ci
zi ← hsi ·

(
H
g

)−ci
c← Hash(sb, c1, c2, y1, z1, y2, z2)

return c1 + c2 ≡ c
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Algorithm 8: Creation of a non-interactive zero-knowledge proof of knowledge for
proving that an ElGamal ciphertext represents the intended vote.

Data: ElGamal public key parameters p, g, h, r, pre-image set ucivs, the
corresponding image set ucivp, Ciphertext E = (G,H), the index of the
chosen vote in the image set idx and the set of available voting options V .

begin
sb← G‖H
for i ∈ |ucivs| do

if Vi! = idx then
si1 ∈random Zq−1
hi1 ∈random Zq−1
ri ∈random Zq−1

ci1 ← gs
i
1 ·G−hi

1

ci2 ← hs
i
1 ·
(

H
gVi

)−hi
1

else
si2 ∈random Zq−1
hi2 ∈random Zq−1
bi ∈random Zq−1

ci1 ← gb
i

ci2 ← hb
i

ri ← gs
i
2 · ucivip

sb← sb‖ci1‖ci2‖ri

c← Hash(sb)
for i ∈ |ucivs| do

if Vi! = idx then
hi2 ← c− hi1
si2 ← ri + (ucivip)

−hi
2

else
hi1 ← hi2
si1 ← ri + (r · hi2)

return s1, s2, h1, h2, c

Algorithm 9: Verification of a non-interactive zero-knowledge proof of knowledge
ensuring that the encrypted ciphertext represents the intended vote.

Data: ElGamal public key parameters p, g, h, r, the image set ucivp, Ciphertext
E = (G,H), and the set of available voting options V .

Result: True, on a valid proof for the specified ciphertext. False otherwise.
begin

sb← G‖H
for i ∈ |ucivp| do

ci1 ← gs
i
1 ·G−hi

1

ci2 ← hs
i
1 · ( H

gVi
)−h

i
1

ri ← gs
i
2 · (ucivip)−h

i
2

sb← sb‖ci1‖ci2‖ri

c′ ← Hash(sb)

return c′ ≡ c
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4.3 node-rs

The implementation of the blockchain acting as PBB is provided in node_rs. Thus,
it requires crypto_rs as dependency, providing it with the data structures on which
transactions and blocks are built upon. Figure 4.2 shows its components: 1 Blockchain
nodes communicate using the Node RPC interface. 2 Votes are submitted to a dedi-
cated Client RPC interface. Besides two threads listening for incoming connections, a
thread pool 3 also runs another thread signing blocks if the node is a leader or co-leader.
4 The Clique Protocol Handler operates on the Proof-of-Authority level where it han-
dles incoming messages and corresponding responses, creates transactions and blocks, and
decides whether the node is a leader or co-leader for the current epoch. In addition, it
holds a transaction buffer 5 and its own instance of the actual blockchain 6 . It is worth
noting that all three threads share the same instance of the protocol handler using a mutex
in order to avoid race conditions amongst them. Therefore, all threads create decisions
based on the same chain instance. This is also illustrated by the single interface to the
Clique Protocol Handler in Figure 4.2.

4.3.1 Configuration

The configuration module contains utilities to read all required configuration into a
representation which can be used as genesis block for the blockchain. It contains the
following fields:

• Version: A version indicator following the constraints of semantic versioning.3

• CliqueConfig: The clique configuration contains system parameters which directly
affect how the Clique protocol is applied. These are blockPeriod which defines in
seconds how long an epoch lasts and signerLimit the number of blocks each node
in the network is allowed to sign consecutively.

• Sealer: This is the set of listening addresses of all nodes participating in the net-
work. Based on this information, each node will be able to determine his signer
index and thus, whether it is a leader or co-leader for the current epoch.

• PublicKey: This is the election ElGamal public key pke used to encrypt all votes
and verify the associated proofs.

• PublicUciv: This contains a vector of all public UCIV information ucivp which is
required to verify the cast-as-intended verification proof of transactions.

During instantiation of the Clique protocol, the genesis block is hashed and the resulting
value used to determine whether a node in the network is based on the same configuration.
If a configuration value is different, also the hash will become different and thus, the nodes
will never agree on the same canonical chain. Therefore, nodes with a different genesis
block hash are excluded from communication.

3http://semver.org

http://semver.org
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Figure 4.2: A blockchain node’s architecture. 1 2 are the external communication
interfaces. 3 is a thread signing blocks. 4 is the actual proof-of-authority protocol
handler with its transaction buffer 5 and the blockchain 6 .

4.3.2 Chain

The data of the blockchain itself is stored on the heap. Thus, cycling references easily
become a source of memory leaks4. Instead of using a tree-based data structure to build
up the chain, an adjacent matrix is created, containing on the y-axis all block identifiers
and on the x-axis the corresponding children identifiers of the block. In addition, its
underlying data structure of a HashMap ensures O(1)5 cost when reading for a particular
key. Therefore, traversing the chain is not a complex task: In order to find the last block
of the canonical chain, the HeaviestBlockWalker attempts to traverse the chain from
the genesis block onward to the block with the biggest height, i.e. the deepest level in
the chain. Only this block is then visited using the HeaviestBlockVisitor. To count
the votes stored on the chain, a LongestPathWalker is implemented as follows: First, it
finds the last block of the canonical chain, starting from the Genesis block. Once found, it
traverses each block bottom-up back to the Genesis block. Each block is then visited using

4https://doc.rust-lang.org/book/second-edition/ch15-06-reference-cycles.html
5https://doc.rust-lang.org/1.22.1/std/collections/index.html#maps

https://doc.rust-lang.org/book/second-edition/ch15-06-reference-cycles.html
https://doc.rust-lang.org/1.22.1/std/collections/index.html#maps
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the SumCipherTextVisitor which homomorphically sums up all votes on the canonical
chain. These walkers differentiate mainly in how their visitors are invoked: Whereas
the HeaviestBlockWalker only invokes the visitor with the heaviest block found, the
LongestPathWalker visits all blocks along the canonical chain.

4.3.3 Peer-to-Peer Networking

The p2p module includes the foundation of node_rs: It defines TCP streams as connection
channels between nodes, a thread pool in which multiple tasks can be handled concur-
rently, and a codec transforming incoming and outgoing messages into their appropriate
formats.

As shown in Figure 4.2, each node_rs instance owns three threads in which the main op-
erations are applied to a shared instance of the blockchain. In Rust, a TCP stream cannot
be split up into two distinct parts for reading and writing6. Thus, sending and receiving
data on the same stream is hardly achievable. To overcome this implementation-wise
drawback, outgoing traffic is sent through a dedicated TCP stream instance and therefore
has a different IP-address and port. However, as incoming connections are established
from other nodes, it is possible to send responses on the same stream by first closing the
reading half and then flush bytes to the writing half. Due to this inconsistent behaviour,
the Listener Thread would be able to only successfully authenticate connections on
streams it initially created, as it connects to the IP addresses defined in the Genesis con-
figuration. Thus, incoming connections not previously specified in the configuration will
be terminated. Based on this, the Listener Thread currently avoids authenticating and
authorising incoming connections from other signing nodes completely.

The format used to exchange information between nodes is JSON. Thus, all messages
are encoded to JSON by using an appropriate codec before they are serialised into a
byte sequence and sent over the underlying TCP streams. Decoding is applied vice versa,
where it is ensured that only valid messages are passed further to the protocol handler. As
this is defined in the networking package, the actual serialisation format can be adjusted
without affecting the other implementation of node_rs.

4.3.4 Protocol

Communication between nodes follows a strict protocol defined in the Clique Proto-

col Handler. As clients submitting votes expect different responses than nodes in the
blockchain network, they interact with their dedicated interfaces, handled by the Lis-

tener Thread and Rpc Listener Thread, respectively. Transactions received by a node
in the network are always broadcast to other nodes, regardless of their actual payload.
Therefore, not only epoch leaders but also their co-leaders will be notified about a new
transaction.

6https://github.com/rust-lang/rust/issues/11165

https://github.com/rust-lang/rust/issues/11165
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client1

client2

node1

node2
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B1

B1
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B1

Figure 4.3: Distribution of messages submitted by clients and handled by nodes according
to the Clique protocol. Nodes having lines depicted in red are epoch leaders, lines in blue
represent their co-leaders

As described in Section 3.8, an election must be opened before any voting transaction can
be accepted by the network. The corresponding communication sequence is illustrated in
Figure 4.3. Consider the client1 to be run by the election authorities. Client2, however, is
operated by an eligible voter. Further assume that the election setup procedure has been
completed. Then, the communication procedure is as follows: The election authorities
open the vote by sending an open vote transaction TV o. Subsequently, a voter submits his
decision by sending TV . Both transactions are immediately broadcast to all other nodes in
the network, i.e. node1 and node3, and node1 and node2, respectively. All nodes then add
the received transactions to their internal Transaction Buffer since they act as either
an epoch leader or co-leader. As soon as epoch 1 has arrived, node1 signs a block with all
transactions (i.e. TV o and TV ) and broadcasts them to its co-leaders. Node2 and node3,
however, wait a defined delay before also signing and broadcasting their blocks. Note,
that node2 has received the signed block from node1 before the delay is over. Therefore,
it will avoid broadcasting its own block. Node3, however, has not yet received any signed
block instance from the other nodes once the delay is over, and will therefore start to
broadcast his block. Since both, node1 and node2, have received the same block ahead of
receiving the copy from node3, they will not add the copy to their chain anymore.

Besides announcing blocks and transactions to nodes, the Clique Protocol Handler is
further able to send an entire copy of its own chain to other nodes. During start up, each
node will broadcast a ChainRequest to its other peers defined in the Genesis configuration.
On reception, a node will return an entire copy of its chain to the requester. Then, a node
will replace its own chain with the received one, iff its genesis hash equals to the own
one, and the depth of the canonical chain is longer than the own.
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4.4 client-rs

In the current prototype, all functionality for administrating elections, submitting votes,
and obtaining a final tally is combined into one client application.

4.4.1 Vote Administration

As outlined in Section 3.8, election authorities need to explicitly send an indicator to open
the ballot box represented by the PBB. By sending an OpenVote message to the bulletin
board, the election is officially opened and incoming vote transactions will be counted
towards the final tally. Transactions received beforehand will not be counted in the final
result. Once the election period is over, the authorities need to send a CloseVote trans-
action to the bulletin board. Similarly, vote transactions submitted after the CloseVote

transaction are not counted towards the final tally.

4.4.2 Vote Selection and Submission

Submitting a vote is not a complex task. Voters only need to be in possession of the
election public key pke and their associated private and public UCIV information pair
(ucivs, ucivp)

vid. Then, they can type in either yes or no as answer to the voting question.
This value is then transformed in its binary representation 1 or 0, respectively. This binary
vote is further encrypted on the voter’s client device, and the range proof (cf. Algorithm
6) as well as the cast-as-intended verification proof (cf. Algorithm 8) are created. Before
submitting the vote to the blockchain, both proofs are validated. Only if this validation
was successful, the vote will be submitted to a node of the voting network.

4.4.3 Obtaining a Final Tally

Once the election period is over and the authorities have submitted a CloseVote transac-
tion, the next step is to compute the final tally of the election. By sending a RequestTally

to a blockchain node, a traversal from the root to the end of its current canonical chain
is initiated. By using the SumCipherTextVisitor, each block’s vote transactions TV are
summed up using the operations outlined in Definition 4. Beforehand, each vote transac-
tion is validated by their associated proofs. In case a proof fails to evaluate successfully,
the transaction is counted towards invalid votes. Only transactions in between an Open-

Vote and CloseVote transaction are counted. Once the entire canonical chain has been
traversed, a response containing the amount of successful, invalid and total votes is re-
turned. If no CloseVote transaction is observed during the traversal of the canonical
chain, zero-values are returned for the above metrics.
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Evaluation

Switzerland specifies a substantial list of requirements which need to be fulfilled by any
voting system targeting nationwide elections [25].This chapter will evaluate whether the
stated subset of these requirements from Section 3.2 have been fulfilled and the assump-
tions from Section 3.4 still hold. Additionally, an outline of the runtime and storage
complexity is provided.

5.1 Requirements

Requirement R1 The main goal of this thesis was to achieve cast-as-intended verifia-
bility, allowing voters to verify that their encrypted votes contain the selection they
have made. By creating a non-interactive zero-knowledge proof of knowledge for
this property and verifying it before submitting the vote to the PBB, a voter can be
ensured that the vote is appropriately encrypted. Considering a scenario where an
adversary has access to the binary distributed to the voter and has adjusted it to
always show a successful cast-as-intended verification proof to the voter regardless
of his choice. An attentive voter would also be able to detect such a case: As of
today, it is usual that software vendors provide signed binaries and corresponding
checksums which can be used to verify the integrity of the executed binary.

Recorded-as-cast verifiability can be ensured as well: If a voter obtains the identifier
of the transaction submitted to the blockchain, it can be queried after submission.
As such, the voter can verify the associated proofs for correctness. However, as the
transactions are not signed with a voter-dependent value the integrity verification
of the vote on the blockchain becomes poor. However, the transaction’s integrity
can be verified by computing the hash of the transaction before submitting it to the
blockchain and then asserting for equality during verification.

Counted-as-recorded is not yet provided by the implementation proposed as this
thesis primarily focused on providing cast-as-intended verifiability. However, the
protocol outlined in Section 3.8 can be extended in the last step by computing a
non-interactive zero-knowledge proof of knowledge for the correct tabulation and
publishing it to the bulletin board as well.

45



46 CHAPTER 5. EVALUATION

Individual verifiability, can be provided if the voter has a means of retrieving his vote
from the blockchain and evaluating it for correctness using the associated proofs.
Universal verifiability may be provided if a tabulation proof of the final tally is
published to the PBB. Due to these limitations, the proposed implementation does
not yet fulfil end-to-end verifiability completely.

Requirement R2 Although votes are locally encrypted on the voters’ end-user devices,
election authorities are still able to decrypt individual votes if they have a means
of querying the blockchain for individual transactions. As this is suggested for pro-
viding recorded-as-cast verifiability, it will be hard to refuse this access to election
authorities, especially as they provide the infrastructure running the blockchain.
One can overcome this limitation by establishing multiparty computation as sug-
gested in the work of [31]. In addition, [31] states that the suggested voting protocol
on which this work is based, trusts the election authorities for privacy. Although
the election authorities may decrypt any vote without using multiparty computa-
tion, confidentiality of the vote is not broken as the voter id vid is only linked to an
identity by the registrar. As long as the registrar is independent from the election
authorities and avoids collaborating with a malicious authority, ballot secrecy is
ensured.

Requirement R3 In terms of the steps a voter has to perform to participate in the deci-
sion process of an election, the proposed system is similar to the current paper-based
postal voting. Once the set of public and private UCIV information (ucivs, ucivp)

vid

and the election public key pke is obtained, only a single, self-contained step needs to
be performed to submit a vote. With the introduction of e-identity solutions1 the ini-
tial complexity of the registration step for a voter can be reduced. It is possible that
the UCIV information (ucivs, ucivp)

vid is obtained over electronic channels from an
independent set of registrars, making a printer facility for paper-based voting cards
obsolete.

Requirement R4 As the blockchain is currently not implemented as an account-based
model, voters do not need to pre-fund an account in order to vote. Although this
fulfils R4, it also allows for submitting arbitrary transactions to the blockchain. This
drawback is further discussed in Section 5.4.

5.2 Assumptions

Most of the assumptions specified in Section 3.4 still hold with the current implementation.
However, not all of them are enforced: In practice, voters can submit arbitrary votes
with their voter identity vid to the blockchain, contrasting to Assumption A1. Both
Assumptions A2 and A3 are enforced: Whereas the first is fulfilled by assigning each voter
a voter identity vid, the latter is expressed in the configuration parameter Sealer required
in the Genesis configuration of each node instance. However, the current proof-of-concept
implementation does not provide encrypted communication between nodes as assumed in

1https://www.bj.admin.ch/bj/de/home/staat/gesetzgebung/e-id.html

https://www.bj.admin.ch/bj/de/home/staat/gesetzgebung/e-id.html
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Assumption A4 as this does not affect the procedure of the core voting protocol. However,
a non-secured channel would allow an adversary to link the encrypted vote with the IP
address of its origin, and thus, the voter. Considering further, that an adversary could
be in possession of the election private key, the plaintext vote could be restored. With
providing an end-user client application allowing to submit binary votes only, Assumption
A5 is fulfilled.

5.3 Runtime and Storage Complexity

When performing real-world elections, it is essential that generating the required cryp-
tographic material is performed within a reasonable time. Optimally, the runtime is at
worst linear in the number of voters, i.e. O(n) for n voters. Obtaining time metrics in
Rust is a built-in feature and provided by its benchmarking suite2.

5.3.1 UCIV Information Generation Complexity

Figure 5.1 shows the runtime for generating the set of private and public UCIV infor-
mation (ucivs, ucivp) for different amounts of voters and voting options. In particular,
four different amounts of voters have been evaluated: 10, 100, 1000, and 10000. First,
as depicted in all three Figures 5.1a, 5.1b, and 5.1c, the runtime complexity is linear to
the number of voters. Second, the time required to generate the UCIV information be-
haves linear in the number of voting options. Figure 5.1d shows the approximately linear
behaviour of the runtime when generating the UCIV information for multiple amounts
of voters. Based on these numbers, creating a linear approximation for generating UCIV
information for the average Swiss electorate of 5357836 people in 20173 yields an approx-
imate of 743 seconds (∼ 12 minutes) for two voting options, 1069 seconds (∼ 18 minutes)
for three voting options, and 1464 seconds (∼ 24 minutes) for four voting options.

5.3.2 Storage Complexity

In addition to the runtime required for generating the UCIV information, the storage
complexity of the blockchain with respect to the number of voters may yield specific
hardware requirements. Therefore, Figure 5.2a shows the number of KBytes required
to store 10, 100, 1000, and 10000 vote transactions TV with their corresponding proofs.
Unsurprisingly, the storage complexity is also linear to the number of transactions. Figure
5.2b shows the time in seconds required to handle these votes by the Clique protocol.
Instead of being O(1) as one might expect, it is also linear in the number of transactions
as the Clique Protocol Handler verifies whether a transaction is already known and
thus needs to query the set of known transactions.

2See Appendix C for more information on how the benchmark metrics were created.
3https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/

stimmbeteiligung.html

https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/stimmbeteiligung.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/politik/abstimmungen/stimmbeteiligung.html
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(a) two voting options (b) three voting options

(c) four voting options (d) 10, 100, 1000, and 10000 voters

Figure 5.1: Runtime for generating public and private UCIV information (ucivs, ucivp)
∗

for different numbers of voters and voting options

5.3.3 Runtime for Obtaining the Final Result

Further, it is crucial that obtaining the final tally is achievable in a timely manner. Con-
sidering a blockchain with 10, 90, 900, and 9000 transactions in consecutive blocks, the
result of an election was retrieved in less than one second.

5.4 Security Considerations

Section 3.1 of this work has elaborated on some central points which may affect the security
of the voting system’s implementation. Distributing the voting application in form of a
signed binary brings all the advantages of an established operating system’s integrity
protection: The binary’s signature can be verified prior to its execution without needing
the voter to perform a series of complex tasks. However, as opposed to a web-application,
developers may need to be registered to a vendor specific developer program before being
able to distribute the voting application through a company-controlled app store4. In
addition, binaries need to be compiled and designed for specific architectures and devices,
making it harder to maintain. In contrast, the browser’s runtime environment is hardly
to be trusted for privacy critical applications due to installed extensions which may alter

4Such as https://developer.apple.com/support/code-signing/

https://developer.apple.com/support/code-signing/
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(a) Memory Usage in KBytes (b) Runtime in seconds

Figure 5.2: Memory usage and corresponding runtime to add vote transactions

its behaviour. Thus, a risk analysis weighing one approach against the other may support
a final decision for the runtime platform of a production-ready implementation of the
presented voting protocol.

As a PoA algorithm, Clique can tolerate up to N
2
−1 malicious participants [22]. Thus, the

voting system can reach consensus even with dishonest election authorities. Since voters
can query the PBB for their submitted vote, a malicious authority, censoring arbitrary
transactions by abstaining from broadcasting them to other peers, can be identified. In
such a case, voters can resubmit their vote to another authority and query the PBB for
their vote, being assured that the vote was registered.

A non-negligible limitation in this work is currently caused due to the homomorphic
addition of the ciphertexts on the blockchain: As of Definition 4, the randomness used in
each ciphertext must be provided for correct homomorphic tabulation. As this calculation
is executed on a node running an instance of the PBB, the randomness is submitted along
the encrypted vote and the corresponding proofs to the blockchain. However, by making
this information public, an adversary obtains confidential information which can cause a
significant shrinkage of the solution space it has to search through to decrypt a ciphertext.

Sybil attacks aim at gaining an advantage over honest players by forging multiple identi-
ties [29]. As electronic voting systems tabulate supporting and opposing votes, it is crucial
that such attacks can be prevented or at least detected. In the proposed voting protocol,
mounting such an attack is difficult: If the registrar distributing the required UCIV infor-
mation (ucivs, ucivp)

vid is honest and able to detect forged identities, then an adversary
will need to generate this information pair by itself as the registrar will abstain from pro-
viding it. Although a valid set of proofs can be generated by the adversary, verifying will
still fail for the cast-as-intended verification proof: Assume the adversary obtains a voter
id vid known by the electronic voting system and submits a correctly encrypted vote as
well as the set of proofs to the blockchain. As the network nodes require the set of public
UCIV information for each voter prior to the election in order to validate incoming votes,
the generated proof of the adversary will not match the original parameters, making the
proof evaluate to false with a high probability.
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Replay Attacks [60] aim at reusing sent protocol messages to achieve a malicious system
behaviour without the adversary being able to produce or read them. The proposed voting
protocol is not affected by replay attacks as each voter is only allowed to vote once as
per Assumption A1: A replayed message is not accepted by the blockchain nodes as any
subsequent vote transactions TV from the same voter are discarded.



Chapter 6

Summary and Conclusion

This thesis focused on bringing cast-as-intended verifiability to blockchain-based electronic
voting. Prior work in this research area has shown that often more than one interaction
is required to verify that a particular encrypted ballot is representing the intended voting
decision. However, such solutions are hardly applicable to peer-to-peer networks, the un-
derlying network topology of distributed ledgers. Therefore, an non-interactive approach
is required. It was shown that by storing the non-interactive zero-knowledge proof of
knowledge proposed by [31] on the blockchain, cast-as-intended verifiability is guaranteed
while still maintaining a limited notion of privacy. In addition, tabulation of the final
tally is performed directly on the blockchain, distributing the trust for its integrity among
multiple authorities. However, the opposing properties of verifiability and privacy also re-
vealed challenges for providing recorded-as-cast and counted-as-recorded verifiability in a
distributed setup: Ballot privacy can be reduced by homomorphically tabulating directly
on the blockchain. With regards to Swiss National Votes, extensions to the current proof-
of-concept implementation must be provided in order to fulfil the fundamental property
of end-to-end verifiability.

6.1 Future Work

Although this work presents a working solution for an electronic voting system which pro-
vides cast-as-intended verifiability, some implementation-specific simplifications require
attention prior to performing a nationwide election.

6.1.1 Verifiability and Ballot Secrecy

As discussed in Section 5.1, counted-as-recorded verifiability would require a tabulation
proof for the final tally to ensure end-to-end verifiability. Similarly to the currently em-
ployed NIKZPKs, a commitment to the obtained plaintext sum with respect to its corre-
sponding ciphertext could be generated and published to the blockchain, being verifiable
for any auditing entity. Further, performing the homomorphic addition on the blockchain
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leaks information about the used randomness of the ciphertext in a public manner, re-
ducing the solution space an adversary needs to consider when trying to decrypt a vote.
Encrypting this information with an additional key only known to the election authorities
could solve this issue: As the randomness is not required to validate the proofs associated
to the encrypted vote, cast-as-intended verifiability is guaranteed without reducing the
privacy of any voter. However, in the current implementation, any voting authority is in
possession of the election private key ske. Thus, decrypting an arbitrary vote is possible.
By establishing multiparty computation, this capability is removed: The ElGamal cryp-
tosystem is adjustable to generate composite private keys requiring a threshold of k out
of n authorities in order to decrypt any given value.

6.1.2 Authentication and Authorisation

The current prototype lacks authentication of incoming connections due to the limitations
described in Section 4.3.3. Hence, authorisation is omitted as well. In a production
ready application, messages could be signed with an asymmetric key-pair by each election
authority. Thus, illegitimate requests attempted by non-authority entities could be filtered
out.

6.1.3 Authority Coordination

In the current architecture, it is sufficient that a single election authority is submitting a
open vote transaction TV o to the blockchain to start accepting subsequent votes. As the
federal system of Switzerland encourages a decentralised administration, different voting
periods are not prohibited for the same national election. An extension to the current
voting protocol would allow for such a differentiation by attaching a regional identifier to
open vote transactions TV oand voting transactions TV . It would further be necessary to
adjust the SumCipherText Visitor to account for these changes.

6.1.4 Voting Question

Although a secure electronic voting system is of absolute necessity, the integrity of the
voting question itself is crucial as well. Tampering with its linguistic structure, such as
negating or rephrasing it entirely, can affect the outcome of the election effectively. Thus,
storing it on a distributed ledger can reduce such a risk to a great amount.

6.1.5 GHOST protocol

As the testing setup was communicating in near real time on the same host, network
partitions did not occur. Thus, the GHOST protocol which resolves the canonical chain
in case of forks was not absolutely required in the proof-of-concept voting system provided
by this thesis’ work. However, it is crucial that an implementation is provided for a
distributed setup.
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6.1.6 Multi-Way Elections and Limited Votes

Assumption A5 restricted this work’s focus on binary votes only. Although empty votes
can occur by voters who register to vote but never submit a decision to the voting network,
voting for one or even multiple options is not yet implemented. However, an approach by
[7] encodes a vote into a numeric representation which uses as base a number greater or
equal to the size of the electorate. Then, each digit of such an encoded vote represents a
single candidate. To calculate the final tally, the addition operation would be performed
as usual. The digits of the resulting sum then represent the number of votes for each
candidate. Correspondingly, the proofs would be required to operate on single digits of
the encoded vote as well. To perform limited votes, [40] proposes to encode a vote as a
vector of size |c|, the number of voting candidates. Computing the final tally as well as
generating the proofs would then be done element-wise.

6.1.7 Human Perspicuity

Although a blockchain can distribute trust among different authorities, the cryptographic
procedures to ensure a secure and integer vote are highly complex. Critics of electronic
voting systems argue that a large part of the electorate will not be able to understand
the verifiability properties in much detail 1. Countermeasures, such as paper audit trails,
are often generated after an electronic voting system has processed a vote, and require a
certain degree of trust from the voter as well. Thus, future work needs to show whether
a more human readable kind of verifiability can be constructed.

1E.g. https://www.republik.ch/2018/03/08/e-voting-der-schweizer-sonderfall

https://www.republik.ch/2018/03/08/e-voting-der-schweizer-sonderfall
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[5] Avižienis, A., Laprie, J. C., Randell, B., and Landwehr, C. (2004). Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33.

[6] Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S., and
Danezis, G. (2017). Consensus in the Age of Blockchains.

[7] Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., and Poupard, G. (2001). Prac-
tical multi-candidate election system. Proceedings of the twentieth annual ACM sym-
posium on Principles of distributed computing - PODC ’01, (august):274–283.

[8] Benaloh, J., Bernhard, M., Halderman, J. A., Rivest, R. L., Ryan, P. Y. A., Stark,
P. B., Teague, V., Vora, P. L., and Wallach, D. S. (2017). Public Evidence from Secret
Ballots.

[9] Beroggi, G., Moser, P., and Bierer, D. (2011). Evaluation der E-Voting Testphase im
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Appendix A

Installation Guidelines

The presented electronic voting system needs the following pre-requisites to be installed:

• RustUp1 in order to install Rust and Cargo

• Rust in version 1.26.2 or above

• Cargo in version 1.26.0 or above

Then, follow the order below for initiating the blockchain network and vote using the
corresponding client.

• Generate the required cryptographic material by changing your working into gen-

erator_rs. Invoke cargo run -- keys to generate a private-public keypair. Then,
invoke cargo run -- uciv 10 2 to generate UCIV information for ten voters and
two voting options. Whereas the first command will generate a public_key.json

and private_key.json, the second will create public_uciv.json and public_uciv.json.

• Create a genesis configuration file as follows:

"version": "0.1.0",

"clique": {

"block_period": 15,

"signer_limit": 2

},

"sealer": [

"127.0.0.1:9000",

"127.0.0.1:9001",

"127.0.0.1:9002"

]

}

Listing A.1: genesis.json

1https://rustup.rs/
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• Locate the node rs directory and copy the created genesis.json, public_key.json,
and public_uciv.json into its root folder.

• Change your working directory to node rs.

• Start the first node by running cargo run -- -v start -s -p 127.0.0.1:9000

127.0.0.1:3000. This will compile the attached source code for your computer and
then execute the compiled binary.

• Wait until the first block is mined and broadcast. According to the genesis file in
Listing A.1, this will take 15 seconds.

• Then, open a new terminal window and start the second node by running cargo

run -- -v start -s -p 127.0.0.1:9001 127.0.0.1:3001. Wait again 15 sec-
onds until the second block is broadcast.

• In a new window, start the third node by running cargo run -- -v start -s -p

127.0.0.1:9002 127.0.0.1:3002.

• Now, locate the client rs directory in a different terminal window. Copy the files
public_key.json, private_key.json, public_uciv.json, and public_uciv.json

into it.

• Open the vote by running cargo run -- admin open 127.0.0.1:3000.

• Submit a yes vote for the first voter by running cargo run -- submit-vote yes

0 127.0.0.1:3001.

• Submit a second yes vote for the second voter by running cargo run -- submit-

vote yes 1 127.0.0.1:3001.

• Submit a no vote for the third voter by running cargo run -- submit-vote no 2

127.0.0.1:3001. Do the same for a fourth voter by running cargo run - submit-

vote no 3 127.0.0.1:3001.

• Wait until the block which contains the transactions has been mined and broadcast.

• Close the vote by running cargo run -- admin close 127.0.0.1:3000. Wait
until the block containing this transaction has been mined and broadcast.

• Fetch the final tally from any of the clients by running cargo run -- count-votes

127.0.0.1:3001. Make sure, the voting result is two supporting versus two oppos-
ing votes with a total of four votes.

• Eventually, stop all running nodes before creating a new election.



Appendix B

Contents of the CD

This work comes with an attached CD which contains the following items:

• A description of the CD’s contents.

• All developed program sources, in particular node_rs, client_rs, crypto_rs, gen-
erator_rs, and node_benchmark_rs.

• This thesis in source files, PDF, and PostScript. Additionally, all of its contained
figures in source format and PNG.

• The slide deck of the final presentation.
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Appendix C

Benchmark Setup

Rust comes with its own benchmarking suite1. However, it is not yet considered stable
and thus requires to have unstable features enabled. These are only available in nightly
builds of Rust. Install a nightly build by running rustup install nightly. Then,
benchmarks can be invoked by prefixing all cargo commands with rustup run nightly

and providing the --bench flag.

The node_benchmarking_rs package was used to create the metrics shown in Figure
5.2. The numbers for Figure 5.1 were obtained by the benchmarking suite contained in
generator_rs. Please refer to the packages’ README for detailed operations on how to
run the benchmarking suite.

All benchmarking metrics used in this work were obtained on an otherwise idle-running
MacBook Pro Late 2013 with a 2.3 GHz Intel Core i7, 16 GB 1600 MHz DDR3 Memory,
and a 500 GB Apple SSD for storage.

1https://doc.rust-lang.org/1.8.0/book/benchmark-tests.html
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