
Document Embedding
Models - A Comparison

with Bag-of-Words

Robin Stohler
Zurich ZH, Switzerland

Student-ID: 10-296-275
robin.stohler@gmail.com

Master Thesis September 10, 2018

Advisor:
Matthias Baumgartner

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

First, I would like to thank Prof. Dr. Abraham Bernstein for giving me the opportunity,
after the master basis module and the master’s project to also write my master’s thesis
at the Dynamic and Distributed Information System Group of the University of Zurich.

My highest appreciation I express to Matthias Baumgartner, my supervisor, who
helped me navigate through difficulties, who could turn my despair into motivation and
sparked inspiration through the many exciting talks.

Moreover, I am very grateful for all the support of my friends and family who encour-
aged me throughout my studies.

Zusammenfassung

Worteinbettungen haben die Möglichkeiten im Bereich der natürlichen Sprachverar-
beitung und des maschinellen Lernens komplett verändert und neue Türen für viele
Anwendungen geöffnet. Eine davon ist die Erstellung von Dokumenteneinbettungen
mit dem Doc2Vec-Algorithmus auf Basis von Word2Vec. Diese dicht verteilten la-
tenten Vektoren ermöglichen es, mit Text besser zu arbeiten als mit älteren Textvek-
torisierungsverfahren wie Bag-of-Words (BOW). In dieser Arbeit werden verschiedene
Baseline-Methoden in verschiedenen Kategorien mit Doc2Vec verglichen. Um schliesslich
die Nützlichkeit dieser älteren Ansätze nach dem jüngsten Umbruch im NLP-Bereich zu
beurteilen. Aber empirische Ergebnisse zeigen, dass BOW, der mit einem starken Klas-
sifikator verwendet wird, besonders in kleineren Datensätzen besser ist als Doc2Vec.
Ausserdem wird ein Ansatz vorgestellt, um die Dimensionalität von BOW zu reduzieren.

Abstract

Word embeddings changed the possibilities in the field of Natural Language Processing
and Machine Learning completely, opening new doors for many applications. One is
the creation of document embeddings with the Doc2Vec algorithm based on Word2Vec.
These dense distributed latent vectors allow to work with text in a better, more mean-
ingful way compared to older text vectorization processes such as Bag-of-Words (BOW).
In this thesis, a variety of baseline methods are compared in different categories against
Doc2Vec. To finally asses the usefulness of these older approaches after the recent up-
shake in the Natural Language Processing field. Empirical results show that BOW used
with a strong classifier is especially in smaller datasets better than Doc2Vec. Addition-
ally, an approach to reduce the dimensionality of a BOW is presented.

Table of Contents

1 Introduction 1

2 Related Work 5
2.1 Word Embeddings . 5

2.2 Document Vector Representation Models 6

2.3 Critique of word embedding evaluation methods 9

2.4 Evaluation of Embeddings . 11

2.5 Neural Encoder . 14

3 Methods 17
3.1 Corpus Preprocessing . 17

3.2 Word Embeddings . 19

3.3 Document Embeddings . 20

3.4 Bag of Words (BOW) . 22

3.5 Neural Auto-encoder . 24

4 Experimental Setup 25
4.1 Datasets . 25

4.2 Implementation . 31

4.3 Methods . 31

4.4 Model parameters . 32

4.5 Evaluation of the Vector Models . 33

4.6 Methodology . 34

4.6.1 Preprocessing effects . 34

4.6.2 Accuracy . 35

4.6.3 Transferability . 36

4.6.4 Speed . 38

5 Results 41
5.1 Preprocessing effects . 41

5.1.1 Preprocessing Accuracy . 41

5.1.2 Preprocessing Speed . 43

5.1.3 Discussion . 44

x Table of Contents

5.2 Accuracy . 46
5.2.1 by Dataset . 46
5.2.2 by Document Length . 51
5.2.3 by Corpus Size . 54
5.2.4 Reproducibility of the Doc2Vec Results from the Paper 55
5.2.5 Accuracy by Simple Dense Neural Encoder 55

5.3 Transferability . 56
5.3.1 Doc2Vec Transferability of Embedding Model 56
5.3.2 Doc2Vec Transferability of Embedding Model together with Clas-

sifier . 57
5.3.3 BOW Transferability of Document Vectorization Process Together

with Classifier . 58
5.4 Speed . 60

5.4.1 Speed of Convergence . 65
5.4.2 Final accuracy . 65
5.4.3 Wall Time . 66

6 Limitations 69

7 Future Work 71

8 Conclusions 73

x

1

Introduction

Bag of Words (BOW) is a widely used technique to formalize texts or documents strip-
ping away the actual terms and constructing a vector space representation. Words are
encoded as one-hot vectors where the vector space is as big as the number of unique
words in the corpus. However, with the one-hot encoding problems arise such as the
curse of high-dimensionality[Bengio et al., 2003], sparsity, but also semantic problems
such as term dependencies and vocabulary mismatch [Manning et al., 2008]. Nonethe-
less, these text representations are used for the various task, e.g., spam-filtering, infor-
mation retrieval, text similarity measurement or text classification. Different extensions
and weighting schemes were added over the years to account for some of the problems
in the BOW model.
In 2013 [Mikolov et al., 2013a, Mikolov et al., 2013b] proposed a more powerful type of
word encoding model, with their algorithm Word2Vec. Word embeddings are low dimen-
sional vectors that are trained through a machine learning (ML) method which moves
similar words closer to each other in the generated vector space. The word ”embedding”
is borrowed from a mathematical concept, conceptually the high dimensional one-hot
encoding is embedded into a low-dimensional dense vector space.
Soon the context-window based method Word2Vec was complemented by GloVe [Pennington et al., 2014b].
GloVe keeps a global statistic of co-concurrence and uses dimensionality reduction to re-
trieve the word embeddings. While these two methods are using different approaches the
basis is similar and the word vectors are comparable in accuracy and similarity tests.
Word vectors changed the field of Natural Language Processing (NLP) and started a
trend in NLP with the combination of neural networks, text and the newly created
word embedding models [Goth, 2016]. Other models mitigating problems of the initial
Word2Vec were also created [Bojanowski et al., 2016, Ji et al., 2015].

Shortly after, the same team that created Word2Vec proposed the Doc2Vec model
also to derive embeddings from whole documents or paragraph [Le and Mikolov, 2014].
While not having such an impact in the community, the implementation, Doc2Vec 1

led to a new field of embedding more than just words, but also sentences, paragraphs
and documents [Pagliardini et al., 2017, Chen, 2017, Wu et al., 2017, Kiros et al., 2015,
Kusner et al., 2015].

Document embeddings become convenient when tasks should be done on a document
level or to asses whether two documents are similar. A feature that makes them superior

1also known as par2vec

2 CHAPTER 1. INTRODUCTION

compared to BOWs is the fixed length of the embedding which can be set in the learning
phase. This is especially useful for downstream neural network tasks that require a fixed
network topology. However, significant drawbacks are the existence of the many hyper-
parameters and that various models need to be combined to get good results. These
hyperparameters need to be grid searched for optimal results, but these many possi-
bilities also consume a lot of time and resources, besides not showing whether or not
only local maxima or global maxima were found in the process. Likewise, the amount
of data needed for these embedding models might be an issue in some cases. Unlike
the BOW where every dimension in the vector space stands for a word, the dimensions
in these embeddings are not interpretable, therefore, the quality of embeddings needs
to be further assessed through evaluation. An often used method is the evaluation in
a downstream classification task, where the accuracy gives insights into the capabilities
of the embedding. Another method is to check the similarity of documents that are
categorizable in groups, where documents in the same group should also be closer to-
gether. The superiority of the Doc2Vec approach could not be completely demonstrated
compared to the hyperparameter free off the shelf text vectorization process BOW.

In this thesis, different baseline models are compared with Doc2Vec to answer the
question of whether BOWs belongs to the past and can entirely be replaced by docu-
ment embeddings by Doc2Vec. In this regard, different baseline approaches are com-
pared against Doc2Vec. These assessments are based on classification tasks on different
datasets with discriminative features such as number of classes, number of vocabulary,
document size and number of documents. For these assessments, similarity checks were
completely ignored due to some of the critiques stated in Section 2.3 and the focus on
classification tasks.
The following hypotheses are tested to answer the final research question:

• Doc2Vec results from [Mikolov et al., 2013b] can be reproduced.

• Pre-processing is important for higher accuracy since punctuation and stop-words
do not help on the classification problem.

• The classification accuracy correlates with the document length.

• Document embeddings outperform baseline methods in typical benchmark setup
(classification task).

• Document embeddings save effort since precomputed embeddings can be used in
many applications.

• Document embeddings save effort since the same classifier can be used in many
applications.

• Document embeddings save time since they reduce the complexity of the documents
to reduce the work for the classifier.

This thesis will also provide advice for practitioners on which method(s) to use de-
pending on the scenario, and what the expected outcome will be. As a side result, a

2

3

simple neural network decoder is proposed to simplify the complexity of BOWs to a
fixed length to reduce the heavy lifting of classifiers in downstream tasks.

The remainder of the thesis is structured as follows: In Chapter 2, related work in
the field and background knowledge is discussed. Chapter 3 talks about all applied
methods in this thesis and their background. The Chapter ”Experimental Setup” 4
introduces the datasets, the various experiments, some details about them and answers
the questions, what was measured, how was it measured and why was it measured.
Chapter 5 follows the structure of the experiments Chapter and lists all result from the
various experiments. Finally, the thesis is completed through the Limitation, the Future
Work and the Conclusions.

3

2

Related Work

In this thesis, the focus is on word and document embeddings, and how they compare
to simpler approaches like the text vectorization process BOW. Since the upcoming of
Word2Vec [Mikolov et al., 2013b, Mikolov et al., 2013a] and later GloVe [Pennington et al., 2014b]
a trend in NLP in combination with ML broke out changing the way computers could
now work with texts [Goth, 2016]. After that, a broad series of embedding methods
that built upon the ideas of Word2Vec and GloVe were proposed where problems of
prior models were mitigated. However, these models also opened up doors for other
approaches like the many deep-learning methods that could now use a better represen-
tation for words other than only sparse vectors or matrices for texts. Following this,
some other concepts are discussed which are important in the field and related to the
before mentioned algorithms. The most popular approaches based on words are reviewed
in Section 2.1, older and newer methods to represent documents are discussed in Sec-
tion 2.2. Since some of the mentioned methods are based on word vectors, some of the
critis in this field are discussed in Section 2.3. In Section 2.4 some of the possibilities to
evaluate these hard to understand vector representations are discussed. Finally, Section
2.5 concludes the chapter with the cutting edge research currently in the field of NLP
the neural network encoder.

2.1 Word Embeddings

The idea of a distributed word representation existed already since 1986 [Hinton, 1986].
[Bengio et al., 2003] proposed a neural probabilistic language model that could learn
dense distributed word vectors but the time was not yet right, the machines not strong
enough and no big corpus publicly available. [Collobert and Weston, 2008] went one
step further and proposed their deep neural network model trained on a large enough
corpus and showed that these word vectors are powerful in many downstream tasks.

As mentioned Mikolov et al. built upon many already known concepts but improved
them. The idea behind Word2Vec is that words that occur in similar situations are also
similar. The algorithm scans a corpus and maps words that occur together in a fixed
size window closer together.

Global Vector or GloVe is probably the second most known way to derive word em-
beddings from a corpus. Instead of scanning through the corpus with a window, a

6 CHAPTER 2. RELATED WORK

co-occurrence-matrix, that counts all words occurring together in a specified word ra-
dius, is calculated at first. Vectors are generated With the help of matrix factorization
and an objective function that tries to decrease the difference within the dot product of
the vectors of two words and the logarithm of their count of co-occurrences, the vectors
are generated. According to [Pennington et al., 2014b] there are two worlds of creating
word embeddings one world uses matrix factorization like LSA and the other world looks
at a local context window as Word2Vec. While GloVe tries to take the best from both
of these two worlds and combines it.

Next to GloVe and Word2Vec that create word embeddings based on a pairwise co-
occurrence, either through a co-occurrence matrix or a window-based method. Wor-
dRank from [Ji et al., 2015] creates its word embeddings through a ranking. WordRank
learns the word embeddings for each target word with all its context words ranked by
relevance. WordRank keeps a window based training framework, but instead of pairwise
comparison, the ranking is used. This ranking makes WordRank much more durable
and robust against noise in corpora, making it possible to get good results even if the
corpus is small. Nonetheless, this approach is not excelling the other methods in large
corpora.

Fast Text is an addition to Word2Vec. Instead of learning the words as whole the
words are treated as a bag of characters, and these are split up in n-grams or sub-words.
The word boundaries are ignored. To illustrate this: All trigrams of ”pear” are ” pe”,
”pea”, ”ear” and ”ar ”. Sub-word embeddings embedding are learned in a Word2Vec
fashion. After the subword embeddings are learned, each word gets the sum of all its
sub-words as word vector. In this way, rare words or words not in the training set can
be better represented or approximated because of n-grams also appearing in other words
[Bojanowski et al., 2016]. But this also leads to the strange effect of giving words that
happen to have similar characters also a related meaning, even though this effect is
reduced because of the sum of the n-grams.

2.2 Document Vector Representation Models

Doc2Vec was introduced by [Le and Mikolov, 2014], the same team which also created
the Word2Vec algorithm. Doc2Vec extends Word2Vec, using similar adapted approaches
as Word2Vec to also learn document embeddings. In [Le and Mikolov, 2014], three dif-
ferent evaluation tasks were performed. Two of the tasks were classification tasks and one
information retrieval task. Two movie review datasets Standford Sentiment Treebank
Dataset and IMBD were used for the sentiment classification task and another, unspeci-
fied, data set to compare queries for the information retrieval task. In [Dai et al., 2015],
a performance test with two different publicly available corpora, Wikipedia and arXiv,
was made. Qualitative results evaluated, where document similarities of the Doc2vec
embeddings are compared to LDA topic vectors using cosine similarity for Doc2Vec and
Hellinger Distance for LDA. Also, vector arithmetic with ”Lady Gaga” - ”American” +
”Japanese” was performed to retrieve any famous Japanese singer, which was successful.
Quantitative results were gained from triplets where two articles were closer to each other

6

2.2. DOCUMENT VECTOR REPRESENTATION MODELS 7

than another randomly picked article based on the structure of Wikipedia. Doc2vec out-
performed the different three approaches LDA, averaged word embeddings and BOW. In
[Lau and Baldwin, 2016] Doc2Vec embeddings are compared with averaged Word2Vec,
an n-gram model and two competitor models Skip-thought [Kiros et al., 2015] and the
Paraphrase Database[Ganitkevitch et al., 2013].

A simpler method to derive vectors from text is BOW that counts word occurrences
and creates from that a sparse vector. Where words are arbitrarily assigned to indexes
in the vector. The BOW approach suffers from two problems: Term dependencies and
vocabulary mismatch [Manning et al., 2008]. Term dependency is the effect that for a
BOW the plural and singular of the same word is something completely different and in
no way related to each other. In contrast, the two-word embedding models Word2Vec
and GloVe for map singular and plural close to each that subtracting one from the
other would return nearly-null [Rogers et al., 2017] which is a vector space analogy for
a synonym. The other problem, vocabulary mismatch, occurs when two documents are
compared from different disciplines. It is expected that stop words are shared but most
of the interesting words that would help to classify a document are not. First, blows
up the vector space of the BOW, and second, for a BOW, the two documents can only
be similar or dissimilar. Besides, models that build upon word embeddings a document
about ML and software engineering can be understood as not the same but similar
because most of the words are expected to co-occur together, and therefore they should
also be mapped closer together in the vector space.

Latent Semantic Analysis (LSA)1 is a method that builds a TF-IDF weighted matrix
with columns as documents and rows as words. This matrix is then simplified with singu-
lar value decomposition (SVD). The application of SVD returns three matrices UDV T ,
where the columns of U and V are orthonormal and the matrix is D diagonal with
positive real entries, the singular values. This reduces the number of rows (words) while
keeping the columns constant. LSA is often used in information retrieval or document
classification tasks [Landauer et al., 1998].

Latent Dirichlet Allocation (LDA) is a generative probabilistic model of a corpus. The
basic idea is that documents are represented as random mixtures over latent topics, where
each topic is characterized by a distribution over words. Before running the algorithm,
the number of topics is set and then documents are represented as a mix of these latent
topics. The mix of these latent topics could then be used as document vectors, the vector
size can be changed through the number of topics that should be extracted. A benefit
that LDA has over other vector space models is that the vector dimension is better
understandable than one of the many dimensions of other word or document embedding
approaches. The LDA method was also used as a baseline in [Dai et al., 2015]. LDA
can also be applied to images where images do not contain abstract topics but skies,
mountains, meadows etc. [Blei, 2003].

The Word Mover’s Distance (WMD) is a different approach to calculate document
similarity next to the cosine similarity. The intuition behind this method is that the
word vectors of two documents are compared with each other and a distance is calculated

1 Also known as Latent Semantic Indexing(LSI)

7

8 CHAPTER 2. RELATED WORK

Figure 2.1: A typical graphical representation of LDA. The boxes are called ”plates” and
they are representing replicates. The outer plate stands for the documents,
and the inner plate represents a repeated choice of documents and words in
a document. [Blei, 2003]

in order to move the words from one document in the space of the other. The Method
relies on the Earth Mover Distance and learned word embeddings of the document. The
use of word embeddings helps this approach to be relatively word independent. This
means that two texts, one about ML, the other one about software development, will
not share many words, however since the words in these texts might co-occur in other
documents, the word embeddings are not too far from each other which would result in
a closer distance. In contrast to a BOW with cosine similarity where the similarity is
solely based on the extent shared words. According to the author, advantages of this
method are that it is hyperparameter-free and it showed good performance in information
retrieval and classification tasks [Kusner et al., 2015].

Doc2VecC is another approach to learn document embeddings, the C in the name
stands for corrpution. Unlike Doc2Vec, Doc2VecC does not learn the document embed-
ding but rather averages aof word embeddings and optimizes these word embeddings to
create good document embeddings. The corruption model is a regularization process
that favors rare words over common or non-descriptive ones forcing these embeddings
to be close to zero. In this way the process avoids over-fitting, and also reduces the
computational cost. [Chen, 2017]

StarSpace is, according to the authors, a general-purpose neural embedding model
that can solve a wide variety of problems: like text classification, information retrieval or
web search, collaborative filtering-based or content-based recommendation, embedding
of multi-relational graphs, and learning word, sentence or document level embeddings.
Entities are represented as a bag of discrete features (bag-of-features). Interestingly the
StarSpace model can compare entities of different types together since entities can be
split up into finer grained entities (like a document is a bag of sentences, a sentence is
a bag of words, a word can be a bag of letters etc.) This is an promising multipurpose
approach which could become fascinating for various data science tasks.[Wu et al., 2017]

In 2015, [Kiros et al., 2015] presented their encoder skip-thoughts. Skip-thoughts is

8

2.3. CRITIQUE OF WORD EMBEDDING EVALUATION METHODS 9

inspired by the Skip-gram model from Word2Vec, but instead of creating word vectors
and predicting the surrounding words, this encoder tries to encode sentences to a vector
and predict on a sentence level surrounding sentences.

Sent2Vec follows a similar approach comparable to Doc2Vec of [Le and Mikolov, 2014]
or the Continous Bag-of-Words (CBOW) of [Mikolov et al., 2013b] but it uses compo-
sitional N-gram features. A sentence embedding is the average of all word and n-gram
embeddings in one sentence, but these word vectors are especially trained to return
meaningful averaged document vectors [Pagliardini et al., 2017].

2.3 Critique of word embedding evaluation methods

Since some of the discussed models are based on word embeddings, it is essential to
include the critiques of these models following a review of three papers criticizing the
advertisement and the claims made by the word vector community.

Analogies are often used to describe the benefits or the added value of the vector
space representation of words in word-embedding methods like Word2Vec. These vector
models suggest that words like ”debug” and ”debugging” should have a similar vector
distance and direction as ”read” and ”reading.” In [Linzen, 2016], different methods that
compared the relationship of four words and their corresponding vector arithmetic are
evaluated. Following the famous example King −Men + Woman = Queen illustrated
in a standard formula in equation 2.1.

a∗ − a+ b = b∗ (2.1)

Where a and a∗, and b and b∗ are semantically related and the retrieved result x∗ should
be the same as b∗. While the vanilla version of this vector calculation does not perform
well at all, simpler methods that ignore a, a∗, or b in the set of possible perform better.
The evaluated methods are:

• The previously stated Vanilla (Eq. 2.1), where nothing was changed.

• The same as above Add where a, a∗, b are ignored.

• Only-B where just the closest neighbor of b without a, a∗, b were considered.

• Ignore-A a∗ + b where a is completely ignored.

• Add-Opposite −(a∗ − a) + b

• Multiply illustrated in equation 2.2.

• Reversed Add

• Reversed Only-B

9

10 CHAPTER 2. RELATED WORK

x∗ = argmax
x′ 6∈{a,a∗,b}

cos(x′, a∗)cos(x′, b)

cos(x′, a)
(2.2)

The authors explored that the accuracy of this relationship is highly dependent on
category of the analogy. Common capitals (Athens, Greece), All capitals (Abuja, Nige-
ria), Nationalities (Albania, Albanian), Gender (boy, girl), Singular to plural (banana,
bananas) and Adjective to comparative (bad, worse) worked good. However, Adverb
to adjective (amazing, amazingly), Adjective un-prefixation (acceptable, unacceptable)
and currencies(Algeria, dinar) do not work that well. The method Multiply returned
slightly better results than the Add.

In [Finley et al., 2017] the authors measured Reciprocal of Rank (RR) instead of ac-
curacy which is supposed to act as a ”softer” version of accuracy. Acuracy is not able
to account for analogy difficulty since some analogies like singular and plural are easier
as singular and plurals are in fact the closest words in the vector space to each other.
RR can also be helpful to measure and quantify near misses which would be reduced to
zero when using just accuracy. In the paper, the RR values of two methods a baseline
similar to the Only-B mentioned above but they also included a to the formula for RR
illustrated in equation 2.3 and an alternative approach the RR of a similar calculation
like the Add as mentioned earlier.

rankbase = min(rank(argmax
w∈V

(w · w2)), rank(argmax
w∈V

(w · w3))) (2.3)

The analogy tasks were split into four groups: Inflectional morphology, Derivational
morphology, Lexical semantics and Named entities. Both results per analogy task were
plotted on both sides of the graph and connected through lines, illustrated in Figure 2.2.
Interestingly, most of the steep lines belong to well-known examples while it seems that
other analogies do not work the same way. All these examples in papers that show how
good these vector arithmetic works might just be corner cases that work much better
then most others. The authors state that vector arithmetic with word embeddings works
best when the co-occurring words are limited to only a small number of words. This
is reasonable because otherwise the result space has a wider range of possible solutions
space [Finley et al., 2017].

[Rogers et al., 2017] did research in this field of proportional analogy problems ((King−
Man) + Woman = Queen). They split the analogy tasks into the same four groups
and compared the results of different methods for these four groups similar to the pre-
vious paper. They follow the example of ”marry” and ”remarry” and critiqued several
weak points of these analogy tasks. First, they looked at the 3CosAdd (referred to as
Add earlier). They used different verbs e.g., do = a, and redo = a∗ , b was marry
and the expected result should be b∗ =remarry. Interestingly, in the example shown
remarry was never reached even though it would have been close to the returned result.
A possible reason why this test failed might be because of a messy corpus. However,
other problems are also apparent. Semantics and linguistics are messy and often not
quite as simple and regular as a scientist might wish. The arithmetic used to calculate
its proportional analogy is commutative and could be used the other way round like

10

2.4. EVALUATION OF EMBEDDINGS 11

Figure 2.2: Mean reciprocal rank shifts of the four sub categories using the baseline and
Add [Finley et al., 2017].

(Woman −Man) + King = Queen which only remotely makes sense. Another exam-
ple here is Man − Woman which should result in ”femaleness” or ”maleness”. This
semantic feature defies definitions, which only are applicable for some parts of the words
and imposes an unrealistic binary opposition. The last problem mentioned is that even
analogies have their ambiguities. The example from the paper is ”A trout is to river
as a lion is to .” Some could say ”den” other could say ”savanna” depending on the
understanding of what is the river actually for the trout, is it a home or a habitat.

As illustrated with the three papers, above analogies and language in general are
indeed more difficult than simple vector arithmetic. The ambiguity of language and the
fact that not everything can be measured in co-occurrence is also a factor. Another flaw
of the vector embeddings is that these base model cannot distinguish between different
concepts of the same word as a bank can be a financial institut but also a furniture.

2.4 Evaluation of Embeddings

Evaluation of the embeddings is necessary, unlike features engineered by humans, e.g.,
counting words, counting punctuation signs and others, these n-dimensional vectors do
not contain interpretable figures, but order words or documents on high-dimensional
dense vector spaces closer together or further apart. Therefore, evaluation is needed to

11

12 CHAPTER 2. RELATED WORK

help asses the quality of an embedding or to be able to compare different approaches
with each other. These quality assessments come in two flavors: Intrinsic and extrinsic
evaluation.

Intrinsic Evaluation Intrinsic evaluation is the evaluation of the output with a spe-
cific intermediate task, in contrast to the task the model was built for (downstream
task). For word vectors, this could be an analogy completion task as shown in Table
2.1 or similarity checks. These tasks are simple and therefore fast to compute. They
help to understand the produced vector spaces, but there should also be a positive cor-
relation of success rate with the real downstream tasks to determine the usefulness of
the system, which can be hard to find or hard to evaluate whether such a correlation
exist. Another problem is that for intrinsic evaluation datasets often have to be created
or special annotated datasets have to be used.

Analogy evaluation:

Table 2.1: Table with word analogy examples
Analogy task Example Modus

Capital City 1 : Country 1 : : Capital City 2 : Country 2 Chicago : Illinois : : Houston Texas semantic
Gerund 1: Past Participle 1 : : Gerund 2: Past Participle 2 dancing : danced : : decreasing decreased syntactic

Correlation evaluation:
Another method of intrinsic evaluation of word vectors would be the correlation between
similarity in the embedding space and one from human labeled data on how similar words
are from 0-10 where zero is not similar and ten means very similar. WordSim a famous
word similarity data set was created by [Finkelstein et al., 2002].

Extrinsic Evaluation Extrinsic evaluation is the evaluation of the real tasks the
system was built for. Unfortunately, the final assessment can be slow to compute.
Optimization for an extrinsic task might not give answers to which subsystem is not
performing well, since the model creation part and the classifier are involved. Hence, an
intrinsic evaluation is needed. Examples of extrinsic tasks depend on the problem that
should be solved through ML, but usually, it is a classification problem. This can be
handled through linear or nonlinear classifiers.

Evaluation of Document vectors Evaluation of document vectors is essential be-
cause these vectors are not human readable or even nonsensical for a human reader.
Therefore, the features generated from documents have to be fed into another machine
learning task to evaluate the real benefit and performance in these tasks. Compared to
word vectors, where high cosine similarity of words can be assessed easily whether or
not this high value makes sense, document vectors are much more complicated because

12

2.4. EVALUATION OF EMBEDDINGS 13

they can be understood as a compound of words in a text and an encoding that trans-
forms these words into a vectors. This makes it much harder to compare these document
vectors easily. Following below, different tasks used in the field are described.

Classification tasks A classification problem tries to add a label to input data. The
input data might be a sequence, a text, an image or anything else that has a data
representation. A classification problem is a supervised learning method. The data that
is used to generate the model is split in two, sometimes three parts. A bigger part of the
data is used as training data and the rest as test data. The test data stays untouched
while the training data can be augmented, or noise added in order to create a more
robust system. The model is fed with the training data. In the learning process it tries
to derive rules from this data to successfully predict the labels of the training set. As
soon as the training is finished, the test or evaluation data is fed to the model, which
then tries to predict the classes.

The accuracy of the training and test datasets are compared. In case the model
fits the training sample perfectly but underperforms in the test set, the model overfits
the training data. Overfitting is not what the model is intended to do. A remedy for
over-fitting is regularization which makes the model more applicable in a wider range of
applications also for other sets or the real world. There exist a wide range of Classifier
methods such as decision tree classifiers, rule-based classifiers, neural networks, support
vector machines, and naive Bayes classifiers.

N-fold cross-validation can be used to make the classification task independent of the
train-test split. Here all the data is split into N pieces, and each of the pieces acts once
as a test set and the rest as the training set, the average of the N computed accuracies is
then the accuracy of the classifier. To prohibit the possibility of unequal distribution of
classes which might result in wrong decisions of the classifier the distribution of classes
can be stratified such that each split can represent the class distribution of the whole
data set.

Sentiment analysis Sentiment analysis is a supervised learning problem, and in
principle a classification task. The goal is to successfully predict the sentiment, usually
of texts. The classification can be either just positive or negative, binned steps of the
continuum between positive and negative. In sentiment analysis, single words (also
called unigrams) play a smaller role but n-grams are more critical since the existence
and position of a single ”no” can change the whole meaning of a sentence.

Semantic Relatedness Semantic relatedness is an intrinsic evaluation which is im-
portant for document embeddings because similarity results for words are better un-
derstandable than similarity results of texts, because text are longer and the extend of
relation of two text is harder to asses than whether ”toad” or ”frog” should be close or
far from each other.

Possible methods are sub sampling of groups where some documents should be close
and one should be distant. Another possibility is to query a document to get the nearest

13

14 CHAPTER 2. RELATED WORK

neighbors and asses wheter they are close or not. But these methods all rely all on the
knowledge of the group or class.

Another method that was used by [Dai et al., 2015] was the vector arithmetic approach
similar to the famous King and Queen example but with the embeddings of documents.

2.5 Neural Encoder

Encoder and Decoder Architecture Encoder-Decoder is a deep neural network
existing in different flavors such as simple dense-NN, CNN, RNN, LSMT and GRU. An
auto-encoder is a special variant of the encoder-decoder architecture where the input
is the same as the output. Figure 2.3 shows an example architecture that simplifies
the output and then blows it up again to the original size. The encoder takes as input
features and transforms them into a feature map, a vector or a tensor. The decoder
tries to match the output of the encoder with the initial input or the wanted output.
Encoder-decoder is an unsupervised ML method. These systems try to minimize the loss
between the input and the intended output. This technique is used for image de-noising,
dimensionality reduction or general compression of data, but in NLP these systems can
be used for translation, summarization or chat bots.

Figure 2.3: An n/p/n Autoencoder Architecture [Baldi, 2011].

Attention Model The attention model is a novel model in ML developed by [Bahdanau et al., 2014],
that in essence tells the ML algorithm how much attention should be paid to each input
parameter and at which time step. Coming from an encoder-decoder architecture where
a text is encoded into a fixed length vector and then decoded into another language, in
the decoding phase the network is forced to generate a massive sequence of words from
only one encoded input data. This generally works well for shorter sentences, but the
performance decreases the more prolonged the sentences get.

The attention model here acts how even a human translator would work, translating
one part of a sentence after another, combining everything for the final translation,
where also each of the previously translated parts adds information to the result of the
current part. In Figure 2.4 a graphical example is illustrated. The amount of attention
y<t> should pay to a<t

′> is α<t,t
′>, where α<t,t

′> is a soft-max function of e<t,t
′> and

eij generated by the alignment model:

eij = a(si−1, hj) (2.4)

14

2.5. NEURAL ENCODER 15

a is a neural feed-forward network that is trained together with all other components
of the proposed system.

Figure 2.4: A graphical illustration of the attention model trying to generate the t-th
target word yt given a source sentence (x1, x2, ..., xT) [Bahdanau et al., 2014]

Unfortunately, a weakness of the attention model is that the resources used grow
quadratic with the length of the sentence.

Attention is not only used in machine translation but can also be used for other ma-
chine learning tasks like image recognition, where some parts of an image are more im-
portant than other parts to determine what is actually on that picture [Xu et al., 2015].

Universal Sentence Encoder [Cer et al., 2018] created a pre-trained off-the-shelf
encoder that can encode text on a sentence level also using the attention model. This
encoder was trained through multi-task learning. Multi task learning with an encoder
can be understood as a tree, where the stem is the encoding part and the branches are
various ML tasks. They mutually optimize the encoding in order to better perform on
their tasks, while the encoder learns the function to derive this encoding from the input.

15

3

Methods

In this chapter, all the methods used for the experiments are explained starting with
text preprocessing, vector space models, used word embedding algorithms, document
embedding algorithms and evaluation of the latter two.

3.1 Corpus Preprocessing

Text pre-processing is important in order to reduce artifacts of words that do not help
but rather obscure any textual task. It also helps to divide the text into smaller portions
to reduce the complexity.

Tokenization Tokenization is the first of many text preprocessing tasks, and it is
therefore essential for all the tasks that follow it, e.g., normalization and parsing. Text
tokenization is the process of splitting up the text into chunks (the so-called tokens).
These tokens might be words, sentences, paragraphs or documents depending on the
needs of the analysis or the downstream application.

Normalization Text normalization is a text pre-processing step that includes cleaning
text, case conversion, correcting spellings, removing stop words and other unnecessary
terms, stemming, and lemmatization. Following below are all the intermediate steps
involved in the text normalization process in detail:

Cleaning Cleaning describes the process of stripping away unnecessary parts of the
text to get better results in downstream tasks due to less ambiguity, which could not be
resolved by the computer otherwise. Cleaning can be split into three main tasks: the
removal of stop words; the normalization of the cases; and the removal or escaping of
punctuation marks. Stop words examples are ”how”, ”to”, ”the”, ”you”, ”a”, ”lot”, ”of”
just to mention some of them. These words are meant not to give sufficient information
to the text and therefore should be removed. The normalization of the cases is an easy
task and changes the whole text to lower case. If not, words written with a capital first
letter would not be counted as the same word as the one in lower case. The last step
is either deleting punctuation marks in the text or escaping these with spaces around.

18 CHAPTER 3. METHODS

To reduce the ambiguity between the same words with and without them. An example
here would be the sentence ”How old are you?”. If split by whitespace this sentence the
last token is ”you?”. However, a better result would be to get two tokens from it ”you”
and ”?”. In this way, we do not add any unnecessary new words to the corpus that do
not occur often and therefore do not help to provide information for any downstream
ML tasks.

The tollowing two methods, stemming and lemmatization, can break the ”curse of
dimensionality” which means that the larger the dataset or the corpus gets, the final
representation of the data becomes.

Stemming Stemming is the process of reducing morphological variations like inflec-
tions and derivations to their stem (also called root form). It is important not to mix
the root stem with the root word since the stem might not be a correct lexicographical
word but the root word always is. There are different kinds of morphological disparities,
e.g., the plurality (woman versus women), gender (bride versus groom), tense (sink ver-
sus sunk), conjugation (to sink versus he, it sinks), etc. There are various alternatives
to applying stemming. One possibility is to create a lookup-table as a dictionary to
translate the forms to their stem. Another option is the Suffix-stripping algorithm by
[Porter, 1997] which removes common endings like ’ed,’ ’ing,’ ’ly’ etc. While this ap-
proach is fairly simple, more complex cases such as ’goose,’ ’geese’ might not be covered.
Depending on the language stemming may be more or less complicated. In English, this
task is relatively easy because of no real cases (similar to French), and few inflections
or uniform inflections of verbs, in contrast in German this task is much more difficult
because nouns and also verbs are inflected, as well as highly irregular.

Lemmatization is another approach to derive roots from words next to stemming.
For lemmatization, the task is to acquire the lemma the correct lexicographical word
based on the input word. Lemmatization uses unlike stemming a mostly human curated
dictionary to look up words and replace it with the correct root or also called lemmas.
For lemmatization Part of Speech, tagging is also essential to derive the right word. A
common and widely used vocabulary in English is WordNet [Miller, 1995].

Parsing Parsing adds a syntactical structure to words in a text and explains further
how the word is used in the text and specific context. The algorithm that executing
the structural analysis and applying categories to words is called parser. Some examples
of these categories are verbs, nouns, prepositions, adjectives, etc. Parsing is a difficult
task because of the lingual ambiguity. The sentence ”I saw the man with the glasses”
might be understood in two different ways.

• Through the glasses, I saw a man.

• I saw a man, he wore glasses.

Parsing might build a structural tree and try to solve the occurring problems of ambi-
guity.

18

3.2. WORD EMBEDDINGS 19

Filtering Infrequent Words Depending on the task that has to be fulfilled cutting
off words that do not often appear in the corpus might be beneficial. The reason why
they do not often appear in the text is that these words contain typos, are names, or
rare long words borrowed from Latin or Greek, e.g., ”electroencephalographic”. These
words only blow up the vocabulary without providing much predictive power, to any
downstream ML tasks. Therefore, they should be filtered out.

3.2 Word Embeddings

Word2Vec Word2Vec builds upon the idea that words in a similar context also have
a similar meaning. At the beginning of the algorithm, the vectors for each word are
randomly initialized. Then, the algorithm starts to pass through the corpus with a
center word and a context window around that center word. The dot product of the
center word with the context words is calculated, and the result is minimized using
Stochastic Gradient Descent (SGD). Whenever two words co-occur in a window together
their distance to each other is shortened, the more often this happens, the closer the two
words get. Negative sub-sampling was added to address the problem that an extensive
corpus would just put all the words together because they might all co-occur. The sub-
sampling maximizes the distance of randomly sampled words, not in the context window.
This process ensures that not all the words end up in the same place in the vector space.
The sub-sampling is based on the word frequency such that more frequent words also
get more frequently sub-sampled in this way the algorithm addresses the problems of
stop words.

When the training is complete, words with similar meanings are mapped onto a sim-
ilar vector space, for example, ”banana” and ”apple” should be closer together then
”banana” and ”philosophy.”

Following both of its variants are described:

Figure 3.1: Explanatory image of Skip-Gram and CBOW [Mikolov et al., 2013a]

19

20 CHAPTER 3. METHODS

Skip-Gram (SGNS) In the SGNS algorithm, word embeddings are created by
looking at one word and maximizing the chance of predicting the surrounding words.
If we have the sentence ”A fox jumps over the lazy dog” and a window size of seven,
if ”over” is used as input, SGNS should predict: ”a”, ”fox”, ”jumps”, ”the”, ”lazy”,
”dog”.

Continous Bag of Words (CBOW) CBOW follows a similar approach to SGNS
but the other way round. Looking at some words before and some after a center word,
this center word tries to be correctly predicted. The context word vectors are aggregated
through the sum of these vectors in order to get only one vector.

Global Vector (GloVe) Unlike Word2Vec, which focus on local properties of sen-
tences and words, GloVe uses a global count statistic in the form of a co-occurrence
matrix where words of a certain window size occurring together are counted. In the
GloVe paper, it is argued that meaning is highly related with the co-occurrence of
words. Taking their example ”ice” and ”steam” are two different states of water. It
is expected that both words often co-occur with water. In contrast to the word ”cold,”
it is not expected to be seen together with the word ”steam” often. GloVe formalizes
this co-occurrence of words, where it tries to optimize the dot product between a word
vector and its content vectors to be as close as the co-occurrence probability as possible.

wTi w
′
j + bi + bj = logXij (3.1)

where X is the co-occurrence matrix and Xij the co-occurrence of wi and wj in the
specified window. bi and bj are scalar bias terms associated with the corresponding
word.

J =
∑
i=1

∑
j=1

f(Xij)(w
T
i w

′
j + bi + bj − logXij)

2 (3.2)

Objective function J tries to minimize the sum of squared errors of the previous function.
[Pennington et al., 2014b]

Interestingly, similar to Word2Vec also Glove has a way to deal with frequent words.
The input for this function is Xij , which represents the number of times when i is in the
context of j.

f(x) =

{ x
xmax

α if xmax
1 otherwise

}
(3.3)

The results were achieved when α = 3
4 and xmax = 100.

3.3 Document Embeddings

A document embedding gives a document a representation in a latent space. The goal
of document embeddings mainly is to work as input for various downstream machine
learning tasks like sentiment analysis or information retrieval.

20

3.3. DOCUMENT EMBEDDINGS 21

Doc2Vec Similar to Word2Vec this approach comes in two flavors. The Doc2Vec
version of the Word2Vec CBOW is called Paragraph Vector Distributed Memory (PV-
DM), and the Doc2Vec version of the SGNS is called Paragraph Vector Distributed Bag
of Words (PV-DOW).

PV-DM PV-DM tries to predict the focus word given document and context. As
mentioned in [Le and Mikolov, 2014], PV-DM should perform consistently better the
following approach PV-DOM.

Figure 3.2: PV-DM [Dai et al., 2015]

PV-DOM This algorithm predicts the probability of the context with the given
document. It is similar to SGNS from Word2Vec, but instead of focusing on the focus
word the document is conditioned.

Figure 3.3: PV-DOM [Dai et al., 2015]

Word Embedding Centroids Document representations can also be derived from
a function of all the word vectors contained in a document. In this approach, word
vectors pre-trained or learned can be summed up, averaged, the minimum or the max-
imum for each dimension in the vector space can be taken. The term word embedding
centroid was coined by [Brokos et al., 2016]. But this method is often used as a baseline
model to construct document embeddings from word embeddings [Weston et al., 2014,
Dai et al., 2015, De Boom et al., 2016].

21

22 CHAPTER 3. METHODS

[De Boom et al., 2016] suggested to take the minimum, maximum, sum or average of
as aggregation function to retrieve basic document embeddings. They slso suggested
approaches that weight word vectors with TF-IDF.

The methods to construct the document vectors are illustrated below. The examples
are illustrated with ~v as the resulting document vector and ~a, ~b and ~c as the word vectors.
The example is of dimension 3, and the text contains three words.

SUM v1v2
v3

 =

a1 + b1 + c1
a2 + b2 + c2
a3 + b3 + c3

 (3.4)

AVG v1v2
v3

 =


(a1+b1+c1)

N
(a2+b2+c2))

N
(a3+b3+c3))

N

 (3.5)

MIN v1v2
v3

 =

min(a1, b1, c1)
min(a2, b2, c2)
min(a3, b3, c3)

 (3.6)

MAX v1v2
v3

 =

max(a1, b1, c1)
max(a2, b2, c2)
max(a3, b3, c3)

 (3.7)

3.4 Bag of Words (BOW)

BOW is a vectorization process for text. This process gives the text a sparse representa-
tion in a vector space. The vector space has the size of the unique words contained in a
corpus. Words are counted in a document where each word is represented as a one-hot
vector, with a 1 for the current word and the rest of the vector is zeros. The multiplica-
tion product of the word vectors with their occurrence is then summed up, resulting in
the final BOW for the document, a single vector. Similar to document embeddings, this
model does not account for the word order. To compare several documents, large sparse
vectors are needed, which makes it difficult to be used for ML tasks. Because fixed input
length is a preferable feature for various ML algorithms. An example here are neural
networks where the input size might be necessary for subsequent hidden layers.

22

3.4. BAG OF WORDS (BOW) 23

TF-IDF is the abbreviation of term frequency-inverse document frequency. The fre-
quency distribution of words in a natural language text follow a Zipf or Power Law
distribution and consequently a small number of words occur often while most other
words are located somewhere in the long tail of the distribution. An untreated BOW
model weights common words higher than rarer words. Unfortunately, frequent words
do often not contribute in elaborating the specific context of a sentence, and therefore
they might act as noise. TF-IDF accounts for this issue and introduces the document
frequency. This helps to weight words higher that only occur frequently in a specific
document while generally frequent words are weighted lower or even canceled out if they
occur in every document.

Term Frequency Term frequency is the count of each unique term of a document.
One problem with the term frequency is that it is highly correlated with the length of
the document. Longer documents also have higher document frequencies then shorter
ones. A simple mitigation of this problem is the weighting of the term count that all
term counts sum up to one.

Let tft,d be the frequency of a word wt in document dd and dft be the document
frequency of word wt.

Inverse Document Frequency While term frequency is calculated for a specific
document, inverse document frequency is calculated among all documents. It cancels
words that occur in all documents out and decreases the weight of frequent wordsr.

The inverse document frequency is defined as idft = log 2 N
dft

, where N is the total
number of documents.

Finally, TF-IDF is defined as:

tf -idft,d = (1 + log 2tft,d) · log 2
N

dft

Other modes of TF-IDF normalize either tf or idf to diminish the influence of the
document size.

Used Weighting Schemes Following the four different weighting schemes for the
word representation in a BOW applied in the experiments :

TF-IDF In this mode, the numbers in the BOW document vector are weighted
according to the TF-IDF.

Count In this mode, the raw count per words is used in the vector for each text.

Freq In this mode the all the numbers for each word occurring in a document sum
up to 1.

23

24 CHAPTER 3. METHODS

Binary In this mode, if the word is in the text, a one is in the vector otherwise a
zero. This mode is especially helpful when used together with ML tasks since this can be
used as a multi-label classification problem, where each word in a text is an additional
label.

3.5 Neural Auto-encoder

In addition known baseline methods, a method was created to get document embeddings.
The new process used a simple deep neural network auto-encoder setup. Auto-encoder
have perfect features for this task, because auto-encoding is an unsupervised machine-
learning method, where input and the same output can be used to train the encoder
decoder architecture. The goal is that the encoder learns how to encode some data to
compress it to use less space and then the decoder determines the step to reverse this
compression again to get the original output. The result can be compared with the
initial output, and both the encoder and the decoder can be trained to achieve the best
possible outcome. This is precisely what most embedding methods do in a different more
word and co-occurrence centric fashion.

To be able to feed text into the auto-encoder the binary vector encoding from BOW
was used. Here, words were used as a multi-class problem where the encoder encoded
the sequence until the sequence consists only of 300 numbers and then the decoder tried
to predict each word that initially was part of the text from the compressed numeric
vector. After this auto-encoder was trained sufficiently, the encoder is used to encode
new documents. The encoding can then be used for any ML tasks similar to learned
Doc2Vec embeddings.

24

4

Experimental Setup

In this chapter all the background for the experiments is shown, starting with the pre-
sentation of the different datasets that were used for benchmarking reasons. Then all
details about the implementation of the code for this thesis are explained, concerning
software but also hardware. In the Methods section, the final methods and their hy-
perparamters used for the Experiments are listed. Then the specific evaluation method
with the neural classifier is shown. Finally in the Methodology section all experiments
are listed, including their contribution to answer the hypotheses.

Table 4.1: The different statistics for each dataset.

CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC

Number of documents 3774 50000 10606 10662 18305 160128 79654 10000 5952
Mean number of words per document 20 265 3 21 174 7 9 24 10
Number of classes 2 2 2 2 20 5 2 2 6
Number of Words 5341 113321 6234 18758 77610 17828 17232 21322 8759
Words in Pretrained embedding 5296 89147 6199 18001 64499 17618 17038 20463 8675
Word in pretrained embedding ratio 99.16 78.67 99.44 95.96 83.11 98.82 98.87 95.97 99.04

4.1 Datasets

The evaluation was carried out on a series of datasets: Customer Reviews (CR), Movie
database (IMDB), Multi-Perspective Question Answering (MPQA), News Group (NG20),
two versions of the Stanford Sentiment Treebank (SST1 & SST2) a Subjectivity dataset
(SUBJ) and a question classification dataset (TREC). The datasets were selected such
that they cover a broad range of document sizes, number of classes, corpus size, and
vocabulary size. The detailed statistics of each dataset can be found in Table 4.1. A
table with the references and a short explanation for each dataset can be found in Table
4.2. A Table containing an example of each dataset and a corresponding class is listed
in Table 4.3.

Table 4.1 shows that the document length is less than 25 for most of the datasets.
IMDB and NG20 are the only two datasets that contain significantly longer documents.

26 CHAPTER 4. EXPERIMENTAL SETUP

This characteristic is highlighted in Figure 4.1, which plots the histogram of document
lengths. These two datasets show a bigger variance in length while all the other datasets
have one high peak around the mean document length of the dataset.

Basic preprocessing was conducted on each of the datasets. It included the lower-
casing of all words, splitting most of the punctuation signs from the words, splitting
short forms of negations, verbs or genitive ”’s” from the word they were attached to.
Then the text was tokenized.

Frequency distribution of the Datasets Figure 4.2 shows the word frequency, word
rank plot in log-log scale. Text follows a Zipf, Power Law, or Pareto distribution. These
laws or distributions describe an imbalanced distribution. The pareto principle says
that 80% of the wealth is owned by 20% of the people. These laws may be translated
into texts, that only a few words occur very often while other words tend to be rarer.
A theory that tries to explain the Zipf distribution is called ”principle of least effort”,
which states that animals, machines, and humans will tend to choose the path of least
resistance, in texts this results in the mentioned distribution. The Zipf distribution is
not only a feature of English but any language. The plotted distributions show this
with the most occurring words often are ”a”, ”.”, ”and”, ”the”, ”of” and many more. A
perfect Zipf distribution follows a straight sinking line.

26

4.1. DATASETS 27

0 100 200 300 400 500 6000

250

500

750

1000

1250

1500

1750

2000

Words per Document in CR

0 100 200 300 400 500 6000

1000

2000

3000

4000

5000

6000

Words per Document in IMBD

0 100 200 300 400 500 6000
200
400
600
800

1000
1200
1400
1600
1800 Words per Document in MPQA

0 100 200 300 400 500 6000

1000

2000

3000

4000

5000

Words per Document in MR

0 100 200 300 400 500 6000

500

1000

1500

2000

2500

3000

3500
Words per Document in NG20

0 100 200 300 400 500 6000

5000

10000

15000

20000

25000

30000

35000

40000
Words per Document in SST1

0 100 200 300 400 500 6000

5000

10000

15000

20000

25000

Words per Document in SST2

0 100 200 300 400 500 6000

1000

2000

3000

4000

5000

Words per Document in SUBJ

0 100 200 300 400 500 6000

500

1000

1500

2000

2500

3000
Words per Document in TREC

Words per Document

Figure 4.1: The distribution of documents length per dataset. The bins of the histogram
are the same while the y axis is different for each plot.

27

28 CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.2: This plot shows the words ordered by their frequency as a Zipf plot.

28

4.1. DATASETS 29

Table 4.2: Datasets

Dataset Description

CR Annotated customer reviews of 14 product categories from Amazon
(cameras, MP3s, etc.). The task is to predict positive/negative reviews
[Hu and Liu, 2004].

IMDB Dataset used in the paragraph vector paper [Le and Mikolov, 2014].
Consists of 100’000 movie reviews with 25’000 positive, 25’000 negative
and 50’000 not labeled documents. The dataset was gathered from the
IMBD movie review platform.

Movie Review -
RM

Movie reviews with one sentence per review. The classification task
involves detecting positive/negative reviews (Pang and Lee, 2005).
[Pang and Lee, 2005]

MPQA The MPQA short for Multi-Perspective Question Answering Subjec-
tivity Lexicon was created by [Wiebe et al., 2005]. This classification
task for this dataset is the opinion polarity detection on the phrase
level.

News Group -
NG20

The 20 Newsgroups dataset is a collection of approximately 20’000
newsgroup documents, distributed evenly across all the 20 different
newsgroups. The dataset was originally collected by [Lang, 1995]. Be-
cause of many artifacts and fragments in the text punctuation and
numbers were removed.

SST1 Stanford Sentiment Treebank is an extension of MR but with train/de-
v/test splits provided and finer grained labels (very positive, positive,
neutral, negative, very negative) [Socher et al.,].

SST2 This dataset is a revamped version of the SST1 where the dataset was
re-labeled and binned into only positive and negative where neutral
reviews were removed [Socher et al.,].

SUBJ Subjectivity dataset where the task is to classify a snipped as being
subjective or objective [Pang and Lee, 2004].

TREC The TREC dataset contains questions. The task with this dataset
involves classifying a question into six question types, whether the
question is about a person, location, numeric information, etc.
[Li and Roth, 2002].

29

30 CHAPTER 4. EXPERIMENTAL SETUP

Table 4.3: Examples of text and class for each dataset.

Dataset Document Class

CR weaknesses are minor : the feel and layout of the remote con-
trol are only so-so ; . it does n ’t show the complete file names
of mp3s with really long names ; . you must cycle through
every zoom setting (2x , 3x , 4x , 1/2x , etc .) before getting
back to normal size [sorry if i ’m just ignorant of a way to
get back to 1x quickly] .

0

IMDB bromwell high is a cartoon comedy . it ran at the same time
as some other programs about school life , such as ” teachers
” . my 35 years in the teaching profession lead me to believe
that bromwell high ’s satire is much closer to reality than is ”
teachers ” . the scramble to survive financially , the insightful
students who can see right through their pathetic teachers’
pomp , the pettiness of the whole situation , all remind me of
the schools i knew and their students . when i saw the episode
in which a student repeatedly tried to burn down the school
, i immediately recalled at
high . a classic line : inspector : i’m here to sack one of your
teachers . student : welcome to bromwell high . i expect that
many adults of my age think that bromwell high is far fetched
. what a pity that it is n’t !

1

MR simplistic , silly and tedious . 0

MPQA complaining 0

NG20 i am sure some bashers of pens fans are pretty confused about
the lack of any kind of posts about the recent pens massacre
of the devils actually i am bit puzzled too and a bit relieved
however i am going to put an end to relief with a bit of praise
for the pens man they are killing those devils worse than i
thought jagr just showed you why he is much better than his
regular season stats he is also a lot of fun to watch in the
playoffs bowman should let jagr have a lot of fun in the next
couple of games since the pens are going to beat the pulp
out of jersey anyway i was very disappointed not to see the
islanders lose the final regular season game pens rule

10

SST1 no movement , no yuks , not much of anything . 1

SST2 no movement , no yuks , not much of anything . 0

SUBJ smart and alert , thirteen conversations about one thing is a
small gem .

0

TREC how far is it from denver to aspen ? 5

30

4.2. IMPLEMENTATION 31

4.2 Implementation

The programs were written in Python, using [Anaconda, 2016] as a virtual environment
for package management across different servers. The code was written in Jupyter note-
books by [Kluyver et al., 2016]. Essential packages in Python are Keras by [Chollet et al., 2015]
for neural network learning, Gensim by [Řeh̊uřek and Sojka, 2010] for Doc2vec, Word2vec
and other NLP related tasks together with NLTK by [Loper and Bird, 2002] and Scikit-
learn by [Pedregosa et al., 2011] for cross-validation, training-test-splits or grid searches.

The code was deployed on a cluster with 12 nodes, each node containing 12 CPU
cores (2x AMD Opteron 6174 2.2 GHz) and 24 logical cores. Jobs were scheduled with
Slurm[Jette et al., 2002] a Linux workload manager. In order to run a task on Slurm,
two different scripts were needed. First, a bash script containing Slum specific parameter
like on which node the job should be executed or how much resources would be used,
and the command to execute the corresponding python script. In the Python script,
the actual program that runs experiment is located. All tasks were processed using 24
threads with nothing else calculated on the node. Each test was done in one pass through
all the datasets with three or ten-fold cross-validation depending on the task for each
dataset. The results were saved into a CSV file for each dataset and each method and
possible variations like SUM, TF-IDF etc.

For some tasks that did not rely on any parts contained in the Gensim module but
relied more heavily on Keras, a GPU cluster was used with eight GeForce GTX TITAN
X with 12207 MB GPUs. However, this was only used if the wall time was not measured.
In order to run the scripts on the GPU, the same virtual environment was used, and
some unique addition in the code forcing the usage of GPUs had to be added.

After all the data was collected and saved into CSV files, Jupyter notebooks that
retrieve the data and use them to generate plots were implemented. In this step, most of
the diagrams were constructed using the python package Matplotlib by [Hunter, 2007].

4.3 Methods

In this section all the methods evaluated are described and the corresponding hyperpa-
rameters are listed.

Bag of Words (BOW) In this method, BOW representations are built using all the
words in the training set to construct a bow representation of all the training and test
texts. The text is preprocessed such that every word is lowercased and to reduce the
vocabulary size, the minimum occurrence is set to 2. In case a word is not present in the
text a zero is written in the vector. The used variations of BOW were count, frequency,
binary and TF-IDF wheighted.

Pre-trained GloVe Vectors For this method, a large pre-trained GloVe corpus with
word vectors of dimension 300 is loaded, trained on 42 billion tokens and 1.9 Million

31

32 CHAPTER 4. EXPERIMENTAL SETUP

words in the vocablary [Pennington et al., 2014a]. A similarly strong Word2Vec pre-
trained corpus could also have been used. The word vectors for each word in a text have
to be grouped in order to create one document vector of dimension 300. The methods
used to aggregate the word vectors to a document vector are sum, minimum, maximum
and average.

Learned Word2Vec Vectors For this approach, word vectors are learned on the
training set documents. These word vectors are then further used to construct a simple
document vector same as the example above, eg. sum, minimum, maximum and average.

Learned Doc2Vec Vectors In this method, the algorithm of paragraph vectors
[Le and Mikolov, 2014] are learned and later used for the classification task. Also here
the document vectors are only learned for the training set and the test set is inferred
from the model with test texts as input.

4.4 Model parameters

To maximize the accuracy of the two hyper-parameter heavy methods Doc2Vec and
Word2Vec, these hyperparameters were learned with a time-limited grid search. The
grid search was applied only on one dataset and then used for all others. This procedure
is not advisable in a real-world application, but it ensures that the whole algorithm
stays comparable through all datasets otherwise every change of a parameter results in
a different acting model.

The grid search was applied using the Scikit-learn package. For the classifier, a simple
logistic regression was used knowing that a more complicated neural network classifier
could do an even better job. Using a simpler classifier was crucial because the neural
network classifier learning could take rather long. The grid search was evaluated in three
splits, where the hyperparameters with the highest mean would be candidates to become
the new hyperparameters of the method.

Hyperparameters of Word2Vec Below a list of all hyperparameters important
for the Word2Vec implementation in Gensim.

• Vector size 300
• Window size 16
• negative subsample 5
• minimum occurrence 2
• Iterations 50
• Sampling threshold 1e-5,
• sg = 1: the skip-gram model is applied.
• hs = 1: hierarchical soft max is used.

32

4.5. EVALUATION OF THE VECTOR MODELS 33

Hyperparameters of Doc2Vec Below a list of all hyperparameters important for
the Doc2Vec implementation in Gensim.

• Vector size 300
• Window size 15
• Minimum occurence 2
• Negative subsample 5
• Iterations 50
• Sampling threshold 1e-5,
• Minimum alpha 0.00025,
• initial alpha 0.025
• dm = 0: PV-DBOW mode is used.

Hyperparameters of Simple Neural Auto-Encoder Best results were achieved
with the input of the IMBD dataset BOW containing a vocabulary of 60’000 words,
which was then put through a net of 60’000 in the input layer, 1200 nodes in the first
hidden layer, 600 in the second hidden layer and 300 in the last hidden layer of the
encoder. Then the decoder attempts to blow up this sequence again with 600 and 1200
intermediate layer until the final layer of the output is reached again. Finally, the input
and output are compared, and the weights are adjusted to reduce the cost function, this
happens through back-propagation and gradient-descent.

The steps of 60’000, 1’200, 600, 300, 600, 1’200, 60’000 had from all the tested varia-
tions the best properties for the IMBD dataset. For smaller datasets with fewer words,
this was adjusted. The function should mimic the compression from the IMBD dataset
to other smaller datasets with the minimum of 300.

4.5 Evaluation of the Vector Models

The evaluation method was chosen to be the same for all different tested methods.
It consists of a neural classifier used with an input layer corresponding to the size of
the input, a dense hidden layer with 50 neurons and a final classification layer with as
many neurons as classes that need to be classified. This specific setup was proposed in
[Le and Mikolov, 2014].

Binary Class Case In the binary class case, a sigmoid activation function is used
together with the binary cross entropy loss function and the Adam optimizer.

Multi Class Case In the multi-class case, the activation function is softmax with
categorical cross entropy loss and the same Adam optimizer the same as in the two-class
case above.

33

34 CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.3: Exemplary setup of the network, classifying two classes and having a docu-
ment vector of size 300 as input.

4.6 Methodology

The description of the individual experiments is listed in this section. These experiments
were split into three main fields, accuracy, transferability, and speed. In the accuracy
part, the accuracy of the different methods was compared. In the transferability part,
the transferability mainly of the Doc2Vec method was looked at. Transferability means
here that models learned on one corpus could be reapplied to other corpora. Finally,
in the last part about speed, the different methods were compared against one another
according to their speed, including learning times or document creation.

4.6.1 Preprocessing effects

Accuracy Depends on Preprocessing Preprocessing the text can be essential and
is advisable since one can argue that words occurring only once do not help to build
prediction rules to differentiate documents from each other since this rule is not gener-
alizable. Another reason for words rare words could be, especially in customer reviews,
that the words are orthographically spelled wrong. Therefore they should either be
replaced, corrected or stemmed. The last preprocessing step could be the removal of
stop words. In some approaches, this problem can be diminished with the application
of TF-IDF weighting of words such that frequent words are weighted less than others.
Some approaches already have useful instruments that address these problems, such as
the negative sub-sampling of Word2Vec or the special weighting function for frequent
co-occuring words in GloVe.

Hypothesis: Pre-processing is important for higher accuracy since punctuation and
stop-words do not help on the classification problem.

Four datasets were selected to check the above-stated question. One dataset with

34

4.6. METHODOLOGY 35

short average document length TREC, two ”medium” datasets CR and SUBJ, one larger
dataset here the IMBD was used for this experiment. This base case was only prepro-
cessed such as lower-casing, punctuation surrounding with spaces, verb short forms,
negations were split from their verb part, and a word should occur at least twice. On
top of that new data sets were created. These datasets were stemmed, stop words re-
moved, punctuation removed and both stop word and punctuation removed and then
tested against their base case.

Stopword and punctuation removal were combined because both remove unnecessary
parts of the text making it shorter if one might be right the combination of both might
be even better. Stemming was not mixed with the other two since this is a different
form of normalizing changing not the text but the words in it.

4.6.2 Accuracy

Accuracy Comparison Method and Datasets To assess the hypothesis below, the
accuracy of the evaluation classifier was measured in a 10-fold cross-validation settings.
The classifier was trained for 5 epochs on each of the datasets.

Hypothesis:
Document embeddings outperform baseline methods in a classification task setup.

Might Doc2Vec be too complicated and BOW be an excellent approach to use in
classification tasks? Possible influencing factors like number of words, document size,
number of classes of the datasets should be examined across all the methods. Are there
benefits in some datasets that are idiosyncratic for the dataset or might it be a standard
feature of these kinds of datasets?

Since the IMBD dataset is evaluated, the best results should be comparable with the
ones stated in the paper of [Le and Mikolov, 2014] even though the vector dimension,
and the learning test split is different.

Hypothesis:
Document embeddings results from the paper can be reproduced.

Accuracy Depends on Document Length

Hypothesis:
Document embeddings depend on the length of documents for higher accuracy.

To answer the question above multiple datasets were created. The datasets contain
nine books from the NLTK corpus. The text of these books was normalized, cleaned and
then sub-sampled in text passages of length 50, 100, 200 and 400 allowing overlapping
or text passages to get enough samples and ignoring sentences borders. These created
datasets will enable the prediction of the book and author.

The creation of a new dataset was necessary because datasets with documents of
different length vary in their textual features and sources. A flaw of the dataset is the

35

36 CHAPTER 4. EXPERIMENTAL SETUP

overlapp in textual passages, which is getting more significant the more extended the
text passages to get. This problem is mitigated when the documents are rigorously split
in non-overlapping test and train sets (although then the measurement would rely on the
split properties). This problem was addressed with the modification of the dataset, once
with strict train, test split without cross-validation and once with 10-fold-cross-validation
without strict train,test split applied.

The analysis of the length of the document and its implication for the accuracy was
only applied to the two most important methods Doc2Vec and the variations of BOW to
test whether or not other methods profit from larger documents as a possible comparison.

Accuracy Depends on the Corpus Size In all methods, rigorous test train splits
were applied to the learning of the Doc2Vec and Word2Vec models. This approach is
probably against the nature of these models, especially Word2Vec where good results
can be derived from vast amount of texts. Therefore, a test is done on this topic, to
check whether or not more documents to train the embedding creation model would
result in higher accuracy.

Test: Train Doc2Vec on all documents. Use 90% to train classifier, use the rest
for 10% evaluation.
Base case: Train Doc2Vec on 90% of the documents. Use 90% to train classifier,
use the rest for 10% evaluation.

Accuracy of Simple Auto-encoder The method described in Section 3.5 is applied
on all the datasets and compared with the other methods. The encoder is trained on
the whole corpus such that each train test split in the cross-validation process could use
the same decoder to get the compressed BOW vector. Similar to the accuracy test the
results were evaluated after 5 epochs of the classifier in order to be comparable.

4.6.3 Transferability

Transferability is a nice feature in ML, because it can speed up other processes, further
down the ML pipeline. This concept is called transfer learning. An example of transfer
learning is the use of pre-trained word vectors, which can be used as an input for other
approaches like a CNN. These CNNs can then build upon the already learned concepts
from other models. But is this also applicable to methods like Doc2Vec? Could it
be that a pre-trained Doc2Vec model turns out to be useful to infer documents from
there, instead of learning them directly on the corpus not knowing which are the perfect
hyperparameters for this specific application

In these experiments, the transferability of externally trained Doc2Vec models is eval-
uated. That word vectors learned on huge corpora are used in myriad different ways
is already common data science practice. These pre-trained vectors are often used as a
baseline method, or as input for other methods [Chen et al., 2016].

Can Doc2Vec be learned on larger corpora and then be reused for smaller ones? The
general benefit would be that the training time could be reduced and replaced with

36

4.6. METHODOLOGY 37

just the loading time of the right model. Pre-trained word embeddings learned on
a vast amount of data also bear the benefit of proven generality on a wide range of
texts and words. Another good reason for transfer learning is that the generation of
such an embedding corpus, such as the one used for the pre-trained vector centroids
[Pennington et al., 2014a] might not be computable for most machines available.

But the inference of the document embeddings is only one part. It might well be that
the created embeddings are so general that even the classifier trained on one task can
be reused for other similar situations.

In the following, all transferability are described:

Doc2vec: Transferability of the Model

Hypothesis:
Document embeddings save effort since precomputed embeddings can be used in
many applications.

In this experiment, the idea is tested of the creation of an excellent Doc2Vec model,
trained on another dataset than the actual classification task. For this experiment,
Doc2Vec models were learned on each dataset. These models were then used to derive
document embeddings from all other datasets. These generated document embeddings
learned on an external dataset, were then classified and the accuracy was compared with
the accuracy that was initially measured when the Doc2Vec model was learned on the
same dataset as it would also be used.

The intuition would be that bigger dataset, with richer documents and a with a similar
domain, should be able to create embeddings that ”work”, while datasets in a different
field and smaller as the target dataset should result in bad performance.

Test: Learn doc2vec on dataset A infer documents of dataset B, use the inferred
embeddings from B.
Base case: Learn doc2vec on B train a classifier. (Result from the Accuracy
section)

Doc2vec: Transferability of the Model and the Classifier

Hypothesis:
Document embeddings save effort since the same classifier can be used in many
applications.

In this case, not only one model as in the case above is reused, but both models
are kept. Here the embedding creation model and the binary classifier is reused in all
applicable cases. All possible datasets that predict a binary label are here CR, IMBD,
MPQA, MR, SST, and SUBJ. But only CR, IMBD, MR and SST are sentiment analyis
tasks. The result of MPQA and SUBJ are thought to be low in any case since the task
is not to predict a sentiment but subjectivity or objectivity. What could be expected is
that the IMBD dataset and its classifier cover enough material such that the application
on the MR dataset which has a similar domain should result in a satisfactory result.

37

38 CHAPTER 4. EXPERIMENTAL SETUP

Test: Learn Doc2Vec on dataset A, learn classifier on the embeddings of A, infer
document embeddings learned on A on B use the classifier trained on the embed-
dings from A.
Base case: Learn doc2vec on B, train a classifier. (Result from the Accuracy
section)

BOW Transferability of the Classifier Similar to the experiment in 4.6.3, this is
also attempted for the BOW models and its variations The expected result would be a
similar or worse performance and the reasons for better results are also similar to the
experiment with Doc2Vec, where models trained on bigger corpa should also be able to
cover more cases.

Test: Create a BOW vectorization for A, learn the classifier for A, create vector-
ization for B using the same vocabulary as for A. Use classifier of A for B.
Base case: Create an embedding for B learns the classifier for B.

4.6.4 Speed

Speed is often a valuable resource especially in the times of fast Internet and very capable
mobile phones. Therefore, speed cannot be neglected in this evaluation. The speed of
the different methods is looked at, precisely how long it took to set up, learn and evaluate
the models for each method and dataset methods. Light is shed on the classifier and
its performance along the time axis. Hence, for each dataset and each method, models
were created in a three-fold cross-validation process, where the classifier was evaluated
after each epoch, reporting time and accuracy, in a total of 50 epochs. Three questions
were assessed two further answers the hypothesis.

Hypothesis:
Document embeddings save time since they reduce the complexity of the documents
to reduce the work for the classifier.

How fast does the classifier converge? For each dataset and each method, this is
checked. Are there differences in the methods and do some methods take longer for the
classifier to grasp their potential? Another important question is when is a maximum
reached. While in the previous Accuracy section the epochs were set to 5 as a boundary
rul,e now the behavior of the classifier can be further investigated.

What is the final accuracy? In the previously stated evaluation of the classifier
after each epoch for 50 epochs, the average of the three-folds was used to get a mean
accuracy of each epoch step. The maximum of these accuracies was taken to create a
ranking to give better advice on which of the methods performs best.

38

4.6. METHODOLOGY 39

How long does it take? For each dataset and each method, the duration of loading
exterior datasets like pre-trained embeddings, training of models, construction of docu-
ments and the learning of the classifier is checked and compared against each other, to
finally create a ranking of the methods on all datasets.

39

5

Results

In this chapter, all the results of the previously stated experiment chapter are listed and
discussed. This includes the three main parts accuracy, transferability, and speed.

5.1 Preprocessing effects

The results of preprocessing on five different levels with four different datasets are com-
pared among two methods, namely Dov2Vec and the BOW variations. In the first part,
the influence of the preprocessing on the accuracy is examined, and in the second part,
the effect on the speed is discussed. The transformation of the dataset in its prepro-
cessed versions was left out because of the vast speed of this step even on commercially
and publicly available computer hardware.

5.1.1 Preprocessing Accuracy

Table 5.3 and 5.2 together with Figure 5.1 and 5.2 show the mean accuracy of the baseline
together with four different preprocessing steps, no punctuation, no stop words, no
punctuation and no stop words and stemming for the two methods BOW and Doc2Vec.

Table 5.1: The results of Doc2Vec of the four datasets CR, IMBD, SUBJ and TREC pre-
processed differently and compared with the baseline the basic preprocessing.
In bold the highest accuracy per line in italic the lowest.

d2v Only basic preprocessing No punctuation No stopwords No punctuation & No stopwords stemmed

CR 74.735 74.193 73.393 73.251 75.040

IMBD 83.476 83.476 83.440 83.208 83.657

SUBJ 88.550 88.835 86.770 86.635 87.515

TREC 58.148 58.752 51.961 50.605 58.553

The results show that accuracy-wise, preprocessing does not provide substantial bene-
fits. The results offer that stemming might lead to slight accuracy gains. Small accuracy
gains can also be retrieved through the removal of punctuation, but stop word removal
can lead to a slight accuracy loss, especially in datasets with short mean document
lengths like TREC. This effect is also visible in the two smaller datasets CR and SUBJ,
but it is lessened in datasets with longer documents like IMBD.

42 CHAPTER 5. RESULTS

CR

CR_no_punct

CR_no_sto
p

CR_no_sto
p_no_punct

CR_ste
m

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy CR d2v

IMBD

IMBD_no_punct

IMBD_no_sto
p

IMBD_no_sto
p_no_punct

IMBD_ste
m

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy IMBD d2v

SUBJ

SUBJ_no_punct

SUBJ_no_sto
p

SUBJ_no_sto
p_no_punct

SUBJ_st
em

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy SUBJ d2v

TREC

TREC_no_punct

TREC_no_sto
p

TREC_no_sto
p_no_punct

TREC_ste
m

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy TREC d2v

Figure 5.1: The accuracy of the Doc2Vec method on the four different datasets and four
different preprocessing methods.

Table 5.2: The results of the many BOW variations of the four datasets CR, IMBD,
SUBJ and TREC preprocessed differently and compared with the baseline
here the basic preprocessing. In bold the highest accuracy per line in italic
the lowest.

bow Only basic preprocessing No punctuation No stopwords No punctuation & No stopwords Stemmed

CR binary 79.531 79.757 78.352 78.299 80.458

CR count 80.367 80.248 78.139 78.113 80.497

CR tfidf 79.585 79.505 77.609 77.848 80.206

CR freq 78.750 78.458 77.980 78.073 79.438

IMBD binary 88.309 88.485 88.243 88.164 88.185

IMBD count 88.540 88.661 88.673 88.630 88.699

IMBD tfidf 88.997 88.790 88.893 88.850 88.603

IMBD freq 90.744 90.796 90.776 90.750 90.334

SUBJ binary 90.545 90.530 88.750 88.775 90.885

SUBJ count 90.625 90.680 89.060 88.945 90.730

SUBJ tfidf 90.590 90.640 88.670 88.620 90.355

SUBJ freq 91.285 91.165 90.255 90.270 91.350

TREC binary 83.904 83.735 72.093 72.378 83.803

TREC count 83.937 83.684 72.126 72.025 83.937

TREC tfidf 82.861 82.591 71.032 70.477 82.743

TREC freq 79.958 79.991 70.799 71.017 80.058

42

5.1. PREPROCESSING EFFECTS 43

CR_bow

CR_bow_no_punct

CR_bow_no_sto
p

CR_bow_no_sto
p_no_punct

CR_bow_ste
m

0

20

40

60

80

100
Ac

cu
ra

cy

Influence of Preprocessing on Accuracy CR bow

IMBD_bow

IMBD_bow_no_punct

IMBD_bow_no_sto
p

IMBD_bow_no_sto
p_no_punct

IMBD_bow_ste
m

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy IMBD bow

SUBJ_bow

SUBJ_bow_no_punct

SUBJ_bow_no_sto
p

SUBJ_bow_no_sto
p_no_punct

SUBJ_bow_ste
m

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy SUBJ bow

TREC_bow

TREC_bow_no_punct

TREC_bow_no_sto
p

TREC_bow_no_sto
p_no_punct

TREC_bow_ste
m

0

20

40

60

80

100

Ac
cu

ra
cy

Influence of Preprocessing on Accuracy TREC bow

bow_binary
bow_count
bow_tfidf
bow_freq

Figure 5.2: The accuracy of four BOW methods on the four different datasets and four
different preprocessing methods.

For Doc2Vec the highest accuracy was reached twice with removed punctuation and
twice with stemming, while all the lowest values occurred in the dataset without punc-
tuation and stop words.

In the BOW case, the results are similar to the results from the Doc2Vec examination.
However, the baseline preprocessing had twice the highest accuracy and also stemming
had twice the lowest accuracy while most of the weakest accuracies were reached in the
dataset without stop words and the dataset with neither stop words nor punctuation.

5.1.2 Preprocessing Speed

In the previous subsection, the results showed that pre-processing only has a minor effect
on the accuracy of both the tested methods. Nonetheless, preprocessing has another
possible benefit: Removal of stop words and removal of punctuation in general shortens
the document length and remove parts of the text that does not vary much from text to
text. Hence, processing cuts off the first part of the Zipf distribution. While stemming
reduces different morphologies of words to one form, it leads to a reduction of vocabulary,
and the vocabulary size shrinks much more with stemming than with either the removal
of punctuation or with the removal of stop words. On the other hand, stemming will

43

44 CHAPTER 5. RESULTS

not change the number of words occurring in each document. Table ?? shows the effect
of the four data pre-processing steps on the two most important statistics of the corpus,
mean word count per document and number of unique words per corpus.

Figure 5.3 shows that the removal of punctuation results in a insignificant learning
process speed up, while the removal of stop words contributes considerably more in
speeding up of the process. The Doc2Vec algorithm is sensitive to document length and
the longer the document, the longer the algorithm has to train. It appears that the final
vocabulary size has not much influence on the training and evaluation time.

In the case of BOW presented in Figure 5.4 the results are hard to explain as each
dataset shows a relatively different pattern. In three of the four cases, the dataset
without punctuation has high speed, and similar to Doc2Vec stemming has not much
influence on speeding up the process. More interesting is here the difference between no
punctuation, no stop words, and no punctuation which was the opposite for Doc2Vec
(no punctuation slow, no punctuation and no stop words fast).

5.1.3 Discussion

As shown results of the two experiments neither requires heavy preprocessing to achieve
higher accuracy and the differences between the pre-processed and the original datasets
are neglectable. A significant difference showed here TREC where the performance
decreased remarkably in both cases BOW and Doc2Vec. The removal of stop words
reduced the average document length of TREC by half.

Interestingly is here that stemming did not help much to increase the accuracy even
though the vocabulary size was substantially reduced.

If performance is an issue, preprocessing can help, especially the type of preprocessing
that reduces the document size, such as stop word removal. This has to be done with
caution though, since it can come at a price as in the example above with TREC showed.

The hypothesis concerning the preprocessing could not be verified.

44

5.1. PREPROCESSING EFFECTS 45

Table 5.3: The results of Doc2Vec of the four datasets CR, IMBD, SUBJ and TREC pre-
processed differently and compared with the baseline the basic preprocessing.
In bold the highest accuracy per line in italic the lowest.

Name of Dataset CR CR no punct CR no stop CR no stop no punct CR stem

Mean Document Length 20 17 11 9 20
Number of Unique Words 5713 5685 5574 5546 4271

Name of Dataset IMBD IMBD no punct IMBD no stop IMBD no stop no punct IMBD stem

Mean Document Length 265 155 233 123 265
Number of Unique Words 157088 156946 157054 156912 125119

Name of Dataset SUBJ SUBJ no punct SUBJ no stop SUBJ no stop no punct SUBJ stem

Mean Document Length 24 21 15 12 24
Number of Unique Words 21329 21322 21195 21188 15155

Name of Dataset TREC TREC no punct TREC no stop TREC no stop no punct TREC stem

Mean Document Length 10 8 5 4 10
Number of Unique Words 8829 8823 8700 8694 7255

CR

CR_no_punct

CR_no_sto
p

CR_no_sto
p_no_punct

CR_ste
m

0

50

100

150

200

250

300

Se
co

nd
s

Influence of Preprocessing on Speed CR d2v

IMBD

IMBD_no_punct

IMBD_no_sto
p

IMBD_no_sto
p_no_punct

IMBD_ste
m

0

5000

10000

15000

20000

25000

30000

35000

Se
co

nd
s

Influence of Preprocessing on Speed IMBD d2v

SUBJ

SUBJ_no_punct

SUBJ_no_sto
p

SUBJ_no_sto
p_no_punct

SUBJ_st
em

0

200

400

600

800

Se
co

nd
s

Influence of Preprocessing on Speed SUBJ d2v

TREC

TREC_no_punct

TREC_no_sto
p

TREC_no_sto
p_no_punct

TREC_ste
m

0

50

100

150

200

250

300

350

400

Se
co

nd
s

Influence of Preprocessing on Speed TREC d2v

Figure 5.3: This Figure shows the process time per dataset and pre-processing steps for
the Doc2Vec method.

45

46 CHAPTER 5. RESULTS

CR_bow

CR_bow_no_punct

CR_bow_no_sto
p

CR_bow_no_sto
p_no_punct

CR_bow_ste
m

0

2

4

6

8

10

12

Se
co

nd
s

Influence of Preprocessing on Speed CR bow

IMBD_bow

IMBD_bow_no_punct

IMBD_bow_no_sto
p

IMBD_bow_no_sto
p_no_punct

IMBD_bow_ste
m

0

25

50

75

100

125

150

175

200

Se
co

nd
s

Influence of Preprocessing on Speed IMBD bow

SUBJ_bow

SUBJ_bow_no_punct

SUBJ_bow_no_sto
p

SUBJ_bow_no_sto
p_no_punct

SUBJ_bow_ste
m

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Se
co

nd
s

Influence of Preprocessing on Speed SUBJ bow

TREC_bow

TREC_bow_no_punct

TREC_bow_no_sto
p

TREC_bow_no_sto
p_no_punct

TREC_bow_ste
m

0

2

4

6

8

10

12

14

Se
co

nd
s

Influence of Preprocessing on Speed TREC bow

bow_binary
bow_count
bow_tfidf
bow_freq

Figure 5.4: This figure shows the process time per dataset and pre-processing steps for
the BOW methods.

5.2 Accuracy

In this section, all the results of the Accuracy part of this thesis are presented. First,
all the results of the methods and datasets are shown and explained. Then the two side
topics on the length of the datasets and the reproducibility are shown.

5.2.1 by Dataset

This is the first part of the Accuracy section where the accuracy of all datasets and all
methods are compared and reviewed.

In Figure 5.5 d2v is short for a learned Doc2Vec vector on the training set. bow binary
is the Bag of Words with binary occurrence in the vector. bow count is the Bag of
Words with the count of the words occurring in the document. bow tfid is the Bag
of Words approach where their TF-IDF weights the occurrence of the words, bow freq
divides the counts with the total number of words such that the whole vector sums up
to one. The prefix pre indicates pre-trained word vector in this case from GloVe of
size 300 [Pennington et al., 2014a]. SUM stands for the summation of all word vectors,
MIN the minimum of each row if a document is written as multiple column vectors one

46

5.2. ACCURACY 47

for each word. MAX is the same approach as before but taking the maximum. AVG
takes the average for each row. w2v stands for Word2Vec learned word vectors using
the same functions as before to get one final document vector.

47

48 CHAPTER 5. RESULTS

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

65

70

75

80

Accuracy Results of the CR Data Set

(a) CR

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

65

70

75

80

85

90

Accuracy Results of the IMBD Data Set

(b) IMDB

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

70

75

80

85

90
Accuracy Results of the MPQA Data Set

(c) MPQA

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0
Accuracy Results of the MR Data Set

(d) MR

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

30

40

50

60

70

80
Accuracy Results of the NG20 Data Set

(e) NG20

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

56

58

60

62

64

66

Accuracy Results of the SST1 Data Set

(f) SST1

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5
Accuracy Results of the SST2 Data Set

(g) SST2

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG
80

82

84

86

88

90

92

Accuracy Results of the SUBJ Data Set

(h) SUBJ

d2v bow_binary bow_count bow_tfidf bow_freq pre_SUM pre_MAX pre_MIN pre_AVG w2v_SUM w2v_MAX w2v_MIN w2v_AVG

30

40

50

60

70

80

90
Accuracy Results of the TREC Data Set

(i) TREC

Figure 5.5: Results as box plots of the 10-fold cross-validation. The y-axis is scaled for
each plot individually.

48

5.2. ACCURACY 49

CR The size of this dataset is a problem for the Word2Vec approach which has difficul-
ties to learn a good representation of the words. This results in bad centroids document
vectors and therefore also the weakest accuracy from all approaches. The highest mean
value is reached in bow count.

IMBD The IMBD dataset has the most extensive documents with a mean count of
265 and with 50000 also a rather large number of them. These two features create the
rare occasion that the learned Word2Vec vectors are better than the pre-trained word
vectors. The best result is achieved in bow freq and the least accurate methods are the
Min and Max aggregation of Word2Vec.

MPQA The MPQA dataset has the fewest words per document and with 6234 words
just some more than the CR dataset. These two factors make it hard for the two methods,
Word2Vec and Doc2Vec, while all variations of a bag of words and most of the variations
of the pre-trained vector centroids have good accuracy. Interestingly the vector centroid
functions of the pre-trained word vectors are closer together than in other datasets. The
few words contained in the documents might explain this, such that the minimum and
maximum even in this case can return good results. The best performance was achieved
in the SUM of the pre-trained word vectors. The trained word vectors show a terrible
performance. This is because of the small number of words per document, similar to CR
no good word vectors can be learned.

MR The MR dataset has a similar document size compared to CR but has with 10606
documents and 18758 words more than 3-times as much of each. The best result was
achieved in bow freq and the worst result is MAX of Word2Vec.

NG20 The NG20 dataset has the second highest number of words, and the length of
the document is with 174 on average the second in the ranking. A specialty of this dataset
is the 20 possible classes of news articles which can be categorized. It appears that the
average of the pre-trained word vectors centroids has difficulties to create document
vectors that are useful for the classifier to successfully predict the 20 classes, while this
is not the case for the other pre-trained variations. Rather interesting here is that the
trained word vectors with Word2Vec all perform better than the pre-trained ones, as
seen before in the IMBD dataset. In most cases this is the other way round. If the
corpus and the documents are long enough, it can make sense also to train Word2Vec
on the classification data. The BOW group has the best performance with bow freq as
the worst and bow binary as the best. Doc2vec lies behind all the BOW variations.

SST1 The SST dataset comes in two flavors SST1 which has five different cases of sen-
timent very positive, positive, neutral, negative, and very negative, and SST2 described
below. This dataset has the highest number of documents with 160’128, but these docu-
ments are rather short with a mean of 7 words per document and also a relatively small
number of unique words. The vast amount of documents result in a smaller variation

49

50 CHAPTER 5. RESULTS

in the box plot result. The best result was achieved in bow binary, while most of the
BOW group has generally higher results. In the pre-trained word vectors, SUM and
AVG are far better the MIN and MAX. Doc2Vec is now behind the pre-trained group
together with the MIN and MAX of the learned Word2Vec embeddings. The reason why
Doc2Vec suffers is the shorter document length in this corpus, such that the method can-
not fully capitalize its potential. Important to note is that plenty of examples could not
contribute to better results.

SST2 SST2 is the second flavor of the SST data after all the neutral sentiments were
cut away, and the two sentiments on both sides were joined together resulting in only
two classes. Figure 5.5.g shows a similar picture where the ranking of the accuracy is
about the same as in Figure 5.5.f, but the accuracy is through all methods much higher.
The only parameter that changed is the number of classes, removing the difficulty to
predict neutral ones. Here the best approach was bow tfidf. Interestingly, the learned
word vectors of the Word2Vec algorithm return almost as useful embeddings as the pre-
trained ones. Doc2Vec is far behind the rest of the methods as above this might be
contributed to the rather short document length of this dataset.

SUBJ The SUBJ dataset has a document length comparable with CR and MR datasets.
The mean document length is 24. The larger document size is also visible in the per-
formance of Doc2Vec and Word2Vec. bow freq achieves the best accuracy while the
whole group generally has high results. AVG and SUM from the pre-trained and the
learned word vectors also reached top results.

TREC The TREC dataset also has only a few words per document (10), and therefore
the performance of Word2Vec and Doc2Vec is rather bad, with better performance for
Doc2Vec than the one from Word2Vec. Here the group of BOWs with the highest
accuracy is bow count followed by the pre-trained word vectors.

Overview The most influential parameter for learned Word2Vec and learned Doc2Vec
is the document length. In the tested setup, datasets with more than 20 words per
document resulted in better performance of the two methods.

All the variations of BOW resulted in the highest accuracy through most of the
datasets. Yet, no a clear trend of which variation of the BOW method works best
is visible.

For the pre-trained word vectors and the learned Word2Vec, the sum and the average
appear to be the best variation, while the minimum and the maximum only seem to
be suitable for shorter documents as shown in MPQA where all the four methods of
pre-trained word vectors performed comparably.

The results show that the training of word vectors on a small number of short docu-
ments is not advisable. In some rare cases, when the documents are long (NG20, IMBD),
the domain-specific trained word vectors can outperform the pre-trained ones.

50

5.2. ACCURACY 51

In none of these cases, Doc2Vec could outperform the BOWs. This bad performance
might be related to the fact that the hyperparameters were evaluated once and then used
for all datasets, but these hyperparameters should be grid searched before every appli-
cation for better performance. [Levy et al., 2015] state that algorithm tuning through
hyperparameters is the single and most efficient way to get higher accuracy, while other
influence factors like amount of data and pre-processing are less critical.

The corresponding hypothesis could not be verified that Doc2Vec could outperform
older approaches in all datasets.

Noteworthy is that the error rate reported by [Le and Mikolov, 2014] for Doc2Vec in
SST2 12.2% and SST1 51.3% is considerably worse than the ones reached with BOW in
combination with their classifier. The best variations of BOW reached in SST2 8.15 %
and SST1 22.4%.

Table 5.4: The results of all the methods for each dataset, the best result is in bold.
CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC

bow binary 79.531 88.309 85.471 76.083 75.494 66.578 91.821 90.545 83.904

bow count 80.367 88.54 85.428 76.613 74.841 66.496 91.761 90.625 83.937

bow tfidf 79.585 88.997 84.754 76.346 75.337 66.392 91.85 90.59 82.861

bow freq 78.75 90.744 85.353 77.462 68.479 64.595 90.143 91.285 79.958

pre SUM 78.087 83.974 88.332 76.046 56.322 63.023 86.556 91.115 74.984

pre MAX 70.115 73.228 85.197 70.512 46.378 59.398 79.063 84.975 63.493

pre MIN 71.292 73.161 85.975 70.212 47.153 59.446 79.543 84.885 63.862

pre AVG 75.159 83.855 87.007 76.848 25.108 62.676 84.512 90.28 69.136

learn w2v SUM 66.227 85.312 68.838 70.794 66.482 60.829 85.159 90.6 36.458

learn w2v MAX 65.473 65.046 68.820 65.833 56.812 57.116 78.410 86.075 31.116

learn w2v MIN 65.275 65.371 68.820 67.136 56.312 57.202 78.810 85.445 30.999

learn w2v AVG 65.434 86.819 68.772 71.371 71.589 59.295 83.667 90.8 31.415

learn d2v 74.735 83.476 73.009 70.845 64.451 57.621 74.86 88.55 58.148

5.2.2 by Document Length

One of the initial questions was whether or not the document size has an influence on the
embedding quality and therefore also on the downstream classification task. For these
tasks, nine classic books available from the NLTK package in python were selected, and
non-overlapping text passages were taken from the books. These text passages had to
be classified according to their author or book.

Interested mostly in the qualities of Doc2Vec, only BOW, and its variations were
selected to be compared against each other. As it is visible in Figure 5.6 and 5.7 both
methods have a clear upward trend and the more extensive the document, the better
the accuracy. Noteworthy is that the performance of Doc2Vec, in general, is excellent
in this dataset - most of the time it is even better than the BOW variations. This
highly differs from the results from the Accuracy section, where Doc2Vec never had the
highest accuracy. The upwards trend makes sense because more text might give more
information and evidence to distinguish the book and author.

51

52 CHAPTER 5. RESULTS

Figure 5.8 shows a non-linear and possible exponential increase in learning time com-
pared to the document length. Initially, also a data set with 800 words was created, but
this could not finish in the time frame of 48 hours1. A benefit from the extended initial
learning time is the fixed evaluation rate. For the BOW method, the construction of the
matrix or vectors is free, but the classification part generally takes much longer.

50 100 150 200 250 300 350 400
Document Length

0

20

40

60

80

100

Ac
cu

ra
cy

Accuracy Books Classification Compared to Document Length
d2v
bow_binary
bow_tfidf
bow_freq
bow_count

Figure 5.6: The results of two method groups BOW and Doc2Vec in document classi-
fication, where text sequences should be matched with their corresponding
book.

50 100 150 200 250 300 350 400
Document Length

0

20

40

60

80

100

Ac
cu

ra
cy

Accuracy Author Classification Compared to Document Length

d2v
bow_binary
bow_tfidf
bow_freq
bow_count

Figure 5.7: The results of two method groups BOW and Doc2Vec in document classi-
fication, where text sequences should be matched with their corresponding
author.

1which is set by the server

52

5.2. ACCURACY 53

50 100 150 200 250 300 350 400
Document Length

0

20000

40000

60000

80000

100000

Ti
m

e
in

 S
ec

on
ds

Learning and Evaluation Time of Doc2Vec
Learning Time
Evaulation Time

Figure 5.8: This figure shows the learning and evaluation duration of the Doc2Vec
method for each of the four dataset with different document sizes.

Figure 5.9 shows the accuracy of the Doc2Vec on the y-axis plotted along the document
length on the x-axis for each dataset. The blue line includes the multi-class cases and
the orange line does not. A regression line was fit through the data points. The line
shows an upward trend even though these measurements are not statistically significant.
Here, more data points would be needed, or another way to look at the problem would
be to create a regression model with a dummy variable correctly classified and length
of the document to see the influence if longer documents have a higher chance of being
better predicted.

In the specific tasks, the hypothesis that longer documents predict better is probably
correct. But here, further investigation is needed.

53

54 CHAPTER 5. RESULTS

0 50 100 150 200 250
Document Length

0

20

40

60

80

100

Ac
cu

ra
cy

Accuracy Compared with Document Length of the Datasets

regression line with multi-class
regression line without multi-class
d2v
d2v excluded multi-class

Figure 5.9: Each point in the graph represents one accuracy measurement of the Data
sets. The blue regression line includes multi-class datasets, green excludes
them.

5.2.3 by Corpus Size

In this experiment, the results of the two cases of model creation are compared. The
first case uses 10-split cross-validation where Doc2Vec was trained on only the training
data, then the evaluation or testing documents had to be inferred using the trained
model. These newly created document vectors were then evaluated. The results were
compared with the case where all documents were used to create the document vectors,
and no documents had to be inferred as they were already trained. The results of this
experiment are listed in Table 5.5.

Only 10% more data led to some dramatical changes, especially for the TREC dataset.
This accuracy boost might be the case because the TREC dataset only has a small num-
ber of documents and also many classes to predict. Interestingly, the 10% more docu-
ments to learn the embeddings did not help CR, the dataset with the fewest documents,
as much. Nonetheless, there are also some datasets that got a worse result than before.
In NG20, SST1, and SST2, all of these already have a large number of documents in
the corpus and therefore also probably enough data even without including all available
documents.

Table 5.5: The table with the results of the comparison of Doc2Vec evaluation once
trained on 90% of the data and once with all the available documents. The
change is indicated with a plus or minus.

CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC

train on training data 74.735 83.476 71.163 70.845 64.451 55.579 74.86 88.55 58.148

train on all data 75.398 84.578 72.03 72.205 63.962 55.479 74.745 88.665 63.052

change +0.664 +1.102 +0.868 +1.36 -0.489 -0.099 -0.115 +0.115 +4.904

54

5.2. ACCURACY 55

5.2.4 Reproducibility of the Doc2Vec Results from the Paper

In the paper from [Le and Mikolov, 2014], the best accuracy reached in the classification
problem of the IMBD dataset was 7.42% error rate. As a start for the thesis, this
result was attempted to be reproduced. Unfortunately, it could not be achieved, and
the minimum error rate that could be reached was around 10%, which is even higher
than the accuracy achieved in the Accuracy section. This higher accuracy could only be
attained through the combination of several learned models and the evaluation of the
document embedding after each epoch of training the Doc2Vec model. So no good results
are missed. The achieved results are probably not based on an average of any cross-
validation result, but perhaps the best case of numerous attempts. Another possible
explanation why the embeddings returned a higher accuracy in the downstream task is
that the corpus of the IMBD document contains 25’000 positive, 25’000 negative and
50’000 unlabeled data and in the better approaches, all data was used to learn better
document embeddings. In [Le and Mikolov, 2014] they used 75’000 for the document
creation and 25’000 were the evaluation set. While in most of the tested settings in this
thesis, the model creation part only looked at data from the training set while ignoring
the test set or the additional unlabeled documents completely.

This hypothesis could not be verified.

5.2.5 Accuracy by Simple Dense Neural Encoder

In Table 5.6 the results of the classification employing transformed binary BOWs are
presented. The approach works better on larger datasets, not including NG20. The
created results appear to be a difficult input to further classification for 20 different
classes. In most cases, bow2bow has a similar performance as the other methods. But
big differences can be seen in MR (10 pp difference to Doc2Vec) and NG20 (22 pp
difference to Doc2Vec). This method was mainly optimized for the IMBD dataset and
then applied to all others. An optimization possibility is the size of the intermediate
steps in the two hidden layers for IMBD being 1200, 600. For the other datasets, a simple
scaling method was used that should scale the numbers to the corresponding vocabulary
size which might result in a non-optimal result.

The benefit of the creation of such a model is that the auto-encoder can encode the
documents in BOW to a lower dimensional vector. In this way, time can be saved in the
classification phase.

Table 5.6: The accuracy of the bow2bow auto-encoder. As a comparison also the
bow binary and Doc2vec are presented.

CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC

b2b 69.608 86.586 75.891 60.950 42.065 55.832 74.023 81.710 63.996

bow binary 79.531 88.309 85.471 76.083 75.494 66.578 91.821 90.545 83.904

learn d2v 74.735 83.476 73.009 70.845 64.451 57.621 74.860 88.550 58.148

55

56 CHAPTER 5. RESULTS

5.3 Transferability

In this experiment section, the performance of models and classifiers trained on a dataset
and then applied to another dataset is tested. Pre-trained word vectors is a similar
application of transfer learning which was already shown to be successful.

5.3.1 Doc2Vec Transferability of Embedding Model

Figure 5.10 shows the difference between the results of section 5.2.1, and the accuracy
that was retrieved from document embeddings generated from a Doc2Vec model learned
on another dataset. In the rows the domain dataset which the Doc2Vec model was
trained on is indicated, while the columns are the datasets where the documents were
inferred from the trained model.

The diagonal of Figure 5.10 is zero because a dataset trained on the corpus and using
the trained model to infer the document embeddings from it is already the base case.
Interestingly, most of the datasets with equal or more than 20 words also perform very
well on the TREC dataset. Fascinating is that there is a rather significant difference
between SST1 and SST2 on TREC, one being positive the other one being negative even
though the corpus is meant to be somewhat similar.

Table 5.7 shows the row-wise mean of the matrix from Figure 5.10. A higher mean
accuracy means that the dataset has a wider application field while a lower number
indicates that the embeddings generated from the model trained on this dataset is too
specific and cannot cover a wider range of documents. Datasets with longer documents
like NG20 and IMBD perform better here, compared to shorter ones. Nevertheless, the
midrange datasets MR and SUBJ are not too far behind. This statistic is also slightly
misleading since NG20 is a problematic dataset with its 20 classes where all of the
externally trained models perform very bad. The highest value was reached with NG20,
the trained embedding on NG20 gained 7.24% over the original approach learning TREC
on TREC.

Table 5.8 indicates the column-wise mean, this mean shows whether a dataset is easy to
classify by externally trained Doc2Vec models. As mentioned before, the NG20 dataset
is challenging to predict with externally trained models. Datasets like SST1, MPQA,
and TREC seem to be easily predictable by externally learned Doc2Vec models.

Table 5.7: This table shows the average accuracy of the domain dataset where the
Doc2Vec model was trained on and applied on all other datasets.

dataset CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC

average -8.675 -3.047 -10.663 -4.266 -2.376 -8.864 -6.663 -4.686 -9.909

56

5.3. TRANSFERABILITY 57

CR
IMBD

MPQA MR
NG20

SST1
SST2

SUBJ
TREC

CR on

IMBD on

MPQA on

MR on

NG20 on

SST1 on

SST2 on

SUBJ on

TREC on

0.00 -6.71 -1.32 -10.19 -32.99 -2.94 -9.82 -11.95 -2.17

-4.25 0.00 0.81 0.86 -23.55 0.96 0.78 -4.39 1.36

-7.41 -9.69 0.00 -9.84 -39.34 -2.92 -10.99 -11.70 -4.08

-3.79 -4.09 -1.56 0.00 -33.10 0.96 0.15 -0.20 3.23

-3.25 -7.86 1.25 -6.93 0.00 -1.07 -3.47 -7.31 7.24

-6.59 -14.26 -0.88 -3.08 -42.72 0.00 -2.80 -7.60 -1.85

-5.43 -11.26 -0.88 -1.58 -38.65 0.17 0.00 -4.51 2.17

-3.76 -5.36 -0.21 -2.03 -30.68 -0.14 -2.26 0.00 2.27

-6.50 -11.90 -2.08 -11.34 -31.28 -3.12 -12.06 -10.89 0.00

40

30

20

10

0

Accuracy Difference

Transferability of Doc2Vec Models

Figure 5.10: In this heat map the accuracy difference between the accuracy result after
five epochs and the result of a pre-trained Doc2Vec model from another
domain dataset, where all the new documents from the target dataset were
inferred. Dark green is a slightly positive value, dark red a very negative
one.

Table 5.8: This table shows the average accuracy of the target dataset where an externaly
trained Doc2Vec model applied to generate the document embeddings.

dataset CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC

average -4.552 -7.904 -0.542 -4.903 -30.258 -0.899 -4.495 -6.503 0.908

5.3.2 Doc2Vec Transferability of Embedding Model together with
Classifier

Now the document embedding model and the classifier are applied together on another
dataset. Since the classifier is now used as well all the multi-class datasets are excluded.
In contrast to Figure 5.10, Figure 5.11 has much lower values. These results come with
no surprise since the classifier should learn dataset specific properties to distinguish the
different cases better. The best result was achieved with the application of IMBD on
MR. Both these datasets are about movie reviews so it generally is plausible that the
model and classifier learned on the bigger dataset can also be used on the smaller one.

57

58 CHAPTER 5. RESULTS

The weakest performing dataset to predict and to get predicted is SUBJ but also here
this is easily explainable as SUBJ is trained to classify objectivity and subjectivity while
all the others are trained to distinguish good from bad reviews. The next weakest dataset
is MPQA, but here again, not sentiment but subjectivity is measured. The best result
is achieved when SST2 is applied on MR with a lift of 1.2 pp, the next best case even
though negative is the application of IMBD on MR with -1.05 pp. These datasets are all
based on movie reviews, but the results show that only more elaborated classifiers can
be used on simpler datasets to get a better performance but not vice-versa. The average
accuracy change per field is -18.468%.

CR
IMBD

MPQA MR
SST2

SUBJ

CR on

IMBD on

MPQA on

MR on

SST2 on

SUBJ on

0.00 -21.47 -32.42 -13.99 -16.52 -43.29

-10.84 0.00 -18.63 -1.05 -5.10 -32.56

-36.71 -30.74 0.00 -20.55 -28.35 -37.74

-14.51 -10.45 -15.01 0.00 -5.07 -35.81

-13.61 -18.16 -23.27 1.20 0.00 -38.26

-36.06 -30.47 -26.91 -20.17 -28.37 0.00

40

35

30

25

20

15

10

5

0

Accuracy Difference

Transferability of Doc2Vec Models and Classifier

Figure 5.11: The heatmap shows on the left side of the heatmap the Dataset where the
Doc2Vec model and the classifier was trained on and on top of the columns
the dataset where it was applied to is indicated. Dark green is zero; dark
red is a very negative value.

5.3.3 BOW Transferability of Document Vectorization Process To-
gether with Classifier

This experiment is similar to the previous experiment, where a document embedding
model and a classifier of a dataset was used on another dataset using Doc2Vec embed-
dings. Instead of using document embeddings the BOW transformation was used.

58

5.3. TRANSFERABILITY 59

CR
IMBD

MPQA MR
SST2

SUBJ

CR on

IMBD on

MPQA on

MR on

SST2 on

SUBJ on

0.00 -20.80 -43.04 -18.33 -15.30 -27.71

-13.12 0.00 -32.18 -5.43 -4.27 -22.83

-28.89 -36.92 0.00 -20.69 -19.54 -25.57

-18.87 -13.64 -25.05 0.00 2.74 -28.31

-11.50 -11.92 -22.29 13.32 0.00 -29.00

-42.03 -35.18 -42.20 -26.02 -28.81 0.00

40

30

20

10

0

10

Accuracy Difference

Transferability of BOW Binary Models and Classifiers

Figure 5.12

CR
IMBD

MPQA MR
SST2

SUBJ

CR on

IMBD on

MPQA on

MR on

SST2 on

SUBJ on

0.00 -21.89 -42.86 -19.13 -14.66 -28.30

-13.74 0.00 -32.13 -6.00 -3.63 -22.93

-29.54 -36.84 0.00 -21.16 -18.86 -25.53

-19.11 -12.92 -25.04 0.00 3.42 -27.79

-12.44 -20.42 -22.23 12.64 0.00 -29.61

-42.73 -35.80 -42.18 -26.59 -28.14 0.00

40

30

20

10

0

10
Accuracy Difference

Transferability of BOW Count Models and Classifiers

Figure 5.13

CR
IMBD

MPQA MR
SST2

SUBJ

CR on

IMBD on

MPQA on

MR on

SST2 on

SUBJ on

0.00 -40.74 -49.14 -26.95 -12.17 -17.73

-12.16 0.00 -31.82 -6.69 2.82 -15.62

-39.22 -40.75 0.00 -26.08 -17.33 -18.20

-39.49 -40.73 -19.92 0.00 -7.92 -20.30

-6.80 -17.76 -24.26 0.20 0.00 -14.53

-28.59 -39.04 -47.58 -27.21 -20.48 0.00
40

30

20

10

0

Accuracy Difference

Transferability of BOW Freq Models and Classifiers

Figure 5.14

CR
IMBD

MPQA MR
SST2

SUBJ

CR on

IMBD on

MPQA on

MR on

SST2 on

SUBJ on

0.00 -21.12 -38.93 -18.55 -15.78 -26.96

-18.50 0.00 -33.34 -7.98 -6.40 -23.41

-28.52 -37.37 0.00 -20.38 -17.56 -26.38

-19.74 -14.78 -28.29 0.00 3.18 -28.17

-14.07 -12.30 -22.39 12.25 0.00 -29.26

-41.64 -35.61 -39.95 -26.43 -29.01 0.00

40

30

20

10

0

10

Accuracy Difference

Transferability of BOW Tfidf Models and Classifiers

Figure 5.15

The results are comparable with the ones reached in the same experiment with the
Doc2Vec embeddings. A difference is the interaction of the SST2 dataset and the MR
dataset. In most of the cases, the performance of the application of an externally trained
classifier results in worse performance. However, in the case of the binary, count and
TF-IDF BOW the utilization of the classifier trained on SST2 applied to MR resulted in
a performance boost of 13.32%, which is very remarkable. The four BOW approaches are
very close to each other. bow binary has an average of -18.149% per field, bow count

59

60 CHAPTER 5. RESULTS

-18.505, bow tfidf -18.538% and bow freq -19.617%. These results are very similar to
the -18.468% reached on average per field in the Doc2Vec classifier transferability test.

Figures 5.12-5.15 show the transferability of a classifier trained on a BOW and then
applied to another dataset. Note that the scale in Figure 5.14 goes not as high as in the
other three cases. It could be shown that the application of a powerful classifier trained
on a richer model can result in a substantial accuracy boost, however, on average, this is
a nondesired approach. There is not a substantial difference between BOW and Doc2Vec
when it comes to using pre-trained classifiers on other datasets.

5.4 Speed

The speed of the different approaches is compared in this section. This is also profoundly
related to the classifier. In previous sections, the performance was measured keeping the
number of epochs fixed. Now the classification task is evaluated after each epoch, giving
an insight into what happens in the classifier.

First the Figures 5.16 -5.24 show the accuracy plotted over time. Then the topics speed
of convergence, final accuracy and effective time taken are evaluated and reviewed.

280 290 300 310 320 330
Seconds

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

30 40 50 60 70 80
Seconds

0.60

0.61

0.62

0.63

0.64

0.65

0.66

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 25 50 75 100 125 150 175
Seconds

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

190 200 210 220 230 240
Seconds

0.71

0.72

0.73

0.74

Ac
cu

ra
cy

d2v

Accuracy over Time CR

Figure 5.16: Accuracy versus time. The classifier’s accuracy was measured after each
training epoch. Top Left shows the results of pre-trained word vectors, Top
Right the results of learned Word2Vec, Bottom Left the results of the BOW
variations and Bottom Right the results of the learned Doc2Vec embedding.
The lines were divided into four plots because the time distance is too big
to show them in a meaningful way in one plot.

60

5.4. SPEED 61

400 500 600 700 800 900 1000 1100
Seconds

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

155300 155400 155500 155600 155700 155800 155900 156000
Seconds

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy w2v_AVG

w2v_MAX
w2v_MIN
w2v_SUM

0 5000 10000 15000 20000 25000 30000 35000 40000
Seconds

0.86

0.87

0.88

0.89

0.90

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

24600 24700 24800 24900 25000 25100 25200 25300
Seconds

0.795

0.800

0.805

0.810

0.815

0.820

0.825

0.830

0.835

Ac
cu

ra
cy

d2v

Accuracy over Time IMBD

Figure 5.17: See Figure 5.16

280 300 320 340 360 380 400 420 440
Seconds

0.850

0.855

0.860

0.865

0.870

0.875

0.880

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

20 40 60 80 100 120 140 160
Seconds

0.69

0.70

0.71

0.72

0.73

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 100 200 300 400 500
Seconds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

160 180 200 220 240 260 280 300
Seconds

0.695

0.700

0.705

0.710

0.715

0.720

0.725

0.730

Ac
cu

ra
cy

d2v

Accuracy over Time MPQA

Figure 5.18: See Figure 5.16

61

62 CHAPTER 5. RESULTS

280 300 320 340 360 380 400 420 440
Seconds

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

380 400 420 440 460 480 500 520 540
Seconds

0.60

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 250 500 750 1000 1250 1500 1750
Seconds

0.70

0.71

0.72

0.73

0.74

0.75

0.76

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

700 720 740 760 780 800 820 840
Seconds

0.675

0.680

0.685

0.690

0.695

0.700

Ac
cu

ra
cy

d2v

Accuracy over Time MR

Figure 5.19: See Figure 5.16

300 350 400 450 500 550
Seconds

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

41600 41650 41700 41750 41800 41850
Seconds

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 1000 2000 3000 4000 5000 6000 7000 8000
Seconds

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

5950 6000 6050 6100 6150 6200
Seconds

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

Ac
cu

ra
cy

d2v

Accuracy over Time NG20

Figure 5.20: See Figure 5.16

62

5.4. SPEED 63

500 1000 1500 2000 2500
Seconds

0.58

0.59

0.60

0.61

0.62

0.63
Ac

cu
ra

cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

3000 3500 4000 4500 5000
Seconds

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 10000 20000 30000 40000 50000 60000 70000 80000
Seconds

0.58

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

7000 7500 8000 8500 9000
Seconds

0.542

0.544

0.546

0.548

0.550

0.552

0.554

0.556

0.558

Ac
cu

ra
cy

d2v

Accuracy over Time SST1

Figure 5.21: See Figure 5.16

400 600 800 1000 1200 1400
Seconds

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

1800 2000 2200 2400 2600 2800
Seconds

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 5000 10000 15000 20000
Seconds

0.86

0.87

0.88

0.89

0.90

0.91

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

3800 4000 4200 4400 4600 4800
Seconds

0.71

0.72

0.73

0.74

0.75

Ac
cu

ra
cy

d2v

Accuracy over Time SST2

Figure 5.22: See Figure 5.16

63

64 CHAPTER 5. RESULTS

280 300 320 340 360 380 400 420
Seconds

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

500 520 540 560 580 600 620 640
Seconds

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

Ac
cu

ra
cy w2v_AVG

w2v_MAX
w2v_MIN
w2v_SUM

0 250 500 750 1000 1250 1500 1750 2000
Seconds

0.880

0.885

0.890

0.895

0.900

0.905

0.910

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

680 700 720 740 760 780 800 820
Seconds

0.872

0.874

0.876

0.878

0.880

0.882

Ac
cu

ra
cy

d2v

Accuracy over Time SUBJ

Figure 5.23: See Figure 5.16

280 300 320 340 360
Seconds

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

pre_AVG
pre_MAX
pre_MIN
pre_SUM

20 40 60 80 100
Seconds

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Ac
cu

ra
cy

w2v_AVG
w2v_MAX
w2v_MIN
w2v_SUM

0 50 100 150 200 250 300
Seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

bow_binary
bow_count
bow_tfid
bow_freq

180 190 200 210 220 230 240 250 260
Seconds

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

d2v

Accuracy over Time TREC

Figure 5.24: See Figure 5.16

64

5.4. SPEED 65

5.4.1 Speed of Convergence

Pre-trained Vector Centroids Good results are often reached in about ten epochs,
but even then, the accuracy still grows with each epoch. Similar to the pre-trained case
and the Accuracy section, the Average and Sum methods are considerably better than
Minimum and Maximum.

Learned Word2Vec These show often a raising tendency as the vectors learned on
the datasets are not as good as the pre-trained ones such that it takes longer to learn
a useful function for the classifier. Similar to the pre-trained case and the Accuracy
section average and Sum are considerably better than minimum and maximum. This is
not the case in MPQA where after 50 epochs minimum and maximum are the highest,
this is related to the short document length.

BOW The up and down swings of the BOW variations are smaller than in the other
methods. The maximum is reached after only a few epochs and is then either slowly
decreasing or straight. Bow tfidf shows a different behavior starting low, then steeply
increasing but then evens out like the others.

Doc2Vec In seven of the nine cases, the accuracy is slowly decreasing after reaching
a maximum early in the first ten epochs.

5.4.2 Final accuracy

In Figure 5.9 the final accuracy evaluated after each epoch where the maximum was
taken is shown. This ranking is only concerned about accuracy. Doc2Vec is only on
the ninth place, after BOW and all of the pre-trained word embeddings. The trained
Word2Vec embeddings could not compete against any other method. Unexpectedly,
bow binary achieves top ranking, which did not seem to be first according to the Figures
5.16-5.24, here bow tfidf looked much more spectacular, starting low rising high.

Table 5.9: This table shows the final accuracy taking the maximum accuracy of the mean
in 3-fold cross-validation, in 50 epochs with evaluation after each epoch.

Methods CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC AVG. Rank

bow binary 79.041 89.550 84.287 76.463 74.854 66.020 91.004 90.975 82.662 81.651 1

bow count 79.107 89.410 84.169 76.482 74.739 65.968 90.960 90.880 82.460 81.575 2

bow freq 78.829 90.528 83.820 76.510 75.811 63.585 90.201 91.285 82.914 81.498 3

bow tfidf 78.975 89.726 83.924 75.685 75.182 65.694 91.033 91.045 82.174 81.493 4

learn w2v avg 65.474 88.141 72.266 71.084 72.920 59.635 86.429 90.770 37.955 71.631 10

learn w2v max 65.156 66.126 72.888 66.123 57.908 57.912 83.139 86.090 41.450 66.310 13

learn w2v min 65.951 65.825 72.869 65.307 57.984 58.152 83.276 86.245 42.947 66.506 12

learn w2v sum 65.700 87.557 70.743 69.555 69.687 61.097 86.298 90.525 41.316 71.386 11

pre trained avg 80.816 86.118 88.115 77.073 68.528 62.253 87.824 91.970 77.016 79.968 5

pre trained max 74.391 74.353 86.800 71.295 59.149 59.950 84.466 85.895 68.683 73.887 8

pre trained min 75.119 74.276 86.838 71.473 58.874 60.047 84.059 86.875 68.834 74.044 7

pre trained sum 79.478 85.537 87.880 76.111 62.830 62.933 88.024 91.555 76.630 78.998 6

learn d2v 74.457 83.532 72.846 70.048 63.917 55.817 75.216 88.315 60.938 71.676 9

65

66 CHAPTER 5. RESULTS

However, if these results are compared with other methods in the field like AdaSent
[Zhao et al., 2015] and their results (see Table 5.10) most of the accuracies are far behind.
Here it is important to mention that AdaSent does not produce an output of fixed size,
which is the premise of all the other approaches, it produces a multi-scale hierarchy.

Table 5.10: Accuracy of AdaSent on some of the evaluated datasets. [Zhao et al., 2015]
Method CR MPQA MR SUBJ TREC
AdaSent 86.3 93.3 83.1 95.5 92.4

5.4.3 Wall Time

The wall time describes the time taken until the maximum in 50 epochs is reached. Table
5.11 shows the times in seconds for each method and dataset, and in the last column,
the actual ranking is presented. The results are rather impressive from the viewpoint of
application of the models, where BOW took very long to calculate every result for 50
epochs. An advantage is that maxima are reached quite fast for these BOW algorithms.
Measuring the time until a maximum is reached favors vigorously vector representations
that produce early good results and then decrease gradually, but is generally favorable.

Following parts that were included in the wall time calculation and some parts that
were not. Pre-processing was not taken into account since it was the same for all meth-
ods and datasets. Despite the duration of epochs, which Table 5.12 lists, the different
methods had other operations that had to be conducted before the training phase could
start. For BOW one of these steps was the vectorization process, which is tied to the
tokenizer. This was left out because of the negligible duration of this process. For the
Word2Vec the word vectors had to be learned, and then from these learned vectors a
document vector was created either taking the average, the sum, the minimum or the
maximum, these two processes were included in Figure 5.11. In the pre-trained set the
data had to be loaded from the file and also the document vector had to be constructed
similarly as in the Word2Vec approach. In the last method, the Doc2Vec model had to
be trained to create document embeddings from the text.

Table 5.11: Wall time of the different methods, specifically their time till the maximum
in 50 epochs was reached.

Methods CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC AVG. Rank

bow binary 14.24 791.26 43.56 73.76 501.32 3047.00 5475.35 80.33 45.30 1119.13 6

bow count 20.77 774.56 64.05 73.61 493.02 5363.71 6070.18 78.38 38.92 1441.91 7

bow freq 37.95 6260.71 54.10 252.92 5485.82 14102.41 19322.25 334.92 129.88 5108.99 9

bow tfidf 7.34 770.47 43.69 37.72 328.25 3603.61 2799.83 38.06 26.42 850.60 5

learn w2v avg 73.26 155987.17 163.70 479.75 41771.63 4082.17 2817.85 559.62 94.30 22892.16 12

learn w2v max 67.60 155911.67 163.03 456.43 41683.64 3639.17 2885.33 530.39 94.13 22825.71 10

learn w2v min 78.17 155888.12 155.50 476.24 41744.15 4962.10 2680.53 512.92 95.75 22954.83 13

learn w2v sum 71.14 155640.53 164.52 409.67 41679.04 4705.42 2675.56 529.53 96.97 22885.82 11

pre trained avg 300.24 1078.74 335.22 351.85 482.50 1008.72 1426.46 368.60 360.03 634.71 4

pre trained max 318.17 739.54 304.60 357.28 570.31 1141.81 1417.31 419.72 322.55 621.25 3

pre trained min 306.02 841.57 313.49 421.22 526.10 786.96 1403.70 426.84 348.07 597.11 2

pre trained sum 290.36 927.22 304.51 294.90 542.23 1055.49 1029.49 318.02 362.59 569.42 1

learn d2v 226.70 24661.83 223.59 717.35 5947.07 7279.71 4055.87 727.98 246.63 4898.53 8

66

5.4. SPEED 67

In Table 5.12 the duration of an epoch over all datasets is presented. Here it is clearly
visible that BOW is indeed the slowest of these methods in the classification phase.
Four factors change the duration of the epochs for the chosen classifier. The first is the
number of examples in the dataset. It is unchanged for all methods for the same dataset.
The next factor is the input size of the neural classifier while for learned Word2Vec, pre-
trained word embedding or Doc2Vec this is always 300 and for the BOW variations this
is depending on the dataset and the number of words uniquely occurring in it. The third
factor is the number of classes that have to be classified while fewer classes are usually
faster than more classes. This is especially visible in the difference between SST1 and
SST2 being the same corpus, even though the number of documents is not the same. The
last factor is only concerning the BOW variation. As in some classification methods, a
continuous number might be a problem and therefore need to be binned. This might not
be the reason here, but it appears that the calculation with natural numbers, is more
straightforward and therefore less time-consuming than small decimal numbers from the
bow tdidf. The fastest epochs in the BOW group are on average reached in the binary
mode, but if the numbers are closely checked the main advantage of bow binary is visible
in the SST1 dataset, this is a dataset with five classes and many documents of short
length, where on all other datasets the bow count is faster.

Table 5.12: Duration of an epoch across all datasets.
Methods CR IMBD MPQA MR NG20 SST1 SST2 SUBJ TREC AVG. Rank

bow binary 3.431 790.498 10.530 35.814 166.353 1255.445 456.906 40.017 6.395 307.266 10

bow count 3.416 753.241 10.521 35.760 164.124 1451.824 466.432 39.063 6.396 325.642 11

bow freq 3.401 781.600 10.507 35.771 161.185 1442.453 459.926 37.088 6.454 326.487 12

bow tfidf 3.440 769.675 10.513 35.600 162.110 1556.499 466.499 38.085 6.425 338.761 13

learn w2v avg 1.098 14.448 3.143 3.220 5.398 44.222 23.012 2.919 1.712 11.019 5

learn w2v max 1.094 14.374 3.129 3.178 5.327 44.131 22.982 2.907 1.708 10.981 2

learn w2v min 1.087 14.495 3.167 3.222 5.391 44.117 23.032 2.906 1.707 11.014 3

learn w2v sum 1.099 14.456 3.159 3.251 5.369 44.328 22.906 2.877 1.698 11.016 4

pre trained avg 1.102 14.683 3.125 3.212 5.402 44.390 23.172 2.979 1.720 11.087 9

pre trained max 1.112 14.617 3.144 3.165 5.436 44.333 22.987 2.937 1.711 11.049 6

pre trained min 1.111 14.602 3.109 3.203 5.418 44.359 23.180 2.963 1.718 11.074 8

pre trained sum 1.106 14.560 3.120 3.221 5.415 44.480 23.067 2.952 1.704 11.070 7

learn d2v 1.089 14.286 3.006 3.031 5.335 43.955 22.991 2.876 1.647 10.913 1

67

6

Limitations

This thesis showed empirical results of the application of various simpler methods in
comparison to Doc2Vec, across different datasets in order to give advice to practitioners
in the field of document embeddings as well as the application of these embeddings in
sentiment analysis or in general label prediction.

Nonetheless the following main limitations might be spotted in this thesis:
The evaluated datasets were rather short ranging from 3 to 265, while most of the

datasets have less than 25 words per document. The shortness of the documents could
also have influenced the performance of the tested methods Word2Vec and Doc2Vec.

The transferability of pre-trained document embedding models could be shown but
what factors lead to a better performance and what features a candidate should have in
order to be applied in a wide range of document still needs to be clarified.

A simple method was shown how to compress a binary BOW into a low dimensional
vector to be used for a document classification task. This method was mostly tested on
the IMBD dataset and then just applied on smaller ones, therefore a simple function
was created that scales the hidden layers of the auto-encoder dynamically. This function
should be refined in order to better work also on smaller dataset. The proposed method
was only checked with extrinsic evaluation but whether or not the distance between these
encoded embeddings also have similar information about their semantic relatedness or
not was not checked.

7

Future Work

As shown in Chapter 6, there are limitations to this work.
Some experiments showed that longer documents also resulted in better accuracy.

This effect could be addressed with a broader range of documents, and created docu-
ment with various lengths. Here also a linear regression to check the influence of the
continuous variable document length with the dummy variable correctly predicted could
be interesting.

As already proposed, an attempt of creating a Doc2Vec embedding model similar to
the GloVe 42B Common Crawl [Pennington et al., 2014a] would be of help for a wide
range of ML tasks and could help people to overcome the parameter tuning step.

But also possible would be a better weighting scheme for each word of the pre-trained
word vectors learned on a huge amount of text such that the aggregation of word vectors
multiplied by their weighting would result in a good document representation, but it is
questionable if such a rigid weighting scheme even exists.

8

Conclusions

In this thesis a range of baseline approaches to derive document vector representations
from text were compared in order to asses whether newer approaches like Doc2Vec
outperform simpler methods like BOW in typical downstream classification tasks.

In the different benchmarking tests BOW outperformed the used Doc2Vec configu-
ration. But also other approaches like the word vector centroids of pre-trained word
vectors usually showed a better performance than Doc2Vec. The neural language mod-
els Word2Vec and Doc2Vec suffer especially when the documents are short to build a
sufficiently good dense vector representation. This could be show in the case of the
datasets SST1 and SST2 where BOW showed a much better performance then Doc2Vec
the result reported by [Le and Mikolov, 2014].

It could be shown that the training of Doc2Vec on other corpora could still create a
Doc2Vec model powerful enough to use for satisfactory prediction in downstream tasks.

It could be shown that a pre-trained BOW classifier can return much better results if
used on the right dataset.

The results showed that learning Word2Vec embeddings on a classification data sets
can only be useful if the dataset has long enough documents but in this case, it can give
a slight advantage over pre-trained vectors.

If evaluation speed is essential and BOW shows good accuracy a method to compress
large BOWs to be used for constant short evaluation was shown.

One could argue that Doc2Vec was not applied right and some of the hyperparameters
should have been set differently. That might well be, but this is also a severe disadvantage
over a method like BOW where primarily no hyperparameters exist. This makes BOW
less versatile, but as shown in the results with the tested datasets it could still well
compete against newer methods, like Word2Vec, pre-trained word embedding centroids
and also the applied version on Doc2Vec with the used hyperparameters. As mentioned
in [Levy et al., 2015], hyperparameter tuning is the most critical optimization technique
of complex hyperparameter rich methods such as Doc2Vec.

References

[Anaconda, 2016] Anaconda (2016). Anaconda software distribution.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine
Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs, stat].
arXiv: 1409.0473.

[Baldi, 2011] Baldi, P. (2011). Autoencoders, unsupervised learning and deep archi-
tectures. In Proceedings of the 2011 International Conference on Unsupervised and
Transfer Learning Workshop - Volume 27, UTLW’11, pages 37–50. JMLR.org.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155.

[Blei, 2003] Blei, D. M. (2003). Latent Dirichlet Allocation. page 30.

[Bojanowski et al., 2016] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016).
Enriching Word Vectors with Subword Information. arXiv:1607.04606 [cs]. arXiv:
1607.04606.

[Brokos et al., 2016] Brokos, G.-I., Malakasiotis, P., and Androutsopoulos, I. (2016). Us-
ing centroids of word embeddings and word mover’s distance for biomedical document
retrieval in question answering. In Proceedings of the 15th Workshop on Biomedical
Natural Language Processing, pages 114–118, Berlin, Germany. Association for Com-
putational Linguistics.

[Cer et al., 2018] Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S.,
Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y.-H., Strope, B.,
and Kurzweil, R. (2018). Universal Sentence Encoder. arXiv:1803.11175 [cs]. arXiv:
1803.11175.

[Chen, 2017] Chen, M. (2017). Efficient Vector Representation for Documents through
Corruption. arXiv:1707.02377 [cs]. arXiv: 1707.02377.

[Chen et al., 2016] Chen, S., Chen, G., and Wang, W. (2016). The joint effect of seman-
tic and syntactic word embeddings on sentiment analysis. In 2016 IEEE International
Conference on Network Infrastructure and Digital Content (IC-NIDC), pages 366–370.

76 References

[Chollet et al., 2015] Chollet, F. et al. (2015). Keras. https:// keras.io.

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architec-
ture for natural language processing: Deep neural networks with multitask learning.
In Proceedings of the 25th International Conference on Machine Learning, ICML ’08,
pages 160–167, New York, NY, USA. ACM.

[Dai et al., 2015] Dai, A. M., Olah, C., and Le, Q. V. (2015). Document Embedding
with Paragraph Vectors. arXiv:1507.07998 [cs]. arXiv: 1507.07998.

[De Boom et al., 2016] De Boom, C., Van Canneyt, S., Demeester, T., and Dhoedt, B.
(2016). Representation learning for very short texts using weighted word embedding
aggregation. Pattern Recognition Letters, 80:150–156. arXiv: 1607.00570.

[Finkelstein et al., 2002] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan,
Z., Wolfman, G., and Ruppin, E. (2002). Placing search in context: the concept
revisited. ACM Trans. Inf. Syst., 20(1):116–131.

[Finley et al., 2017] Finley, G., Farmer, S., and Pakhomov, S. (2017). What Analogies
Reveal about Word Vectors and their Compositionality. In Proceedings of the 6th
Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 1–11,
Vancouver, Canada. Association for Computational Linguistics.

[Ganitkevitch et al., 2013] Ganitkevitch, J., Van Durme, B., and Callison-Burch, C.
(2013). PPDB: The Paraphrase Database. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 758–764, Atlanta, Georgia. Association for Computa-
tional Linguistics.

[Goth, 2016] Goth, G. (2016). Deep or shallow, nlp is breaking out. Commun. ACM,
59(3):13–16.

[Hinton, 1986] Hinton, G. E. (1986). Learning distributed representations of concepts.
In Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pages
1–12. Hillsdale, NJ: Erlbaum.

[Hu and Liu, 2004] Hu, M. and Liu, B. (2004). Mining and summarizing customer
reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04, pages 168–177, New York, NY,
USA. ACM.

[Hunter, 2007] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing
In Science & Engineering, 9(3):90–95.

[Jette et al., 2002] Jette, M. A., Yoo, A. B., and Grondona, M. (2002). Slurm: Simple
linux utility for resource management. In In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003, pages
44–60. Springer-Verlag.

76

https://keras.io

References 77

[Ji et al., 2015] Ji, S., Yun, H., Yanardag, P., Matsushima, S., and Vishwanathan,
S. V. N. (2015). WordRank: Learning Word Embeddings via Robust Ranking.
arXiv:1506.02761 [cs, stat]. arXiv: 1506.02761.

[Kiros et al., 2015] Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A.,
Urtasun, R., and Fidler, S. (2015). Skip-Thought Vectors. arXiv:1506.06726 [cs].
arXiv: 1506.06726.

[Kluyver et al., 2016] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D.,
Abdalla, S., Willing, C., and development team [Unknown], J. (2016). Jupyter note-
books ? a publishing format for reproducible computational workflows. In Loizides,
F. and Scmidt, B., editors, Positioning and Power in Academic Publishing: Players,
Agents and Agendas, pages 87–90. IOS Press.

[Kusner et al., 2015] Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger, K. Q.
(2015). From Word Embeddings To Document Distances. page 10.

[Landauer et al., 1998] Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An intro-
duction to latent semantic analysis. Discourse Processes, 25(2-3):259–284.

[Lang, 1995] Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings
of the Twelfth International Conference on Machine Learning, pages 331–339.

[Lau and Baldwin, 2016] Lau, J. H. and Baldwin, T. (2016). An Empirical Evaluation of
doc2vec with Practical Insights into Document Embedding Generation. pages 78–86.
Association for Computational Linguistics.

[Le and Mikolov, 2014] Le, Q. V. and Mikolov, T. (2014). Distributed Representations
of Sentences and Documents. arXiv:1405.4053 [cs]. arXiv: 1405.4053.

[Levy et al., 2015] Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving distribu-
tional similarity with lessons learned from word embeddings. TACL, 3:211–225.

[Li and Roth, 2002] Li, X. and Roth, D. (2002). Learning question classifiers. In Pro-
ceedings of the 19th International Conference on Computational Linguistics - Volume
1, COLING ’02, pages 1–7, Stroudsburg, PA, USA. Association for Computational
Linguistics.

[Linzen, 2016] Linzen, T. (2016). Issues in evaluating semantic spaces using word analo-
gies. arXiv:1606.07736 [cs]. arXiv: 1606.07736.

[Loper and Bird, 2002] Loper, E. and Bird, S. (2002). Nltk: The natural language
toolkit. In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies
for Teaching Natural Language Processing and Computational Linguistics - Volume 1,
ETMTNLP ’02, pages 63–70, Stroudsburg, PA, USA. Association for Computational
Linguistics.

77

78 References

[Manning et al., 2008] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Intro-
duction to Information Retrieval. Cambridge University Press, New York, NY, USA.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Ef-
ficient Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs].
arXiv: 1301.3781.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J.
(2013b). Distributed Representations of Words and Phrases and their Composition-
ality. arXiv:1310.4546 [cs, stat]. arXiv: 1310.4546.

[Miller, 1995] Miller, G. A. (1995). Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41.

[Pagliardini et al., 2017] Pagliardini, M., Gupta, P., and Jaggi, M. (2017). Unsu-
pervised Learning of Sentence Embeddings using Compositional n-Gram Features.
arXiv:1703.02507 [cs]. arXiv: 1703.02507.

[Pang and Lee, 2004] Pang, B. and Lee, L. (2004). A sentimental education: Sentiment
analysis using subjectivity summarization based on minimum cuts. In Proceedings
of the 42Nd Annual Meeting on Association for Computational Linguistics, ACL ’04,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[Pang and Lee, 2005] Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class rela-
tionships for sentiment categorization with respect to rating scales. In Proceedings of
ACL, pages 115–124.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2011). Scikit-learn: Machine Learning in Python . Journal of Machine Learning
Research, 12:2825–2830.

[Pennington et al., 2014a] Pennington, J., Socher, R., and Manning, C. (2014a). GloVe
42B 300, Common Crawl. http:// nlp.stanford.edu/ data/ glove.42B.300d.zip.

[Pennington et al., 2014b] Pennington, J., Socher, R., and Manning, C. (2014b). Glove:
Global Vectors for Word Representation. pages 1532–1543. Association for Computa-
tional Linguistics.

[Porter, 1997] Porter, M. F. (1997). Readings in information retrieval. chapter An
Algorithm for Suffix Stripping, pages 313–316. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[Řeh̊uřek and Sojka, 2010] Řeh̊uřek, R. and Sojka, P. (2010). Software Framework for
Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta. ELRA. http:
// is.muni.cz/ publication/ 884893/ en.

78

http://nlp.stanford.edu/data/glove.42B.300d.zip
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

References 79

[Rogers et al., 2017] Rogers, A., Drozd, A., and Li, B. (2017). The (too Many) Problems
of Analogical Reasoning with Word Vectors. In Proceedings of the 6th Joint Conference
on Lexical and Computational Semantics (*SEM 2017), pages 135–148, Vancouver,
Canada. Association for Computational Linguistics.

[Socher et al.,] Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng,
A. Y., and Potts, C. Recursive deep models for semantic compositionality over a
sentiment treebank.

[Weston et al., 2014] Weston, J., Chopra, S., and Adams, K. (2014). #TagSpace: Se-
mantic Embeddings from Hashtags. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 1822–1827, Doha,
Qatar. Association for Computational Linguistics.

[Wiebe et al., 2005] Wiebe, J., Wilson, T., and Cardie, C. (2005). Annotating Expres-
sions of Opinions and Emotions in Language. Language Resources and Evaluation,
39(2-3):165–210.

[Wu et al., 2017] Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., and Weston, J.
(2017). StarSpace: Embed All The Things! arXiv:1709.03856 [cs]. arXiv: 1709.03856.

[Xu et al., 2015] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R.,
Zemel, R., and Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention. arXiv:1502.03044 [cs]. arXiv: 1502.03044.

[Zhao et al., 2015] Zhao, H., Lu, Z., and Poupart, P. (2015). Self-Adaptive Hierarchical
Sentence Model. arXiv:1504.05070 [cs]. arXiv: 1504.05070.

79

List of Figures

2.1 A typical graphical representation of LDA. The boxes are called ”plates”
and they are representing replicates. The outer plate stands for the docu-
ments, and the inner plate represents a repeated choice of documents and
words in a document. [Blei, 2003] . 8

2.2 Mean reciprocal rank shifts of the four sub categories using the baseline
and Add [Finley et al., 2017]. 11

2.3 An n/p/n Autoencoder Architecture [Baldi, 2011]. 14

2.4 A graphical illustration of the attention model trying to generate the t-th
target word yt given a source sentence (x1, x2, ..., xT) [Bahdanau et al., 2014] 15

3.1 Explanatory image of Skip-Gram and CBOW [Mikolov et al., 2013a] . . . 19

3.2 PV-DM [Dai et al., 2015] . 21

3.3 PV-DOM [Dai et al., 2015] . 21

4.1 The distribution of documents length per dataset. The bins of the his-
togram are the same while the y axis is different for each plot. 27

4.2 This plot shows the words ordered by their frequency as a Zipf plot. . . . 28

4.3 Exemplary setup of the network, classifying two classes and having a
document vector of size 300 as input. 34

5.1 The accuracy of the Doc2Vec method on the four different datasets and
four different preprocessing methods. 42

5.2 The accuracy of four BOW methods on the four different datasets and
four different preprocessing methods. 43

5.3 This Figure shows the process time per dataset and pre-processing steps
for the Doc2Vec method. 45

5.4 This figure shows the process time per dataset and pre-processing steps
for the BOW methods. 46

5.5 Results as box plots of the 10-fold cross-validation. The y-axis is scaled
for each plot individually. 48

5.6 The results of two method groups BOW and Doc2Vec in document classi-
fication, where text sequences should be matched with their corresponding
book. 52

82 List of Figures

5.7 The results of two method groups BOW and Doc2Vec in document classi-
fication, where text sequences should be matched with their corresponding
author. 52

5.8 This figure shows the learning and evaluation duration of the Doc2Vec
method for each of the four dataset with different document sizes. 53

5.9 Each point in the graph represents one accuracy measurement of the Data
sets. The blue regression line includes multi-class datasets, green excludes
them. 54

5.10 In this heat map the accuracy difference between the accuracy result after
five epochs and the result of a pre-trained Doc2Vec model from another
domain dataset, where all the new documents from the target dataset
were inferred. Dark green is a slightly positive value, dark red a very
negative one. 57

5.11 The heatmap shows on the left side of the heatmap the Dataset where
the Doc2Vec model and the classifier was trained on and on top of the
columns the dataset where it was applied to is indicated. Dark green is
zero; dark red is a very negative value. 58

5.12 Transferability of BOW binary Model and Classifier 59
5.13 Transferability of BOW count Model and Classifier 59
5.14 Transferability of BOW frequency Model and Classifier 59
5.15 Transferability of BOW TF-IDF Model and Classifier 59
5.16 CR over time . 60
5.17 IMBD over time . 61
5.18 MPQA over time . 61
5.19 MR over time . 62
5.20 NG20 over time . 62
5.21 SST1 over time . 63
5.22 SST2 over time . 63
5.23 SUBJ over time . 64
5.24 TREC over time . 64

82

List of Tables

2.1 Table with word analogy examples . 12

4.1 The different statistics for each dataset. 25

4.2 Datasets . 29

4.3 Examples of text and class for each dataset. 30

5.1 The results of Doc2Vec of the four datasets CR, IMBD, SUBJ and TREC
preprocessed differently and compared with the baseline the basic prepro-
cessing. In bold the highest accuracy per line in italic the lowest. 41

5.2 The results of the many BOW variations of the four datasets CR, IMBD,
SUBJ and TREC preprocessed differently and compared with the baseline
here the basic preprocessing. In bold the highest accuracy per line in italic
the lowest. 42

5.3 The results of Doc2Vec of the four datasets CR, IMBD, SUBJ and TREC
preprocessed differently and compared with the baseline the basic prepro-
cessing. In bold the highest accuracy per line in italic the lowest. 45

5.4 The results of all the methods for each dataset, the best result is in bold. 51

5.5 The table with the results of the comparison of Doc2Vec evaluation once
trained on 90% of the data and once with all the available documents.
The change is indicated with a plus or minus. 54

5.6 The accuracy of the bow2bow auto-encoder. As a comparison also the
bow binary and Doc2vec are presented. 55

5.7 This table shows the average accuracy of the domain dataset where the
Doc2Vec model was trained on and applied on all other datasets. 56

5.8 This table shows the average accuracy of the target dataset where an
externaly trained Doc2Vec model applied to generate the document em-
beddings. 57

5.9 This table shows the final accuracy taking the maximum accuracy of the
mean in 3-fold cross-validation, in 50 epochs with evaluation after each
epoch. 65

5.10 Accuracy of AdaSent on some of the evaluated datasets. [Zhao et al., 2015] 66

5.11 Wall time of the different methods, specifically their time till the maxi-
mum in 50 epochs was reached. 66

84 List of Tables

5.12 Duration of an epoch across all datasets. 67

84

	Introduction
	Related Work
	Word Embeddings
	Document Vector Representation Models
	Critique of word embedding evaluation methods
	Evaluation of Embeddings
	Neural Encoder

	Methods
	Corpus Preprocessing
	Word Embeddings
	Document Embeddings
	Bag of Words (BOW)
	Neural Auto-encoder

	Experimental Setup
	Datasets
	Implementation
	Methods
	Model parameters
	Evaluation of the Vector Models
	Methodology
	Preprocessing effects
	Accuracy
	Transferability
	Speed

	Results
	Preprocessing effects
	Preprocessing Accuracy
	Preprocessing Speed
	Discussion

	Accuracy
	by Dataset
	by Document Length
	by Corpus Size
	Reproducibility of the Doc2Vec Results from the Paper
	Accuracy by Simple Dense Neural Encoder

	Transferability
	Doc2Vec Transferability of Embedding Model
	Doc2Vec Transferability of Embedding Model together with Classifier
	BOW Transferability of Document Vectorization Process Together with Classifier

	Speed
	Speed of Convergence
	Final accuracy
	Wall Time

	Limitations
	Future Work
	Conclusions

