
Bachelor Thesis
October 10, 2018

Investigating
Continuous Delivery

Practices and their
Effectiveness in Open

Source Projects

Faruk Acibal
of Zürich, Switzerland (14-933-642)

supervised by
Prof. Dr. Harald C. Gall

Dr. Sebastiano Panichella

software evolution & architecture lab

Bachelor Thesis

Investigating
Continuous Delivery

Practices and their
Effectiveness in Open

Source Projects

Faruk Acibal

software evolution & architecture lab

Bachelor Thesis

Author: Faruk Acibal, faruk.acibal@uzh.ch

URL: https://github.com/acfaruk

Project period: 13.04.2018 - 13.10.2018

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I’d like to thank Dr. Sebastiano Panichella, who accompanied me with this thesis and showed me
a whole lot about R and statistics. He also, together with Dr. Michael Hilton, reviewed my thesis
a few times and gave me good pointers on how I could improve it. I’d also like to thank Prof. Dr.
Harald C. Gall for supporting this thesis in the last months.

Abstract

Continuous Integration(CI) and Continuous Deployment(CD) is a heavily used tool in software
development in open source as well as industrial environments. To understand the effectiveness
and efficiency of this tool, we start off by defining a taxonomy of variables that directly or indi-
rectly could influence the effectiveness/efficiency of CI/CD practices. By performing an extensive
literature review, we extract around 77 variables from 42 sources and StackExchange posts. We
then state possible theoretical effects between these variables.

We continue by performing an empirical study going in depth for the build failure rate as well
as the build duration and how they are affected by other variables. We use the datasets provided
by TravisTorrent as well as GHTorrent. Looking at over 1200 projects and more than 680’000
builds, we confirm older studies but also contribute new findings.

Our work should help identifying problematic CI/CD practices that could influence the CI/CD
effectiveness. The taxonomy we defined, should help with many upcoming research questions
regarding the efficient and effective use of CI/CD practices. With these results, CI/CD effective-
ness could be heightened in industrial as well as open source environments by manually or even
automatically inspecting these variables and warning the maintainers of projects if problematic
instances of these variables are detected.

Zusammenfassung

Continous Integration(CI) und Continous Deployment(CD) sind sehr häufig benutzte Werkzeuge
für die Software Entwicklung in Open Source als auch industriellen Umgebungen. Um die Effek-
tivität als auch die Effizienz dieser Werkzeuge zu verstehen, fangen wir in unserer Arbeit damit
an, eine Taxonomie von Variablen, welche auf direkter oder indirekter Weise diese Effektivität/-
Effizienz beeinflussen könnte, zu erstellen. Durch eine extensive Literaturrecherche sammeln wir
77 Variablen aus 42 Quellen und StackExchange Fragen/Antworten. Danach legen wir mögliche
Effekte zwischen den Variablen dar.

Im zweiten Teil führen wir eine empirische Studie aus, in welcher wir genauer in die Build
Fehlerrate und die Build Dauer eingehen und uns genauer anschauen was für einen Effekt andere
Variablen auf diese beiden haben. Mit über 1200 Projekten und mehr als 680’000 Builds bestätigen
wir ältere Aussagen in der Literatur und stellen neue auf.

Unsere Arbeit sollte helfen, problematische CI/CD Praktiken, welche die Effektivität/Effizienz
beinträchtigen, zu identifizieren. Die Taxonomie, welche wir definiert haben, sollte mit aufk-
ommenden Fragen bezüglich effizienter und effektiver Nutzung von CI/CD helfen. Mit diesen
Resultaten, könnte man in Open Source und industriellen Umgebungen die Effizienz und Effek-
tivität von CI/CD Prozessen steigern indem man die Variablen manuell oder automatisiert im
Blick behält und die Maintainer von Projekten auf problematische Instanzen hinweist.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Research questions . 3
1.4 Main Findings . 3

2 Related Work 5
2.1 Continuous Delivery and Integration Practices . 5
2.2 Challenges of Moving to Continuous Delivery Practices 6

2.2.1 Social Adoption Challenges . 7
2.2.2 Technical Adoption Challenges . 8

2.3 Available Tools and Datasets for Continuous Delivery 8
2.3.1 Hosting . 8
2.3.2 Mainstream Tools . 9
2.3.3 Datasets . 9
2.3.4 Research Approaches and Prototypes . 10

3 Approach 11
3.1 Taxonomy Definition Concerning the Variables Characterizing or Affecting the CD

Processes and Practices . 11
3.1.1 Recent and Relevant Related Work . 11
3.1.2 StackExchange/StackOverflow Posts . 14
3.1.3 Merging And Grouping the Variables . 15
3.1.4 Visualizing the Taxonomy . 17

3.2 Measuring the Variables . 18

4 Analysis 21
4.1 Preparing the Data for Analysis . 21
4.2 Creating Hypotheses . 22

4.2.1 Project Level . 22
4.2.2 Build Level . 23

4.3 Addressing the Hypotheses . 24
4.3.1 Project Level . 24
4.3.2 Build Level . 33

viii Contents

5 Discussion and Future Work 37
5.1 Addressing the Research Questions . 37

5.1.1 Discussion of the Project Level Analysis Results 38
5.1.2 Discussion of the Build Level Analysis Results 40

6 Possible Threads to Validity 41

7 Conclusions 43

Appendices 51
A Papers Used for Taxonomy Definition . 53
B StackExchange Posts Used for Taxonomy Definition 54
C Taxonomy of Variables for CI/CD Effectiveness . 55

Contents ix

List of Figures
2.1 Various Technical and Social Challenges when it comes to CI/CD. Gathered from

various sources such as Chen [4, 5], Claps et al. [6], Hilton et al. [16], Leppanen
et al. [22]. 7

3.1 The CI pipeline stages. Note this is one possible way of defining a CI pipeline. We
simply choose to use this one for our work. 16

3.2 Final Taxonomy . 18

4.1 Box plots showing the distribution of the average build duration (left) / build fail-
ure rate (right) grouped into the quantile ranges of the average jobs per build (left)
and average build duration (right). 27

4.2 Box plots showing the distribution of the average build duration grouped into the
quantile ranges of the average documentation files changed (left) and the average
active team size (right). 29

4.3 Box plots showing the distribution of the average build duration grouped into the
quantile ranges of the amount of commits in the project (left) and the amount of
stars_watchers (right). 30

4.4 Box plots for the used language in projects showing distributions of the build fail-
ure rate as well as the average build duration. 32

4.5 Box plots for whether the project is in an organization or not and whether the
project is cloud ready or not, showing distributions of the build failure rate as well
as the average build duration. 33

4.6 Box plots for various ways to group the builds based on branch name. 34

List of Tables
3.1 Variables Found in Recent and Relevant Related Work 13
3.2 Search Terms Added to Main Search Query and Their Effect 14
3.3 Variables Found in StackExchange/StackOverflow Posts 15
3.4 Grouping on CI stages . 16
3.5 Ideas on how the various variables could be measured. TT = (TravisTorrent [3]) CI

Server/Tool + Log inspection of builds), T = (Travis APIv3) CI Server/Tool, GH =
(GitHub APIv3 or GHTorrent [13]) Version Control System 20

4.1 Correlation Values between the numerical Project level variables along with the
quantile values of their respective distributions. 25

4.2 Wilcox and cliffs delta values of the numerical Project level variables. The column
names start with w or c for wilcox or cliff separately. The following two numbers
are the two quantile ranges that are being compared. 26

4.3 Statistics for the various filters that were applied to the branches. The p-value is
always the smaller one applicable and the two last columns are for the build failure
rate within the filtered distributions or their counterparts that do not conform to the
filter. 34

x Contents

Chapter 1

Introduction

This paper is structured into seven chapters. In chapter 1 we start off by defining the terms
Continuous Integration and Continuous Deployment and their context, we state our motivation,
research goals and questions and how we plan to accomplish our goals.

In chapter 2 we look at related work concerning CI/CD practices and tools. We look at
the challenges that arise when adopting a CI/CD pipeline and also look further into tools and
datasets that are available.

In chapter 3 we describe the approach taken when creating our taxonomy. We also show the
final taxonomy in a network of variables and try to find ways to measure the various variables
that we defined.

In chapter 4 we describe how we prepared the data for our analysis, how we performed it and
the results we got.

In chapter 5 we discuss our findings and reference relevant work as well as look at further
research that could be done.

We close with possible threads to validity in chapter 6 and then a short conclusion in chapter 7.

1.1 Context
Continuous Delivery (CD) is a software engineering practice which lets developers build and
deliver incremental versions of a software system in a very short time period. The main goal
being, that the software is releasable at any point in time[5]. CD is often paired with Continu-
ous Integration (CI). Simply put, it allows many developers to integrate their changes quickly to
the software project. By providing testing and static code-quality checking through automated
processes, integration errors are found and dealt with quickly[48].

Moving to CD/CI caused industrial organizations to report huge gains in developer produc-
tivity, software quality, release frequency and customer satisfaction[5]. These advantages led to
open source developers also adapting CD in their development processes. It is currently one of
the most used practices in the field[5, 15].

CI does not come without challenges though. Especially introducing it in already estab-
lished development environments makes it very hard, since CI is heavily based upon automation
practices[5, 15]. A lot of research has already been done to look at these challenges. Looking
at the barriers and needs of developers themselves[16]. Or the challenges that come up, when
transitioning to CI[5, 31].

Even though CI has become a best practice of modern software development, there is almost
no quantitative and qualitative research available for it[2, 3], particularly, a general applicable
taxonomy of variables in the CI process and how they affect each other is not available. There is
some research accessible on different kinds of variables affecting the CI/CD process. Most of the

2 Chapter 1. Introduction

research done looks mostly at the build failure rate of CD builds[2, 17, 20, 25, 29, 49, 51]. Other
research might look at social attributes, like how many followers a developer might have [39], the
time of day/week[1], the project size [12, 17, 39, 44, 52] or the project age [44, 46, 50, 52] and many
more. Taking all these research papers into account, there seems to be a need for some sort of tax-
onomy for possible variables. A clear taxonomy on variables, that affect the CI/CD effectiveness
could help researchers and developers by providing possible research directions and actions in
real instanced CI/CD pipelines. This paper aims to create a taxonomy of variables, that can be
studied qualitatively. We would like to find the variables that are the most important for effec-
tive CI/CD usage and how to maximize their effectiveness by finding and tweaking independent
variables.

1.2 Motivation

The main goal for this thesis is to optimize the CI/CD processes. To achieve this goal it is re-
quired to have an overview of the different aspects and decisions one can make when instancing
a CI/CD process. The next step would be to see the effects of these decisions and aspects on the
effectiveness of the CI process. Basically finding out how different variables affect CI/CD. An
example of this could be how the contribution size/churn (how much was changed in a single
contribution) affects the Build Failure Rate[34]. Our goal is to find factors that directly influence
the effectiveness of CI processes, how much they influence them, as well as defining how this
effectiveness could be measured. (e.g., reliability/efficiency etc.)

There are many aspects/decisions that affect the investigated CD and CI pipelines. For ex-
ample, it was found that dynamic programming languages (e.g Ruby, Python) have more tests
written and more build breakages compared to statically typed languages[2]. Another interesting
finding was that commits that come from pull requests seem to have a smaller build failure rate
than direct commits on the development branch[46]. A paper also looked at social attributes[39].
It indicates, that core team members have a better chance of not causing build failures. The au-
thor of a commit having a big number of followers on GitHub (a feature, where one can follow
the activities of another developer), also seems to positively influence the chance of a successful
build[39]. Recent research follows this trend of looking at different factors and how they affect
various metrics. However, this loses sight of the big picture. Which factors are the most impor-
tant? Which metrics define CI/CD effectiveness the best?

We want to shed some light on these possible factors and metrics. To achieve this, we per-
formed an empirical investigation aimed at defining possible factors and metrics that influence
and measure the effectiveness of CI/CD processes. We looked at recent research as well as Stack-
Overflow posts to find as many as possible. After clustering and grouping them, the final product
is a taxonomy of variables. Researchers can use it to find new possible research directions and
developers can decide which factors and metrics are important for their CI instances. This would
lead to a clear way of looking for priorities when trying to make a CI/CD process more effective.

A secondary goal of this thesis would be to strengthen the research that was already done
about CI/CD. Replication of the findings in other papers is very important here. So where pos-
sible, we would mention the findings of other researchers and compare them with our own. For
example, there seem to be conflicting findings about whether being a "casual" contributor has
negative effects on Build Failure rate or not[34, 39]. While Soto et al. find that core contributors
of a repository tend to have a bigger likelihood of generating successful builds [39], the results of
Reboucas et al. however suggest that being a casual contributor does not necessarily result in a
higher chance of failing builds.

1.3 Research questions 3

1.3 Research questions
Generally speaking we want to look at effectiveness metrics of CI/CD pipelines and the factors
that influence said metrics. When talking about effectiveness, we generally mean the duration
and frequency in a CI/CD pipeline. How often can it be run? How fast do the developers get
feedback from the pipeline? Does the pipeline help improving the overall software quality?

Out of practical and data reasons we will only look at open source software. Naturally,
it is much easier to gather data for open source software. It should be mentioned however,
that the build failure rate of CI/CD builds is influenced by whether a project is open source or
industrial[49].

As mentioned before, there is currently no study that somehow defines and investigates all
the possible variables/factors that could influence the effectiveness of a CI/CD pipeline. So we
state our research question:

• What factors impact effectiveness of Continuous Delivery and Integration practices?

To answer this question we split it up:

• RQ1: What (dependent) variables are used to measure effectiveness of Continuous Delivery and
Integration practices?

• RQ2: Which (independent) variables/factors impact effectiveness of Continuous Delivery and Inte-
gration practices?

So with our first research question we aim to find the actual variables and factors that measure
how effective a CI/CD pipeline is. The second question then focuses on variables / factors that
influence the ones from RQ1. We do this by looking at already available research as well as con-
ducting our own empirical investigation. Answering these questions means having an effective
taxonomy of variables and factors that influence the CI/CD process and their rankings. With
this taxonomy one could prioritize or improve specific variable values for CI/CD decisions and
practices, providing automated software solutions.

We try to answer these questions in various steps. In section 3.1.1, we gather different factors
that could be considered dependent or influencing ones as reported in recent research papers.
We also look through StackOverflow questions and answers to complete our variable list in sec-
tion 3.1.2. Finally merging and grouping them according to the phases and concepts of CI/CD
we try to find the impacting relationships between the found variables by looking at the literature
again. At the same time, we also mention possible relations between the variables, that could be
further investigated.

1.4 Main Findings
Apart from our newly created taxonomy on CI/CD effectiveness variables, we have also some
results from our empirical study. Looking at the project level and numerical variables, according
to our results, the amount of builds, the amount of jobs, the average (source) files modified, the
average active team size, the amount of commits, the amount of star watchers, the average lines
of production code as well as the average amount of asserts per 1000 lines of code affect the
build duration. The build failure rate however seems only affected by the duration of builds in
our results. Looking at non numeric variables at the project level, the choice of Java or Ruby in
programming language affects both the build failure rate as well as the build duration. While,
whether or not a project belongs to an organization and the "Cloud Readiness" of it seems to only

4 Chapter 1. Introduction

affect the build duration of said project. Looking at the build level, branches with the keyword
"release" in them have larger build times than those that do not. Branches with the "feature"
keyword seem to have a 8% difference in build failure rate to the branches without that keyword
in it. A detailed overview of the findings can be seen in chapter 5.

Chapter 2

Related Work

2.1 Continuous Delivery and Integration Practices
Fowler and Foemmel show very early how Continuous Integration has many benefits and what
the general practices are. They mention how it reduces the risk involved when integrating chances,
because before it, how long an integration might take was always an uncertainty. It is always
clear what works and what does not with CI. In their paper, they also mention how it reduces the
amount of bugs and increases the deployment frequency[10].

In the context of a specific software project developed by Microsoft, Miller shows how Con-
tinuous Integration affected it. Gathering the causes for build breakage, estimating the overhead
of using CI and then comparing it to an estimate of an alternative process resulted in the conclu-
sion, that CI made their work 40% more cost effective, even though the code quality stayed the
same[29].

Another case-study was made by Stolberg. His report explains how he implemented a CI
pipeline in the context of introducing Agile Testing methods. Showing how he introduced the CI
system by prototype and demonstration, but also mentioning that this is probably not the best
way[45].

Kim et al. looked further into the problems that come with software projects that are composed
of many components and their integrations. Calling it "integration hell" they try to solve it with an
automated integration procedure, specifically made for these kind of projects that rely on many
components. The result is a system called "Nightbird" which was applied with success on a project
of their own, consisting of hundreds of packages[21].

Hilton et al. tried to find trade-offs that come up with using CI. The main trade-offs they listen
are Speed/Certainty, Better Access/Information Security and lastly More Configuration/Greater
ease of use. They also find that developers use CI to guarantee quality, consistency and viability
across different environments. Even though it increases the time spend[16]. Hilton et al. even
combined qualitative surveys and empirical data analysis. They find that CI is widely used and
still growing in open source software. They also mention how the more popular repositories on
GitHub are more likely to use CI. Their qualitative data also states, that the biggest reason for not
using CI is lack of familiarity. Another interesting finding they have, is that the projects that have
CI release twice as often as those without CI[15].

Vassallo et al. performed a study with 152 developers in a large financial organization. Con-
firming and also contradicting common beliefs with their results. For example a third of the re-
spondents dedicate more than half of their time to testing activities[48]. Also led by Vassallo et al.,
they analyzed the differences between open source and industrial software, coming to the con-
clusion that failures in open source are mainly caused by unit testing and in industrial software
mainly because of release preparation work[49].

6 Chapter 2. Related Work

The impacts of introducing CI to external factors were also studied. Gupta et al. looked for
example on the effects on Developer attraction and retention in open source projects. Surpris-
ingly they come to the conclusion, that introducing CI is accompanied by attraction and retention
decreases. However they do not claim causality and clearly indicate that further research is nec-
essary to get a clearer answer[14]. Rahman and Roy looked into the impact of CI on code reviews.
Their findings suggest that passing builds actually encourage more participation in code reviews.
Projects that have a higher frequency of builds are shown to have a steady level of reviewing in
them[32].

Trying to model differences in industrial CI implementations, Ståhl and Bosch performed a
literature review to find different implementations and interpretations of CI. Listing descriptive
statements that are mentioned in the literature and how they are interpreted in all the research,
they show that there was no consensus in most of these. Because of this, they propose a model to
better understand CI processes[41]. Using this model, it was later also applied to industrial cases
to further improve their understanding of CI implementations and maybe even create improve-
ments for said implementations[43]. Also trying to improve the CI process, Gambi et al. looked
at the CI processes running in the cloud. Creating preconfigured virtual machines and reusing
them wherever possible to reduce setup activities[11].

Martensson et al. tried to create a model for impediments regarding CI and use it to enable
more frequent integrations of software. The result was a model they called EMFIS. It allows a
company to visualize which factors it needs to focus on to have more frequent integrations[26].

Beller et al. looked at open source software hosted on GitHub. They found, that the most
important reason as to why builds fails was testing. Their work also concludes, that the program-
ming language of the software project has a big influence on the number of written tests (e.g., dy-
namic languages needing more vs. statically typed ones). Their findings also suggest that CI/CD
systems provide a growth of more than 10% in the amount of failures caught. However, they also
conclude that CI/CD is not a replacement for local tests[2]. Beller et al. also introduced TravisTor-
rent, a big data-set synthesized from TravisCI and GitHub[3]. Many researchers used this dataset
to gather further insights into CI processes and implementations[1, 2, 12, 14, 17, 24, 34, 49, 51].

2.2 Challenges of Moving to Continuous Delivery
Practices

There are various challenges to adopting CI/CD practices[4, 5, 6, 16, 22].
Generally speaking, challenges for adopting CI/CD systems can be categorized in two cate-

gories: Social Adoption challenges and Technical Adoption challenges[6]. Social challenges refer
to challenges which are cultural, interpersonal or even psychological. While technical challenges
are more about system/project problems that could arise when moving to CI/CD.

A general list of challenges, compiled from various sources can be seen in Figure 2.1. Olsson
et al. performed a multiple-case study in which they tried to find barriers when transitioning
to CD. Interviewing four software development companies, they gather key-barriers but also
provide actions to combat these[31]. Claps et al. performed an explorative case study involving
detailed interviews with developers in an organization that already adopted CD. They found
and categorized 20 different challenges[6]. Another noteworthy contribution in this regard comes
from Hilton et al., where they performed a qualitative study with the goal of finding barriers and
needs of developers when applying CI. They come to the conclusion, that developers that use CI
have various trade-offs that they need to evaluate. They name Assurance (Speed vs Certainty),
Security (Better Access vs Information Security) and Flexibility (More Configuration vs Ease of
Use) while also looking at implications for developers, tool builders and researchers[16].

2.2 Challenges of Moving to Continuous Delivery Practices 7

While there are many challenges when adopting CI/CD, there are also some ideas on how
to overcome some of these challenges. Chen for example provides six strategies to overcome
the challenges associated with adopting CD. Some examples are starting with easy but impor-
tant applications, creating/employing dedicated teams or selling CD as a "painkiller" to other
employees[5]. In their paper, Claps et al. also mention possible mitigation strategies for each of
their twenty identified challenges[6]. Olsson et al. also discuss the actions that the actual software
development companies performed to mitigate their respective challenges[31].

Technical
Infrastructure
Domain Constraints
Deploying
Upgrades
Legacy Systems
CI Process
Product Quality
Testing
Dev. Environments
Plugins
Source Code Control
Changing DB Schemas
Assurance (Speed vs. Certainty)
Security (Access vs. Info. Security)
Flexibility (Config. vs. Ease of Use)

Social
Pressure
Processes (+Doc.)
Company wide effort
Shorten Cust. Feedback
Changing Team Roles
Product Marketing
Cust. Adoption
Team Coordination
Team Experience
Tech. Product Writing
Cust. Feature Discovery
Client Wishes
Resistance To Change
Dev. Trust/Confidence

Figure 2.1: Various Technical and Social Challenges when it comes to CI/CD. Gathered from various sources
such as Chen [4, 5], Claps et al. [6], Hilton et al. [16], Leppanen et al. [22].

2.2.1 Social Adoption Challenges
Social challenges refer to cultural, interpersonal or even psychological issues. One example is the
organization in the company[4].

Since releasing the software can touch many divisions of a company, one would have to first
get the blessing of said divisions. Process challenges are also part of the problem[4]. If there are
other processes in the company that interfere with the CI pipeline or stall it for example. Another
big social challenge seems to be the resistance to change[22]. Since many people from different
divisions have to work together to make it work. It is also possible that a specific client does not
want faster release cycles or does not care about them[22].

Developer trust and confidence is another interesting challenge. If every change is going to
be deployed, any lack of confidence in the software application is going to be strengthened and
might cause pressure because of the continuous releases. The developers also risk their reputation
with the clients, since broken deployments are usually not very welcomed by them[6, 22].

Process documentation can be another problem. If the documentation for the CD system
is lacking, new programmers will have problems understanding the process. This is further
strengthened by the lack of industry standards[6]. A more complete list of social challenges is
available in Figure 2.1.

8 Chapter 2. Related Work

2.2.2 Technical Adoption Challenges
Naturally, technical challenges are also always a topic when it comes to complex CI systems[4].

There could be domain constraints. An example provided by Leppanen et al. mentions control
systems for factories, where a software release might mean stopping the whole system for a day
or so just to update. A setting like that can not apply instant updates because they need to be
scheduled[22].

Legacy systems can also be a problem when adopting CI/CD. Since they do not have to be
designed to be automatically tested. This means that potential problems would only arise when
the systems are integrated and running[22]. Another problem arises with different environments
like production and development environments. If the targeted environment is too different from
the development one, many unseen problems could arise[22].

Naturally, the product quality is also something that needs to be good. Having constant de-
ployments could allow for more bugs to slip to production compared to a more slow release
schedule[6].

Most of the trade-offs by Hilton et al. can also be seen as technical challenges. Should a com-
pany focus more on speed or certainty, better access or information security and more configura-
tion options or greater ease of use[16]? While ease of use could be seen as a social challenge, a
point can also be made that it could be a technical challenge. A more complete list of technical
challenges is available in Figure 2.1.

2.3 Available Tools and Datasets for Continuous De-
livery

There are various tools available for implementing CI/CD as well as analyzing the data the usage
of CI/CD generates. In a CI/CD system hosting has to be considered, automation of tests and
processes as well as deployment. Besides the usual mainstream tools, there is also new research
for improving CI/CD practices and processes.

2.3.1 Hosting
For self hosted solutions Jenkins is probably the most known.1 Though getting meaningful data
from different projects running their own Jenkins installations is pretty hard. For open source
software there are a few hosting providers. There is for example TravisCI2, AppVeyor3 and Cir-
cleCI 4 They usually offer free services for open source projects. These services can be used to
gather data of CI/CD pipelines of various projects. TravisCI for example has a public API, which
can be used for gathering data about various public CI/CD pipelines. All these solutions can be
tightly integrated with the GitHub ecosystem and configured to use the hooks from GitHub to
trigger the builds once the repository gets a new commit or a new pull request.

1https://jenkins.io
2https://travis-ci.org
3https://www.appveyor.com
4https://circleci.com/

2.3 Available Tools and Datasets for Continuous Delivery 9

2.3.2 Mainstream Tools
Also there are the general build, testing and automation tools for various programming languages
which run on the CI/CD servers. These tools usually vary with different programming languages
though. The most known build tools in the Java world for example would be Maven, Gradle and
Ant. The usual testing suite would be JUnit. What Maven, Gradle and Ant do is basically defining
different builds and targets and how to make and automate them. So there could be definitions
for testing, dependency management, packaging, deployment etc. in these tools. These defini-
tions are then performed on a server whenever a new commit or pull request is made. If they
successfully complete, then the software is theoretically ready for release. A very known pack-
aging and release method are for example Docker containers5. They allow their users to define
the environments in which their software runs and easily make the environment reproducible
allowing for more secure deployments.

Besides build tools there are also static code analyzers. These tools check the source code for
possible bugs or style mistakes. Again there are various tools depending on the programming
language here. Some examples are SonarQube, FxCop, JSLint and CheckStyle. Depending on
how the pipeline is configured, it might ask the developers to fix all the warnings and errors that
these tools output before marking a build as successful or allowing it to be deployed.

2.3.3 Datasets
In 2017 a big dataset called TravisTorrent was published[3]. This dataset is based on TravisCI data
and was made to further increase the research done on CI/CD systems. It also uses parts of the
GHTorrent dataset, which is more focused on the GitHub side of things. With it they released
the different tools they used to create the dataset and analyze it. These tools are all available on
GitHub.6 They are:

• TravisPoker: Checks if a given repository is using TravisCI.

• TravisHarvester: Aggregates general statistics of TravisCI builds for a given repository.

• Buildlog Analyzer: Analyzes build logs of Ruby / Java builds.

Building upon this dataset, Gautam et al. cleaned and added new elements for their research.
They augmented it with things like the amount of watchers or issues in a repository[12]. Madeyski
and Kawalerowicz also build on top of this dataset. They extend it with file change level data to
predict changes that could break builds in an CI environment[24]. Also augmenting the Trav-
isTorrent dataset, Reboucas et al. included the committers’ name and e-mail address and also
cleaned it for their purposes as well[34]. Soto et al. also augmented it by creating a web scraper
to again get the username as well as the related data from a GitHub user[39].

Using a completely different dataset from Google, Elbaum et al. look at how the testing phase
can be made more cost-effective. They also release the dataset with a sample of 3.5 Million test
suite execution results[9].

5https://www.docker.com/
6https://github.com/TestRoots/travistorrent-tools

10 Chapter 2. Related Work

2.3.4 Research Approaches and Prototypes
There is also a lot of research going on for new tools and methods that could be applied to CI/CD
systems. Macho et al. mention how neglecting build maintenance is one of the most frequent
reasons for build breakage. They try to combat this by creating a tool called BuildMedic which
tries to automatically repair Maven builds that break because of dependency issues. Their results
show how their tool could repair 54% of the builds that they looked at[23]. Also trying to fix
errors automatically, Soto and Le Goues use a probabilistic model to localize and fix bugs in
source code[38].

Trying to extend the CI process, Dösinger et al. try to create communicating CI servers to
increase effectiveness of automated testing. By allowing different CI servers (for different de-
pendencies of projects) to communicate and share their CI process results, they show how this
increases the effectiveness of automated testing[8]. Also trying to enhance the CI process, de Cam-
pos et al. try to extend it with automated test generation. Using their new approach, they tested
it on open source projects with remarkable results. Branch Coverage increased by 58%, while the
time spent for test generation was reduced by 83%[7].

Elbaum et al. try to make CI more cost-effective by creating algorithms that decide the order
and relevance of tests. They show their improvements with the dataset from Google mentioned
in section 2.3.3[9].

Chapter 3

Approach

3.1 Taxonomy Definition Concerning the Variables
Characterizing or Affecting the CD Processes
and Practices

In this section we try to create a taxonomy of dependent and independent variables characterizing
and/or affecting the effectiveness of the CI process. The general goal is to find the relevant factors
or variables that are the most discussed in the literature, considered relevant among developers
and associated to CI/CD efficiency and effectiveness.

This taxonomy is conceived by relying on two sources of information: (i) Recent and relevant
related work concerning CD/CI processes and (ii) StackExchange/StackOverflow posts concern-
ing CD/CI practices. The following chapters deal with these sources. By creating a separate
Taxonomy in each step and combining it at the end we build our final taxonomy.

3.1.1 Recent and Relevant Related Work
Finding Recent and Relevant Research

The first step was to find recent and relevant work on CI/CD processes. For our research we used
two sources to find relevant work: Google Scholar 1 and dblp, the computer science bibliography
2. Google Scholar was used because of its power backed by the Google Search engine and dblp
was added to have a second search engine independent from the first one.

The search terms used to find relevant papers were mainly: "Continuous Integration", "TravisCI"
and "TravisTorrent". The "Continuous Integration" query in itself creates around 200 results in
dblp and around 24 thousand in Google Scholar (Google Scholar required us to put Continuous
Integration in between quotation marks to not allow search hits with just one word). We also used
Continuous Deployment and Continuous Delivery for the search queries.

After using some of these results, additional keywords were added at the end of the used
search terms to limit the results further. Some of these were for example: "efficiency", "empirical"
or "build".

Papers were chosen by the basis of a simple question. "Does this paper discuss information
about potential variables / factors that influence CI/CD practices?" In this way a total of around

1https://scholar.google.com/
2https://dblp.uni-trier.de

12 Chapter 3. Approach

42 papers were selected. There were a few papers, that also looked at past research to find vari-
ables. An example is the EMFIS model, that was created from interviews and a literature review
of 74 research papers and a few books[26]. Another big literature review was done to find the
differences in industrial CI implementations[41]. These reviews helped in getting variables from
older papers, so we could focus our search on newer, more recent papers. The final selection of
papers and sources can be seen in appendix A.

Finding Variables

After gathering the papers, the next step was to distill a first list of variables/factors that can affect
CI/CD practices. The general approach here was to go trough the papers manually and search
for them and keeping track of the variables/factors found in a table. Any mention of a possible
variable that somehow could affect the CI/CD effectiveness was recorded this way. This table
contains the variable name, a little description about it and in which paper(s) it was mentioned.

A slight confusion might come up when seeing the developer and contributor variables. While
the variables that mention contributors look more closely at the individual level during a contri-
bution, the developer related variables are meant to be more of a general term, representing the
developer team as a whole.

There is also a variable "Usage of CI" which in itself was necessary because there were many
papers that looked at the benefits of using CI in the first place. Since we did not want to omit the
many variables that came from these papers, we included this one as well. Generally speaking
though, it is not in itself relevant for our research.

Variables directly referencing TravisTorrent columns e.g., tr_jobs or gh_pushed_at were gener-
ally also merged with the other variables. The variables found can be seen in Table 3.1

3.1 Taxonomy Definition Concerning the Variables Characterizing or Affecting the CD Processes
and Practices 13

Variable Description Mentioned In
Amount of Builds Frequency of CI Builds [1][44][28]
Amount of Contribution Types How many PR commits, direct ones etc. [52][44][50]
Amount of Contributors How many people contributed to the project [20][17][52][25][44][50][12][37]
Amount of Jobs How many Jobs are executed in a build [34][50][2]
Amount of PR’s (accepted) How many Pull Requests are made/accepted [47][15][52][50]
Amount of Tests How many tests the Project has. [2][34][17][52][12][22]
Amount of Dependencies How many dependencies does the project have [21]
Amount of Hotfixes How many fixes were quickly deployed [37]
Build Failure Rate Likelihood of a Build Failure [51][2][46][20][34][17][33][39][12][37][15][16][40][36]
Build Failure Type The reason for a Build Failure (Percentage Distribution) [49][29]
Build History Results of the latest builds [33]
CI Server used e.g., Jenkins, TravisCI etc. [44][15]
Code Owner e.g., Open Source, Industrial, Organization [49]
Code/Software Quality The Quality of the Code/Software (e.g., Amount of Bugs) [47][29][37][5][6][10][16][22][48]
Configuration Complexity Complexitiy of the CI/CD system configuration [50][16]
Contribution Complexity Complexity of the change set [33]
Contribution File Type Files types that were changed [33][12][15]
Contribution Size/Churn Size of the change set [34][33][52][39][44][12][37][20][24][17]
Contribution Type PR / Direct Commit / Merge [46][17][33]
Contribution Work Item Feature/Bug etc. [20][50]
Contributor: Amount of Followers Follower count on GitHub [39]
Contributor: Amount of Starred repositories How many repositories the contributor has starred on GitHub [39]
Contributor: Amount of Follows How many people the contributor follows on GitHub [39]
Contributor: Amount of Contributions Amount of Contributions by that specific contributor [39]
Contributor Casualty How casual a contributor is (core member vs. casual contributor) [34][39]
Contributor Commit Frequency How often does the developer commit [33]
Contributor Experience Experience as Software Developer [33][39][6]
Contributor Project Knowledge How much they know about the whole system [26]
Communication Amount of communication between team members [42][6]
Communication between CI servers e.g., Dependency projects communicate with main their status [8]
Commit Message Entropy "unusualness" of a commit message [36]
Defect detection & localisation time How long does it take until a defect is detected / localised [8]
Developer Attraction / Retention Amount of developers joining / staying in the project [14]
Developer Productivity / Efficiency Productivity / Efficiency of developers working on the project [37][42][5][16][22][28]
Developer Motivation Motivation of developers working on the project [37][45][5]
Developer Education Education level of developers about CI/CD [37][15]
Developer Sentiment Sentiments, emotions, mood and stress of a developer. [40]
Development Time Time spend by Humans [9]
Duration of Builds How long a build takes [2][26][41][50][45][10][15][16]
Duration of Tests How long the tests take [2][22][28]
Environment The Operating System, Runtimes etc. [2][10]
Feedback Time / Cycle Time The time untill the system or customers react(s) with meaningful output [30][2][6][5][22][33][48]
Hardware Amount / Power of Hardware used for the CI execution [6]
Management Support Whether or not CI/CD is supported by management [37][6][22][31]
New Commits in Build The new commits in the build since the last one [17]
Notification Quality The quality of notifications of CI/CD systems [16]
PR Latency Time for a PR to close [52]
PR Work-flow How the project handles Pull Requests [33][39]
Preconfigured Testing VM’s used Using virtual machines with preconfigured testing environments [11]
Programming Language The Programming Language of the Project [2][46][52][50][15]
Project Age / Maturity Age & Maturity of the project [46][52][44][50][37]
Project Architecture/Type Loosely Coupled, Modular, Micro-service etc. [26][41][44]
Project Organization How the team is organized etc. [26][41][4][5][6]
Project Popularity How popular a project is (often measured with the amount of stars) [15][16]
Project Size Size of the project e.g., commits or lines of code [17][52][39][44][12]
Project Growth Growth of the Project (Size) [37][1]
Release Frequency How often the project gets released [15][21][5][6][16]
Stakeholder of Build For whom the build was made (Which branch etc.) (e.g., Dev/Business) [20][17][15][22]
Team Localisation Geo. distance between team members [20]
Testing Whether or not the build includes testing activities [2][31]
Tests: Amount of Environments Amount of environments in which the test are executed [2]
Tests Failure Rate How often the tests fail [2]
Tests Coverage How much % of the source-code is tested [7][30] [28][48]
Tests Strategy (order/selection...) e.g., start with tests that fail often [9][26][7][22][48]
Tests generation for classes Whether or not Tests should be generated for certain classes [7]
Tests: given time How long specific classes need to be tested [7]
Time & Date of Builds/Commits When the commit or Build happened [1][33][24][20]
Tools Used e.g., Maven, Gradle etc. [17][26]
Tools integration How easily new tools are integrated into a CI/CD pipeline [16]
Usage of CI Whether or not the project is using CI [47][29][15][52][50][5][14][16][31]
Version Control System e.g., Git, Subversion etc. [44]
Work Breakdown / Guidelines Having Clear Guidelines how a commit should be etc. [26][6]

Table 3.1: Variables Found in Recent and Relevant Related Work

14 Chapter 3. Approach

3.1.2 StackExchange/StackOverflow Posts

Selecting Relevant Posts

We also looked at StackExchange for our variables. Using the search of the generalized StackEx-
change site, we were able to search through all variants of StackExchange like for example the
Software Engineering one. Our goal was to find questions regarding the overall effectiveness of
instanced CI/CD pipelines. By looking at the answers on such questions, we could gather new
affecting independent factors and the questions themselves might also provide some affected de-
pendent metrics.

The initial search term used here was "Continuous Integration". This resulted in 25’856 re-
sults which was not very helpful (14’009 if both words were put in between quotation marks).
Questions like "MS Unit Continuous Integration with TFS?" or "Continuous Integration (CI) with
Phabricator?" are listed when searching for this term. These questions were usually tailored to
one specific technology or tool and also usually asked a specific question regarding them. We
quickly realized that we had to further specialize our search terms. We tried again adding a few
extra keywords to this search term: "efficiency", "build", "optimize" and "best practice". The "best
practice" addition was the most effective one for finding relevant answers. It lowered the number
of questions to 541 and had many relevant ones. The additional keywords and their results can
be seen in Table 3.2

Added Term Results Useful
efficiency 36 No
build 7’664 No
optimize 113 No
best practice 541 Yes

Table 3.2: Search Terms Added to Main Search Query and Their Effect

Most of these keywords were used to find relevant questions. Finding them was more difficult
than we expected, since most of the questions are related to a specific problem that people have
and there are generally very few questions that ask for how they could generally improve their
CI/CD implementations. All the results we found came from StackOverflow or the Software
Engineering StackExchange variant. The questions were picked by identifying them as questions
that address efficiency in CI/CD instances. The full list of questions we picked can be seen in
Appendix B.

Finding Factors and Variables

The results of the StackExchange search were interesting because they showed a few variables
that were not even considered in the previous research work but had actually big impact on real
implemented CI/CD pipelines. A good example for this would be the Hardware and / or the
usage of parallel computing for the builds. The hardware for example was only mentioned in
one paper by Claps et al. where they mention it as a technical challenge for moving to CI. A good
question we found was "Improving CI build time (.NET)"3. The author is part of a team which
has a CI instance on the .NET stack. He asks for ways of improving the build time. The question
received four answers with many elaborate ways to optimize a CI instance. Here the hardware
is mentioned in two answers and parallelizing the build process was also mentioned twice in the

3https://stackoverflow.com/questions/8633313/improving-ci-build-time-net

3.1 Taxonomy Definition Concerning the Variables Characterizing or Affecting the CD Processes
and Practices 15

answers and even as a possible considered solution in the question itself. Parallelizing the build
process was not found in the earlier literature review.

Most of the StackExchange variables found used the general structure of the Project or the CI
Pipeline as the variable to improve. Usually listing specific examples that could help in the im-
plementations of the question authors. Naturally, filtering out general applicable variables was
pretty difficult. An example for this would be the question "To Clean or not to Clean"4 where the
author asks whether it is considered "best practice" to always do a clean build in the CI pipeline.
We called these variables "Job Structure" and "Project Architecture/Type" to make it more applica-
ble to different ways this could be influenced. In our example including a clean before each build
would be part of the Job Structure. Simply calling the specific change the variable here would be
a waste for many more potential changes to how a build pipeline could be structured.

Naturally there were a few overlapping variables between the StackOverflow ones and the
research as well. The amount of tests or the duration of builds to name a few. We tried to name
the variables the same if we found variables that were already found in the previous step to help
with the merging later on. The final variables can be seen in Table 3.3

Variable Description
Amount of Build Targets e.g., Release / Debug
Amount of Dependencies How many libraries etc. are used
Amount of Tests How many tests the Project has.
Duration of Builds How long do builds take?
Duration of Tests How long do tests take?
Feedback Time Time to get some response from the build
Hardware The hardware that the CI Server runs on
Incremental Builds Only compile what has changed
Job Structure How the jobs in CI are ordered/organized
Project Architecture/Type Loosely Coupled, Modular, Micro-service etc.
Test Coverage How much of the code base is unit-tested?
Tests order/selection e.g., start with tests that fail often
Usage of static Code analysis e.g., checkstyle
Using Parallel Computing Leveraging parallel computation of builds

Table 3.3: Variables Found in StackExchange/StackOverflow Posts

3.1.3 Merging And Grouping the Variables
Merging

The merging process in itself was not very complicated. Because we reused the variables found
in the literature research merging both tables was as simple as combining one table with the other
one and removing any duplicates. The StackExchange variables that were new were: Amount of
Build Targets, Incremental Builds, Job Structure, Usage of static code analysis and Using Parallel
Computing. These variables are all very practical and usually directly measurable from the envi-
ronment or build. It is kind of surprising that some of these were not found in relevant research
by us.

Grouping Variables in CI/CD Stages and Deciding Influencing Factors

The next step would be to decide whether a variable is a dependent metric or an independent
factor. Our goal is to find variables that measure the efficiency of a CI/CD pipeline. Thus, we

4https://stackoverflow.com/questions/5812872/to-clean-or-not-to-clean

16 Chapter 3. Approach

look at variables that are directly bound to the CI/CD pipeline duration and frequency. To do
this, we look at the CI/CD pipeline that we defined (see Figure 3.1) and search for variables that
directly map to the duration or efficiency of these stages.

Figure 3.1: The CI pipeline stages. Note this is one possible way of defining a CI pipeline. We simply choose
to use this one for our work.

The result of this grouping can be seen in Table 3.4. These variables are now the dependent
ones that directly influence the CI/CD effectiveness.

The next step now is to find variables that could directly influence these. First, we went
through the papers again and looked at the found influences of their research and second we
made our own logical guesses for which variables might affect others. The resulting table con-
tains references to the research if the influences are backed by it. The full table can be seen in
Appendix C.

Stage Variables Explanation
Define Developer Productivity How efficiently can developers define

what is needed for the project.
Develop Developer Productivity, Development

Time
How quickly and efficiently is the
programming done?

Commit Developer Productivity How efficiently the developer writes the
commit message etc.

Build Build Failure Rate, Build Failure Type,
Duration of Builds

How long do the builds take and how
likely are they to fail?

Integrate Build Failure Rate, Build Failure Type,
Duration of Builds

The integration stage can be seen as an
extended build stage.

Test Test Failure Rate, Duration of Tests How long do the tests take and how likely
are they to fail?

Release Release Frequency, Feedback Time These variables define the efficiency of
CI/CD more directly.

Deploy Release Frequency, Feedback Time These variables define the efficiency of
CI/CD more directly.

Operate - -
Other Project Size / Growth, Code/Software

Quality
More general, Project Level Variables

Table 3.4: Grouping on CI stages

3.1 Taxonomy Definition Concerning the Variables Characterizing or Affecting the CD Processes
and Practices 17

3.1.4 Visualizing the Taxonomy
Since the table in Appendix C is very big and full with duplicate variable names, we looked for
an alternative way to visualize the result of our work. We decided to use the Graphviz5 software
suite to visualize our relationships as a directed Graph of nodes. We wrote a graphviz file which
defines our variables as a graph where a connection is formed if a variable influences another one
according to our taxonomy. In the resulting image, the dependent metrics are red square nodes
where as all other variables are simply rectangular with different colors to more easily follow the
lines. The connections that refer to actual research results are a little bit more bold and red. The
final image can be seen in Figure 3.2. The nodes that differ because of the CI stage have their
label start with [DEF], [COM] or [DEV] standing for, Define, Commit and the Development stage
respectively.

5https://www.graphviz.org

18 Chapter 3. Approach

Figure 3.2: Final Taxonomy

3.2 Measuring the Variables
Before we could start with the analysis, it was necessary to define how we could measure the
various variables that we found. For this, we went trough each and every variable and looked
at the literature, the TravisTorrent dataset, the GHTorrent dataset [13], the GitHub API and the
Travis API on how we could gather the required data. The result can be seen in Table 3.5.

Some of the variables are not really easy to measure. Some are only really available trough
mining the repository or conducting interviews with the maintainers/company. Some of these
were mined for the generation of the TravisTorrent Dataset though. After having a rough idea on
how we could measure the variables, it was in our best interest to limit our variable set for the

3.2 Measuring the Variables 19

sake of not creating too much work for little return value.
After creating a little script to scrape some simple data from GitHub, we quickly realized that

the API limit that GitHub has, was very limiting. It only allowed 5000 requests per hour, which
would cause a little bit of extra headache when gathering huge amounts of data. The solution
was to use the dataset provided by GHTorrent instead [13]. The GHTorrent dataset is a really big
ongoing project where API keys from many volunteers are used to gather the data. It also allowed
us to get the data up until a specific date to better synchronize the data with the TravisTorrent one.
This way our TravisTorrent data was up until 8.2.20176 and the GHTorrent set we choose had data
up until 1.3.20177. This allowed for very time equal data only separated by a month.

We finally decided to limit our variables to the ones we could somehow gather from these two
datasets because of the mentioned problem with the GitHub API as well as the fact that most of
the values we could get from the TravisCi API were already readily available in TravisTorrent.
How we prepared and worked with the datasets is described in chapter 4.

6https://travistorrent.testroots.org/dumps/travistorrent_8_2_2017.sql.gz
7http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2017-03-01.tar.gz

20 Chapter 3. Approach

Variable How to Measure
Amount of Builds T: builds endpoint
Amount of Build Targets T: builds endpoint: branch and/or tag
Amount of Contribution Types TT: gh_is_pr or git_merged_with, GH:

Commits or PR endpoint
Amount of Contributors TT: gh_team_size, GH: Repository:

Collaborators endpoint (They do not mean
the same thing)

Amount of Jobs T: Jobs endpoint, TT: tr_jobs
Amount of PR’s (accepted) GH: PR endpoint: state
Amount of Tests TT: tr_log_num_tests_run,

tr_test_cases_per_kloc
Amount of Dependencies Configuration Files
Amount of Hotfixes Quick successive builds? TT:

gh_build_started_at or gh_pushed_at
Build Failure Rate TT: tr_status, tr_log_status, T: build

endpoint: state
Build Failure Type TT: tr_status, tr_log_status,

tr_log_bool_tests_failed, T: build endpoint:
state

Build History See Build Failure Rate and Type
CI Server used Configuration Files
Code Owner TT: git_branch, T: Branches endpoint, GH:

Repository: branches endpoint
Code/Software Quality GH: Issues endpoint
Configuration Complexity Total count of lines in Configuration Files
Contribution Complexity TT: All git_diff_* fields,

gh_num_commits_in_push
Contribution File Type Look at the Changes directly
Contribution Size/Churn TT: All git_diff_* fields,

gh_num_commits_in_push
Contribution Type TT: gh_is_pr or git_merged_with, GH:

Commits or PR endpoint
Contribution Work Item Mineable through Bug/Issue Number in

Commit / PR
Contributor: Amount of Followers GH: User: Followers endpoint
Contributor: Amount of Starred
repositories

GH: User endpoint: starred_url

Contributor: Amount of Follows GH: User endpoint: following_url
Contributor: Amount of Contributions GH: Commits endpoint with author

parameter
Contributor Casualty GH: Commits endpoint with author

parameter
Contributor Commit Frequency GH: Commits endpoint with author

parameter
Contributor Experience Amount of Followers, Public Data about the

Author
Contributor Project Knowledge Amount of Commits in Project, Public Data

about the Author
Communication Interviews
Communication between CI servers Configuration Files
Commit Message Entropy GH: Commits endpoint, T: commit endpoint,
Defect detection & localisation time Time between successful / failed builds as

approximation (see Build Failure Rate and
Time/Date of Builds)

Developer Attraction / Retention Active Contributors
Developer Productivity / Efficiency Contributed Code/Feature in xyz time
Developer Motivation Interviews / Commit Messages?

Variable How to Measure
Developer Education Interviews / Commit Messages? Public Data

about the Author
Developer Sentiment Observation of Authors
Development Time Work Hours of Developers or Time between

builds. (See Time/Date of Builds)
Duration of Builds TT: tr_log_buildduration, tr_duration, T:

build endpoint: duration
Duration of Tests TT: tr_log_testduration
Environment T: Environment Variables endpoint
Feedback Time / Cycle Time See Build Duration
Hardware Public Information about CI Server, or own

servers
Incremental Builds Mine from build logs. T: Log endpoint
Job Structure T: Jobs Endpoint, TT: tr_jobs
Management Support Interviews
New Commits in Build TT: git_all_built_commits
Notification Quality Interviews
PR Latency GH: Pull Request endpoint: merged_at,

closed_at and created_at
PR Work-flow Contribution Guide File in Repository
Preconfigured Testing VM’s used Mining / Interview
Programming Language GH: Repository: Languages endpoint, TT:

gh_lang, tr_log_lan
Project Age / Maturity GH: Repository endpoint: created_at
Project Architecture/Type Interview or Code Inspection
Project Organization Interview
Project Popularity GH: Repository endpoint: stargazers_count
Project Size TT: gh_sloc
Project Growth TT: gh_sloc, maybe the gh_diff_* entries
Release Frequency GH: Repository: Releases endpoint
Stakeholder of Build TT: git_branch, T: Branch and Build

endpoints
Team Localisation Interviews
Testing TT: tr_log_bool_tests_ran,

tr_log_frameworks
Tests: Amount of Environments Inspection
Tests Failure Rate TT: tr_log_bool_tests_ran,

tr_log_num_tests_*
Tests Coverage Inspection
Tests Strategy (order/selection...) Inspection / Interviews
Tests generation for classes Inspection / Interviews
Tests: given time Inspection / Interviews
Time & Date of Builds/Commits TT: gh_build_started_at, gh_pushed_at,

tr_duration, T: Build endpoint: started_at,
finished_at, duration, GH: Repositories:
Commit endpoint

Tools Used TT: tr_log_frameworks, Inspection
Tools integration Inspection / Interviews
Usage of CI Configuration Files available
Usage of static code analysis Configuration Files available
Using Parallel Computing Does the CI server permit it? Is it not turned

off?
Version Control System Inspection / Interview
Work Breakdown / Guidelines Inspection / Interview

Table 3.5: Ideas on how the various variables could be measured. TT = (TravisTorrent [3]) CI Server/Tool +
Log inspection of builds), T = (Travis APIv3) CI Server/Tool, GH = (GitHub APIv3 or GHTorrent [13]) Version
Control System

Chapter 4

Analysis

4.1 Preparing the Data for Analysis

We started of by creating a local Sql server on our machine. We imported both datasets, GHTor-
rent(1.3.2017) as well as TravisTorrent(8.2.2017) into our local server.

To prepare the data for analysis we decided on three levels of data to prepare. The first level
would be a project level, the second a build level and the third the Travis job level. We separate
the build and job level, because the TravisTorrent dataset only contained job entries, which lead
to many duplicate rows for specific builds (e.g., a build contains many jobs but once one of them
fails, all of the jobs in the same build share the same build result in the dataset). Upon realizing
this, we made a new table that aggregated these jobs to their specific builds and only had the data
that was duplicated for each job in a build. This step prevented us from using duplicate data for
our analysis. More about this can be read in section 5.1.1.

Since we only focused on the TravisTorrent data, we reduced the GHTorrent data to the
Projects that were available in the TravisTorrent data. This was done with a few simple Sql queries
where we simply created new tables where the project names or other relevant fields were mem-
bers of the TravisTorrent dataset. The first Sql query that can be used to create the smaller project
table is called projects_sub.sql. After reducing the GHTorrent set, the next step was to create
the various levels of data we decided on. First the Project level. Using fields from the GHTor-
rent dataset we combined them with the fields from the TravisTorrent set that we aggregated
differently. For example calculating the average build duration of all the builds in a project. This
gave us a very broad table on the project level. This data level can be created by first running
the ghtorrent_projects.sql which generates fields by only looking at the GHTorrent data, and
then executing combined_projects.sql which then combines data from both datasets to create
the whole projects table.

After this, the travistorrent_builds.sql and travistorrent_jobs.sql files can be exe-
cuted for the other two data levels. The first script aggregates the job entries from TravisTorrent
to reflect the build entries and the last one simply chooses the fields that are really uniquely tied
to the jobs. These fields were mostly the log analyzer results for the different jobs that a build
consisted of.

The result were three database tables with their specific data: Project, Build and Job. The exact
process on preparing the dataset can be followed in the accompanying git repository of this thesis.

22 Chapter 4. Analysis

4.2 Creating Hypotheses
As mentioned earlier we split our data into three parts: Project level, Build level and Travis
Job level. From these three parts we use the first two to create our hypothesis, that we want
to prove/disprove. In the following, whenever a hypothesis does not come with a mention of
a research paper, we can assume that our findings on that hypothesis are new and not yet re-
searched.

4.2.1 Project Level
For the project level we focus on two dependent variables: The build failure rate and the duration
of builds. The reason for this choice is reliability of our data. Both of these terms are very reliable
and exact measures of the variables and not really measured differently because of tool or pipeline
changes. We could look at the test failure rates since the jobs do have log analyzers that did
analyze some of the builds. But these results are mined and do not have the same confidence of
truth as the values coming directly from the APIs of GitHub and Travis. Also they would be not
uniformly created because of the different pipelines used in all these projects. Future Research
could look more into the other dependent variables by maybe focusing on one build tool. The
failure rate is computed by looking at the builds table, counting how often the state was passed
and finally dividing it by the amount of builds the project had. The duration of builds can be
aggregated as an average value from all the builds that a project had. We look at the following
variables and state our hypotheses:

Amount of Builds: This variable is easily extracted from the builds table. Our hypotheses
would be that projects that have more builds would have a bigger build failure rate, simply be-
cause they feel more "experimental" with their builds. The duration of builds might also get
smaller when a project has many builds. Simply because once a build might not take too long,
one might be inclined to, again, do more "experimental" builds. This variable might be more
interesting if corrected with the Project Size.

Duration of Builds: While this variable is a dependent one, it can act as an independent one
for the build failure rate. The natural thing to think would be that the build failure rate increases
with the duration of a build, simply because there is more time for things to go wrong.

Amount of Jobs: This is also an average that can be simply calculated from the respective
field in the builds table. The natural thing to think would be that more jobs in a build would
increase the build failure rate as well as the build duration, simply because there is more to do
and therefore more that can go wrong.

Contribution Size/Churn: This variable can be calculated from various fields. Our assump-
tion here is, that once the average contribution size/churn increases the build failure rate should
also increase, simply because there are then more changes that could break a build. The build du-
rations might also increase with a bigger average contribution size/churn. The reasoning for that
is that, projects that have bigger changes in their builds should also have longer build times. Is-
lam and Zibran find in their research, that the amount of source code churn influences statistically
significantly the amount of failed builds [17].

Amount of Contributors: This variable can be aggregated as the maximal or the average of
the active team size field on TravisTorrent. Our hypothesis would be, that with an increase in
contributors, the build failure rate could increase, because of the struggles of integrating all the
changes of various team members. It might also correlate with the build duration, as a big team
might indicate a big project and therefore longer build times. But there should not be a causality
there. According to Kerzazi et al. the amount of contributors on a branch has significant impact
on the build failure rate [20]. Islam and Zibran however does not find any correlation between
team size and build results [17].

4.2 Creating Hypotheses 23

Project Size: This can be the lines of production code, the amount of commits or the amount
of stars watchers on a project. The amount of contributors could also be used as a measure here.
Naturally a bigger project should have longer build duration times, since there would be more
code to build, test and integrate. The build failure rate might increase as well, because of all the
code that already exists and could break tests because of changes. Ståhl et al. look at how the
size of software projects influences the continuity of continuous integration. The interviews they
conducted make them believe, that it is plausible that the size does influence the continuity [44].
Islam and Zibran however finds that the size of projects does not correlate with the build results
[17].

Test density: This variable can be found in the various fields of TravisTorrent that look at the
tests or asserts. These fields are computed by the various analyzers of the TravisTorrent tools.
We allow not as reliable data for our independent variables, but have to mention it here that this
variable is indeed the result of an automatic extraction and not an exact value. If a specific project
has a bigger density it should probably have also longer build times as well as a bigger build
failure rate. It could also be, that projects with denser test suites indicate a bigger focus on quality
and therefore less build breakage.

Contributor Casualty: This is based on a field called gh_by_core_team_member. Calculating
the average per project gives us a number between 0 and 1 indicating how many people are
core contributors. If the casualty is high, there might be more build breakage compared to a low
casualty in contributors. Soto et al. found in their research that core team members have a higher
chance to pass the build tests [39]. However, Reboucas et al. found in their work, that there is
not a big enough difference between casual and non-casual contributors when it comes to build
failures [34].

Programming Language: Based on the findings of Beller et al., dynamic languages like Ruby
might cause a higher build breakage compared to a statically typed language like Java [2].

Code Owner: This can be seen from a field called owner_company from the GHTorrent set. It
describes whether or not a project is from an organization or not. A project that does not belong to
any organization might have bigger build failure rates. The work of Vassallo et al. is here worthy
of mention. While it does not look into the build failure rate, it looks at the distribution of build
failure types in an industrial organization and open source software [49].

Cloud Readiness: This is a new variable that we want to look into. It could be considered to be
part of the Project Architecture / Type of a project. We measured this simply by searching through
GitHub with a simple script. The search was done like this: The full project name in between
parenthesis to not allow parts of a project name to be a search hit and then the keyword "cloud"
or "microarchitecture" after it. If one of the searches had any results at all, we considered the
project cloud ready. Luckily, Github considers the Dockerfile syntax as its own language, so that
way we could include all the projects that had the "Dockerfile" language listed, as a cloud ready
project. This increased our number of cloud ready projects from around 40 to around 100. Our
hypothesis for cloud ready projects is that they might have better build failure rates compared
to other projects and shorter build times because of the Microarchitecture style many of these
projects might follow.

4.2.2 Build Level
The build level also focuses, for the same reasons as above on both the build failure rate and
the duration of builds. This time however we look at the specific builds, meaning looking at the
actual build status and the actual duration of that particular build. No averages this time.

Stakeholder of Build: This one can be measured by looking at the branch the build came from.
Depending on the branch organization, builds on the master should have less build failures than
temporal branches. If there are release branches, those would have probably the least amount

24 Chapter 4. Analysis

of build failures. According to Kerzazi et al. the stakeholder role is one of the most important
variables that influence build breakage [20]. Also, Hilton et al. find that builds on the master
branch are more likely to pass than on other branches, aligning with our own hypothesis [15].

4.3 Addressing the Hypotheses
Here, we look at the two data levels of Projects and Builds we have to address our hypotheses.
First, we focus on the Project level in section 4.3.1 where we first look at numeric variables like the
amount of builds, the amount of jobs or the lines of code and see how they affect the dependent
variables of build failure rate and build duration. After the numeric variables we look at the
remaining variables like e.g., the programming language of a project and how those affect the
failure rate and duration of builds. In section 4.3.2 we look at the build level. We also start with
numeric ones and conclude with non-numeric ones as well there.

It is important to note, that we only look at the results here. Further discussion about possible
explanations of these results and possible directions for future research is available in chapter 5.

4.3.1 Project Level
Influence of Numeric Variables on Build Failure Rate and Build Duration

We start our analysis with the project level and the numeric variables. We wrote a R script, that
loops through each numeric variable to create all the relevant plots and statistics that we need
for our two dependent variables. With a combination of the correlation coefficient, box plots for
the various quantile ranges and calculation of the Wilcox test as well as Cliff’s Delta we get a
good understanding of the correlation between two variables. The correlation coefficient gives us
a general idea on how much these variables are correlated. Then looking at the box plots of the
distributions, we can visualize possible effects that are maybe only there after a certain value or
in specific ranges. The Wilcox test and the effect size, then tell us whether or not our observations
from the box plot are statistically backed or not. We can also first look at those values and then see
if we can see their effects in the box plots respectively. The R script does the following steps for
each combination of Dependent (Build Failure Rate/Build Duration) and numerical independent
variable:

1. Calculate the correlation coefficient between the dependent and independent value with
the Kendall method[19]. This method was used because our values were not normal dis-
tributed and therefore the Pearson method was not recommended. The correlation values
can be seen in table 4.1.

2. Calculate the quantile ranges of the independent variables. We calculate the quantile val-
ues of 0, 25, 50, 75 and 100% and then create sets of dependent-values within those quantiles.
(All values between the 0 and 25 quantiles, 25 and 50 etc.) This splits our dataset in four
equal sized parts. The quantiles can also be referenced in table 4.1.

3. Create box-plots of these ranges for the distribution of the dependent variable. These cre-
ated plots show the distribution of the dependent variable on the different quantile ranges
of the independent variable. If the boxes get higher for example, it could point to an increase
of the dependent variable when the independent one is increased. The following box plots
are all calculated this way until described differently.

4. For each pair of quantile ranges calculate the following values:

4.3 Addressing the Hypotheses 25

(a) Wilcox test: This is done with the wilcox.test function in the stats package. Here
the two sets of independent variable values are compared. The resulting p-value is an
indication on whether the two sets have a statistically significant variation. Because
we automated the process we always calculate the p-value for the hypothesis that the
first distribution is "less" than the second one. When the p-value is below 0.05, we can
conclude that the sets are not identical and that indeed, the first one is "less" than the
second one. If the value is however bigger than 0.95, then it would be the same as a
p-value below 0.05 when calculating for "greater". This means that once the value is
above 0.95, we can deduce that the difference of distributions is also significant but for
the "greater" hypothesis. So any value bigger than 0.95 or lower than 0.05 is statically
significant in our tests.

(b) Cliff’s Delta: This value is calculated with the cliff.delta function in the effsize

package. While the Wilcox p-value shows us whether or not the distributions are iden-
tical, cliff’s delta is a measure on how much they differ. According to Romano and
D. Kromrey, a value of |d| < 0.147 means "negligible", |d| < 0.33 is a "small" difference,
|d| < 0.474 "medium" and otherwise it is considered "large"[35].

Both, the Wilcox p-value as well as Cliff’s Delta are listed in table 4.2. The columns start with
"c" or "w" respectively denoting the statistic and then the two numbers denote the quantile sets
that are being compared. As an example, "c-1-2" would be the Cliff’s Delta of the first quantile
range (0-25%) and the second one (25-50%).

Looking at the correlation values in table 4.1, the only significant value we get from these, is
the one between the average build duration and the average amount of jobs per build. With a
value of 0.43 it is somewhere between a weak and a moderate uphill relationship. Looking at the
box plot, that was calculated as mentioned earlier, for these variables in fig. 4.1, we can see the
last group has a significant increase in the distribution. This seems to suggest that after a certain
amount of jobs, the build duration seems to drastically increase. A closer look at the data sheds
some light on the results.

As we can see in table 4.1, the 75% quantile of average build jobs in a build is 6.27 while the
100% quantile has a value of 93.43. This suggests that most projects have less than 7 jobs in a build
and the ones that have more can have many more, resulting in longer build durations.

The Wilcox test between the 50%-75% and the 75%-100% ranges gives an extremely small
value of 3.27E-44 indicating a statistically significant change. The Cliff’s Delta is -0.65, meaning
the difference is large. The values for Cliff’s delta and the Wilcox test can be found in table 4.2.

While most of the correlations do not have statistically significant results, we can still check
the other statistics for our hypotheses. We will look at each of our hypotheses now.

Variable Correlation to Build
Failure Rate

Correlation to Avg. Build
Duration

Q0 Q0.25 Q0.5 Q0.75 Q1

builds -0.02 0.19 2.00 142.00 261.00 531.00 19447.00
avg_sloc 0.00 0.13 11.00 733.00 2198.51 8141.25 1003708.41
avg_jobs_per_build 0.16 0.43 1.00 1.39 3.04 6.27 93.43
avg_build_duration 0.25 1.00 10.07 224.12 449.56 990.88 32845.43
avg_active_team_size -0.03 0.18 0.62 2.96 4.71 8.21 225.87
stars_watchers -0.03 0.10 52.00 172.00 440.00 1111.00 37304.00
commits -0.01 0.22 1.00 304.00 629.00 1434.00 69846.00
avg_by_core_team_member -0.07 -0.06 0.00 0.84 0.92 0.97 1.00
avg_diff_src_churn -0.01 0.04 2.84 30.06 54.95 126.97 16411.01
avg_diff_files_added 0.02 0.02 0.00 0.30 0.63 1.27 179.32
avg_diff_files_deleted 0.08 0.07 0.00 0.05 0.17 0.47 56.78
avg_diff_files_modified 0.03 0.14 0.80 2.56 3.37 5.09 162.57
avg_diff_src_files 0.03 0.12 0.09 2.44 3.30 5.30 272.03
avg_diff_doc_files 0.03 0.09 0.00 0.00 0.02 0.21 42.60
avg_diff_other_files 0.01 0.05 0.00 0.26 0.55 1.30 95.52
avg_test_cases_per_kloc 0.04 0.08 0.00 9.43 45.74 105.61 2078.73
avg_asserts_cases_per_kloc 0.03 0.11 0.00 38.91 109.81 217.19 8266.76

Table 4.1: Correlation Values between the numerical Project level variables along with the quantile values of
their respective distributions.

26 Chapter 4. Analysis

dep/indep w-1-2 w-1-3 w-1-4 w-2-3 w-2-4 w-3-4 c-1-2 c-1-3 c-1-4 c-2-3 c-2-4 c-3-4
build_failure_rate / builds 0.96 0.97 0.91 0.55 0.29 0.25 0.08 0.09 0.06 0.01 -0.03 -0.03
build_failure_rate / avg_jobs_per_build 0.59 0.01 0.00 0.00 0.00 0.00 0.01 -0.12 -0.30 -0.15 -0.36 -0.22
build_failure_rate / avg_build_duration 0.00 0.00 0.00 0.04 0.00 0.00 -0.25 -0.33 -0.52 -0.08 -0.34 -0.27
build_failure_rate / avg_active_team_size 0.41 0.65 0.95 0.72 0.96 0.88 -0.01 0.02 0.07 0.03 0.08 0.05
build_failure_rate / avg_sloc 0.16 0.19 0.72 0.54 0.93 0.89 -0.05 -0.04 0.03 0.01 0.07 0.06
build_failure_rate / stars_watchers 0.57 0.86 0.75 0.79 0.68 0.39 0.01 0.05 0.03 0.04 0.02 -0.01
build_failure_rate / commits 0.88 0.93 0.46 0.63 0.12 0.07 0.06 0.07 -0.00 0.02 -0.06 -0.07
build_failure_rate / avg_by_core_team_member 0.78 0.99 1.00 0.95 0.98 0.71 0.04 0.11 0.13 0.08 0.10 0.03
build_failure_rate / avg_diff_src_churn 0.11 0.67 0.54 0.95 0.84 0.33 -0.06 0.02 0.00 0.08 0.05 -0.02
build_failure_rate / avg_diff_files_added 0.88 0.99 0.12 0.91 0.01 0.00 0.05 0.11 -0.06 0.06 -0.11 -0.16
build_failure_rate / avg_diff_files_deleted 0.01 0.00 0.00 0.27 0.02 0.08 -0.10 -0.13 -0.18 -0.03 -0.10 -0.06
build_failure_rate / avg_diff_files_modified 0.07 0.19 0.04 0.71 0.33 0.17 -0.07 -0.04 -0.08 0.03 -0.02 -0.04
build_failure_rate / avg_diff_src_files 0.66 0.30 0.08 0.15 0.03 0.15 0.02 -0.02 -0.07 -0.05 -0.09 -0.05
build_failure_rate / avg_diff_doc_files 0.72 0.73 0.09 0.45 0.08 0.04 0.04 0.03 -0.06 -0.01 -0.09 -0.08
build_failure_rate / avg_diff_other_files 0.59 0.37 0.47 0.29 0.39 0.57 0.01 -0.02 -0.00 -0.03 -0.01 0.01
build_failure_rate / avg_test_cases_per_kloc 0.01 0.25 0.00 0.98 0.22 0.00 -0.12 -0.03 -0.17 0.10 -0.04 -0.15
build_failure_rate / avg_asserts_cases_per_kloc 0.24 0.35 0.04 0.67 0.15 0.06 -0.03 -0.02 -0.08 0.02 -0.05 -0.07
avg_build_duration / builds 0.03 0.00 0.00 0.00 0.00 0.00 -0.09 -0.24 -0.41 -0.16 -0.35 -0.18
avg_build_duration / avg_jobs_per_build 0.00 0.00 0.00 0.00 0.00 0.00 -0.24 -0.40 -0.88 -0.14 -0.68 -0.65
avg_build_duration / avg_build_duration 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
avg_build_duration / avg_active_team_size 0.02 0.00 0.00 0.00 0.00 0.00 -0.09 -0.23 -0.38 -0.14 -0.30 -0.17
avg_build_duration / avg_sloc 0.19 0.00 0.00 0.01 0.00 0.01 -0.04 -0.16 -0.26 -0.12 -0.22 -0.11
avg_build_duration / stars_watchers 0.33 0.10 0.00 0.19 0.00 0.00 -0.02 -0.06 -0.25 -0.04 -0.23 -0.19
avg_build_duration / commits 0.00 0.00 0.00 0.03 0.00 0.00 -0.15 -0.24 -0.51 -0.09 -0.38 -0.30
avg_build_duration / avg_by_core_team_member 0.90 1.00 0.99 0.93 0.89 0.43 0.06 0.13 0.12 0.07 0.06 -0.01
avg_build_duration / avg_diff_src_churn 0.09 0.35 0.02 0.79 0.22 0.05 -0.06 -0.02 -0.10 0.04 -0.04 -0.08
avg_build_duration / avg_diff_files_added 0.19 0.92 0.10 0.98 0.30 0.00 -0.04 0.07 -0.06 0.10 -0.02 -0.12
avg_build_duration / avg_diff_files_deleted 0.00 0.00 0.00 0.82 0.75 0.40 -0.21 -0.17 -0.19 0.04 0.03 -0.01
avg_build_duration / avg_diff_files_modified 0.00 0.00 0.00 0.01 0.00 0.04 -0.14 -0.25 -0.33 -0.11 -0.19 -0.08
avg_build_duration / avg_diff_src_files 0.03 0.00 0.00 0.01 0.00 0.08 -0.09 -0.19 -0.26 -0.10 -0.17 -0.07
avg_build_duration / avg_diff_doc_files 0.00 0.00 0.00 0.99 0.99 0.45 -0.33 -0.16 -0.17 0.16 0.16 -0.01
avg_build_duration / avg_diff_other_files 0.00 0.01 0.01 0.72 0.77 0.54 -0.14 -0.11 -0.11 0.03 0.03 0.00
avg_build_duration / avg_test_cases_per_kloc 0.01 0.08 0.00 0.87 0.01 0.00 -0.11 -0.07 -0.23 0.05 -0.12 -0.17
avg_build_duration / avg_asserts_cases_per_kloc 0.00 0.00 0.00 0.24 0.01 0.04 -0.15 -0.18 -0.26 -0.03 -0.11 -0.08

Table 4.2: Wilcox and cliffs delta values of the numerical Project level variables. The column names start
with w or c for wilcox or cliff separately. The following two numbers are the two quantile ranges that are being
compared.

Amount of Builds: The correlation values here are rather small, with 0.19 for the average
build duration it is very weakly influenced. Looking at the Wilcox p-values and effect sizes in
table 4.2, the non existent relationship against the build failure rate is strengthened, while the
relationship to the average build duration is significant. The Cliff’s Delta between the first and
last quantile range is -0.41, so it is very close to a large difference but still considered medium.
The other comparisons show a small difference with the exception of 1-2 being negligible and 2-4
being medium.

There seems to be a small to medium influence between the amount of builds a project has
in its lifetime and the duration of said builds. The more there are, the longer a build seems
to take. Our data does not suggest an influence between the amount of builds and their
build failure rate however.

Duration of Builds: The correlation coefficient between the duration of builds and the build
failure rate is around 0.25 as can be seen in table 4.1. This indicates a close to weak uphill relation-
ship. Meaning that the failure rate seems to slightly increase with longer build times. Looking
at the Wilcox p-values in table 4.2, the differences between the distributions is significant while
the Cliff’s Delta goes up to -0.52 for the difference between the first and last quantile distribution.
This indicates a large difference. Most of the other comparisons have a small delta except for the
2-3 comparison with a negligible one. The gradual increase of the build failure rate can also be
seen in the box plot in fig. 4.1. The difference between the first and last set is clearly visible there.

Our data suggests that the average build duration of a project has a small to medium effect
on the build failure rate of it. The longer the builds get the higher the failure rate increases.

Amount of Jobs: This variable was already discussed a bit earlier. Looking at the influence to
the build failure rate in table 4.2, almost all comparisons have a statistically significant p-value.

4.3 Addressing the Hypotheses 27

Figure 4.1: Box plots showing the distribution of the average build duration (left) / build failure rate (right)
grouped into the quantile ranges of the average jobs per build (left) and average build duration (right).

The only exception is the comparison of 1-2. Looking at the effect size, the biggest one seems to be
the comparison 2-4 with a value of -0.36, a medium change. The effect size for the 1-2 comparison
is, even though it is minuscule, positive. Compared to all the other negative values, this can not
be ignored. There might be a relationship here, but one would probably need better evidence to
make a statement.

The influence on the build duration however is, as already discussed pretty significant. The
effect size for the ranges 1-4 is -0.88, that is considered a large effect size.

Our data suggests that the amount of jobs has a large influence on the duration of builds. In
particular once the amount of jobs reaches seven or more, there seems to be a big increase
in build times. The amount of jobs seem to not have a confident connection to build failure
rate however.

Contribution Size/Churn: Here, we look at all the variables in table 4.2 which have a "diff" in
their name, these variables represent the average size of the changes made to a project. We can
clearly see that for the build failure rate, almost all of them have p-values that do not imply a
significant change. There are however some exceptions:

1. Average Files Added: We can observe the comparisons of 1-3, 2-4 and 3-4 having significant
differences. The effect sizes are 0.11, -0.11 and -0.16, considered negligible and small respec-
tively. Looking at the actual quantile values in table 4.1, the 75% quantile is 1.27 and the
100% one 179.32. The small increase can be considered a result of this big variation in the
last quantile range. Also the switch between "greater" and "less" significant changes does
not help for a clear deduction.

2. Average Files Deleted: According to our calculated p-values the comparisons, 1-2, 1-3, 1-4
and 2-4 are all have significant changes. Looking at the effect sizes, the only comparison
with a non-negligible value is the comparison 1-4 with -0.18, this is considered small. Since
it is the comparison of the two most distant distributions and also just barely considered
small, making conclusions out of this is not warranted.

Both the Average Source Files changed and Average Documentation Files changed have both a
single significant change in one of the comparisons, however both of their respective effect sizes

28 Chapter 4. Analysis

are both negligible. Combining this with the rather insignificant correlation values in table 4.1,
we can assume no significant effects here.

Looking at the build duration correlation values, they seem to look a little better, but are still
mostly insignificant. They do not cross the 0.2 let alone the 0.3 barrier. There are again many
comparisons with an insignificant p-value. There are more exceptions this time:

1. Average number of lines of production code changed (avg_diff_src_churn): This variable
has only one significant comparison, namely 1-4. With a Cliff’s Delta of -0.1 however the
difference is negligible.

2. Average Files Added: This variable also only has two comparison with a significant change
in the comparisons, namely 2-3 and 3-4. Again though, with an effect size of 0.10 and -0.12
it can only be considered negligible.

3. Average Filed Deleted: This variable has more significant changes. 1-2, 1-3 and 1-4 are all
significantly different when compared. Their effect sizes are respectively -0.21, -0.17 and
-0.19. All of these values are small. All of these comparisons tell us that the first quantile
range seems to differ very much from the rest of them. Looking at the quantile values in
table 4.1 we can see that the 25% quantile is only 0.05. This is a small number when looking
at files deleted. Because we are looking at project averages, it seems like most of the projects
get a value below 1 for this variable. A possible explanation for our observations might
be, that projects which rarely delete files in their commits have slightly smaller build times.
Since the other quantiles are so close, this explanation needs more research.

4. Average Files Modified: For this variable, every comparison has significant changes. The
biggest effect size is in the 1-4 comparison with a value of -0.33, this indicates a medium dif-
ference. Looking at the other effect sizes, we can assume that there is indeed some influence
from the average files modified here.

5. Average Source Files Changed (avg_diff_src_files): Looking at the values in table 4.1, all
the comparisons have significant changes except for the 3-4 one. The effect size for the 1-4
comparison is with -0.26 in the small category. We can conclude a small influence here.

6. Average Documentation Files Changed (avg_diff_doc_files): Looking at the quantiles tells
us again, that most of the projects do not have more than one documentation file change
in the average. The 75% quantile is 0.21. Meaning if there are interesting results here, they
should be between the last quantile range and the others. Looking at the box plots in fig. 4.2,
seems to suggest a sudden increase in the second range. The p-values and effect sizes con-
firm the weird out-lier second range. We withdraw from making any conclusions for this
variable.

7. Average Other Files Changed (avg_diff_doc_files): All the effect sizes here are negligible
as can be seen in table 4.2.

It is important to know, that these values are averages over their respective projects. This is
different from looking at the effect of a big contribution vs. a small one. We looked at the averages
of a project and then at their influences on the variables.

Our data does not suggest a relationship between the average amount of contribution
size/churn and the build failure rate. Our observations show however a small to medium
positive relation between the average files modified and the average build duration. Also
a small positive relation between the average source files modified and the build duration
was also observed.

4.3 Addressing the Hypotheses 29

Figure 4.2: Box plots showing the distribution of the average build duration grouped into the quantile ranges
of the average documentation files changed (left) and the average active team size (right).

Amount of Contributors: Here we look at the variable "avg_active_team_size", it tells us the
average amount of developers in a 3 month period. Looking at the correlation to the build failure
rate in table 4.1, we find a correlation value of -0.03. In table 4.2, the 2-4 comparison is significant
while the 1-4 one can also be considered close to significance, however the effect sizes are both
negligible. This invalidates any influences between the amount of contributors and the build
failure rate our data could suggest. Looking at the build duration however, with a correlation
value of 0.18 there could be more to the relationship of team size and build duration. Looking at
the p-values in table 4.2, they are all smaller than 0.05 indicating statistically significant differences
and their biggest effect size of -0.38 in the 1-4 comparison is also classified as medium change.
Looking at fig. 4.2 makes this slight increase visible. We can also see how the increase starts being
noticeable after the first two sets of quantile ranges. Looking at the p-values again confirms this
observation. The 1-2 comparison has the lowest effect size with -0.09. Looking at the quantile
values in table 4.1, we can see the value for the 50% quantile is 4.71 meaning that with around
five or more developers the effects seem to get bigger.

While our data does not imply a relationship with the build failure rate, there seems to be
a small to medium influence to the average build duration from the average active team
size. As it increases, the build times seem to increase as well. However there seems to be
close to no relationship when the team size stays below five developers. Once there are
more, the effects of the relation seem to start.

Project Size: Here we look at three relevant variables: Lines of production code (avg_sloc),
the amount of commits (commits) or the amount of stars watchers on a project (stars_watchers).
These variables are not necessarily synonymous to the project size, but could be seen as closely
related. Their correlation values, when compared to the build failure rate are insignificant. A
quick look at the p-values also shows not a single value being significant.

When looking at the average build duration however, we get a few more significant values:

1. Average Lines of production code (avg_sloc): All of the p-values show us significant
results except for the 1-2 comparison. The effect sizes go up to -0.26 for the 1-4 compari-
son, meaning there is a small difference between the first and last quantile range. We can
conclude a small relationship between the average build duration and average lines of pro-
duction code.

30 Chapter 4. Analysis

Figure 4.3: Box plots showing the distribution of the average build duration grouped into the quantile ranges
of the amount of commits in the project (left) and the amount of stars_watchers (right).

2. Amount of commits (commits): All the p-values are below 0.05 and are therefore indicating
statistically significant changes in the compared distributions here. The biggest effect size
is for the 1-4 comparison again with -0.51, a large value. Looking at the effect sizes, the
ones which are compared with the fourth quantile range seem the highest. Looking at the
box plot in fig. 4.3 confirms our observations. The last distribution is visibly higher than
the others. Looking at the quantile values in table 4.1, we can see that the 75% quantile
for commits is 1434 while the 100% one is 69846. Meaning there is a much bigger range
of values in the latest quantile range. Looking at the correlation value again in table 4.1,
we see a value of 0.22, it is one of the bigger values in that table. We can conclude a small
to medium increase up to 1500 commits and after that a large increase in build duration
(together with the commits).

3. Amount of stars watchers on a project (stars_watchers): Only the 1-4, 2-4 and 3-4 com-
parisons show a significant p-value here. When looking at the effect size, the biggest one is
again 1-4 with a value of -0.25, this value is considered small. We can clearly see the pattern
where only the comparisons with range 4 are significant. A look at the box plot in fig. 4.3
confirms our observations. The last range shows a big difference here. The quantile values
for Q0.75 and Q1 are 1111 and 37304 respectively, showing us again a very big range of val-
ues in the last range. We can conclude a small relationship between stars_watchers and the
build duration with a bigger increase after a value of 1111 is reached.

The average build duration is affected by the amount of commits, the amount of stars
watchers as well as the average lines of production code. For the average lines of pro-
duction code, our data suggests a small relationship. For the amount of commits, we can
conclude a small to medium increase up to 1500 commits and after that a large increase in
build duration (with a bigger range of possible number of commits). A small relationship
is also found for the stars watchers and the average build duration. It also seems to get
way bigger after a certain point, namely 1111 here (again with a bigger range of possible
values after that point). However it is important to note that the measure of commits in a
project might be difficult to study as a variable as further discussed in section 5.1.1.

Test density: The correlation values for the asserts or test cases density in table 4.1 are all

4.3 Addressing the Hypotheses 31

pretty low. The biggest one seems to be the assert cases density when compared to the average
build duration with a value of 0.1. First we look at the build failure rate:

Looking at the p-values in table 4.2, we can see that the asserts variable has just one significant
value in the 1-4 comparison, but with an effect size of -0.08 it can be considered negligible. The test
cases variable shows a significant p-value for the 1-2, 1-4, 2-3 and 3-4 comparisons. Their effect
sizes are -0.12, -0.17, 0.10 and -0.15 respectively. These values are mostly small and negligible
though. Also one of the comparisons is positive, giving us a hint on an unstable relationship here.
Therefore, we withhold from making any observations here.

Next, we look at the average build duration:
Looking at table 4.2 again, we see the test cases variable has the same problem of alternating

between positive and negative effect sizes. The assert variable however has generally significant
p-values with the exception of the 2-3 comparison. The effect sizes for 1-2, 3-4 and 1-4 are -0.15,
-0.08 and -0.26 specifically. Indicating a small relationship between the average amount of asserts
per 1000 lines of code and the build duration.

Our observations suggest a small relationship between the average amount of asserts per
1000 lines of code and the average build duration. Our data does not suggest a relationship
with the build failure rate though.

Contributor Casualty: When looking at the build failure rate in table 4.2, the comparisons
1-3, 1-4 and 2-4 show significant differences. However their effect sizes are all negligible. The
values for the average build duration follow a similar pattern, the 1-3 and 1-4 comparisons have
significant changes, but also negligible effect sizes.

Our data does not suggest a relationship between the contributor casualty and the build
duration or the build failure rate.

Influence of Non-Numeric Variables on Build Failure Rate and Build Dura-
tion

We now look at the non-numeric values in the project level. We also wrote a little R script for
these variables, but the script is less sophisticated, as it just calculates the values for each variable
separately, because each of these variables were sometimes handled a little bit differently. We
mention this in the following paragraphs if we needed to change something. The general idea is
the following:

1. Split the data into two sets: Here we split the data according to the variable we want to
observe. For example if we look at the programming language, we split it to Java and Ruby
sets.

2. Make both sets the same size: Use the size of the smaller set and randomly sample the
same amount from the bigger one. This way both sets are the same size for the next steps.
One of our variable sets was too small with only around 100 items in it. In that case we
simply duplicated the set a few times and then sampled the new size from the other set.

3. Create the box plot: Make a box plot for the created sets with the build failure rate and
average build duration as the y-axis.

4. Calculate the statistics: Calculate the p-value from the Wilcox test and the effect size with
Cliff’s Delta as before. These values are mentioned in the texts of the specific variables and
not listed in a table.

32 Chapter 4. Analysis

Figure 4.4: Box plots for the used language in projects showing distributions of the build failure rate as well
as the average build duration.

Programming Language: While our dataset includes many different languages, there are only
two with meaningful amounts of data: Java and Ruby. Because of this, we limit ourselves to these
two languages. Looking at fig. 4.4 a first observation can be done. It looks like Ruby projects seem
to have a bigger build failure rate as well as a longer average build duration.

Calculating the p-values with the Wilcox test gives us a value of 3.634e-06 for the build failure
rate and 1.228e-06 for the build duration, meaning a statistically significant difference. The Cliff’s
Delta value for the build failure rate is 0.19 and therefore small. The build duration one is with
0.20 also small. We can conclude that there is a small influence between the choice of Java / Ruby
and the build failure rate / build duration.

There seems to be a small relationship between using Java/Ruby and the Build Failure
Rate/Average Build duration. Ruby seems to have a bigger chance at build failures as
well as longer average build times.

Code Owner: Here we looked at whether or not a project belonged to a organization on
GitHub. Looking at fig. 4.5 we can observe, that there does not seem to be difference in build
failure rate, however the average build duration seems to be lower once the project belongs to an
organization. The p-value of the Wilcox test for the build failure rate gives us 0.60, confirming our
observations of no big change in build failure rate. However the p-value for the average build du-
ration, is close to 0 and therefore small enough to confirm a statistically significant change in the
distributions. The effect size is with -0.14 negligible. This seems to indicate a very small decrease
in average build duration for projects tied to organizations.

Our data suggests a very small relationship between build duration and the project be-
longing to an organization. It seems like projects that are in a GitHub organization have
smaller build times than the ones that are not part of an organization. There does not seem
to be a relationship to the build failure rate.

Cloud Readiness: This time around we only had 110 projects that were marked "Cloud Ready"
by us. Because of this, we replicated the set three times to create a set of the size 330. Then we
sampled again randomly the same amount of non cloud ready rows. After that we continued
normally as described earlier. Looking at fig. 4.5 we can observe a slightly lower build failure rate

4.3 Addressing the Hypotheses 33

distribution for cloud ready projects and also a bigger average build duration. The p-value of the
Wilcox test for the build failure rate is with 0.003341 significant and the one for the build duration
with 0.0001774 as well. The effect size for the build failure rate is -0.122011 and negligible while
the one for the build duration is 0.1606612 and therefore considered small.

Our data suggests a very small relationship between whether or not a project is "Cloud
ready" and its build failure rate. Cloud ready projects seem to have a slightly smaller
build failure rate. We also observed a small relationship between "cloud readiness" and
the build duration. "Cloud Ready" projects seem to have slightly longer build times.

Figure 4.5: Box plots for whether the project is in an organization or not and whether the project is cloud
ready or not, showing distributions of the build failure rate as well as the average build duration.

4.3.2 Build Level
For the build level, we only look at non-numeric values. Specifically the branch name of the
specific builds. When calculating the statistics we only look at the build duration, because the
build failure rate is a measure of many builds not a single one. To not leave it unobserved though,
we calculate the build failure rate of the specific variables that we look at and then compare them
to see if there are big differences. The exact steps we take are:

1. Split the data into two sets: Here we split the data according to the branch name we want
to look at. For example all branches with the name "master" in one set, the others in to a
second one.

2. Make both sets the same size: Use the size of the smaller set and randomly sample the
same amount from the bigger one. This way both sets are the same size for the next steps.

3. Create the box plot: Make a box plot for the created sets with the average build duration
as the y-axis.

4. Calculate the statistics: Calculate the p-value from the Wilcox test and the effect size with
Cliff’s Delta as before.

5. Calculate the build failure rate for both sets: This is done by counting the amount of
"passed" builds divided by the amount of rows (builds) in the set.

34 Chapter 4. Analysis

The results of the calculations can be seen in table 4.3.

Stakeholder of Build: We look at the build data and select specific branch names or identifiers
in them to compare their effect on the build duration and the build failure rate. An overview of
the different approaches we did can be seen in fig. 4.6. The first plot shows the distributions on
the master branch vs. any non-master branches. The second plot looks at branches that have the
term "feature" in them. The third one at branches that have numbers in them, usually indicating
specific version branches. The last plot looks at the branches that have the term "release" in them.
The last and second seem the most visually interesting from a first look.

Figure 4.6: Box plots for various ways to group the builds based on branch name.

Looking at table 4.3 quickly shows us that the only relevant comparison was the branches
which have the name "release" in them. So the moment a branch has the keyword "release" in it,
it seems like the build duration rises a bit. With an effect size of 0.22 between the branches that
have the keyword and the ones that do not, the difference is considered small. The rest of the
effect sizes in table 4.3 are all negligible and therefore not looked at further. Looking at the build
failure rates of the comparisons leaves most of them at a difference of about 5%. The biggest one
is the comparison of branches with the keyword feature in them and the ones that do not: The
feature branches have a failure rate of 0.36 while the ones that do not have the feature keyword
in them have a failure rate of 0.27. The difference is with around 8% the biggest one. We consider
the other 5% ones relevant as well.

Branch Filter n Wilcox p-value Cliff’s-delta Failure Rate
when True

Failure Rate
when False

Is Master branch 214831 < 2.2e-16 -0.03 0.25 0.31
"feature" in branch name 7167 0.48 0.00 0.36 0.27
numbers in branch name 85435 < 2.2e-16 0.04 0.31 0.26
"release" in branch name 6424 < 2.2e-16 0.22 0.25 0.27

Table 4.3: Statistics for the various filters that were applied to the branches. The p-value is always the
smaller one applicable and the two last columns are for the build failure rate within the filtered distributions
or their counterparts that do not conform to the filter.

4.3 Addressing the Hypotheses 35

According to our data, branches with the keyword "release" in them seem to have larger
build times than the ones that do not. The influence is small. The biggest difference in
build failure rate was between branches with the "feature" keyword vs. the ones without
with a difference of around 8%, where the feature branches failed more often. The mas-
ter branch builds seem to fail less with a difference of around 6% while branches with
numbers in them failed more with a difference of around 5%.

Chapter 5

Discussion and Future Work

In this section, we discuss the main findings our work has contributed, which older research was
confirmed/contradicted and the possibilities for future research.

5.1 Addressing the Research Questions
Our first research question, "RQ1: What (dependent) variables are used to measure effectiveness of
Continuous Delivery and Integration practices?" was tackled by first creating a big exhaustive list
of variables that are related to the Continuous Delivery processes and pipelines. We created this
list by looking at StackExchange questions as well as lots of earlier research. We skimmed these
works for mentions of variables that could somehow influence the CI/CD processes. The result
of this extensive search was a list full of variables that is table 3.1. We then looked at possible
relationships between these variables to build a taxonomy of dependent and independent ones.
The final visualized version can be seen in fig. 3.2. We did this because we were not able to find a
taxonomy of related variables. Most of the research that was done looked at a few variables and
their effects. We did find research, that made their own literature reviews though. For example
Martensson et al. created the EMFIS model based on an extensive literature review of around
74 sources[26]. Ståhl and Bosch also made a rather big literature review to find the differences
between industrial CI implementations [41].

Our work lays the groundwork for a more extensive and complete variable taxonomy on
CI/CD pipelines and their effectiveness. Further research might extend our taxonomy with more
results from interviews with developers, or even more literature research.

As for the second research question, "RQ2: Which (independent) variables/factors impact effective-
ness of Continuous Delivery and Integration practices?" we performed a statistical analysis on mainly
the TravisTorrent[3] and GHTorrent[13] datasets to answer parts of this question. Because of our
reliance on these datasets, we were bound to their limitations. Mainly we only focused on the
build failure rate and the build duration when analyzing the data. There are a few reasons for
this. Firstly, the data has not all the dependent data we defined from our taxonomy available.
As an example, we defined the software quality as one dependent variable that measures effec-
tiveness of a CI/CD pipeline in section 3.1.3. However, there is no field called software quality in
both datasets that we could analyze. We had some ideas like for example looking at the amount of
issues or issues with "bug" tags, but ultimately these methods were not exact and also was there
not enough of said tagged issues to create meaningful data. The test failure rate and duration of
tests was already part of the variables that we already looked at, we thought it would not add
much to our analysis because of that as well as those data points being mined from different logs
of different analyzers with probably various different degrees of success. Limiting our dataset to
just one build tool like for example Gradle could have been a possibility but reducing the amount

38 Chapter 5. Discussion and Future Work

of projects by more than an multiple of 2 just for additional uncertain dependent variables seemed
not worth it. In the following we discuss our findings of our statistical analysis on the mentioned
variables.

5.1.1 Discussion of the Project Level Analysis Results
This section discusses the results of our project level analysis results which we gathered in sec-
tion 4.2.1.

The amount of builds a project has in its lifetime influences the duration of said builds.
The more builds a project had in its lifetime, the longer they seem to take. This contradicts our
first hypothesis. An explanation of this, might be a connection between the amount of builds and
the age of a project or its size. With each build the size and age of a project increases. While
the relative differences are probably project specific, the general statement should be applicable.
There does not seem to exist research which looks at Project Age and the Build Duration, there is
research that looks at Project Size. Ståhl et al. looked specifically at Project Size and its influence
to the continuity of the CI pipeline[44]. Islam and Zibran find no correlation between the project
size and the build results.

Future research might look into the connection between the amount of builds and the project
size/age.

The build duration has an influence on the build failure rate. The longer the builds get the
higher the build failure rate becomes. This confirms our hypothesis. We did not find any re-
search that supports or contradicts this observation. This observation makes sense though, as we
mentioned earlier, the longer something runs, the more chance there is that something could fail.
This assumes that the execution speed is generally the same for builds, which we can generally
assume, since the hardware for open source TravisCI builds is probably very homogeneous. This
gives a second incentive to shorten build times.

The amount of jobs that builds execute, influence the duration of said builds. The more
jobs a build contains, the longer it takes. Our observations specifically see a big increase once the
amount get greater than seven jobs per build. Our observation confirms part of our hypothesis.
We did not find any indication of influence for the build failure rate.

Future research might look deeper into the seven jobs per build rule we observed. Reasoning
about why it is seven jobs could be worth looking into.

There seems to be a relation between the amount of files modified and the build duration.
The more changes there are, the longer the builds take. This confirms our hypothesis partially.
We also hypothesized that the build failure rate would increase. Islam and Zibran also observe
effects of the size/churn of contributions on the build failure rate[17]. However our observations
do not support their findings. We can think of two possible reasons for this. Firstly, the authors
mention that they excluded specific projects from their set and also removed all builds with the
"start" status. We did neither of these things. We looked at the amount of builds that had the
"started" status, but our build table had only one build with that state. The second reason is the
definition of the term "Build". They mention 36.2 million builds in their study. If we look at our
numbers, that corresponds to the amount of jobs that the TravisTorrent dataset looked at (they
also used TravisTorrent). The way that the TravisTorrent dataset is structured is that each row is
the result of one job, but with specific entries being duplicate if belonging to the same build. For
example if a build has ten jobs and it failed in one of them, then all of the ten rows for that build
have the build state failed even though a few of the jobs might not have failed. We checked this
by looking at the build id of each row and counting the amount of differing columns. Only very
few columns had differing values. The build state was not one of them. This observation lead us
to create a secondary database table only consisting of the actual builds with "only" around 680
thousand builds. This could explain our differing results.

5.1 Addressing the Research Questions 39

The amount of contributors influence the build duration, but not the build failure rate. The
more contributors a project has, the longer the build times get. However this relationship seems
to only start after around five or more contributors. In our hypothesis we mention that this might
be the case since a bigger amount of contributors is usually a signal for bigger projects. There
does not seem to be any research that looked at build durations based on the team size. Kerzazi
et al. find in their research an influence of team size to the build failure rate[20]. Our observations
do not support these findings. Islam and Zibran support our results as well with no connection
found between those two variables[17]. Their research is also based on the TravisTorrent dataset
while the findings of Kerzazi et al. are based on coworkers on different branches of one project
instead of average team sizes of projects[17, 20]. Further research might look into the differences
between these measures.

The project size has an effect on the build duration, but not the build failure rate. We
mentioned the different variables that could be associated with the project size as the lines of
production code, the amount of commits, the amount of star watchers or even the amount of
contributors as discussed earlier. All of these variables seem to some way influence the build
duration in our analysis. We did not find any correlation between build failure rate and the
project size though. Islam and Zibran also do not see a correlation for these variables[17].

It is however questionable to look at the amount of commits as an indirect variable here. It
is very difficult to study, since it could vary a lot depending on the project. Is for example a
project with thousand small commits bigger than one with a hundred big ones? We think that
only looking at this variable isolated, does not make much sense. However combining it with
other variables and maybe even making it weight differently with the amount of changes in a
commit could help to prevent this problem. Future research might look into how this variable
could be studied better.

The assert density seems to affect the build duration. Interestingly, the test density did
not seem to affect either the build duration or build failure rate. This could be an effect of the
unreliability of this test measure. However the higher the assert density is, the higher the build
durations seem to become. This makes sense as it is probably a better measure than the test case
density. Asserts are the actual tests that are performed while a test case might contain many
asserts. Another line of thinking is the reliability of counting the asserts could potentially be
better than counting tests.

There does not seem to be any relationship between contributor casualty and the build
duration or build failure rate. Reboucas et al. came to the same conclusion[34]. However there is
also work that states that core team members do have a higher chance to pass the build tests[39].
Further research might be needed to get more data on these variables.

Ruby projects have longer build times as well as bigger build failure rates then Java projects.
This observation confirms our hypothesis. Beller et al. also come to the conclusion that Ruby
projects have a higher build breakage compared to Java[2]. A possible explanation for this might
be, as mentioned earlier, the fact that Ruby is a dynamically typed language while Java is a stati-
cally typed. The static typing probably causes more failures to be found in compile time compared
to at runtime. Further research might want to extend the languages further than just Java and
Ruby as earlier research already looked at. Getting more data on more statically typed languages
and dynamic ones and then comparing them could further strengthen this explanation.

Projects that belong to an organization seem to have slightly shorter build times. This could
be explained by organizations prioritizing optimized build times. Our initial hypothesis of bigger
build failure rates for non-organization projects was also rejected by our analysis. Further research
could look into this by categorizing the organizations even more into non-profits, corporations or
other types of organizations. Vassallo et al. already look at the differences between open source
and industrial software CI build failures[49]. This could be a good way to compare industrial
organizations doing open source and closed source software.

40 Chapter 5. Discussion and Future Work

"Cloud Ready" projects have a slightly smaller build failure rate and also exhibit a longer
build duration than other Projects. Our hypotheses for the build failure rate was correct, while
the one for the build duration was not. An explanation for the longer build times might be caused
by the added steps when using docker files. Another explanation for the failure rates might be,
that the use of docker files might cause the build environments to be more stable and less flaky
than without them.

5.1.2 Discussion of the Build Level Analysis Results
This section discusses the results of our project level analysis results which we gathered in sec-
tion 4.3.2.

Builds that were run on branches which contained the keyword "release" in them, have
longer build times then the others. This could be the result of having more tests run or more
things happening during a release build.

Builds on branches with the "feature" keyword fail more often than ones without by a
failure rate difference of 8% This could easily be explained by the fact that these builds contain
new untested code for new features.

Builds on the master branch fail less often than other builds. This observation was also
made by Hilton et al. where they measure a difference of around 7%. Our analysis was closer to
6%. They seem to have looked at only pull requests while we looked at all builds. This observation
could be explained by the fact that it is usually the case that the maintainers of a project want the
pull requests to have successful builds themselves before merging them into master.

Builds on branches with numbers seem to fail more often than the others with a difference
of around 5%. Explaining this one is rather hard. One would normally assume that final release
branches would be usually rock solid. This could also be further explored in upcoming research.

Chapter 6

Possible Threads to Validity

During the accumulation of variables, we clearly had to filter and group some variables already.
The final table would have been much longer if that step did not happen. However it would have
made the whole ordeal a lot more complicated for not much gain. Some papers like from Xia
and Li used TravisTorrent variables directly [51]. All in all we tried to combine them while still
keeping a lot of distinct variables. Naturally there could be errors and misjudgments on our side.

For our variables we looked mostly in to newer literature, since some of the papers we found
already did literature search on other possible variables. This does however pose risks in maybe
not having identified possible variables that were more relevant in earlier times.

For our datasets we used TravisTorrent as well as GHTorrent. We got a snapshot of data from
a month apart for both datasets. So some data will not be at the exact same time. While both
datasets are very high quality, they do have their quirks. The GHTorrent dataset even has its own
paper about them by Kalliamvakou et al.[18]. We also did some restructuring of these datasets
as described in section 4.1. These could naturally also have an effect on our results. Especially
the notion of combining the executed jobs into builds like in the Travis terminology could be
problematic. We think a clearcut definition of what a build might even be, could be needed. Our
reasoning for these changes was discussed in section 5.1.1.

Also when we calculate the quantile ranges as described in section 4.3.1 we saw some vari-
ables having extremely large or small ranges of values in some quantile groups. A more detailed
analysis of these ranges might be interesting for future research as well. Another thing was the
amount of data we had of "Cloud Ready" builds. We only found 110 projects that were labeled
"Cloud Ready" by us. We mitigated this by simply duplicating the data to be able to sample more
data without the "Cloud Ready" label. While this is a viable strategy, the low amount of projects
for that particular variable could be problematic.

Chapter 7

Conclusions

In this paper, we first created a large taxonomy of variables concerning the efficiency and effec-
tiveness of Continuous Integration and Continuous Deployment practices. By performing a liter-
ature review of 42 papers and sources, we gathered 77 variables, which are then further grouped
into possible dependent and independent variables. After that we also try to find the possible
relationships between these variables by looking at the literature and also create our own hy-
potheses.

We continue by performing an empirical study. We use data provided by TravisTorrent as well
as GHTorrent to find how various variables affect the build failure rate as well as the build dura-
tion. Looking at the project level and numerical variables, according to our results, the amount of
builds, the amount of jobs, the average (source) files modified, the average active team size, the
amount of commits, the amount of star watchers, the average lines of production code as well as
the average amount of asserts per 1000 lines of code affect the build duration. The build failure
rate however seems only affected by the duration of builds in our results.

Looking at non numeric variables at the project level, the choice of Java or Ruby in program-
ming language affects both the build failure rate as well as the build duration. While, whether or
not a project belongs to an organization and the "Cloud Readiness" of it seems to only affect the
build duration of said project.

Looking at the build level, branches with the keyword "release" in them have larger build
times than those that do not. Branches with the "feature" keyword seem to have a 8% difference
in build failure rate to the branches without that keyword in it.

Our work should help identifying problematic CI/CD practices that could influence the CI/CD
effectiveness. Naturally there is still a lot more to do. Our taxonomy should help with many up-
coming research questions regarding the efficient and effective use of CI/CD practices. With these
results, CI/CD effectiveness could be heightened in industrial as well as open source environ-
ments by manually or even automatically inspecting these variables and warning the maintainers
of software projects if problematic instances of these variables are detected.

44 Chapter 7. Conclusions

Bibliography

[1] Abigail Atchison, Christina Berardi, Natalie Best, Elizabeth Stevens, and Erik Linstead.
A time series analysis of TravisTorrent builds: To everything there is a season. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, may
2017. doi: 10.1109/msr.2017.29. URL .

[2] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build: An
explorative analysis of travis CI with GitHub. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, may 2017. doi: 10.1109/msr.2017.62. URL .

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: Synthesizing travis
CI and GitHub for full-stack research on continuous integration. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE, may 2017. doi:
10.1109/msr.2017.24. URL .

[4] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. IEEE Software, 32
(2):50–54, mar 2015. doi: 10.1109/ms.2015.27. URL .

[5] Lianping Chen. Continuous delivery: Overcoming adoption challenges. Journal of Systems
and Software, 128:72–86, jun 2017. doi: 10.1016/j.jss.2017.02.013. URL .

[6] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. On the journey to
continuous deployment: Technical and social challenges along the way. Information and Soft-
ware Technology, 57:21–31, jan 2015. doi: 10.1016/j.infsof.2014.07.009. URL .

[7] José Carlos Medeiros de Campos, Andrea Arcuri, Gordon Fraser, and Rui Filipe Lima Maran-
hão de Abreu. Continuous test generation: enhancing continuous integration with au-
tomated test generation. In ACM/IEEE International Conference on Automated Software En-
gineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages 55–66, 2014. doi:
10.1145/2642937.2643002. URL .

[8] Stefan Dösinger, Richard Mordinyi, and Stefan Biffl. Communicating continuous integration
servers for increasing effectiveness of automated testing. In IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012, pages
374–377, 2012. doi: 10.1145/2351676.2351751. URL .

[9] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improving regression
testing in continuous integration development environments. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014. ACM
Press, 2014. doi: 10.1145/2635868.2635910. URL .

46 BIBLIOGRAPHY

[10] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf, 122:14, 2006.

[11] Alessio Gambi, Rostyslav Zabolotnyi, and Schahram Dustdar. Poster: Improving cloud-
based continuous integration environments. In 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2, pages 797–798,
2015. doi: 10.1109/ICSE.2015.253. URL .

[12] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. An empirical study of activ-
ity, popularity, size, testing, and stability in continuous integration. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE, may 2017. doi:
10.1109/msr.2017.38. URL .

[13] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 233–236, Piscataway, NJ, USA,
2013. IEEE Press. ISBN 978-1-4673-2936-1. URL .

[14] Yash Gupta, Yusaira Khan, Keheliya Gallaba, and Shane McIntosh. The impact of the adop-
tion of continuous integration on developer attraction and retention. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR 2017, Buenos Aires, Argentina,
May 20-28, 2017, pages 491–494, 2017. doi: 10.1109/MSR.2017.37. URL .

[15] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage, costs,
and benefits of continuous integration in open-source projects. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering - ASE 2016. ACM Press,
2016. doi: 10.1145/2970276.2970358. URL .

[16] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig. Trade-
offs in continuous integration: assurance, security, and flexibility. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2017. ACM Press, 2017.
doi: 10.1145/3106237.3106270. URL .

[17] Md Rakibul Islam and Minhaz F. Zibran. Insights into continuous integration build failures.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE,
may 2017. doi: 10.1109/msr.2017.30. URL .

[18] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and
Daniela Damian. The promises and perils of mining github. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 92–101, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.2597074. URL .

[19] M. G. KENDALL. A NEW MEASURE OF RANK CORRELATION. Biometrika, 30(1-2):81–93,
jun 1938. doi: 10.1093/biomet/30.1-2.81. URL .

[20] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do automated builds break? an
empirical study. In 2014 IEEE International Conference on Software Maintenance and Evolution.
IEEE, sep 2014. doi: 10.1109/icsme.2014.26. URL .

[21] Seojin Kim, Sungjin Park, Jeonghyun Yun, and Younghoo Lee. Automated continuous inte-
gration of component-based software: An industrial experience. In 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila,
Italy, pages 423–426, 2008. doi: 10.1109/ASE.2008.64. URL .

[22] Marko Leppanen, Simo Makinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen, Mika V.
Mantyla, and Tomi Mannisto. The highways and country roads to continuous deployment.
IEEE Software, 32(2):64–72, mar 2015. doi: 10.1109/ms.2015.50. URL .

BIBLIOGRAPHY 47

[23] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically repair-
ing dependency-related build breakage. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, mar 2018. doi:
10.1109/saner.2018.8330201. URL .

[24] Lech Madeyski and Marcin Kawalerowicz. Continuous defect prediction: The idea and a
related dataset. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). IEEE, may 2017. doi: 10.1109/msr.2017.46. URL .

[25] Marco Manglaviti, Eduardo Coronado-Montoya, Keheliya Gallaba, and Shane McIntosh. An
empirical study of the personnel overhead of continuous integration. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE, may 2017. doi:
10.1109/msr.2017.31. URL .

[26] Torvald Martensson, Daniel Stahl, and Jan Bosch. The EMFIS model — enable more fre-
quent integration of software. In 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, aug 2017. doi: 10.1109/seaa.2017.31. URL .

[27] Torvald Martensson, Daniel Stahl, and Jan Bosch. Continuous integration impediments in
large-scale industry projects. In 2017 IEEE International Conference on Software Architecture
(ICSA). IEEE, apr 2017. doi: 10.1109/icsa.2017.11. URL .

[28] Mathias Meyer. Continuous integration and its tools. IEEE software, 31(3):14–16, 2014.

[29] Ade Miller. A hundred days of continuous integration. In Agile 2008 Conference. IEEE, 2008.
doi: 10.1109/agile.2008.8. URL .

[30] Agneta Nilsson, Jan Bosch, and Christian Berger. Visualizing testing activities to support
continuous integration: A multiple case study. In International Conference on Agile Software
Development, pages 171–186. Springer, 2014.

[31] Helena Holmstrom Olsson, Hiva Alahyari, and Jan Bosch. Climbing the "stairway to heaven"
– a mulitiple-case study exploring barriers in the transition from agile development towards
continuous deployment of software. In 2012 38th Euromicro Conference on Software Engineering
and Advanced Applications. IEEE, sep 2012. doi: 10.1109/seaa.2012.54. URL .

[32] Mohammad Masudur Rahman and Chanchal K. Roy. Impact of continuous integration on
code reviews. In Proceedings of the 14th International Conference on Mining Software Repos-
itories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 499–502, 2017. doi:
10.1109/MSR.2017.39. URL .

[33] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An empirical anal-
ysis of build failures in the continuous integration workflows of java-based open-source soft-
ware. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, may 2017. doi: 10.1109/msr.2017.54. URL .

[34] Marcel Reboucas, Renato O. Santos, Gustavo Pinto, and Fernando Castor. How does con-
tributors involvement influence the build status of an open-source software project? In
2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). IEEE, may
2017. doi: 10.1109/msr.2017.32. URL .

[35] Jeanine Romano and Jeffrey D. Kromrey. Appropriate statistics for ordinal level data: Should
we really be using t-test and cohen’s d for evaluating group differences on the nsse and other
surveys? 01 2006.

48 BIBLIOGRAPHY

[36] Eddie Antonio Santos and Abram Hindle. Judging a commit by its cover: correlating commit
message entropy with build status on travis-ci. In Proceedings of the 13th International Confer-
ence on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, pages
504–507, 2016. doi: 10.1145/2901739.2903493. URL .

[37] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and Michael
Stumm. Continuous deployment at facebook and oanda. In Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion, ICSE ’16, pages 21–30, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4205-6. doi: 10.1145/2889160.2889223. URL .

[38] Mauricio Soto and Claire Le Goues. Using a probabilistic model to predict bug fixes. In 2018
IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 221–231. IEEE, 2018.

[39] Mauricio Soto, Zack Coker, and Claire Le Goues. Analyzing the impact of social attributes
on commit integration success. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, may 2017. doi: 10.1109/msr.2017.34. URL .

[40] Rodrigo Souza and Bruno Silva. Sentiment analysis of travis CI builds. In Proceedings of
the 14th International Conference on Mining Software Repositories, MSR 2017, Buenos Aires, Ar-
gentina, May 20-28, 2017, pages 459–462, 2017. doi: 10.1109/MSR.2017.27. URL .

[41] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice differences in in-
dustry software development. Journal of Systems and Software, 87:48–59, jan 2014. doi:
10.1016/j.jss.2013.08.032. URL .

[42] Daniel Ståhl and Jan Bosch. Automated software integration flows in industry: A multiple-
case study. In Companion Proceedings of the 36th International Conference on Software Engineer-
ing, ICSE Companion 2014, pages 54–63, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2768-8. doi: 10.1145/2591062.2591186. URL .

[43] Daniel Ståhl and Jan Bosch. Industry application of continuous integration modeling: a
multiple-case study. In Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume, pages 270–279, 2016. doi:
10.1145/2889160.2889252. URL .

[44] Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. The continuity of continuous integration:
Correlations and consequences. Journal of Systems and Software, 127:150–167, may 2017. doi:
10.1016/j.jss.2017.02.003. URL .

[45] Sean Stolberg. Enabling agile testing through continuous integration. In Agile Conference,
2009. AGILE’09., pages 369–374. IEEE, 2009.

[46] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik, and Mark
G. J. van den Brand. Continuous integration in a social-coding world: Empirical evidence
from GitHub. In 2014 IEEE International Conference on Software Maintenance and Evolution.
IEEE, sep 2014. doi: 10.1109/icsme.2014.62. URL .

[47] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov. Qual-
ity and productivity outcomes relating to continuous integration in GitHub. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015. ACM
Press, 2015. doi: 10.1145/2786805.2786850. URL .

BIBLIOGRAPHY 49

[48] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale Panichella,
Massimiliano Di Penta, and Andy Zaidman. Continuous delivery practices in a large finan-
cial organization. In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, oct 2016. doi: 10.1109/icsme.2016.72. URL .

[49] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp Leitner,
Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. A tale of CI build fail-
ures: An open source and a financial organization perspective. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, sep 2017. doi: 10.1109/ic-
sme.2017.67. URL .

[50] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. I’m leaving
you, travis: A continuous integration breakup story. 2018.

[51] Jing Xia and Yanhui Li. Could we predict the result of a continuous integration build? an em-
pirical study. In 2017 IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE, jul 2017. doi: 10.1109/qrs-c.2017.59. URL .

[52] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan
Vasilescu. The impact of continuous integration on other software development practices:
A large-scale empirical study. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, oct 2017. doi: 10.1109/ase.2017.8115619. URL .

50 BIBLIOGRAPHY

Appendices

A Papers Used for Taxonomy Definition 53

A Papers Used for Taxonomy Definition

DOI Title Bibliography
10.1109/ICSME.2017.67 A Tale of CI Build Failures: an Open Source and a Financial Organization

Perspective
[49]

10.1109/MSR.2017.29 A Time Series Analysis of TravisTorrent Builds: To Everything There is a
Season

[1]

10.1109/QRS-C.2017.59 Could We Predict the Result of A Continuous Integration Build? An
Empirical Study

[51]

10.1109/MSR.2017.62 Oops, My Tests Broke the Build: An Explorative Analysis of Travis CI
with GitHub

[2]

10.1145/2786805.2786850 Quality and Productivity Outcomes Relating to Continuous Integration
in GitHub

[47]

10.1145/2635868.2635910 Techniques for Improving Regression Testing in Continuous Integration
Development Environments

[9]

10.1109/Agile.2008.8 A Hundred Days of CI [29]
10.1145/2970276.2970358 Usage, Costs and Benefits of Continuous Integration in Open-Source

Projects
[15]

10.1109/ICSME.2014.62 Continuous Integration in a social-coding world: Empirical evidence
from GITHUB

[46]

10.1109/ICSME.2014.26 Why do Automated Builds Break? An Empirical Study [20]
10.1109/MSR.2017.32 How Does Contributors’ Involvement Influence the Build Status of an

Open-Source Software Project?
[34]

10.1109/MSR.2017.30 Insights into Continuous Integration Build Failures [17]
10.1109/MSR.2017.54 An Empirical Analysis of Build Failures in the Continuous Integration

Workflows of Java-Based Open-Source Software
[33]

10.1109/ASE.2017.8115619 The impact of continuous integration on other software development
practices: a large-scale empirical study

[52]

10.1109/MSR.2017.31 An Empirical Study of the Personnel Overhead of CI [25]
10.1109/MSR.2017.34 Analyzing the Impact of Social Attributes on Commit Integration Success [39]
10.1109/seaa.2017.31 The EMFIS Model – Enable More Frequent Integration of Software [26]
10.1109/icsa.2017.11 Continuous Integration Impediments in Large-Scale Industry Projects [27]
10.1016/j.jss.2013.08.032 Modeling continuous integration practice differences in industry

software development
[41]

10.1016/j.jss.2017.02.003 The continuity of continuous integration: Correlations and consequences [44]
10.1145/3196398.3196422 I’m Leaving You Travis: A Continuous Integration Breakup Story [50]
10.1109/msr.2017.38 An Empirical Study of Activity, Popularity, Size, Testing, and Stability in

Continuous Integration
[12]

10.1145/2642937.2643002 Continuous Test Generation: Enhancing Continuous Integration with
Automated Test Generation

[7]

10.1145/2351676.2351751 Communicating Continuous Integration Servers for Increasing
Effectiveness of Automated Testing

[8]

10.1109/ICSE.2015.253 Poster: Improving Cloud-based Continuous Integration Environments [11]
10.1109/MSR.2017.46 Continuous Defect Prediction: The Idea and a Related Dataset [24]
10.1109/ASE.2008.64 Automated Continuous Integration of Component- Based Software: an

Industrial Experience
[21]

10.1145/2889160.2889223 Continuous Deployment at Facebook and OANDA [37]
10.1007/978-3-319-06862-6_12 Visualizing Testing Activities to Support Continuous Integration: A

Multiple Case Study
[30]

10.1145/2591062.2591186 Automated Software Integration Flows in Industry: A Multiple-Case
Study

[42]

10.1109/AGILE.2009.16 Enabling Agile Testing Through Continuous Integration [45]
10.1109/MS.2015.27 Continuous Delivery: Huge Benefits, but Challenges Too [4]
10.1016/j.jss.2017.02.013 Continuous Delivery: Overcoming adoption challenges [5]
10.1016/j.infsof.2014.07.009 On the journey to continuous deployment: technical and social

challenges along the way
[6]

- Continuous Integration [10]
10.1109/MSR.2017.37 The Impact of the Adoption of Continuous Integration on Developer

Attraction and Retention
[14]

10.1145/3106237.3106270 Trade-Offs in Continuous Integration: Assurance, Security, and Flexibility [16]
10.1109/MS.2015.50 The Highways and Country Roads to Continuous Deployment [22]
10.1109/MS.2014.58 Continuous Integration and Its Tools [28]
10.1109/SEAA.2012.54 Climbing the “Stairway to Heaven” - A multiple-case study exploring

barriers in the transition from agile development towards continuous
deployment of software

[31]

10.1109/MSR.2017.27 Sentiment Analysis of Travis CI Builds [40]
10.1145/2901739.2903493 Judging a Commit by Its Cover - Correlating commit message entropy

with build status on Travis-CI
[36]

54

B StackExchange Posts Used for Taxonomy Defini-
tion

Question Link
optimize compiletime in
Continous Integration

https://stackoverflow.com/questions/8646256/optimize-compiletime-in-
continous-integration

Best practice on how to
configure two local maven
directories for continous
integration with Hudson

https://stackoverflow.com/questions/3258323/best-practice-on-how-to-
configure-two-local-maven-directories-for-continous-inte

Jenkins and Sonarqube -
where to run unit tests

https://stackoverflow.com/questions/37405178/jenkins-and-sonarqube-
where-to-run-unit-tests

Continuous integration -
Best practices

https://stackoverflow.com/questions/1351755/continuous-integration-best-
practices

NPM Best Practices for
Continuous Integration

https://stackoverflow.com/questions/39138826/npm-best-practices-for-
continuous-integration

Best-practice for continuous
integration and deployment

https://stackoverflow.com/questions/9105459/best-practice-for-continuous-
integration-and-deployment

Build management/
Continuous Integration best
practices

https://stackoverflow.com/questions/419181/build-management-continuous-
integration-best-practices

Continuous integration -
build Debug and Release
every time?

https://softwareengineering.stackexchange.com/questions/142604/continuous-
integration-build-debug-and-release-every-time

Continuous Integration
Feedback Cycle

https://softwareengineering.stackexchange.com/questions/189904/continuous-
integration-feedback-cycle

Speeding up PHP
continuous integration
build server on Hudson CI

https://stackoverflow.com/questions/3696629/speeding-up-php-continuous-
integration-build-server-on-hudson-ci

To Clean or not to Clean https://stackoverflow.com/questions/5812872/to-clean-or-not-to-clean
maintaining a growing,
diverse codebase with
continuous integration

https://softwareengineering.stackexchange.com/questions/87723/maintaining-
a-growing-diverse-codebase-with-continuous-integration

Improving CI build time
(.NET)

https://stackoverflow.com/questions/8633313/improving-ci-build-time-net

Best practices for the best
max length of time for
running unit tests in CI

https://stackoverflow.com/questions/6737387/best-practices-for-the-best-max-
length-of-time-for-running-unit-tests-in-ci

Different Ways to create an
effective Ci pipeline for
sonarqube analysis

https://stackoverflow.com/questions/43527267/different-ways-to-create-an-
effective-ci-pipeline-for-sonarqube-analysis

What is a good CI
build-process

https://stackoverflow.com/questions/102902/what-is-a-good-ci-build-process

Advice on Rails and CI,
how often does this run
exactly? or what is common
practice

https://stackoverflow.com/questions/7621633/advice-on-rails-and-ci-how-
often-does-this-run-exactly-or-what-is-common-pract

CI tests to enforce specific
development rules - good
practice?

https://softwareengineering.stackexchange.com/questions/143030/ci-tests-to-
enforce-specific-development-rules-good-practice

Jenkins CI workflow
implementation

https://stackoverflow.com/questions/37706713/jenkins-ci-workflow-
implementation

C Taxonomy of Variables for CI/CD Effectiveness 55

C Taxonomy of Variables for CI/CD Effectiveness

Stage Variable Previous work found possible influential factors Unstudied potential factors that could be investigated
Define Developer

Productivity
Code Owner, Contributor: Amount of Followers, Contributor Experience,
Contributor Project Knowledge, Communication, Developer Motivation, No-
tification Quality, Project Architecture/Type, Project Organization, Project
Size, Team Localisation

Develop Developer
Productivity

Amount of Contributors[37], Project Size[37], Dura-
tion of Builds[16], Duration of Tests[28]

Amount of Build Targets, Amount of PR’s (accepted), Amount of Tests,
Amount of Dependencies, Build Failure Rate, Build Failure Type, CI Server
used, Code/Software Quality, Contributor: Amount of Followers/Casualty/-
Commit Frequency/Experience/Project Knowledge, Communication, Defect
Detection & Localisation Time, Developer Motivation/Education/Sentiment,
Feedback Time, Incremental Builds, Notification Quality, PR Latency/Work-
flow, Programming Language, Project Age/Maturity/Architecture/Type/Or-
ganization, Team Localisation, Testing, Tests Failure Rate/Coverage, Tools
Used, Tools Integration, Usage Of CI, Usage of static code analysis, Version
Control System, Work Breakdown / Guidelines

Development Time Same variables as Developer Productivity
Commit Developer

Productivity
Contribution Complexity/File Type/Size/Churn/Type/Work Item, Contrib-
utor: Amount of Followers/Casualty/Commit Frequency/Experience/Pro-
ject Knowledge, Commit Message Entropy, Developer Motivation/Educa-
tion/Sentiment, Version Control System, Work Breakdown/Guidelines

Build/Integrate
Build Failure Rate Test Failure Rate[2], Contribution Type[2, 33],

Contribution Size/Churn[17], New Commits
in Build[17], Amount of Contributors[20],
Contribution Work Item[20], Stakeholder of
Build[15, 20], Build Failure Rate[33], Con-
tribution Complexity[33], Contributor Com-
mit Frequency[33], Contributor: Amount
of Followers[39], Contributor: Amount of
Contributions[39], Contributor Casualty[39], Devel-
oper Sentiment[40], Commit Message Entropy[40]
Project Age[46], Programming Language[46]

Amount of Builds, Amount of Build Targets, Amount of Contribution Types,
Amount of Contributors, Amount of PR’s (accepted), Amount of Depen-
dencies, CI Server used, Code/Software Quality, Configuration Complex-
ity, Contribution File Type/Work Item, Contributor Amount of Followers/-
Commit Frequency/Experience/Project Knowledge, Communication, Com-
munication between CI servers, Developer Motivation, Developer Educa-
tion, Development Time, Environment, Incremental Builds, New Commits in
Build, Project Maturity/Architecture/Type/Organization/Popularity/Size/-
Growth, Stakeholder of Build, Testing, Time & Date of Builds/Commits, Tools
Used, Usage of static code analysis

Build Failure Type Code Owner[49] Same variables as Build Failure Rate
Duration of Builds Amount of Jobs[2], Project Size[44] Amount of Builds, Amount of Build Targets, Amount of Tests, CI Server

used, Configuration Complexity, Contribution Size/Churn, Communication
between CI servers, Environment, Hardware, Incremental Builds, Job Struc-
ture, New Commits in build, Programming Language, Tools used, Usage of
static code analysis, Using Parallel Computing

Test Test Failure Rate Programming Language[2], Environment[2] Same variables as Build Failure Rate in the Build / Integrate Stage + Amount
of Tests, Tests: Amount of Environments/Failure Rate/Coverage/Strategy/-
Generation for classes/Given Time

Duration of Tests Programming Language[2] Same variables as Duration of Builds in the Build / Integrate Stage + Amount
of Tests, Tests: Amount of Environments/Coverage/Strategy/Generation for
classes/Given Time

Release/Deploy Release Frequency Usage of CI[15, 16] Amount of Tests, Amount of Hotfixes, Build Failure Rate, CI server
used, Code Owner, Code/Software Quality, Contributor Experience/Project
Knowledge, Communication, Defect detection & localisation time, Devel-
oper Attraction/Retention/Productivity/Efficiency/Motivation/Education,
Development Time, Feedback Time, Programming Language, Project Age/-
Maturity/Organization/Size, Team Localisation, Testing

Feedback Time Usage of CI[2, 22], Duration of Builds[2], Test Fail-
ure Rate[33]

Amount of Builds, Build Failure Rate, CI Server used, Communication be-
tween CI servers, Defect detection & localisation time, Duration of Tests, En-
vironment, Incremental Builds, Job Structure, Hardware, Notification Quality,
Preconfigured Testing VM’s used, Tests: Failure Rate/Given Time, Time &
Date of Builds/Commits, Tools Used, Usage of static code analysis

Other Project
Size/Growth

Amount of Builds, Amount of Build Targets, Amount of Contributors,
Amount of Jobs, Amount of Tests, Amount of Dependencies, Contributor:
Amount of Contributions, Project Age/Maturity/Popularity/Organization

Code/Software
Quality

Amount of Contributors [37], Project Size [37], Us-
age of CI[47]

Amount of Contributors, Amount of PR’s (accepted), Amount of Tests,
Amount of Dependencies, Amount of Hotfixes, Code Owner, Contributor:
Casualty/Experience/Amount of Followers, Communication, Developer Ed-
ucation, Development Time, PR Work-flow, Programming Language, Project
Age/Maturity/Architecture/Type/Organization, Testing, Tests: Coverage,
Tools Used, Usage of static code analysis, Work Breakdown/Guidelines

