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Abstract

Recent research has shown that available tools for Modern Code Review (MCR) are still far from
meeting the current expectations of developers. The objective of this thesis is to investigate the
most recurrent change types in MCR as well as the developers’ expectations and needs regard-
ing the automation of reviewing activities that, from a developer point of view, are still needed
to facilitate MCR activities by considering current literature, manually analyzing code review
changes and conducting a survey. Additionally, we explore approaches and tools that are still
needed to facilitate MCR activities and extract various metrics describing a patch in Gerrit code
review with the goal to predict required changes in the future. To that end, we first empirically
elicited a taxonomy of recurrent review change types that characterize code reviews. The taxon-
omy was designed by performing three steps: (i) we generated an initial version of the taxonomy
by qualitatively and quantitatively analyzing 211 review commits and 648 review comments of
ten open source projects; then (ii) we integrated topics and code review change types of an exist-
ing taxonomy available from the literature into this initial taxonomy; finally, (iii) we surveyed
52 developers to integrate eventually missing change types into the taxonomy. We then evaluated
the survey feedback to find out more about current developers’ expectations towards code re-
view and how code review activities can be facilitated by novel tools and approaches. Results
of our taxonomy evaluation supports previous research, showing that the majority of changes in
code review are related to maintainability issues. Furthermore, our findings highlight that the
availability of emerging development technologies (e.g., cloud-based technologies) and practices
(e.g., continuous delivery and continuous integration) further widens the gap between the expec-
tations developers have towards code review and its outcome. This has pushed developers to
perform additional activities during code reviews and shows that additional types of feedback
are expected from reviewers, especially regarding changes in non-source-code artifacts (e.g., con-
figurations of Automated Static Analysis Tools). Our survey participants provided recommen-
dations, specified techniques to employ, and highlighted the data to analyze for implementing
approaches able to automate the code review activities related to our taxonomy. Most promis-
ing recommendations towards the automation of MCR involve the use of Machine Learning and
Natural Language Processing techniques to study recurrent patterns and anti-patterns as well as
code, change and object-oriented metrics. This study sheds some more light on the most critical
and recurring changes in code review, the developers’ expectations and needs, and ultimately on
the approaches and tools that are still needed to facilitate MCR activities. We believe that this is
an essential step towards closing the gap between developers’ expectations in code review and
its outcome as well as supporting the vision of full or partial automation in MCR.





Zusammenfassung

Jüngste Untersuchungen haben gezeigt, dass die verfügbaren Tools für Modern Code Review
(MCR) nicht den aktuellen Erwartungen der Entwickler entsprechen. Das Ziel dieser Arbeit ist es,
die am häufigsten auftretenden Change-Typen in MCR sowie die Erwartungen und Bedürfnisse
der Entwickler in Bezug auf die Automatisierung von Review-Aktivitäten zu untersuchen, die
aus Sicht des Entwicklers immer noch benötigt werden um MCR-Aktivitäten zu erleichtern. Dazu
berücksichtigen wir die aktuelle Literatur, analysieren manuell Code Review-Änderungen und
führen eine Umfrage durch. Darüber hinaus untersuchen wir Ansätze und Tools, die noch benötigt
werden, um MCR-Aktivitäten zu erleichtern und extrahieren verschiedene Metriken, die einen
Patch in Gerrit Code Review beschreiben, mit dem Ziel, erforderliche Änderungen in der Zukunft
vorherzusagen. Dazu haben wir zunächst empirisch eine Taxonomie von wiederkehrenden Re-
view Change-Typen herausgearbeitet. Die Taxonomie wurde in drei Schritten erstellt: (i) wir
haben eine erste Version der Taxonomie erstellt, indem wir 211 Review Commits und 648 Review-
Kommentare von zehn Open-Source-Projekten qualitativ und quantitativ analysiert haben; dann
(ii) haben wir Code Review Change-Typen einer aus der Literatur verfügbaren Taxonomie in
diese erste Taxonomie integriert; schliesslich (iii) haben wir 52 Entwickler befragt, um eventuell
fehlende Change-Typen in die Taxonomie zu integrieren. Anschliessend werteten wir das Feed-
back der Umfrage aus, um mehr über die Erwartungen der aktuellen Entwickler an Code Re-
view zu erfahren und herauszufinden, wie Code Review durch neue Tools und Ansätze erle-
ichtert werden kann. Die Ergebnisse unserer Taxonomieauswertung unterstützen frühere Unter-
suchungen und zeigen, dass die Mehrheit der Änderungen in Code Review mit Problemen der
Wartbarkeit zusammenhängt. Darüber hinaus zeigen unsere Ergebnisse, dass die Verfügbarkeit
neuer Entwicklungstechnologien (e.g., Cloud-basierte Technologien) und -praktiken (e.g., Contin-
uous Delivery und Continuous Integration) die Lücke zwischen den Erwartungen der Entwick-
ler an Code Review und deren Ergebnis weiter vergrössert. Dies führt dazu, dass zusätzliche
Arten von Feedback von den Reviewern erwartet werden, insbesondere in Bezug auf Änderun-
gen an Nicht-Quellcode-Objekten (e.g., Konfigurationen von Automated Static Analysis Tools).
Unsere Umfrageteilnehmer gaben Empfehlungen ab, spezifizierten Techniken die anzuwenden
sind und hoben die zu analysierenden Daten für die Implementierung von Ansätzen hervor, die
in der Lage sind, Change-Typen unserer Taxonomie zu automatisieren. Die vielversprechendsten
Empfehlungen zur Automatisierung von MCR beinhalten den Einsatz von Machine Learning
und Natural Language Processing Techniken zur Untersuchung wiederkehrender Muster sowie
von Code-, Change- und objektorientierten Metriken. Diese Studie wirft mehr Licht auf die kri-
tischsten und wiederkehrenden Änderungen in Code Review, die Erwartungen und Bedürfnisse
der Entwickler und auf die Ansätze und Tools, die noch benötigt werden, um MCR-Aktivitäten
zu erleichtern. Wir glauben, dass dies ein wesentlicher Schritt ist, um die Lücke zwischen den Er-
wartungen der Entwickler an Code Review und dessen Esrgebnissen zu schliessen und die Vision
einer vollständigen oder teilweisen Automatisierung in MCR zu unterstützen.
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Chapter 1

Introduction

1.1 Modern Code Review

Code Review. Code Review (CR) is a relevant development approach and widely agreed-on
best practice. CR involves manual inspection of source code written by others with the goal of
identifying potential defects, bugs and providing an author timely feedback on his or her changes
to improve the quality or functionality before the changes are deployed into a live environment.
[4, 17, 29, 57]. There exist different approaches to CR which can be subdivided into formal and
lightweight code reviews. The former is known as the Fagan (Traditional) Inspection [29] and the
latter as Modern Code Review (MCR).

Fagan (Traditional) Inspection. The Formal Inspection process by Fagan is considered the
more heavy-weight and formal in comparison to MCR. Characteristics of code inspection include
considerable processes similar to waterfall-like procedures. This can include checklists, group
meetings, an expert panel and other formal requirements. Although this approach is very thor-
ough and effective, it has the disadvantage that it can take too much time to be considered prac-
tical. Furthermore, with current developer teams sometimes being spread around the world and
developing in different time zones, it can quickly become difficult to coordinate such reviews [29].
Generally, the Fagan Inspection consists of the steps seen in Figure 1.1.

Figure 1.1: Fagan (Traditional) Inspection

The Planning phase involves the preparation of materials, arranging of a meeting place and de-
ciding on participants. In the Overview phase different roles are assigned to the participant and
materials to review are distributed. During the Preparation phase the participants review the ma-
terial, prepare questions and identify possible defects. In the Meeting, the actual defects are found,
followed by the Rework phase, in which the original author of the code resolves the defects. Fi-
nally, in the Follow-up phase, the moderator of the inspection verifies that all defects have been
resolved by the author. If this is not the case, the Rework is revisited.
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Modern Code Review. MCR (lightweight code reviews) constitutes a more modern approach
to CR and represents a variant of the traditional code inspection process. It is characterized as a
lightweight process that follows less strict rules and allows for faster and more efficient reviews.
Nowadays, MCR is a widely applied practice in both open source and industrial systems [6].
Forms of MCR involve over-the-shoulder reviews, pair programming and email-pass-around inter-
views. Moreover, MCR is generally supported by additional tools helping developers in reviewing
changes by others. These approaches have less overhead compared to formal code inspections
and can be equally effective if properly done. Furthermore, MCR is part of the development
process and does not require external gatherings such as the Fagan Inspection process, and also
allows for historical audits. Additionally, MCR is considered as more time effective and suit-
able for development teams spread geographically. An example for a tool which is widely used
in open-source to support the management of code review processes is Gerrit [2], while Check-
Style [1] and PMD [3] are popular tools used for detecting defects (e.g., vulnerabilities [24]) and
design issues (e.g., high coupling between objects) in the code under review.

Gerrit Code Review. Gerrit is a tool developed and maintained by Google for the Android
project, and mostly used in open-source projects. It emerged from a fork of Rietveld1, which itself
was based on Mondrian, a proprietary application used by Google for their code reviews. When
working in a team, code usually lives on a central repository (Figure 1.2), where every developer
pushes updates to and pulls changes into their local copy of the code. Furthermore, the central
repository is often connected to a CI (Continuous Integration) Build server.

Figure 1.2: General Development Process

Gerrit works with git2 and adds an additional concept, where instead of pushing updates
directly to the central repository, updates are pushed to Gerrit as pending changes, as shown in
Figure 1.3. These pending changes can only be integrated into the central repository once they have
gone through a review and have been accepted3. However, the current state of the project is still
fetched from the central repository. To review a change, Gerrit offers different ways to comment
on the uploaded code by an author. In a side-by-side and unified diff view reviewers can leave
in-line comments on specific lines or comment on the patch as a whole. For every uploaded
patch, reviewers can be assigned and notified. Developers on the team can assume the roles of
reviewers and verifiers. Reviewers are tasked with analyzing the code and giving useful feedback
in form of comments in order to improve the quality of the submitted patch. Verifiers on the other
hand are in charge of making sure that submitted patches serve a clear purpose, are useful and

1https://github.com/rietveld-codereview/rietveld
2https://git-scm.com/
3https://review.openstack.org/Documentation/intro-quick.html
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fix defects without breaking the behavior of the existing code base. A new branch is created for
every pending change under review. This allows for tracking the review and changes made to the
patch. Moreover, as every pending change is tracked as a new branch, unit tests can be run before
the review. If a patch needs additional changes by the author, a new version of the patch needs
to be pushed to review. Only once all changes are approved, the patch is merged into the central
repository.

Figure 1.3: Gerrit Development Process

1.2 Motivation & Research Questions
The dominant practice in industry is still the manual inspection of the artifact undergoing a
change. This is also the case in MCR. As this involves people, CR is often a very effort con-
suming task of code integration and comes with considerable costs, with developers spending
on average six hours per week reviewing changes of others [18]. This is not only substantial
in the time spent reviewing, it also forces developers to switch context away from their current
work [23]. Although finding defects is often stated as the primary expectation of code reviews, this
is often not the case. The most common category of comments is regarding code improvements
(code practices, unused code and readability). Therefore, functionality issues that should block
a code integration are often not found during code reviews [6, 23]. Furthermore, the usefulness
of code review comments is largely dependent on people with a certain amount of experience.
There is a positive correlation between the reviewer’s experience and the overall usefulness of
the code review. If the reviewer has no prior experience with the code base, on average only 33%
of comments are deemed useful by the author of the change. This ratio increases with every time
the reviewer is exposed to the same code base [23]. Another factor that influences the code re-
view workflow is the social aspect. Czerwonka [23] highlights that "people’s roles on the team and
their standing in team’s hierarchy influence the outcome. Often it is not only the author of the change but
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also the reviewers who find themselves under scrutiny.". Furthermore, the review of the changes can
happen as pre-commit or post-commit reviews (Figure 1.4), each having their own advantages
and influences on the outcome of a review. The former requires that changes are reviewed before
they are submitted and integrated into the central repository. In the latter, code review takes place
only after the changes have been submitted and integrated into the central repository. Pre-commit
reviews have the advantage that it ensures the code quality standards set by the team before any
work is submitted to the central repository. Furthermore, as code can only be submitted once it
has been reviewed, pre-commit reviews ensure that every change is actually reviewed and not
postponed or omitted. Finally, the central repository is not affected by eventual bugs that can be
found during the code review. A disadvantage of pre-commit reviews is the lowered developer
productivity, as each change needs to be reviewed first by other developers, which slows down
the development process. In contrast, post-commit reviews do not slow down the development
process, as developers can commit changes to the central repository continuously. Moreover,
other team members can instantly see changes by other developers and act accordingly. Lastly,
post-commit reviews help to understand and verify complex changes, as they might be part of
multiple steps and are best reviewed as a whole. Nonetheless, in post-commit reviews, generally
more bugs are introduced into the code. Furthermore, as code is not reviewed before its integrated
into the central repository, it increases changes for poor code which affects the entire team’s work.

Figure 1.4: Pre-commit and post-commit code reviews.

As stated before, the code review process is often supported by additional tools, such as static
analysis tools that provide useful warnings during review or development [55]. Recent research
produced further tools to support decisions and actions of MCR in different ways: (i) recom-
mender systems selecting appropriate peer reviewers to evaluate a given patch [8, 52, 73] and (ii)
approaches that automatically decompose code review change-sets [9], recommend files to fo-
cus on during a review [11] or simply detect potential mistakes [74], e.g., finding inconsistencies
between the documentation and the code using natural language processing [75].

A study compared the removal rate of static analysis warnings of PMD4 and Checkstyle5 in
six different open source projects and found that certain categories of warnings are resolved more
often than others in the context of code review. Specifically, warnings concerning imports, regular
expressions and type resolutions were removed the most, with an observed removal rate of more

4https://github.com/pmd
5https://github.com/checkstyle/checkstyle
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than 50% up to a 100%. This implies that requiring certain warnings to be resolved prior to code
submission to review could reduce the code review effort. Other studies also indicate that certain
types of issues are addressed more often than others during code review [6], including missing or
incomplete Javadocs and absent license statements [32].

Thesis design and research questions The objective of this thesis is to investigate the ap-
proaches and tools that, from a developer point of view, are still needed to facilitate MCR activities.
Little research investigated (i) the most recurrent or critical code review change types developers
have to deal with and at the same time (ii) the approaches and tools still needed to auto§mate or
accommodate such changes. While previous studies mainly investigated the usage and the limits
of existing tools for code review [6, 15, 55, 64], this thesis puts its attention on the specific changes
that developers actually perform in code reviews, investigating the possible automation that is
needed for supporting such changes. To that end, the following research questions are addressed
in this thesis:

• RQ1: What types of changes occur during code reviews?
In a first step, a taxonomy of the most critical and recurrent CR change types that characterize
code reviews was elicited. The taxonomy was designed by performing three steps: (i) an
initial version of the taxonomy was generated by qualitatively and quantitatively analyzing
362 review changes and 631 review comments of 10 open source projects; then (ii) topics
and CR change types emerging from existing taxonomies available from the literature were
integrated into this initial taxonomy; finally, (iii) 52 developers were surveyed to integrate
eventual missing code review change types into the taxonomy.

• RQ2: What are the emerging automation needs of developers in MCR?
In a second step, the data, approaches and tools that developers would need to accommo-
date the identified CR change types are investigated. To this end, survey participants were
asked to specify (i) the most critical and important review change types they usually perform
in MCR; and (ii) the type of automation they would need or envision to accommodate these
review change types. Survey results are then analyzed and promising solutions toward the
automation of MCR are identified.

• RQ3: What approaches are feasible for the automation of MCR?
By analyzing the feedback given by the participants in the survey, approaches towards an
automation of MCR are investigated in a practical way. More specifically, many developers
in the study suggested the usage of machine learning in combination with metrics to model
a patch submitted to code review. This would allow, with enough training, to predict even-
tual future changes in a given patch. To that end, a proof of concept is presented showing how
relevant metrics, describing a patch in code review, can be extracted and could be used in
the future for predicting changes.

This thesis makes the following contributions:

• It provides a detailed taxonomy of changes occurring in MCR with respect to issues that
could potentially be detected and fixed by dedicated recommender systems.

• It provides recommendations regarding approaches, solutions and techniques to detect and
fix such issues in MCR.

• It provides a proof of concept considering specific code and change metrics mentioned by
the participants of the study that can be used to describe a generic patch submitted to code
review. Furthermore, a possible setup of a tool extracting these metrics is proposed for
future work with the intention of using these metrics in a machine learning approach to
predict specific code changes in code reviews.
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• It suggests relevant directions for future work in the area of MCR.

The study participants provided insights on the types of approaches and tools they would
need in the context of MCR, sharing recommendations, specifying techniques to employ, and
highlighting the data to analyze for building recommenders able to automate code reviews ac-
tivities. Therefore, this thesis provides more information on the types of code review change
developers perform in modern code review, and sheds some more light on the approaches and
tools that, from a developer point of view, are still needed to facilitate MCR activities. This research
investigates the gap between current needs and expectations of practitioners towards MCR and
provides suggestions for novel tools and approaches to reduce this shortcoming. The authors of
the thesis believe that this is an important step for conceiving tools meeting the increasing expec-
tations of developers, and thus, supporting the vision of fully or partial automation in MCR [6,64].

Structure of the thesis. The thesis is divided into four parts. Chapter 2 presents recent and
related work in this research area. Chapter 3 describes the methodology of the thesis, namely the
manual analysis of review changes (3.1), the conducted survey (3.2) and the applied approach
for a first proof of concept (3.3) in regard to the automation of certain aspects of MCR. In Chapter
4 the results of this study are presented and discussed by introducing (i) a detailed taxonomy
of critical review changes; (ii) a qualitative evaluation of developers’ automation needs in the
context of MCR; and (iii) a proof of concept based on recommendations gathered from participants
in the study. Chapter 5 highlights threats to validity, states recommendations for future work and
concludes the paper.



Chapter 2

Related Work

2.1 Modern Code Review Process and Practices
MCR process. To the best of the authors’ knowledge, Rigby et al. [60–62] are the first that em-
pirically investigated the use of code reviews in open source projects, identifying and stating
guidelines that developers should follow (e.g., having small and independent patches, do fre-
quent reviews) in order to make the submitted patches accepted by reviewers. In this context,
Weißgerber et al. [71] found that, in general, the probability of a patch to be accepted is about 40%
and that patches containing few changes usually have a higher possibility to be accepted, while
Baysal et al. [13] discovered that patches submitted by casual contributors have a higher prob-
ability to not be reviewed compared to the patches submitted by core contributors of a project.
Nurolahzade et al. [51] confirmed these findings and additionally showed the importance for re-
viewers to identify and eliminate immature patches to alleviate huge backlogs.

Benefits and shortcomings of MCR. Other work focused on how developers perform code
reviews in industrial and FLOSS (Free, Libre and Open Source Software) projects [6,44]. Mantyla
et al. [44] analyzed the code review activities of industrial and FLOSS projects, discovering that
the type of defects fixed in code reviews are in most cases related to non-functional aspects of
the software. Bacchelli and Bird [6] studied the code review process across different teams at Mi-
crosoft by classifying review comments and surveying developers. They found that code review
is not only about finding defects, but also serves as a tool to transfer knowledge, increase team
awareness and helps finding alternative solutions to problems. Furthermore, they concluded that
the available tools for code review do not always meet developers’ expectations. The work of
this thesis is very close to the one of Bacchelli et al. [6], as this thesis aims to fill the gap between
expectations and outcomes of code review tools, (i) by studying the types of changes addressed
during code review; and (ii) investigating the automated support that developers need or expect
during code reviews activities.

Characteristics of good code review. Recent work studied the relevant social dynamics char-
acterizing the code review process [12, 19, 43, 46]. First of all, McIntosh et al. [46] studied devel-
oper participation during code review and discovered that the degree of freedom that review-
ers have impacts both reviewing environments and software quality, confirming the assumption
that badly reviewed patches lead to more post-review defects. Following this line of research,
Kononenko et al. [43] confirmed the importance of code review participation, exploring the re-
lationships between the reviewers’ code inspections and related factors in the large open-source
project Mozilla. Their results show that 54% of the reviewed changes introduced bugs in the code,
and that reviewer workload, experience and participation impact the quality of the code review
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process. Other work identified important aspects impacting software quality during code review
activities, separating them in technical and non-technical factors [14, 39]. The work of this thesis
represents a continuation of this recent research as we are interested to improve developers’ pro-
ductivity during code review practices, by overcoming the problems related to low developers’
participation, with recommender systems automating some of the reviewing activities. Further-
more, researchers investigated the usefulness of reviewer activities by analyzing semantical and
textual features of review comments. One study built recommendations and guidelines for fu-
ture research in the area of natural language processing related to code review [28], whereas in
another study textual characteristics of useful review comments are extracted and used in a pre-
diction based approach to determine if a comment can be considered useful [58]. Other research
looked at the notion of fair reviews, stating that code reviews are not always prioritized consis-
tently and create bias, which can be considered negatively by developers. [20, 33, 42]

Fixed issues in MCR. Similar to the work conducted in this thesis is the work of Mantyla [44]
and Beller et al. [15], which investigated the defects and problems developers actually fix during
code reviews. Following the work of Mantyla, which classified defects found in nine industrial
(C/C++) and 23 student (Java) projects into a defect classification, Beller et al. [15] manually clas-
sified over 1,400 changes taking place in reviewed code from two OSS projects into a validated
categorization scheme, classifying them into evolvability changes and functional changes. According
to their findings, 7-35% of review comments are discarded and 10-22% of the changes are not trig-
gered by an explicit review comment. Their results also support the findings by Mantyla [44], that
75% of changes are maintainability issues and only 25% of them are related to functional changes.

Whereas these works investigated the benefits, characteristics and issues of MCR, none have con-
sidered at the same time (i) the most recurrent and critical code review change types developers
deal with in MCR, (ii) the expectations developers have towards code reviews and (iii) the ap-
proaches and tools still needed to automate and accommodate such changes. Furthermore, while
other works provided insights how MCR can be supported by tools, e.g., static analysis tools [55],
this thesis takes a developers’ point of view and highlights how the gap between the expectations
and the outcome of code reviews can be lessened by providing techniques to apply, data to ana-
lyze and approaches to follow with the goal of partly or fully automated code reviews.

2.2 Automation in Modern Code Review
Recent research proposed tools and approaches to automate or facilitate some decisions and ac-
tions during code reviews [8, 9, 21, 36, 52, 55, 65, 67, 73, 74], as well as methods on how to evaluate
these tools and strategies [37].

Static analysis tools in MCR. The use of static analysis (SA) tools to find defects, whether
or not they may cause failures, is a common practice for software developers [30, 41, 66, 70] and
recent research investigated its usage in the context of code review [55,67], whereas other research
investigated the use of SA tools in software engineering in general [16, 72]. Kim and Ernst [41]
studied the removal rate of warnings produced by Automated Static Analysis Tools (ASATs) in
3 different projects. Their initial finding suggests that less than 10% of warnings are removed by
bug fix changes. In the following, they investigated a prioritization algorithm on historic bug-
fix data in code repositories to determine which warnings can be considered important in the
context of bug fixing, showing that many of the warnings produced by ASATs are false-positives.
Panichella et al. [55] investigated the removal rate of ASATs warnings in six Gerrit repositories and
found in their study that certain warning types produced by these tools are removed more often
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than others code review, reporting removal percentages between 50% up to a 100%. Examples of
these warnings are imports, regular expressions and type resolutions, thus showing that the review
effort can be reduced if the removal of certain warnings is enforced. Beller et al. [16] demonstrated
that ASATs are popular tools used in various projects but usually do not follow strict policies
on their usage. Furthermore, the study showed that the configuration of these tools hardly ever
changes after the tool’s introduction into the development process. Following this line of research,
Zampetti et al. [72] studied the usage of ASATs in 20 Java open source projects in the context of
continuous integration. Their results showed that a small percentage of broken builds are caused
by problems caught by ASATs and that missing adherence to coding standards is the main cause
behind these broken builds. Furthermore, Vassallo et al. [67] demonstrated that SA warnings have
different importance to developers depending on the context they are used in. These contexts
involve the local environment, code review and continuous integration. Their results show that in
the local environment, warnings regarding code structure and logic are deemed important, whereas
in code review warnings related to style conventions and redundancies are the most focused on.
Finally, during continuous integration, warnings about error handling, code logic and concurrency
are the main focus.

Advanced strategies to MCR. Other approaches haven been proposed by researchers to sup-
port coding or collaborative activities concerning the code review process [8, 9, 11, 47, 53, 73].

Firstly, multiple studies provided approaches to automatically recommend a suitable reviewer
for one’s code change [36, 52, 65, 73]. Thongtanunam et al. [65] investigated the assignment of
reviewers in distributed software development and its impact on the review time. They imple-
mented a file location-based code-reviewer recommendation approach based on the similarity
of previously reviewed file paths, showing that the overall code review process can be sped up
if appropriate reviewers are assigned to a review. Similarly, other studies proposed reviewer
recommendations in FLOSS projects based on modification and review expertise [36], based on
expertise and collaboration in past reviews using Genetic Algorithm [52] or based on the change
history of source code lines [8]. Zanjani et al. improved upon this work by leveraging specific
information in previously completed reviews instead of using generic review information such
as similar source code files or path names.

In addition, to help both reviewers and authors in the development of code and reviewing
activities, Barnett et al. proposed an approach to automatically decomposes code review change-
sets [9] into smaller partitions for easier reviews. Baum et al. investigated how a code review
tool should order and prioritize the different parts of a code change to provide the most support
to the developer. They proposed a strategy to recommend the files to focus on during a review
by grouping and ordering related changes [11]. Finally, Zang et al. [74] presented an interactive
approach that can summarize similar code changes and detects potential mistakes by matching
a generalized template against the code base. Their results show that by using this approach
reviews can be completed more time efficient.

Other approaches and tools developed and suggested by researchers include (i) an approach
that leverages semantic differential analysis between code versions to additionally provide de-
velopers with behavioral diffs, facilitating the understanding of the underlying reasons of the
changes [47]; (ii) a tool that generates code review comments, offering design suggestions based
on historic changes in source code repositories [21]; and (iii) tools that provide detailed code re-
view changes (snapshots) of thousands of patches for further processing [53].





Chapter 3

Methodology

The following chapter describes the methodology applied in the thesis. In addition, Figure 3.1
shows the different steps of the research approach. Section 3.1 explains how data for this research
was obtained, preprocessed and classified into taxonomies and code review change types. Sec-
tion 3.2 presents the design and structure of the conducted survey with 52 participants, whereas
Section 3.3 presents the practical approach taken to a proof of concept towards the automation of
MCR.

Figure 3.1: Overview Research Approach

3.1 Manual Classification and Validation
Goal and project data. A first step toward answering what types of changes occur in code re-
views (RQ1) was the elicitation of an initial taxonomy by analyzing changes in open source projects.
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To gain a better understanding about the specific code review change types occurring in MCR, the
code review comments and historic changes related to ten Java open-source projects were col-
lected, namely data from the following projects:

• Eclipse Acceleo1: An open-source code-generator from the Eclipse Foundations which al-
lows people to build applications in a model-driven fashion.

• Eclipse CDT2: C/C++ Development Tools that add support for C/C++ syntax highlighting,
debugging, project structures and code formatting.

• Eclipse Amalgam3: An Eclipse top-level project focused on and aimed at the evolution
of model-based development technologies. Its main goal is to rework the user experience
related to modeling.

• Eclipse BPEL4: A project designed to add support to Eclipse for the definition, authoring,
editing, deploying, testing and debugging of WS-BPEL (Web Services Business Process Ex-
ecution Language) processes.

• Eclipse Cbi5: A Maven project with the Tycho6 plugins. The Tycho plugins tell Maven how
to build Eclipse plugins and OSGi7 bundles. Many other projects can be considered part of
Eclipse Cbi such as Gerrit [2] and Bugzilla8.

• Eclipse EGit9: Enables the usage of the Git version control system10 in Eclipse. The Eclipse
EGit project develops tooling for Eclipse on top of JGit11, which is a Java implementation of
Git.

• Eclipse PDE12: The Plug-in Development Environment (PDE) provides tools to create, de-
velop, test, debug, build and deploy Eclipse plug-ins, fragments, features, update sites and
RCP products.

• Eclipse Egit-Training13: Training platform for Eclipse contributors.

• Eclipse Jgit: A lightweight Java library implementing the Git version control system.

• Eclipse M2E14: A project that provides integration for Apache Maven into the Eclipse IDE.

The observed time period, number of reviews, number of review comments and number of
KLOC (Kilo of Lines Of Code) analyzed are reported in Table 3.1. These projects were mainly
chosen due to the availability of review information in Gerrit (e.g., evolution of patches, stored
CR commits, reviewer comments in patches, etc.) and their different domain and size.

1https://www.eclipse.org/acceleo
2http://www.eclipse.org/cdt/
3http://www.eclipse.org/modeling/amalgam/
4http://www.eclipse.org/bpel/
5https://git.eclipse.org/r/cbi/org.eclipse.cbi
6https://www.eclipse.org/tycho/
7https://www.osgi.org/
8https://www.bugzilla.org/
9http://www.eclipse.org/egit/

10https://git-scm.com/
11https://www.eclipse.org/jgit/
12http://www.eclipse.org/pde/
13https://git.eclipse.org/r/sandbox/egit-training
14https://git.eclipse.org/r/m2e/m2e-core
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Table 3.1: Characteristics of the analyzed projects.

Project Observed # of review # of reviews # of
Period changes comments KLOC

Acceleo 2015-03–2017-03 56 243 622
Amalgam 2015-07–2017-03 4 4 26
Bpel 2012-10–2012-12 1 2 219
Cbi 2015-07–2017-03 1 1 13
Cdt 2012-05–2017-03 70 192 1,600
Egit-github 2012-02–2017-07 25 55 200
Egit-pde 2012-02–2012-03 1 17 531
Egit-training 2012-03–2016-03 3 3 195
JGit 2012-09–2017-03 1 1 212
M2e 2014-03–2017-03 49 130 3
Total - 211 648 3621

Gerrit Web Application. Each pending change in the Gerrit review system is part of a ChangeId,
which holds together all revisions belonging to a change. The first push to Gerrit creates such a
ChangeId. Every subsequent push of changes with the same ChangeId creates a new revision and
branch in the same ChangeId. Only once all changes are approved, the patch is merged into the
central repository. The revision number of the last reviewed revision is used as the commit-id
in the central repository. During the review process, assigned reviewers and verifiers can place
comments inside the files or on the whole patch. Reviews can be inspected in the Gerrit Web
Application (GWA), where all information regarding a change is summarized.

As shown in Figure 3.2, the following information is available: (1) author of the change, (2)
commit-number of the current review, (3) Change-Id, (4) information about the assigned review-
ers and verifiers, (5) changed files and (6) information whether comments were placed inside the
files by the reviewer.

The GWA also provides side-by-side diff viewing as shown in Figure 3.3 to examine code
changes introduced with the patch: (1) full path of the current file under review, (2) patch number
to diff against, (3) in-line review comment and (4) buttons to switch between files.

Data extraction. During the review process Gerrit stores information about the whole review
such as the change-id, files belonging to this review (patch sets), file modifications, review scores
given during the review and reviewer comments (in-line comments or general comments on the
patches). To obtain all relevant information needed for the research goals of this thesis, Gerrit
review data was downloaded using the gerrit query tool15. The tool allows to access the database
of Gerrit review data with ssh queries, returning a log file in either json or text format containing
the specified values. Listing 3.1 represents an example of such a query for the M2E project and
Figure 3.4 shows an extract of the obtained log file.

15https://git.eclipse.org/r/Documentation/cmd-query.html
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Figure 3.2: Example Gerrit (https://git.eclipse.org/r/#/c/44251/)

Figure 3.3: Example Gerrit side-by-side diff view (https://git.eclipse.org/r/#/c/44251/)
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ssh -p 29418 nzaugg@git.eclipse.org gerrit query --format text

project:m2e/m2e-core --patch-sets --current-patch-set --all-approvals

--files --comments --commit-message --dependencies --submit-records

> Logm2e-m2e-core.csv

Listing 3.1: Example Gerrit Query

Figure 3.4: Example Gerrit Log for the M2E Project

From the obtained log file, the following files in Comma Separated Values (CSV) format were
created for further processing:

• <project>-LogGerritCommentsInsideReview.csv: contains in-line comments in files of the avail-
able patchsets as well as line numbers and corresponding file paths.

• <project>-LogGerritPatchSets.csv: contains all relevant information regarding the patch sets
such as the change-id the patches belong to and approval scores.

• <project>-LogGerritComments.csv: contains general comments placed on whole patch sets
during the review.

Data classification into an initial taxonomy. The data files were then preprocessed by consid-
ering only patches that were merged into the central repository as well as by pruning out patches
that only contained auto-generated comments such as "Done". Auto-generated reviewer com-
ments are added by accepting an in-line comment inside the GWA. The authors then selected
among all code review commits or changes in the dataset the ones reporting explicit reviewers’
comments on the quality of patches. This step was needed to investigate actual changes trig-
gered by comments of reviewers. Hence, two authors of this work manually analyzed 648 re-
viewers’ comments related to 211 CR commits, by applying grounded theory [69], focusing on
the comments that could be relevant to the study (i.e., comments mentioning desired changes
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Figure 3.5: Taxonomy of changes of code under review by Beller et al. [15]

or highlighting issues in the code). By doing so, the two authors also verified whether the CR
changes performed by in the patches actually addressed the reviewers’ comments. For each an-
alyzed change, a short description and potential CR change type was noted. If the description
did not match a previously reported change type, a new CR change type was added; else it was
merged with an existing change type. Then, the reported change types were used to build the initial
taxonomy containing 3 high-level and 15 low-level categories of change types in MCR. This initial
taxonomy laid the basis for the future investigations in this thesis. The detailed initial taxonomy
will be introduced in Chapter 4.

Validation with an existing taxonomy. In order to validate the initial taxonomy and find even-
tual missing categories, an existing taxonomy from the literature was consulted. As mentioned in
the chapter Related Work, Beller et al. [15] manually analyzed changes taking place in reviewed
code from two OSS projects and classified them into evolvability changes and functional changes, as
shown in their validated categorization scheme (Figure 3.5). To verify the completeness of the ini-
tial taxonomy, emerged via manual analysis of core review data of the projects reported in Table
3.1, a one-to-one matching was performed between elements in the initial taxonomy and the ele-
ments of the categorization scheme by Beller et al. [15]. The authors observed that some CR change
types composing the initial taxonomy were also present in the one by Beller et al., while others were
not included. Thus, categories coming from the scheme by Beller et al. and the previously elicited
categories were split, merged, refactored, integrated and combined into an intermediate taxonomy.
Further details about the intermediate taxonomy are presented and discussed in Chapter 4.

Validation through a survey. In a further step to build the final taxonomy of detailed CR change
types, the intermediate taxonomy was validated through a survey (Section 3.2), asking developers
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to state whether they consider the intermediate taxonomy to be exhaustive (RQ1). Furthermore, the
survey asked participants what type of feedback they usually receive or expect in code reviews
(RQ1). By evaluating the answers given in the survey, the intermediate taxonomy was extended
with additional change types. The output of this phase consisted of a final taxonomy that was
named CRAM (Code Review chAnges Model).

As shown in the work by Beller et al. [15], most changes (75%) in MCR are maintainability-
related problems and only 25% are considered functional issues. Following this line, to quan-
titatively discuss recurring changes in MCR, one author of the thesis re-classified all reviewer
comments in the preprocessed dataset into the final taxonomy CRAM. A second author validated
this classification by selecting 100 random samples from the dataset, classifying these samples
and ultimately comparing them with the classification by the other author. Whenever an author
found a classification which differed from the other author’s classification, they inspected the de-
tailed reviewer comment in the GWA and discussed it. In this way, eventual misclassification
possibilities were minimized. The classified dataset was then quantitatively analyzed to learn
more about recurrent change types in MCR.

3.2 Survey
Goal. As already mentioned, the first part of the survey aimed at validating the intermediate
taxonomy and finding out what type of feedback developers receive and expect in MCR. Fur-
thermore, the survey asked participants to state (i) what tools they need or envision to support
relevant CR changes (RQ2); and (ii) which approaches developers suggest to solve the recurrent
issues in CRAM (RQ3).

Design. The survey was implemented using Google Forms16. The structure of the questionnaire
consisted of 18 questions, which included six multiple choice (MC), and twelve open (O) ques-
tions. In order to receive less biased answers from the participants, many were posed as open
questions, thus giving the developers opportunity to give more detailed and personalized feed-
back.

Table 3.2: Survey questions. (MC: Multiple Choice, O: Open answer)
Section ID Summarized Question Type # Resp.

Background

Q0.1 What is your current job? MC 52
Q0.2 Approximatively, what is the size (in terms of lines of code) of the system you are contributing in most? O 52
Q0.3 What is the approximate size of the development team of the system you are contributing to most? O 52
Q0.4 How many years of programming experience do you have? MC 52
Q0.5 How do you rate your programming experience? MC 52

Taxonomy Evaluation

Q1.1 What is a code review? O 52
Q1.2 Does the taxonomy cover all changes that occur in code reviews? MC+O 52
Q1.3 Which Change categories/Topics occur the most inside code reviews? O 52
Q1.4 What kind of feedback do you expect from other developers during code reviews? O 52
Q1.5 What kind of feedback do you usually receive from other developers during code reviews? O 52

Automation Needs

Q2.1 What kind of feedback would you expect from recommender-tools during code review? O 52
Q2.2 What kind of automation do you envision for automating code review practices? O 52
Q2.3 What kind of automation do you envision for the fixing and detection of Documentation issues? O 52
Q2.4 What kind of automation do you envision for the fixing and detection of Style issues? O 52
Q2.5 What kind of automation do you envision for the fixing and detection of Structural issues? O 52
Q2.6 Which code review change types could be automatically detected and/or fixed by tools? O 52
Q2.7 How would you approach the detection and fixing of the code review change types mentioned in Q2.6? O 52

The survey questions reported in Table 3.2 were grouped into three topics: (i) Background, (ii)
Taxonomy Evaluation, and (iii) Automation Needs. Questions in the Background section asked partic-

16https://gsuite.google.com/products/forms/
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Table 3.3: Information About Survey Participants

Participants Profile Nr. (%)

Industrial Developer 50%
Open Source Developer 11.15%

Senior Researcher 19.2%
CS Student 9.6%

Other 9.6%

Team Size Projects Size [LoC]

1-5 38% 1,000-300,000 66%
5-10 14% 300,000-1,000,000 15%
10-15 10% >1,000,000 19%
>15 38%

Experience (Years) Experience (Rate)

< 2 1.9% Poor 1.9%
2-5 11.5% Fair 0%
5-8 19.2% Good 19.2%
>8 67.3% Very Good 32.7%

Excellent 46.2%

ipants about their occupation as well as their experience with programming and CR in general.
The questions in the other two sections, Taxonomy Evaluation, and Automation Needs, represented
the core part of the survey, aiming at understanding code review practices and related automation
needs and approaches.

Background. The survey was available for two months to maximize the amount of collected
answers and more than 200 direct contacts were invited to fill out the questionnaire. In total 52
responses were collected, with a return rate of about 23%. Table 3.3 lists demographic information
about the participants in the survey. Among the participants, there were 26 (50%) industrial and
6 (11.5%) open-source developers (Q0.1). The rest of the participants (38.5%) consisted of Senior
Researchers, Computer Science students and other occupations. In regard to the self-estimation
of their own development experience, most of the developers rated themselves as “very good”
(32.7%) or “excellent” (46.2%) programmers (Q0.5), and 21% rated themselves as "good", "fair" or
"poor" programmers. Moreover, most of the participants are experienced developers, with around
30% of them having between 2 and 8 years of development experience, and around 67% having
even more than 8 (Q0.4). Only 1.9% of the participants have less than two years of programming
experience.

Taxonomy evaluation. The Taxonomy Evaluation questions were aimed at assessing the com-
pleteness of the intermediate taxonomy (RQ1) as well as the type of feedback developers usually re-
ceive and expect in code reviews (RQ1). To this extent, contextually to the five questions of section
Taxonomy Evaluation (Q1.1-Q1.5), the participants were given access to the intermediate taxonomy
derived after the manual classification of changes and the integration with Beller’s taxonomy [15].
At this stage of the survey developers had the possibility to evaluate the intermediate taxonomy and
to suggest further categories to integrate into it (Q1.2). Questions Q1.3-Q1.5 asked about the feed-
back developers usually expect and receive by other reviewers in MCR. For the assessment of
the saturation of the taxonomy one of the authors performed an iterative content analysis [40]
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of the feedback provided by the participants. Thus, the author started with an empty list of CR
change type categories and carefully analyzed the feedback provided by the developers. Each time
a new CR change type category was found, the category was added to a list and the feedback was
labeled with the matching categories. The labeled feedback is available in the appendix. After
this step, the initial categorization was refined, performing another iteration involving the other
author double-checking the classification of the feedback and removing potentially redundant
categories from the list. In combination with the intermediate taxonomy, the new categories were
summarized into CRAM, a taxonomy of CR change types grouped in high- and low-level categories.

Automation needs. The Automation Needs section (Q2.1-Q2.7) was focused on understanding
which tools developers would need during code review (Q2.1 and Q2.2), with particular focus on
recurrent and critical changes and problems occurring in CR activities (Q2.3-Q2.5) [55]. Moreover,
questions Q2.6 and Q2.7 aimed at understanding how developers would approach the automatic
detection and fixing of CR change types.

Automation needs evaluation process. For the evaluation of the Automation Needs the authors
conducted an iterative content analysis [40] of the feedback provided by the participants. In a first
step the answers were downloaded from Google Forms and each question in Q2.1 to Q2.7 was sep-
arated into its own list. The next step involved one author going through each list and reading the
feedback. By doing so, the author highlighted sentences or words which referred to a category of
CRAM or provided interesting information for the evaluation. If a feedback contained information
about multiple CRAM categories, it was duplicated to reliably track the number of times certain
categories were mentioned. Feedback that was cryptic or ambiguous was encoded as such and
not considered for the evaluation. In a next step, the duplicate mentions by participants were
merged for the final evaluation step, leaving only the correct number of times participants men-
tioned a CRAM category. The full dataset with the encoded survey feedback is available in the
appendix. This procedure was applied for questions Q2.1 - Q2.5 and Q2.6 - Q2.7 individually, the
former being more focused on automation needs in MCR and the latter asking questions about
enabling such automation needs.

Table 3.4 shows an example of how the feedback for Q2.3 of a participant was evaluated and
split into multiple rows. In this way, 364 answers to 7 open questions were analyzed and encoded.
To gain more insights into the various needed automation solutions and approaches mentioned
by developers, clusters of similar statements were built. This facilitated the evaluation of how
frequent certain solutions were mentioned.

Table 3.5 shows an example of how different suggestions were given within the same CRAM
category. This is illustrated on the low-level categories Object-Oriented Changes and Comments.
Within these categories, multiple clusters were introduced: detect architectural violations and sug-
gest design patterns for Object-Oriented Changes and generate Javadoc comments and propose comments
(templates) for the Comments category.

3.3 Proof of Concept
In order to investigate the suggested strategies by developers on how to implement and automate
certain aspects of MCR, a proof of concept is elaborated (RQ3).

Strategy. An approach is proposed how CR activities could be facilitated by tools that are able
to detect and fix issues in MCR. To that end, the results of RQ2 were consulted and analyzed.
The approach is based on the solutions, techniques and data developers suggested in the survey.
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Table 3.4: Encoding of Survey Feedback
High-level Low-level Feedback Question Question ID Occupation

Documentation Naming

"in Terms of Java, I would expect that the

tool could help generating the javadocs,

the license header, fix the naming con-

ventions if possible, propose some com-

ments (maybe templates), suggest the

right modifiers. Pretty much every-

thing."

Q2.3 automation_doc_14 Senior Researcher

Documentation
Visibility

(Modifiers)

"in Terms of Java, I would expect that the

tool could help generating the javadocs,

the license header, fix the naming con-

ventions if possible, propose some com-

ments (maybe templates), suggest the

right modifiers. Pretty much every-

thing."

Q2.3 automation_doc_14 Senior Researcher

Table 3.5: Clustering of Survey Feedback
High-level Low-level Solution # distinct Mentions
Structure Object-Oriented Changes detect architectural violations 2
Structure Object-Oriented Changes suggest design patterns 1
....
Documentation Comments generate Javadoc comments 1
Documentation Comments propose pomments (templates) 1
...

A proof of concept was designed to explore how various metrics that characterize a patch can be
extracted in the MCR process. The proof of concept highlights how an implementation towards the
extraction of these metrics can look like.

Feature and metrics selection. Based on developer feedback in the survey (Section 3.2) re-
garding automation needs in MCR (RQ2), the proposed heterogeneous types of software artifacts
(e.g., commit notes, source code and Javadoc documentation) and historical change data were an-
alyzed. Based on this information, various CR metrics were conceived that characterize the status
of a patch in any given CR commit. More specifically the following types of metrics:

• Static Code Metrics such as Lines of Code (LOC) and Cyclomatic Complexity.

• Change Metrics describing characteristics of the review process such as the age of a file or
how many authors have previously changed the file.

• Object Oriented Metrics using the metrics suite by Chidamber-Kemerer [22] such as Depth of
Inheritance Tree and Number of Fields.

• Metrics built around the output of ASATs. Considered were warnings by Checkstyle and
PMD.
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• Tf-idf frequency of word in commit messages of submitted patches to review.

• Low level source code changes obtained by the existing tool CHANGEDISTILLER [31].

The definition of these metrics (i) was guided by the recommendations received by the partic-
ipants and (ii) conceived around the specific CR change types in CRAM. Chapter 4 presents more
information about the metrics and discussed their characteristics.





Chapter 4

Results and Discussion

In this chapter, results obtained in the manual classification of review changes and the evaluation
of the survey are presented and discussed. More specifically, in Section 4.1, CRAM is introduced,
which constitutes a detailed taxonomy of code changes occurring in MCR (RQ1). Section 4.2
presents the evaluation of the feedback gathered in the survey regarding automation needs in MCR
(RQ2). In Section 4.3, the metrics considered for a proof of concept are defined and presented (RQ3).

4.1 Change Types in MCR
In the following the results obtained during the initial manual classification of review changes
and during the evaluation of survey questions Q1.1-Q1.5 (Taxonomy Evaluation) are presented and
discussed, answering RQ1.

4.1.1 Initial Taxonomies
Initial taxonomy. After the initial manual classification of CR comments and commits, a total
of 15 initial potential CR change types were defined and grouped into an initial taxonomy of
3 high- and 15 low-level categories of changes reported in Table 4.1. The upper half of the tax-
onomy represents changes analyzed in source code files in code review and are subdivided into
either production or test code of a project. Each change can then be categorized as either correc-
tive, perfective or other. In this first taxonomy, a corrective change was only classified as being
a bug-fix or a change in the documentation of the code. Perfective changes on the other hand are
related to changes which do not change the functionality of the system, but rather improve cer-
tain parts of it (Code Documentation, Style, Refactorings, Best Practice, Performance, License Header,
Testing). The high-level category Other Changes reports additional changes that were encountered
during the manual classification of the review comments. Reported are changes regarding Contin-
uous Integration/Continuous Deployment (CI/CD), changes specific to a programming language or
framework (e.g., pom.xml for Maven 1), configurations for Automated Static Analysis Tools (ASAT),
e.g., Checkstyle [1], changes regarding general software documentation and commit messages.

Integrated taxonomy. As described in the Methodology (Chapter 3), the already existing tax-
onomy by Beller et al. was consulted to integrate change types previously not considered. In doing
so, it was noticed that most of the categories in the initial taxonomy (Table 4.1) were also present in
Beller’s. Thus, Beller’s categories and the ones defined during the manual classification were in-
tegrated, merged and combined into an intermediate taxonomy which can be seen in Tables 4.2 and

1https://maven.apache.org/
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Table 4.1: Initial taxonomy of changes in CR
Artifact Maintenance

Activity
Maintenance Topic

Production/Test Code

Corrective
Code Documentation: issues in Javadoc, modifier declarations and spelling mistakes
Bug-fix: all changes involved in fixing the functionality of the source code (i.e., missing
checks, logic etc.)

Perfective

Code Documentation: issues in Javadoc, modifier declarations and spelling mistakes.
Style: changes regarding the formatting, white space usage, indentation, blank and long
lines
Refactorings: improvements needed to the organization of the software elements (i.e.,
splitting an interface into two separate interfaces or introduction of design patterns)
Best Practice: issues related to violations of standard coding conventions
Performance: issues regarding the optimization of the software (i.e., resource and memory
usage)
License Header: missing license statements in source code files
Testing: missing tests, lack of test coverage and general issues in test classes and functions

Other Changes

Continuous Integration / Continuous Deployment configurations: changes to configu-
ration files concerning CI or CD pipeline/setup
Language or Framework specific: changes to files native to the used programming lan-
guage, e.g., MANIFEST for Java
Automated Static Analysis Tools Configurations: changes in the configuration of Linters,
Checkers and Recommenders used in the project (e.g., Checkstyle, PMD, FindBugs etc.)
Software Documentation: changes to the external Software Documentation files
Commit Message: updates/changes in the commit message of a submitted patch. Mostly
related to wrong description of the change or not capturing all changes
Other Changes: includes changes go XML, Scripts, README files, HTML files and Ver-
sion Control

4.3. Where the initial taxonomy followed the notion of dividing changes into corrective and perfec-
tive changes, the new taxonomy differentiates between maintainability and functionality changes.
Code Documentation in the initial taxonomy was split up and integrated into the respective more
detailed documentation category by Beller. Additionally, the License Header category which was
not present in Beller’s taxonomy was moved to Textual Documentation changes. As Style was al-
ready present in Bellers taxonomy in more detail, these categories were adopted. Changes falling
under Refactoring in the initial taxonomy were similar to the Structure changes by Beller and thus
added to the intermediate taxonomy. Additionally, the high level category Functionality comprising
changes to the Interface, Logic, Resource, Check and Larger defects was added, thus replacing Bug-fix
in the initial taxonomy.

One high level category which was not yet captured by the taxonomy by Beller was the Other
Changes. In this category change types are reported that are usually not found in source-code
files, which are nonetheless essential to the runtime of a software project. These changes include
changes in commit messages, CI/CD configuration files, ASAT configurations, language or framework
specific changes and runtime-configurations.

4.1.2 CRAM Model
The taxonomy obtained after integrating and merging with the taxonomy by Beller built the basis
for the survey and its evaluation. As reported in the survey description (3.2), the study partici-
pants were asked to provide feedback on this new taxonomy (Q1.1-Q1.2 in Table 3.2). As a result,
28% of the developers claimed in Q1.2 that the proposed taxonomy was incomplete, reporting a
total of 17 answers related to additional activities, tasks or changes occurring during code reviews
not yet reported in the provided taxonomy.
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Table 4.2: Intermediate taxonomy after validation with the taxonomy by Beller et al. [15] - Part 1
Activity Category Topic Detailed Change

Maintainability
&
Perfective
Maintenance

Documentation (D)

Textual Documentation: Issues concerning
the documentation through textual representation,
such as naming of classes, method, variables.
This also includes license headers, typos in either
line comments or Javadoc

Naming: problems relating to software element (e.g., methods, classes,
variables, etc.) names that do not conform to the naming policy of the
project
Comments: explanations of complex code fragments, classes, methods.
Issues include wrongly placed comments, missing comments, missing or
wrong Javadoc etc.
License Header: issues regarding missing or wrong license headers in-
side source-files
Other:

Language Supported Documentation:
Documentation through statements/
elements that the programming language
offers (e.g., java public modifier to document
that it is accessible from the outside)

Immutability: not declaring a variable to be immutable when it should
have been or declaring it immutable when it should have not been

Visibility (Modifiers): software element (e.g. method, variable, class)
has too much or too restricted visibility

Style (S)

Brackets & Braces: e.g., single statement after a conditional branch
Indentation: consistent indentation of the code
Blank Lines: excess of blank lines or too few blank lines or wrong split
of lines
Long Lines: code statement too long, over a specific amount of characters
Whitespace Usage: usages of blank spaces in the code
Grouping: grouping of methods with related functionality or adding
class variables at the beginning of the class
Commented out code: remove code that is commented out (also TODO
and FIXME)

Structure (STR)

Re-implementation: Structural defects
require an alternative implementation
method. For example, replacing the program’s
array data structure with a vector and knowing
the existence of prebuilt functionality that could
be used instead of a self-programmed
implementation would be considered a solution
approach defect. Therefore, solution
approach defects are not about re-organizing
existing code but rethinking the current
solution and implementing it in
a different way.

Semantic Duplication: code structures that have a similar intention but
are implemented syntactically different
Semantic Dead Code: code fragments that are executed, but they do not
serve any meaningful purpose and/or have no effect on the result
Change Function: change function call to another function because it
uses old or deprecated functions
Standard Coding Conventions: use exceptions for error messaging in-
stead of return values, use predefined constants instead of magic num-
bers, built-in data structures instead of own implementation etc.
New Functionality: new functionality to ensure evolvability, e.g., create
new classes, methods to make code more maintainable
Testing: issues regarding test coverage, wrong tests, additional tests etc.
Other

Organization: Defects that can be fixed by
applying structural modifications to the
software. Moving a piece of functionality
from module A to module B is a possible
strategy for this.

Imports: issues with wrong or missing or unused import statements
Move Functionality: move functions, part of functions, or other func-
tional elements to a different class, file, or module
Long Sub Routine: split long and complex functions into multiple func-
tions
Dead Code: remove code that is never reached and executed
Duplication / Redundant Code: remove duplicate code or code that is
not used
Complex Code / Simplification: restructure or rewrite implementation
to make it more understandable
Statement Issue: splitting, combining or otherwise reorganizing a state-
ment inside a function
Consistency: means the need to keep code consistent in a sense that sim-
ilar code elements operate in a similar fashion and are more or less sym-
metrical. For example, similar tasks in similar classes should have similar
implementations
Other

Functionality
&
Corrective
Maintenance

Interface (I)
Function Call: call to another part of system or library is incorrect or
missing
Parameter: function call or other interaction has incorrect or missing pa-
rameters

Logic (L)

Compare: mistake in a comparison statement
Computation: computations produce incorrect results
Wrong Location: correct operation is performed, but it is done too soon
or too late
Algorithm/Performance: inefficient algorithm is used

Resource (R)

Variable Initialization: variables are left uninitialized prior to use.
Uninitialized variables may contain any value and using such variable
for comparison or calculation produces arbitrary results
Memory Management: mistake is made in handling the system memory
Data & Resource Manipulation: defects related to manipulating or re-
leasing data or other resources

Check (C)
Check Function: when a function is called there is also a need to check
that the value returned is valid and that no error occurred
Check Variable: there is a need to check variable
Check User Input: the need to validate user input

Larger Defects (LD)
Completeness: partially implemented feature
GUI: defects in the user interface code relating to the consistency of the
user-interface, and to the options made possible to the user in each situa-
tion.
Check outside code: defects that required that part of the application
code that was not under review to be checked, as it was likely to contain
incorrect code based on the current review.
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Table 4.3: Intermediate taxonomy after validation with the taxonomy by Beller et al. [15] - Part 2
Artifact Activity

Other Changes

Changes not typically found in source-code

files (.java, .py, .cpp etc.) which are

nonetheless essential to the runtime

of a project

Commit Message: updates/changes in the commit message of a submitted patch. Mostly

related to wrong description of the change or not capturing all changes

Continuous Integration / Continuous Deployment configurations: changes to configura-

tion files concerning the Continuous Integration or Continuous Deployment pipeline/setup

Automated Static Analysis Tools configurations: changes in the configuration of Linters,

Checkers, Recommenders used in the project (e.g., Checkstyle, PMD, FindBugs etc.)

Language or Framework specific: changes to files native to the used programming language.

For example MANIFEST for Java

External Software Documentation: changes to the external Software Documentation files

Runtime Configurations: docker-configs, ansible playbooks, deployment configs etc

Other: includes changes to XML, Scripts, README files, HTML files and Version Control

Additional changes suggested by developers. The encoding of these answers resulted in
the identification of a total of 3 additional change types, not previously found in the taxonomy
(highlighted in BLUE in Tables 4.4 and 4.5). Developers reported that in code review, changes re-
garding Logging and Error handling should be considered in the taxonomy. Furthermore, multiple
participants mentioned the importance of the security aspect when doing code reviews; something
which was not yet considered in the taxonomy. Lastly, the encoding of the feedback revealed that
developers think code reviews often result in a change to the system architecture, such as splitting
an interface into two distinct interfaces, introducing abstractions, or the inclusion of design pat-
terns. Thus, the change type Architectural changes was added to the taxonomy. These categories
were then integrated into the final set of CR change types composing CRAM. The encoded sentences
from Q1.2 can be found in the appendix.

Taxonomy structure. Tables 4.4, 4.5 and 4.6 provide an overview of CRAM. To facilitate the
understanding of this taxonomy, each CR change type is grouped according to different high- and
low-level dimensions: (i) artifact type involved in the change, e.g., test, production code (in Tables
4.4 and 4.5) or configuration files (in Table 4.6); (ii) the performed type of CR activities/changes (e.g.,
perfective and corrective maintenance); (iii) the specific CR change categories associated with each
activity (e.g., changes related to artifact structure, its logic and resource utilization); and finally,
(iv) the detailed or fine-grained changes associated with each CR change category. Moreover,
the taxonomy highlights with different colors the detailed CR change types that emerged during
the manual classification and the integration with Beller’s taxonomy. Specifically, (i) in BLACK
CR changes types are highlighted that overlapped or were merged with the schema by Beller et
al. [15]; (ii) in RED categories are highlighted that emerged during the manual analysis of CR
commits and comments of the ten open source projects and that were not present in the schema
by Beller et al.; and (iii) in BLUE the additional change types are highlighted suggested by the
developers and that were not present in the intermediate taxonomy.

Taxonomy categories. CRAM includes CR changes related to the structure, documentation and
style of the test and production code. Other changes are performed to fix issues related to the
way existing or added functionalities are implemented in the patch under review, such as in-
terface (issues related to the communication with a different part of the system), the logic of the
code, its resource allocation and consumption, wrong and incomplete checks of values assigned
to code elements, and different types of defects. Table 4.5 reports further CR change types related
to the modifications made by developers in non-source-code files which are, in some cases, also
essential to the runtime of a project: (i) configuration files related to the continuous integration
and continuous deployment processes, and static analysis tools; (ii) language or framework specific files;
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(iii) changes to external software documentations; (iv) files responsible for runtime configurations (e.g.,
Docker files); (v) commit messages; and (vi) other artifacts (e.g., README files).

CRAM represents the final taxonomy of detailed changes occurring in MCR and represents one
of the contributions of this thesis. The findings and insights gained to answer the first research
question are discussed in Section 4.1.3.

Recurring issues in MCR. After manually classifying the dataset of review changes into CRAM,
the following distribution of changes was obtained. The following tables show number of oc-
currences of review change types in CRAM and their percentages. Table 4.7 shows the distribution
of changes on Artifact-level. Around 83% of all review comments triggered changes in source
code files belonging to either production code or test code. Table 4.8 illustrates the distribution
of changes in production and test code and their respective count in the activities maintainability
and functionality. Table 4.9 depicts how overall the changes are distributed within the function-
ality and maintainability activities. Changes that do not belong to either production or test code
were grouped under Other Changes and are presented in Table 4.10. The distribution within the
different taxonomy change types are shown in Table 4.11. This includes all changes from both Pro-
duction and Test Code. Table 4.12 depicts the distribution of changes of the top 5 topics and their
respective percentage. This includes all changes from both Production and Test Code. Table 4.13
reports numbers on the distribution of the top 15 Detailed Change category.

Results gathered from the manual classification regarding the distribution of code change types
observed in the ten studied projects are discussed together with the findings from CRAM in Section
4.1.3.

4.1.3 Recurrent and Novel Change Types in MCR
In the following, we discuss our results and answer RQ1: "What types of changes occur during code
reviews?".

Knowledge transfer. The evaluation of survey question Q1.1 showed, that most (78%) devel-
opers believe contemporary CR practices are needed to facilitate the team knowledge transfer as
well as to improve the overall quality and performance of the patch under review. This prelim-
inary finding is in line with the results of the work by Bacchelli and Bird [6]. However, we also
discovered that compared to the schema by Beller et al. [15], emerging change types characterize
MCR activities and that novel tools and approaches are needed to support such activities. In the
following, the main elements composing CRAM, with specific focus on the emerged CR categories
compared to the schema by Beller et al. are described and our findings are presented.

MCR facilitates team knowledge transfer and helps to improve the overall quality
and performance of the reviewed patch.

Documentation. Changes/issues related to Documentation (D), Style (S) and Structural (STR)
are very recurrent in both traditional and MCR as reported by 60% of our study participants.
Beller’s study [15] suggests that most documentation issues involve changes to (i) missing, wrong
or incomplete Javadocs and in-line comments (D.1); and (ii) inconsistent naming choices in the
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Table 4.4: CRAM (Code Review chAnges-Model) - Part 1
Activity Category Topic Detailed Change

Maintainability
&
Perfective
Maintenance

Documentation (D)

Textual Documentation: Issues
concerning the documentation
through textual representation,
such as naming of classes, method,
variables. This also includes license
headers, typos in either line
comments or Javadoc

(D.1) - Naming: problems relating to software element (e.g.,
methods, classes, variables, etc.) names that do not conform to
the naming policy of the project
(D.2) - Comments: explanations of complex code fragments,
classes, methods. Issues include wrongly placed comments,
missing comments, missing or wrong Javadoc etc.
(D.3) - License Header: issues regarding missing or wrong li-
cense headers inside source-files
(D.4) - Typos: spelling mistakes in the documentation

Language Supported Documentation:
Documentation through statements/
elements that the programming
language offers (e.g., java public
modifier to document that it is
accessible from the outside)

(D.5) - Immutability: not declaring a variable to be immutable
when it should have been or declaring it immutable when it
should have not been
(D.6) - Visibility (Modifiers): software element (e.g. method,
variable, class) has too much or too restricted visibility

Style (S)

(S.1) - Brackets & Braces: e.g., single statement after a condi-
tional branch
(S.2) - Indentation: consistent indentation of the code
(S.3) - Blank Lines: excess of blank lines or too few blank lines
or wrong split of lines
(S.4) - Long Lines: code statement too long, over a specific
amount of characters
(S.5) - Whitespace Usage: usages of blank spaces in the code
(S.6) - Grouping: grouping of methods with related functionality
or adding class variables at the beginning of the class
(S.7) - Commented out code: remove code that is commented
out (also TODO and FIXME)

Structure (STR)

Re-implementation: Structural
defects require an alternative
implementation method. For example,
replacing the program’s array data
structure with a vector and knowing
the existence of prebuilt functionality
that could be used instead of a
self-programmed implementation
would be considered a solution
approach defect. Therefore, solution
approach defects are not about
re-organizing existing code but
rethinking the current solution and
implementing it in a different way.

(STR.1) - Semantic Duplication: code structures that have a sim-
ilar intention but are implemented syntactically different
(STR.2) - Semantic Dead Code: code fragments that are exe-
cuted, but they do not serve any meaningful purpose and/or
have no effect on the result
(STR.3) - Change Function: change function call to another func-
tion because it uses old or deprecated functions
(STR.4) - Standard Coding Conventions: use exceptions for er-
ror messaging instead of return values, use predefined constants
instead of magic numbers, built-in data structures instead of own
implementation etc.
(STR.5) - New Functionality: new functionality to ensure evolv-
ability, e.g., create new classes, methods to make code more
maintainable
(STR.6) - Strings (Wording): issues regarding contents of strings,
badly composed strings
(STR.7) - Logging: add the ability to methods for logging results
or errors
(STR.8) - Testing: issues regarding test coverage, wrong tests,
additional tests etc.

Organization: Defects that can be
fixed by applying structural
modifications to the software. Moving
a piece of functionality from module
A to module B is a possible strategy
for this.

(STR.9) - Imports: issues with wrong or missing or unused im-
port statements
(STR.10) - Move Functionality: move functions, part of func-
tions, or other functional elements to a different class, file, or
module
(STR.11) - Long Sub Routine: split long and complex functions
into multiple functions
(STR.12) - Dead Code: remove code that is never reached and
executed
(STR.13) - Duplication / Redundant Code: remove duplicate
code or code that is not used
(STR.14) - Complex Code / Simplification: restructure or rewrite
implementation to make it more understandable
(STR.15) - Statement Issue: splitting, combining or otherwise
reorganizing a statement inside a function
(STR.16) - Consistency: means the need to keep code consistent
in a sense that similar code elements operate in a similar fashion
and are more or less symmetrical. For example, similar tasks in
similar classes should have similar implementations
(STR.17) - Architectural changes: code reviews often result in a
change to the system architecture, like splitting an interface into
two distinct interfaces, introducing abstractions, or the inclusion
of design patterns
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Table 4.5: CRAM (Code Review chAnges-Model) - Part 2
Activity Category/Topic Detailed Change

Functionality
&
Corrective
Maintenance

Interface (I)
(I.1) - Function Call: call to another part of system or library is
incorrect or missing
(I.2) - Parameter: function call or other interaction has incorrect
or missing parameters

Logic (L)

(L.1) - Compare: mistake in a comparison statement
(L.2) - Computation: computations produce incorrect results
(L.3) - Wrong Location: correct operation is performed, but it is
done too soon or too late
(L.4) - Algorithm/Performance: inefficient algorithm is used

Resource (R)

(R.1) - Variable Initialization: variables are left uninitialized
prior to use. Uninitialized variables may contain any value and
using such variable for comparison or calculation produces arbi-
trary results
(R.2) - Memory Management: mistake is made in handling the
system memory
(R.3) - Data & Resource Manipulation: defects related to manip-
ulating or releasing data or other resources
(R.4) - Security: issues related to the application’s/software’s se-
curity aspects
(R.5) - Concurrency: issues regarding concurrency

Check (C)
(C.1) - Check Function: when a function is called there is also a
need to check that the value returned is valid and that no error
occurred
(C.2) - Check Variable: there is a need to check variable
(C.3) - Check User Input: the need to validate user input

Larger Defects (LD)
(LD.1) - Completeness: partially implemented feature
(LD.2) - GUI: defects in the user interface code relating to the
consistency of the user-interface, and to the options made possi-
ble to the user in each situation.
(LD.3) - Check outside code / Domino Effects: defects that re-
quired that part of the application code that was not under re-
view to be checked, as it was likely to contain incorrect code
based on the current review.
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Table 4.6: CRAM (Code Review chAnges-Model) - Part 3
Artifact Activity

Other Changes
Changes not typically
found in source-code
files (.java, .py, .cpp etc.)
which are nonetheless
essential to the runtime
of a project

Commit Message: updates/changes in the commit message of a submitted patch.
Mostly related to wrong description of the change or not capturing all changes
Continuous Integration / Continuous Deployment configurations: changes to con-
figuration files concerning the Continuous Integration or Continuous Deployment
pipeline/setup
Automated Static Analysis Tools configurations: changes in the configuration of Lin-
ters, Checkers, Recommenders used in the project (e.g., Checkstyle, PMD, FindBugs
etc.)
Language or Framework specific: changes to files native to the used programming
language. For example MANIFEST for Java
External Software Documentation: changes to the external Software Documentation
files
Runtime Configurations: docker-configs, ansible playbooks, deployment configs etc
Other: includes changes to XML, Scripts, README files, HTML files and Version Con-
trol

Table 4.7: Distribution of changes in CRAM by Artifact
Artifact # Classified Changes Percentage
Production Code and Test Code 521 83%
Other Changes 110 17
Total 631 100%

Table 4.8: Distribution of changes in CRAM by Production Code and Test Code
# Classified Changes Percentage

Production Code 440 100%
Functionality 89 20%
Maintainability 351 80%

Test Code 81 100%
Functionality 15 19%
Maintainability 66 81%

Table 4.9: Distribution of changes in CRAM by Functionality and Maintainability
# Classified Changes Percentage

Functionality 104 20%
Check 6 1%
Interface 19 4%
Larger Defects 6 1%
Logic 37 7%
Resource 36 7%

Maintainability 417 80%
Documentation 128 25%
Structure 252 48%
Style 37 7%

Total 521 100%
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Table 4.10: Distribution of changes in CRAM by Other Changes
# Classified Changes Percentage

ASAT Configurations 2 2%
Commit Messages 27 25%
Language or Framework specific 57 52%
Other 21 19%
Runtime Configurations 3 3%
Total 110 100%
% of all Changes 17%

Table 4.11: Distribution of changes in CRAM by Category
Category # Classified Changes Percentage
Structure 252 48%
Documentation 128 25%
Logic 37 7%
Style 37 7%
Resource 36 7%
Interface 19 4%
Check 6 1%
Larger Defects 6 1%
Total 521 100%

Table 4.12: Distribution of changes in CRAM by top 5 Topics
Topic # Classified Changes Percentage (of 521 changes)
Solution Approach 199 38%
Textual Documentation 119 23%
Organization 53 10%
Logic 38 7%
Style 37 7%
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Table 4.13: Distribution of changes in CRAM by top 15 Detailed Changes
Detailed Change # Classified Changes Percentage (of 521 changes)
Strings (Wording) 87 17%
Comments 66 13%
Complex Code/Simplification 36 7%
Testing 27 5%
Duplication/Redundant Code 25 5%

Standard Coding Conventions 24 5%

Data & Resource Management 22 4%
Naming 20 4%
Compare 19 4%
Algorithm/Performance 18 3%
Typos 18 3%
Function Call 17 3%
Logging/Error Handling 17 3%
License Header 15 3%
Commented out Code 14 3%

documentation and code (e.g., naming of classes, methods and variables) of the system (D.2). Dur-
ing the manual classification of changes we found that developers in MCR also carefully review
and change or fix the license headers (D.3) and fix potential typos (D.4) in either in-line comments,
Javadocs or Strings in general. Surprisingly, these CR change types (D.3-4) were not present in
the taxonomy by Beller et al.. Related to these changes the study participants claimed that “tools
like PMD, Checkstyle already detect some of such problems (D.4)", e.g., typos, “but are not always so
accurate". In addition, reviewing and updating the license header of Java classes represents an
“important task to avoid licensing issues" [68] and to avoid that the software documentation is in
general “not updated or incomplete".

Style. Best practices regarding Style concern the way code is formatted and appears to devel-
opers, e.g., proper code indentation (S.2), the usage of whitespace (S.5), and consistent blank lines
(S.3). During the integration of the taxonomy with the one by Beller et al., we noticed that issues
regarding the removal of commented out code as well as TODO and FIXME comments (S.7) were
not considered. Also in this case, study participants claimed that “tools for this already exists, like
PMD and Checkstyles" “but are not always so accurate".

Structure. Structural defects require alternative implementations and/or refactoring opera-
tions in both test and production code. Similar to the taxonomy by Beller et al. [15], CRAM differen-
tiates between re-implementation and organizational changes. Re-implementation changes (STR.1-5)
involve various activities: the removal or modification of semantic dead code (STR.2) and seman-
tic duplications (STR.1), improvements to the code according to coding conventions (STR.4), the
removal of function calls to deprecated functions (STR.3) and creating new functions to ensure
the evolvability (STR.5) of the code under review. Organizational changes (STR.10-13, STR.15-16)
on the other hand are related to defects that can be fixed by applying structural modifications
to the software (e.g., refactoring and reorganization of statements inside a method). Change types
in re-implementation and organizational changes that were not considered in the schema by Beller
et. al. are badly composed strings (STR.6), wrong/missing imports (STR.9), and bad testing practices
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(STR.8) (e.g., low test coverage, inappropriate tests, the need of additional tests, etc.) In the sur-
vey participants mentioned that various changes in MCR are done to enable functions to log results
(STR.7) or errors. Furthermore, it was also reported that code reviews often result in architectural
changes (STR.17) to the system. This can involve splitting an interface into two distinct interfaces,
introducing abstractions, or the inclusion of design patterns.

Functionality. CRAM shows that during the manual classification of change types we noticed that
developers in MCR try to address concurrency problems (R.5), while in the survey developers
strongly highlighted the relevance of (L.4) performance, (R.2-3) resource consumption, and (R.4) se-
curity issues (e.g., they claimed that reviewers in MCR should provide answers to questions such
as “have I added a performance bug in my change? - have I added a security bug in my change?"). This
finding is interesting as in previous work security and performance aspects were not considered
relevant aspects during code reviews [6]. As reported by a cloud developer in the study, this
can be explained by the emerging need to ensure “the quality of [...] cloud applications, in terms of
performance, security and software quality" in MCR.

Emerging CR changes and issues occurring in test and production code are related
to the need to fix (i) licensing and security issues; (ii) badly composed strings and
wrong/missing imports; (iii) typos in either in-line comments or Javadocs; (iv) the
removal of commented out code; (v) the application of bad testing practices; and
finally, the handling (vi) of architectural changes to the system.

Other changes. Changes in non-source-code artifacts reported in Table 4.6 represent a set of
CR change types that were not present in the schema by Beller et. al. [15] and emerged in both the
manual classification and taxonomy integration phase. Change types in this category are mostly re-
lated to the configuration of continuous delivery (CD) and continuous integration (CI) files (O.2),
ASATs (O.3) and runtime files (O.6). Furthermore, this category captures change types in commit
messages (O.1), external documentation (O.5), issues/changes in framework or language specific
files (O.4),e.g., pom.xml for Maven2 projects, and other artifacts (O.7), e.g., scripts and README
files. Changes in CI/CD files are most commonly performed to fix suboptimal instantiations of
delivery pipelines. ASATs configurations are changed in order to improve their effectiveness and
performance (PMD, Checkstyle etc.) and changes to runtime files ensure that the project will be
correctly built (e.g., Docker3 configurations).

These findings are particularly interesting, as differently from previous research [6], reviewers in
MCR also focus on CD and CI topics and practices, something that needs to be further investi-
gated in future research.

Emerging CR changes related to non-source-code artifacts concern configuration in
CD and CI files, changes in runtime configurations, ASATs configuration files and
other non-source-code artifacts (e.g., commit messages and external software docu-
mentation).

2https://maven.apache.org/
3https://www.docker.com/
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Emerging technologies. In summary, our findings clearly show that most of the novel CR
change types are related to changes and issues that developers perform or have to deal with be-
cause of the availability of emerging development technologies (e.g., cloud-based technologies)
and practices (e.g., CD/CI). Especially the management of CD/CI pipelines [26, 27] and static
analysis tools configuration [8,55,67] are practices that improve both developer productivity and
the development process of modern software systems as a whole [8, 38, 63, 67]. The growing ap-
plication of these practices has pushed developers to perform additional activities or tasks during
code reviews, specifically with the aim of reviewing, re-thinking, and changing software artifacts
that impact the CD and CI processes as well as the effectiveness/performance of static analysis
tools.

Most of novel CR change types in CRAM are related to changes or issues that develop-
ers perform or have to deal with because of the availability of emerging development
technologies (e.g., cloud-based technologies) and practices (e.g., Continuous Deliv-
ery and Continuous Integration).

Distribution of change types. Our findings are further supported by the quantitative analysis
presented in Section 4.1, where 631 review comments and their related changes were classified
into CRAM. The results in Table 4.7 show that about 83% of changes occur in either production or
test code and 17% are related to changes in non-source-code artifacts. Moreover, when looking
only at changes in production and test code (Table 4.8), around 80% of changes are performed
in maintainability categories, whereas the remaining 20% involve functionality changes. Finally,
as also confirmed by participants in the study, around half (48%) of all changes are related to
the structure of the code and 25% constitute changes in the documentation (Table 4.9 and 4.11).
When looking at the tables it is evident that most changes are related to maintainability issues.
As investigated in previous work, it was found that around 75% of all fixed issues in MCR are
non-functionality related [15, 44]. This thesis further supports this finding.

More than 80% of all changes in MCR are related to maintainability issues, sup-
porting the findings of previous works [15,44]. Furthermore, emerging technologies
and practices push developers to perform additional changes and tasks in MCR.
Around 17% of changes are performed in non-source-code files such as CD/CI and
ASATs configurations.

4.2 Towards the Automation of MCR
While Section 4.1 presented results and findings regarding recurring issues that developers per-
form in MCR, the following section shows results and findings gathered from the survey evalua-
tion regarding automation needs. More specifically, we discuss the results aimed at understanding
which tools and solutions developers would need during code reviews, with a particular focus
on the recurrent and critical changes investigated in the previous section, and how developers
would approach the automatic detection and fixing of required code review change types in order
to improve a submitted patch to code review.

Applying the methodology described in Chapter 3, the survey feedback (Q2.1-Q2.7) was care-
fully analyzed, encoded and grouped into clusters of recommendations, data specifications and tech-
niques. The following tables present the qualitative results of the feedbacks given in the survey,
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Table 4.14: Q1.3: Distribution of recurrent change topics
Sub-category Count %
Structure 126 48.4%
Documentation 64 24.6%
Logic 18 7.1%
Style 19 7.1%
Resource 17 6.7%
Interface 9 3.6%
Check 3 1.2%
Larger Defects 3 1.2%
Resource 1 0.2%
Total 260 100%

Table 4.15: Q1.4: Expected feedback in MCR
Category Ranking Sub-categories
Documentation 14 Cases (11.4%) no sub-category
Functionality 45 Cases (36.6%) Check(3), Completeness (2), Data & Resource Manipulation (3),

Interface (4), Large Defects (3), Logic (12), Performance (7), Re-
source (7), Security (4)

Other 7 Cases (5.69%) no subcategory
Other Changes 9 Cases (7.3%) Automated Static Analysis Tools configurations (3), Continu-

ous Integration/Continuous Delivery configurations (2), Run-
time Configurations (2), no subcategory (2)

Structure 34 Cases (27.6%) Architectural Changes (5), Complex Code (7), Logging (1), Du-
plication (1), Standard Coding Conventions (2), Testing (6), no
subcategory (12)

Style 14 Cases (11.4%) no subcategory
Total 123 Cases (100%)

focusing on required automation that, from a developer point of view, are still needed.

Recurrent CR change types. Table 4.14 reports the changes that participants consider the most
recurring in CR, whereas Table 4.15 reports the feedback developers would like to receive from
reviewers and Table 4.16 summarizes the feedback they actually receive in code reviews. By
looking at Table 4.14 it can be seen that, according to the study participants, the most prominent
change types occurring in code reviews are related to the structure (48.4%), e.g., refactorings, and
reorganizations of test and production code and the software documentation (24.6%). Other CR
changes types (e.g., changes in the logic and the style of the code of the patch under review) rarely
occur, each covering less than 8% of the code review topics, and all together correspond to around
27% of the total CR changes performed in a patch.

Envisioned approaches. The survey participants provided more than 400 comments on au-
tomation needs (Q2.1-Q2.7) characterizing MCR. In Table 4.17 the solutions and approaches which
were proposed the most often by the developers are summarized, with a particular focus on the
new CR change types that emerged in the empirical investigation of RQ1. The proposed solutions



36 Chapter 4. Results and Discussion

Table 4.16: Q1.5: Feedback received in MCR
Category Ranking Sub-categories
Documentation 20 Cases (21.1%) Naming (1), Typos (1), no category (18)
Functionality 26 Cases (27.4%) Check (2), Interface (1), Larger Defects (4), Logic (11), Perfor-

mance (2), Resources (2), Security (3), no category (1)
Other 4 Cases (4.2%) -
Other Changes 1 Case (1.1%) -
Structure 28 Cases (29.5%) Architectural Changes (4), Complex Code (3), Duplication (1),

Standard Coding Conventions (3), Testing (4), no category (13)
Style 16 Cases (16.8%) no category
Total 95 Cases (100%) 100%

in column three of Table 4.17 are clustered into abstracted solutions, as developers often referred
to similar types of automated solutions.

4.2.1 Emerging Automation Needs

In the following we discuss our results and answer RQ2: "What are the emerging automation needs
of developers in MCR?". In a first step, by following the approach shown in Figure 4.1, the needed
automation in MCR as evaluated in the survey questions Q2.1-Q2.5 are discussed and our find-
ings presented. Then, we provide a general overview over the recommendations, techniques and
data that developers proposed in Q2.6 and Q2.7 followed by promising examples of how specific
automation can be implemented for the automation needs mentioned by the developers.

Figure 4.1: Approach for Evaluating Developers’ Automation Needs
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Table 4.17: RQ2: Developers’ Envisioned Solutions.
Category Detailed Change Abstracted Solution

Documentation (56)

- General (32)
- Comments (3)

31 - Automatically detecting and fixing
documentation issues (documentation incomplete
or inconsistent with the source code)
4 - Generation and replacement of inconsistent
documentation/comments

- Naming (12)
12 - Renaming suggestions based on standard
naming used in the codebase

- Typos (5)
5 - Automatic spell checking (also grammar)
and fixing

- License Header (1) 1 - Generating License Header

Style (40)

27 - Evaluate Style Consistency with the style
adapted by the team and auto-fix the style issues
13 - Use existing tools for these issues, e.g.,
PMD and CheckStyle

Structure (29)

- Refactoring (8)
- Duplicated, (Semantic)
Dead, Unused, and
Deprecated Code (19)
- Architecture violations (2)

19 - Detection of duplicated, unused, (semantic)
dead, and deprecated code
8 - Refactoring suggestions for test and production
code
2 - Detect architectural violations

Functionality (19)
- Performance (4)
- Resource (11)
- Security (4)

12 - Auto-fix of performance, resource issues
5 - Detect security issues
3 - Performance and resource analysis

Other Changes (9)
- CD/CI configurations (4)
- SATs configurations (2)
- Runtime configurations (3)

4 - Recommend/improve CD/CI configurations
3 - Recommend/improve runtime configurations
2 - Recommend/improve SATs configurations
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Envisioned Solutions

Expectations of developers towards MCR. As expected, the results in Table 4.16 highlight
how the feedback developers receive from reviewers is highly consistent with the changes they
actually perform (Table 4.14). However, when looking at both Table 4.15 and Table 4.16, it is ev-
ident that the feedback developers receive in MCR is often not satisfactory and rarely meets all
the current expectations of developers. One participant mentioned that “many of the problems we
face during code review are related to the miss-match between expectations and outcomes of a code review
[...] reviewers provide feedback that are not exhaustive or timely reported. This often makes code reviews
unproductive". It is interesting to see that feedback on the structure of the code and documentation
aspects have a lower representation in the expected feedback (4.15) in comparison to what feed-
back is actually received in MCR (4.16), while comments related to the categories Functionality
(e.g., performance and resources) and Other Changes are more important nowadays. For instance,
8% of the participants in the study stated that they would like to receive comments related to
CD/CI and SATs configurations, while only 1% of them receive such feedback. This general
finding highlights the gap between the expectations developers have towards the code review
process and the outcome of these reviews. Furthermore, this emphasizes our previous findings
that emerging technologies and practices have to be considered more strongly by reviewers in
MCR to fulfill developers’ expectations.

Problems in MCR are often related to a mismatch between expectations and out-
comes of a review. Emerging technologies and practices require more exhaus-
tive and detailed feedback during reviews. More specifically, emerging technolo-
gies (cloud-based technologies) and practices (CD/CI) have to be considered more
strongly by reviewers in MCR to fulfill developers’ expectations.

The most frequent CR categories for which further automated approaches would be needed (Table
4.17) are Documentation (56), Style (40), Structure (29), Functionality (19), and Other Changes (9).

Documentation and style solutions. For the Documentation category we received 56 distinct
feedbacks by developers in the study. To automate Documentation issues in MCR, developers
believe that advanced automation need to be conceived that are able to detect and fix issues re-
lated to the incomplete or inconsistent documentation with respect to the source code. Recent
work in this area conducted and explored this problem [75] but not in the context of code re-
view. Further feedbacks by participants revealed that approaches are required able to directly
generate the required documentation and comments including the license header. There is also a
demand for spell-checking, integrated into the code review process to find potential typos in the
Documentation and Strings in general. Moreover, the evaluation showed that developers expect
more sophisticated recommender systems for MCR in both the Documentation and Style cate-
gories. One recurring issue is the problem of naming. Here, developers expect solutions that
detect wrong naming and provide renaming recommendations according to the naming conven-
tions and policies of the project. When asked about Style related issues, most developers stated
that they would expect the detection and fixing of coding style errors in MCR. However, many
developers also reported that tools like Checkstyle could or should already be sufficient to handle
some of the style related issues.
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In addition to solutions that directly generate the required documentation and com-
ments in software artifacts and detect and fix licensing issues, automation regarding
naming are needed by developers in MCR. Not only should issues in the Naming
category be detected, but tools should recommend appropriate fixes by considering
naming conventions and policies of the project, ensuring the consistency with the
existing code base.

Structural solutions. According to developers in our study, various solutions regarding struc-
tural CR changes are desired, foremost refactoring recommendations for both test and production
code. For instance, a developer mentioned the need for refactoring recommendations "of tests not
based only on coupling concepts but also encapsulating the need of having explicitly separated testing per-
formance from functional testing" in order to facilitate, for example, tests of “different properties of
micro-services of a cloud application". Furthermore, participants mentioned the need to have timely
feedback about “test/code smells (bad design choices) added" in the patch under review, e.g., provide
“auto-generated feedback based on test/code smells notions, providing an overview on overall
test/code quality and readability". The study also shows that automated tools are needed for the
detection of duplicated, unused, (semantically) dead code. One participant mentioned: "highlight
dead code, unreachable code, and suggest refactoring options [...] for duplicates". Other participants
stated that having tools which can find deprecated and architectural violations, answering ques-
tions such as "did I have introduced imperfections at the level of Architecture?", would be beneficial to
the MCR process.

Developers need automation solutions for structural code issues in MCR such as (i)
refactoring suggestions; (ii) automated feedback on test and code smells by pro-
viding an overview over the quality and readability of the code; and (iii) automation
that detect and highlight duplicated, unused and dead code in a submitted patch.

Functionality solutions. As can be seen in Table 4.17, there is a substantial demand from de-
velopers for tools that are able to detect performance, resource consumption and security issues.
For instance, a participant of our study reported: "... a company producing self-driving cars, in [...]
code review will require also to observe potential security and or testing issues". Participants also stated
that "Performance and Security issues are the more difficult to automate...".

Important automation requested by developers are solutions able to detect perfor-
mance, resource and security issues.

Solutions for emerging technologies and practices. From the results of RQ1 we can see that
most CR change types that were added to CRAM in 4.1 are related to changes or issues that develop-
ers perform or have to deal with due to emerging development technologies and practices. This
also influences the type of solution developers would need in the future. Participants highlighted
that tools recommending, improving, monitoring CD/CI, runtime and SATs configurations are
desired. One participant mentioned that "automation should consider more recent concept of CD, CI,
[...] thus providing feedback on: the way a CD/CI pipeline is structured or is efficient...".
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Table 4.18: RQ2: Developers’ Recommendations.
Recommendations

Taxonomy high-level
Learn from past data Find patterns Check against

(code review changes) (antipatterns) codebase

#mentions by participants 57 60 5

Documentation 0 7 3

Functionality 18 19 0

General Approaches 14 5 0

Other Changes 3 2 0

Structure 14 16 1

Style 8 11 1

Developers require more sophisticated tools supporting them in MCR. Specifically,
tools are needed that are able to give feedback on the efficiency of CD/CI pipelines
as well as suggest the right configurations for these emerging practices.

Enhancing MCR - Recommendations, Techniques, and Data

Table 4.18, 4.19, and 4.20 summarize the recommendations, techniques and data found in our
study evaluation related to possible ways how certain MCR activities can be supported or auto-
mated. Table 4.18 shows the methodology to apply, Table 4.19 highlights what specific techniques
should be used, and Table 4.20 provides information about what type of data has to be studied
according to the developers in our survey.

Recommendations. As can be seen in Table 4.18, the developers generally suggest the notion of
patterns and anti-patterns (60 mentions by participants) to detect issues in all categories of CRAM,
especially for Functionality (19) and Structure (16) issues, with the goal to generate templates of
well and badly written code, which can then be matched against newly submitted code. This
would allow to determine if the introduced change contains issues or not. As an example, one
developer provided the following feedback: "I would try to understand which problems are recurrent
in code reviews, e.g., defining patterns and anti-patterns characterizing the ‘code review process and collab-
orations’. Then I would automatically leverage tools for detecting such anti-patterns to highlight potential
problems.". Furthermore, many developers suggested learning from past data (57), e.g., study the
history of changes in the software repository, to gain more insights into how teams develop code
and what recurrent issues they fix in MCR: "[...]study previous changes in the software and its doc-
umentation to learn more about upcoming (and recurrent) mistakes. I would mine this information with
some data mining techniques and machine learning to learn these patterns and/or identify some of the prob-
lems.". This recommendation was proposed most often for the Functionality (18), Structure (14),
General Approaches (14) and Style (8) categories in CRAM.

The most mentioned recommendations by developers are the (i) notion of defining
and finding patterns/anti-patterns as well as (ii) analyzing the history of changes in
the software repositories to detect and fix recurring issues in MCR.
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Table 4.19: RQ2: Developers’ Techniques.
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#mentions by participants 28 19 12 27 15 7 3 1 0 6 14 3

Documentation 4 4 1 3 1 0 1 0 0 2 3 0

Functionality 8 7 3 8 7 5 0 0 0 1 0 3

General Approaches 6 3 3 8 4 1 0 0 0 1 0 0

Other Changes 1 0 0 0 0 0 0 0 0 0 0 0

Structure 5 2 3 5 2 1 0 0 0 1 2 0

Style 4 3 2 3 1 0 2 1 0 1 9 0

Techniques. Table 4.19 reports developers’ opinions of which techniques should be applied to
different categories of CRAM. The technique mentioned the most is Machine Learning with a total
of 28 mentions, while the use of Static Code Analysis was mentioned the second most frequent
with 27 cases. With 19 mentions, the use of NLP techniques is also thought to be a viable technique
in the automation of MCR. Moreover, some developers believe that issues such as Documentation
(3) and Style (9) are already partly handled by existing tools (14) and do not need to be further
automated.
When looking at Machine Learning, developers in the survey believe its application is most suited
for issues regarding Functionality (8), General Approaches (6) and Structural issues (5). Tech-
niques involving Static Code Analysis were most prominent for the Functionality (8) and General
Approaches (8) categories, while NLP was suggested foremost for Functionality (7 cases), Docu-
mentation (4 cases) and Style (3). As mentioned by a participant in the study: "i would use NLP
analysis to study the coding style of the team/project, thus detect recurrent style issues (explaining what is
wrong in my style)...". It is interesting that for almost every high-level CRAM category, participants
stated that change types could be detected and fixed by a learning approach. Also for emerging
practices such as CI/CD and cloud-based technologies, participants suggest using learning ap-
proaches to provide support with recurrent issues in configuration files.

The most promising techniques suggested by developers are Machine Learning for
Functionality, Structural and General issues; Static Code Analysis for Functionality
and Other issues in CRAM and Natural Language Processing for Functionality and
Documentation issues in MCR.

Data. Table 4.20 reports developers’ opinions of what type of data should be studied in the
context of different CRAM categories in order to provide useful information for the envisioned
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Table 4.20: RQ2: Developers’ Data.
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#mentions by participants 32 15 6 1 0 10

Documentation 5 1 0 0 0 2

Functionality 13 3 0 0 0 3

General Approaches 4 6 2 0 0 4

Other Changes 2 0 0 0 0 0

Structure 4 3 3 1 0 0

Style 4 2 1 0 0 1

automation approaches. According to the participants in our study, metrics are very important
when conceiving tools to automate and support MCR: "I would define lightweight (not expensive
metrics to compute) metrics to measure of detect the issues.", "From one side code and code changes met-
rics + code change patters would a useful information to study..." or "For each problem/issues, I would
focus on recurrent and relevant metrics, patterns and anti-patters". Out of 64 mentions in the data
section, 54 (84%) suggest that metrics should be computed, studied and applied to fix and detect
recurrent issues in MCR. As can be seen in 4.20, the General Approaches category which comprises
solutions and data recommended not specifically for only one CRAM category, developers highly
recommend the use of change metrics, code metrics and object-oriented metrics (OO-metrics).
The remaining 10 (16%) mention that the documentation of the software project should be ana-
lyzed, comparing and studying previous changes to learn more about potential upcoming issues,
as mentioned by one developer it would provide "useful information to study previous changes in the
software and its documentation to learn more about upcoming (and recurrent) mistakes."

According to developers, important data for the automation of MCR are metrics.
Around 84% of mentions regarding suggested data to study are related to metrics
such as change metrics, code metrics and object-oriented metrics. Other mentions
(16%) concern the analysis of code documentation.

Enhancing MCR - Specific Approaches to automate MCR

This subsection discusses specific automation approaches for the categories of CRAM as well as
approaches targeting overall improvements to MCR. To that extent, the feedback provided by the
developers in our survey (Q2.6 and Q2.7) was carefully analyzed, labeled and clustered. The en-
coded survey feedback is available in the appendix. By considering the insights found regarding
the various required solutions (Subsection 4.2.1) and the proposed recommendations, techniques
and data in Subsection 4.2.1, we propose specific combined approaches how activities of MCR
can be automated. Furthermore, we state how it can enhance and facilitates review activities
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performed by developers.

Specific approaches for Documentation. Our findings in subsection 4.2.1 show that devel-
opers are interested in solutions that can (i) generate the required documentation; (ii) detect and
fix licensing issues; and (iii) support developers with naming issues. Furthermore, in the evalu-
ation in subsection 4.2.1 we found that developers have the opinion that the automation of the
Documentation category is best approached by studying patterns/anti-pattern as well as historic
changes with NLP by defining and using specific documentation metrics. In the following we
provide the most promising and needed automation solutions for Documentation, distilled from
the evaluation of the survey and our findings in the previous subsections.
Generate Documentation: (1) As mentioned by one participant, a promising solution would be
to "Try to find characteristics e.g. for a method description based on the code itself" and then use the
"method name + parameters + other method and classes called within the method + instantiation + .... to
predict what that method actually does..." and automatically generate documentation out of it.
(2) Define patterns/anti-patterns and detect metrics by studying the history of the project in rela-
tion to Documentation issues to predict required changes or recommending solutions: "I would try
to analyze code and other changes from the history of the project, detecting, metrics patterns, anti-patterns,
thus predicting required changes, or recommending solution when possible."
(3) Use existing tools (Checkstyle and other Linters) to fix issues in Documentation, or combining
the tools and integrate them into the review process.
Support for naming issues: In order to suggest and fix potential issues in Naming "compare vari-
ables, statements and function calls not only against syntax definitions but against similar variables, state-
ments and function calls from the codebase being changed, enabling a developer to adapt to local naming
customs, and to see (and match) existing examples of the code being reviewed".

Specific approaches for Style. Our findings in subsection 4.2.1 show that developers are in-
terested in solutions that can check the style consistency of a change with the style adapted by the
team and provide fixes for these issues. In the evaluation in subsection 4.2.1 we found that devel-
opers have the opinion that the automation of the Style category is best approached by studying
patterns/anti-pattern as well as historic changes with NLP by defining and computing metrics.
In the following we provide promising and needed automation solutions for Style issues.
Evaluate style consistency: Use Machine Learning and NLP to detect anti-patterns and recurring
issues related to Style. By learning these recurring issues, required changes in new submitted
patches can be detected.
Use existing tools: Many developers think that Style issues are already handled by current tools
such as FindBugs, Checkstyle, PMD, and instead suggest the integration of these tools into the
review process: "There are many code checkers out there (FindBugs, ScalaStyle, PMD, ...). Maybe im-
plement an integration with one of these tools during the reviewing process.". Additionally, the removal
of certain warning outputs by these tools can be enforced, thus reducing review time, as stated in
the work by Panichella et al. [55].

Specific approaches for Structure. Developers stated that they would need the following au-
tomations in relation to Structure issues: (i) refactoring suggestions of test and production code;
(ii) automated feedback on test and code smells by providing an overview over the quality and
readability of the code; and (iii) automation that can detect and highlight duplicated, unused and
dead code. To approach the automated fixing of these needs, developers suggested using Ma-
chine Learning techniques to learn from historic changes to the software as well as define and
find patterns/anti-patterns.
Refactoring suggestions: (1) Detect patterns by comparing new changes to existing code, thus
recognizing if a better design pattern could be applied: "Pattern detection with suggestion ->e.g. I
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see you build something which would be smart to structure in a factory pattern"
(2) Study code, change metrics and change patterns as well as the software documentation and
historic changes, and then use this information with Machine Learning techniques to learn about
recurrent and upcoming issues in MCR to predict and identify refactoring possibilities.
Feedback on code smells in the test and production code : Similarly to the approach mentioned
for refactoring suggestions, use a Machine Learning approach to learn about recurrent issues re-
garding changes in the test and production code to predict and identify smells.
Duplicated, unused and dead code: Use Static Code Analysis and pattern/template-matching to
evaluate the correctness of submitted code, although "not all the duplication should be refactored or
merged, which brings the challenge for research to locate the merge/refactoring-oriented code duplication.".
This is not an easy task as mentioned by a developer: "If a function is duplicated between two classes,
that may be intentional to avoid coupling those classes, so we might want to ignore it. But if a function is
duplicated within two classes that both inherit from the same parent class than the solution would be to put
that function in the parent class."

Specific approaches for Functionality. Automation solutions are needed for (i) performance;
(ii) resource consumption; and (iii) security issues. From the evaluation of the survey and our
findings in previous sections we can state three recurrent approaches that developers suggest for
these issues.
Build integration with contemporary tools: "These kind of tools already exist, but are not necessarily
integrated with the commonly used IDEs (e.g. valgrind for memory checks)". By combining existing
tools into the review process, specific issues related to Functionality can be detected and fixed.
Utilize patterns and anti-patterns: This approach involves the definition of patterns and anti-
patterns to detect recurrent issues in the functionality of the code as stated by one developer: "I
would use the notion of patterns, antipatterns to also fix/handle problems on resource consumption of my
code, something not available in code review practices."
Learning approach: Use of code and change metrics as well as historic data analysis in combi-
nation with Machine Learning and data mining techniques to detect defects and predict needed
changes in a patch: "I would try to analyze code and other changes from the history of the project, de-
tecting metrics patterns, anti-patterns, thus predicting required changes, or recommending solution when
possible.".

Specific approaches for emerging issues (Other Changes). Particular solutions are requested
for recommending, improving and monitoring CD/CI, runtime and ASATs configurations. Sim-
ilarly to Functionality, our findings show that developers believe this is best approached with (i)
studying patterns/anti-patterns and metrics characterizing non-source code artifacts from histor-
ical data, then (ii) observing these anti-patterns in the development process and practices (e.g.,
trends in change and code metrics, build failures, etc.) with data mining and Machine Learning
techniques, and then (iii) leveraging NLP and summarization techniques [35, 48, 54] to provide
more context about the detected issues, and recommending changes to fix the patch.

Summary. As our evaluation showed in Section 4.1, Documentation issues represent around
25% of all issues that were classified into CRAM providing evidence that the automated fixing of
these issues would largely benefit MCR. Not only would it reduce the review time, but also keep
the project consistent with either documentation policies and the naming conventions applied by
the team. This is also the case for Structure issues (48%); the automated fixing and detection of
such issues would greatly increase the productivity of developers in code review. Furthermore,
for Style (7%) issues, considering the feedback received in the survey, these change types might
indeed already be handled well by current approaches and tools. Nonetheless, the occurrence of
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these issues in reviews can potentially be further reduced by analyzing which ASATs warnings
are most needed to fix and at the same time by enforcing the fixing of these warnings. The same is
true for issues regarding emerging technologies and practices (category Other Changes) as well as
for Functionality issues, where learning about patterns and metrics can potentially detect many
recurring issues and support developers in their reviewing activities.

The most mentioned approaches by developers can be broken down into the fol-
lowing steps: (i) perform a manual analysis to investigate patterns, anti-patterns,
change metrics and documentation metrics; (ii) then leverage NLP or machine
learning techniques in combination with static code analysis; (iii) to characterize
and predict further changes or detect issues in a submitted patch.

Moreover, it is interesting to observe for all categories in Table 4.19 how none of the par-
ticipants mentioned the possibility to use an existing technique from the literature, but rather
implement solutions based on customized approaches leveraging machine learning, NLP and
data mining techniques to modeling recurrent issues with the notion of anti-patterns, and change
metrics. Furthermore, we found that many developers require solutions that are tailored to their
specific development team. As mentioned by one participant "I think a tool that can automatically
recognize team "culture" and detect deviation from it, would be helpful in the reviewing process.".

4.3 Enabling Automation: a Proof of Concept
A proof of concept towards the envisioned automation in MCR considering developer needs was
developed by leveraging suggested code metrics and other features with the intention to use these
characteristics in a Machine Learning approach.

4.3.1 Metrics
Motivation. As can be seen in our findings in the last subsection regarding the proposed ap-
proaches to automate certain aspects of MCR, metrics in combination with Machine Learning
techniques are considered the most promising solutions towards the automation of MCR. Multi-
ple feedbacks in our survey motivate the use of metrics, such as "[...]detection and auto-fix are still
not available for code review[...] Metrics based on static, dynamic analysis or detection strategies based
on some nlp analysis and similar approaches would be useful here I guess." and "From one side code and
code changes metrics + code change patters would a useful information to study [...]". Furthermore, one
participant mentioned that she believes the "[...] best idea is to have a look at changes to heteroge-
neous types of data and recurrent change patterns to provide the automation [...]". Furthermore, many
developers believe that analyzing the history of code changes gives information about upcoming
or recurring issues. More specifically developers suggested the use of (i) code metrics; (ii) change
metrics; (iii) object-oriented features to detect refactoring possibilities; (iv) integration of existing
ASATs into the review process; (v) NLP features; and (vi) detection of patterns/anti-patterns on
source code level.

To that end, the proposed metrics are presented and an implementation approach to extract
these metrics is suggested. Furthermore, we highlight for each metric what type of information it
could provide and towards which elements in CRAM this information could be used.
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Static Code Metrics. One set of metrics are the static code metrics that can be extracted from
the source code. Common are metrics revolving around Lines of Code (LOC) and cyclomatic
complexity. LOC metrics consider the Source Lines of Code (SLOC) and various metrics can be
computed such as Pyhsical LOC (SLOC-P), Blank Lines of Code (BLOC), Comment Lines of Code
(CLOC) and Logical Lines of Code (SLOC-L) [50]. Another common metric is the Cyclomatic
Complexity Number or McGabe metric (CNN) [45], which computes the number of independent
logical decision paths in a program structure.

These metrics provide valuable information about the general structure of the source code and
its complexity, meaning that substantial differences in these metrics could increases the potential
for source code containing issues and bugs. As researched in [10, 77], static code metrics were
successfully used to predict if a file contains defects. Similarly, the use of these metrics in MCR
could provide a first step towards the detection of issues or bugs in newly submitted patches.
According to our findings in the previous section and the feedback by developers, static code
metrics can be particularly useful for Functionality issues in the code.

In an implementation, the available tool Unified Code Count4 (UCC) can be used to compute
static code metrics during the extraction process between two patches in Gerrit Code Review.

Table 4.21: Change Metrics
Metric Abbreviation Description
AGE Age of a file in years (counting backwards from current revision)
CODE_CHURN Added lines of code minus deleted lines of code of current patch/commit
CODE_CHURN_AVG Average of added lines of code minus deleted lines of code over all revisions
CODE_CHURN_MAX Maximum of added lines of code minus deleted lines of code over all revisions
CODE_CHURN_MIN Minimum of added lines of code minus deleted lines of code over all revisions
CODE_CHURN_TOT Total of added lines of code minus deleted lines of code over all revisions
LOC_ADD Lines of code added to a file of current patch/commit
LOC_ADD_AVG Average over all revisions of the lines of code added to a file
LOC_ADD_MAX Maximum over all revisions of the lines of code added to a file
LOC_ADD_MIN Minimum over all revisions of the lines of code added to a file
LOC_ADD_TOT Total over all revisions of the lines of code added to a file
LOC_DEL Lines of code deleted from a file of current patch/commit
LOC_DEL_AVG Average over all revisions of the lines of code deleted from a file
LOC_DEL_MAX Maximum over all revisions of the lines of code deleted from a file
LOC_DEL_MIN Minimum over all revisions of the lines of code deleted from a file
LOC_DEL_TOT Total over all revisions of the lines of code deleted from a file
NAUTH Number of distinct authors that checked a file into the repository
NREV Number of Revisions of a file
PATCH_LINES_ADD Number of lines added in current patch
PATCH_LINES_DEL Number of lines deleted in current patch

Change Metrics. Previous research [49,59] showed that in contrast to static code metrics, change
metrics sometimes offer more useful information when used for defect prediction. Furthermore,
participants highlighted, that such metrics could be very useful in the context of automating MCR:
"From one side code and code changes metrics + code change patters would a useful information [...]" for
detecting and fixing recurrent issues. These metrics provide information about the process of
code review such as how many authors introduced changes in a particular file, the age of a file
and how many lines were deleted or added. This provides valuable information in the sense

4http://csse.usc.edu/ucc_new/wordpress/
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Table 4.22: CK-Metrics
Metric Abbreviation Description
CBO Coupling Between Objects
DIT Depth of Inheritance Tree
LCOM Lack of Cohesion in Methods
LOC Source Lines of Code
NOC Number of Children
NOF Number of Fields
NOM Number of Methods
NOPF Number of Public Fields
NOPM Number of Public Methods
NOSF Number of Static Fields
NOSI Number of Static Invocations
NOSM Number of Static Methods
RFC Response For Class

that files that undergo many revisions or need to be changed by multiple authors might have a
higher tendency to still contain issues. According to the findings in the previous section (Table
4.20), change metrics can provide the most useful information when used to fix Structure and
Functionality issues or defects in configuration files (Other Changes).

Change metrics are extracted from the repository and can have various characteristics. For the
purpose of the proof of concept the change metrics in Table 4.21 were considered.

CK Metrics. The projects analyzed in this thesis are all written in Java and thus, they are ob-
ject oriented implementations. Moreover, participants in the study are interested in solutions
towards the detection of possible refactoring issues (Architectural Changes). Therefore, to obtain
more characteristics between specific patches in CR, object oriented metrics can be extracted from
the source code. Considered for this proof of concept are metrics based on the metrics suite by
Chidamber-Kemerer (CK) [22], which compute metrics such as the Weighted Methods per Class
(WMC) and Depth of Inheritance Tree (DIT). The full list of considered metrics can be found in
Table 4.22.

Metrics such as Coupling Between Objects (CBO) give insights in how well the software’s
architecture is designed, meaning that classes with higher CBO might be more prone to errors
and need possible refactoring. Another important metric is Depth of Inheritance Tree (DIT), that
provides information about "the maximum length from the node to the root of the tree" [22],
suggesting that classes with a higher DIT (i) inherit more methods, therefore making it more
difficult to predict their behavior; (ii) involve a higher design complexity since more methods
and classes are involved; and (iii) have a higher potential for reusing inherited methods. While (i)
and (ii) suggest that a higher DIT number is not desirable, (iii) indicates that entities lower in the
inheritance trees make more use of existing methods, and thus, make the code easier to maintain.

By computing CK metrics on a newly submitted patch and comparing the results to the values
in the previous version of the patch, potential errors and patterns can be found. An existing tool5

can be considered to compute relevant metrics between two patches.

ASAT Warnings Metrics. As mentioned in Related Work (Chapter 2), Automated Static Code
Analysis tools (ASAT) such as PMD, FindBugs and Checkstyle are popular tools to either find

5https://github.com/mauricioaniche/ck
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style related issues or structural defects in the source code. A study conducted by Panichella
et al. [55] analyzing the removal rate of PMD and Checkstyle warnings in open-source projects,
found that certain warnings are removed more often than others and that some defects are discov-
ered by ASATs. Moreover, Beller et al. [16] introduced a mapping of 1’825 ASAT-specific warnings
to a General Defect Classification (GDC) scheme consisting of 16 top-level classes (Figure 4.2). As
can be seen, the top-level classes in the GDC are similar to the categories comprising CRAM, such
as Check, Concurrency, Interface, Logic, Resource, Documentation, Naming, Redundancies, Sim-
plifications and Style Conventions. Furthermore, we found in our study that various participants
advised using ASAT tools related to certain issues in the categories Documentation and Style:
"There are many code checkers out there (FindBugs, ScalaStyle, PMD, ...). Maybe implement an integra-
tion with one of these tools during the reviewing process.".

For the purpose of this proof of concept warnings from PMD and Checkstyle are considered,
specifically, how the number of warnings in each top-level class in the GCD change between
different patches.

Figure 4.2: The General Defect Classification (GDC) by Beller et al. [16].

Commit Messages. As recent work has shown, NLP can successfully be used to classify natural
language texts into topics and clusters of similar subjects [25, 56]. Therefore, the commit message
of the patch can be analyzed. Words in the commit message are then weighted using the tf-idf
score [7] opposed to simple frequency counts, as it assigns a higher value to rare words (or group
of words) appearing in the message, and a lower value to common words. This allows to identify
the most important words in the commit message. The usage of commit messages is supported
by the feedback given in the survey where participants suggested the usage of natural language
processing (NLP) to detect characteristics of patches such as the following feedback by one of the
participants: "i would use NLP parsing to detect recurrent issues [...]". NLP features are useful to
detect potential recurring issues in Documentation, Functionality, Structure and Style.

CHANGEDISTILLER Change Types. In order to obtain detailed features describing the source
code on the syntax level, CHANGEDISTILLER [31] can be used. The tool finds fine-grained source
code changes using tree differencing and basic tree edit operations (insert, delete, move) between
two syntax trees by transforming one into the other. CHANGEDISTILLER was successfully applied
in predicting whether a file will be affected by a certain source code change (ssc), showing that
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Neural Networks can predict classes of fine-grained source code changes [34]. Similar to this,
each of the 48 low-level change types extracted with CHANGEDISTILLER can be used as a feature to
analyze how these change types vary between subsequent patches. By obtaining low-level features
about how the code is changed between different patches, patterns and anti-patterns can emerge,
making future detection of issues possible.

4.3.2 Feature Extraction
In the following, we present a possible feature extraction process in order to capture the presented
metrics of a given patch in code review with the intent to use this information in future work to
predict and detect needed code changes in newly submitted patches.

Formal Representation. In order to utilize machine learning algorithms in a future prototype,
the status of patches needs to be modeled in a more formal way with the metrics defined in
the previous section. Initially, a dataset of code review patches needs to be curated that holds
relevant information for the extraction process such as the url to fetch the patches from, dates, file
paths, commit messages, removed and added line counts as well as a label stating what change
type is needed in that particular patch. Then, the extracted features need to be transformed into
a numerical matrix M, in which each column represents the status of a general j−th patch in a
given CR commit, and each row contains the values of each CR metric defined to model the patch
status at that commit. Thus, each entry M[i,j] of the matrix represents the value of the i−th metric
of the j−th patch. This is needed, as machine learning models operate on numerical values only.

Feature extraction process. Figure 4.3 describes the high-level structure of a possible feature
extraction process. In a first step, the dataset containing information about relevant patches is
loaded. Then, for each data point the version of the file in the current patch is checked out in
repository 1 and at the same time the previous version of file is checked out in repository 2. This
allows for computing metrics on both versions of a file and creating a diff (compare differences)
of metrics to track how different characteristics of the file and patch change. In this sense, all
specified metrics described in the previous section are computed for both files. For every metric,
a dedicated script is run. This allows for further extensions with additional metrics in the future.
In a final step, the results of each metric are written into a separate file as a numerical matrix.
The computed values for each feature are then combined into a final numerical matrix for further
processing.

4.3.3 Change Type Prediction
Prediction of needed changes in CRAM. Before the classification step, the columns of the
matrix M need to be ordered by considering the timestamp of each CR commit. Thus, to predict
the CR change types required on a general j−th patch (i.e., a patch at a given CR commit), a sub-
matrix of the dataset if considered as training set, Mtraining,j , obtained by selecting from the
original matrix M the columns associated to the CR commits (or column) occurred before the
j−th patch (i.e., all columns ids with id = k such that 1 <= k <= j − th).

Eventually, CR change types of a general j−th patch can automatically be predicted by relying
on the general Mtraining,j , i.e., obtained by selecting from the original matrix M the columns with
id = k such that 1 <= k <= j − th. To achieve this goal, we plan to experiment with differ-
ent machine learning techniques, namely, the standard probabilistic Naive Bayes classifier, the
sequential minimal optimization (SMO) algorithm6, and the J48 tree model that have been suc-

6https://goo.gl/BwMjzS
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Figure 4.3: Feature Extraction Process

cessfully used for bug reports classification [5, 76]. For the implementation of this approach, the
Weka tool 7 offers good integration.

One important aspect that needs to be mentioned is the large number of categories in CRAM
(Tables 4.4, 4.5 and 4.6). As an implementation towards the automation of MCR should be able
to detect multiple defects in a submitted patch instead of only stating that it requires further
changes, we require an approach that is able to do multi-label classification. To achieve this, we
will use a one-vs-all strategy, a typical method for solving such problems, where one classifier is
built and trained for each separate category that needs to be predicted. By running the classifier
sequentially on Mtraining,j for every category, a label is given to each data point stating if that
particular data point contains said category; explained in simpler terms, for every category, the
classifier outputs a binary classification stating if the data point belong to this category or not.
For the training process, the whole dataset should be divided into an 80% train and 20% test set
and used for each classifier. By combining all individual classifiers, multi-label classification on
a newly submitted patch can be achieved. This will allow us to (i) predict what change types are
further needed in this patch and to (ii) support developers in proposing solutions to the respective
change type in that category.

7https://www.cs.waikato.ac.nz/ml/weka/
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Validation. To evaluate the performances of the prediction, well-known information retrieval
metrics, such as precision, recall, and F-measure [7] will be used.

Precision (P) is the measure of the result relevancy. It is defined as the number of true positives
(tp) in relation to false positives (fp) plus true positives (tp), where the value 1.0 represents a
precision of 100%.

P = tp
(tp+fp)

Recall (R) is the measurement of how many relevant results are returned. It is defined as the
number of true positives (tp) in relation to the number of false negatives (fn) plus true positives
(tp), where the value 1.0 represents a recall of 100%.

R = tp
(tp+fn)

F1-Measure (F1) is a score that considers both the precision and recall and is represented by its
general definition as the harmonic mean between precision and recall.

F1 = 2 ∗ P∗R
P+R

Summary. In this proof of concept, we showed how various metrics proposed by the develop-
ers in our study can be extracted in a future implementation of a tool. The future implemen-
tation will be able to compare how metrics change over the course of reviews as well as ana-
lyze and learn which characteristics are predictors for issues, as well as detect recurrent prob-
lems in MCR. Furthermore, we highlighted the usefulness of these metrics for particular cate-
gories in CRAM (code metrics, change metrics, CK metrics, ASAT warnings, commit messages,
CHANGEDISTILLER changetypes). More specifically, metric features such as static code metrics
were mostly mentioned in relation to Functionality change types, whereas NLP features obtained
from commit messages and the code should prove more relevant when considering categories
such as Documentation and Style.
By following this approach, it would be possible to predict on a file-level the different categories
of CRAM in which further changes are needed. This represents a first step towards the partly or
full automation of MCR. In future work, specific approaches need to be implemented into tools
in order to detect and fix the more fine-grained issues within each predicted category, such as
(i) proposing auto-fixes; (ii) auto-highlighting of issues and explanation of the problem. Further-
more, to efficiently support developers in MCR, it is crucial that these tools are not only devel-
oped, but are integrated into their reviewing processes.
We believe that by considering the findings in this thesis and following the approach proposed
in our proof of concept, a useful tool can be implemented that is able to facilitate the reviewing
activities of developers and reduce the review effort considerably.
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4.4 Threats to Validity
Threats to construct validity. Threats to construct validity concern the design of our study. We
advertised the survey through social media channels and by opportunistic sampling, and thus
we could not avoid the lack of conscientious responses. Also, given the evaluation of the survey,
some responses included imprecisions, in fact, some answers given were superficial or incom-
plete. In order to mitigate these threats, ambiguous and incomplete answers were discarded
during the evaluation of the survey. Another threat to construct validity are the steps involved in
the development of CRAM, as this involved manual classification of code review changes and the
qualitative analysis of the feedback gathered in the survey. Indeed, there is a level of subjectivity
involved when deciding if a feedback or review change belongs to a certain category. To allevi-
ate some of these threats we based CRAM on three different sources of change type information:
(i) manual classification of ten different Java open source projects, where each assignment was
double-checked by another author; (ii) integration of an existing taxonomy from literature; and
(iii) the evaluation and classification of the feedback from developers, which was again double-
checked by another author.

Threats to internal validity. Threats to internal validity concern factors that could have influ-
enced the results of our study. A primary threat exists concerning the definition of our taxonomy,
as some categories of review changes could be missing or even overlap with others. To mitigate
this threat, we grouped the taxonomy into high and low level categories in order to minimize the
risk of an incomplete taxonomy.

Threats to external validity. Threats to external validity concern the generalization of our find-
ings. Indeed, our investigation of review changes is limited to ten Java open source projects, all
within the Eclipse ecosystem. We alleviated some of these threats by choosing projects with dif-
ferent domains and sizes, but evidently this does not allow to draw conclusions for MCR in open
source software in general. Furthermore, the dataset we studied was limited, consisting of less
than 700 review comments obtained from Gerrit, which might restrict the generalizability of our
findings in settings such as other programming languages, projects and review tools. Nonethe-
less, participants in our study have various backgrounds and most of them stated they had more
than 8 years of programming experience, which clearly does not limit the findings of this study
to only the Java open source environment.
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Conclusion

This thesis empirically investigated approaches and tools that, from a developer point of view, are
still needed to facilitate MCR activities. In a first step we elicited a taxonomy (CRAM) characteriz-
ing the most critical and recurrent change types in MCR by: (i) quantitatively and qualitatively ana-
lyzing code review changes in ten Java open source projects; (ii) validating our taxonomy with an
existing classification from literature [15] and (iii) conducting a survey with 52 developers to find
missing change types in our taxonomy and to investigate current developer’s automation needs
regarding review changes and activities. Table 5.1 presents our main findings for each research
questions and states future work that is still needed.

Our elicited taxonomy CRAM captures code review change types that are not considered in cur-
rent taxonomies. We found that change types regarding (i) licensing and security issues; (ii) badly
composed strings and wrong or missing imports; (ii) potential typos in either in-line comments
or Javadocs; (iii) the removal of commented out code; (iv) the application of bad testing prac-
tices; and finally, (iv) the handling of architectural changes to the system are critical to developers
and should be considered in MCR taxonomies. Additionally, we found in our investigation that
around 80% of change types occurring in MCR are related to maintainability issues, supporting
previous findings of studies in MCR [15, 44]. Furthermore, our investigations show the surfacing
of various changes in CR, such as changes in non-source-code artifacts, due to the availability of
emerging technologies (e.g., cloud based technologies) and practices (e.g., Continuous Delivery
and Continuous Integration). More specifically, developers perform additional changes in con-
tinuous delivery and integration configuration files, changes in files for runtime configuration,
changes in static analysis tools configuration files and other non-source-code artifacts (e.g., run-
time configurations, commits and external software documentations). Moreover, the evaluation
of our survey revealed a gap between the expectation of developers towards the code review and
the actual outcome of reviews. As mentioned above, due to emerging technologies and practices
such as CI and CD as well as new cloud-based technologies, developers expect more exhaustive
feedback in MCR and believe MCR processes should adapt to these new practices and technolo-
gies, which further widens the gap between expectations and actual outcomes of code review.
We found that from a developers’ point of view, the following automation would support de-
velopers in their reviewing activities and help towards closing the existing gap: (i) solutions for
consistent naming within a project; (ii) refactoring recommendations; (iii) detection and fixing of
critical security and performance issues; (iv) and tools that recommend the right configurations
for CD/CI pipelines. Our investigations into how developers believe these solutions could be
automated found that the general approach consists of the following steps: (i) conduct a man-
ual analysis to investigate patterns, anti-patterns, change metrics and documentation metrics; (ii)
leverage NLP or machine learning techniques in combination with static code analysis; and then
(iii) characterize and predict future changes or detect issues in a submitted patch. Furthermore,
it is particularly important for developers that potential solutions are tailored to the specific team
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Table 5.1: Main Findings and Needed Future Work
Research

Question

Main Findings Needed Future Work

RQ1 Emerging practices (CI/CD) and technologies (cloud-based)

push developers to perform additional changes and tasks in

MCR.

Investigation is needed in how these emerging prac-

tices and technologies shape the activities of devel-

opers in MCR and how current review tools accom-

modate these new requirements.

RQ1 Additional change types in code review are related to non-

source-code artifacts and concern the configuration in CI/CD

files, changes in runtime configurations and ASATs configura-

tions.

Investigation is needed in the correct configurations

of CD/CI and ASATs, specifically, how software

teams define policies and standards. Our research

highlighted that many issues in MCR are related

to bad configurations. By reducing the number of

wrong configurations, the review effort can be re-

duced.

RQ2 Developers require specific automation for Documentation

(consistent naming and automatic generation of required

documentation), Style (evaluation of style consistency with

the existing code base), Structure (refactoring suggestions

and detection of unused/deprecated/dead code), Functionality

(security, resource consumption and performance) and sup-

port for emerging practices and technologies (recommend and

improve CD/CI and ASAT configurations).

In our study, we surveyed 52 developers coming

from different background. While they provided in-

teresting and valuable insights and recommendation

towards the automation of MCR, further research

in different settings is needed to capture developer

needs to the full extent.

RQ3 To achieve automation in MCR, the most promising approach

is to (i) perform a manual analysis to investigate patterns/anti-

patterns, change metrics and documentation metrics; (ii) then

leverage NLP or machine learning techniques in combination

with static code analysis; (iii) to characterize and predict fur-

ther changes or detect issues in a submitted patch.

Developers provided insights into how the automa-

tion of these solutions could be achieved. While we

received valuable feedback, which we discussed in

this thesis, more research is needed how each spe-

cific solution can be implemented and reliably used

in MCR.

RQ3 Different metrics are relevant for modeling a given patch in

code review. Metrics such as static code metrics are most use-

ful in relation to Functionality change types, whereas NLP fea-

tures obtained from commit messages and the code is more rel-

evant when considering categories such as Documentation and

Style. Furthermore, change metrics, CK-metrics, ASATs warn-

ings and low-level source code changes should be analyzed to

characterize a given patch in MCR in order to automatically

detect and predict needed code changes.

While we believe that the metrics proposed in the

proof of concept are suited to model a given patch and

capture much of its features, future work should con-

centrate on additional features to conceive more fine-

grained details about a patch. For instance, our proof

of concept does not yet consider the team composi-

tion or expertise of different developers.

RQ1: What types of changes occur during code reviews?

RQ2: What are the emerging automation needs of developers in MCR?

RQ3: What approaches are feasible for the automation of MCR?

and project they are used in. For instance, tools should consider and learn the team’s naming
policies before suggesting naming-fixes.

Based on our findings regarding the automation needs of developers, we proposed a proof of
concept to show how to extract various metrics characterizing a given patch in code review. In
the future, we plan to investigate the automation of certain aspects of MCR by considering the
insights found in our analysis, by implementing a prototype that leverages Machine Learning
techniques and NLP to predict change types in code review patches.

We hope that this study was able to provide valuable insights into recurrent change types in
CR, developers expectations towards MCR, automation needs and possible solutions toward the
automation of MCR by investigating some of the most critical and emerging issues developers
have to deal with in MCR, and to propose ways how developers’ reviewing activities can be
facilitated by novel tools and approaches.
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