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Abstract

Continuous integration is an essential part of modern software engineering and helps program-
mers to automate their build process (e.g., compiling source code, packaging binary code, or run-
ning tests). While developers benefit from earlier caught bugs, more stable code bases, and shorter
software release cycles, they still face several problems when working with continuous integra-
tion. For example, if a software build fails, additional time is needed to resolve detected problems
by build servers (i.e., build failures). Developers first need to locate the root of failure and then
fix the error. For that purpose, they leave their Integrated Development Environment (IDE) and
scan through long log files on the build server.

To simplify and reduce the effort required for this process, the vision is to bridge the gap
between the build-related information available on the build server and the local development
environment where the source code needs to be fixed. Therefore, CAESAR (Ci Assistant for (Build
Failure) Resolution and Summarization) was developed, which is an IDE plugin that leverages
detailed build-related information to support developers in debugging build failures directly
within their IDE. The tool summarizes build logs, classifies errors, shows the files in which the
errors occurred, gives hints or error descriptions, and enables to directly debug the error. This is
all possible without leaving the IDE.

To evaluate the usefulness of CAESAR, a controlled experiment was conducted, showing that
on average, developers could resolve build failures 48.4% faster when working with CAESAR.
Especially, the evaluation of the experiment showed that developers working with CAESAR were
able to reduce the time needed to identify the error in the build log and locate it within the source
code. Lastly, participants stated that, thanks to CAESAR’s assistance, context switches between
their own IDE and the build server were no longer required.





Zusammenfassung

Continuous Integration bildet ein wesentlicher Bestandteil der modernen Softwareentwicklung.
Sie hilft Programmierern das Erstellen von Software zu automatisieren (z.B. Kompilierung von
Quellcode, Abpacken von Binärcode oder Durchführen von Tests). Während Entwickler von
früher identifizierten Fehlern, stabilerem Quellcode und kürzeren Softwarerelease-Zyklen prof-
itieren, werden sie bei der Anwendung von Continuous Integration Methoden immer noch mit
einigen Problemen konfrontiert. Wenn beispielsweise ein Software-Build fehlschlägt, wird zusät-
zliche Zeit benötigt, um die von Build-Servern identifizierten Probleme (Build-Fehler) zu lösen.
Entwickler müssen zuerst die Ursache des Build-Fehlers finden und anschliessend den Quell-
code verbessern. Dazu verlassen sie ihre Entwicklungsumgebung und durchsuchen Logdateien
auf dem Build-Server.

Um diesen Prozess für Entwickler zu vereinfachen und den dafür benötigten Zeitaufwand zu
reduzieren, ist es das Ziel, die Lücke zwischen den auf dem Build-Server verfügbaren Informatio-
nen und der lokalen Entwicklungsumgebung, in welcher der Quellcode repariert werden muss,
zu schliessen. Dazu wurde CAESAR (Ci Assistant for (Build Failure) Resolution and Summariza-
tion) entwickelt, eine Erweiterung für Entwicklungsumgebungen, welche zentrale Informationen
über den Software-Build nutzt um Entwickler lokal bei der Fehlerbereinigung zu unterstützen.
Das Programm fasst Build-Protokolle zusammen, klassifiziert Fehler, zeigt die Dateien an, in
welchen die Fehler aufgetreten sind, gibt Hinweise oder Fehlerbeschreibungen und ermöglicht
es, den Fehler direkt Schritt für Schritt zu reproduzieren. All dies ist möglich ohne die Entwick-
lungsumgebung zu verlassen.

Um den Nutzen von CAESAR zu evaluieren, wurde ein kontrolliertes Experiment durchge-
führt, welches zeigen konnte, dass Entwickler fehlgeschlagene Builds im Schnitt 48.4% schneller
reparieren konnten, wenn sie mit CAESAR arbeiteten. Die Auswertung zeigte ebenfalls, dass es
Entwicklern durch die Unterstützung von CAESAR gelungen war, die notwendige Zeit, um die
Fehler zuerst zu finden und zu verstehen und anschliessend im Quellcode wiederzufinden, zu
reduzieren. Zusätzlich gaben die Teilnehmer der Studie an, dass dank CAESAR kein Kontex-
twechsel zwischen der eigenen Entwicklungsumgebung und dem Build-Server mehr nötig war.
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Chapter 1

Introduction

In contemporary software engineering, agile software development1 is a widely known and applied
practice [10]. Its state of the art methods provide effective approaches for developing high-quality
software and enable fast adoption to evolving requirements and solutions during the software
development process [6]. As a central discipline of agile software development, Continuous Inte-
gration (CI) assists developers in merging their source code continuously (e.g., several times a day)
and ensures that changes integrate properly [10,17]. This results in (i) more stable code bases, (ii)
earlier caught bugs, and (iii) shorter software release cycles [8].

Despite these benefits, developers face several barriers when using CI [7]. In case of a failure
on the build server, developers need to investigate and analyze the provided build log on the
build server as well as the underlying source code. Often, finding and understanding the point
of failure is very complicated and time-consuming, as build logs can be very large (e.g., hundreds
of thousands of lines) [7]. In addition, the necessary information for locating and understanding
the error is often distributed over the whole log.

Recent research proposed tools to foster the resolution of build failures. BART [18], for ex-
ample, summarizes build logs of broken builds and suggests hints, based on information found
on the internet, to fix them. Another tool, BUILDMEDIC [11], automatically repairs failed builds
related to dependency issues. Both approaches aim to be either integrated into the build server
or used locally.

However, within the CI workflow, the local environment and the remote build server are two
separated entities. While the source code is written in an Integrated Development Environment (IDE)
on the developer’s local machine, the software is built on a build server that, for example, has
different software installed, runs on another operating system, or has restricted access to remote
networks and resources. As build failures arise on the build server but need to be fixed within
the local environment, developers need to switch context and try to reproduce the error locally.
Thus, it is difficult to locate, understand, and debug build failures. Moreover, developers often
do not have full control over the build server, which further complicates the retrieval of relevant
information for fixing build failures.

The vision of this thesis is to bridge the gap between those two isolated nodes in order to
support developers in locating and fixing build failures. Developers should be able to access all
build-related information right next to the source code and it should no longer be necessary to
leave the IDE to fix a build failure. This would reduce the complexity of detecting and under-
standing build failures and let developers focus on the actual problem: fixing the source code.
Moreover, the reduced time needed to fix the issues would increase developer productivity and
make software release cycles even faster.

1 Manifesto for Agile Software Development: http://agilemanifesto.org/

http://agilemanifesto.org/
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This thesis makes a first step towards this vision by proposing a novel approach to foster
build failure resolution; through CAESAR (Ci Assistant for (Build Failure) Resolution and Sum-
marization). The IDE plugin is based on a meta-model abstracting plain text build logs and allows
developers to directly resolve build failures on their local machines without accessing build logs
on the build server. CAESAR supports developers by (i) summarizing build logs, (ii) classifying
errors, (iii) showing the files where the errors occurred, (iv) giving fixing hints or error descrip-
tions, and (v) enabling to directly debug the error. Additionally, before starting to fix the detected
errors, CAESAR provides the possibility to immediately save the current changes to the source
code the developer is working on and instantly loads the broken code base into the IDE.

To analyze and evaluate the usefulness and benefit of CAESAR to developers, a controlled
experiment was conducted, where participants were asked to solve sets of build failures with and
without the assistance of CAESAR. The following research questions address the fields of interest:

RQ1: Can in-IDE assistance reduce the time required to fix a build failure?

RQ2: Why can broken builds be resolved faster with in-IDE assistance?

RQ3: Does instantly debugging a failed test help fixing a build failure?

By proposing a new approach to foster build failure resolution through assisting developers
during the fixing process within the IDE, this thesis makes the following contributions:

• Build abstraction, representation, and summarization by parsing build logs.

• Error detection and classification by analyzing build logs.

• Bridging the gap between the remote build server and local development environment
through in-IDE assistance and integration.

This thesis is structured as follows. In Chapter 2, previous study findings concerning build
failures and continuous integration are summarized and similar, existing tools are presented.
Chapter 3 first identifies barriers developers are faced with in the continuous integration work-
flow and introduces a meta-model abstracting all build-related information to make them easily
accessible. Then, the augmented workflow with CAESAR is illustrated. In Chapter 4, the set up of
the controlled experiment as well as the results and answers to the research questions are given.
The discussion of the findings of this work, implications for continuous integration and research,
thoughts about future work, and threats to the results validity are discussed in Chapter 5. Finally,
Chapter 6 concludes this thesis by summarizing the work and highlighting the key findings and
contributions.



Chapter 2

Related Work

This chapter first summarizes study findings related to build failures and continuous integration
(Section 2.1). For one thing, the presented findings deliver collected insights into failing builds
and the necessity to resolve them, and, for another, they provide essential knowledge used to
develop CAESAR. Then, existing tools from research and industry assisting in fixing build failures
are introduced and compared with CAESAR’s approach (Section 2.2).

2.1 Build Failures and Continuous Integration
Software Build Process Analysis. At Google, Seo et al. [16] conducted an empirical study to
learn more about compiler errors in software build processes (i.e., why and how frequent builds
fail and how much effort a fix demands). Therefore, 26.6 million builds, produced by thousands of
developers, were processed. The authors refer to the edit-compile-debug programming cycle, where
developers first edit the source code to apply the necessary changes, then compile it to verify that
the changes are integrated properly, and finally debug occurred errors to fix them by editing the
source code again. This process is repeated until the program acts as anticipated. Thus, the faster
one cycle is, the faster the whole development process will be. This illustrates the importance
of fast and successful compilations and hence, software builds. The study identified that around
10% of the error types caused 90% of the build failures and that dependency related errors were
the most common ones. Furthermore, the median percentage of build failures was 38.4% for C++
and 28.5% for Java, which means, that on average, every third build failed. To fix most of the
errors, two build iterations were needed (5 minutes for C++ and 12 minutes for Java).

Rabbani et al. [13] replicated this study in the Visual Studio context of the Mining Software
Repositories Challenge1. They analyzed 13,300 builds to examine how often builds fail and how
long it takes to fix them. This replication showed, that build failures occurred in 9.2% to 13.2% of
the builds (67%-76% less frequent) and that they were fixed in 2.7 minutes (46%-78% faster).

These experiments show that the build failure rate can be very high and thus, failing builds
are still a big issue. This motivates to foster their resolution and focus on how developers can be
supported.

Build Failures in Open-Source Software. Rausch et al. [14] analyzed 54,248 log files from 14
open-source Java projects by linking repository commits to data of the corresponding CI builds
to learn more about why builds fail. They identified 14 common error categories, whereby test
failures were by far the most common reason why a build failed (up to 80%). Furthermore, fre-

1 Mining Software Repositories Challenge: https://2018.msrconf.org/track/msr-2018-Mining-Challenge

https://2018.msrconf.org/track/msr-2018-Mining-Challenge
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quent errors were attributed to compilation or quality. The build failure ratio went from 14% to
69% with a mean of 38%, which is similar to the study results of Seo et al.

Beller et al. [1] studied 2,640,825 Java and Ruby builds of open-source software to gain insight
into testing practices with CI. They found that most build failures were caused by failing tests. In
addition, they identified that CI is not an adequate substitute for local testing and that it creates a
latency standing in contrast with local in-IDE testing.

Hilton [8] et al. studied the usage of CI in open-source projects. They surveyed 442 develop-
ers and analyzed 34,544 open-source projects with a total of 1,529,291 builds. Identified benefits
were, amongst other things, (i) earlier caught bugs, (ii) more stable code bases, (iii) easier integra-
tion, and (iv) faster releases (more than twice as often as when not using CI). In contrast to these
benefits Hilton et al. also identified several open issues of CI, for example, the lack of assistance
during the debugging process of build failures.

These three studies show that failing tests are a common reason why builds fail and that de-
velopers are still missing support when debugging broken builds in the context of CI. Based on
that, one of CAESAR’s main focus is to help developers in understanding and fixing test failures.
In addition to the previous studies, again, a quite high ration of build failures was identified.

Build Failure Categorization. Vassallo et al. [19] made a first attempt to compare CI processes
and build failure occurrences from 349 Java open-source software projects with 418 projects from
a financial organization (i.e., ING Nederland). As a result of analyzing 34,182 build failures, they
derived a taxonomy with 20 categories of build failures and their frequency of occurrence. On
average, 26% of the builds failed and most of the build failures were attributed to failing tests.
For open-source projects, they found that compilation errors and dependency issues were the
second most reason why builds failed.

The resulting taxonomy from this study is used by CAESAR to classify build failures. Based
on that and the previously presented study findings, CAESAR mainly focuses to support three of
the most common build failures; dependency issues, compilation errors, and test failures.

Build Failure Fixing Effort. Krezazi et al. [9] analyzed 3,214 builds of a large software company
in order to study the impact of build failures on the development process. They find that 17.9% of
the builds fail and require approximately 900 to 2000 man-hours to fix them. On average, it takes
3 hours to become aware of a failed build and 57 minutes to fix it.

These numbers, even more, motivate to provide fast and easy access to build results in order
to reduce the amount of time required to fix a build failure.

2.2 Existing Tools for Build Failure Resolution
Build Failure Summarization and Build Repair Hints. Vassallo et al. [18] propose BART (Build
Abstraction and Recovery Tool) to support developers in fixing broken builds. BART is a Jenkins1

plugin that summarizes build logs of failed builds and suggests possible solutions based on infor-
mation found on the internet2. In a case study with eight participants, they identified that using
BART helps to understand build failures. Additionally, the time needed to fix a broken build could
on average be decreased by 41%.

The work of this thesis is similar to the work done by Vassallo et al. but differs in the approach
of where in the CI workflow developers are assisted. Both CAESAR and BART aim to support
developers in locating and fixing broken builds faster by first summarizing the build log of a

1 Jenkins: https://jenkins.io
2 StackOverflow: https://stackoverflow.com

https://jenkins.io
https://stackoverflow.com
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failed build and then listing and describing possible causes and proposing solutions to fix them.
However, while BART is a plugin for the build server, CAESAR is a plugin for the IDE. With
CAESAR, all build-related information is directly available in the IDE and thus right next to the
code that needs to be fixed. Furthermore, BART uses internet-based information to generate hints,
whereas CAESAR only relies on log-based and locally available information (i.e., from the local
Maven repository). In addition to pointing out where the error happened (i.e., file name and line
of code), CAESAR enables to directly jump to this line of code and for some errors also provides
instant debugging with pausing just before the error happened.

Automatically Repairing Dependency-Related Build Failures. Macho et al. [11] propose BUILD
MEDIC to automatically repair failed Maven builds related to dependency issues. They investi-
gated how developers repair dependency-related build failures and to what extent those failures
can be repaired automatically. Based on 37 failed Maven builds, originating from 23 open-source
Java projects, BUILDMEDIC supports three repair strategies (i.e., version update, dependency
deletion, and repository addition). They found that developers fix 46% of the build failures re-
lated to dependency issues by just changing the version. Moreover, 81% of the fixes only contain
a single change. In the evaluation of the tool, BUILDMEDIC could automatically repair 45 out
of additional 84 failed builds from the 23 projects (54%). In 36% of these successfully repaired
Maven builds, BUILDMEDIC was able to propose at least one correct repair solution.

While, to a certain extent, BUILDMEDIC is able to repair dependency-related build failures au-
tomatically, CAESAR only locates the error and, if possible, proposes solutions to fix it or where
to look for further information. Moreover, CAESAR supports the detection and fixing of depen-
dency errors related to Maven group IDs, artifact IDs, and version numbers, while BUILDMEDIC
handles version- and repository-related errors.

TeamCity Integration for IntelliJ Plattform-Based IDEs. Amongst others, JetBrains1, a soft-
ware development company that creates tools for software developers, offers the popular IDE
IntelliJ IDEA2 (primarily used for Java development) and the build server TeamCity3. For all Intel-
liJ platform-based IDEs they also provide a TeamCity Integration4 to interact with TeamCity from
within the IDE. Developers may, for example, trigger new builds, debug code running on Team-
City, or view test results and build logs.

While the TeamCity integration provides access to information from the build server and fa-
cilitates in-IDE interaction with it, CAESAR specifically summarizes build logs of broken builds,
shows important information, and provides functionality to directly locate, fix, and debug de-
tected errors.

1 JetBrains: https://www.jetbrains.com
2 IntelliJ IDEA: https://www.jetbrains.com/idea
3 TeamCity: https://www.jetbrains.com/teamcity
4 TeamCity Integration Plugin: https://plugins.jetbrains.com/plugin/1820-teamcity-integration

https://www.jetbrains.com
https://www.jetbrains.com/idea
https://www.jetbrains.com/teamcity
https://plugins.jetbrains.com/plugin/1820-teamcity-integration




Chapter 3

CAESAR

This chapter first describes a typical interaction of a developer with continuous integration and
identifies points of improvements (Section 3.1). Then, it is shown how a meta-model abstracts
build logs to make build results easily accessible for both CAESAR and developers (Section 3.2).
The last section introduces the enhanced continuous integration workflow with CAESAR and
presents how developers can use the tool to fix build failures (Section 3.3).

3.1 Barriers in the Continuous Integration Workflow
The development process adhering to the conventional continuous integration workflow is de-
scribed in Figure 3.1. Typically, a developer makes changes to the source code, commits them to
the version control system, and pushes them to a shared remote repository (1) where other developers
push their changes to too. In order to verify that the introduced changes integrate properly, the
build server then automatically pulls the latest version of the source code (2) and initiates a new software
build (3). If the build is successful (4), the developer may continue working on the source code and
the just built software can be released. However, if the build fails (5) the developer will be notified
(6) and needs to suspend his work to investigate the root of the failure. This is normally achieved
by scanning through the provided build log (7). Detecting the point of failure within the build log
and locating the error within the source code often takes a lot of time. In addition, this poses a
challenging task, especially with long build logs and complex errors. Besides that, the developer
probably also needs to save the current work and roll back to the version of the source code that
failed on the build server. Depending on the type and complexity of the error, the developer is
forced to switch back and forth between his IDE and the build server.

Figure 3.1: Continuous Integration Workflow
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In an ideal, seamless workflow, the developer is notified immediately after a build fails on the
build server. A notification could be displayed directly within the IDE, where the developer is
working on the source code. Before starting to resolve the build failure, saving the ongoing work
and loading the broken code base into the IDE can be automated. Furthermore, by providing the
build results and build log within the IDE, no context switching between the build server and
the IDE is necessary. Hence, locating the error within the source code could be faster and easier.
Additionally, instead of manually searching through the build log to detect the cause of the build
failure, it could be helpful to automatically extract the relevant information, list error messages,
and show where the error occurred within the source code. Thus, the developer can focus on
fixing the build failure rather than spending time locating it. The following paragraphs describe
example use cases of solving common build failures and also indicate how the developer could
be assisted.

Dependency Issues. On the build server, a new build starts within a clean environment. There-
fore, all specified dependencies need to be fetched first. If a build fails due to a dependency issue,
the build server was not able to download a dependency when starting to build the source code.
This may have several different reasons. For example, the specified dependency is available on
the local machine of the developer but not to the build server. Thus, even though a local build
was successful, the build server is not able to access the dependency. Further, the specified depen-
dency might not even exist at all. This could be due to a spelling mistake or that the configuration
refers to the wrong version of the dependency. In either case, developers first need to know which
dependency caused the build failure and then figure out why. After detecting which dependency
caused the issue (by reading through the build log provided on the build server), developers most
likely check whether the dependency is available on their machines and if the source code can be
built there successfully.

Hence, besides showing developers which dependency caused the build break, they could
profit from knowing which dependencies are available locally. This would assist them to quickly
evaluate whether the issue is caused by a dependency that is not available on the build server or
does not exist at all and thus point them in the right direction to search for the cause. Moreover,
it could be helpful to provide links to the repository where the dependency is stored, so that
developers could directly check whether the specified dependency should be available to the
build server or not.

Compilation Errors. During the compilation of source code to binary code, the source code is
parsed and analyzed. Common failures are, for example, misspelled identifiers (e.g., variable,
method, or class names), type mismatches, or a wrong number of specified arguments in con-
structor calls [3, 16]. Even though such compilation errors can be detected during a local build
(i.e., before committing the changes to the remote repository), they still occur on build servers
(e.g., because no local builds are run). After a compilation error is identified and located in the
source code, it is often enough to have a short glance at the corresponding code section to figure
out what let the compilation process fail.

Thus, fixing them cannot really be supported without additional information from outside the
build log. Besides listing all compilation errors and showing where they happened, possible hints
could be given on the most well known issues with compilation errors.

Test Failures. Like compilation errors, a lot of test failures can be detected locally. However,
when changes from different developers are integrated remotely, the build only fails on the build
server. The necessary information from the build log most likely contains the name of the test that
failed and a stack trace of the called methods that led to the failure. Often the section with the
test results contains a lot of entries and may be unstructured or distributed over different parts of
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the build log. This makes it hard to locate the errors. To actually understand why the test failed,
developers lack sufficient context information, for example, the values of the variables at run time.
Most likely, the final step of fixing a broken test is to reproduce the error locally by debugging its
execution. Thus, developers can understand what happens before the test fails. Some test failures
are nevertheless hard to fix even if the test was run locally. This may be caused by differences
between the local and the remote environment, where, for example, different software is installed
or the access to remote networks and resources is limited.

Instead of searching through the build log to detect each test failure, switching to the IDE
to locate a failed test, looking for the line that failed to set an execution breakpoint, and then
start to debug the test, the whole process could be automated. The relevant information could
be extracted from the build log and presented to the developer, so that he could directly debug
each test failure with one click to reproduce the error locally. If however, the local and remote
environment differ and it is not possible to find the cause of the error with a local test execution,
the developer should be able to debug the test while running on the build server directly from
within the IDE. Thus, he could work in the exact same context where the test failed before.

3.2 Build Log Abstraction Through a Meta-Model
A crucial part to access the necessary information about a broken build within the IDE is parsing
the build log which is provided by the build server as plain text. Therefore a meta-model was
developed. It enables CAESAR to extract the information required to show why a build failed.
Additionally, developers may explore the original build log output in an abstracted form which
facilitates faster access to the relevant information. This section shows how a build log is struc-
tured and describes the meta-model.

When source code is built on the build server, every action is written to a log file (i.e., build log).
On one hand, it contains all information regarding the steps configured for a certain build, like,
for example, setting up the environment before the build starts or publishing artifacts after the
build has finished. On the other hand, it contains the log of the used build tool, where developers
search for the cause of a build failure.

A build tool is used to standardize the build process and helps developers to manage and
execute software builds. Maven1, for example, is a popular build tool for Java applications. Both
CAESAR and the meta-model are designed to support Maven builds but the underlying concept
can also be applied to other build tools. Maven builds software according to consecutively ex-
ecuted build phases and plugin goals. Build phases represent, for instance, the processes to (i)
validate (check if all necessary information is available), (ii) compile, (iii) test, and (iv) package
the source code. A single build phase consists of plugin goals that are responsible for executing
specific tasks (e.g., compiling). If a Maven build fails, it is because an error occurred during the
execution of a specific goal. As soon as this happens, Maven stops the execution of the build.
Hence, in case of a build failure, the log of the last executed Maven goal contains the relevant
information to why the whole build failed.

As most build logs are very large and thus finding all necessary information to understand
why the build failed can become a challenging task, there is a need for making this data better
accessible. To achieve this, the build log is parsed and mapped to a meta-model (Figure 3.2).
It follows the structure of the original build log and the execution of Maven. First, all the data
concerning the configuration of the build server is mapped to the model. The build server may
have multiple configured projects where each project may have multiple build configurations. These
build configurations are responsible for different kinds of builds. Some configurations might, for
example, just compile or test the source code and others might also package it. For each build

1 Maven: https://maven.apache.org

https://maven.apache.org
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Figure 3.2: Meta-Model

configuration there are multiple branches of the source code that may be built, since the source
code is managed with a version control system. Every branch may be built multiple times and
each build is executed as a Maven build. It consist of multiple Maven modules representing sub-
projects. Each of these modules executes Maven goals; depending on the build configuration.

3.3 Augmented Continuous Integration Workflow
with CAESAR

Based on the presented meta-model, CAESAR summarizes the broken build and assists the de-
veloper within the IDE. There is no need to switch to the build server to search for the reason of
the failure. The enhanced continuous integration workflow is presented below. Afterwards it is
shown how CAESAR assists developers in resolving build failures.

Like in a typical continuous integration workflow the developer first pushes the changes to the
remote repository (1) where the build server automatically fetches the latest version (2), initiates a new
build, and writes every action into the build log (3). In the augmented workflow with CAESAR, the
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Figure 3.3: Augmented Continuous Integration Workflow with CAESAR

developer then opens the CAESAR IDE plugin and checks whether the build was successful or not (4).
If the build failed and the developer decides to fix it, he selects the build and CAESAR downloads
the corresponding build log (I) and starts processing it. The build log is read line for line, its content
analyzed (II), and all information stored to the meta-model. CAESAR then operates on the meta-
model to classify the type of error (III) and to create a summary (IV) of the most relevant data to be
presented to the developer (V). This includes a list of all detected errors with error descriptions or hints
for each error. Additionally, the errors can be directly shown in the source files and some errors can
also be debugged using the debugging features of the IDE. Based on the meta-model, a tree-like view
of the build is presented to explore the log of the build in a more convenient manner. Optionally,
the developer can initiate to load the source code (VI) that failed on the build server into the IDE.
Finally, the developer is able to use CAESAR to explore the errors and fix them (VII). The following
paragraphs describe how CAESAR can be used to do so.

CAESAR aims to simplify the process of fixing build failures by making all the necessary in-
formation from the build log available within the IDE. First, CAESAR lets the developer choose a
project to get a list of all executed builds on the build server (Figure 3.4). The builds are grouped
by their corresponding branch in the version control system. For every build, the developer in-
stantly sees whether the build was successful or not. Additionally, he gets a short status message
of the build outcome. In case of a build failure, this might already be a first indication of the cause.

When selecting one of the builds, a summary of the build is displayed (Figure 3.5). At the top,
the build status indicating a success or failure and the status message are displayed again. Then,
the developer gets information about what kind of build failure was detected. Depending on the
information found within the build log and at which point the build failed, CAESAR classifies
each build failure in one out of 13 categories [19]. This aims to help the developer to pre-estimate
what went wrong. Additionally, the failed build step (build goal) is displayed. The developer
also sees the name of the configured project on the build server and the build configuration that
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Figure 3.4: Overview of All Builds

was used to run the presented build. To give further contextual information to the build failure,
the branch of the version control system is also displayed.

The core section of this view lists all errors found within the build log. Besides the file name
and line where the error happened, CAESAR displays a short error description. Depending on
the failure category, an additional hint is displayed too. Next to each error, there is a button to
open the source file at the line where the error occurred. At the very bottom, the developer may
go back to the build overview (Figure 3.4) or load the code base that failed on the build server
into his IDE. If there are any changes that are not committed to the version control system yet,
CAESAR automatically saves them, so that the developer can access them after he has finished
fixing the errors. The following four paragraphs show how CAESAR treats the three supported
build failures and how unsupported build failures are handled.

Dependency Issue. An example error description of a dependency issue is displayed in List-
ing 3.1. The developer gets information about which dependency could not be resolved on the
build server and whether it is locally available. CAESAR distinguishes between three different
cases why the dependency could not be found locally: because of the (i) group name (e.g., the
name of the company that developed the dependency), (ii) the artifact name (i.e., dependency
name), or (iii) the specified version of the artifact. If the artifact could not be found, the error mes-
sage additionally lists alternative, local artifacts or versions. This might signalize that the wrong
artifact or version was specified. In the end, a link to the remote repository is given, so that the
developer can check whether the specified artifact can be found there. If the dependency could
be found on the developer’s machine, CAESAR tells the developer to check whether the depen-
dency really is available in one of the defined repositories. Hence, the developer knows that the
dependency is correctly specified but the build server is not able to download it.

Could not find artifact: junit:junit:5.12 (version ’5.12’ is locally not avail-

able) Please check why this version can not be found on maven central or in any

of the defined repositories in the pom.xml file. Does the <version> really

exist? Locally, only the following versions are available: 3.8.1, 3.8.2, 4.11,

4.12. Check all available versions of this artifact on maven central:

https://mvnrepository.com/artifact/junit/junit

Listing 3.1: Detected Dependency Issue
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Figure 3.5: Summarization of a Build

Compilation Errors. The support for compilation errors is rather simple (Listing 3.2). Besides
showing where the error occurred in the source code and letting the developer navigate there,
CAESAR displays a short description of the error. Often, this is enough information to resolve the
failure.

src/main/java/org/apache/commons/cli/Options.java: 20

package org.apache.commons.cli.entities does not exist

Listing 3.2: Detected Compilation Error

Test Failure. CAESAR lists all test failures found in the build log and displays a short error
description. An example is given in Listing 3.3. In addition to the button to open the test file
at the line where the test failed, there is also a button to directly debug the error. When the
developer clicks on it, CAESAR starts executing the test that failed and pauses before the error
happened. With the debug instruments provided by the IDE, the developer is now able to see the
values of all variables and gets the relevant context information to fix the error.

src/main/java/org/apache/commons/cli/UtilTest.java: 31

org.junit.ComparisonFailure: expected:<[]foo> but was:<[-]foo>

Listing 3.3: Detected Test Failure
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Figure 3.6: Abstraction of a Build Log

Fall Back for Other Error Types. Regardless of whether CAESAR provides tailored assistance
for a certain error type, he also provides an abstracted tree view of the build. This especially
becomes useful to developers if no errors could be found. In this case CAESAR does not support
full assistance for the failed Maven goal (i.e., build step). However, based on the meta-model, the
build log is disassembled into its base components. On the first level, all Maven modules (i.e., sub-
projects) are presented. Different colors indicate whether the module (i) was built successfully,
(ii) could not be built, or (iii) was skipped because the build failed in a module before. For all
processed modules, (i) and (ii), CAESAR lists the executed Maven goals and the corresponding
section of the build log. Therefore, if a build failed, the last listed goal of the failed Maven module
contains the section of the build log that provides important information of why the build failed.
In addition to that, the developer also may read through the original and complete build log of
the build server or the extracted Maven build log.



Chapter 4

Controlled Experiment

To evaluate CAESAR’s assistance to developers, a controlled experiment was conducted. This
chapter first explains the course of the controlled experiment and shows some demographic data
about the study participants (Section 4.1). Then, the results of the study and answers to the re-
search questions are presented (Section 4.2).

4.1 Procedure
The study context includes (i) as objects, build failures that are introduced into existing source
code, and (ii) as subjects, developers that participate in the controlled experiment. The study is
designed as a between-subject study where each participant solves one task with treatment (i.e.,
assistance of CAESAR) and one without. The controlled experiment is segmented into four parts:
Introduction, Training, Problem Solving, and Feedback. The following paragraphs describe what
each part consists of. All necessary files and information (e.g., repositories or steps to prepare the
experiments) are listed in Appendix A.

Introduction. The introduction aims to ensure that every participant has the same knowledge
of the tools and underlying concepts used in the controlled experiment. To further guarantee
that every participant gets the same introduction, a video was recorded. It contains information
about the used (i) concepts (i.e., version control systems, build tools, build servers, and continuous
integration) and (ii) tools (i.e., IntelliJ IDEA1, TeamCity2, Maven3, and CAESAR).

Training. The goal of the training part of the controlled experiment is to let the participants
get to know how to work with the development environment and especially with CAESAR. The
provided project contains every type of build failure that CAESAR supports (i.e., dependency
error, compilation error, and test failure). Each participant is asked to use both the build server
(i.e., TeamCity) and CAESAR to fix a build failure. In addition, participants are asked to work with
the terminal integrated in the IDE to interact with the version control system, use the debugger,
and locally run Maven lifecycle phases.

Problem Solving. The main part of the controlled experiment is about solving two build fail-
ures. The used project is the Apache Commons CLI4, which was previously used in studies

1 IntelliJ IDEA: https://www.jetbrains.com/idea
2 TeamCity: https://www.jetbrains.com/teamcity
3 Maven: https://maven.apache.org
4 Commons CLI: https://commons.apache.org/proper/commons-cli

https://www.jetbrains.com/idea
https://www.jetbrains.com/teamcity
https://maven.apache.org
https://commons.apache.org/proper/commons-cli
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# Type Introduced Error

Problem 1 dependency error non-existing version number of a dependency
Problem 2 compilation error class import from a non-existing sub-package
Problem 3 test failure incorrect method implementation

Table 4.1: Problem Types and Introduced Errors

[4, 5, 12, 15] and with 22 classes and approximately 12’000 lines of code considered large enough
but not too small. For this project, three different build failures (i.e., problems) were provoked by
introducing three errors (Table 4.1).

Each participant gets to solve two randomly assigned problems. Half of the participants first
solves a build failure with CAESAR and then without and the other half first without and then
with CAESAR. This ensures, that over all runs of the experiment, participants do not profit from
learning effects (i.e., knowing the project from the previous task). In addition, every problem is
solved both twice with and without CAESAR and both twice as first and as second task. Thus, the
results do not depend on a particular order of the problems.

Before each participant starts solving the problems, for every task a new build is run. To
determine the time spent to solve a build failure, the participants start and finish each task with
an empty commit. After fixing the build failure, each participant is then asked to locally run
the Maven lifecycle phase test and, if the Maven build was successful, commit the changes. The
empty commit to indicate to be finished with solving the build failure should be made after a new
build is successfully run on TeamCity.

Feedback. To get feedback and comments to the solved tasks and CAESAR, every participant
completed a questionnaire split into three parts: (i) questions about the task without using CAE-
SAR, (ii) questions about the task with CAESAR’s assistance, and (iii) general questions. Besides
the actual times needed to solve the build failure the responses to these questions are used to
answer the research questions.

Figure 4.1: Highest Qualification and Current Position of Participants
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Figure 4.2: Experience of Participants with Study-Relevant Tools

All six participants are computer science students at the University of Zurich. To collect in-
formation about their experience with the tools and concepts used in the controlled experiment,
every participant filled out a questionnaire before the controlled experiment. Figure 4.1 shows
the highest qualification of the participants related to computer science. Two thirds completed their
bachelor studies, one his master studies, and one participant is still in his bachelor studies. The
figure also shows the current position of the participants where they get in contact with build servers. All
participants holding a bachelors degree get in contact with build servers either at work or as stu-
dents, the participant holding a masters degree as an academic researcher, and the one pursuing
his bachelor studies as a technical co-founder.

To assess the participants level of experience with the tools and concepts used in the study,
a four-point Likert scale (i.e., None, Low, Moderate, and High) with the additional option for No
Answer was used (Figure 4.2). While most of the participants self estimated their programming
experience as moderate or high, they stated that their experience with the used tools (i.e., IntelliJ
and TeamCity) and concepts (i.e., Maven) is low or that they do not have experience using or
applying them at all. For the general experience with build tools, IDEs, or build servers however,
the average participant shows moderate to high experience.

4.2 Results
Subsequently, the results of the controlled experiment are presented and all research questions
are answered. Before that, it is ensured that the chosen error types are relevant in practice and
that the introduced errors are representative.

Even though the decision to specifically support three of the most common error types (i.e.,
dependency error, compilation error, and test failure) was based on previous research, the intro-
duced errors (Table 4.1) in the study are artificially set up. Thus, it first needs to be made sure that
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Figure 4.3: Practical Relevance of Error Types and Representativeness of Introduced Errors

they are also realistic. Therefore, each participant was asked to rate (i) the practical relevance of the
three error types in general, and (ii) the representativeness of the introduced errors after he finished the
experiment (Figure 4.3). To indicate their agreement to whether the error types are relevant and
the introduced errors are representative, the participants rated the statements, depending on the
errors they solved, with a five-point Likert scale (i.e., Strongly Disagree, Disagree, Undecided, Agree
and Strongly Agree) with the additional option for No Answer.

All three error types as well as the introduced errors are considered as relevant and represen-
tative with a total rate of acceptance of 92% (Strongly Agree and Agree). Only one participant did
not rank the error types and introduced errors as relevant and representative.

4.2.1 RQ1: Build Failure Resolution Time
The first research question deals with whether the time needed to fix a build failure can be reduced
with in-IDE assistance. This specifically refers to CAESAR’s assistance to developers and if their
productivity can be increased. The point of interest is, whether providing build-related informa-
tion within the IDE helps developers in resolving broken builds faster and thus let them focus on
developing the source code further rather than spend time fixing it.

To answer this questions, for every introduced error the required time to fix the build failure
was measured. This provides empirical evidence whether CAESAR can reduce the time to resolve
a broken build or not. Therefore, the commits, before and after the errors were solved, are taken
to determine how long each participant needed to fix the assigned build failure. Figure 4.4 shows
all these fix-times grouped by the three error categories; (i) dependency error, (ii) compilation
error, and (iii) test failure. Within each category, the times for fixing the failure without CAESAR
(to the left) and with CAESAR (to the right) are shown. Additionally, for every error category, the
average time reduction between the tasks without CAESAR (upper line) and with CAESAR (lower
line) is indicated.
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Figure 4.4: Recorded Build-Fix-Times and Average Time Reduction per Error Type

The analysis shows that, on average and over all types of build failures, the participants could
reduce the time needed to fix the broken build from approximately 7 to 3.5 minutes (48.4%) when
working with CAESAR. Dependency errors are solved 47.8% faster, compilation errors 48.8%, and
test failures 48.5%. It can be observed, that one participant who was asked to fix a dependency
error without CAESAR spent twice as long to resolve it than the second participant with the same
task. On the other hand, two different participants that were asked to fix the same broken build
with CAESAR roughly required the same amount of time to resolve it. This reflects the total es-
timated standard deviation of 1.2 minutes which is the highest for dependency errors (with 2.3
minutes). For compilation errors and test failures the savings in time are better distributed. Even
though also for compilation errors, the required times to solve it with CAESAR deviate by a factor
of two.

RQ1: Can in-IDE assistance reduce the time required to fix a build failure?
Yes, by providing build results within the IDE, CAESAR reduces the time needed to fix a build failure;
on average, by 48.4%.

4.2.2 RQ2: In-IDE Assistance
The second research question is interested in why broken builds can be resolved faster with in-IDE
assistance. While there might be several possible answers to this questions, for example, not need-
ing to switch back and forth between the IDE and the build server, having a summarized build
log instead of scanning through it, getting error descriptions and hints, or being instantly able to
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Figure 4.5: More Time-Consuming Task without and with CAESAR

debug failed tests, this question focuses on two steps of the build resolution process: (i) locating
the error and (ii) fixing it. This is based on the hypothesis that developers become faster in locat-
ing and understanding the error thanks to the provided summarization of the build log directly
within the IDE.

To answer the research question, the participants (i) were asked whether locating or fixing the
error was more time-consuming and (ii) how they rate the perceived assistance of CAESAR during
the resolution process of the build failure. In the context of this research question, the term fixing
relates to the fixing phase and the term resolving labels the whole process; locating and fixing the
build failure.

Locating vs. Fixing the Error. Assuming, that CAESAR helps in faster locating the error, the
participants were asked whether they spent more time for locating the error or fixing it. The ques-
tion was answered for both the task without and with CAESAR. Figure 4.5 shows the answers to
these questions. Participants simply had to state whether locating or fixing the error was the more
time-consuming task. First the responses for the problems without CAESAR are shown and then
with.

When solving a build failure without the assistance of CAESAR, all participants spent more
time for locating the error than fixing it. However, when working with CAESAR, on average,
67% of the participants spent more time for fixing than locating the error. While all participants
that needed to solve a dependency error spent more time for fixing the error, only 50% of the
participants that solved a compilation error or test failure considered fixing the error the less time
consuming task.

Perceived Assistance of CAESAR. In order to assess the perceived assistance of CAESAR by
the participants, three questions were asked (Figure 4.6). First, the participants stated whether
CAESAR generally helped them while resolving the build failure. Then, they specified if the summa-
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Figure 4.6: Assistance Through CAESAR in General, Through Build Log Summarization, and with Error
Descriptions and Hints

rization of the build log was helpful during the location of the error. Finally, they were asked whether
the error descriptions and hints helped them understanding and fixing the failure. For all three ques-
tions, the same five-point Likert scale was used again. The answers to the questions are shown
per error type.

Regarding the general assistance of CAESAR, the participants unanimously agreed that CAE-
SAR helped them resolving the build failure. The provided build log summarization was consid-
ered as helpful. The ratings however show, that the summarization for dependency errors was
appreciated more than for compilation errors and test failures. For the error descriptions and
hints, the participants again consistently agreed that they were helpful.

RQ2: Why can broken builds be resolved faster with in-IDE assistance?
When resolving a build failure with CAESAR, developers generally spent less time locating the error than
when working without CAESAR. On average, then gained time from locating the error could be used to
fix it. Further, the build log summarization was considered helpful when locating the error. In addition to
that, the error description and hints were then helpful to understand and actually fix the concrete error.
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4.2.3 RQ3: Instant Test Debugging
The last research question was, whether instantly debugging a test failure helps solving a build failure.
The debugging feature is one part of CAESAR and is specifically designed to support developers
in locally reproducing the results of failed tests on the build server. The goal is to give some
context to the test results and make it easier to understand why tests fail. The question aims to
analyze whether, on top of the build log summarization and error descriptions and hints, this
feature is helpful in fixing build failures.

To answer this question, the participants who solved a test failure were asked to state whether
this feature helped them or not. Unfortunately, both participants that solved a broken test with
the assistance of CAESAR and could have used the instant debugging feature were able to solve
the test failure without debugging the test at all.

RQ3: Does instantly debugging a test failure help solving a build failure?
Could not be answered during the controlled experiment. In the training session however, this feature
was tested and considered as supporting. More experiments are needed to answer this questions.
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Discussion

In this chapter, the results of the controlled experiment and the answers to the research questions
are discussed. Then, implications for continuous integration and research are described and some
thoughts about the future work on CAESAR are shared (Section 5.1). Finally, threats to the study’s
validity and their mitigation are shown (Section 5.2).

RQ1: Build Failure Resolution Time. With CAESAR serving as in-IDE assistance to developers
for resolving build failures, participants of the controlled experiment could reduce the required
time to fix a build failure by 48.4%. Although similar results have been obtained in a previous
study with a build server plugin, where the time could be reduced by 41% [18], the reported esti-
mated standard deviation of the average build-fix-times is non-negligible. This can be explained
by the low number of study participants and demands for a controlled experiment with a larger
group of developers.

Although, the average time required to resolve a build failure was nearly identical for all
examined error types, there are differences in the time between the individual recordings. For
example, one dependency error fixed without CAESAR required twice as much time as other per-
formances on the same error. The participant stated that he "needed to search through the build log to
find the error" and that this "was time consuming". This can be traced back to different approaches
the participants had on how to scan a build log which might be based on their experience. More-
over, this shows that locating the error within the build log is a major issue when working with-
out assistance; not only for this type of error but also for others; as reported by other participants
when resolving different failures.

On the other hand, the measured times for compilation errors and test failures are better dis-
tributed. This could be explained by the fact that just showing the location of the issue causing the
build failure might be the most important step in fixing the error. In addition to that, the support
for dependency errors is the most advanced one (with providing hints based on locally available
dependencies), which was also considered to be more helpful than the assistance for compilation
errors and test failures.

RQ2: In-IDE Assistance. When working with CAESAR, participants could reduce the time to
resolve a build failure due to two reasons: they were (i) able to save time when locating the
error and (ii) assisted in understanding and fixing the error. When working without CAESAR
"locating the error" was more time-consuming than "fixing the error". Thanks to CAESAR’s build
log summarization the time spent "locating the error" could be decrease which was appreciated
by most participants. One participant stated that "in only a few clicks [he] was able to instantly switch
to the line where the error occurred" and another reported that he liked that "[CAESAR] showed the
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exact position in the source code". Hence, the summarization and direct linking to the source code
contributed to reduce the time "locating the error".

In addition, CAESAR also helped to understand the error. The summarization provides con-
venient access to the build results and the most important information necessary to resolve the
build failure faster. Additionally, it lets developers focus on "fixing the error" as they do not need
to switch context between the IDE and the build server as frequent. For example, as stated by
one of the participants: "when switching between IDE and TeamCity to inspect the errors, developers
might lose track of what they are doing, as they have to change the environment". Another participant
mentioned that CAESAR helped "to locate the root cause of the test failure as [he] already knew (from
the summarized maven build log) what the potential reasons for the test failure might be". The obtained
results support the finding of Vassallo et al. [18] stating that the build summarization improves
the understandability of build logs.

RQ3: Instant Test Debugging. Unfortunately, the controlled experiment could not provide in-
sight in whether CAESAR’s feature to instantly debug failed tests contributes to solving build
failures more easily. The participants only used the feature during the training session but not for
solving the build failures. This might have different reasons.

First of all, the test setup with the introduced errors was not appropriate. The errors were
artificially inserted into existing source code and designed for developers with rather low lev-
els of programming experience. However, the demographics data shows that they are not low
skilled. In addition, the participants also stated that "[the] errors were not particularly difficult to fix"
and "solving the error was quite trivial". Due to the simplicity of the errors they did not use the
debugging feature and could fix the error "by just having a quick glance at the code".

Secondly, the debugging feature might not have been used due to the fact that IDE-debuggers
are not used as often as expected. This is the result of a study conducted by Beller et al. [2] where
the debugging behavior of developers was investigated. Other reasons might be that the feature
was not properly introduced or implemented. Although it was part of the introduction video
and the participants worked with it in the training, they did not consider using it to fix the build
failures. To further evaluate this feature, a second experiment needs to be conducted specifically
targeting to resolve broken builds related to test failures.

5.1 Implications and Future Work
Implications for Continuous Integration and Research. The results of the controlled experi-
ment show that in-IDE assistance provides large benefits to developers for resolving build fail-
ures. They can locate errors faster and understand the root of failure better. This eventually
leads to increased developer productivity and faster release cycles. Due to this fact, develop-
ers should be provided with more advanced tools assisting them in fixing broken builds. Tool
builders should provide easy access to all build related information, integrate them with the IDE,
and aim to bridge the gap between the information available on the build server and in the IDE.

Future research could investigate the effect of the combination of tools that summarize build
logs, automatically propose fixes, and collect solutions from the internet. Moreover, the impact of
such tools on different levels of experience of the developers should be analyzed in order to better
design the tools and provide specific assistance. Also, the difference between varying error com-
plexities must be investigated to grasp the benefits of such a tool in a modern high-skill software
development environment.
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Significance. To learn more about CAESAR’s benefit to developers in fixing build failures, CAE-
SAR needs to be evaluated in a larger scope. First, developers should solve injected build failures
in multiple different projects. This ensures that the results do not depend on a special type of
project or the style of development. Secondly, a more diverse group of developers should be
chosen to conduct the controlled experiment. Additionally to the participants of the study for
this thesis, there should also be some developers from different industries with varying levels of
experience in both programming and working with CI. Even though the artificially introduced
errors were considered as relevant, there should be a more diverse pool of errors to better show
the assistance through CAESAR when fixing the three error types. Finally, duplicating the prob-
lem sets and letting them be solved by multiple participants makes the results more comparable
and insightful. For the same reason, every developer should also solve at least one build failure
of each error category.

Application. The current implementation of CAESAR is limited to be used for Java projects, de-
veloped with IntelliJ, managed by Maven, and built with TeamCity. The supported error types
are: dependency errors, compilation errors, and test failures. In order to support and summarize
various types of build failures, parsers for additional Maven plugins need to be added. The im-
plementation could also be extended to support and integrate other build tools than Maven like,
for example, Gradle1. Besides this, the concept of CAESAR and the underlying meta-model can
also be transferred to other build servers, version control systems, and programming languages.

Features. On top of the existing functionality of CAESAR, there is a large range of features that
could be added to assist developers even better. First of all, the interaction with the build server
could be improved by directly triggering new builds from within the IDE and automatically get-
ting notified as soon as a new build fails. For further support in fixing build failures, CAESAR
could be combined with other approaches by collecting hints based on internet searches and
proposing automatically generated suggestions to fix certain failures. After a fix is made, it could
be helpful to let CAESAR automatically run the same build stage that failed on the build server
locally to verify that the fix works as expected. To further simplify the interaction with the un-
derlying version control system, CAESAR could provide the possibility to choose where to merge
the branch containing the fix and automatically reload the state of the work from before starting
to fix the broken build.

5.2 Threats to Validity
Replicability. Can these results be replicated? This threat is addressed by providing all the mate-
rial used for the controlled experiment. On the attached CD (Appendix A), the used version of
CAESAR is available as well as all training and problem repositories. Moreover, instructions on
how to set up all projects with the build server and the IDE are given and the introduction video
is provided. The only unknown variable are the participants. Due to the fact that this study only
had six participants, the results of a replication of the controlled experiment might slightly differ
depending on the levels of experience and skills of the participants.

Construct Validity. Is the controlled experiment designed correctly? The interest of this thesis and
controlled experiment is to improve the process of fixing build failures. Thus, the asked questions
reflect these interests to some extent. However, by always giving the participants the option not
to answer a question or rate a statement and providing the possibility to add comments and

1 Gradle: https://gradle.org

https://gradle.org
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annotations to the experiment or asked questions, biasing the answers with the preconceived
ideas about CAESAR’s use is avoided. Using artificial failures for evaluating the tool might not
be the most ideal strategy. Even though participants considered them as realistic, the effect on
the results might not be the same as if existing errors from within the chosen project had been
selected.

Internal Validity. Is the accuracy of the results skewed? The selection of the project for the con-
trolled experiment was based on projects used in previous studies. Thus, it has been proven to
be adequate to use for the study’s purpose. Although the participation was voluntary and no
rewards were given, the participants were self-selected due to the scope of this thesis.

External Validity. Are the results generalizable? By conducting the controlled experiment with
only six participants, the results might not reflect the usefulness of CAESAR to the developer
community as a whole. To mitigate this, participants, having different backgrounds of working
with CI and knowledge about the used tools, were selected. Even though some of them work in
industrial fields, they are all students at the University of Zurich. Furthermore, only three types
of build failures were considered in this controlled experiment. Even if previous research shows,
that these are the most common reasons for build failures, the results may not be generalized for
other types (especially more complex ones) and build failures in general.



Chapter 6

Summary

Continuous integration is a well known, agile software development practice that supports devel-
opers in building software. It helps finding bugs early and thus contributes to more stable code
bases and faster release cycles. Despite its wide adoption, developers still face barriers when
working with CI. If a build fails on the build server, developers need to scan through large build
logs to locate the root of error. Additionally, the context switching between the local develop-
ment environment and the build server makes locating and fixing an error a time-consuming and
complex task for developers.

Recent research proposes tools to support developers in resolving build failures. One of the
tools summarizes build logs of broken builds and generates hints based on information found on
the internet. In a case study, the tool helped developers to better understand build failures and
reduced the time to fix a broken build by 41%. Another tool focuses on automatically repairing
failed Maven builds related to dependency issues.

This thesis proposes a different approach for improving build failure resolution; through in-
IDE assistance. The developed tool, CAESAR (Ci Assistant for Efficient (Build Failure) Summa-
rization And Resolution), supports developers by bridging the gap between the available infor-
mation about the build failure on the build server and the local development environment with
the source code. CAESAR summarizes build logs, locates and classifies errors, generates error
descriptions and hints about their potential cause, and provides this information within the IDE.
Subsequently, CAESAR offers to save the current work, load the broken code base into the IDE,
directly show the errors within the source code, and instantly debug test failures. In addition,
compilation and dependency errors are also supported.

In a controlled experiment with six participants, developers were asked to fix build failures
with and without the assistance of CAESAR. On average, by working with CAESAR, the time to
fix a build failure could be reduced by 48.4% (which is similar to the 41% time reduction with
the build server plugin described before). Along the way, the build log summarization, error
descriptions, and hints were considered as helpful in learning more about the cause of the broken
builds. Especially appreciated was the direct linking of listed errors within the build summary to
the actual source code.

The obtained results show significant improvement in fixing build failures. However, due
to the small number of experiment participants, limited diversity of development backgrounds,
and only partial support of build failures, these results may not be generalized for all type of
build failures and the whole developer population. Furthermore, there still exists the difference
between the local development environment and the build server environment which is not in-
cluded and conquered by CAESAR. Nevertheless, this thesis contributes with a novel approach
to support build failure resolution from within the IDE. Using build abstraction, representation,
and summarization as well as error detection and classification, CAESAR provides information
and assistance right where its needed; within the IDE.





Appendix A

Attached CD

The Attached CD contains the source code of CAESAR as well as study relevant data like the steps
to follow for conducting the controlled experiment and the obtained results. The tables below
give a short overview of the CD’s content. Read the readme.txt files located at the specified paths
to get further information about the files and directories.

Content Path

Core Implementation \caesar\
Plugin Implementation \caesar-intellij-plugin\
Helper Projects \helpers\

Table A.1: CD Content Concerning CAESAR (at: appendix\A-caesar\)

Content Path

Experiment Preparation Steps \preparation.md
IntelliJ Plugin to Run the Experiment with \caesar-intellij-plugin.jar
Demographic Data \1-demographic\
Introduction Slides \2-introduction\slides.pdf
Introduction Video \2-introduction\video.mp4
Preparation Steps for Training Repositories \3-training\preparation.md
Training Repositories \3-training\
Preparation Steps for Problem Set Repositories \4-problem\preparation.md
Problem Set Repositories \4-problem\
Feedback Data \5-feedback\

Table A.2: CD Content for the Controlled Experiment (at: appendix\B-controlled-experiment\)
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