
Master Thesis
October 17, 2018

Changelyzer
Learning Change Type Classifications for

Software Evolution from Big Code on GitHub

Sali Zumberi
of Zürich, Switzerland (13-790-951)

supervised by
Prof. Dr. Harald C. Gall

Dr. Juergen Cito and Carol Alexandru

software evolution & architecture lab

Master Thesis

Changelyzer
Learning Change Type Classifications for

Software Evolution from Big Code on GitHub

Sali Zumberi

software evolution & architecture lab

Master Thesis

Author: Sali Zumberi, sali.zumberi@live.de

Project period: 17.04.2018 - 17.10.2018

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Dr. Harald C. Gall and the software evolution and architecture lab of the
University of Zurich for the possibility of making it possible to delve into a versatile topic, leading
to interesting insights. I would also like to thank my supervisor Jürgen Cito and Carol Alexandru
very much for all inputs, hints and help at any time during the writing of the thesis.

Abstract

Software needs to be adapted to its rapidly changing environment. “A key issue in software evo-
lution analysis is the identification of particular changes that occur across several versions of a
program. “ [11]. In order to understand and analyse source code changes, it is crucial to make
them tangible. While plain-text diffs are a straight-forward way of keeping track of changes in
a software project, they are poorly suited for understanding those changes. Different semantic
changes might be mixed together in a single diff and it is difficult to further process diffs using
automated tools. Approaches like ChangeDistiller extract changes between two revisions based
on abstract syntax trees (ASTs) instead of plain text source code. This allows them to recognize
semantic changes. More specifically, whether certain elements (if conditions, classes, methods,
etc.) have been added, removed, modified or even moved to other locations in the source code.
However, change types identified by ChangeDistiller have been manually crafted by researchers.
This thesis tries to extract common change types by applying big data analytics including cluster-
ing, word embeddings and topic modelling techniques on changes of over 500 projects (18.6 GB).
We were able to find more than 70 common change types, use neural network to show similar
changes, cluster similar changes into 55 clusters, then extract 35 topics with help of topic mod-
elling and last but not least prove existence of change-groups within larger diffs by implementing
a sophisticated algorithm. Finally, we propose tools and tasks based on provided data corpus.

Zusammenfassung

Software muss kontinuierlich an ihre sich schnell verändernde Umgebung angepasst werden.
"Ein zentrales Thema in der Softwareevolutionsanalyse ist die Identifizierung bestimmter Än-
derungen, die über mehrere Versionen eines Programms hinweg auftreten." [11]. Um Software
Veränderungen zu verstehen und zu analysieren, ist es entscheidend, sie greifbar zu machen.
Während Plain-Text-Differenzen eine einfache weitverbreitete Möglichkeit sind, Änderungen in
einem Softwareprojekt zu verfolgen, sind sie schlecht geeignet, diese Änderungen zu verste-
hen. Verschiedene semantische Änderungen können in einem einzigen Diff zusammengefasst
werden, und es ist schwierig, Diffs mit automatisierten Werkzeugen weiterzuverarbeiten. An-
sätze wie ChangeDistiller extrahieren Änderungen zwischen zwei Revisionen, die auf abstrak-
ten Syntaxbäumen (ASTs) anstelle von Klartext-Quellcode basieren. So können sie semantische
Veränderungen erkennen. Genauer gesagt, ob bestimmte Elemente (wenn Bedingungen, Klassen,
Methoden usw.) hinzugefügt, entfernt, modifiziert oder sogar an andere Stellen im Quellcode
verschoben wurden. Die vom ChangeDistiller identifizierten Änderungsarten wurden jedoch
von den Forschern manuell erstellt. Diese Masterarbeit versucht, gängige Change-Typen mithilfe
von Big Data Analyse zu extrahieren, unter anderem werden Clustering, Worteinbettungen und
Themenmodellierungstechniken bei Änderungen von über 500 Projekten (18,6 GB) einsetzt. Wir
konnten mehr als 70 gängige Change-Typen finden, neuronale Netze verwenden, um ähnliche
Änderungen darzustellen, ähnliche Änderungen in 55 Clustern zusammenfassen, dann 35 The-
men mit Hilfe von Themenmodellierung extrahieren und nicht zuletzt die Existenz von Change-
Gruppen innerhalb größerer Diffs durch die Implementierung eines ausgeklügelten Algorithmus
nachweisen. Schließlich schlagen wir Werkzeuge und Aufgaben vor, die auf dem bereitgestellten
Datenkorpus basieren.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Research Questions . 2
1.4 Contribution . 2
1.5 Outline . 2

2 Background 5
2.1 Abstract Syntax Trees . 5

2.1.1 Abstract Syntax Tree Differencing . 5
2.1.2 Change Distiller . 6
2.1.3 GumTree – Fine-grained and Accurate Source Code Differencing 6

2.2 Machine Learning . 7
2.3 Unsupervised Learning . 7

2.3.1 K-Means . 7
2.3.2 Topic Modelling (LDA . 8
2.3.3 Embedding (word2vec) . 8

2.4 Text Classification . 9
2.5 Similaritiy Measures . 9

3 Related Work 11
3.1 Software Evolution . 11
3.2 Software Maintenance . 11
3.3 Change classification . 12
3.4 Change Anlysis . 12

4 Approach 13
4.1 Methodology Selection . 14

4.1.1 Plain Diff LDA . 14
4.1.2 ChangeDistiller . 16
4.1.3 GumTree . 17

4.2 Data Analytics . 20
4.2.1 Data Selection . 20
4.2.2 Data Mining . 20
4.2.3 Data Integration and Data Cleaning . 25
4.2.4 Data Transformation . 25

4.3 Implementation Details . 27

viii Contents

5 Results 29
5.1 Empirical Analysis . 29

5.1.1 Elements . 29
5.1.2 Changes . 30
5.1.3 Diffs . 33

5.2 Clustering (K-Means) . 39
5.2.1 Clusters(n=3) . 39
5.2.2 Clusters(n=4) . 41
5.2.3 Clusters(n=5) . 42

5.3 Word Embeddings (Word2Vec) . 43
5.3.1 Top 10 Change Similarities . 43
5.3.2 Top 10 Change Similarities (Average Cosine Similarity) 44
5.3.3 Top 12 Cluster (Survey) . 44

5.4 Document Embeddings (Doc2Vec) . 47
5.5 Topic Modelling (LDA) . 48
5.6 Diff Change Frequency Score Grouping . 51

5.6.1 Word Embeddings on Change groups . 53

6 Evaluation 55
6.1 Approach . 55

6.1.1 Changelyzer Web Application . 55
6.1.2 Study . 56

6.2 Model Evaluation . 57
6.2.1 K-Mean Clusters . 57
6.2.2 Word Embeddings . 64
6.2.3 Topic Modelling . 66
6.2.4 Doc2vec . 68

6.3 Threats to Validity . 69

7 Future Work 71
7.1 Tools . 71

7.1.1 EvoSearch - Maintenance Search Tool . 71
7.1.2 InstaChange - Subscription System to support maintenance of open Source

projects . 72
7.1.3 DeepES - Learn Edit Scripts with Supervised Learning 72
7.1.4 Changer - Management Tool for better software life cycle reporting 73

7.2 Tasks . 73
7.2.1 Store data in a structured manner . 73
7.2.2 Mine and support different Languages and map similar changes 73
7.2.3 Semantic ChangeLabeling . 74
7.2.4 Add change significance level to new changes 74
7.2.5 Support Commit Message Generation . 74

8 Conclusions 75

A Appendix 81
A.1 Source code snippets . 81
A.2 Changes . 84

Contents ix

List of Figures
4.1 Approach overview . 13
4.2 Plain Diff PCA . 16
4.3 Data Mining Process Overview . 20

5.1 image1 caption . 30
5.2 Tree Operation Distribution . 30
5.3 Cluster Analysis (n=3) . 39
5.4 Cluster Analysis (n=4) . 41
5.5 Cluster Analysis (n=5) . 42
5.6 Clustering Doc2Vec . 47
5.7 PCA Plot of Topic Modeling Results . 49
5.8 Topic Distribution . 50

6.1 Changelyzer WebApp - Diffs . 55
6.2 Changelyzer WebApp - Changes . 56
6.3 Silhouette Score and Elbow Method (n=3) . 57
6.4 Silhouette Score and Elbow Method (n=4) . 58
6.5 Silhouette Score and Elbow Method (n=5) . 59
6.6 Changelyzer - Cluster Evaluation . 60
6.7 Changelyzer - Cluster Overview . 60
6.8 Cluster Coherence Survey (n=3) . 61
6.9 Cluster Participants (n=3) . 61
6.10 Cluster Coherence Survey (n=4) . 61
6.11 Cluster Participants (n=4) . 62
6.12 Cluster Coherence Survey (n=5) . 62
6.13 Cluster Participants (n=5) . 62
6.14 Cluster size comparison . 63
6.15 Word Embeddings - Elbow Method . 64
6.16 Word Embeddings Survey Result 1 . 65
6.17 Word Embeddings Survey Result 2 . 65
6.18 Topic Cohereson and Perplexity . 66
6.19 Topic Modeling - Change Intrusion . 67
6.20 Doc2Vec Similarity Survey Result . 68

List of Tables
4.1 AST Diffing Data Transformation . 24

5.1 Top 20 most used Elements . 29
5.2 Top 20 most used changes . 31
5.3 Top 10 changes grouped by Tree operations . 32
5.4 Most occurring Diffs (n=2) . 33
5.5 Most occurring Diffs (n=3) . 37
5.6 Most occurring Diffs (n=4) . 38
5.7 Top 10 Change Similarities . 43
5.8 Top 10 Change Similarities (Average Cosine Similarity) 44
5.9 Top 12 Most coherent Clusters . 46

x Contents

5.10 DCFSG - Change groups with 2 items . 52
5.11 DCFSG - Change groups with 3 items . 53
5.12 DCFSG - Similar Change Groups . 53

7.1 DeepES - Example Tagging . 72

Chapter 1

Introduction

Reasoning about changes in source code is a fundamental task for software engineers to enable
understanding of the evolution of software [11]. Contemporary version control systems (e.g., Git)
support line-based, plain-text differencing of source code to support this reasoning. While plain-
text diffs are a straight-forward way of keeping track of changes in a software project, they are
poorly suited for understanding those changes in a more structured manner. Different semantic
changes might be mixed together in a single diff and it is difficult to further process diffs using
automated tools.

Approaches like ChangeDistiller [11] extract changes between two revisions based on abstract
syntax trees (ASTs) instead of plain text source code. This allows them to recognize syntactical
changes. For instance, whether specific elements (if conditions, classes, methods, etc.) have been
added, removed, modified or even moved to other locations in the source code. ChangeDistiller
maintains a collection of over 40 manually classified changes.

This thesis can be regarded as fundamental approach of applying machine learning on fine
grained source code changes, which are based on abstract syntax tree operations. Different from
ChangeDistiller, our changes are not manually classified, instead we use the underlying raw JDT
Elements. We present a data analytic approach where we make use of different machine learning
techniques in order to find and extract source code change groups and patterns, similar changes
by making use of neural networks and descriptive statistic to provide insights of source code
changes on JAVA programming language.

Our evaluation is based on statistical measurements as well as on surveys based on the "human-
in-the-loop" approach. To facilitate the evaluation we developed a webtool which allows users to
explore and search over 500 000 source code changes. Finally, we present a list of tools and tasks
which can be build on top of the provided data.

1.1 Motivation
Motivation of this master thesis is based on two existing problems.

• The change types identified by tools such as ChangeDistiller have been manually crafted by
researchers and can seem arbitrary and biased. The provided taxonomy of changes includes
40 change types.

• Tools like this need to be implemented separately for each specific programming language.

Solving these tools will enable the possibility to create several tools, which could support
software developers in the maintenance and evolution of source code. Empirical change groups

2 Chapter 1. Introduction

and patterns could be integrated in repository search engines and support the lookup of changes
(e.g. show latest re-factored for loops etc.), furthermore open source code maintainers could
reduce effort by subscribing to fine grained changes or change patterns of a specific file (e.g.
core functionality of a module, dependency change of a specific package.

1.2 Goal
The goal of this thesis is to develop a framework and tool chain that, given a large corpus of
source code (transformed to an AST) in a language can cluster the most common change types
and learn a model to classify these changes in an unsupervised manner.

1.3 Research Questions
Based on the goals of this thesis, there are three main research questions to be discussed:

RQ1: Is it possible to find change types from Big data analytic?
RQ2: Is it possible to learn similar source code changes with the help of unsupervised machine

learning?
RQ2: Do change topics and groups exist in source code change?

1.4 Contribution
1. Over 890 empirical change types

2. Over 70 common change types have been extracted

3. 55 Cluster of similar changes

4. Changelyzer WebTool - Prototype to discover changes and higher order edit scripts

5. 33 Change Topics

6. Data corpus of 500k software changes (each has 5 files: File Before, File After, Plain Diff
Result, GumTree Cluster, GumTree Diff)

7. 8 proposals for potential software maintenance and evolution tools

1.5 Outline
Chapter 2 Background provides the basic background of Abstract Tree Differencing, insights of

Machine Learning and Text Classification

Chapter 3 Related Work gives a short and comprehensive view over previous research on this
field

Chapter 4 Approach describes the methodology selection and data analytic

Chapter 5 Results show the main results of this thesis. Firstly it shows the 10 higher order edit
scripts, and secondly, a list of new change types followed by

1.5 Outline 3

Chapter 6 Evaluation explains the procedures on how we evaluated the used models and threats
to Validity of this thesis

Chapter 7 Future work presents a list of tools and tasks which can be build on top of this thesis

Chapter 2

Background

2.1 Abstract Syntax Trees
In a programming language, an Abstract Syntax Tree (AST) represents a piece of source code as a
tree. In the source code, a construct is signified as a node of the tree. However, the syntax is ab-
stract and does not demonstrate every aspect of the actual syntax, for example, the tree structure
is indicative of grouping parentheses, and a node with two branches may signal a syntactic con-
struct like an if-condition expression. This is how ASTs are different from parse trees. The parse
trees are constructed through a parser during the translation and compilation process of source
code. After its construction, the AST is filled up with further information through additional
processing, for instance, contextual analysis.

The applications of an AST are immense, and also include program transformation systems
and program analysis. In addition, ASTs are extensively utilized in compilers to represent the
source code and its structure. The AST usually operates as an intermediary representation of the
code through a variety of phases that the compiler entails, which influences the output of the
compiler in a significant manner.

The AST assists the compiler in a number of ways. An AST may be customized and improved
by providing it with information like annotations and properties for each of its component. This
annotation and editing are not possible with the program code since an overall alteration would
be required. In comparison to the source code, an AST is freed of any unnecessary delimiters
and punctuation like parentheses, semicolons, braces, etc. In addition, an AST mainly consists of
additional information about a particular program, for instance, the compiler may be able to print
intelligible error messages because the position of each component in the program code would be
stored by an AST.

2.1.1 Abstract Syntax Tree Differencing
The AST differencing is grounded on the concept of AST edit actions. In his research, [?] elucidate
that the aim of AST differencing is to compute a sequence of edit actions that transmute a par-
ticular AST into another. This sequence is commonly labelled as an edit script. The edit actions
of an AST are updateValue(t, vn) , add(t, tp, i, l, v) , delete(t) , and move(t, tp, i). As is evident,
the possibility of a number of edit scripts that performs the same transformation is immense.
However, the quality of an edit script is heavily dependent on its length, that is, the longer the
transformation, the worse the quality. If the move action is taken into account, the determination
of the shortest transformation is NP-hard. If the actions pertaining to add node, update node,
and delete node are taken into consideration, the problem of tree differencing becomes an area
of important consideration [3]. In this case, [29] have discussed that the fastest algorithm runs in

6 Chapter 2. Background

O(n3), however, it may result in higher computation times, especially for the source code files that
are large in size. In addition, these algorithms are also plagued by their incapacity to discover
moved nodes, which is a recurrent action in the files containing the source code. As a result, it
becomes very difficult to comprehend these colossal edit scripts.

2.1.2 Change Distiller
According to Fluri et al. (2007), ChangeDistiller is one of the most renowned algorithms that
work on the ASTs and was largely inspired by Chawathe’s proposal. However, one of the main
assumptions of ChangeDistiller is that the leaf nodes comprise a noteworthy volume of text. The
ASTs are, therefore, simplified so that the code statements are carried by the leaves instead of the
raw AST. Therefore, it is quite evident that the ChangeDistiller will not calculate fine-grained edit
scripts on languages that boast a significant number of constituents in statements, for instance,
JavaScript is an ideal example.

2.1.3 GumTree – Fine-grained and Accurate Source Code Dif-
ferencing

The differencing algorithms of AST primarily work in two fundamental steps, that is, developing
mappings and then identifying the edit scripts. In a GumTree algorithm, the mappings that are
computed between two ASTs comprise of two consecutive stages: first, the isomorphic subtrees of
decreasing height are identified through a greedy top-down algorithm; second, a bottom-up algo-
rithm is introduced and performs containing mapping (that is, two nodes match) if their children
(or descendants) consist of an array of common anchors [28]. In the first step, the nodes of the
isomorphic subtrees are utilized to establish appropriate mappings. If the two nodes match, then
an optimal algorithm is applied to explore recovery mappings (or additional mappings) among
their descendants. The motivation behind this algorithm is the developers who manually review
the changes that are made in the files. In this approach, the first search for those pieces of code
that are biggest and unaltered. Next, those containers of code are identified that have the ability
to be mapped together. In the final step, the differences are viewed with stark precision to identify
the leftovers in every container. In summary, it may be established that the GumTree algorithm
is based on three fundamental steps, which are, a greedy top-down algorithm, a bottom-up algo-
rithm, and recovery mappings.

2.2 Machine Learning 7

2.2 Machine Learning
Recently, the machine learning has become an integral component of the spectrum of information
technology. Due to the emergence of Big Data, the notion of smart data analysis is expected to
become more prevalent. Therefore, as the technological advancements make further progress,
the machine learning will continue to occupy a significant position in the world of technology.
Witten et al. [34] define machine learning as a field of information technology that makes use of
statistical methods to provide the computer systems with an ability to learn with the data. In
the last two decades, a number of algorithms have been introduced that assists the computers to
learn. This has further allowed a number of commercial applications to establish their place in
the digital market. If the problem of speech recognition is taken into consideration, it has been
identified that the algorithms based specifically on machine learning have outperformed every
other approach that has been adopted before that. The field of data mining has also benefitted
from the machine learning algorithms by discovering valuable knowledge from excessively large
databases comprising medical records, financial transactions, loan applications, equipment main-
tenance records, and the like. There is no doubt about the fact that as our comprehension of the
machine learning algorithms continues to mature, it is quite imminent that the machine learning
will have a crucial role to play in the computing technology.

2.3 Unsupervised Learning
The unsupervised learning refers to how the systems can learn to signify specific input patterns in
a manner that echoes the statistical organization of these input patterns in a holistic manner [15].
In contrast to the supervised learning, this approach does not consist of environmental evalua-
tions and explicit target outputs associated with every input. However, the significance of this
approach is immense because this is exactly how the brain works. This allows the method of un-
supervised learning to be used for synaptic adaptation as computational models. The Bayesian
Networks are a good example of unsupervised learning that deduces how a created input re-
lates to an underlying cause. Although the practice of conducting unsupervised learning may be
ambiguous to a number of people because of its inability to acquire supervised target outputs,
a formal framework can still be developed that can be effectively used for prediction of future
inputs, decision making, and efficient communication of inputs to another machine, and the like.
In similar words, this technique may be used to deduce patterns in a noise that is purely un-
structured. The applications of unsupervised learning are tremendous, for instance, grouping the
movies by ratings that are assigned by its viewers, characterizing the various groups of shoppers
by their purchasing and browsing histories, and grouping the subgroups of cancer patients by the
measurements of their gene expression.

2.3.1 K-Means
The K-means is a clustering technique that clusters the observations into disjoint clusters, usu-
ally of definite numbers [26]. To deduce which cluster needs to take in a particular observation,
a number of distance measures are intelligibly utilized. The aim of this algorithm is to mitigate
the distance between the given observation and the centroid of the cluster. This is accomplished
by providing the clusters with appropriate observations in an iterative manner. When the lowest
distance measure is accomplished, the algorithm is then terminated. Initially, the sample space is
divided into K clusters. The observations are then randomly assigned to every cluster. Now, for
every sample, the distance between the centroid of the cluster and the observation is computed.
If the sample is calculated to lie closer to its existing cluster then it retains its position, otherwise,

8 Chapter 2. Background

it is transferred to a different cluster. Both of these aforementioned steps are repeated until no fur-
ther movement between the clusters is witnessed. Hence, an overall stability is attained. Usually,
the Manhattan distance, Euclidean distance, and the Euclidean squared distance are used to com-
pute the distances. However, in some applications, for instance, speech processing, the distance
measure of Euclidean squared distance is mostly preferred.

The applications of K-means clustering are immense. It is extensively used to form clusters of
the features that have been extracted from the speech signals. Therefore, the signals with similar
spectral traits occupy similar positions in the codebook, limiting its size by an appreciable margin.

2.3.2 Topic Modelling (LDA
According to Jelodar et al. [17], the technique of topic modelling is one of the most significant
and powerful approaches for deducing relationships between data or documents, discovering
latent data, and data mining. In this regard, a large number of researchers have elaborated on
the concept of topic modelling in various fields including linguistic science, medical, and sci-
ence. Although a large number of methods exist for conducting topic modelling, the LDA (Latent
Dirichlet allocation) is perceived as the most preferred one.

The LDA makes use of Dirichlet priors for the word-topic and document-topic distributions,
allowing for better generalizability. In LDA, every document is perceived as a combination of nu-
merous topics where every document is considered to contain an array of topics that are assigned
to these documents through LDA. The practice of LDA is similar to that of the pLSA (probabilis-
tic latent semantic analysis), however, LDA supposedly consists of a sparse Dirichlet prior, as
already discussed. This allows for the encoding of intuition. The topics that are small and those
that only utilize a limited set of words are covered. Hence, it may be established that an LDA is a
generalized form of a pLSA model.

2.3.3 Embedding (word2vec)
In machine learning, word2vec learning is a collection of models that are utilized to construct
word embedding. The purpose of these two-layered neural network-based models is to rebuild
the linguistic contexts of words through training. A large chunk of structured text is given as an
input to word2vec, which produces a vector space having substantial dimensions. In this vector
space, every unique word in this chunk of structured text is assigned to a particular vector in the
vector space. The position of word vectors is decided based on the proposition that they share
common contexts with the words located in close proximity. To develop a distributed represen-
tation of the words, the word2vec can make use of two model architectures, that is, continuous
skip-program or CBOW (continuous bag-of-words). Due to the fact that the training of word2vec
has the tendency to be sensitive to parameterization, the parameters: training algorithm, sub-
sampling, dimensionality, and context window are significant. The approach pertaining to word
embedding has the ability to deduce varying extents of similarities between the words. In addi-
tion, Mikolov, Yih, and Zweig (2013) further elaborated that the syntactic and semantic patterns
can be mimicked through vector arithmetic [24].

2.4 Text Classification 9

2.4 Text Classification
In computer science, text classification is an integral part of text mining which is defined by Ko-
rde, and Mahender (2012) as, “manually building automatic TC systems by means of knowledge-
engineering techniques, that is, manually defining a set of logical rules that convert expert knowl-
edge on how to classify documents under the given set of categories.” Taking the example of an
array of stories, for example, consisting of topics like business, politics, or sports. The funda-
mental problem is to formulate a classification model that assigns an accurate class to every new
document. However, it needs to be noted that the text classification supports two labels, which
are, single label and multi-label. The main difference between these labels being their ability to
support single or multiple classes. The process of text classification is composed of six main steps.
In the first step, that is, document collection, the different types of documents are collected, for in-
stance, documents having formats like .doc, .pdf, .html, and the like. The second step deals with
preprocessing in which the documents are prepared for the subsequent steps using techniques
such as tokenization and stemming word. In the third step, that is, indexing, usually the vector
space model represents the documents as word vectors through a word document matrix. The
purpose is to represent every entry as the occurrence of a specific word in a particular document,
which is done through the determination of weight. This may be done through entropy, tf-IDF,
frequency weighting, and the like. The fourth step deals with feature selection in which a vector
space is constructed to enhance the accuracy, efficiency, and scalability of the text classifier. This
step is closely followed by the fifth step of classification where the documents are then automati-
cally classified either through supervised, unsupervised, or semi-supervised methods. Lastly, the
final step of text classification evaluates the text classifiers through comprehensive experimenta-
tion.

2.5 Similaritiy Measures
In the field of text classification, the measurement of similarity between various documents is
considered to be an imperative function. However, because the dimensionality of the majority of
the documents is quite large, resulting in a sparse vector, a large part of these feature values in
the vector are zero [23]. Therefore, the presence of this high dimensionality is one of the biggest
challenges that the algorithms of text classification have to face. A large number of methods have
previously been introduced to compute the similarity between the two vectors. The method of
Kullback-Leibler divergence computes the differences in probability distributions between two
vectors. In the Euclidean geometry field, the similarity metric of the Euclidean distance is quite
famous and is the usual choice when similarity-based measures are taken into view, for instance,
K-means algorithms. In addition to the Euclidean distance, the Manhattan distance is also one
well-known metric. The Bray-Curtis, Jaccard Coefficient, and Dice Coefficient are other meth-
ods that are popular for computing similarity measures. However, in their study, Dhillon and
Modha (2001) concluded that the similarity measure of cosine for text classification and cluster-
ing demonstrated the best solutions [8].

Chapter 3

Related Work

3.1 Software Evolution
After an empirical study within IBM by Lehman [21], which aimed to improve the effectiveness
of the company’s software development, a new prolific research field was introduced rather than
changing the development process within the company itself [16]. He proposed laws for software
maintenance and evolution such as software evolution can be studied using statistical methods
and changes increase the complexity of software. Software evolution is all programming activity
that is intended to generate a new software version from an earlier operational version [5] [7].
Thomas ball et al. illustrated ways to extract software history informations from version control
systems and thus better understand programs development evolution [1].

3.2 Software Maintenance
Equivalent to Software evolution, Software maintenance are historically dated from the 1960th [4].
Software must needs continious changes, otherwise it will become progressively less useful [20]
[12] .Software Maintenance can be classified into four classes, namely adaptive: keeping software
usable in changing software environment, secondly perfective: implementation of new user re-
quirements, thirdly corrective: fixing discovered errors in software code and finally preventive:
prevent problems in the future before they occour [22]. Notably the first two classes make up more
than 70% of the overall software maintenance activities. Bernett and Rajlich presented a roadmap
for software maintenance and evolution in their paper and also discussed different aspects, in-
cluding the research topic of raising abstraction level in which evolution is expressed [30] [2]. An
edit script is a collection of tree operations needed to transform T1 (AST of File before change) to
T2 (AST of File after change).

12 Chapter 3. Related Work

3.3 Change classification
Thomas Zimmerman et al developed a tool, namely ROSE, which aims to guide programmers
along related changes, furthermore it can warn developers about missing changes. He stated
that, "the more there is to learn from history, the more and better suggestions can be made" [37].
Source code changes are needed in order to help increasing the change impact awareness [32] [33].
Later on, Beat Fluri and Harald C Gall presented a taxonomy of source code changes, by deriving
them from tree edit operations. Furthermore they classify each change type with a significance
level, which expresses how strong a change may impact the source code [10]. A more advanced
tool, GumTree, developed by Falleri et al. detects also move operations and produces raw edit
scripts, instead of manually classified changes. Moreover it is able to process edit scripts for C,
C++, JavaScript etc. next to JAVA [9].

3.4 Change Anlysis
Gall et al analysed changes with Evolizer and ChangeDistiller. They investigated commenting
behaviours, discovered change type patterns and changes that fixed bugs. Change patterns are
defined as source code changes, which are mostly applied together (e.g parameter renaming im-
pacts all statements that access the parameter inside the method body). Advantages of source
code are two fold, first one can perform analysis of source code change patterns to discover vi-
olations of principles after shifting paradigms, secondly [13] programmers can be supported in
adopting software projects and correct usage of certain guidelines. Sunghun et al specialized in
finding bug fixing change patterns [18]. Emanuel Giger et al. performed several experiments to
evaluate if source code changes perform better in bug prediction than the metric of LM 1 in source
code. Their results clearly show that software source changes outperform LM [14]. Cito et al did
an empirical analysis of the docker container ecosystem. In order to facilitate data analytic they
created change types and came to the conclusion that most changes deal with dependencies, that
are stored in an unstructured manner, furthermore he proposed to introduce an abstraction that
would make it easier to deal with package management. This example shows us how software
source changes can help through evolution by extrapolating the software history [6] [31].

1lines modified

Chapter 4

Approach

This chapter describes the end-to-end process of the overall approach, which supports the mining,
processing, analysing and extracting phase of this thesis.

First of all, various methodologies and tools have been conducted and examined in order
to find the appropriate data (e.g. simple plain diff Classification with use of Topic modeling
algorithms such as Latent Semantic Analysis, Latent Dirichlet allocation and Hierarchical Di-
rechlet Allocation, and more advanced tree differencing approaches such as ChangeDistiller and
GumTree).

After choosing the most suitable methodology, the data selection and mining workflow has
been set up. This phase includes the data source filtering and selection. In order to allow for
flawless scaling, a low-level script has been developed, which can be used for similar mining
approaches. Afterwards the data got preprocessed by integrating, cleaning and aggregating it
through different other scripts. Subsequently the data got vectorized into numbers, in order to
reduce the complexity and to transform the data in a more machine-friendly way.
Thereupon the data got processed and different unsupervised statistical and machine-learning
algorithms such as Clustering (K-Means), Word Embeddings (word2vec), Document Embed-
dings(doc2vec) and Topic Modeling(LDA) have been applied on top of it in order to represent
knowledge and thus find patterns and similar software changes.

A proprietary algorithm (DCFSG) provides more information about the structures within a
diff and assumes that large diffs which do not occur frequently consist of more than one smaller
and more frequent diff. At the end, implementation details are presented and explained in order
to make everything reproducible.

Figure 4.1: Approach overview

14 Chapter 4. Approach

4.1 Methodology Selection
Source Code is stored in CVS, which tracks changes on text files by comparing added and deleted
lines, thus informations about software changes have very low quality and do not consider struc-
tural changes at all. This section aims to find the most suitable data in order to answer RQ1,
whose purpose is to find new software change types by applying different methods on big data
rather than manually discover change types. The used data sample includes 10 000 diffs from
over 500 top rated java projects.

4.1.1 Plain Diff LDA
Idea

As mentioned in chapter 2.6 Background a topic modelling is a type of statistical model for dis-
covering abstract topics that occur in a set of documents. There are different algorithms imple-
menting several heuristics for a maximum likelihood of the fit. This thesis considers and test the
following algorithms:

Latent Semantic Analysis is the initial implementation of topic modeling. It creates a matrix of
the input and decomposes it into a new document-topic matrix by counting the frequency
of a word appeared in a document and thereby it forms a sparse matrix whose rows corre-
spond to terms and whose columns refer to documents.

Latent Dirichlet allocation is a generative topic bag of words model that calculates probabilities
that a word belongs to a specific topic. Compared to the normal distribution, which is a
probability distribution over all real numbers, LDA is also a probability distribution over
probabilities over K distinct categories rather than numbers. The difficulty here is to find
the optimal size K which maximizes the likelihood fit.

Hierarchical Dirichlet allocation The HDP mixture model is a natural nonparametric general-
ization of Latent Dirichlet allocation, where the number of topics can be unbounded and
learnt from data rather than specified in advance. Since it is an extension of LDA, one can
manually iterate through different K’s with LDA to find the best fit.

import gensim
import gensim.corpora as corpora
from gensim.utils import simple_preprocess
from gensim.models import CoherenceModel

bigram = gensim.models.Phrases(data_words, min_count=2, threshold=100)
bigram_mod = gensim.models.phrases.Phraser(bigram)
def make_bigrams(texts):

return [bigram_mod[doc] for doc in texts]

data_words_bigram = make_bigrams(data_words)
id2word_bigram = corpora.Dictionary(data_words_bigram)
corpus = [id2word_bigram.doc2bow(text) for text in texts]
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,

id2word=id2word,
num_topics=100,
alpha=’auto’,eta=’auto’,
iterations=1000)

4.1 Methodology Selection 15

doc_lda = lda_model[corpus]
Compute Perplexity
print(’\nPerplexity: ’, lda_model.log_perplexity(corpus))

Compute Coherence Score
coherence_model_lda = CoherenceModel(model=lda_model, texts=texts, dictionary=id2word, coherence=’c_v’)
coherence_lda = coherence_model_lda.get_coherence()
print(’\nCoherence Score: ’, coherence_lda)

Listing 4.1: Plain Text LDA

This thesis assumes that there are multiple change types between two source code files. There-
fore a topic is defined as a change type and a diff between two files consists of multiple topics.
The idea is to label the different topics manually or with help of the crowd (active learning)

Input

Input is generated by taking two successive commits and getting the changes between them via
git diff. For this approach the following two parameters have been used:

1. git diff <commit-before> <commit-after>.

2. git diff –word-diff=plain <commit-before> <commit-after>

The first one shows line by line whereas as the second one considers word diffs, delimited by
whitespace. The algorithms above take a collection of documents as input. LDA and LSA takes
an additional parameter K (number of topics). More paramaters such as alpha, beta have been set
to ’auto’. Number of iterations is set up to 1000.

Preprocessing

In order to avoid overfitting and to increase the model accuracy, only the diff context is used
for the input. The following regex was used to remove the surrounding software source code:
REGEX CODE HERE. Furthermore, all symbols have been replaced with spelling words (e.g. { to
CURLYBRACKETOPEN)

Output

We started our first attemp with the most used topic modelling algorithm LDA:

By iterating through a range of 10-200 topics and measuring the perplexity and coherence of
the model, an optimal topic number of 100 was found.

16 Chapter 4. Approach

Figure 4.2: Plain Diff PCA

Conclusion

Indeed it clustered some similar code fragments (e.g. modifiers, expressions, comments, import
statements). However the topics where not coherent enough and thus we quickly decided to
continue with this approach. Noteworthy the output clearly shows that unsupervised clustering
works well and similar code snippets can be found, but the results are not sufficient to answer
the RQ1. The Goal is to identify and learn change types rather finding similar semantic source
code snippets. This problem is well described by Beat Fluri et al., which brings us to the more
advanced approaches: Abstract Syntax Tree Differencing.

4.1.2 ChangeDistiller
Idea

Whereas in the previous attempt we tried to extract informations from plain diffs, in this section a
more advanced technique is used where the underlying structure of source code, namely Abstract
Syntax Tree are differenced. ChangeDistiller is the very first tool to extract fine grained software
changes between subsequent revision of Java classes and was implemented 2007. The manually
defined taxonomy supports more than 40. 1 change types.

File left = new File("FileBefore.java");
File right = new File("FileAfter.java");
FileDistiller distiller = ChangeDistiller.createFileDistiller(Language.JAVA);
try {

distiller.extractClassifiedSourceCodeChanges(left, right);
} catch(Exception e) {

System.err.println("Warning: error while change distilling. " + e.getMessage());
}

List<SourceCodeChange> changes = distiller.getSourceCodeChanges();
if(changes != null) {
for(SourceCodeChange change : changes) {

writeToFile(change.getChangeType())
}

1https://github.com/sealuzh/tools-changedistiller/blob/master/src/main/java/ch/uzh/ifi/seal/changedistiller/model/classifiers/ChangeType.java

4.1 Methodology Selection 17

}

Listing 4.2: ChangeDistiller Data Collection

Revive ChangeDistiller was very hard since its last update was in 2014, therefore it was time
consuming to update dependencies and make the application runnable. An extension to export
ChangeType property from a SourceCodeChange object was also necessary.

Input

The application needs a Java file before and after the change as input.

Preprocessing

As shown in the small source code snippet, exporting ChangeTypes in ChangeDistiller is very
easy and straight forward.

Output

Example output looks the following:

ADDING_ATTRIBUTE_MODIFIABILITY
ATTRIBUTE_RENAMING
REMOVING_CLASS_DERIVABILITY
STATEMENT_ORDERING_CHANGE

Listing 4.3: ChangeDistiller Edit Script Example

Conclusion

A check of Gumtree with a set of 100 Diffs and the manual evaluation showed a precision of 100%.
GumTree was and is still a very good tool. Very precise EditScripts, which are human readable
and easy to understand.

4.1.3 GumTree
Idea

In 2014 Jean Remy et al developed Gumtree, a fine grained and accurate source code differencing
tool, which is freely available. Java Files get parsed by the JDT Eclipse parser. There are different
possible outputs feasible. Noteworthy is the "cluster" output type, which summarizes all edits
scripts in a node and thus decreases the edit script size. Edit Scripts are build out of JDT Ele-
ments rather than manually classified Elements, thus GumTree is more language specific, where
as Changedistiller is more aligned to AST operations.

Input

Output type as parameter and two subsequent java files:

docker run −v <path−to−files>:/diff gumtree cluster <file−before> <file−after> <output−path>.<output−name>

Listing 4.4: Dockerizing GumTree

18 Chapter 4. Approach

Preprocessing

In order to use the application the creator of Gumtree had to update some dependencies and fix
the dockerfile.

Output

Example output of ’cluster’ looks the following:

New cluster:
DEL ImportDeclaration
−−−−−−−−−−−−
DEL QualifiedName: org.springframework.boot.actuate.metrics.CounterService
DEL ImportDeclaration

Listing 4.5: GumTree cluster Edit Script Example

Example output of ’diff’ looks the following:

Delete QualifiedName: org.springframework.boot.actuate.metrics.CounterService(18)
Delete ImportDeclaration(19)

Listing 4.6: GumTree diff Edit Script Example

Conclusion

The output formatting is not machine friendly, but the results are very precise. Manual validation
of 100 diffs lead to an accuracy of 99%. Only one diff was attached with a wrong Edit Script. Un-
fortunately, the Edit Script is not easy to understand, especially when not knowing the language
behind, which comes in favor of ChangeDistiller, where manually crafted change types have been
defined.

Methodology Selection

Previous sections briefly presented different approaches to generate the right data. The table
below shows the summary criteria:

Plain Text ChangeDistiller GumTree
Simplicity High Med High

Maintenance true true false
Accuracy 0.34 % 99% 100%

Data Quality Very low Very High Medium
Classification Generic JDT Parser Manual

Machine Friendly true true false

Simplicity This criteria implies the effort.

Maintenance Current state of the tool and maintenance frequency.

Accuracy Accuracy of the data after manual validation of 100 Diffs.

Data Quality Information entropy output.

4.1 Methodology Selection 19

Classification The way data is generated.

Machine Friendly How easy can the output format be processed by a computer

Runtime Complexity This value will affect the scalability, thus the data mining scope.

GumTree’s flexibility, language specific output and usability is chosen as the fundamental for the
upcoming analysis. Unfortunately, it has no change impact significance level as ChangeDistiller.
Since Gumtree does not use manually classified labels, it will allow us to find higher-order edit
scripts with help of empirical research.

20 Chapter 4. Approach

4.2 Data Analytics
After choosing the best suited methodology, this section focuses on the data analytics part, where
firstly the data gets selected, mined, integrated, cleaned, and transformed in order to get the best
knowledge representation.

4.2.1 Data Selection
First process step of the data analytics is the data selection, where the appropriate data source
and type is determined. Github is a hosting service for version control. It includes more than 57
million repositories and thus is the biggest host of source code in the world. It also offers a well
described REST API 2, which allows building tools on top of it. It is possible to search for projects
through the API as well, which gives the opportunity to scan and pick projects in large scale. The
following listing shows the data selection used in this thesis:

1. Main source: Github.com

2. Programming language: JAVA

3. Forked Projects: False

4. Archived projects: False

5. Min size: 1000 Kilobytes

6. Sorted: by stars in descending order3

4.2.2 Data Mining
The data mining process is portioned in six different components. Applying separation of con-
cerns helps improving the maintainability, scalability and expandability to other languages. Bottle
neck of the data mining worklflow is the AST Diffing component. It takes about 2 seconds per
Diff, which makes it impossible to evade parallelization.

Commit MiningCommit MiningProjects Mining Project Mining Commits Mining

Diff Mining

Query
Project

List
Project

Commit
List

AST Diffing

Diff
List

Edit
Scripts
(Clustered)

Files

A.java B.java

Plain
Diff

Word
Diff

Edit
Scripts

(List)

Figure 4.3: Data Mining Process Overview

2Application Interface (https://developer.github.com/v3)
3https://developer.github.com/v3/search/

4.2 Data Analytics 21

Projects Mining

Firstly github gets queried with the parameters defined in the previous section. This thesis con-
siders the first 500 projects. Output is a list of project repositories ending with .git file name
extension.

The following code snippet shows our project mining script:

#!/bin/bash
outfile="$1"
url="https://api.github.com/search/repositories?q="
pages=10
per_page=100
needed=1000
query="\
language:Java\
+fork:false\
+archived:false\
+is:public\
+size:>=1000\
+NOT book in:description,readme\
+NOT cookbook in:name\
+NOT awesome in:name\
+NOT tutorial in:name\
+NOT manual in:name\
"

amount=$((pages∗per_page))
rm −f "$outfile.tmp"
while true; do

for ((i=0; i<$pages; i++)); do
searchUrl="$url""$query"’&sort=stars&order=desc&per_page=’"$per_page"’&page=’"$((i+1))"
echo "getting $searchUrl"
wget −q "$searchUrl" −O − \

| jq ’.items[].git_url’ \
| sed −e ’s/^"//g;s/"$//g’ \
| head −n "$amount" \
>> "$outfile.tmp"

unique=$(sort "$outfile.tmp" | uniq | wc −l)
echo "found $unique unique projects"
if [["$unique" −ge "$needed"]]; then break; fi
sleep "6.1"

done
if [["$unique" −ge "$needed"]]; then break; fi

done

sort "$outfile.tmp" | uniq | head −n "$needed" > "$outfile"
rm "$outfile.tmp"

Listing 4.7: Projects mining Script

22 Chapter 4. Approach

Commits Mining

In order to get the software change artifacts, the commiEvery commit adds the latest changes to
the repository. Instead of cloning all projects to the disk, a separate script takes the projects list as
input and starts mining the commit shas directly from github, which significantly increases the
mining speed. Per project a file named with its repository ID is created and all commits sha’s are
inserted, starting with the very first one. This way the transaction order is kept.

url="https://api.github.com/repos/"
per_page=100
pages=10000
commitFolder="commits/"

get_commits(){
project=$1
projectMetaUrl="urlproject"
echo $projectMetaUrl
projectId=$(wget −q "$projectMetaUrl" −O − | jq ’.id’)
echo "$projectId"
fileNameTemp="$commitFolder$projectId"’.tmp’
fileName="commitFolder$projectId"’.txt’
echo $fileNameTemp

rm −f $fileNameTemp

endOfPagination=true

while $endOfPagination; do
for ((i=0; i<$pages; i++)); do

searchUrl="$url""$1"’/commits?page=’"$((i+1))"’&per_page=100’
echo "getting $searchUrl"

commitShas=$(curl "$searchUrl" | jq ’.[].sha’ | tr " " "\n")
echo $commitShas

if [−z "$commitShas"]; then
endOfPagination=false
break
else
echo $commitShas >> "$fileNameTemp"
echo $endOfPagination
fi

done
echo "looooop got broken!! BOOM"

done
}
filename=’projects.txt’
echo Start
while read p; do
get_commits $p
done < $filename

Listing 4.8: Commits mining Script

4.2 Data Analytics 23

Diff Mining

Since we have an ordered list of commits for every project, we can resolve the performance bot-
tleneck by dividing the workload into batches and also use multi threading for every batch. This
strategy reduced the mining time from 24 days to less than 24h. First it clones the repository, then
it takes two subsequent commits and checks if the commit includes more than 10 files. Afterwards
it iterates for every changed file within the commit and saves the file before (A) and after (B) the
commit.

24 Chapter 4. Approach

AST Diffing

With help of containerization GumTree can be easily used. Input are two subsequent Java Files
and the Output locations: docker run –rm -v <MAINFOLDER/projects>:/diff gumtree cluster
<nameOfFileA> <nameOfFileB> The output for cluster and diffs is not machine friendly, therefore
a fork of the current implementation was unavoidable4.

Output follows this structure:
{ Change Cluster };[1 ... n Change Pieces]

Whereas one Change consist of several Elements:
<AST Operation> <JDT Element (from)> <JDT Element (to)>

The following graphics shows an example:

from to
New cluster:
INS ImportDeclaration to CompilationUnit at 9
————
INS QualifiedName: Map to ImportDeclaration at 0
INS ImportDeclaration to CompilationUnit at 9

New cluster:
INS MethodDeclaration to TypeDeclaration at 15
————
INS MethodDeclaration to TypeDeclaration at 15
INS MarkerAnnotation to MethodDeclaration at 0
INS SimpleName: map to MethodInvocation at 2
INS SimpleName: list to MethodDeclaration at 3
INS SimpleName: String to SimpleType: String at 0
INS Modifier: public to MethodDeclaration at 1
INS MethodInvocation to ReturnStatement at 0

{INS ImportDeclaration CompilationUnit};\n
[INS QualifiedName ImportDeclaration];\n

[INS ImportDeclaration CompilationUnit]\n
{INS MethodDeclaration TypeDeclaration};
[INS MethodDeclaration TypeDeclaration];\n
[INS MarkerAnnotation MethodDeclaration];\n
[INS SimpleName MethodInvocation];\n
[INS SimpleName MethodDeclaration];\n
[INS SimpleName SimpleType];\n
[INS Modifier MethodDeclaration];\n
[INS MethodInvocation ReturnStatement];\n

Table 4.1: AST Diffing Data Transformation

Mining Results

End Result of the mining pipeline are 5 files per commit shah:

1. Before and After <repository_id>_<commit_sha>_<(A|B).java>

2. Cluster <repository_id>_<commit_sha>_<file>_<# cluster>_<# inserts><# updates><# deletes><#
moves>

3. Diff <repository_id>_<commit_sha>_<diff>

4. Plain-Diff <repository_id>_<commit_sha>_<plain_diff>

5. Word-Diff <repository_id>_<commit_sha>_<git_diff>

This naming convention enables querying on top of the filesystem.
4https://github.com/SaliZumberi/gumtree

4.2 Data Analytics 25

4.2.3 Data Integration and Data Cleaning
Firstly data from various locations (10 servers) are aggregated into one. In order to get a machine-
friendly output positioning numbers, redundant words such as "from, at, to" have been cleaned
and removed.

4.2.4 Data Transformation
With help of abstraction, dimensionality reduction simplified the data processing. Three data
transformation decisions have been made:

1. Identify granularity levels

2. Define data shape (two or three elements)

3. Index data for every level by transforming them from words to numbers

Transforming words into numbers made it more frugal to process the data as small units.
There are 4 different granularity levels of a software change.

Elements

The first level consists of a JDT element, the smallest unit. Every JDT element has an id. This table
shows some example Elements and the corresponding description from the official page5:

name description

QualifiedType
AST node for a qualified name. A qualified name is defined recursively
as a simple name preceded by a name, which qualifies it. Expressing it this
way means that the qualifier and the simple name get their own AST nodes.

ForStatement For statement AST node type.
ThisExpression Simple or qualified "this" AST node type.
MethodInvocation Method invocation expression AST node type.

SwitchCase Switch case AST node type. A switch case is a special kind of node used only
in switch statements. It is a Statement in name only.

Change-piece

Change piece consist of three elements, starting with the AST Diff operation (INS | UPD | MOV
| DEL) followed by one or two elements. The First element is what has been changed and if AST
Diff operation is INS then the insertion location is also specified.

This table shows some example change-pieces:

Change

Changes consist of one or more change-pieces. They summarize changes from an AST Node
perspective rather than smaller actions within a change itself. Changes are described as "Clusters"
in GumTree. Unlike in change-pieces the AST Diff Operation naming is written out (INSERT |
UPDATE | MOVE | DELETE).
This table shows some example changes and the associated change-pieces :

5https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FASTNode.html

26 Chapter 4. Approach

name description
DEL ImportDeclaration Delete import statement
INS SimpleName MarkerAnnotation Insert a identifier
INS Modifier FieldDeclaration Insert a modifier (public/private/protected) to a variable
INS PrimitiveType VariableDeclarationStatement Add a primitive type (int, String, Number etc.) to a variable
MOV Block to ForStatement at 3 Move code block into a for statement

example type vectorized
MOVE MethodInvocation Change 2 3
MOV SimpleName MethodInvocation Change-piece 1 14 1 3
MOV SimpleName MethodInvocation Change-piece 2 14 1 3

DELETE ReturnStatement Change 9 65
DEL ReturnStatement Change-piece 1 6 65
DEL SimpleName Change-piece 2 6 14
DEL SimpleName Change-piece 3 6 14

Diff

A diff between two files is defined as collection of changes. Every change is indexed.

id example type vectorized
1 MOVE MethodInvocation Change 2 3

MOV SimpleName MethodInvocation Change-piece 1 14 1 3
MOV SimpleName MethodInvocation Change-piece 2 14 1 3

=> Diff: 1 2
2 DELETE ReturnStatement Change 9 65

DEL ReturnStatement Changwe-piece 1 6 65
DEL SimpleName Change-piece 2 6 14
DEL SimpleName Change-piece 3 6 14

4.3 Implementation Details 27

4.3 Implementation Details
Mining scripts have been implemented using shell scripting. For data selection, preprocessing
and transformation we chose the programming language python, which is one of the most flexible
languages. Notwithstanding it provides very mature machine learning libraries such as sklearn
and gensim but also offers data analytic libraries like pandas and numpy. We used the container-
ization tool Docker to run GumTree independently from our script. The web-tool, which will be
presented in the evaluation array, is built upon the Angular framework. In addition to that we use
SSR rendering to increase the user experience. In order use the limited time as efficiently as possi-
ble, we decided to abandon a back-end implementation and use serverless functions instead. We
made use of AWS Lambda, which processes our evaluation request and saves the item to NOSQL
database, namely DynamoDB, which is well connected to Lambda through Amazon web-services
infrastructure. We also used EC2 Instances for data mining, where we ran 10 c4.8xlarge instances.
Within 24h we mined more than 500 projects, resulting in over 500 000 diffs (18.6 GB).

Chapter 5

Results

After mining, preprocessing and transforming the data, the next step is to extract informations by
approaching different models. We start with very basic descriptive statistics, where we present
how and what changes are applied on JAVA source code, proceeding with more complex applica-
tions machine learning techniques namely K-Mean Clustering, which furthers our understanding
in clustering similar diffs. Next, we have been inspired by natural language processing techniques
(NLP) in particular word embeddings and topic modelling to . Finally a self implemented tech-
niques is used to split diffs into change groups.

5.1 Empirical Analysis
Descriptive statistics help to understand the basic features as well as the distribution of the data.

5.1.1 Elements
The table below shows the top 20 most used Elements:

nr element % count
1 MethodInvocation 12.3 1006432
2 MethodDeclaration 10.2 832854
3 Block 9.6 786251
4 ImportDeclaration 7.1 585954
5 TypeDeclaration 6.5 532170
6 ExpressionStatement 5.6 458257
7 CompilationUnit 5.1 418926
8 SimpleName 5 411820
9 IfStatement 3.4 281818
10 VariableDeclarationStatement 3.2 266434
11 FieldDeclaration 3 248047
12 SimpleType 2.2 185289
13 InfixExpression 2.2 177264
14 ClassInstanceCreation 2.1 170892
15 SingleVariableDeclaration 2 166280
16 TagElement 1.7 146078
17 QualifiedName 1.3 107959
18 StringLiteral 1.3 107088
19 Modifier 1.2 100734
20 ParameterizedType 1.1 96041

Table 5.1: Top 20 most used Elements

Notably the top 20 occuring JDT elements sum up to 86% of all 91 found elements.
Furthermore the first two elements in the ranking are referring to methods. Firstly method invo-
cations in applications and declaration of methods. Interestingly inserting, moving and deletion
of dependencies is ranked fourth, which reflects high maintainability and modularity of JAVA. If

30 Chapter 5. Results

statements are changed more frequently than the creation of objects and modifiers such as public,
private and protected. This table shows all AST Differencing operations:

Figure 5.1: image1 caption

Figure 5.2: Tree Operation Distribution

More than one third of all AST Diff operations are Insertions. Impressively Java code is more
likely to be deleted than updated and code is updated and moved equally, which shows how
important movements of source code is in maintenance and evolution of an application.

5.1.2 Changes
20 most used changes (specific)

Top 20 changes make up 45.55% of the total 895 changes found. Update of identifiers such
as methods, variables, classes and interfaces is the most used change in JAVA. Second place is
covered by moving something within a method invocation. We can deduce refactoring of method
parameters from this change. The diffs below show two examples of this change.

@@ -112,7 +112,7 @@ public class MnistInputProvider extends TrainingInputProviderImpl {

images.seek(16 + size * indexes[i]);

images.readFully(current);

for (int j = 0; j < size; j++) {

- tempImages.set(j, i, current[j] & 0xFF);

+ tempImages.set(current[j] & 0xFF, j, i);

}

}

} catch (IOException e) {

5.1 Empirical Analysis 31

nr Change % count
1 UPDATE 12 1048375
2 MOVE MethodInvocation 3.9 316225
3 INSERT ImportDeclaration CompilationUnit 3.3 271501
4 INSERT MethodDeclaration TypeDeclaration 2.9 238768
5 INSERT ExpressionStatement Block 2.45 200732
6 MOVE Block 2.3 187816
7 DELETE ImportDeclaration 2.2 181208
8 DELETE SimpleName 2.1 173312
9 DELETE MethodDeclaration 1.8 147292
10 DELETE ExpressionStatement 1.7 141090
11 DELETE MethodInvocation 1.5 127788
12 INSERT SimpleName MethodInvocation 1.5 121746
13 MOVE MethodDeclaration 1.4 118811
14 INSERT FieldDeclaration TypeDeclaration 1.2 99230
15 INSERT VariableDeclarationStatement Block 1.1 90753
16 INSERT MethodInvocation MethodInvocation 0.9 76084
17 MOVE IfStatement 0.9 74125
18 INSERT IfStatement Block 0.8 70681
19 DELETE VariableDeclarationStatement 0.8 70249
20 MOVE VariableDeclarationStatement 0.8 67277

Table 5.2: Top 20 most used changes

Listing 5.1: Code Snippet 1

@@ -12,7 +12,7 @@ public class MnistTargetSingleNeuronOutputConverter implements InputConverter {

Matrix m = new Matrix(1, input.length);

for (int i = 0; i < input.length; i++) {

- m.set(0, i, (int) input[i]);

+ m.set((int) input[i], 0, i);

}

return m;

Listing 5.2: Code Snippet 2

Notably rank 7 to 11 is covered by DELETE statements, starting with deletion of import state-
ment, followed by deleting a SimpleType. The Diff below shows an example of a SimpleType
deletion (String).

@@ -31,7 +31,7 @@ public final class IncorrectExample extends ExampleSentence {

private final List<String> corrections;

public IncorrectExample(String example) {

- this(example, Collections.<String>emptyList());

+ this(example, Collections.emptyList());

}

Listing 5.3: Code Snippet 3

32 Chapter 5. Results

Top 10 (AST Differencing Operations)

nr INSERT (from) INSERT (to)
1 ImportDeclaration (12.6%) Block (19%)
2 MethodDeclaration (11.3% TypeDeclaration (17.5%)
3 SimpleName (9.8%) MethodInvocation (15.1%)
4 ExpressionStatement (9.7%) CompilationUnit (12.7%)
5 MethodInvocation (7.5%) MethodDeclaration (8.6%)
6 FieldDeclaration (4.6%) TagElement (2.8%)
7 VariableDeclarationStatement (4.3%) ClassInstanceCreation (2.5%)
8 IfStatement (3.6%) IfStatement (2.5%)
9 Block (2.8%) InfixExpression (2.1%)
10 SimpleType (2.7%) VariableDeclarationFragment (2%)

Total 68.9% 84.6%

nr MOVE DELETE
1 MethodInvocation (25%) ImportDeclaration (11.4%)
2 Block (15.2%) SimpleName (10.9%
3 MethodDeclaration (9.6%) MethodDeclaration (9.3%)
4 IfStatement (6%) ExpressionStatement (8.9%)
5 VariableDeclarationStatement (5.4%) MethodInvocation (8%)
6 SimpleType (4.2%) VariableDeclarationStatement (4.4%)
7 CompilationUnit (4%) FieldDeclaration (3.8%)
8 ClassInstanceCreation (3.9%) Block (3.2%)
9 InfixExpression (3.2%) IfStatement (3.1%)
10 VariableDeclarationFragment (3%) SimpleType (3.1%)

Total 79.5% 66.1%

Table 5.3: Top 10 changes grouped by Tree operations

INSERT (what). Tree Insert operations consists of two components. First what Element has
been inserted and secondly where it is inserted. Most inserted element are dependencies followed
by implementing a method and defining simple name (identifier). Fourth rank is held by wrap-
ping expressions (e.g. score = 25, number1 == number2) to a complete unit of execution (int score
= number1 * number2).

INSERT (where). Not surprisingly the most prominent location for insertions is a Block of
statements and declarations, followed by assigning something to a variable. Third place is held
by CompilationUnit, which includes package-, import-, type- declaration-, enum- and annotation
declarations. 2.5% of all insertions are added when instantiation a new object (ClassInstanceCre-
ation). If statement and Infix expressions (expression (e) infix operator (io) expression (o) e.g.
(number1 == number2 (o) & (io) (number1 > 10) (o))) are also important locations for insertions.

MOVE. Java developers mostly move method invocations (one quarter of all movements),
followed by Blocks of statements and declarations. Interestingly movement of if statements are
placed on the fourth rank. Noteworthy instantiated objects are also very likely to be moved
within a class. In contrast to Insert locations, CompilationUnits are less likely to be moved than if
statements and variable declaration, thus global constants, annotations are more sedentary.

DELETE. Most of deletions occur on import declarations, which indicates the high modularity
of Java programming language. Methods and simple names are also very likely to be deleted
within a class. Deletion of instantiated objects is not on the list, which could point out their
significance.

5.1 Empirical Analysis 33

5.1.3 Diffs
Most occurring Diffs (n=2)

nr Changes % nr Changes %

1 UPDATE
UPDATE 17.2 11 INSERT IfStatement Block

MOVE Block 1.2

2 INSERT ImportDeclaration CompilationUnit
INSERT MethodDeclaration TypeDeclaration 5.9 12 INSERT InfixExpression IfStatement

MOVE InfixExpression 1.1

3 MOVE CompilationUnit
UPDATE 4.2 13 INSERT MethodDeclaration

TypeDeclaration UPDATE 1.1

4 INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration 3.6 14 DELETE ImportDeclaration

DELETE ExpressionStatement 1

5 INSERT ImportDeclaration CompilationUnit
INSERT ExpressionStatement Block 2.2 15 INSERT MethodInvocation MethodInvocation

MOVE MethodInvocation 0.8

6 DELETE ImportDeclaration
DELETE MethodDeclaration 2 16 DELETE ExpressionStatement

DELETE ExpressionStatement 0.8

7 INSERT ImportDeclaration CompilationUnit
UPDATE 2 17 DELETE ImportDeclaration

DELETE ImportDeclaration 0.8

8 INSERT ExpressionStatement Block
INSERT ExpressionStatement Block 1.6 18 INSERT ImportDeclaration CompilationUnit

INSERT NormalAnnotation TypeDeclaration 0.7

9 DELETE MethodDeclaration
DELETE MethodDeclaration 1.5 19 DELETE ImportDeclaration

DELETE SingleMemberAnnotation 0.6

10 UPDATE
DELETE ImportDeclaration 1.5 20 INSERT FieldDeclaration TypeDeclaration

INSERT FieldDeclaration TypeDeclaration 0.6

Table 5.4: Most occurring Diffs (n=2)

1. Updating two identifiers within the class. The following combinations occour the most:
(method name, method name), (import, class name),(import, inherited class),(import, method
parameter).

2. Importing dependency and creating a new method

3. Updating an import declaration and moving it.

4. Implementation of two new methods.

5. Import dependency and add use it to create an expression, which gets added to a block of
declarations and statements.

6. Opposite of 2

7. Import new dependency and use it to replace it on single or multiple places within the file
(e.g. importing java.io.File and replace existing String type with File).

8. Add two expressions within the file. Inspecting 20 random Diffs show that in 7 cases the
expression statements are the same and thus violated the ’DRY’ principle.

9. Opposite of 4.

10. Delete dependency and update identifier where it was used.

11. Surround a block of declarations and statements with an if condition

34 Chapter 5. Results

12. Add new infix expression to if condition and move existing one next to it.

13. Add new method after updating an identifier. A very interesting pattern within this diffs
is that an existing method gets split into two methods, where the existing one changes the method
name, thus complexity gets reduced by applying separation of concerns.

14. Opposite of 5.

15. Add parameter to method invocation, additionally move existing ones.

16. Opposite of 8.

17. Delete two import statements.

18. Import dependency of multi-member annotation and use it to annotate the class.

19. Delete dependency of single-member annotation and its usage within class.

20. Declare two global constants.

21. Import dependency of single-member annotation and use it to annotate the class.

22. Opposite of 15.

23. Import dependency and add new if statement

24. Use interface or extend class.

26. Opposite of 15.

27. Delete moodier (public, private, protected) in multiple locations.

29. Import dependency of marker annotation (e.g. Test) and use it to annotate the class.

30. Extend if statement with else if condition.

31. Opposite of 29.

32. Implement and invoke new method.

34. Remove conditions from if statement.

35. Opposite of 17.

38. Import new Type and extend method parameter with this type.

41. Delete dependency of multi-member annotation and its usage within class.

43. Similar to 29, but here it annotates methods rather than class

45. Opposite of 24.

5.1 Empirical Analysis 35

48. Update identifier and change name in comment description as well.

50. Update identifiers on multiple locations

54. Declare a variable, which is then used in a newly created if statement

57. Add method parameter and use new paramter within the method to call another method.

59. Clean-up import statements by deleting and moving them around.

61. Add javadoc elements to methods and classes

62. Import qualified name (e.g. enum) and use it within a method invocation

72. Tag method as deprecated and add javadoc comment as well.

78. Change mutiple method modifiers..

79. Add parameter to constructor and add it as input of super method invocation of parents
constructor.

79. Instantiate generic type with actuall type (e.g. new ArrayList<>(this.expectations) –> new
ArrayList<Expectation>(this.expectations))

94. Add nested condition to if condition

98. Import dependency and add to an Array.

99. Remove declaration within if condition.

100. Remove declared object and expression statement, where its method was called.

111. Remove marker annotation (e.g. @Override, @Deprecated etc.) on methods in multiple
locations.

114. Delete object instantiation (new) and call method on static class.

117. Add javadoc comments on method.

124. Move block of statements and declarations into a try and catch statment.

125. Add new infix expression to return statement

127. Extend parameters of a (abstract) method in an interface

136. Change order of method modifiers (e.g. private final static –> private static final)

139. Import new dependency and add anonymous class.

140. Import new dependency and use it as constructor parameter when creating an object.

148. Import new dependency and use it as to throw exception.

36 Chapter 5. Results

150. Extend method with new parameter, and use this parameter as parameter within a
constructor of a newly created object.

159. Add cast expression to return statement.

160. Remove multiple null literals.

161. Import new dependency and use it as parameter of a new method invocation, which is a
parameter of a newly created object.

165. Surround content of enhanced for loop statement with if statement

165. Opposite of 15

167. Change inherited class.

179. Import Exception type and add catch clause, which makes use of imported exception

192. Remove infix expression in return statement.

197. Add new case in switch statement and also add a return statement.

199. Replace throw statement by return statement.

200. Add parametrized type to existing method paramter (e.g. public void setDict(DictionaryEntity
dict, –> public void setDict(DictionaryEntity<? extends DictionaryItemEntity> dict,).

201. Exend return statement with conditional expression.

236. Add try catch statement within a if statement

5.1 Empirical Analysis 37

Most occurring Diffs (n=3)

nr Changes % nr Changes %

1
UPDATE
UPDATE
UPDATE

9.8 11
UPDATE
INSERT MethodInvocation MethodInvocation
MOVE MethodInvocation

0.7

2
UPDATE
UPDATE
MOVE CompilationUnit

4.2 12
DELETE ImportDeclaration
DELETE MethodDeclaration
DELETE MethodDeclaration

0.7

3
INSERT MethodDeclaration TypeDeclaration
INSERT ImportDeclaration CompilationUnit
INSERT ImportDeclaration CompilationUnit

3.1 13
INSERT ExpressionStatement Block
INSERT ExpressionStatement Block
INSERT ExpressionStatement Block

0.7

4
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT ImportDeclaration CompilationUnit

2 14
UPDATE
DELETE MethodInvocation
MOVE MethodInvocation

0.7

5
UPDATE
UPDATE
INSERT ImportDeclaration CompilationUnit

1.9 15
DELETE FieldDeclaration
DELETE MethodDeclaration
DELETE MethodDeclaration

0.7

6
INSERT FieldDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration

1.7 16
DELETE MethodDeclaration
DELETE MethodDeclaration
DELETE MethodDeclaration

0.6

7
UPDATE
UPDATE
DELETE ImportDeclaration

1.4 17
INSERT SingleMemberAnnotation TypeDeclaration
INSERT ImportDeclaration CompilationUnit
INSERT ImportDeclaration CompilationUnit

0.6

8
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration

1.2 18
INSERT ImportDeclaration CompilationUnit
INSERT ExpressionStatement Block
INSERT ExpressionStatement Block

0.5

9
DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE MethodDeclaration

1 19
INSERT FieldDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT ExpressionStatement Block

0.5

10
INSERT Block MethodDeclaration
DELETE Block
MOVE Block

0.9 20
DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE ImportDeclaration

0.5

Table 5.5: Most occurring Diffs (n=3)

1. Updates three identifiers within the class. Mostly same change is applied.

2. Updates dependency and changes new type in multiple locations.

3. Add two dependencies and implement a method which makes use of it.

6. Declare a global variable and add two methods, which use it.

8. Implement three methods.

9 . Opposite of 3

11. . Insert three expressions. Mostly one expression added to three different locations.

12. . Delete global variable together with corresponding getter and setter method.

14. . Import two dependencies, first one is used as annotation, second one as member of
annotation

18. . Opposite of 11

38 Chapter 5. Results

Most occurring Diffs (n=4)

nr Changes % nr Changes %

1

UPDATE
UPDATE
UPDATE
UPDATE

5.8 11

INSERT ExpressionStatement Block
INSERT ExpressionStatement Block
INSERT ExpressionStatement Block
INSERT ExpressionStatement Block

0.3

2

MOVE CompilationUnit
UPDATE
UPDATE
UPDATE

2.5 12

UPDATE
UPDATE
UPDATE
DELETE ImportDeclaration

0.3

3

INSERT ImportDeclaration CompilationUnit
INSERT ImportDeclaration CompilationUnit
INSERT ImportDeclaration CompilationUnit
INSERT MethodDeclaration TypeDeclaration

1.8 13

DELETE MethodDeclaration
DELETE MethodDeclaration
DELETE MethodDeclaration
DELETE MethodDeclaration

0.3

4

INSERT ImportDeclaration CompilationUnit
INSERT ImportDeclaration CompilationUnit
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration

1.5 14

INSERT ImportDeclaration CompilationUnit
INSERT ImportDeclaration CompilationUnit
INSERT ExpressionStatement Block
INSERT ExpressionStatement Block

0.3

5

INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration

0.9 15

DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE ImportDeclaration

0.3

6

INSERT ImportDeclaration CompilationUnit
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration

0.7 16

INSERT FieldDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT ExpressionStatement Block

0.3

7

DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE MethodDeclaration

0.6 17

UPDATE
DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE ImportDeclaration

0.3

8

DELETE ImportDeclaration
DELETE ImportDeclaration
DELETE MethodDeclaration
DELETE MethodDeclaration

0.6 18

UPDATE
UPDATE
DELETE ImportDeclaration
DELETE ImportDeclaration

0.3

9

INSERT ImportDeclaration CompilationUnit
UPDATE
UPDATE
UPDATE

0.5 19

INSERT FieldDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT SingleVariableDeclaration MethodDeclaration
INSERT ExpressionStatement Block

0.3

10

INSERT ImportDeclaration CompilationUnit
INSERT FieldDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration

0.4 20

INSERT ImportDeclaration CompilationUnit
INSERT Block MethodDeclaration
MOVE Block
DELETE Block

0.3

Table 5.6: Most occurring Diffs (n=4)

1. . Exactly same pattern as we saw in n=2 and n=3. Four similar updates on identifiers have
been applied.

2. Update import statements after package re-factoring.

11. Insert four expressions. Mostly one expression added to four different locations.
Top diffs with 4 changes are very similar to the previous table, with the difference that a change

occurs several times.

5.2 Clustering (K-Means) 39

5.2 Clustering (K-Means)
In order to cluster similar diffs, we first created a similarity matrix based on cosine similarity
and started training the model with 1000 Iterations. Since we use cosine similarity we can not
calculate the similarity of diffs with different lengths, because cosine similarity calculates vector
angles, thus comparing short diffs with longer ones which leads to inaccurate results. We will
inspect diffs of sizes three, four and five changes. Our goal is to find change patterns, which can
be described by a sentence or even labelled with a word. After finding an appropriate number
of clusters for every diff size, we calculate and plot the cosine similarity within a cluster and the
number of diffs belonging to the cluster. This facilitates picking important and coherent clusters
from the plotting. Obviously the more items in a cluster, the lower the cosine similarity within
the cluster.Therefore, we try to maximize the cosine similarity and number of diffs.

5.2.1 Clusters(n=3)

Figure 5.3: Cluster Analysis (n=3)

According to the evaluation, clusters with three unique changes reveal similar diffs.
The following change clusters are noteworthy to describe briefly:

Cluster 33 Opposite of Cluster 13, method is now within the class.

Cluster 11. Chained method invocation is moved into the previous.

40 Chapter 5. Results

Cluster 45. Create an if condition which makes use of newly added dependency / global
variable and implement a new method.

Cluster 36. Parameter of a returned method invocation gets changed, additionally if condi-
tions are added

Cluster 46. Method gets removed and new dependency is being added and used as a param-
eter within a method invocation

Cluster 27. Dependency gets deleted and removed where it was used, mostly in constructor
parameters and super method invocations.

Cluster 22. Import dependency and instantiate it and use its methods.

Cluster 49. Remove global variable and its usage within methods, sometimes also its depen-
dency get deleted.

Cluster 10. A instantiated Object gets replaced by a internal object, finally the corresponding
import gets deleted as well.

Cluster 12 Method invocation parameters are changed by a simple name.

Cluster 13 After removing import statements a method called within the Class is called from
an object (e.g. assertXpathEvaluatesTo –> XMLAssert.assertXpathEvaluatesTo).

Cluster 14 Import of dependency which is then used in a newly created if and else statement.

Cluster 15 Deletion of dependency, addition of new dependency, which is then used as con-
stant or variable within the class.

Cluster 16 + 43 Surround expression statement by if condition.

Cluster 44 String parameter in method invocation gets re-factored by newly added depen-
dency

5.2 Clustering (K-Means) 41

5.2.2 Clusters(n=4)
According to the evaluation, clusters with four unique changes exhibit slightly dissimilar diffs
within it.
However, we tried to describe the ones occurring more than 100 times and with the highest cosine
similarity.

Cluster 22 Replace return statement or simple expression with newly imported Class, addi-
tionally add if condition, where the new dependency is used.

Cluster 61 Remove dependency and add a new one, which is then used as type within a
method parameter in an interface.

Cluster 54 Insert new method declaration and add new if condition or extend if condition.

Cluster 59 Replace usage of old dependency with new one in multiple places.

Cluster 44 Declare global variable and use this variable as parameter of a new method invo-
cation, which is chained on a existing method invocation.

Cluster 34 Add conditions in a if and else condition).

Cluster 37 Replace method invocations, if conditions by surrounding some parts of them with
a new return statement

Figure 5.4: Cluster Analysis (n=4)

42 Chapter 5. Results

5.2.3 Clusters(n=5)
According to the evaluation, clusters with five unique changes display slightly dissimilar diffs
within it.
However, we tried to describe the ones occurring more than 100 times and with the highest cosine
similarity.

Cluster 68 Remove global variables and replace parameters in method invocations in multiple
places.

Cluster 70 Replace dependency and re-factor its usage.

Cluster 38 Add several import statements and implement new methods, additionally also
some global constants are declared.

Cluster 30 Similar to 70, but here same re-factoring applied on multiple locations.

Cluster 36 Remove method invocation within a parameter of a method invocation

Figure 5.5: Cluster Analysis (n=5)

5.3 Word Embeddings (Word2Vec) 43

5.3 Word Embeddings (Word2Vec)
Word2vec is one the most used word embedding models. It consists of two layers neural net and
basically is a technique to represent word as embeddings by transforming words into vectors (list
of numbers). With help of an gradient decent, these entities are trained to be useful representa-
tions in their context. Since its release it has not only been used for text classification, but also
in different applications. Output of word2vec goes beyond basic syntactic regularities, e.g KIN,
Man, Queen example showed that is is possible to perform algebraic operations on vector(“King”)
– vector(“Man”) + vector(“Woman”) ==> results in a vector Queen.

Since this thesis is not using words but changes, we can call it change2vec instead of word2vec.
The model parameters need to be adjusted to the input characteristic. Two major differences
exist when comparing diffs to text. Firstly diffs are very short (see statistic above) and secondly
the used vocabulary consists of 895 unique changes. In this use case, the input is a diff (list of
numeric labelled changes) (e.g: 21 4 13 5) rather than text, thus the diff dimension is set to 10 and
window size to 2, because we want at least two changes. Size of context window determines how
many neighbours should be included. Shorter window produces more related terms. Number of
iterations over the corpus have been set to 1000. Since we are interested in similar changes we use
the Continues-Bag-of-Words model (CBOW) to contextualize the changes.

The model took 5h to train 534116 diffs. Noteworthy the trained model knows only about the
change indices, thus no informations about the JDT elements.

5.3.1 Top 10 Change Similarities
The table below shows the most similar changes in descending order. Word2vec computes cosine
similarity between a simple mean of the projection weight vectors of the given words and vectors
for each word in the model.

Change Most Similar 1 Most Similar 2
1 INSERT Block IfStatement MOVE IfStatement (99.42%) INSERT SimpleName IfStatement (94.95)
2 INSERT TagElement TagElement INSERT TextElement TagElement (99.38) MOVE TagElement (85.81)
3 INSERT QualifiedName EnumConstantDeclaration INSERT StringLiteral EnumConstantDeclaration (99.34%) MOVE EnumConstantDeclaration
4 INSERT SuperFieldAccess InfixExpression INSERT ParenthesizedExpression SuperConstructorInvocation (98.63%) INSERT BooleanLiteral SuperMethodInvocation (98.35)
5 INSERT MethodRef TagElement INSERT MemberRef TagElement (98.25%) INSERT SimpleName TagElement (95.64%)
6 INSERT BooleanLiteral AssertStatement INSERT BooleanLiteral IfStatement (98.24%) INSERT SimpleName DoStatement (98.11%)
7 INSERT ParameterizedType ParameterizedType INSERT SimpleType ParameterizedType (97.62%) MOVE ParameterizedType (92.50)
8 INSERT ForStatement SwitchStatement INSERT SimpleName SwitchStatement (97.53 %) INSERT EnhancedForStatement SwitchStatement (93.69%)
9 INSERT InfixExpression InfixExpression INSERT ParenthesizedExpression InfixExpression (97.39 %) INSERT PrefixExpression InfixExpression (95.93%)
10 MOVE TryStatement INSERT Block TryStatement (97.18%) INSERT CatchClause TryStatement (91.62%)

Table 5.7: Top 10 Change Similarities

1. (If statements Adding a block of declarations and statements into a if statement is very
similar to moving the if statement or adding a simple name within it.

2. (TagElement) Indeed TagElements and TextElements are very similar according to JDT
Documentation.

3. (Enums) In fact, inserting a qualified name (Enum from import statement) and string literal
into enum declaration it’s the same.

4. (Super) Inserting a super variable is very similar to add an expression to super construc-
tor invocation or adding a boolean to a super method invocation. Inheritance was successfully
determined here.

44 Chapter 5. Results

5. (TagElement) Adding a reference of a method, member or simple name to tag element.

6. (Booleans) Interestingly adding a boolean literal to an assert statement is very similar to
adding a boolean literal into a if statement and a simple name into a do statement.

7. (Parameterized Types) Adding a parametrized type to a parametrized type is highly similar
to adding a simple name to a parametrized type

8. (Switch) Remarkably inserting a for loop into a switch statement and adding a simple name
is analogous, as well as adding an enhanced for loop.

9. (Infix) Noteworthy how accurate w2v equates the addition of an infix- and prefix expression
into an if statement condition.

10. (Try Catch) Moving a try statement and adding a block of declaration is according to the
model similar, furthermore also adding a catch-clause is very

By only providing numeric encoded diffs, word2vec was able to find similar change types.
This shows us that there are patterns and syntactical structures within source code changes.

5.3.2 Top 10 Change Similarities (Average Cosine Similarity)
This table presents the top ten change similarity based on the calculated cosine similarity between
similar changes. Overall mean cosine similarity is 82%.

change Most Similar 1 Most Similar 2 Most Similar 3 Ø
1 INSERT NullLiteral SuperConstructorInvocation INSERT BooleanLiteral SuperConstructorInvocation INSERT NumberLiteral SuperConstructorInvocation INSERT StringLiteral SuperConstructorInvocation 0.972
2 INSERT AnnotationTypeMemberDeclaration AnnotationTypeDeclaration INSERT MarkerAnnotation AnnotationTypeDeclaration MOVE AnnotationTypeMemberDeclaration MOVE AnnotationTypeDeclaration 0.967
3 INSERT SimpleType SingleVariableDeclaration INSERT SimpleName SingleVariableDeclaration INSERT ArrayType SingleVariableDeclaration INSERT PrimitiveType SingleVariableDeclaration 0.966
4 INSERT ClassInstanceCreation ConstructorInvocation INSERT ClassInstanceCreation SuperConstructorInvocation INSERT CastExpression ConstructorInvocation INSERT BooleanLiteral SuperConstructorInvocation 0.963
5 INSERT MethodDeclaration EnumDeclaration INSERT EnumConstantDeclaration EnumDeclaration INSERT FieldDeclaration EnumDeclaration INSERT EnumDeclaration TypeDeclaration 0.963
6 INSERT MarkerAnnotation SingleVariableDeclaration INSERT SingleMemberAnnotation SingleVariableDeclaration INSERT SimpleName SingleVariableDeclaration INSERT NormalAnnotation SingleVariableDeclaration 0.963
7 INSERT EnumDeclaration TypeDeclaration INSERT MethodDeclaration EnumDeclaration INSERT EnumConstantDeclaration EnumDeclaration INSERT FieldDeclaration EnumDeclaration 0.960
8 INSERT ParenthesizedExpression ConditionalExpression INSERT InfixExpression ConditionalExpression INSERT ParenthesizedExpression PrefixExpression INSERT PrefixExpression ConditionalExpression 0.960
9 INSERT ConditionalExpression ConstructorInvocation INSERT PrefixExpression ConstructorInvocation INSERT InfixExpression ConstructorInvocation INSERT ConditionalExpression ConditionalExpression 0.958
10 INSERT TypeParameter TypeDeclaration INSERT ParameterizedType TypeParameter INSERT SimpleType TypeParameter INSERT ParameterizedType TypeDeclaration 0.958

Table 5.8: Top 10 Change Similarities (Average Cosine Similarity)

5.3.3 Top 12 Cluster (Survey)
In order to create a cluster of changes, it is necessary to create a similarity matrix between the
changes by using the built in word-similarity function of word2vec. A nested for loop through all
changes does the job.

Survey Results. The table below shows the TOP 12 Clusters. The next section will present
the corresponding evaluation. We tried to describe the cluster briefly, ideally this part would be
defined by using the crowd with active learning.

5.3 Word Embeddings (Word2Vec) 45

It is very surprising how well word2vec identified similar changes, without knowing the el-
ements behind the index, thus we can say that changes can be clustered into similar groups by
only using their appearance in a diff without even exploiting the edit script.

46 Chapter 5. Results

Cluster 1 Cluster 2 Cluster 3

INSERT Modifier TypeDeclaration
INSERT SingleMemberAnnotation TypeDeclaration
INSERT ParameterizedType TypeDeclaration
INSERT SimpleName TypeDeclaration
INSERT TypeDeclaration TypeDeclaration
INSERT QualifiedName SimpleType
MOVE CompilationUnit
INSERT MarkerAnnotation TypeDeclaration
MOVE TypeDeclaration
INSERT NormalAnnotation TypeDeclaration
INSERT SimpleType TypeDeclaration
INSERT TypeDeclaration CompilationUnit

INSERT VariableDeclarationFragment FieldDeclaration
INSERT PrimitiveType FieldDeclaration
INSERT ParameterizedType FieldDeclaration
INSERT MarkerAnnotation FieldDeclaration
MOVE FieldDeclaration
INSERT Modifier FieldDeclaration
INSERT SimpleType FieldDeclaration
INSERT ArrayType FieldDeclaration
INSERT ArrayType MethodDeclaration

INSERT NumberLiteral MethodInvocation
INSERT QualifiedName MethodInvocation
INSERT MethodInvocation ReturnStatement
INSERT NullLiteral MethodInvocation
MOVE VariableDeclarationFragment
INSERT MarkerAnnotation PackageDeclaration
INSERT StringLiteral MethodInvocation
INSERT ClassInstanceCreation MethodInvocation
INSERT SimpleName MethodInvocation
INSERT MethodInvocation ExpressionStatement
INSERT MethodInvocation MethodInvocation
INSERT ArrayCreation MethodInvocation
INSERT MethodInvocation Assignment
MOVE MethodInvocation

Changes related to types Changes related to variables Changes related to method invocations

Cluster 4 Cluster 5 Cluster 6
INSERT SimpleName EnumConstantDeclaration
INSERT EnumConstantDeclaration EnumDeclaration
INSERT QualifiedName ConditionalExpression
INSERT SimpleType EnumDeclaration
INSERT MarkerAnnotation VariableDeclarationStatement
INSERT Modifier EnumDeclaration
INSERT Javadoc EnumConstantDeclaration
INSERT EnumDeclaration TypeDeclaration
INSERT ClassInstanceCreation EnumConstantDeclaration
INSERT TypeLiteral EnumConstantDeclaration
INSERT NumberLiteral EnumConstantDeclaration
INSERT QualifiedName EnumConstantDeclaration
INSERT CastExpression EnumConstantDeclaration
INSERT NumberLiteral ConstructorInvocation
INSERT StringLiteral EnumConstantDeclaration
INSERT NullLiteral EnumConstantDeclaration
INSERT FieldAccess SynchronizedStatement
MOVE EnumConstantDeclaration
INSERT BooleanLiteral EnumConstantDeclaration
INSERT FieldDeclaration EnumDeclaration
INSERT QualifiedName PostfixExpression
INSERT QualifiedName PrefixExpression
INSERT MethodDeclaration EnumDeclaration

INSERT EmptyStatement Block
INSERT ForStatement Block
INSERT VariableDeclarationStatement Block
INSERT WhileStatement Block
MOVE DoStatement
INSERT Block ForStatement
INSERT SynchronizedStatement Block
INSERT PrimitiveType VariableDeclarationStatement
INSERT IfStatement Block
MOVE WhileStatement
INSERT VariableDeclarationExpression ForStatement
DELETE DoStatement
INSERT NullLiteral VariableDeclarationFragment
MOVE ForStatement
INSERT EnhancedForStatement Block
INSERT DoStatement Block
INSERT ExpressionStatement Block

INSERT SimpleName ArrayCreation
DELETE ArrayInitializer
INSERT PrimitiveType ArrayType
INSERT NumberLiteral ArrayCreation
MOVE ArrayCreation
INSERT ArrayAccess MethodInvocation
DELETE ArrayType
INSERT SimpleName SingleMemberAnnotation
INSERT MethodInvocation ArrayCreation
INSERT SimpleType ArrayType
INSERT ArrayInitializer ArrayCreation
DELETE ArrayCreation
INSERT ArrayAccess FieldAccess
INSERT ArrayInitializer VariableDeclarationFragment
INSERT ArrayType ArrayCreation
INSERT InfixExpression ArrayCreation
INSERT ArrayCreation VariableDeclarationFragment
INSERT Dimension ArrayType
INSERT PrimitiveType VariableDeclarationExpression
INSERT ArrayAccess VariableDeclarationFragment
INSERT Dimension VariableDeclarationFragment

Changes related to Enums Changes related to code blocks Changes related to Arrays

Cluster 7 Cluster 8 Cluster 9

MOVE ConstructorInvocation
INSERT FieldAccess ClassInstanceCreation
INSERT MethodInvocation ConstructorInvocation
INSERT SimpleName SuperConstructorInvocation
INSERT ClassInstanceCreation ConditionalExpression
INSERT SimpleName ConstructorInvocation
INSERT NullLiteral SuperConstructorInvocation
INSERT ConstructorInvocation Block
INSERT ConditionalExpression ClassInstanceCreation
INSERT WhileStatement SwitchStatement
INSERT TypeDeclarationStatement SwitchStatement
INSERT SimpleName SuperMethodInvocation
INSERT PrefixExpression ClassInstanceCreation
INSERT ParenthesizedExpression ClassInstanceCreation

DELETE FieldDeclaration
INSERT CastExpression LambdaExpression
DELETE TypeDeclaration
DELETE SingleVariableDeclaration
DELETE Initializer
DELETE MarkerAnnotation
DELETE TagElement
DELETE EnumDeclaration
DELETE TextElement
DELETE SimpleName
DELETE Modifier
DELETE MethodDeclaration
DELETE PrimitiveType

DELETE TryStatement
DELETE Block
DELETE ReturnStatement
DELETE ForStatement
DELETE VariableDeclarationStatement
DELETE VariableDeclarationExpression
DELETE EnhancedForStatement
DELETE CastExpression
DELETE IfStatement
DELETE SynchronizedStatement
DELETE ExpressionStatement
DELETE CatchClause
DELETE InstanceofExpression
DELETE MethodInvocation
DELETE WhileStatement
DELETE ConditionalExpression
DELETE EmptyStatement

Changes related to calling classes in super-class,

and adding elements to constructors as well

Changes related to deletion of
simple elements such as elements,
declarations, types

Changes related to deletion of more advanced
code structs such as compound statements,
expressions and method invocations

Cluster 10 Cluster 11 Cluster 12

INSERT ReturnStatement IfStatement
INSERT Block WhileStatement
INSERT Block IfStatement
MOVE PrefixExpression
INSERT InstanceofExpression IfStatement
INSERT MethodInvocation IfStatement
INSERT IfStatement IfStatement
MOVE IfStatement
INSERT Block SynchronizedStatement
INSERT PrefixExpression IfStatement
INSERT SimpleName IfStatement
MOVE SynchronizedStatement
INSERT BreakStatement Block
INSERT BooleanLiteral ReturnStatement
INSERT ContinueStatement Block
INSERT ExpressionStatement IfStatement
INSERT InfixExpression WhileStatement
INSERT InfixExpression IfStatement

INSERT PackageDeclaration CompilationUnit
DELETE AnonymousClassDeclaration
INSERT BooleanLiteral ClassInstanceCreation
INSERT InfixExpression ClassInstanceCreation
INSERT ClassInstanceCreation ClassInstanceCreation
INSERT CastExpression SwitchStatement
INSERT NullLiteral ClassInstanceCreation
INSERT ThisExpression ClassInstanceCreation
INSERT TypeLiteral ClassInstanceCreation
INSERT MethodInvocation ClassInstanceCreation
INSERT SimpleName ClassInstanceCreation
INSERT AnonymousClassDeclaration ClassInstanceCreation
INSERT StringLiteral ClassInstanceCreation
MOVE ClassInstanceCreation
INSERT NumberLiteral ClassInstanceCreation
INSERT SimpleType ClassInstanceCreation
INSERT CastExpression ClassInstanceCreation
INSERT MethodInvocation SuperConstructorInvocation
INSERT QualifiedName ClassInstanceCreation

INSERT QualifiedName EnhancedForStatement
INSERT StringLiteral SwitchCase
INSERT PostfixExpression ClassInstanceCreation
INSERT EnhancedForStatement SwitchStatement
INSERT ThrowStatement SwitchStatement
INSERT LabeledStatement Block
INSERT ReturnStatement SwitchStatement
INSERT MethodInvocation SwitchStatement
INSERT QualifiedName SwitchCase
INSERT SwitchCase SwitchStatement
DELETE EnumConstantDeclaration
INSERT SimpleName SwitchCase
INSERT AssertStatement SwitchStatement
INSERT ForStatement SwitchStatement
INSERT SimpleName SwitchStatement
INSERT ClassInstanceCreation ExpressionStatement

Changes related to if statements Changes related to creating new objects Changes related to switch statement

Table 5.9: Top 12 Most coherent Clusters

5.4 Document Embeddings (Doc2Vec) 47

5.4 Document Embeddings (Doc2Vec)
Doc2Vec is an extension of word2vec, which aims to create a numeric representation of a docu-
ment rather than words in word2vec. The idea is to get similarities among diffs, thus the provided
input will be a list of diffs. Since can be considered as short text, we set a small alpha 0.005.

tagged_data = [TaggedDocument(words=_d, tags=[str(i)]) for i, _d in enumerate(diffs)]
max_epochs = 100, vec_size = 7, alpha = 0.005

doc2vecmodel= Doc2Vec(size=vec_size,
alpha=alpha,
min_alpha=0.00025,
min_count=1,
dimension=2,
dm =1, workers=8)

doc2vecmodel.build_vocab(tagged_data)

for epoch in range(max_epochs):
print(’iteration {0}’.format(epoch))
doc2vecmodel.train(tagged_data,
total_examples=doc2vecmodel.corpus_count,
epochs=doc2vecmodel.iter)
decrease the learning rate
doc2vecmodel.alpha −= 0.0002
fix the learning rate, no decay
doc2vecmodel.min_alpha = doc2vecmodel.alpha

Listing 5.4: Doc2Vec Implementation

After training for more than 5h we presented the randomly chosen results and the Top 5 sim-
ilar changes and asked 5 developers how similar the diffs are. Unfortunately the survey result is
very disappointing. The next chapter shows the evaluation. Applying K-mean clustering on top
of doc2vec embeddings leads sadly to the following result, which reflects the survey values:

Figure 5.6: Clustering Doc2Vec

48 Chapter 5. Results

5.5 Topic Modelling (LDA)
With Topic modeling we are able to derive hidden patterns in diffs and extract change topics in
a unsupervised manner, fully automatically. Topics can be seen as statistically repeated pattern
of co-occuring terms (changes. LDA is a general purpose technique and thus can be applied in
several applications such as tracking geographical location with geo-aware topics [19], extracting
gene-phenotype relationships and biomarkers [35], duplicate bug report detection [27], compar-
ing twitter and traditional media using topic modeling [36].

The difference between Topic Modeling and Word Embeddings is that LDA can derive higher
correlations than two-elements, word2vec allows us to use vector geometry. LDA also shows
statistical relationship of occurrences rather than real semantic information, which are embedded
in words. In other words, LDA can be used to map a document (in our case diff) to vector and
word2vec to word (change) to vector.

Before we start training the model we prepare the input by selecting diffs of length 4 to 13
changes, creating a dictionary and trigrams to infer the corpus (term document frequency).

With the help of different measurements we defined the optimal number of topics to 35.

bigram = gensim.models.Phrases(data_words, min_count=2, threshold=100) # higher threshold fewer phrases.
trigram = gensim.models.Phrases(bigram[data_words], threshold=100)
trigram_mod = gensim.models.phrases.Phraser(trigram)
data_words_trigrams = make_trigrams(data_words)
Create Dictionary
id2word_trigram = corpora.Dictionary(data_words_trigrams)
Term Document Frequency
corpus = [id2word_trigram.doc2bow(text) for text in data_words_trigrams]

lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
id2word=id2word,
num_topics=55,
alpha=’auto’,eta=’auto’,
iterations=100)

doc_lda = lda_model[corpus]
Compute Perplexity
print(’\nPerplexity: ’, lda_model.log_perplexity(corpus)) # a measure of how good the model is. lower the better.
Compute Coherence Score
coherence_model_lda = CoherenceModel(model=lda_model, texts=texts, dictionary=id2word, coherence=’c_v’)
coherence_lda = coherence_model_lda.get_coherence()
print(’\nCoherence Score: ’, coherence_lda)

Listing 5.5: Topic Modeling Implementation

In order to get a better understanding of the allocated topic, we make use of the principal
component analysis, which is used for dimension reduction, thus squashing a multi-dimensional
dataset into a proper lower-dimensional hyperplane. This enables us to visualize topics as bub-
bles. The larger the bubble, the more widespread it is. Overlapping topics may indicate too many
topics.

5.5 Topic Modelling (LDA) 49

Figure 5.7: PCA Plot of Topic Modeling Results

A coherent topic can be labeled / described in a few words. The study participants could
optionally label a topic. The following list shows the processed labels and descriptions

Topic 3 - method invocations

Topic 4 - type declarations

Topic 5 - variable declaration and code block

Topic 6 - imports

Topic 7 - source code block

Topic 8 - variable declaration

50 Chapter 5. Results

Topic 10 - simple names

Topic 11 - add something to a method invocation

Topic 13 - if statements and blocks

Topic 16 - method declarations

Topic 17 - condition in if statement

Topic 18 - move of if statment

Topic 19 - literals (boolean, String, Number)

Topic 20 - tags and annotation

Topic 24 - switch statement

Topic 26 - paramterized typs

Topic 28 - method invocations in express and returns

Topic 35 - variables in condition

17 out of 35 Topics have been labelled. Interestingly Topics with an uniform tag distribution
are more likely to be labelled. Noteworthy, the trained model never saw the JDT Element tags,
only the numeric labels. However, this shows us, that topics can be assigned to diffs in exactly
the same way as to documents. Topic modelling on software changes, can speed up writing of
commits, by showing the topic labels and distribution of local changes. Another use case would
be adding topic labels to Pull Requests.

Figure 5.8: Topic Distribution

5.6 Diff Change Frequency Score Grouping 51

5.6 Diff Change Frequency Score Grouping
So far based on the defined data abstraction, a diff is a collection of changes. To get more infor-
mations about existing and occurring patterns in diffs, we had to make an assumption that diffs
could be composed of change groups.

Example: Diff: 12 31 49 0 19 93 could be a group of: [(12 0), (49 31 19) (93)] whereas every tuple
is a change group.

First of all for every diff, all possible splitting combinations are created, thus an exponential
rise of combination for every additional change in a diff (e.g. diff with 2 changes –> n=2 –>
2(n−1) = 2 After some clean-ups a nested for loop through all combinations and the correspond-
ing fragments checks if the fragment exists in the overall dataset. If this is the case, the following
formula calculates the scoring of a combination:

d=2(d−1)∑
i=1

 m∑
j=1

(d/cj)× fj


i

(5.1)

N is number of combinations, M is number of change groups within combination, d the
amount of changes within the diff, c amount of changes within a change group and f the fre-
quency of the change group within the overall dataset.

Advantages of this approach is:

1. Dimensionality and Complexity reduction

2. find change groups according to scores

3. use output to cluster change groups

Implementation:

def generate_combinations(text):
words = text.split()
ns = range(1, len(words)+1) # n = 1..(n−1)
for n in ns: # split into 2, 3, 4, ..., n parts.

for idxs in itertools.combinations(ns, n):
yield [’ ’.join(words[i:j]) for i, j in zip((0,) + idxs, idxs + (None,))]

def get_best_combined_cluster(diff, returntype):
combination_cleaned = []
for x in generate_combinations(diff):

new_combi = []
for element in x:

if element != ’’ and element not in new_combi:
new_combi.append(element)

combination_cleaned.append(new_combi)

combination_cleaned_unique = []

52 Chapter 5. Results

for x in combination_cleaned:
if x not in combination_cleaned_unique:
combination_cleaned_unique.append(x)
print(’Total combinations generated: ’ + str(len(combination_cleaned_unique)))

best_combo_vector = ’ ’
best_combo_length = 10
best_combo_score = 0
treshold = 100
for x in combination_cleaned_unique:

score2 = 0
vector = ’’
exists = False
for element in x:
try:

unqique_item = diff_df_meta.loc[diff_df_meta[’vectorized’] == element.strip()].index[0]
if(len(element.split(’ ’))>1) or element == diff:
score += (len(diff.split(’ ’))/len(element.split(’ ’))) ∗ diff_df_meta[’freq’][unqique_item]
else:
score += 0
exists = True
vector += ’ ’ + str(unqique_item)

except Exception as e:
exists = False
break

if exists == True:
form_score = score2 / len(x)
if best_combo_score3 < form_score3:
best_combo = vector
best_combo_score = form_score
best_combo_length = len(vector.split(’ ’))

return best_combo, best_combo_score

Listing 5.6: DCFSG Implementation

This table shows change groups with 2 changes

change group %

1 INSERT ImportDeclaration CompilationUnit
INSERT ExpressionStatement Block 2.98

2 MOVE MethodInvocation
INSERT ExpressionStatement Block 2.28

3 UPDATE
INSERT VariableDeclarationStatement Block 2.27

4 DELETE FieldDeclaration UPDATE 1.81
5 UPDATE MOVE MethodDeclaration 1.8

6 UPDATE
INSERT FieldDeclaration TypeDeclaration 1.45

7 INSERT FieldDeclaration TypeDeclaration
INSERT MethodDeclaration TypeDeclaration 1.41

8 INSERT MethodInvocation MethodInvocation
MOVE MethodInvocation 1.33

9 DELETE ExpressionStatement
DELETE ImportDeclaration 1.21

10 DELETE SimpleName
INSERT SimpleName MethodInvocation 1.18

Table 5.10: DCFSG - Change groups with 2 items

Indeed, almost all change groups are covered by the most occurring diffs (n=2). This means
our model works accurate enough and splits diffs based on frequencies of our dataset.

5.6 Diff Change Frequency Score Grouping 53

This table shows change groups with 3 changes

change group %

1
INSERT MethodInvocation MethodInvocation
INSERT ImportDeclaration CompilationUnit
MOVE MethodInvocation

5.43

2
MOVE InfixExpression
MOVE Block
INSERT InfixExpression IfStatement

1.97

3
INSERT Block MethodDeclaration
INSERT FieldDeclaration TypeDeclaration
DELETE Block

1.86

4
UPDATE
MOVE VariableDeclarationStatement
INSERT VariableDeclarationStatement Block

1.7

5
INSERT IfStatement
Block DELETE IfStatement
MOVE IfStatement

1.28

6
MOVE Block
MOVE MethodInvocation
INSERT ExpressionStatement Block

1.2

7
UPDATE
MOVE MethodDeclaration
INSERT SingleVariableDeclaration MethodDeclaration

0.97

8
DELETE MethodInvocation
DELETE ImportDeclaration
MOVE MethodInvocation

0.87

9
INSERT Block MethodDeclaration
INSERT SingleVariableDeclaration MethodDeclaration
DELETE Block

0.83

10
INSERT SimpleName MethodInvocation
MOVE Block
INSERT ImportDeclaration CompilationUnit

0.77

Table 5.11: DCFSG - Change groups with 3 items

Similar for change groups of size 3, we have almost identical results as we presented in most
occouring diffs (n=3).

5.6.1 Word Embeddings on Change groups
Since we gathered change-groups from diffs, we are now able to create embeddings between the
groups and find similar change-groups same as we applied for changes in previous section. The
table below shows the results after training the model on numeric labels.

nr Change group Similar group 1 Similar group 2

1 UPDATE
INSERT Javadoc MethodDeclaration

UPDATE
INSERT Javadoc PackageDeclaration

UPDATE
INSERT MarkerAnnotation FieldDeclaration

2 INSERT BreakStatement SwitchStatement
INSERT SwitchCase SwitchStatement

INSERT ReturnStatement SwitchStatement
INSERT SwitchCase SwitchStatement

INSERT ReturnStatement SwitchStatement
INSERT SwitchCase SwitchStatement
INSERT SimpleName SwitchCase

3 INSERT FieldDeclaration TypeDeclaration
INSERT SimpleName InfixExpression

INSERT VariableDeclarationStatement Block
INSERT SimpleName InfixExpression

INSERT FieldDeclaration TypeDeclaration
INSERT IfStatement Block

4 UPDATE
DELETE InfixExpression

UPDATE
INSERT ParenthesizedExpression InfixExpression

UPDATE
INSERT VariableDeclarationStatement SwitchStatement

5 INSERT TryStatement Block
INSERT VariableDeclarationStatement Block

UPDATE
INSERT AssertStatement Block INSERT VariableDeclarationStatement Block

6 INSERT VariableDeclarationStatement Block
INSERT IfStatement Block

INSERT FieldDeclaration TypeDeclaration
INSERT IfStatement Block

INSERT QualifiedName MethodInvocation
INSERT IfStatement Block

7 UPDATE
DELETE Block

UPDATE
DELETE ReturnStatement

UPDATE
DELETE SwitchStatement

8 UPDATE
INSERT TryStatement Block

UPDATE
INSERT TryStatement Block
MOVE TryStatement

UPDATE
INSERT Block IfStatement

9 INSERT TagElement TagElement
INSERT TextElement TagElement

INSERT TagElement TagElement
MOVE TagElement
INSERT TextElement TagElement

INSERT TagElement TagElement
MOVE TagElement

10 INSERT ClassInstanceCreation MethodInvocation
INSERT ImportDeclaration CompilationUnit

INSERT MethodInvocation ClassInstanceCreation
INSERT ImportDeclaration CompilationUnit

INSERT ClassInstanceCreation MethodInvocation
MOVE ClassInstanceCreation
INSERT ImportDeclaration CompilationUnit

Table 5.12: DCFSG - Similar Change Groups

Impressively our model performs very accurate in finding similar change groups. We com-
mented four interesting change groups:

1. Update of identifier and adding javadoc comment to a method is similar to adding javadoc
to a packagedeclaration. Interestingly these two are similar to updating an identifier and inserting
a marker annotation (@Test) , reason for this could be the syntactical location of javadoc comments
and annotations.

2. Inserting a break statemnt and switch case is similar to adding a return statement and
switch case to swtich statement. Indeed from a syntax perspective it is very similar.

3. Highly similar change groups. Adding a declaration of variable, field and then extending
a condition in if statement

54 Chapter 5. Results

10. Importing new class and create object of new class into a method invocation is similar to
importing new class, instantiate object of it, and add a method invocation.

Chapter 6

Evaluation

This section presents the evaluation of the machine learning technique used in section 4.

6.1 Approach
Since all used techniques are unsupervised, no cross-validation is possible. Therefore we have to
optimize the model with measurements (e.g. perplexity, coherence) and methods (e.g perplexity,
coherence score) on one side, and on the other side we make use of the "Human-in-the-loop"
Validation Apporach. We roll out different surveys, where we present the topics and clusters to
domain specialists.

6.1.1 Changelyzer Web Application
In order to visualize the labelled software changes a web based prototype was implemented. The
Main motivation of this tool was to support the selected study participants on the evaluation.
Later on functions like searching and navigating have been implemented to facilitate exploration
of source code changes.

Figure 6.1: Changelyzer WebApp - Diffs

56 Chapter 6. Evaluation

Figure 6.2: Changelyzer WebApp - Changes

6.1.2 Study
Study participants

For this study we selected one junior software developer, two professional software developers
and two seniors. They work full time in a software house in Zurich, where they provide solutions
for different clients. Java is used on daily basis. Due resource limitations, surveys were not con-
ducted at the same time, but over and over again during 3 weeks. We have asked the developers
not to discuss it until the survey is complete, otherwise the survey could be biased.

6.2 Model Evaluation 57

6.2 Model Evaluation

6.2.1 K-Mean Clusters
Measurements

We use two measurements for our K-Means clustering evaluation. Firstly we need to determine
the number of right clusters. One way to do it is by using the elbow method, which shows us how
much the error rate decreases when an additional cluster is added. Ideally the plot should form
an elbow. Number of clusters is therefore on the bottom left side. Secondly we make use of the
silhouette measurement, which basically measures the space between clusters, and we therefore
try to maximize this value. Combining those two values will support us finding the right number
of clusters.

50 Clusters for diffs with 3 unique changes.

Figure 6.3: Silhouette Score and Elbow Method (n=3)

58 Chapter 6. Evaluation

100 Clusters for diffs with 4 unique changes.

Figure 6.4: Silhouette Score and Elbow Method (n=4)

6.2 Model Evaluation 59

71 Clusters for diffs with 5 unique changes.

Figure 6.5: Silhouette Score and Elbow Method (n=5)

60 Chapter 6. Evaluation

Survey

Figure 6.6: Changelyzer - Cluster Evaluation

Figure 6.7: Changelyzer - Cluster Overview

6.2 Model Evaluation 61

Cluster Coherence Survey (n=3)

Figure 6.8: Cluster Coherence Survey (n=3)

Figure 6.9: Cluster Participants(n=3)

Cluster Coherence Survey (n=4)

Figure 6.10: Cluster Coherence Survey (n=4)

62 Chapter 6. Evaluation

Figure 6.11: Cluster Participants (n=4)

Cluster Coherence Survey (n=5)

Figure 6.12: Cluster Coherence Survey (n=5)

Figure 6.13: Cluster Participants (n=5)

6.2 Model Evaluation 63

Figure 6.14: Cluster size comparison

64 Chapter 6. Evaluation

6.2.2 Word Embeddings
Measurements

Change2Vec. Since we now have the JDT element behind the label, we use the average character
based cosine similarity to check the similarity within the 3 most similar changes of a change.

total elements min max mean variance
895 0.37 0.972 0.82 0.0087

Mean of 82% and a very low variance shows us the effectiveness of word2vec. To be recalled
again, the trained word2vec model has never seen the JDT Elements, only numeric labels.

Clustering. By using the Elbow method we can find the appropriate number of clusters
within the dataset. The table below shows the error rate on the y axis and the number of clusters
on the x axis. In other words, one should choose a number of clusters in order that adding another
cluster doesn’t give much better (less delta of error rate than before) modelling results of the data.

Figure 6.15: Word Embeddings - Elbow Method

The graphic shows that the error rate reduction rate starts to decrease (inflection point) from
30 clusters to 60. With help of the silhouette method, it is possible to find the right cluster. By
definition the silhouette value is a measure of how similar an item (change) is to its own cluster
(cohesion) compared to other clusters (separation).

number of clusters Silhouette Coefficient
36 0.1622
37 0.1595
38 0.1561
39 0.1543
40 0.1591
41 0.1624
42 0.1604
43 0.1595
44 0.1595
45 0.1606
46 0.1634
47 0.1556
48 0.1620
49 0.1594
50 0.1539
51 0.1606
52 0.1604
53 0.1622
54 0.1626
55 0.1744
56 0.1605
57 0.1566
58 0.1629
59 0.1601

We select 55 as our cluster number, because it by far the highest silhouette coefficient in the
considered frame.

6.2 Model Evaluation 65

Survey

All five survey participants went through 55 clusters. For each cluster five randomly selected
subsets of changes have been presented. Participants had to select if the changes within the subset
are similar (1) or not (0) similar. We define 0-20% as dissimilar, 20-40% as slightly dissimilar, 40-
60% as slightly similar, 60-80% similar and 80%-100% as very similar.

Figure 6.16: Word Embeddings Survey Result 1

54% of all clusters are categorized as similar and very similar, whereas 0 clusters have been
classified as dissimilar. These results shows that our approach to find change clusters works very
well.

Figure 6.17: Word Embeddings Survey Result 2

66 Chapter 6. Evaluation

6.2.3 Topic Modelling

Measurements

In order to find a appropriate number of topics there are two metrics to consider. Firstly, we
use perplexity Score, which is used by convention in language modelling and is monotonically
decreasing in the likelihood of the test data. And is algebraical equivalent to the inverse of the
geometric average per-word likelihood. A lower perplexity score indicates better generalization
performance. Our second metric, namely the coherence score which indicates how meaningful
and interpretable the topics are. An indication for a too high number of topic is when some
keywords occur in multiple topics.

Figure 6.18: Topic Cohereson and Perplexity

Survey

To find out if a trained topic is good, we make use of the word intrusion evaluation method.
Chang et al. show how it outperforms traditional topics modelling evaluation methods [?]. Word
intrusion works the following way: for each topic, three real tags of the topic are shown and one
randomly selected tag is added. A human (in our case study participant) then has to show which
one it is. Additionally we asked the participant to describe the topic optionally.

The figure below shows the word intrusion method:

6.2 Model Evaluation 67

Figure 6.19: Topic Modeling - Change Intrusion

Interestingly, topics where the random tag was found have been most likely described. This
proves the self-expressiveness of the topic.

68 Chapter 6. Evaluation

6.2.4 Doc2vec
Survey

In our case, every doc is a diff and is thus indexed with its id. In order to validate how well
the trained model performs, we presented 20 randomly selected diffs and asked the software
developers if the most similar diff is similar to the presented diff (1) or not (0). We explicitly
showed only similar diffs with over 90% similarity score, to ensure that only very highly similar
documents are shown.

Figure 6.20: Doc2Vec Similarity Survey Result

The results clearly shows that doc2vec does not perform well for source code changes. Only
17% of all presented similar diffs are actually similar. A reason could be the small vocabulary (895
changes) and small size of diffs.

6.3 Threats to Validity 69

6.3 Threats to Validity
Our data quality relies on the accuracy of underlying AST Diff tool GumTree. Indeed when we

explored source code changes with our web tool, we’ve also seen mistakes (e.g. new import
statement was added, but instead a movement was stated).

According to the presented distribution, a dataset consisting out of 500 project, could be not
sufficiently significant, since changes that do not occur often are difficult to detect.

In order to prevent local optimization on changes on identifiers (e.g. getProject –> getProjects)
we forked GumTree and replaced all updates on identifiers with UPDATE, that also explains
the frequent appearances of Update. However, that does not mean that updates on iden-
tifier are unimportant, on the contrary, the analysis will be even better by including them.
This thesis starts with a profound analysis on syntactical changes rather than semantic in-
terpretations. In a next step, the results obtained could be used as the basis for a semantic
analysis.

Due to resource limitations we did not select equally skilled participants for the survey, which
may influence the results (e.g. senior software developer may see connections,while a junior
doesn’t. In addition five participants may not be enough for significant results. We actually
wanted to use active learning for evaluation, but for time reasons we didn’t get the chance
to do so.

Abstract syntax tree diff-calculations need a lot of computer power, so we couldn’t mine any
more data. The results had been be more expressive if we would have mined more than
1000 projects.

Chapter 7

Future Work

This section presents different solutions which can be build upon the data analysis of this thesis.

7.1 Tools

7.1.1 EvoSearch - Maintenance Search Tool
Searching through repositories is already possible in the largest hosting providers such as GitHub,
BitBucket, GitLab. It enables exploring projects and also finding specific or similar ones using the
wide range of filter options. Software maintenance and evolution is a very important topic in
software engineering. Unfortunately this aspect is not covered in search engines.

A possible approach could be to add a pre-commit hook which labels the changed files with
changes. This basic prototyp would already enable search for maintenance. Adding similar func-
tionality to the default search function such as stars on a diff, number of comments on a diff, and
impact level (as implemented in ChangeDistiller) would enrich the search functionality. There are
millions of open source projects on github which are watched by prospective software develop-
ers. A Search functionality would help beginners to understand software engineering better by
concatenating subsequent diffs with their labels (e.g. end-to-end implementation of a feature)

Advantages of a maintenance and evolution search function could be:

1. search for common re factorings after a breaking change

2. search for bug fixes

3. search for similar evolution paths

4. find important and notable diffs (according to stars , comments and impact level)

5. support beginners with labelled diffs

72 Chapter 7. Future Work

7.1.2 InstaChange - Subscription System to support mainte-
nance of open Source projects

Github offers the functionality to watch repositories and receive notifications for new pull re-
quests and issues that are created and other activities in a repository or organization. Since diffs
are represented only in plain text, it is impossible to follow specific changes within a file, folder
or repository. InstaChange could extend the subscription functionality and increase the user ex-
perience by providing change subscription or label subscriptions on source code.

With the provided dataset it is possible to subscribe to specific changes (e.g when a method
has been added or when an import statement has been removed) but also semantic labelled diffs
on top of changes can be subscribed.

Advantages of an enhanced change subscription system are:

1. follow specific changes on files and repositories

2. improve user experience in subscription menu, by showing only relevant changes

3. support owners of modules in open source projects understand scope and impact of pull
request according to their subscriptions (e.g. subscription to a very important core func-
tionality)

4. support open source projects by connecting specific changes to the code owner

7.1.3 DeepES - Learn Edit Scripts with Supervised Learning
The applications above would need AST Differencing for every diff on a file, which is very costly
from an computing perspective. A solution to speed up this process would be to learn the edit
scripts with deep learning an predict the changes. The provided data corpus can be used to train
the model. Text would be the line or word based diff and label would be the change index.

Diff Label

@@ -19,7 +19,7 @@ package com.androidquery.util;

public interface Constants {

public static final String VERSION = [-"0.23.6";-]{+"0.23.7";+}

public static final int LAYER_TYPE_SOFTWARE = 1;

public static final int LAYER_TYPE_HARDWARE = 2;

Listing 7.1: Insert code directly in your document

31

Table 7.1: DeepES - Example Tagging

Advantages of learning edit script with deep learning:

1. reduce computation time

2. combine model with other models (e.g model that identifies topic of the software source
code)

3. remove AST Differencing Tool as dependency

7.2 Tasks 73

7.1.4 Changer - Management Tool for better software life cycle
reporting

Visualizations about the software development life cycle could help software development teams
and product owners, understand better the characteristic, culture and frequency of their code.
Github only provides a simple graph so far, which shows a time-line on how much the developers
contributed to the source code. Timeline informations about implementation of new features,
solving bug fixes, cleaning code or re-factoring are not shown. The idea behind Changer is to
extend the current "Insights" of Github with more informations about software evolution and
maintenance. In a first step a crowd would add (pre-defined) labels such as REFACTOR, NEW
FEATURE, BUG FIX, CLEAN UP to the changes, until all existing changes are labeled. This
information would already allow a more sophisticated contribution visualization

Advantages of more sophisticated software life cycle visualization:

1. understand the software development culture of your team (e.g. fast in building new fea-
tures, but later on lot of re-factor)

2. know your developers better (e.g. some developers might produce more new features,
whereas others do mostly re-factorings and others are lazier and do more clean-ups)

3. increase software quality by extrapolating through sophisticated software maintenance and
evolution visualization

7.2 Tasks

7.2.1 Store data in a structured manner
Implementing Changelyzer without proper backend and database implementation was not an
easy task. In retrospect, it would have saved us a lot of time in the long run.

Advantages of database:

1. facilitate development of new applications

2. reduce data redundancy

3. more advanced queries with SQL rather than high level libraries

4. faster data retrieval

5. single source of truth, especially when reproducing and sharing results

6. first of this kind

7.2.2 Mine and support different Languages and map similar
changes

This thesis focused only on the JAVA programming language. GumTree supports in addition to
Java also C, C++, C#, JavaScript, CSS, Matlab, PHP, Python, R, Ruby and XML which allows to
extend the data analysis on other languages as well. With help of active learning, it could be
possible to map changes over different languages to g̈eneralc̈hanges. Since different languages
types and programming paradigms are covered by GumTree, it is also possible to do an empirical

74 Chapter 7. Future Work

analysis about software maintenance over different languages. The dataset could be integrated
in the EvoSearch search functionality. Advantages of a mining and mapping changes of different
programming languages:

1. create taxonomy of language independent software changes

2. compare maintenance and evolution frequency and other metrics across languages

3. understand consequences of impact levels on different languages

4. open source diff corpus to other maintenance and evolution researchers

7.2.3 Semantic ChangeLabeling
Audris Mockus et al. [25] identified three primary reasons for change: adding new feature (adap-
tive), fixing faults (corrective) and restructuring code to accommodate future changes (perfective).
One could use this labels and add map them to changes provided within this thesis. It is also pos-
sible to generate more sophisticated labels.

7.2.4 Add change significance level to new changes
Unfortunately our changes do not have a change significance level as ChangeDistiller provides.
According to their definition it expresses the possible impact a change type may have on other
source code entities and whether it may be altering the functionality. Change significance levels
are used to measure the relevance of each particular source code change.

7.2.5 Support Commit Message Generation
Commit messages help speed up the reviewing process, write good release notes and improve
maintainability. Adding labels to the changes we discovered empirically could increase the com-
mit message quality, by automatically tagging commit messages with it. Example:

Template Example

(LABEL) - Commit Header

- Commit message

Commit Log

(NEW FEATURE) - Implementation of search bar

- SERVICE ADDED : SearchBarService
- METHOD ADDED: filterResults()
- METHOD CHANGED: search(String keyWord)
- SWITCH STATEMENT EXTENDED: filterCriteria

Chapter 8

Conclusions

Descriptive Statistic. Firstly we presented descriptive statistics in order to understand the data,
starting from describing how JDT elements are used, distribution of tree operations in JAVA pro-
gramming language, furthermore showing 20 most used changes, which make up 45% of all 895
changes. We also discussed briefly top 10 changes for all tree operations, last but not least we
briefly described more than 70 common diffs (n=2), thus it is possible to find meaningful source
code changes with help of big data. Using this simple data analytic method allowed us already
to gain a lot of informations regarding source code changes.

Clustering. Secondly we used machine learning to cluster similar diffs of different sizes
(starting from three changes to 5). We came to the conclusion that clustering works well for
small diffs, but the larger the diff size gets, the meaningless the purpose gets. We evaluated
that by onducting a survey with software developer and also by measuring heuristics for cluster
coherence such as silhoutte score and elbow method. A possible reason for the unreasonable
purpose for cluster with larger diffs could be that Kmeans only checks the cosine similarity, rather
than the underlying structures.

Word Embeddings. Thirdly we applied word embeddings on source code changes in order
to get similarities of changes. Our trained change2vec model performed very well and was able
to find very similar changes, our survey results prove this. Since the results were very well, we
created a similarity matrix, where we used to apply K-Mean clustering on top of it. With measure-
ments we found a justified number of clusters. In a second study we presented the clusters and
asked the participants how coherent the clusters are. We finally presented the 12 most coherent
clusters. Therefore we successfully answered RQ2, actually it is possible to find similar source
code changes with help of neural networks. Remarkably, our trained word2vec model only saw
numeric encodings (e.g 312 = INSERT ELEMENT METHODINVOCATION).

Document Embeddings. Motivated by word embeddings, we tried to use the same technique
for diffs by using word2vecs extension doc2vec. Unfortunately this method did not work out.
Potential reasong could be that our diffs are very rather small compared to texts like for example
news. Another reason is our limited vocabulary of 895 changes and its dense distribution.

Topic Modeling. Moreover we applied topic modelling on top of diffs, where we utilized
Latent Dirichlet allocation. In a study we presented the topics and asked the participants to label
or describe a topic in few words, but only if the topic is self-descriptive. 17 out of 35 Topics have
been labeled. By inspecting the labelled topics, we figured out that their distribution is more
uniformly distributed across the labels.

76 Chapter 8. Conclusions

DCFSG. After examining al sorts of approaches, we noticed that none of these approaches
could find groups of changes within longer diffs. Therefore we designed an algorithm, which tries
to split diffs in change groups by scoring different possible combinations. Finally we tested the
algorithm by applying word embeddings on the output. In conclusion we were able to identify
similar meaningful change groups, which answers our last RQ.

Proposal for Tools and Tasks. Finally we presented four different maintenance and evolu-
tion tools, which could help software developers in their daily life.Firstly EVOSearch, a mainte-
nance search tool, which enables software developers finding and exploring source code changes
within repository hosting providers. Second tool, namly INSTAChange aims to offer a better
notifications system for changes within a repository. At the moment users will be informed for
every little issue, excluding source code changes. Such a subscription system would simplify the
management of pull requests within open source projects. Lastly we present CHANGER, which
objective is to reduce information asymmetry between between product owners and software de-
velopers, by providing them structured data about product evolution, team activities and also
informations about individual team members (e.g. how many features have been implemented,
how much time on refactoring, cleaning up code etc.).

Reproducibility Data, Scripts, Survey Results and everything related to this thesis can be
found in the following Github Repository: SaliZumberi/master-thesis

Bibliography

[1] T. Ball, J.-m. Kim, A. Porter, and H. Siy. If your version control system could talk ... 10 1997.

[2] L. A. Belady and M. M. Lehman. A model of large program development. IBM Syst. J.,
15(3):225–252, Sept. 1976.

[3] P. Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci., 337(1-3):217–
239, June 2005.

[4] N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan. Types of software evolution
and software maintenance. Journal of Software Maintenance, 13(1):3–30, Jan. 2001.

[5] B. W. Chatters, M. M. Lehman, J. F. Ramil, and P. Wernick. Modelling a software evolution
process: a long-term case study. Software Process: Improvement and Practice, 5(2-3):91–102.

[6] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall. An empirical
analysis of the docker container ecosystem on github. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pages 323–333, May 2017.

[7] A. Dearle. Software deployment, past, present and future. In 2007 Future of Software Engi-
neering, FOSE ’07, pages 269–284, Washington, DC, USA, 2007. IEEE Computer Society.

[8] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using
clustering. Mach. Learn., 42(1-2):143–175, Jan. 2001.

[9] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-grained and accu-
rate source code differencing. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 313–324, New York, NY, USA, 2014. ACM.

[10] B. Fluri and H. C. Classifying change types for qualifying change couplings. In 14th IEEE
International Conference on Program Comprehension (ICPC’06), pages 35–45, June 2006.

[11] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling: Tree differencing for fine-
grained source code change extraction. IEEE Trans. Softw. Eng., 33(11):725–743, Nov. 2007.

[12] H. C. Gall, B. Fluri, and M. Pinzger. Change analysis with evolizer and changedistiller. IEEE
Software, 26(1):26–33, Jan 2009.

[13] H. C. Gall, B. Fluri, and M. Pinzger. comparing-fine-grained-source. IEEE Software, 26(1):26–
33, Jan 2009.

[14] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug prediction. In Proceed-
ings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measure-
ment, ESEM ’12, pages 171–180, New York, NY, USA, 2012. ACM.

78 BIBLIOGRAPHY

[15] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning – data mining,
inference, and prediction.

[16] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona. The evolution of the laws
of software evolution: A discussion based on a systematic literature review. ACM Comput.
Surv., 46(2):28:1–28:28, Dec. 2013.

[17] H. Jelodar, Y. Wang, C. Yuan, and X. Feng. Latent dirichlet allocation (LDA) and topic mod-
eling: models, applications, a survey. CoRR, abs/1711.04305, 2017.

[18] S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes. In Proceedings of the
14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, SIGSOFT
’06/FSE-14, pages 35–45, New York, NY, USA, 2006. ACM.

[19] T. Kurashima, T. Iwata, T. Hoshide, N. Takaya, and K. Fujimura. Geo topic model: Joint
modeling of user’s activity area and interests for location recommendation. In Proceedings
of the Sixth ACM International Conference on Web Search and Data Mining, WSDM ’13, pages
375–384, New York, NY, USA, 2013. ACM.

[20] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE,
68(9):1060–1076, Sept 1980.

[21] M. M. Lehman and L. A. Belady, editors. Program Evolution: Processes of Software Change.
Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[22] B. Lientz, E. Burton Swanson, and G. E. Tompkins. Characteristics of application software
maintenance. 21:466–471, 06 1978.

[23] Y. Lin, J. Jiang, and S. Lee. A similarity measure for text classification and clustering. IEEE
Transactions on Knowledge and Data Engineering, 26(7):1575–1590, July 2014.

[24] T. Mikolov, W. Yih, and G. Zweig. Linguistic regularities in continuous space word repre-
sentations. In Human Language Technologies: Conference of the North American Chapter of the
Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Ho-
tel, Atlanta, Georgia, USA, pages 746–751, 2013.

[25] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic databases.
In Proceedings of the International Conference on Software Maintenance (ICSM’00), ICSM ’00,
pages 120–, Washington, DC, USA, 2000. IEEE Computer Society.

[26] S. Na, L. Xumin, and G. Yong. Research on k-means clustering algorithm: An improved
k-means clustering algorithm. In 2010 Third International Symposium on Intelligent Information
Technology and Security Informatics, pages 63–67, April 2010.

[27] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. Duplicate bug report detection
with a combination of information retrieval and topic modeling. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2012, pages 70–
79, New York, NY, USA, 2012. ACM.

[28] N. Palix, J. Falleri, and J. Lawall. Improving pattern tracking with a language-aware tree dif-
ferencing algorithm. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 43–52, March 2015.

[29] M. Pawlik and N. Augsten. Rted: A robust algorithm for the tree edit distance. Proc. VLDB
Endow., 5(4):334–345, Dec. 2011.

BIBLIOGRAPHY 79

[30] V. Rajlich. Software evolution and maintenance. In Proceedings of the on Future of Software
Engineering, FOSE 2014, pages 133–144, New York, NY, USA, 2014. ACM.

[31] G. Schermann, S. Zumberi, and J. Cito. Structured information on state and evolution of
dockerfiles on github. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR ’18, pages 26–29, New York, NY, USA, 2018. ACM.

[32] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In Proceedings
of the 2005 International Workshop on Mining Software Repositories, MSR ’05, pages 1–5, New
York, NY, USA, 2005. ACM.

[33] Y. Sun, Q. Wang, and Y. Yang. Frlink. Inf. Softw. Technol., 84(C):33–47, Apr. 2017.

[34] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

[35] W. Zhao, J. J. Chen, R. Perkins, Y. Wang, Z. Liu, H. Hong, W. Tong, and W. Zou. A novel
procedure on next generation sequencing data analysis using text mining algorithm. BMC
Bioinformatics, 17(1):213, May 2016.

[36] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing twitter and tra-
ditional media using topic models. In Proceedings of the 33rd European Conference on Advances
in Information Retrieval, ECIR’11, pages 338–349, Berlin, Heidelberg, 2011. Springer-Verlag.

[37] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining version histories to guide
software changes. In Proceedings of the 26th International Conference on Software Engineering,
ICSE ’04, pages 563–572, Washington, DC, USA, 2004. IEEE Computer Society.

Appendix A

Appendix

A.1 Source code snippets

CORES=32 # or 16, or whatever
MAINFOLDER=$(pwd)
function get_all_diffs(){
#echo "3. Start getting all diffs for repo: $1"
rm −rf ../projects/$1
awk ’{gsub(/\"/,"")};1’ "../$1.tmp" > "../$1_no_quotes"
tr ’ \t’ ’\n’ <"../$1_no_quotes" >"../$1.ready"
shaArray=($(<../$1.ready))
arraylength=${#shaArray[@]}

#echo "3.1 This file contains $arraylength commit sha’s "
projectId=$1
fileNameTemp="$projectId"
for i in "${!shaArray[@]}"; do
get_diff "${shaArray[$i]}" "${shaArray[$i+1]}" $fileNameTemp $i
done

mkdir −p ../projects/$1
cat ../$fileNameTemp | grep ’\S’ >> ../diffs
mv ../$fileNameTemp ../projects/$1
mv ../$1.ready ../projects/$1
mv ../$1.tmp ../projects/$1
mv ../$1_no_quotes ../projects/$1
}

function clone_repository(){
#echo "2. Cloning Project.."
projectId=$1
url="https://api.github.com/repositories/"
gitCloneUrl=$(curl −−user "juice_457@hotmail.com:Zim−Beri1" urlprojectId | jq ’.clone_url’ | xargs)
clone=‘git clone $gitCloneUrl $projectId‘
}

function delete_repository(){
projectId= "$MAINFOLDER/$1/"
rm −rf $projectId
}

82 Chapter A. Appendix

function get_diff(){
commitAfter=$1
commitBefore=$2
fileNameTemp=$3
index=$4
#echo "4. Get Diff for Commit: $index"

revision="$commitAfter^!"
local IFS=$’\n’
local changed_files=(‘git diff −−word−diff=plain $commitBefore $commitAfter −−name−only‘)
local i
echo "This diff has ${#changed_files[@]} Changed Files!"
if ((${#changed_files[@]} < 100)); then
echo "Less than 100 changed Files"
for ((i=0; i<${#changed_files[@]}; i++)) ; do
pathToFile=${changed_files[$i]}
if [${pathToFile: −5} == ".java"]; then
echo "$fileNameTemp − $i: ${changed_files[$i]}"
#git show "$commitBefore:${changed_files[$i]}" > "../$fileNameTemp/A_$i.java"
#git show "$commitAfter:${changed_files[$i]}" > "../$fileNameTemp/B_$i.java"
diff_output=‘git diff −−word−diff=plain $revision ${changed_files[$i]}‘
#diff_output=‘echo $diff_output | tr ’\n’ ’ ’‘
#diff_output=‘echo $diff_output | grep −oP ’(\[−(.∗?)\−]{+(.∗?)\+})’‘
diff_output_B=‘git show "$commitAfter:${changed_files[$i]}"‘
diff_output_A=‘git show "$commitBefore:${changed_files[$i]}"‘

nameOfFileB=$fileNameTemp’_’$commitAfter’_’$i’_’"B.java"
pathToFileB="$MAINFOLDER/projects/"$nameOfFileB
nameOfFileA=$fileNameTemp’_’$commitAfter’_’$i’_’"A.java"
pathToFileA="$MAINFOLDER/projects/"$nameOfFileA

minimumsize=80
diff_output_B_size=${#diff_output_B}
diff_output_A_size=${#diff_output_A}
if ([$diff_output_B_size −ge $minimumsize] && [$diff_output_A_size −ge $minimumsize]); then
#echo size is over $minimumsize bytes
echo "$diff_output_B" > $pathToFileB
echo "$diff_output_A" > $pathToFileA
echo "RUN DOCKER"
diff_output_cluster=‘docker run −−rm −v $MAINFOLDER/projects:/diff gumtree cluster $nameOfFileA $nameOfFileB‘
diff_output_diff=‘docker run −−rm −v $MAINFOLDER/projects:/diff gumtree diff $nameOfFileA $nameOfFileB‘

#echo "$diff_output_diff"

number_of_matches=‘echo $diff_output_diff | grep −o ’\<Match\>’ | wc −l‘
number_of_inserts=‘echo $diff_output_diff | grep −o ’\<Insert\>’ | wc −l‘
number_of_deletes=‘echo $diff_output_diff | grep −o ’\<Delete\>’ | wc −l‘
number_of_updates=‘echo $diff_output_diff | grep −o ’\<Update\>’ | wc −l‘
number_of_moves=‘echo $diff_output_diff | grep −o ’\<Move\>’ | wc −l‘
number_total=‘echo "$diff_output_diff" | wc −l‘
number_diffs=$(($number_total − $number_of_matches))
diff_stat=$number_diffs’_’$number_of_inserts’_’$number_of_deletes’_’$number_of_updates’_’$number_of_moves

number_cluster_inserts=‘echo $diff_output_cluster | grep −o ’\<INSERT\>’ | wc −l‘

A.1 Source code snippets 83

number_cluster_deletes=‘echo $diff_output_cluster | grep −o ’\<DELETE\>’ | wc −l‘
number_cluster_updates=‘echo $diff_output_cluster | grep −o ’\<UPDATE\>’ | wc −l‘
number_cluster_moves=‘echo $diff_output_cluster | grep −o ’\<MOVE\>’ | wc −l‘
number_cluster=$(($number_cluster_inserts + $number_cluster_deletes + $number_cluster_updates + $number_cluster_moves))
cluster_stat=$number_cluster’_’$number_cluster_inserts’_’$number_cluster_deletes’_’ \
$number_cluster_updates’_’$number_cluster_moves

#echo "Number of matches: $number_of_matches"
#echo "Number of Total: $number_total"
#echo "Number of diffs: $number_diffs"

pathToCluster="$MAINFOLDER/projects/"$fileNameTemp’_’$commitAfter’_’$i’_’"cluster"’_’$cluster_stat
pathToDiff="$MAINFOLDER/projects/"$fileNameTemp’_’$commitAfter’_’$i’_’"diff"’_’$diff_stat
pathToPlainDiff="$MAINFOLDER/projects/"$fileNameTemp’_’$commitAfter’_’$i’_’"plain"’_’"diff"

echo "$diff_output" > $pathToPlainDiff
echo "$diff_output_cluster" > $pathToCluster
echo "$diff_output_diff" > $pathToDiff
sed −i ’/^Match/d’ $pathToDiff
else
echo size is under $minimumsize bytes
fi
fi
done
else
echo "Too many files!"
fi
}

function start_diff_mining(){
cd $MAINFOLDER
file_name=$1
if [[$file_name != [0−9]∗]]; then
echo $file_name is not a repo Id
else
repo_id_with_ending=$file_name
repo_id=${repo_id_with_ending%.∗}
echo "1. Start mining for repo id: $repo_id"
clone_repository $repo_id
cd $repo_id
get_all_diffs $repo_id
cd ..
echo "1. Finished mining for repo id: $repo_id"
#delete_repository $repo_id
#echo "Finished Project Number: $i: ${files[$i]}"
fi
}

files=(∗)
echo "Found ${#files[@]} files in this Folder"
for file_with_commits in "${files[@]}" ; do
start_mining $file_with_commits &
background=($(jobs −p))
if ((${#background[@]} == $CORES)); then
sleep 5s

84 Chapter A. Appendix

echo "Waiting until $CORES"
wait −n
fi
done
wait
echo "All done"

Listing A.1: bash version

A.2 Changes

Id Change Count %

619 DELETE AnnotationTypeDeclaration 136 0.0000227

664 DELETE AnnotationTypeMemberDeclaration 317 0.0000528

138 DELETE AnonymousClassDeclaration 756 0.0001260

577 DELETE ArrayAccess 4121 0.0006866

532 DELETE ArrayCreation 2290 0.0003815

91 DELETE ArrayInitializer 493 0.0000821

394 DELETE ArrayType 3304 0.0005505

402 DELETE AssertStatement 1603 0.0002671

838 DELETE Assignment 9595 0.0015986

208 DELETE Block 51642 0.0086039

456 DELETE BooleanLiteral 12269 0.0020441

646 DELETE BreakStatement 3211 0.0005350

478 DELETE CastExpression 9062 0.0015098

533 DELETE CatchClause 1617 0.0002694

543 DELETE CharacterLiteral 1211 0.0002018

445 DELETE ClassInstanceCreation 27493 0.0045805

804 DELETE ConditionalExpression 3501 0.0005833

185 DELETE ConstructorInvocation 450 0.0000750

20 DELETE ContinueStatement 453 0.0000755

152 DELETE CreationReference 78 0.0000130

307 DELETE Dimension 344 0.0000573

431 DELETE DoStatement 125 0.0000208

845 DELETE EmptyStatement 505 0.0000841

401 DELETE EnhancedForStatement 4310 0.0007181

622 DELETE EnumConstantDeclaration 2590 0.0004315

469 DELETE EnumDeclaration 725 0.0001208

418 DELETE ExpressionMethodReference 828 0.0001380

503 DELETE ExpressionStatement 141090 0.0235065

258 DELETE FieldAccess 7294 0.0012152

0 DELETE FieldDeclaration 61545 0.0102538

306 DELETE ForStatement 2508 0.0004178

480 DELETE IfStatement 49080 0.0081771

625 DELETE ImportDeclaration 181208 0.0301905

472 DELETE InfixExpression 33779 0.0056278

131 DELETE Initializer 808 0.0001346

578 DELETE InstanceofExpression 914 0.0001523

379 DELETE Javadoc 11390 0.0018976

82 DELETE LabeledStatement 41 0.0000068

197 DELETE LambdaExpression 2572 0.0004285

141 DELETE MarkerAnnotation 15628 0.0026037

403 DELETE MemberRef 294 0.0000490

704 DELETE MemberValuePair 1101 0.0001834

835 DELETE MethodDeclaration 147292 0.0245398

591 DELETE MethodInvocation 127788 0.0212903

606 DELETE MethodRef 353 0.0000588

753 DELETE MethodRefParameter 259 0.0000432

721 DELETE Modifier 36764 0.0061251

771 DELETE NormalAnnotation 3752 0.0006251

685 DELETE NullLiteral 12978 0.0021622

617 DELETE NumberLiteral 21190 0.0035304

385 DELETE PackageDeclaration 103 0.0000172

454 DELETE ParameterizedType 18524 0.0030862

144 DELETE ParenthesizedExpression 5006 0.0008340

748 DELETE PostfixExpression 625 0.0001041

412 DELETE PrefixExpression 5294 0.0008820

837 DELETE PrimitiveType 15931 0.0026542

387 DELETE QualifiedName 45309 0.0075488

50 DELETE QualifiedType 5 0.0000008

234 DELETE ReturnStatement 18008 0.0030003

634 DELETE SimpleName 173312 0.0288749

190 DELETE SimpleType 49048 0.0081717

640 DELETE SingleMemberAnnotation 6232 0.0010383

73 DELETE SingleVariableDeclaration 37192 0.0061964

827 DELETE StringLiteral 46326 0.0077182

671 DELETE SuperConstructorInvocation 1396 0.0002326

677 DELETE SuperFieldAccess 16 0.0000027

223 DELETE SuperMethodInvocation 1149 0.0001914

715 DELETE SwitchCase 3216 0.0005358

299 DELETE SwitchStatement 1012 0.0001686

499 DELETE SynchronizedStatement 715 0.0001191

341 DELETE TagElement 20149 0.0033570

548 DELETE TextElement 25237 0.0042047

117 DELETE ThisExpression 4516 0.0007524

481 DELETE ThrowStatement 2245 0.0003740

22 DELETE TryStatement 4724 0.0007870

67 DELETE TypeDeclaration 8212 0.0013682

879 DELETE TypeDeclarationStatement 40 0.0000067

739 DELETE TypeLiteral 3999 0.0006663

42 DELETE TypeMethodReference 1 0.0000002

604 DELETE TypeParameter 1894 0.0003156

382 DELETE UnionType 209 0.0000348

344 DELETE VariableDeclarationExpression 456 0.0000760

630 DELETE VariableDeclarationFragment 3402 0.0005668

308 DELETE VariableDeclarationStatement 70249 0.0117040

710 DELETE WhileStatement 1265 0.0002108

72 DELETE WildcardType 1656 0.0002759

815 INSERT AnnotationTypeDeclaration AnnotationTypeDeclaration 65 0.0000108

205 INSERT AnnotationTypeDeclaration CompilationUnit 7 0.0000012

801 INSERT AnnotationTypeDeclaration TypeDeclaration 167 0.0000278

557 INSERT AnnotationTypeMemberDeclaration AnnotationTypeDeclaration 735 0.0001225

650 INSERT AnonymousClassDeclaration ClassInstanceCreation 503 0.0000838

890 INSERT AnonymousClassDeclaration EnumConstantDeclaration 79 0.0000132

204 INSERT ArrayAccess ArrayAccess 30 0.0000050

489 INSERT ArrayAccess ArrayInitializer 12 0.0000020

541 INSERT ArrayAccess Assignment 756 0.0001260

18 INSERT ArrayAccess CastExpression 45 0.0000075

346 INSERT ArrayAccess ClassInstanceCreation 143 0.0000238

484 INSERT ArrayAccess ConditionalExpression 4 0.0000007

564 INSERT ArrayAccess FieldAccess 1 0.0000002

781 INSERT ArrayAccess IfStatement 9 0.0000015

491 INSERT ArrayAccess InfixExpression 337 0.0000561

756 INSERT ArrayAccess InstanceofExpression 12 0.0000020

99 INSERT ArrayAccess LambdaExpression 1 0.0000002

378 INSERT ArrayAccess MethodInvocation 1405 0.0002341

353 INSERT ArrayAccess PrefixExpression 8 0.0000013

109 INSERT ArrayAccess ReturnStatement 101 0.0000168

276 INSERT ArrayAccess SuperMethodInvocation 1 0.0000002

148 INSERT ArrayAccess SwitchStatement 1 0.0000002

866 INSERT ArrayAccess VariableDeclarationFragment 325 0.0000541

47 INSERT ArrayCreation ArrayInitializer 19 0.0000032

691 INSERT ArrayCreation Assignment 176 0.0000293

246 INSERT ArrayCreation ClassInstanceCreation 78 0.0000130

158 INSERT ArrayCreation ConditionalExpression 2 0.0000003

689 INSERT ArrayCreation ConstructorInvocation 5 0.0000008

280 INSERT ArrayCreation EnhancedForStatement 6 0.0000010

368 INSERT ArrayCreation EnumConstantDeclaration 2 0.0000003

329 INSERT ArrayCreation LambdaExpression 8 0.0000013

777 INSERT ArrayCreation MethodInvocation 809 0.0001348

187 INSERT ArrayCreation ReturnStatement 66 0.0000110

736 INSERT ArrayCreation SuperConstructorInvocation 2 0.0000003

181 INSERT ArrayCreation SuperMethodInvocation 1 0.0000002

832 INSERT ArrayCreation VariableDeclarationFragment 495 0.0000825

107 INSERT ArrayInitializer AnnotationTypeMemberDeclaration 47 0.0000078

530 INSERT ArrayInitializer ArrayCreation 70 0.0000117

479 INSERT ArrayInitializer ArrayInitializer 219 0.0000365

523 INSERT ArrayInitializer MemberValuePair 91 0.0000152

51 INSERT ArrayInitializer SingleMemberAnnotation 275 0.0000458

765 INSERT ArrayInitializer VariableDeclarationFragment 130 0.0000217

52 INSERT ArrayType AnnotationTypeMemberDeclaration 60 0.0000100

784 INSERT ArrayType ArrayCreation 118 0.0000197

35 INSERT ArrayType CastExpression 13 0.0000022

725 INSERT ArrayType FieldDeclaration 516 0.0000860

432 INSERT ArrayType InstanceofExpression 1 0.0000002

731 INSERT ArrayType MethodDeclaration 545 0.0000908

251 INSERT ArrayType MethodInvocation 2 0.0000003

97 INSERT ArrayType MethodRefParameter 9 0.0000015

676 INSERT ArrayType ParameterizedType 206 0.0000343

364 INSERT ArrayType SingleVariableDeclaration 630 0.0001050

189 INSERT ArrayType TypeLiteral 13 0.0000022

96 INSERT ArrayType VariableDeclarationStatement 1053 0.0001754

118 INSERT AssertStatement Block 1918 0.0003196

150 INSERT AssertStatement IfStatement 3 0.0000005

699 INSERT AssertStatement SwitchStatement 21 0.0000035

123 INSERT Assignment Assignment 47 0.0000078

714 INSERT Assignment ClassInstanceCreation 6 0.0000010

262 INSERT Assignment ExpressionStatement 8693 0.0014483

839 INSERT Assignment ForStatement 64 0.0000107

586 INSERT Assignment IfStatement 13 0.0000022

264 INSERT Assignment LambdaExpression 1 0.0000002

314 INSERT Assignment MethodInvocation 91 0.0000152

398 INSERT Assignment ParenthesizedExpression 4 0.0000007

795 INSERT Assignment ReturnStatement 8 0.0000013

350 INSERT Assignment SwitchStatement 1 0.0000002

623 INSERT Assignment VariableDeclarationFragment 12 0.0000020

450 INSERT Assignment WhileStatement 1 0.0000002

132 INSERT Block Block 339 0.0000565

143 INSERT Block CatchClause 712 0.0001186

75 INSERT Block DoStatement 20 0.0000033

844 INSERT Block EnhancedForStatement 2200 0.0003665

182 INSERT Block ForStatement 834 0.0001389

79 INSERT Block IfStatement 19902 0.0033158

515 INSERT Block Initializer 87 0.0000145

94 INSERT Block LambdaExpression 654 0.0001090

105 INSERT Block MethodDeclaration 33304 0.0055487

751 INSERT Block SwitchStatement 396 0.0000660

551 INSERT Block SynchronizedStatement 221 0.0000368

437 INSERT Block TryStatement 3015 0.0005023

57 INSERT Block WhileStatement 400 0.0000666

800 INSERT BooleanLiteral AnnotationTypeMemberDeclaration 9 0.0000015

572 INSERT BooleanLiteral ArrayInitializer 50 0.0000083

475 INSERT BooleanLiteral AssertStatement 3 0.0000005

40 INSERT BooleanLiteral Assignment 503 0.0000838

139 INSERT BooleanLiteral ClassInstanceCreation 1771 0.0002951

497 INSERT BooleanLiteral ConditionalExpression 20 0.0000033

65 INSERT BooleanLiteral ConstructorInvocation 114 0.0000190

80 INSERT BooleanLiteral DoStatement 2 0.0000003

662 INSERT BooleanLiteral EnumConstantDeclaration 107 0.0000178

720 INSERT BooleanLiteral ForStatement 2 0.0000003

627 INSERT BooleanLiteral IfStatement 7 0.0000012

435 INSERT BooleanLiteral InfixExpression 78 0.0000130

71 INSERT BooleanLiteral LambdaExpression 1 0.0000002

583 INSERT BooleanLiteral MemberValuePair 40 0.0000067

237 INSERT BooleanLiteral MethodInvocation 9023 0.0015033

680 INSERT BooleanLiteral ReturnStatement 1345 0.0002241

19 INSERT BooleanLiteral SuperConstructorInvocation 98 0.0000163

874 INSERT BooleanLiteral SuperMethodInvocation 3 0.0000005

474 INSERT BooleanLiteral VariableDeclarationFragment 737 0.0001228

325 INSERT BooleanLiteral WhileStatement 64 0.0000107

647 INSERT BreakStatement Block 670 0.0001116

156 INSERT BreakStatement IfStatement 90 0.0000150

216 INSERT BreakStatement SwitchStatement 4114 0.0006854

89 INSERT CastExpression ArrayAccess 9 0.0000015

651 INSERT CastExpression ArrayCreation 6 0.0000010

388 INSERT CastExpression ArrayInitializer 13 0.0000022

884 INSERT CastExpression Assignment 1277 0.0002128

296 INSERT CastExpression CastExpression 10 0.0000017

851 INSERT CastExpression ClassInstanceCreation 265 0.0000442

498 INSERT CastExpression ConditionalExpression 31 0.0000052

588 INSERT CastExpression ConstructorInvocation 34 0.0000057

575 INSERT CastExpression EnhancedForStatement 20 0.0000033

538 INSERT CastExpression EnumConstantDeclaration 95 0.0000158

278 INSERT CastExpression IfStatement 1 0.0000002

774 INSERT CastExpression InfixExpression 323 0.0000538

63 INSERT CastExpression LambdaExpression 18 0.0000030

708 INSERT CastExpression MethodInvocation 2690 0.0004482

376 INSERT CastExpression ParenthesizedExpression 23 0.0000038

811 INSERT CastExpression PrefixExpression 10 0.0000017

536 INSERT CastExpression ReturnStatement 714 0.0001190

286 INSERT CastExpression SuperConstructorInvocation 10 0.0000017

524 INSERT CastExpression SuperMethodInvocation 10 0.0000017

93 INSERT CastExpression SwitchCase 8 0.0000013

233 INSERT CastExpression SwitchStatement 1 0.0000002

285 INSERT CastExpression ThrowStatement 6 0.0000010

184 INSERT CastExpression VariableDeclarationFragment 1929 0.0003214

462 INSERT CatchClause TryStatement 1770 0.0002949

506 INSERT CharacterLiteral ArrayInitializer 4 0.0000007

727 INSERT CharacterLiteral Assignment 113 0.0000188

686 INSERT CharacterLiteral CastExpression 36 0.0000060

455 INSERT CharacterLiteral ClassInstanceCreation 9 0.0000015

652 INSERT CharacterLiteral EnumConstantDeclaration 14 0.0000023

5 INSERT CharacterLiteral InfixExpression 414 0.0000690

561 INSERT CharacterLiteral MethodInvocation 771 0.0001285

743 INSERT CharacterLiteral SwitchCase 57 0.0000095

310 INSERT CharacterLiteral VariableDeclarationFragment 22 0.0000037

212 INSERT ClassInstanceCreation ArrayInitializer 200 0.0000333

267 INSERT ClassInstanceCreation Assignment 2617 0.0004360

357 INSERT ClassInstanceCreation CastExpression 3 0.0000005

168 INSERT ClassInstanceCreation ClassInstanceCreation 2354 0.0003922

290 INSERT ClassInstanceCreation ConditionalExpression 61 0.0000102

399 INSERT ClassInstanceCreation ConstructorInvocation 125 0.0000208

521 INSERT ClassInstanceCreation EnhancedForStatement 23 0.0000038

335 INSERT ClassInstanceCreation EnumConstantDeclaration 149 0.0000248

615 INSERT ClassInstanceCreation ExpressionMethodReference 1 0.0000002

842 INSERT ClassInstanceCreation ExpressionStatement 82 0.0000137

635 INSERT ClassInstanceCreation InfixExpression 10 0.0000017

100 INSERT ClassInstanceCreation LambdaExpression 19 0.0000032

600 INSERT ClassInstanceCreation MethodInvocation 11547 0.0019238

590 INSERT ClassInstanceCreation ReturnStatement 1915 0.0003191

806 INSERT ClassInstanceCreation SuperConstructorInvocation 91 0.0000152

323 INSERT ClassInstanceCreation SuperMethodInvocation 10 0.0000017

298 INSERT ClassInstanceCreation ThrowStatement 191 0.0000318

355 INSERT ClassInstanceCreation VariableDeclarationFragment 6410 0.0010679

259 INSERT ConditionalExpression ArrayAccess 4 0.0000007

250 INSERT ConditionalExpression ArrayCreation 6 0.0000010

694 INSERT ConditionalExpression ArrayInitializer 15 0.0000025

873 INSERT ConditionalExpression AssertStatement 2 0.0000003

766 INSERT ConditionalExpression Assignment 671 0.0001118

494 INSERT ConditionalExpression ClassInstanceCreation 295 0.0000491

883 INSERT ConditionalExpression ConditionalExpression 28 0.0000047

339 INSERT ConditionalExpression ConstructorInvocation 5 0.0000008

36 INSERT ConditionalExpression EnumConstantDeclaration 4 0.0000007

823 INSERT ConditionalExpression IfStatement 21 0.0000035

594 INSERT ConditionalExpression LambdaExpression 22 0.0000037

892 INSERT ConditionalExpression MethodInvocation 1802 0.0003002

566 INSERT ConditionalExpression ParenthesizedExpression 28 0.0000047

84 INSERT ConditionalExpression ReturnStatement 1026 0.0001709

542 INSERT ConditionalExpression SuperConstructorInvocation 15 0.0000025

550 INSERT ConditionalExpression SuperMethodInvocation 2 0.0000003

605 INSERT ConditionalExpression SwitchStatement 18 0.0000030

843 INSERT ConditionalExpression ThrowStatement 4 0.0000007

452 INSERT ConditionalExpression VariableDeclarationFragment 844 0.0001406

552 INSERT ConditionalExpression WhileStatement 2 0.0000003

446 INSERT ConstructorInvocation Block 629 0.0001048

692 INSERT ContinueStatement Block 208 0.0000347

28 INSERT ContinueStatement IfStatement 81 0.0000135

442 INSERT ContinueStatement SwitchStatement 2 0.0000003

64 INSERT CreationReference ClassInstanceCreation 58 0.0000097

228 INSERT CreationReference MethodInvocation 107 0.0000178

759 INSERT CreationReference ReturnStatement 3 0.0000005

490 INSERT CreationReference VariableDeclarationFragment 9 0.0000015

840 INSERT Dimension ArrayType 88 0.0000147

485 INSERT Dimension SingleVariableDeclaration 23 0.0000038

886 INSERT Dimension VariableDeclarationFragment 132 0.0000220

846 INSERT DoStatement Block 169 0.0000282

854 INSERT DoStatement IfStatement 2 0.0000003

21 INSERT EmptyStatement Block 331 0.0000551

570 INSERT EmptyStatement ForStatement 2 0.0000003

861 INSERT EmptyStatement IfStatement 1 0.0000002

453 INSERT EmptyStatement SwitchStatement 23 0.0000038

891 INSERT EmptyStatement WhileStatement 5 0.0000008

822 INSERT EnhancedForStatement Block 5823 0.0009702

722 INSERT EnhancedForStatement IfStatement 15 0.0000025

127 INSERT EnhancedForStatement SwitchStatement 62 0.0000103

8 INSERT EnumConstantDeclaration EnumDeclaration 4563 0.0007602

742 INSERT EnumDeclaration AnnotationTypeDeclaration 26 0.0000043

673 INSERT EnumDeclaration CompilationUnit 27 0.0000045

712 INSERT EnumDeclaration EnumDeclaration 1 0.0000002

295 INSERT EnumDeclaration TypeDeclaration 960 0.0001599

702 INSERT ExpressionMethodReference Assignment 6 0.0000010

876 INSERT ExpressionMethodReference CastExpression 1 0.0000002

13 INSERT ExpressionMethodReference ClassInstanceCreation 80 0.0000133

188 INSERT ExpressionMethodReference ConstructorInvocation 4 0.0000007

482 INSERT ExpressionMethodReference MethodInvocation 1219 0.0002031

439 INSERT ExpressionMethodReference ReturnStatement 12 0.0000020

49 INSERT ExpressionMethodReference SuperConstructorInvocation 1 0.0000002

633 INSERT ExpressionMethodReference VariableDeclarationFragment 16 0.0000027

881 INSERT ExpressionStatement Block 200732 0.0334433

361 INSERT ExpressionStatement DoStatement 1 0.0000002

803 INSERT ExpressionStatement EnhancedForStatement 67 0.0000112

669 INSERT ExpressionStatement ForStatement 22 0.0000037

711 INSERT ExpressionStatement IfStatement 1039 0.0001731

872 INSERT ExpressionStatement SwitchStatement 7083 0.0011801

281 INSERT ExpressionStatement WhileStatement 12 0.0000020

9 INSERT FieldAccess ArrayAccess 30 0.0000050

865 INSERT FieldAccess ArrayCreation 11 0.0000018

15 INSERT FieldAccess ArrayInitializer 4 0.0000007

373 INSERT FieldAccess Assignment 3054 0.0005088

327 INSERT FieldAccess CastExpression 21 0.0000035

62 INSERT FieldAccess ClassInstanceCreation 359 0.0000598

667 INSERT FieldAccess ConditionalExpression 17 0.0000028

130 INSERT FieldAccess EnhancedForStatement 45 0.0000075

629 INSERT FieldAccess ExpressionMethodReference 8 0.0000013

421 INSERT FieldAccess FieldAccess 85 0.0000142

377 INSERT FieldAccess IfStatement 45 0.0000075

632 INSERT FieldAccess InfixExpression 525 0.0000875

587 INSERT FieldAccess InstanceofExpression 6 0.0000010

322 INSERT FieldAccess MethodInvocation 3578 0.0005961

787 INSERT FieldAccess PostfixExpression 6 0.0000010

145 INSERT FieldAccess PrefixExpression 27 0.0000045

241 INSERT FieldAccess ReturnStatement 390 0.0000650

847 INSERT FieldAccess SuperMethodInvocation 10 0.0000017

858 INSERT FieldAccess SwitchStatement 1 0.0000002

596 INSERT FieldAccess SynchronizedStatement 17 0.0000028

88 INSERT FieldAccess VariableDeclarationFragment 254 0.0000423

210 INSERT FieldDeclaration AnnotationTypeDeclaration 23 0.0000038

128 INSERT FieldDeclaration AnonymousClassDeclaration 390 0.0000650

678 INSERT FieldDeclaration EnumDeclaration 298 0.0000496

155 INSERT FieldDeclaration TypeDeclaration 99230 0.0165324

59 INSERT ForStatement Block 2654 0.0004422

535 INSERT ForStatement IfStatement 9 0.0000015

853 INSERT ForStatement LabeledStatement 1 0.0000002

723 INSERT ForStatement SwitchStatement 24 0.0000040

321 INSERT IfStatement Block 70681 0.0117759

637 INSERT IfStatement DoStatement 3 0.0000005

29 INSERT IfStatement EnhancedForStatement 22 0.0000037

824 INSERT IfStatement ForStatement 20 0.0000033

501 INSERT IfStatement IfStatement 5096 0.0008490

476 INSERT IfStatement SwitchStatement 2343 0.0003904

458 INSERT IfStatement WhileStatement 3 0.0000005

818 INSERT ImportDeclaration CompilationUnit 271501 0.0452339

581 INSERT InfixExpression ArrayAccess 389 0.0000648

797 INSERT InfixExpression ArrayCreation 60 0.0000100

101 INSERT InfixExpression ArrayInitializer 651 0.0001085

644 INSERT InfixExpression AssertStatement 175 0.0000292

95 INSERT InfixExpression Assignment 1249 0.0002081

162 INSERT InfixExpression ClassInstanceCreation 1642 0.0002736

582 INSERT InfixExpression ConditionalExpression 336 0.0000560

292 INSERT InfixExpression ConstructorInvocation 4 0.0000007

741 INSERT InfixExpression DoStatement 13 0.0000022

383 INSERT InfixExpression EnumConstantDeclaration 14 0.0000023

140 INSERT InfixExpression ForStatement 303 0.0000505

808 INSERT InfixExpression IfStatement 16426 0.0027367

887 INSERT InfixExpression InfixExpression 3275 0.0005456

726 INSERT InfixExpression LambdaExpression 49 0.0000082

493 INSERT InfixExpression MemberValuePair 30 0.0000050

599 INSERT InfixExpression MethodInvocation 9874 0.0016451

90 INSERT InfixExpression ParenthesizedExpression 284 0.0000473

684 INSERT InfixExpression ReturnStatement 2186 0.0003642

191 INSERT InfixExpression SingleMemberAnnotation 13 0.0000022

438 INSERT InfixExpression SuperConstructorInvocation 28 0.0000047

404 INSERT InfixExpression SuperMethodInvocation 11 0.0000018

505 INSERT InfixExpression SwitchStatement 10 0.0000017

336 INSERT InfixExpression VariableDeclarationFragment 1961 0.0003267

793 INSERT InfixExpression WhileStatement 241 0.0000402

687 INSERT Initializer AnonymousClassDeclaration 9 0.0000015

207 INSERT Initializer EnumDeclaration 19 0.0000032

103 INSERT Initializer TypeDeclaration 987 0.0001644

519 INSERT InstanceofExpression AssertStatement 1 0.0000002

116 INSERT InstanceofExpression ClassInstanceCreation 4 0.0000007

315 INSERT InstanceofExpression ConditionalExpression 1 0.0000002

252 INSERT InstanceofExpression IfStatement 669 0.0001115

508 INSERT InstanceofExpression InfixExpression 216 0.0000360

805 INSERT InstanceofExpression MethodInvocation 68 0.0000113

277 INSERT InstanceofExpression ParenthesizedExpression 18 0.0000030

802 INSERT InstanceofExpression ReturnStatement 26 0.0000043

122 INSERT InstanceofExpression VariableDeclarationFragment 4 0.0000007

147 INSERT Javadoc AnnotationTypeDeclaration 68 0.0000113

206 INSERT Javadoc AnnotationTypeMemberDeclaration 199 0.0000332

271 INSERT Javadoc EnumConstantDeclaration 311 0.0000518

613 INSERT Javadoc EnumDeclaration 156 0.0000260

164 INSERT Javadoc FieldDeclaration 2640 0.0004398

612 INSERT Javadoc Initializer 4 0.0000007

345 INSERT Javadoc MethodDeclaration 17978 0.0029953

163 INSERT Javadoc PackageDeclaration 1592 0.0002652

411 INSERT Javadoc TypeDeclaration 3855 0.0006423

224 INSERT LabeledStatement Block 59 0.0000098

701 INSERT LabeledStatement SwitchStatement 8 0.0000013

370 INSERT LambdaExpression Assignment 20 0.0000033

178 INSERT LambdaExpression CastExpression 2 0.0000003

794 INSERT LambdaExpression ClassInstanceCreation 179 0.0000298

372 INSERT LambdaExpression ConditionalExpression 1 0.0000002

558 INSERT LambdaExpression ConstructorInvocation 12 0.0000020

384 INSERT LambdaExpression EnumConstantDeclaration 6 0.0000010

697 INSERT LambdaExpression MethodInvocation 3387 0.0005643

666 INSERT LambdaExpression ReturnStatement 171 0.0000285

782 INSERT LambdaExpression SuperConstructorInvocation 4 0.0000007

761 INSERT LambdaExpression SuperMethodInvocation 2 0.0000003

733 INSERT LambdaExpression VariableDeclarationFragment 175 0.0000292

422 INSERT MarkerAnnotation AnnotationTypeDeclaration 125 0.0000208

447 INSERT MarkerAnnotation AnnotationTypeMemberDeclaration 66 0.0000110

745 INSERT MarkerAnnotation EnumConstantDeclaration 5 0.0000008

269 INSERT MarkerAnnotation EnumDeclaration 27 0.0000045

261 INSERT MarkerAnnotation FieldDeclaration 2648 0.0004412

273 INSERT MarkerAnnotation MemberValuePair 1 0.0000002

333 INSERT MarkerAnnotation MethodDeclaration 19339 0.0032220

526 INSERT MarkerAnnotation PackageDeclaration 2 0.0000003

813 INSERT MarkerAnnotation SimpleType 2 0.0000003

562 INSERT MarkerAnnotation SingleVariableDeclaration 6865 0.0011438

471 INSERT MarkerAnnotation TypeDeclaration 2274 0.0003789

169 INSERT MarkerAnnotation VariableDeclarationStatement 33 0.0000055

636 INSERT MemberRef TagElement 367 0.0000611

695 INSERT MemberValuePair NormalAnnotation 1481 0.0002467

304 INSERT MethodDeclaration AnonymousClassDeclaration 3143 0.0005236

798 INSERT MethodDeclaration EnumDeclaration 866 0.0001443

405 INSERT MethodDeclaration TypeDeclaration 238768 0.0397803

713 INSERT MethodInvocation ArrayAccess 138 0.0000230

500 INSERT MethodInvocation ArrayCreation 172 0.0000287

38 INSERT MethodInvocation ArrayInitializer 756 0.0001260

618 INSERT MethodInvocation AssertStatement 35 0.0000058

810 INSERT MethodInvocation Assignment 7810 0.0013012

213 INSERT MethodInvocation CastExpression 690 0.0001150

597 INSERT MethodInvocation ClassInstanceCreation 9768 0.0016274

218 INSERT MethodInvocation ConditionalExpression 664 0.0001106

151 INSERT MethodInvocation ConstructorInvocation 129 0.0000215

83 INSERT MethodInvocation DoStatement 6 0.0000010

522 INSERT MethodInvocation EnhancedForStatement 885 0.0001474

643 INSERT MethodInvocation EnumConstantDeclaration 61 0.0000102

608 INSERT MethodInvocation ExpressionMethodReference 6 0.0000010

696 INSERT MethodInvocation ExpressionStatement 20966 0.0034931

436 INSERT MethodInvocation FieldAccess 46 0.0000077

869 INSERT MethodInvocation ForStatement 7 0.0000012

311 INSERT MethodInvocation IfStatement 5218 0.0008694

425 INSERT MethodInvocation InfixExpression 10040 0.0016727

236 INSERT MethodInvocation InstanceofExpression 81 0.0000135

790 INSERT MethodInvocation LambdaExpression 418 0.0000696

746 INSERT MethodInvocation MethodInvocation 76084 0.0126761

268 INSERT MethodInvocation ParenthesizedExpression 71 0.0000118

348 INSERT MethodInvocation PrefixExpression 516 0.0000860

186 INSERT MethodInvocation ReturnStatement 8752 0.0014581

882 INSERT MethodInvocation SuperConstructorInvocation 296 0.0000493

199 INSERT MethodInvocation SuperMethodInvocation 36 0.0000060

427 INSERT MethodInvocation SwitchStatement 115 0.0000192

179 INSERT MethodInvocation SynchronizedStatement 15 0.0000025

351 INSERT MethodInvocation ThrowStatement 231 0.0000385

48 INSERT MethodInvocation VariableDeclarationFragment 17478 0.0029120

395 INSERT MethodInvocation WhileStatement 31 0.0000052

166 INSERT MethodRef TagElement 494 0.0000823

180 INSERT MethodRefParameter MethodRef 335 0.0000558

449 INSERT Modifier AnnotationTypeDeclaration 29 0.0000048

855 INSERT Modifier AnnotationTypeMemberDeclaration 8 0.0000013

183 INSERT Modifier EnumDeclaration 68 0.0000113

470 INSERT Modifier FieldDeclaration 14451 0.0024076

602 INSERT Modifier Initializer 2 0.0000003

859 INSERT Modifier MethodDeclaration 12050 0.0020076

867 INSERT Modifier SingleVariableDeclaration 5352 0.0008917

24 INSERT Modifier TypeDeclaration 4189 0.0006979

457 INSERT Modifier VariableDeclarationExpression 66 0.0000110

54 INSERT Modifier VariableDeclarationStatement 7622 0.0012699

272 INSERT NormalAnnotation AnnotationTypeDeclaration 31 0.0000052

889 INSERT NormalAnnotation AnnotationTypeMemberDeclaration 1 0.0000002

546 INSERT NormalAnnotation ArrayInitializer 133 0.0000222

406 INSERT NormalAnnotation EnumConstantDeclaration 1 0.0000002

217 INSERT NormalAnnotation EnumDeclaration 2 0.0000003

639 INSERT NormalAnnotation FieldDeclaration 489 0.0000815

428 INSERT NormalAnnotation MemberValuePair 1 0.0000002

654 INSERT NormalAnnotation MethodDeclaration 1375 0.0002291

856 INSERT NormalAnnotation SingleVariableDeclaration 1488 0.0002479

628 INSERT NormalAnnotation TypeDeclaration 1424 0.0002372

6 INSERT NullLiteral ArrayInitializer 31 0.0000052

579 INSERT NullLiteral Assignment 331 0.0000551

300 INSERT NullLiteral ClassInstanceCreation 2498 0.0004162

779 INSERT NullLiteral ConditionalExpression 108 0.0000180

443 INSERT NullLiteral ConstructorInvocation 228 0.0000380

584 INSERT NullLiteral EnumConstantDeclaration 87 0.0000145

78 INSERT NullLiteral InfixExpression 1208 0.0002013

434 INSERT NullLiteral LambdaExpression 2 0.0000003

461 INSERT NullLiteral MethodInvocation 6634 0.0011053

248 INSERT NullLiteral ReturnStatement 771 0.0001285

441 INSERT NullLiteral SuperConstructorInvocation 126 0.0000210

773 INSERT NullLiteral SuperMethodInvocation 15 0.0000025

718 INSERT NullLiteral VariableDeclarationFragment 2094 0.0003489

11 INSERT NumberLiteral AnnotationTypeMemberDeclaration 8 0.0000013

749 INSERT NumberLiteral ArrayAccess 85 0.0000142

249 INSERT NumberLiteral ArrayCreation 191 0.0000318

483 INSERT NumberLiteral ArrayInitializer 972 0.0001619

366 INSERT NumberLiteral Assignment 473 0.0000788

778 INSERT NumberLiteral CastExpression 3 0.0000005

679 INSERT NumberLiteral ClassInstanceCreation 1615 0.0002691

30 INSERT NumberLiteral ConditionalExpression 85 0.0000142

567 INSERT NumberLiteral ConstructorInvocation 51 0.0000085

448 INSERT NumberLiteral EnumConstantDeclaration 91 0.0000152

863 INSERT NumberLiteral InfixExpression 1898 0.0003162

716 INSERT NumberLiteral LambdaExpression 1 0.0000002

374 INSERT NumberLiteral MemberValuePair 14 0.0000023

108 INSERT NumberLiteral MethodInvocation 11147 0.0018572

459 INSERT NumberLiteral ParenthesizedExpression 8 0.0000013

719 INSERT NumberLiteral PrefixExpression 15 0.0000025

352 INSERT NumberLiteral ReturnStatement 247 0.0000412

670 INSERT NumberLiteral SingleMemberAnnotation 10 0.0000017

466 INSERT NumberLiteral SuperConstructorInvocation 57 0.0000095

275 INSERT NumberLiteral SuperMethodInvocation 1 0.0000002

831 INSERT NumberLiteral SwitchCase 311 0.0000518

115 INSERT NumberLiteral VariableDeclarationFragment 1872 0.0003119

134 INSERT PackageDeclaration CompilationUnit 127 0.0000212

607 INSERT ParameterizedType AnnotationTypeMemberDeclaration 29 0.0000048

279 INSERT ParameterizedType ArrayType 72 0.0000120

410 INSERT ParameterizedType CastExpression 233 0.0000388

653 INSERT ParameterizedType ClassInstanceCreation 2709 0.0004513

576 INSERT ParameterizedType EnumDeclaration 10 0.0000017

142 INSERT ParameterizedType FieldDeclaration 2454 0.0004089

400 INSERT ParameterizedType InstanceofExpression 2 0.0000003

104 INSERT ParameterizedType MethodDeclaration 4027 0.0006709

31 INSERT ParameterizedType MethodInvocation 108 0.0000180

87 INSERT ParameterizedType ParameterizedType 2696 0.0004492

56 INSERT ParameterizedType SingleVariableDeclaration 4892 0.0008150

214 INSERT ParameterizedType TypeDeclaration 1913 0.0003187

870 INSERT ParameterizedType TypeParameter 90 0.0000150

674 INSERT ParameterizedType VariableDeclarationExpression 16 0.0000027

167 INSERT ParameterizedType VariableDeclarationStatement 4804 0.0008004

369 INSERT ParameterizedType WildcardType 42 0.0000070

297 INSERT ParenthesizedExpression ArrayAccess 4 0.0000007

603 INSERT ParenthesizedExpression ArrayInitializer 1 0.0000002

365 INSERT ParenthesizedExpression AssertStatement 2 0.0000003

174 INSERT ParenthesizedExpression Assignment 115 0.0000192

232 INSERT ParenthesizedExpression CastExpression 144 0.0000240

834 INSERT ParenthesizedExpression ClassInstanceCreation 153 0.0000255

114 INSERT ParenthesizedExpression ConditionalExpression 172 0.0000287

265 INSERT ParenthesizedExpression ConstructorInvocation 3 0.0000005

359 INSERT ParenthesizedExpression EnhancedForStatement 4 0.0000007

885 INSERT ParenthesizedExpression FieldAccess 6 0.0000010

244 INSERT ParenthesizedExpression ForStatement 1 0.0000002

2 INSERT ParenthesizedExpression IfStatement 22 0.0000037

396 INSERT ParenthesizedExpression InfixExpression 2437 0.0004060

681 INSERT ParenthesizedExpression LambdaExpression 7 0.0000012

510 INSERT ParenthesizedExpression MemberValuePair 6 0.0000010

81 INSERT ParenthesizedExpression MethodInvocation 1930 0.0003216

495 INSERT ParenthesizedExpression PrefixExpression 99 0.0000165

331 INSERT ParenthesizedExpression ReturnStatement 172 0.0000287

848 INSERT ParenthesizedExpression SuperConstructorInvocation 1 0.0000002

626 INSERT ParenthesizedExpression SwitchCase 2 0.0000003

165 INSERT ParenthesizedExpression ThrowStatement 6 0.0000010

381 INSERT ParenthesizedExpression VariableDeclarationFragment 197 0.0000328

565 INSERT ParenthesizedExpression WhileStatement 1 0.0000002

755 INSERT PostfixExpression ArrayAccess 96 0.0000160

563 INSERT PostfixExpression Assignment 3 0.0000005

113 INSERT PostfixExpression ClassInstanceCreation 22 0.0000037

338 INSERT PostfixExpression ExpressionStatement 483 0.0000805

37 INSERT PostfixExpression ForStatement 289 0.0000481

724 INSERT PostfixExpression InfixExpression 16 0.0000027

706 INSERT PostfixExpression MethodInvocation 113 0.0000188

763 INSERT PostfixExpression ParenthesizedExpression 1 0.0000002

649 INSERT PostfixExpression ReturnStatement 2 0.0000003

221 INSERT PostfixExpression VariableDeclarationFragment 2 0.0000003

416 INSERT PrefixExpression AnnotationTypeMemberDeclaration 5 0.0000008

32 INSERT PrefixExpression ArrayAccess 7 0.0000012

125 INSERT PrefixExpression ArrayInitializer 122 0.0000203

270 INSERT PrefixExpression AssertStatement 10 0.0000017

316 INSERT PrefixExpression Assignment 98 0.0000163

830 INSERT PrefixExpression CastExpression 1 0.0000002

705 INSERT PrefixExpression ClassInstanceCreation 157 0.0000262

465 INSERT PrefixExpression ConditionalExpression 60 0.0000100

41 INSERT PrefixExpression ConstructorInvocation 10 0.0000017

358 INSERT PrefixExpression DoStatement 2 0.0000003

817 INSERT PrefixExpression EnumConstantDeclaration 6 0.0000010

512 INSERT PrefixExpression ExpressionStatement 11 0.0000018

12 INSERT PrefixExpression ForStatement 18 0.0000030

571 INSERT PrefixExpression IfStatement 2406 0.0004009

775 INSERT PrefixExpression InfixExpression 1527 0.0002544

66 INSERT PrefixExpression LambdaExpression 9 0.0000015

786 INSERT PrefixExpression MethodInvocation 915 0.0001524

367 INSERT PrefixExpression ParenthesizedExpression 10 0.0000017

320 INSERT PrefixExpression ReturnStatement 214 0.0000357

149 INSERT PrefixExpression SuperConstructorInvocation 10 0.0000017

106 INSERT PrefixExpression SwitchCase 5 0.0000008

317 INSERT PrefixExpression VariableDeclarationFragment 401 0.0000668

492 INSERT PrefixExpression WhileStatement 71 0.0000118

661 INSERT PrimitiveType AnnotationTypeMemberDeclaration 6 0.0000010

136 INSERT PrimitiveType ArrayType 163 0.0000272

841 INSERT PrimitiveType CastExpression 19 0.0000032

25 INSERT PrimitiveType FieldDeclaration 1560 0.0002599

511 INSERT PrimitiveType MethodDeclaration 6043 0.0010068

862 INSERT PrimitiveType MethodRefParameter 14 0.0000023

177 INSERT PrimitiveType SingleVariableDeclaration 2391 0.0003984

219 INSERT PrimitiveType TypeLiteral 22 0.0000037

860 INSERT PrimitiveType VariableDeclarationExpression 15 0.0000025

201 INSERT PrimitiveType VariableDeclarationStatement 1858 0.0003096

129 INSERT QualifiedName AnnotationTypeMemberDeclaration 19 0.0000032

326 INSERT QualifiedName ArrayAccess 106 0.0000177

343 INSERT QualifiedName ArrayCreation 47 0.0000078

424 INSERT QualifiedName ArrayInitializer 775 0.0001291

539 INSERT QualifiedName AssertStatement 1 0.0000002

393 INSERT QualifiedName Assignment 2684 0.0004472

293 INSERT QualifiedName CastExpression 44 0.0000073

894 INSERT QualifiedName ClassInstanceCreation 3686 0.0006141

112 INSERT QualifiedName ConditionalExpression 177 0.0000295

735 INSERT QualifiedName ConstructorInvocation 98 0.0000163

53 INSERT QualifiedName EnhancedForStatement 147 0.0000245

468 INSERT QualifiedName EnumConstantDeclaration 449 0.0000748

294 INSERT QualifiedName ExpressionMethodReference 3 0.0000005

703 INSERT QualifiedName IfStatement 254 0.0000423

419 INSERT QualifiedName ImportDeclaration 13 0.0000022

239 INSERT QualifiedName InfixExpression 4250 0.0007081

792 INSERT QualifiedName InstanceofExpression 17 0.0000028

61 INSERT QualifiedName LambdaExpression 4 0.0000007

318 INSERT QualifiedName MarkerAnnotation 202 0.0000337

574 INSERT QualifiedName MemberRef 79 0.0000132

820 INSERT QualifiedName MemberValuePair 98 0.0000163

137 INSERT QualifiedName MethodInvocation 28154 0.0046906

46 INSERT QualifiedName MethodRef 155 0.0000258

641 INSERT QualifiedName NormalAnnotation 46 0.0000077

386 INSERT QualifiedName PackageDeclaration 1 0.0000002

709 INSERT QualifiedName ParenthesizedExpression 9 0.0000015

730 INSERT QualifiedName PostfixExpression 16 0.0000027

740 INSERT QualifiedName PrefixExpression 60 0.0000100

319 INSERT QualifiedName ReturnStatement 979 0.0001631

417 INSERT QualifiedName SimpleType 4752 0.0007917

408 INSERT QualifiedName SingleMemberAnnotation 108 0.0000180

717 INSERT QualifiedName SuperConstructorInvocation 225 0.0000375

814 INSERT QualifiedName SuperMethodInvocation 11 0.0000018

593 INSERT QualifiedName SwitchCase 576 0.0000960

375 INSERT QualifiedName SwitchStatement 14 0.0000023

487 INSERT QualifiedName SynchronizedStatement 59 0.0000098

888 INSERT QualifiedName TagElement 630 0.0001050

332 INSERT QualifiedName ThisExpression 1 0.0000002

215 INSERT QualifiedName ThrowStatement 1 0.0000002

645 INSERT QualifiedName VariableDeclarationFragment 1549 0.0002581

783 INSERT QualifiedType FieldDeclaration 1 0.0000002

86 INSERT QualifiedType MethodDeclaration 1 0.0000002

305 INSERT QualifiedType SingleVariableDeclaration 4 0.0000007

852 INSERT QualifiedType TypeDeclaration 1 0.0000002

752 INSERT QualifiedType VariableDeclarationStatement 7 0.0000012

738 INSERT ReturnStatement Block 18776 0.0031282

34 INSERT ReturnStatement IfStatement 912 0.0001519

284 INSERT ReturnStatement SwitchStatement 3028 0.0005045

324 INSERT SimpleName AnnotationTypeDeclaration 5 0.0000008

195 INSERT SimpleName AnnotationTypeMemberDeclaration 63 0.0000105

614 INSERT SimpleName ArrayAccess 761 0.0001268

68 INSERT SimpleName ArrayCreation 151 0.0000252

360 INSERT SimpleName ArrayInitializer 774 0.0001290

796 INSERT SimpleName AssertStatement 65 0.0000108

229 INSERT SimpleName Assignment 8768 0.0014608

98 INSERT SimpleName BreakStatement 4 0.0000007

291 INSERT SimpleName CastExpression 449 0.0000748

621 INSERT SimpleName ClassInstanceCreation 18633 0.0031044

23 INSERT SimpleName ConditionalExpression 481 0.0000801

433 INSERT SimpleName ConstructorInvocation 1242 0.0002069

255 INSERT SimpleName ContinueStatement 3 0.0000005

764 INSERT SimpleName DoStatement 1 0.0000002

407 INSERT SimpleName EnhancedForStatement 773 0.0001288

7 INSERT SimpleName EnumConstantDeclaration 110 0.0000183

672 INSERT SimpleName EnumDeclaration 8 0.0000013

451 INSERT SimpleName ExpressionMethodReference 29 0.0000048

585 INSERT SimpleName FieldAccess 18 0.0000030

610 INSERT SimpleName IfStatement 1827 0.0003044

488 INSERT SimpleName ImportDeclaration 26 0.0000043

274 INSERT SimpleName InfixExpression 12255 0.0020418

525 INSERT SimpleName InstanceofExpression 179 0.0000298

371 INSERT SimpleName LambdaExpression 19 0.0000032

760 INSERT SimpleName MarkerAnnotation 263 0.0000438

220 INSERT SimpleName MemberRef 130 0.0000217

92 INSERT SimpleName MemberValuePair 38 0.0000063

496 INSERT SimpleName MethodDeclaration 10991 0.0018312

682 INSERT SimpleName MethodInvocation 121746 0.0202837

245 INSERT SimpleName MethodRef 246 0.0000410

531 INSERT SimpleName MethodRefParameter 4 0.0000007

266 INSERT SimpleName NormalAnnotation 61 0.0000102

342 INSERT SimpleName ParenthesizedExpression 70 0.0000117

39 INSERT SimpleName PostfixExpression 6 0.0000010

243 INSERT SimpleName PrefixExpression 237 0.0000395

754 INSERT SimpleName ReturnStatement 5701 0.0009498

55 INSERT SimpleName SimpleType 7813 0.0013017

473 INSERT SimpleName SingleMemberAnnotation 129 0.0000215

254 INSERT SimpleName SingleVariableDeclaration 5621 0.0009365

202 INSERT SimpleName SuperConstructorInvocation 2000 0.0003332

663 INSERT SimpleName SuperMethodInvocation 467 0.0000778

668 INSERT SimpleName SwitchCase 1054 0.0001756

762 INSERT SimpleName SwitchStatement 77 0.0000128

620 INSERT SimpleName SynchronizedStatement 95 0.0000158

313 INSERT SimpleName TagElement 1524 0.0002539

312 INSERT SimpleName ThisExpression 248 0.0000413

789 INSERT SimpleName ThrowStatement 61 0.0000102

230 INSERT SimpleName TypeDeclaration 1437 0.0002394

238 INSERT SimpleName TypeParameter 5 0.0000008

785 INSERT SimpleName VariableDeclarationFragment 4458 0.0007427

423 INSERT SimpleName WhileStatement 12 0.0000020

829 INSERT SimpleType AnnotationTypeMemberDeclaration 16 0.0000027

509 INSERT SimpleType ArrayType 339 0.0000565

389 INSERT SimpleType CastExpression 456 0.0000760

700 INSERT SimpleType ClassInstanceCreation 3412 0.0005685

750 INSERT SimpleType CreationReference 6 0.0000010

154 INSERT SimpleType EnumDeclaration 56 0.0000093

547 INSERT SimpleType FieldDeclaration 4245 0.0007072

568 INSERT SimpleType InstanceofExpression 34 0.0000057

253 INSERT SimpleType MethodDeclaration 17591 0.0029308

263 INSERT SimpleType MethodInvocation 1516 0.0002526

120 INSERT SimpleType MethodRefParameter 45 0.0000075

257 INSERT SimpleType ParameterizedType 7572 0.0012615

744 INSERT SimpleType SingleVariableDeclaration 7864 0.0013102

776 INSERT SimpleType TypeDeclaration 5881 0.0009798

309 INSERT SimpleType TypeLiteral 143 0.0000238

799 INSERT SimpleType TypeParameter 87 0.0000145

193 INSERT SimpleType UnionType 79 0.0000132

77 INSERT SimpleType VariableDeclarationExpression 33 0.0000055

356 INSERT SimpleType VariableDeclarationStatement 9517 0.0015856

135 INSERT SimpleType WildcardType 114 0.0000190

102 INSERT SingleMemberAnnotation AnnotationTypeDeclaration 62 0.0000103

347 INSERT SingleMemberAnnotation AnnotationTypeMemberDeclaration 3 0.0000005

518 INSERT SingleMemberAnnotation ArrayInitializer 1 0.0000002

772 INSERT SingleMemberAnnotation EnumConstantDeclaration 1 0.0000002

734 INSERT SingleMemberAnnotation EnumDeclaration 9 0.0000015

809 INSERT SingleMemberAnnotation FieldDeclaration 1599 0.0002664

728 INSERT SingleMemberAnnotation MethodDeclaration 4271 0.0007116

514 INSERT SingleMemberAnnotation PackageDeclaration 32 0.0000053

231 INSERT SingleMemberAnnotation SingleVariableDeclaration 1070 0.0001783

172 INSERT SingleMemberAnnotation TypeDeclaration 2484 0.0004139

288 INSERT SingleMemberAnnotation VariableDeclarationExpression 20 0.0000033

45 INSERT SingleMemberAnnotation VariableDeclarationStatement 221 0.0000368

464 INSERT SingleVariableDeclaration CatchClause 406 0.0000676

302 INSERT SingleVariableDeclaration EnhancedForStatement 427 0.0000711

638 INSERT SingleVariableDeclaration LambdaExpression 75 0.0000125

119 INSERT SingleVariableDeclaration MethodDeclaration 55217 0.0091995

819 INSERT StringLiteral AnnotationTypeMemberDeclaration 45 0.0000075

44 INSERT StringLiteral ArrayInitializer 2175 0.0003624

850 INSERT StringLiteral AssertStatement 12 0.0000020

209 INSERT StringLiteral Assignment 228 0.0000380

656 INSERT StringLiteral ClassInstanceCreation 2979 0.0004963

675 INSERT StringLiteral ConditionalExpression 54 0.0000090

737 INSERT StringLiteral ConstructorInvocation 15 0.0000025

580 INSERT StringLiteral EnumConstantDeclaration 242 0.0000403

420 INSERT StringLiteral InfixExpression 8100 0.0013495

528 INSERT StringLiteral LambdaExpression 1 0.0000002

111 INSERT StringLiteral MemberValuePair 136 0.0000227

595 INSERT StringLiteral MethodInvocation 23231 0.0038704

549 INSERT StringLiteral ReturnStatement 581 0.0000968

247 INSERT StringLiteral SingleMemberAnnotation 88 0.0000147

175 INSERT StringLiteral SuperConstructorInvocation 54 0.0000090

875 INSERT StringLiteral SuperMethodInvocation 1 0.0000002

58 INSERT StringLiteral SwitchCase 206 0.0000343

226 INSERT StringLiteral VariableDeclarationFragment 1668 0.0002779

871 INSERT SuperConstructorInvocation Block 1866 0.0003109

227 INSERT SuperFieldAccess Assignment 5 0.0000008

429 INSERT SuperFieldAccess EnhancedForStatement 3 0.0000005

43 INSERT SuperFieldAccess InfixExpression 1 0.0000002

235 INSERT SuperFieldAccess MethodInvocation 9 0.0000015

560 INSERT SuperMethodInvocation Assignment 5 0.0000008

171 INSERT SuperMethodInvocation CastExpression 2 0.0000003

683 INSERT SuperMethodInvocation ClassInstanceCreation 3 0.0000005

812 INSERT SuperMethodInvocation ConditionalExpression 5 0.0000008

780 INSERT SuperMethodInvocation EnhancedForStatement 1 0.0000002

693 INSERT SuperMethodInvocation ExpressionStatement 675 0.0001125

527 INSERT SuperMethodInvocation IfStatement 2 0.0000003

589 INSERT SuperMethodInvocation InfixExpression 38 0.0000063

256 INSERT SuperMethodInvocation LambdaExpression 1 0.0000002

287 INSERT SuperMethodInvocation MethodInvocation 39 0.0000065

517 INSERT SuperMethodInvocation PrefixExpression 2 0.0000003

878 INSERT SuperMethodInvocation ReturnStatement 163 0.0000272

409 INSERT SuperMethodInvocation VariableDeclarationFragment 66 0.0000110

601 INSERT SwitchCase SwitchStatement 7095 0.0011821

301 INSERT SwitchStatement Block 1390 0.0002316

555 INSERT SwitchStatement IfStatement 3 0.0000005

660 INSERT SwitchStatement SwitchStatement 58 0.0000097

196 INSERT SynchronizedStatement Block 748 0.0001246

413 INSERT SynchronizedStatement IfStatement 3 0.0000005

414 INSERT SynchronizedStatement SwitchStatement 6 0.0000010

642 INSERT TagElement Javadoc 20911 0.0034839

554 INSERT TagElement TagElement 9936 0.0016554

893 INSERT TextElement TagElement 47340 0.0078872

390 INSERT ThisExpression AssertStatement 4 0.0000007

203 INSERT ThisExpression Assignment 15 0.0000025

10 INSERT ThisExpression CastExpression 3 0.0000005

537 INSERT ThisExpression ClassInstanceCreation 756 0.0001260

69 INSERT ThisExpression ConditionalExpression 3 0.0000005

349 INSERT ThisExpression EnhancedForStatement 29 0.0000048

397 INSERT ThisExpression ExpressionMethodReference 16 0.0000027

769 INSERT ThisExpression FieldAccess 14 0.0000023

391 INSERT ThisExpression InfixExpression 30 0.0000050

70 INSERT ThisExpression MethodInvocation 3361 0.0005600

609 INSERT ThisExpression ReturnStatement 190 0.0000317

758 INSERT ThisExpression SuperConstructorInvocation 1 0.0000002

260 INSERT ThisExpression SwitchStatement 1 0.0000002

611 INSERT ThisExpression SynchronizedStatement 68 0.0000113

545 INSERT ThisExpression VariableDeclarationFragment 8 0.0000013

857 INSERT ThrowStatement Block 2300 0.0003832

146 INSERT ThrowStatement IfStatement 188 0.0000313

200 INSERT ThrowStatement SwitchStatement 135 0.0000225

14 INSERT TryStatement Block 6997 0.0011657

616 INSERT TryStatement IfStatement 17 0.0000028

477 INSERT TryStatement SwitchStatement 85 0.0000142

516 INSERT TryStatement WhileStatement 3 0.0000005

126 INSERT TypeDeclaration AnnotationTypeDeclaration 19 0.0000032

833 INSERT TypeDeclaration CompilationUnit 909 0.0001514

242 INSERT TypeDeclaration EnumDeclaration 6 0.0000010

240 INSERT TypeDeclaration TypeDeclaration 10990 0.0018310

161 INSERT TypeDeclarationStatement Block 11 0.0000018

655 INSERT TypeDeclarationStatement SwitchStatement 16 0.0000027

821 INSERT TypeLiteral AnnotationTypeMemberDeclaration 40 0.0000067

877 INSERT TypeLiteral ArrayInitializer 732 0.0001220

529 INSERT TypeLiteral Assignment 8 0.0000013

544 INSERT TypeLiteral ClassInstanceCreation 342 0.0000570

76 INSERT TypeLiteral ConditionalExpression 1 0.0000002

337 INSERT TypeLiteral EnumConstantDeclaration 15 0.0000025

110 INSERT TypeLiteral InfixExpression 17 0.0000028

160 INSERT TypeLiteral MemberValuePair 24 0.0000040

380 INSERT TypeLiteral MethodInvocation 3269 0.0005446

826 INSERT TypeLiteral ReturnStatement 16 0.0000027

559 INSERT TypeLiteral SingleMemberAnnotation 11 0.0000018

283 INSERT TypeLiteral SuperConstructorInvocation 55 0.0000092

707 INSERT TypeLiteral SynchronizedStatement 13 0.0000022

467 INSERT TypeLiteral VariableDeclarationFragment 12 0.0000020

176 INSERT TypeMethodReference MethodInvocation 2 0.0000003

486 INSERT TypeParameter MethodDeclaration 1571 0.0002617

330 INSERT TypeParameter TypeDeclaration 896 0.0001493

194 INSERT UnionType SingleVariableDeclaration 373 0.0000621

363 INSERT VariableDeclarationExpression ForStatement 264 0.0000440

573 INSERT VariableDeclarationExpression TryStatement 468 0.0000780

4 INSERT VariableDeclarationFragment FieldDeclaration 1824 0.0003039

303 INSERT VariableDeclarationFragment LambdaExpression 431 0.0000718

74 INSERT VariableDeclarationFragment VariableDeclarationExpression 53 0.0000088

198 INSERT VariableDeclarationFragment VariableDeclarationStatement 2030 0.0003382

124 INSERT VariableDeclarationStatement Block 90753 0.0151201

460 INSERT VariableDeclarationStatement SwitchStatement 1441 0.0002401

133 INSERT WhileStatement Block 1150 0.0001916

502 INSERT WhileStatement SwitchStatement 8 0.0000013

659 INSERT WildcardType ParameterizedType 1805 0.0003007

556 MOVE AnnotationTypeDeclaration 158 0.0000263

534 MOVE AnnotationTypeMemberDeclaration 139 0.0000232

289 MOVE AnonymousClassDeclaration 2021 0.0003367

153 MOVE ArrayAccess 1139 0.0001898

362 MOVE ArrayCreation 2949 0.0004913

688 MOVE ArrayInitializer 842 0.0001403

440 MOVE ArrayType 1934 0.0003222

732 MOVE AssertStatement 280 0.0000466

569 MOVE Assignment 18658 0.0031085

757 MOVE Block 187816 0.0312914

553 MOVE BreakStatement 1 0.0000002

767 MOVE CastExpression 11366 0.0018937

211 MOVE CatchClause 3427 0.0005710

665 MOVE ClassInstanceCreation 48881 0.0081439

426 MOVE CompilationUnit 49437 0.0082365

121 MOVE ConditionalExpression 4571 0.0007616

27 MOVE ConstructorInvocation 541 0.0000901

825 MOVE CreationReference 156 0.0000260

173 MOVE DoStatement 211 0.0000352

3 MOVE EnhancedForStatement 6206 0.0010340

648 MOVE EnumConstantDeclaration 414 0.0000690

768 MOVE EnumDeclaration 267 0.0000445

354 MOVE ExpressionMethodReference 23 0.0000038

159 MOVE ExpressionStatement 14666 0.0024435

513 MOVE FieldAccess 1531 0.0002551

334 MOVE FieldDeclaration 20614 0.0034344

791 MOVE ForStatement 3431 0.0005716

540 MOVE IfStatement 74125 0.0123497

747 MOVE InfixExpression 40189 0.0066958

849 MOVE Initializer 147 0.0000245

836 MOVE InstanceofExpression 1025 0.0001708

26 MOVE Javadoc 5418 0.0009027

415 MOVE LabeledStatement 24 0.0000040

698 MOVE LambdaExpression 4949 0.0008245

598 MOVE MarkerAnnotation 492 0.0000820

282 MOVE MemberValuePair 82 0.0000137

85 MOVE MethodDeclaration 118811 0.0197947

868 MOVE MethodInvocation 316225 0.0526852

192 MOVE MethodRef 412 0.0000686

225 MOVE MethodRefParameter 481 0.0000801

157 MOVE NormalAnnotation 527 0.0000878

33 MOVE PackageDeclaration 2 0.0000003

807 MOVE ParameterizedType 36892 0.0061465

631 MOVE ParenthesizedExpression 2899 0.0004830

507 MOVE PostfixExpression 95 0.0000158

170 MOVE PrefixExpression 2306 0.0003842

222 MOVE QualifiedType 10 0.0000017

463 MOVE ReturnStatement 9336 0.0015554

504 MOVE SimpleType 52656 0.0087728

340 MOVE SingleMemberAnnotation 133 0.0000222

788 MOVE SingleVariableDeclaration 23937 0.0039881

828 MOVE SuperConstructorInvocation 569 0.0000948

729 MOVE SuperMethodInvocation 213 0.0000355

816 MOVE SwitchCase 117 0.0000195

690 MOVE SwitchStatement 7317 0.0012191

624 MOVE SynchronizedStatement 721 0.0001201

658 MOVE TagElement 5880 0.0009796

17 MOVE ThisExpression 8 0.0000013

430 MOVE ThrowStatement 429 0.0000715

60 MOVE TryStatement 8471 0.0014113

592 MOVE TypeDeclaration 25284 0.0042125

392 MOVE TypeDeclarationStatement 2 0.0000003

880 MOVE TypeLiteral 1695 0.0002824

770 MOVE TypeParameter 323 0.0000538

657 MOVE UnionType 581 0.0000968

444 MOVE VariableDeclarationExpression 1480 0.0002466

520 MOVE VariableDeclarationFragment 36966 0.0061588

16 MOVE VariableDeclarationStatement 67277 0.0112088

328 MOVE WhileStatement 910 0.0001516

864 MOVE WildcardType 687 0.0001145

1 UPDATE 1048375 0.1746663

