
Mitigation as a Service in a
Cooperative Network Defense

Stephan Mannhart
Steinach, Switzerland

Student ID: 11-917-515

Supervisor: Bruno B. Rodrigues, Eder Scheid
Date of Submission: July 31, 2018

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Das ständig wachsende Internet umfasst eine Vielzahl an verbundenen Geräten, die ent-
weder selbst Opfer eines Distributed Denial of Service (DDoS) Angriffs im grossen Stil
werden oder direkt Teil der Angriffswelle sind. Die Abwehr solcher Attacken erfordert die
Zusammenarbeit verschiedener autonomer Systeme um eine schnelle Abwehr der Attacke
direkt an der Quelle zu ermöglichen. Diese Zusammenarbeit hilft, Bandbreite und Com-
puterressourcen jedes einzelnen Internetbenutzers und speziell der Opfer dieser Angriffe
zu schützen [48].

Diese Masterarbeit beschreibt im Detail das Design und die Implementation eines mo-
dularisierten, Netzwerk-agnostischen und kooperativen DDoS Abwehrsystems, bestehend
aus mehreren dezentralisierten Instanzen, die in Zusammenarbeit Attacken gegen jedes
Mitglied dieser Kooperative abwehren. Der neuartige Aspekt dieses Abwehrsystems, das
mehrere Domänen überspannt, ist die Verwendung der Ethereum Blockchain zur Signal-
übertragung, um alle Mitglieder der Kooperative über laufende Angriffe zu informieren.
Die Implementation ist ein Re-Engineering des Proof of Concept Blockchain Signaling
Systems (BloSS) entwickelt von Rodrigues et al. [46] mit dem Ziel, eine flexiblere Platt-
form zu entwickeln, die als Fundament für zukünftige Forschungsarbeiten in Richtung
eines vollautomatisierten Mitigation-as-a-Service (MaaS) Systems dienen soll. Zusammen
mit dem Re-Engineering des BloSS werden Ansätze für eine Proof-of-Mitigation Lösung
präsentiert, mit dem Ziel, ein zahlungsbasiertes Anreizsystem zu ermöglichen, welches in
das MaaS System integriert werden kann.

Die gesamte Entwicklung wird auf einem Demonstrationssystem basierend auf Einplati-
nenrechnern und Software-Defined Networking (SDN) Hardware ausgewertet. Als Resultat
dieser Auswertungen wird die kurze Reaktionszeit zur kollaborativen Abwehr einer DDoS
Attacke aufgezeigt, sowie die ressourcenschonende Implementation des Verschlüsselungs-
systems beleuchtet, welches die Vertraulichkeit und Richtigkeit der Attackinformationen
in der Blockchain gewährleistet.

i

ii

The ever-growing Internet brings with it a multitude of connected devices that could
either fall victim to large-scale Distributed Denial of Service (DDoS) attacks or be part
of the attack themselves. Defending against these attacks requires collaboration among
different autonomous systems (ASes) to enable a swift mitigation of the threat directly at
the source. This helps to save bandwidth as well as computing resources for the internet
as a whole and the victims of these attacks in particular [48].

This thesis details the design and implementation of a modularized, network-agnostic and
cooperative DDoS defense system consisting of multiple, decentralized instances working
together to mitigate attacks targeted at any member of this alliance. The novel aspect
of this multi-domain defense system is the use of the Ethereum blockchain as a signaling
medium to inform all parties in the system about ongoing attacks. The implementation
is a re-engineering of the proof of concept Blockchain Signaling System (BloSS) devel-
oped by Rodrigues et al. [46] with the goal to build a more flexible platform that can
serve as the basis for future research toward realizing a fully automated Mitigation-as-
a-Service (MaaS) offering. Together with the re-engineering of the BloSS, approaches
to provide a Proof-of-Mitigation are presented, with the aim to enable payment-based
incentive schemes to be integrated into the aforementioned MaaS.

The entire development effort is evaluated on a demonstration system based on single
board compute nodes and Software-Defined Networking (SDN) hardware. The evaluation
highlights the short delay in blocking multi-domain attacks and the minimal footprint
of the implemented encryption scheme that provides confidentiality and integrity for the
attack information published on the blockchain.

Acknowledgments

I am using this opportunity to thank my advisors Bruno Rodrigues and Eder Scheid
for their support and guidance throughout the thesis. A special thanks goes to Bruno
Rodrigues for being available around the clock to answer my questions and troubleshoot
any obstacles I encountered while working on the BloSS.

Last but not least I thank my family for allowing me to pursue my thesis in a supportive
environment and motivating me along the way.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Goals . 2

1.3 Thesis Outline . 2

2 Related Work 5

2.1 Centralized DDoS Defense Mechanisms . 5

2.1.1 Source-Based Mechanisms . 6

2.1.2 DDoS netWork Attack Recognition and Defense (D-WARD) 6

2.1.3 MUlti-Level Tree for Online Packet Statistics (MULTOPS) 6

2.1.4 Destination-Based Mechanisms . 7

2.1.5 IP Traceback . 8

2.1.6 Analyzing Management Information Base (MIB) 8

2.2 Decentralized DDoS Defense Mechanisms 9

2.2.1 IETF DOTS . 9

2.2.2 CoFence . 11

2.2.3 Bohatei . 11

2.2.4 DefCOM . 12

2.3 Systems Overview . 14

v

vi CONTENTS

3 Approaches Toward a Proof-of-Mitigation 15

3.1 Marketplace of VNFs for Mitigation . 16

3.2 Trusted Computing . 18

3.3 Secure logging . 19

3.4 Network Slicing . 21

3.5 Discussion . 22

3.5.1 NFV vs. Network Slicing . 23

3.5.2 Trusted Computing vs. Secure Logging 23

3.5.3 Combining Approaches . 24

3.5.4 Cloud Service Models . 24

4 Design 25

4.1 Architecture . 26

4.2 Security Considerations . 27

4.3 Defense Scenario . 28

4.4 Attack Information . 29

5 Implementation 31

5.1 Demonstration System . 31

5.1.1 Networking . 31

5.1.2 Single Board Computers . 33

5.2 Ethereum Blockchain . 33

5.2.1 Signaling Attacks . 34

5.3 Configuration . 35

5.4 Stalk . 36

5.4.1 Simple Router . 37

5.4.2 Controller . 38

5.5 BloSS . 40

5.6 Pollen . 40

5.6.1 PollenBlockchain . 41

5.6.2 PollenDatastore and PollenEncryption 42

CONTENTS vii

6 Evaluation 45

6.1 Evaluation Setup . 45

6.2 Blocking Delay . 46

6.3 CPU Load . 47

6.3.1 Collection . 47

6.3.2 CPU Usage Graphs . 47

6.3.3 Statistical Metrics . 49

7 Discussion 51

7.1 Evaluation Results . 51

7.1.1 Blocking Delay Results . 51

7.1.2 CPU Usage Results . 52

7.2 Competition . 53

8 Final Considerations 55

8.1 Future Work . 56

Bibliography 56

Abbreviations 63

Glossary 65

List of Figures 65

List of Tables 68

A Toward Mitigation-as-a-Service in Cooperative Network Defenses 71

B Contents of the CD 79

viii CONTENTS

Chapter 1

Introduction

The growing number of devices in the modern internet leads to a multitude of problems.
One of them are large-scale distributed denial of service (DDoS) attacks consuming ever-
increasing volumes of bandwidth for all internet users and critical amounts of computing
resources for the targets of these attacks [48]. Mitigating DDoS attacks therefore becomes
an important task to ensure that the highly connected systems in use today are guaranteed
to work without major interruptions for many more years to come.

1.1 Motivation

DDoS attacks either focus on overloading the target’s networking infrastructure by bom-
barding them with high-bandwidth traffic or they directly target the computing resources
through malformed packets designed to generate overwhelming computational loads [27].
In both cases, defending against these attacks at the ingress point of the traffic quickly be-
comes infeasible due to the constrained resources available for defense at the autonomous
system (AS) being targeted. In contrast to this centralized approach, a decentralized de-
fense, where the DDoS mitigation takes place at the egress of the attack on the individual
ASes is preferable [58].

The main challenge of such a decentralized defense scenario is the additional communica-
tion and coordination overhead [58]. This is caused by the need to keep all the ASes in
sync in regard to the attack taking place to enable a cooperative effort toward mitigating
the attack collaboratively. Communication also needs to go through a trusted channel [58]
to make sure that the attack information provided to all ASes in the distributed defense
is reliable. Providing the necessary communication means to this alliance of ASes for
cooperative defense purposes is however not enough to bolster the willingness among all
participants to help each other. This cannot simply be based on goodwill but needs to be
incentivized, for example through monetary reimbursements [58].

Incentives among the members of the cooperative defense are however not the only ex-
pense that needs to be covered. Costs in the form of CAPital EXpenditures (CAPEX)
for setting up and maintaining the communication infrastructure as well as OPErating

1

2 CHAPTER 1. INTRODUCTION

EXpenditures (OPEX) to cover resource utilization costs for the actual attack mitigation
need to be taken into consideration to enable a successful cooperative defense alliance
[58]. By introducing a service model, these costs can be shifted from the AS operators to
potential customers subscribing to a purpose-built Mitigation-as-a-Service (MaaS) offer-
ing [23]. By subscribing to such a service, a customer will receive protection from DDoS
attacks emanating from within the DDoS alliance. This works by directly using the fees
paid by the customer as incentives between the operator of the AS the customer resides
in and the operators of the ASes where the attack stems from.

The main problem in regards to incentivized cooperative defense is however not the sourc-
ing of the incentives but to ensure a smooth exchange of mitigation services to receive
incentives without being able to rely on underlying trust between the parties or a reputa-
tion and reward scheme substituting the trust. Such an exchange can only be successful,
if a verifiable proof for mitigation service completion can be provided since that would
allow a direct payout of the reward upon completion of the mitigation without inherent
trust between the involved parties.

1.2 Thesis Goals

This thesis consists of an engineering-, as well as a research-focused part.

The engineering part consists of developing a stand-alone cooperative defense solution
based on the Blockchain Signaling System (BloSS) [46] by extending the existing proof
of concept implementation of the BloSS toward a network-infrastructure-agnostic and
modularized defense system. This modularized version of the BloSS serves the purpose
of providing a testbed toward a full MaaS offering.

In addition to the engineering-focused development of the modularized BloSS, the research
question of providing a mitigation proof is discussed by presenting four approaches and
conducting a qualitative evaluation of each approach.

The overall goal of this work is to advance the research in the field of cooperative DDoS
defenses by addressing two main aspects: Creating an easy to deploy platform to conduct
the mitigation and providing concrete approaches to efficiently automate a mitigation
service through an independently verifiable mitigation proof.

1.3 Thesis Outline

Chapter 2 surveys existing cooperative defense solutions to support informed decisions
in regards to the design and development of the modularized BloSS. This chapter is largely
based on literature research conducted throughout the first part of the thesis.

Chapter 3 details the research part of the thesis with the goal of enabling an efficient and
fully automated incentive scheme based on a Proof-of-Mitigation that unambiguously and

1.3. THESIS OUTLINE 3

reproducibly asserts the completion of a mitigation service in the context of a cooperative
defense system.

Chapter 4 presents the design of the modularized BloSS. This chapter provides a high-
level overview about the concepts involved in the BloSS and how the whole system has
been re-engineered toward a more flexible, modularized system capable of being adapted
to different networking architectures and deployment scenarios.

Chapter 5 serves as a technical documentation of the BloSS including the test setup in
the form of a single board computer cluster running a demonstration installation of the
entire system.

Chapter 6 evaluates the re-engineered BloSS in terms of performance both with and
without encrypted data exchange.

Chapter 7 discussed the evaluation results in regards to practicability and performance
of the modularized BloSS.

Finally, Chapter 8 concludes this thesis with final considerations and pointers to future
research enabling a full-fledged MaaS offering.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This chapter provides an overview about existing defense systems to counter network-
and transport-level DDoS attacks both from a centralized as well as a decentralized per-
spective. A summary of all systems is provided at the end of the chapter to provide a
condensed review highlighting advantages as well as disadvantages.

2.1 Centralized DDoS Defense Mechanisms

The traditional solution to defend against DDoS attacks revolves mainly around two
perspectives: Source- as well as destination-based mitigation [7]. In the case of source-
based mitigation, the defense system tries to identify malicious outgoing traffic at an
AS and blocking the attack traffic upon detection [58]. In contrast to this, destination-
based mitigation analyzes incoming traffic at the edge routers and access routers of the
attack-target AS with the goal of filtering the traffic before it reaches the AS [58].

Both perspectives have in common that they only consider individual, isolated ASes,
either on the source or destination side of the attack. This gives them the characteristic
of a centralized defense approach, since no coordination among the ASes involved in the
overall attack exists. The classification as a centralized defense approach does however
not mean, that only a centralized instance of the system exists. Especially for the source-
based approaches, multiple instances of the defense system are installed on as many ASes
as possible to counter the funnel-effect of DDoS attacks as demonstrated by Zargar et al.
[58]: DDoS attacks start out at a multitude of origins and converge increasingly toward
a single attack target. By analyzing traffic at multiple sources, the traffic- and resource-
multiplication of the DDoS attack throughout the funnel can already be mitigated at its
origin, preventing excessive loads at the attack target. Destination-based approaches are
more constrained in regards to the number of instances deployed, however it is important
to realize that once again, centralized destination-based approaches still have to be present
on each AS requiring DDoS protection. There is no central instance capable of handling
DDoS protection for multiple ASes at the same time.

5

6 CHAPTER 2. RELATED WORK

2.1.1 Source-Based Mechanisms

The following exemplary mechanisms are all source-based approaches with the goal of
decreasing the attack footprint at its origin. Advantages of these mechanisms are the low
amount of traffic required to be analyzed, the ability to stop an attack right at the source,
easy tracing of the attack back to its origin and the ability to dedicate more resources
toward the mitigation efforts since the attack itself does not consume a lot of resources
due to its small footprint [27].

The low amounts of attack-bandwidth present at the source routers can however also be
seen as a disadvantage since it is much harder to differentiate between good and bad
traffic if the traffic volume cannot be used as an indicator. Since DDoS attacks are by
nature massively distributed, the attack bandwidths will most likely be very small at the
individual source routers and without any coordination among the routers, they might
all decide to ignore the attack altogether. Since the entire mitigation endeavor also does
not directly contribute toward increased performance or stability of the AS deploying the
defense mechanism, motivation to run such a system is minimal [58].

2.1.2 DDoS netWork Attack Recognition and Defense (D-WARD)

D-WARD is a source-based defense strategy which monitors the outgoing traffic and
compares it to predefined traffic models which helps the system decide whether a specific
flow includes malicious traffic [27]. The D-WARD system is installed on multiple systems,
however there exists no coordination among these systems, which clearly makes D-WARD
a centralized approach [58].

As soon as a network flow being monitored by D-WARD is detected to be of malicious
origin, the traffic is rate-limited to stifle the effectiveness of the attack [27]. Rate-limiting
the flows allows ongoing monitoring to be able to lift the rate limit as soon as the flow
ceases to exhibit malicious characteristics. This is preferable to outright stopping the flows
since misclassifications cannot be detected if continuous monitoring of the respective flows
is unavailable.

Detection works by monitoring the behavior of a flow to detect clear indicators of commu-
nication problems in the traffic such as ”a reduction in the number of response packets or
longer inter-arrival times” [27]. These indicators are compiled into a model which is used
to analyze statistics obtained from the traffic ingressing and egressing the source router
at the AS. As soon as a match occurs between the predefined model and the recorded
traffic, the discussed rate limiting is applied which is then continuously adjusted based on
whether the traffic keeps exhibiting the characteristics defined in the model [27].

2.1.3 MUlti-Level Tree for Online Packet Statistics (MULTOPS)

The MULTOPS data structure pursues a similar strategy as D-WARD by analyzing spe-
cific characteristics of the ingressing and egressing traffic of an AS. Instead of gathering

2.1. CENTRALIZED DDOS DEFENSE MECHANISMS 7

statistics and trying to find patterns that match a predefined model, MULTOPS is an
attack-resistant data structure storing statistics about aggregated traffic to and from the
AS it is running on. These statistics are then used to find significant differences between
the amount of incoming and outgoing traffic which would indicate an attack going in one
direction. This is based on the assumption that benign traffic exhibits symmetric charac-
teristics for the amount of incoming and outgoing traffic since packets from one host are
generally acknowledged by the other host [11].

MULTOPS is essentially a tree with four levels where the root node contains aggregate
traffic rates to and from network hosts managed by the AS [11]. The leaves in the tree
represent individual traffic flows for individual network hosts. If the traffic rate for a
packet-flow exceeds a specified threshold, a new node in the MULTOPS tree is created.
This continues until the leaves on level 4 of the tree are reached and the flow is associated
with the specific destination host in the leaf. The Nodes are subsequently destroyed if
the traffic falls below the threshold. If the traffic continues to exceed the threshold, the
source router at the AS is instructed to drop the packets originating from within the ASes
domain. [11].

Gil et al. [11] implemented MULTOPS as a module of the Click router [19]. The advantage
of the Click router is the ability to chain multiple modules, so called ”elements”[19] together
to form a processing pipeline for incoming packets. Each element only performs very
simple functions such as ”communicating with devices, queuing packets, and implementing
a dropping policy”[11]. The MULTOPS implementation contains two elements called
”IPRateMonitor”[11] and ”RatioBlocker”[11] which are directly interconnected in a way
that the rate of traffic for incoming and outgoing packets is monitored. Based on these
monitored rates, packets are dropped if the ratio is out of balance according to the pre-
defined thresholds.

2.1.4 Destination-Based Mechanisms

Destination-based approaches toward DDoS mitigation face a big challenge in the form of
the high bandwidth of the attack traffic arriving at the routers they are managing. This
leads to high resource usages on the mitigation system due to the overhead of analyzing
the attack traffic not at its origin but only very near to its destination [58]. Since attack
traffic is left untouched throughout its preceding route, resources are wasted which could
have been saved if the traffic would have been classified before [58].

The advantage of the late response to the attack traffic is that it is much easier to identify
malicious traffic simply based on its volume and destination[58]. Another clear advantage
are the direct incentives for the operator of destination-based mitigation systems: By
running such a system, they are directly able to protect hosts within their AS from
attacks, which represents an added value to all or their users [58].

Following defense mechanisms demonstrate different approaches to mitigate DDoS attacks
in a destination-based manner. These mechanisms take place at the edge routers or access
routers of the AS deploying them [58].

8 CHAPTER 2. RELATED WORK

2.1.5 IP Traceback

Destination-based mechanisms are in the unique position to be able to analyze the entire
attack traffic since they are very close to the attack target. This can be used to trace
back the attack origins to better identify malicious traffic and easily differentiate it from
normal traffic. Tracing back attack traffic to its origin is however not a straight forward
process, since attackers often spoof their IP addresses, making it much harder to find the
actual origin [18].

Traceback approaches are divided into preventive and reactive approaches [18]. The less
common preventive approaches try to block packets originating from spoofed IP addresses
as a direct measure against DDoS attacks [18]. This is accomplished by examining every
packet arriving at the edge or access router of an AS which can become quite resource-
intensive with increasing volume of a DDoS attack.

Reactive approaches on the other hand can generally be divided into link testing and
packet marking schemes [18]. Link testing tries to identify the link which was used to
transfer the attack packet. This is continued upstream until the source is reached, which
gives a clear indication where a specific attack came from [18]. Instead of manually
testing all the links right up to the attackers, packet marking allows to mark packets on
the router while forwarding them [18]. The victim can later observe the path of a packet
by examining the inserted marks [18]. Even though this scheme requires less work from
the attack victim to determine the source of the attack, compatible routers are required
that are able to mark the packets on their way.

Traceback approaches generally suffer from deployment and operational challenges due to
the complexity of these schemes: Preventively examining each packet or marking packets
for later examination can be automated, however it requires additional resources in the
form of computing power for examination and compatible routing hardware for packet
marking [58]. In the case of packet marking, different paths might receive the same mark,
which increases the false positive rate dramatically [58].

2.1.6 Analyzing Management Information Base (MIB)

MIB data contains statistical variables about the traffic in a Network Management System
(NMS) [4]. These variables are organized in groups such as ip, icmp, tcp, udp and snmp,
generally grouping the variables with the corresponding protocols [4]. The goal in utilizing
the MIB for destination-based DDoS prevention is to deduce patterns prior to a DDoS
attack based on the preparations taken by the attacker to instruct the slave machines
utilized in a DDoS attack [4]. This represents a much more efficient approach toward
DDoS mitigation especially considering the high volume of attack traffic destination-based
approaches normally need to defend against. By setting up such an online monitoring
solution in the form of an Intrusion Detection System (IDS) for DDoS attacks, blocking
of attackers can already occur throughout the preparation stages of the attack instead of
after the attack is already taking place and wasting resources [4].

2.2. DECENTRALIZED DDOS DEFENSE MECHANISMS 9

This scheme can already be applied for destination-based mitigation where the NMS
defending against the attack only manages the DDoS target. If attackers are however also
part of the managed domain, additional instructive traffic between the attack master and
the attack slaves can be analyzed to generate pointers for an early warning system [4].
The proactive detection of attacks works in three steps [4]:

1. The first step is concerned with collecting information about possible MIB variables
suitable to act as precursors for an imminent attack at a target host. These variables
can be found by analyzing traffic data from past attacks and determining patterns
based on the available MIB variables.

2. If attack hosts are within the domain of the NMS being protected, correlations
between MIB variables for the attack hosts and the variables for the target hosts
from step 1 can be calculated.

3. These correlations can then be used to increase the significance of the precursors
found in step 1 to be able to react to imminent attacks even faster.

2.2 Decentralized DDoS Defense Mechanisms

The source- and destination-based approaches employed by the centralized DDoS defense
systems fall short in regards to the highly distributed nature of the attacks. Source-based
approaches such as D-WARD discussed in Section 2.1.2 or MULTOPS presented in Section
2.1.3 often fail to identify the attack as a whole and only see parts of it. Destination-
based approaches on the other hand are able to detect the entire attack volume, however
this quickly turns into their biggest weakness since they then have to mitigate massive
amounts of traffic at once. Preventive measures such as utilizing MIB for attack precursor
detection as seen in Section 2.1.6 can help in that regard, however the resources required
to mitigate the attack are still prohibitively high.

A hybrid approach, combining source- and destination-based approaches as well as intro-
ducing a degree of cooperation among the defense systems, is able to better cope with
these highly distributed attacks [58]. By allowing the individual defense systems to com-
municate among each other, attack information can be shared to be able to react to
attackers that might have remained undetected on a source system whereas a destination
system might have identified the attack affecting one of the hosts within their domain.

2.2.1 IETF DOTS

The Internet Engineering Task Force (IETF) Distributed-Denial-of-Service Open Threat
Signaling (DOTS) architecture [28] was devised as a standardization attempt for collab-
orative DDoS defense. Through the DOTS protocol, data models are provided to enable
intra- and inter-organizational DDoS defense with multiple parties [34]. DOTS specifi-
cally focuses on aiding with the coordination of attack responses with a client and server

10 CHAPTER 2. RELATED WORK

Client

Data
Signal

Server

Figure 2.1: DOTS server and client model with data and signal channel

model. The DOTS client requests mitigation from the DOTS server after detecting an
ongoing attack [28].

Communication between the DOTS server and client takes place over a data- as well as
a signal-channel as illustrated in Figure 2.1. The signal channel is used by the client to
request mitigation from the server and the server uses the signal channel in turn to inform
the client about the status of the mitigation [28]. As part of the information provided
by the client to signal the server for help, attack targets as well as telemetry data about
the attack can be provided through the signal channel to simplify the mitigation for the
server [28].

The data channel, which is an optional component in the DOTS scheme, is used to
exchange additional configuration information that can then be used in addition to the
information transferred through the signaling channel. These configurations may consist
of host identifiers, blacklists, whitelists, traffic filters or DOTS client provisioning [28].

During operation, the DOTS system differentiates between manual and automatic mitiga-
tion requests [28]. Manual requests represent a labor-intensive way of requesting mitiga-
tion from a DOTS server by submitting the request through a text prompt or a graphical
user interface [28]. The requests can be received by the DOTS client operator through
channels such as ”phone, e-mail, Web-portal, etc.” [34] and then manually relayed to the
server. This request method is very slow since the operator as a middleman needs too
much time to receive, verify and relay new requests. The automatic approach outlined
in [28] allows for fast mitigation by directly triggering requests to the DOTS server upon
fulfilling pre-defined network conditions [28].

To extend the reach of the mitigation system beyond the current domain served by the
most intermediate DOTS server, recursive signaling [28] can be used. The recursive part
of this signaling scheme is represented by an additional DOTS client operated by a DOTS
server operator which can be used to signal other domains to enable true cooperative
defense as illustrated in Figure 2.2.

2.2. DECENTRALIZED DDOS DEFENSE MECHANISMS 11

autonomous system B

Client

Data
Signal

Server

Data

Signal
Server Clientautonomous system A

Figure 2.2: Recursive signaling in DOTS

2.2.2 CoFence

The inter-domain mitigation requires an efficient scheme to provision the filters required
to cooperatively defend against a large-scale DDoS attack. CoFence presented by Rashidi
et al. [44] addresses this problem by relaying attack traffic to other participants in the
cooperative alliance. This circumvents the problem of filter provisioning and provides a
simple check for the efficacy of the mitigation since the participating systems will only
relay back attack-free traffic which directly proves that they have actually conducted the
mitigation [44].

Deployment of a CoFence instance relies on Network Function Virtualization (NFV)[32] to
simplify the instantiation of the entire system. Utilizing NFV for a collaborative defense
system can help to persuade potential new members of a DDoS alliance to join, since
device upgrading and creation is very fast and low cost due to the virtualized nature of
all networking components [44]. Instead of relying on fixed hardware-based networking
solutions, commodity hardware can be used to launch virtualized networking appliances
that can be spun up on demand [9].

2.2.3 Bohatei

The emerging paradigm of NFV is often used in conjunction with Software-Defined Net-
working (SDN). Through SDN, the data plane is decoupled from the control plane of the
networking infrastructure, allowing tailored solutions for specific networking needs [9].
The routing required to relay the attack traffic in the case of CoFence could be simplified
through SDN-based networking as similar mitigation solutions such as Bohatei, presented
by Fayaz et al. [9] demonstrate.

Bohatei serves as a clear indicator of the scalability advantages in using SDN- and NFV-
based networking to tackle the DDoS defense problem. The Bohatei proof of concept

12 CHAPTER 2. RELATED WORK

implementation discussed in [9] is realized with the OpenDaylight SDN controller[38]
together with an assortment of Open Source tools to facilitate routing and mitigation
such as OpenvSwitch[42], Snort[5], Bro[39] and iptables[43]. Experiments conducted by
Fayaz et al. show, that the Bohatei solution was able to mitigate attacks with a total
throughput of up to 100 Gbps while only requiring hardware which was 2.1 to 5.4 times
more cost-effective compared to ”fixed defense facilities” [9]

The proof-of-concept implementation of Bohatei as presented by Fayaz et al. does not
directly incorporate inter-domain DDoS defense, however employing a scheme such as
Pushback [16], which allows edge and access routers to relay traffic filtering to routers
further upstream, could expand the approach and allow multi-domain cooperative defense
with the flexibility of SDN and NFV.

2.2.4 DefCOM

The highly distributed nature of DDoS attacks requires an equally distributed defense
system. This is where DefCOM comes in: It uses existing defense strategies and provides a
framework in the form of a cooperative overlay network to exchange mitigation information
across multiple domains [37].

autonomous system B

autonomous system C

DefCOMPeer
DefCOMPeer

autonomous system A

DefCOMPeer
Data Link

P2P Link

DEFJOIN

DEFJOIN

DEFJOIN autonomous system B

autonomous system C

DefCOMPeer
DefCOMPeer

autonomous system A

DefCOMPeer
Data Link

P2P Link

DEFREPLY

DEFREPLY

DEFREPLY

a) To initiate the overlay formation, all peers send
 out DEFJOIN messages

b) Upon receipt and verification of a DEFJOIN message,
 a DEFREPLY message is returned

Figure 2.3: Formation of the DefCOM overlay network

DefCOM is specifically geared toward protection against flooding DDoS attacks and fo-
cuses on three critical defense functionalities [37]:

1. Differentiating between benign and attack traffic through traffic classification

2. Rate limiting attack traffic to free resources

3. Alert generation to signal all members of the cooperative defense about the IP ad-
dress of the attack target as well as rate limits required to resolve traffic bottlenecks
for the attack target

2.2. DECENTRALIZED DDOS DEFENSE MECHANISMS 13

The strength of the DefCOM system lies in the highly distributed and scalable overlay
network used for communication. The overlay network is however only used for control
messages, data packets still travel on the data links defined by the underlying routing
protocols [37]. Every member of the DefCOM network is known as a ”peer” [37] and
formation of the entire overlay network is accomplished with the following two steps as
illustrated in Figure 2.3:

1. A peer starts the formation by flooding a currently unassigned UDP port with
DEFJOIN messages. These messages serve the task of inviting other peers to join
the overlay network but also contain a session key to enable encryption for future
control messages.

2. Peers receiving these DEFJOIN message are able to extract certificate information to
verify the authenticity of the message and answer the invitation with a DEFREPLY
message

autonomous system B

autonomous system C

DefCOMPeer
DefCOMPeer

autonomous system A

DefCOMPeer
Data Link

P2P Link

autonomous system B

autonomous system C

DefCOMPeer
DefCOMPeer

autonomous system A

DefCOMPeer
Data Link

P2P Link

ALRM

ALRM
ATCK-CONT

ATCK-CONT
ALRM

a) Upon attack detection, the DefCOM peer
 running on AS C sends out ALRM messages

b) As long as the attack continues, ATCK-CONT messages
 are sent out to inform all peers about the ongoing attack

Figure 2.4: Alarm propagation in the DefCOM overlay network

As soon as the overlay network is formed, attack mitigation can be initiated. This is
accomplished by sending out an ALRM message to all connected peers as illustrated
in Figure 2.4. The routing structure from the source of the attack to the destination
can subsequently be deduced by examining packet markings to establish parent-child
relationships based on the volume and direction of the attack traffic. Rate limiters along
the deduced routing structure can then start reducing the throughput of attack traffic.
Each node being affected by the rate-limiting sends out ATCK-CONT messages to let
other peers know that the attack is still ongoing. As soon as no more ATCK-CONT
messages are received by any of the peers for a pre-specified amount of time, the rate
limiters can cease their operation [37].

The implementation of DefCOM presented by Oikonomou et al. [37] is based on a RedHat
9.0 router running all DDoS defense components as Linux kernel modules [37]. For traffic
classification purposes, they used D-WARD discussed in Section 2.1.2 but deactivated all
attack mitigation functionality of D-WARD to reduce it to a pure traffic classification

14 CHAPTER 2. RELATED WORK

engine. By utilizing the existing source-based D-WARD classifier and implementing it in
the context of an overlay network, communication among multiple peers can be leveraged
to make the overall mitigation system much more efficient compared to the centralized
approach discussed in Section 2.1.2.

2.3 Systems Overview

Table 2.1: Overview of DDoS defense systems
Details Advantages Disadvantages

D-WARD A source-based system that compares
outgoing traffic to predefined models to
identify malicious traffic. Rate-limiting
is used to mitigate the attack.

The attack is mitigated close to
the target. Rate-limiting allows re-
examination of attack traffic. The pre-
defined model provides a comprehensive
rule set.

Individual D-WARD installations do
not communicate. The attack is harder
to identify at the source without collab-
oration.

MULTOPS A source-based system that compares
the ratio between incoming and outgo-
ing traffic to find imbalances hinting at
an attack. Identified attack packets are
subsequently blocked

The implementation based on the Click
router is simple to deploy and easy to
maintain. The underlying MULTOPS
data structure guarantees efficient han-
dling of large traffic volumes.

The MULTOPS data structures are not
synced among multiple instances, lead-
ing to duplication. Specific software in
the form of the Click router is required
to run the system. Attack identification
without communication is harder at the
source.

C
e
n
t
r
a
li
z
e
d IP Traceback A destination-based system divided into

preventive traceback, which directly
blocks packets with spoofed addresses
and reactive traceback, which tries to
identify the path leading to the attacker
to specifically block packets originating
from there.

Narrowing down the origin of the attack
allows for tailored defense since packets
originating from a known attack path
can directly be blocked.

High volume attacks can quickly over-
whelm individual packet inspection,
making the preventive approach imprac-
tical. The reactive approach requires
additional routing hardware to enable
packet marking and exhibits high com-
plexity in regards to link testing.

Analyzing MIB A destination-based system to analyze
communication between an attack mas-
ter and the multitude of attack slaves
to find specific patterns that can be ob-
served by analyzing MIB variables.

The ”Intrusion Detection System for
DDoS” solves the bottleneck prob-
lem of traditional destination-based ap-
proaches by already blocking attack
traffic before the overall attack starts.
Analysis of the MIB in preparation for
this preventive measure is also possible
on collected, offline attack data.

The collected patterns could be used
together with a source-based approach,
however that would require communica-
tion. Analyzing old attack data might
not reveal patterns relevant to upcom-
ing attacks.

IETF DOTS DOTS proposes a client server model
where clients request mitigation from
servers through a custom protocol.
Communication works through a signal
channel, with an optional data channel
available for provisioning of clients.

Fully automatic mitigation is possible,
even across multiple domains by us-
ing recursive signaling. While signal-
ing for help, all relevant information
about the attack are provided by the
client and can be distributed among all
IETF DOTS instances. Provisioning
clients through the data channel allows
to share configuration as well as white-
and blacklists with all clients.

The signal as well as data channels used
for communication can be congested by
the attack. The client server model
makes a highly distributed defense net-
work more complicated to set up and
maintain.

D
e
c
e
n
t
r
a
li
z
e
d CoFence CoFence relays attack traffic to miti-

gation instances to filter out malicious
packets and return filtered traffic back
to the system under attack.

Circumventing the resource-intensive
packet inspection by relaying the traf-
fic to be cleaned is an efficient defense
approach. The use of NFV for deploy-
ment makes CoFence simple to install
and maintain.

Collaboration among CoFence instances
is limited to relaying traffic. High
bandwidth attacks could overwhelm the
CoFence instance, rendering it unable to
relay traffic for cleaning.

Bohatei Bohatei demonstrates the scalability
and performance advantages of using
SDN in conjunction with NFV and
building a DDoS defense system on top
of proven, existing mitigation compo-
nents.

Leveraging NFV in conjunction with
SDN makes Bohatei up to 5.4 times
more cost effective compared to fixed
defense facilities. Utilizing existing mit-
igation solutions like Snort, Bro and ipt-
ables makes sure, proven defense tech-
nologies are employed.

The implementation by Fayaz et al. does
not include cooperative aspects of the
mitigation.

DefCOM DefCOM uses an overlay network to fa-
cilitate better coordination among peers
with inherent scalability. Attack pack-
ets are dropped by peers located at the
attack source.

The P2P overlay network is inherently
scalable and easy to set up. Only a
small number of pre-defined messages
are required for communication. Traf-
fic is routed entirely on the underlying
routing protocols, keeping the overlay
network open for mitigation purposes.
Source-based mitigation in a coopera-
tive manner makes attack detection eas-
ier.

The overlay network still relies on the
underlying data links and could be con-
gested. Propagation of messages in the
overlay network might take a long time
based on the size of the network.

Table 2.1 provides a complete overview of all DDoS defense systems discussed in Section
2.1 and Section 2.2. This overview should serve as a recap of each system to better
understand the overall divide between centralized and decentralized defense mechanisms
as well as the multitude of communication schemes employed by the systems.

Chapter 3

Approaches Toward a
Proof-of-Mitigation

One of the remaining challenges not addressed in any of the presented decentralized,
cooperative DDoS mitigation systems in Section 2.2 is an effective incentives scheme to
bolster cooperation among all parties involved in the collaborative defense effort.

For ISPs in context of the BloSS system, cooperative relations might consist of Service
Level Agreements (SLAs) to establish a well-defined trust on which a mitigation service
can be built [58]. In a more general setting with only a few participants in a distributed
DDoS mitigation scenario, setting up SLAs for the purpose of provisioning the required
filtering rules would be a valid and efficient solution, however considering a global-scale
mitigation network, the additional legal overhead created by SLAs might make such a
system too costly to deploy. This is where the aforementioned incentive scheme can be
leveraged: By substituting the need for trust based on legal frameworks such as SLAs with
a payment-driven incentive scheme backed up by transparency and security measures, the
scalability of the entire cooperative defense system is largely improved.

To enable transparent provisioning of mitigation-related network filter rules, a replicable,
deterministic format needs to be chosen for the filters to be deployed. Furthermore, the
successful deployment of the filters and subsequent completion of the mitigation service
needs to be backed up by a Proof-of-Mitigation that can be communicated directly to the
service user.

The research part of this thesis presents multiple approaches toward such a Proof-of-
Mitigation that allows to automatically verify the successful completion of a mitigation
request and therefore enables an efficient incentive scheme with fully automated payouts.
The detailed descriptions as well as pros and cons in regard to each approach are later
followed by a qualitative comparison of all approaches to discuss similarities between them
and to determine which approach might be best suited to deliver the desired mitigation
proof.

The metrics upon which the qualitative comparison in Section 3.5 is based, include the
following:

15

16 CHAPTER 3. APPROACHES TOWARD A PROOF-OF-MITIGATION

1. Confidentiality: Describes how effective rules and measures are to protect both
the mitigation proof as well as the mitigation system from unauthorized access.

2. Integrity: Defines the level of trustworthiness of the proof generated by the given
approach in regards to accuracy and tamper-resistance.

3. Availability: Relates to the availability of the mitigation proof to authorized par-
ties.

4. Reproducibility: Describes the ability to reproduce the proof through replay by
a third party.

5. Tamper-Evidence: Discloses the effort necessary for changing the proof of miti-
gation to reflect an alternate reality.

6. Timeliness: Defines the ability to provide an automatically verifiable proof within
a pre-specified time-frame while adhering to all security requirements.

7. Deployment Complexity: Defines the additional resources required to deploy the
approach.

8. Scalability: Relates to the adaptability of the approach in regards to a large-scale
DDoS defense scenario with high-bandwidth attacks.

9. Service Model: Defines the cloud service model the approach most closely relates
to.

All approaches presented in this chapter have been accepted for the 2018 IEEE Cyber-
SciTech conference in Athens compiled as a work in progress paper. The full paper is
included in the thesis as Appendix A.

3.1 Marketplace of VNFs for Mitigation

Target

Mitigator

0
1
0
0
1
1
0

1
0
1
1
1

1
1
1
1
0
1

VNF

1. Request mitigation

2. Performmitigation

3. Pay incentive

Figure 3.1: Mitigation service based on VNFs available in a trusted marketplace

3.1. MARKETPLACE OF VNFS FOR MITIGATION 17

Deploying a complex mitigation system such as the BloSS on traditional networking equip-
ment generates high CAPital EXpenditures (CAPEX) to set up and maintain the ded-
icated networking hardware as well as OPerating EXpenditures (OPEX) to provide a
mitigation service on such an infrastructure.

To minimize both CAPEX and OPEX, virtualized networking equipment, realized through
Network Function Virtualization (NFV)[32], can be leveraged to quickly deploy the mit-
igation system and run it directly on commodity hardware. This allows the operator of
an AS interested in providing a DDoS mitigation service to their customers to quickly
instantiate such a service and run it as long as interest in the service persists, with the
option of completely removing the entire service without any change in the underlying
networking infrastructure.

The isolation provided by NFV is not only a good solution to deploy the BloSS on a
large scale but can also serve as a cornerstone for a mitigation proof. Running the whole
system inside a Virtual Machine (VM), as is the case with VNFs, we are presented with
a closed-off environment that allows us a high degree of control and therefore reduces the
number of potential variables to account for when trying to proof a successful mitigation.

Distribution of these isolated mitigation instances could be accomplished by utilizing a
marketplace concept: Each AS operator interested in setting up the mitigation service
could directly procure the VNF from the marketplace and instantiate inside their own in-
frastructure. The marketplace would also ensure transparency of the provided VNFs since
everyone can examine them on the publicly accessible marketplace and hashed checksums
of the VNFs could be used to ensure the integrity of the VNF image. An additional com-
ponent of the marketplace that could be used to enhance the validity of the mitigation
proof is the logging capability of such a marketplace: Every time an AS operator requests
the VNF from the marketplace, a log of the activity can be kept on the marketplace, allow-
ing target AS operators to verify whether a mitigation service provider actually obtained
the mitigation VNF from the marketplace to provide the service in the first place.

Infrastructure requirements to run a VNF-based DDoS mitigation system only include
data plane control and can even be met without a Software-Defined Networking (SDN)
platform present [32].

This approach leverages implicit trust through the isolation provided by the virtualiza-
tion. The burden of proof in regards to the successful completion of the mitigation service
does however still lie with the mitigation AS, which means they have to unequivocally
proof that the mitigation VNF running inside their networking infrastructure has not been
compromised — neither by them, nor by a third party. This burden is hard to overcome,
especially since the use of commodity hardware in data centers running VNFs does tra-
ditionally not provide a way to establish trust in its integrity. Even if the integrity of the
VNF could be guaranteed, the underlying network flows could be rerouted to circumvent
the filtering and resulting use of computing resources. This could be orchestrated by a
malevolent mitigator to still receive the automatic incentive payout without providing the
actual service, which is called free-riding [10] and needs to be prevented to establish a
sustainable incentive scheme.

18 CHAPTER 3. APPROACHES TOWARD A PROOF-OF-MITIGATION

3.2 Trusted Computing

Target

1. Request mitigation

3. Pay incentive

2. Performmitigation

Mitigator

0
1
0
0
1
1
0

1
0
1
1
1

1
1
1
1
0
1

VNF

Figure 3.2: Mitigation service based on Trusted Platform Modules (TPM) and Intel Soft-
ware Guard Extension (SGX)

As outlined in Section 3.1, commodity-based networking infrastructures are susceptible to
outside influences such as hypervisor introspection, where the VNFs state can be viewed
and modified at will by the operator running the hypervisor [51]. The problem that this
lack of integrity and confidentiality presents in regard to a mitigation proof is the need
to convey successful service completion by guaranteeing that the service has not been
tampered with during operation.

Utilizing trusted computing and specifically the Trusted Platform Module (TPM) has
been demonstrated in [35] to be a viable way of establishing a base trust in the system:
The TPM module allows the secure storage of verification hashes that can be used to
attest a secure boot chain from BIOS over bootloader, operating system (OS) up to the
hypervisor. To include the VNF itself in the chain of trust, approaches like ”vTPM” [41]
provide a virtualized TPM that aims to ensure the integrity of the VNF itself. Virtualized
trusted computing does however lack the base hardware trust available through TPM,
which is why vTPM should be used with an additional remote attestation component
to have the integrity of the VNF image repeatedly checked by a remote third party.
Traditionally, remote attestation is often only used for platform integrity checks. To that
end, Ravidas et al. [45] propose a remote attestation server that allows attestation of
VNFs through image integrity checks. This is accomplished through an external Trusted
Security Orchestrator (TSecO) [45] which receives VNF launch requests from a Virtual
Infrastructure Manager (VIM) running inside the ASes networking infrastructure. The
TSecO subsequently decides to allow or deny the launch request based on a whitelist
holding checksums for allowed VNFs. Such a whitelist could be deployed on a VNF
marketplace as outlined in Section 3.1 for easier distribution and accountability.

To address scalability concerns in regards to the centralized aspect of a remote attes-
tation system, a decentralized approach could consist of known good values stored in a
distributed data structure. All parties would have access to that data store. The decen-
tralized attestation would work similar to the way the work of Ruan et al. [47] approaches
the problem: Attestation for VNF integrity of an AS M in the role of the mitigator would
be performed by the target AS T, since its interests directly correlate with the correct

3.3. SECURE LOGGING 19

execution of the mitigation code running on AS M. Access to the mitigation VNF would
be required by AS T to check the image integrity by comparing it to the decentrally stored
known good values.

The chain of trust only guarantees the integrity of the system and the VNF images before
they are instantiated [1]. To ensure the integrity of the VNF during runtime and especially
to protect the data inside the VNF, partial isolation through technologies such as Intel
Software Guard Extension (SGX)[6] which provides a secure enclave to store application
states as proposed by Shih et al. [51], can be used. With this secure storage element in
place, the chain of trust includes all critical components of the mitigation system.

The biggest drawback of using a trusted computing approach to guarantee the integrity of
the mitigation system are the strict hardware requirements: The TPM, as a discrete chip
or integrated solution, does not come standard on all server motherboards which restricts
the choice of commodity hardware for the NFV-enabled networking infrastructure of the
mitigation AS. The same is true for Intel SGX, which would limit the choice of processor
to Intel’s range of products, getting more cost-effective competitors like Advanced Micro
Devices (AMD) left out.

The burden of proving the mitigation still clearly lies with the mitigator, similar to the
approach discussed in Section 3.1, however in the trusted computing scenario, the oper-
ator of the mitigation system does also give up freedom to run arbitrary VNFs on their
hardware since only signed VNFs approved by the TPM can be instantiated. With the ad-
dition of remote attestation, only VNFs featured on the whitelist distributed through the
VNF marketplace can be instantiated, which limits the level of freedom for the mitigator
to run arbitrary code even further.

Despite all efforts to ensure the integrity of the entire system, the trusted computing based
approach does still suffer the problem described in Section 3.1 in regards to the integrity
of the underlying network flows, since these cannot be isolated into the chain of trust.

3.3 Secure logging

Target

Mitigator

0
1
0
0
1
1
0

1
0
1
1
1

1
1
1
1
0
1

Mitigation Log
761 66.301680 10.142.0.1 10.142.0.1 TCP

762 66.301722 10.142.0.2 10.142.0.1 TCP

765 66.301811 10.142.0.1 10.142.0.3 UDP

...

1. Request mitigation

4. Pay incentive

2. Performmitigation

3. Sendlog

Figure 3.3: A mitigation log is provided to the target AS

20 CHAPTER 3. APPROACHES TOWARD A PROOF-OF-MITIGATION

The importance of providing accountability for the network flows and whether they have
been handled in their entirety without rerouting parts of them to reduce the amount of
computing resources necessary to provide the mitigation service has been shown to be one
of the drawbacks of both the NFV-based approach in Section 3.1 as well as the trusted
computing approach in Section 3.2. Both approaches discussed so far focused on the
mitigator to provide a proof of successful service completion by ensuring the integrity of
the system the service is running on. Since the AS operator in the role of the mitigator
has full control over their networking infrastructure to apply the required filters, which
allow blackholing [30] the attack traffic indicated by the attack target and service user,
the task of providing the Proof-of-Mitigation naturally falls upon them.

Since all of the traffic passing through the mitigation system can however also be recorded
through a mitigation log, which is oftentimes an inherent component of a mitigation
system, a tangible product, the mitigation log, exists, that can be used as a proof of
mitigation. By transferring this log from the mitigator to the service user, independent
verification of service completion can occur and at that point, the mitigator does not need
to be trusted anymore.

To make sure that the log presents a tamper-proof medium to convey the successful
filtering of traffic, a scheme similar to the one presented in [50] by Schneier et al. can
be used. In this scheme, the entire log as well as individual log entries are secured by
an authentication key [50]. Furthermore, a hash-chain is established which makes the
entire log tamper evident since every change of an existing log entry would break the
chain and clearly show the anomaly reflected in the incorrect hashes produced by the
altered log [50]. Security schemes like these have already been successfully applied to
practical applications such as the work presented by Nguyen et al. [33] where a cloud-
based application enabled the storage of ”secure, time-synchronized and tamper-evident
logs”[33] received from multiple medical devices via a dongle storing the actual data. By
leveraging technologies such as Intel SGX and TPM in addition to the cryptographic
scheme devised by Schneier et al. [50], integrity and confidentiality of the data can also
be ensured since the logs can be stored securely on the system protected by the hardware
chain of trust [33]. This is not only a good fit for the sensitive medical data handled
by Nguyen et al. but could also be utilized for our Proof-of-Mitigation problem since it
would allows us to ensure the integrity of the log, which could potentially be comprised by
the mitigator since they have full control over their infrastructure and could replace the
entire log with a falsified version without providing the actual mitigation service. Intel
SGX has also been proven to be a good fit to ensure NFV integrity as discussed by Shih
et al. [51] since it allows the secure storage of application states inside the secure enclave
which could directly be used as a storage location for the mitigation log while it is being
compiled by the mitigation VNF.

After the log has been created by the mitigation system, the verification stage can be
designed similar to a remote attestation approach as discussed in Section 3.2. An attes-
tation scheme specifically geared towards log files has been presented by Haeberlen et al.
[13] in the form of a remote audit system. Here, a focus lies on deterministic log files that
are checked by replaying system executions and comparing the resulting log to the one
under test to determine the correct behavior of the mitigation system.

3.4. NETWORK SLICING 21

The complexity reduction of creating the tangible mitigation proof in the form of a log
file lifts the burden of proving successful mitigation service completion from the mitigator
but does also come with some drawbacks. One of them is the size of these logs, which can
become quite large since they try to reflect mitigation endeavors against high-bandwidth
DDoS attacks. The file size is especially problematic when considering the need to transfer
the entire log to the remote audit system for verification. This clogs the vital management
networks used for mitigation signaling and introduces additional delays based on transfer
times of the log file.

The problems do however already occur at the mitigation stage, since the log files need to
be stored securely to ensure integrity and possibly confidentiality, hardware trust through
Intel SGX or a TPM is required, which results in the same limited choices of potential
hardware to be used for the networking infrastructure as outlined in Section 3.2.

Finally, the remote audit procedure entirely relies on deterministic log files [13]. However,
this is not the case for log files created through networking events since replaying the
traffic for large-scale DDoS attacks to check the resulting network logs is infeasible due
to the lack of knowledge about the overall traffic after it has occurred.

3.4 Network Slicing

Target

1. Request mitigation

4. Pay incentive

2. Generatenetwork slice

3. Performmitigation

Mitigator
0
1
0
0
1
1
0

1
0
1
1
1

1
1
1
1
0
1

vSDN

0
1
0
0
1
1
0

1
0
1
1
1

1
1
1
1
0
1

VNF

Figure 3.4: Virtual network slices are provided to run the mitigation service

In the same vein as the secure logging approach discussed in Section 3.3, network slicing
shifts the responsibility of providing the proof of mitigation to the service user itself. This
is possible, because of recent advances in network virtualization technologies and specifi-
cally Software-Defined Networks (SDN), that allow to tailor a networking infrastructure
to specific use cases. In the context of a mitigation service, network slicing is the most
intriguing part of SDNs, since it allows to carve a network up into separate parts that
can be used independently with each slice being configured with a certain set of network
flows [59].

22 CHAPTER 3. APPROACHES TOWARD A PROOF-OF-MITIGATION

The work by Zhou et al. [59] demonstrates how network slicing can be automated to build
a ”Network-Slicing-as-a-Service (NSaaS)” [59] which can be used for mitigation purposes
by automatically configuring a network slice with the network flows of interest based on
the attacking IP addresses provided in an attack report sent by the target AS. Limiting
access only to these network flows allows clear isolation of the service user from the rest
of the networking infrastructure and allows them to directly run the mitigation remotely
on the provided network slice running inside the mitigator AS networking infrastructure.

The NSaaS solution discussed by Zhou et al. only considers configuring existing network
slices but the entire process can be automated even further, for example by utilizing
automated slice generation. Bozakov et al. propose ”AutoSlice”[3] which is able to create
on-demand virtualized SDN networks (vSDN)[3]. The mitigation service user could now
be provided with access to a VNF running the mitigation service in the form of an SDN
controller to automatically apply the filters according to the IP addresses provided by the
user.

This automatic generation and configuration of network slices is beneficial for the overall
incentive scheme since the service user now has full control over the entire mitigation and
payout for successful completion can automatically be triggered after the filters have been
applied by the service user on the provided vSDN-based network slice. The high degree
of automation thanks to the NSaaS[59] and ”AutoSlice”[3] approaches allows to eliminate
delays in the mitigation since a service request by the target AS would directly instantiate
the vSDN as well as the mitigation service VNF with full access to the vSDN to apply
the filtering in order to stop the attack.

The shift of responsibility in regards to proving the successful completion of the mitigation
service from the mitigator to the target does however not fully eliminate the requirement
to trust that the mitigator provides full access to the required network flows and is not
rerouting any of the attack traffic in order to facilitate free-riding for themselves.

From an implementation perspective, network slicing presents some strong hardware as
well as software requirements to fully realize the automated slice generation and configura-
tion. The entire networking infrastructure needs to be SDN based to allow network slicing
in the first place and additional Open vSwitch installations are required to circumvent
the limited flow-table sizes present in most OpenFlow hardware switches [3].

3.5 Discussion

From Table 3.1, we can see that no single approach achieves the required balance between
practicability and security.

It is important to note that throughout the qualitative comparison, low generally means
bad and high means good, however in regards to the deployment complexity, the situation
is reversed, where a low deployment complexity is good, whereas a high deployment
complexity is bad.

3.5. DISCUSSION 23

Table 3.1: Qualitative comparison of approaches to provide a Proof-of-Mitigation

NFV
Trusted
Computing

Secure
Logging

Network
Slicing

Security
1. Confidentiality Low Medium Low Low
2. Integrity Low High High Low
3. Availability High Medium High Medium
4. Reproducibility High High Low High
5. Tamper-Evidence Low Medium Medium Low
6. Timeliness High High Low Medium
Practicability
7. Deployment Complexity Low High High High
8. Scalability High Low Low Low
Scope
9. Service Model SaaS SaaS PaaS IaaS

3.5.1 NFV vs. Network Slicing

There exists some overlap between the different approaches due to similar technologies
used. This can be seen between the NFV and Network Slicing approaches, which exhibit
similar security characteristics with the NFV approach slightly edging out the Network
Slicing approach due to the additional overhead created by the slice creation of the latter
as discussed in Section 3.4.

The clear differentiator between the NFV and Network Slicing approach are the practi-
cability aspects: While the NFV approach can be deployed quickly and efficiently, even
on networking infrastructures which are not SDN-based, the network slicing approach
produces additional overhead for each slice creation and requires SDN-based networking
together with additional Open vSwitch servers to circumvent limited flow-tables sizes and
allow the ”AutoSlice”[3] approach to work.

The NFV approach also has the edge when considering scalability of both approaches:
While VNFs can be quickly spun up on demand across multiple ASes, Network Slicing
is limited by the additional hardware requirements and higher resource consumptions to
enable automatic slice generation and configuration and can therefore potentially not be
scaled out globally since only a limited number of ASes meet the requirements to enable
network slicing.

3.5.2 Trusted Computing vs. Secure Logging

The overlap between the trusted computing and secure logging approaches mainly con-
cerns the use of technologies like TPM and Intel SGX by both approaches. While the
Trusted Computing approaches core idea is based on utilizing these technologies to reduce
the amount of trust necessary toward the mitigator, the core idea of the Secure Logging
approach, namely keeping a mitigation log to serve as a tangible Proof-of-Mitigation, is

24 CHAPTER 3. APPROACHES TOWARD A PROOF-OF-MITIGATION

already an inherent part of the mitigation process. Trusted computing aspects are only
added to the Secure Logging approach to ensure integrity of the log, which cannot be
provided through the existing logging behavior.

Utilizing both TPM as well as Intel SGX makes both approaches well suited to serve as a
Proof-of-Mitigation in respect to the security requirements, however they both exhibit a
high deployment complexity and low scalability due to the strong hardware requirements
which goes to show once again that finding the balance between security and practicability
is a very important aspect to consider in regards to a true Proof-of-Mitigation.

3.5.3 Combining Approaches

We already established that no individual approach is capable of providing a comprehen-
sive mitigation proof since none of them are able to strike a satisfiable balance between
security and practicability. It may therefore appear that combining some of these ap-
proaches could lead to a comprehensive solution, however as noted in Section 3.5.1, since
there exists overlap between individual approaches, a combination of them would multi-
ply the disadvantages by combining disadvantages of both approaches while merging the
overlapping advantages to produce a combination approach that would fare even worse in
regards to the balance between security and practicability.

3.5.4 Cloud Service Models

Instead of comparing the individual approaches in regards to their overlapping technolo-
gies, the cloud service model metric represented as characteristic number 9 in Table 3.1
helps to differentiate the approaches by correlating them with their respective cloud service
model. NFV and Trusted Computing represent the same model of Software-as-a-Service
(SaaS)[24] since they both utilize NFV-based mitigation systems which are available on de-
mand to the service user while Secure Logging follows a Platform-as-a-Service (PaaS)[24]
model since it provides an interface to the mitigation service which in turn produces the
mitigation log as a product. Network Slicing allows the highest degree of access to the
mitigation service, which clearly makes it an Infrastructure-as-a-Service (IaaS)[24] model
where the on-demand vSDNs represent the infrastructure being provided.

Chapter 4

Design

This chapter details design decisions that went into the re-engineering of the Blockchain
Signaling System (BloSS). The re-design of BloSS is based on the work by Rodrigues et
al. [46]. They demonstrated that a multi-domain cooperative DDoS defense system can
be realized by utilizing the blockchain as a communication medium and leveraging the
recent advances in SDN to simplify the deployment of the entire system.

autonomous
system

autonomous
system

autonomous
system

autonomous
system

autonomous
system

BloSS

BloSS

BloSS

BloSS

BloSS

1. Report attack
to blockchain

2. Retrieve attack information

from blockchain and

stop attack traffic

Figure 4.1: Multi-domain DDoS defense through the BloSS

The BloSS is a decentralized DDoS defense system as illustrated in Figure 4.1 where each
AS taking part in the multi-domain, cooperative defense alliance and running the BloSS
is able to post information about an ongoing attack to the Ethereum blockchain[57]. The
attack information on the blockchain can then directly be accessed by all other ASes to
block the attack at the source and mitigate the entire threat.

25

26 CHAPTER 4. DESIGN

The re-design of the BloSS builds upon the existing design ideas of Rodrigues et al. and
mainly strives to modularize the existing monolithic architecture as outlined in Section
1.2. The goal of the modularization is to decouple the main defense system logic from the
underlying network infrastructure by delegating all network-specific tasks to a separate
module. To further increase loose coupling between the individual parts of the defense
system, all data exchange related tasks apart from networking are also separated into a
purpose-built module.

This high degree of modularization aims to allow the adaptability of the entire system
to different computing environments, including networking infrastructures apart from the
SDN-based networking focused on in the original implementation by Rodrigues et al. [46].
In addition to that, modularizing the data exchange capabilities of the BloSS allows to
switch to a different blockchain or data store in the future.

4.1 Architecture

The pollen represent

data exchange

The stalk connects

to the underlying
networking

The blossom (BloSS)

binds all other
parts together

Figure 4.2: Metaphor for the naming scheme of the individual BloSS modules

To better grasp the tasks of the individual modules, a metaphor was used as a basis for
the naming scheme. Figure 4.2 shows a flower, with each part of the flower representing
a vital module of the BloSS. The blossom of the flower represents the core module of the
BloSS which uses all other modules to mitigate an attack. Data exchange is accomplished
with the ”Pollen” set of modules and network-related tasks are handled by the ”Stalk”
module. Pollen is divided into dedicated modules for the individual data exchange duties
of the BloSS. This includes a blockchain module for access to the Ethereum blockchain,
a data store module managing data on the Inter Planetary File System (IPFS)[2] as well
as a database module to store statistics on InfluxDB for demonstration purposes.

An overview of the entire re-engineered BloSS architecture is provided in Figure 4.3 detail-
ing the connections between all modules. The separation of BloSS and Stalk is contrived
of a REST interface [17] to facilitate the isolation of the BloSS module, possibly encap-
sulating the entire module together with Pollen blockchain and Pollen datastore inside a

4.2. SECURITY CONSIDERATIONS 27

InfluxDB

IPFS

Pollendatabase

Pollendatastore

Stalk
REST BloSS

REST

Pollenblockchain

Networking
Infrastructure

Ethereum

Figure 4.3: Architecture of the Blockchain Signaling System (BloSS)

VNF. This design decision was made with findings from Chapter 2 in mind to keep the
architecture simple enough for a potential implementation of a Proof-of-Mitigation.

Attack information posted to the blockchain is not directly stored on the blockchain due
to limited block sizes. For this purpose, IPFS is used as a decentralized and highly
scalable storage solution to hold attack information. Each AS running the BloSS also
maintains an IPFS node to enable the decentralized storage. Whenever a new set of
attack information is posted to the blockchain, the data is first stored in IPFS and only
the hash as a unique identifier of the storage location within IPFS, is stored in a block on
the Ethereum blockchain.

4.2 Security Considerations

Pollen datastore also includes an encryption component which is not directly visible in
Figure 4.3 since it is an inherent part of the entire module. The encryption of attack
information posted to IPFS ensures the confidentiality as well as the integrity of the
attack information based on a per-message signature bundled with the attack information.
Confidentiality is an important attribute of the data exchange between ASes since the
attack information can be sensitive in regards to implicating individuals both as victims
of an ongoing DDoS attack or as the perpetrators of said attack.

Verifying the integrity of the attack information allows to hold each AS accountable for the
information posted to the blockchain and makes forgery of attack information impossible.

28 CHAPTER 4. DESIGN

The integrity-check is enabled through a public key published by each AS to the blockchain
and therefore available to all ASes participating in the BloSS defense alliance. Without
this measure in place, forgery of attack information could allow a malevolent party to
indicate specific IP addresses as being the source of an ongoing attack and in effect blocking
flows from these addresses to the target address specified in the attack information.

In addition to encrypting each set of attack information when posted to IPFS, all com-
munication between the Pollen datastore module and IPFS is encrypted with the libp2p-
secio[21] stream security transport which is based on TLS 1.2. Transport encryption would
not be strictly necessary since the data being transported is already encrypted, however
this allows a certain degree of anonymization for the defense system users since it is not
possible to ascertain which AS accessed which attack information when simply looking at
the communication between IPFS and AS. This added anonymity can also be seen as an
additional factor contributing towards increased confidentiality.

Communication between individual Ethereum nodes is also encrypted as detailed in the
DEVp2p white paper by Gavin Wood [56], which could again contribute to increased
confidentiality, however it is important to note that due to the distributed ledger charac-
teristic of Ethereum, all transactions that change the blockchain can be traced back to
the party responsible for the chain which means anonymity is not provided for anybody
able to access the blockchain.

The last part of the communication chain with the REST interface between BloSS and
Stalk is not encrypted. This is by design since the REST interface is designed to only be
accessible on the same machine to allow for simple communication between BloSS and
Stalk while enabling a high degree of encapsulation for the BloSS module in order to allow
the implementation of Proof-of-Mitigation schemes as discussed in Chapter 3.

4.3 Defense Scenario

Figure 4.4 shows a prototypical defense scenario involving a mitigator as well as target
AS. Attack detection is outside the scope of the BloSS so the first step includes compiling
the attack information and encrypting it to later store to IPFS and post the IPFS hash
to the Ethereum blockchain.

To minimize access to IPFS as well as Ethereum to access attack information and the
public key of the target AS, the attack information hash is connected to a boolean indi-
cating whether the information has already been accessed by the mitigator AS in order
to block the attackers.

Incentive schemes necessary to realize a true Mitigation-as-a-Service (MaaS) offering as
outlined in [23] are out of the scope of this implementation of the BloSS. This is mainly
due to the lack of availability of a satisfactory Proof-of-Mitigation approach as outlined in
Chapter 3 but also based on the demonstration and research nature of the implementation
which aims to provide a flexible platform to test concepts in order to pave the way toward
a true MaaS offering.

4.4. ATTACK INFORMATION 29

BloSS on target AS Ethereum IPFS BloSS on mitigator AS

Encrypt attack information
about ongoing attack

Store encrypted attack information

Post attack information IPFS hash

Retrieve attack information hash

Request if attack information hash is set to blocked

Retrieve encrypted
attack information

Retrieve public key of target AS
Verify attack information signature,
decrypt it and block attacker IPs

Set attack information hash to blocked

alt [not blocked]

Figure 4.4: BloSS defense scenario including a target and mitigator AS

4.4 Attack Information

The attack information is the communication payload exchanged between individual
BloSS instances. It carries the relevant data to indicate the target as well as the source of
an attack, which enables the collaborative mitigation of a large-scale DDoS attack directly
at the source. Following data points are part of the attack information:

• Target: The IP address being targeted by a DDoS attack

• Action: Action to take against the attack. In the version of the BloSS outlined
in this thesis, this is limited to the ”blackhole”[30] action discarding attack traffic
directly.

• Timestamp: The purpose of the timestamp is to make sure that outdated attack
information is no longer considered for blocking, making sure that no unwanted
side-effects can occur.

• Subnetwork: The subnetwork, which all attacker addresses are part of

• Addresses: IP addresses of the attackers

• Hash: A hash computed from the target address, timestamp, subnetwork and ac-
tion. This hash is used to uniquely identify a set of attack information.

A unique set of attack information will henceforth be called an ”attack report” for the
remainder of the thesis. A single attack might often produce multiple attack reports since

30 CHAPTER 4. DESIGN

each report represents a specific subnetwork of attackers to simplify the mitigation of
the attack. Based on the subnetwork, the attack report can directly be sent to the AS
managing the subnetwork from which the attack originates.

Chapter 5

Implementation

This chapter details the technical implementation of the re-engineered BloSS. Implemen-
tation details are provided top-down beginning with the demonstration system on which
the BloSS was deployed for development and evaluation purposes and going down to the
individual components of each module of the entire system.

5.1 Demonstration System

The development and demonstration system for the BloSS is realized as a physical single
board computer cluster as illustrated in Figure 5.1, complete with the necessary network-
ing equipment to allow the individual computers to talk among each other. Most parts
of the system already existed when I started my thesis since it is part of earlier work by
Rodrigues et al. [46] to demonstrate the viability of using the blockchain as a signaling
strategy in a multi-domain DDoS defense system. Throughout the course of my thesis,
two additional single board computers were added to serve as auxiliary controllers as
illustrated in Figure 5.1.

It might seem odd that the choice for such a demonstration system fell on physical hard-
ware instead of leveraging virtualization technologies like Mininet[52] that would allow
the entire system to be reproduced on a single, high-powered server. The rationale be-
hind this decision is that the physical form makes the whole cooperative defense concept
more tangible and facilitates straight-forward demonstration of the system. In addition
to that, it allows to observe realistic networking congestion based on hardware- as well as
software-related shortcomings instead of relying on virtualized networking hardware that
might behave more predictable but less realistic.

5.1.1 Networking

Two main networks are set up in the demonstration system: A general network, used to
route the DDoS attack traffic and a management network through WiFi, that allows the

31

32 CHAPTER 5. IMPLEMENTATION

Router and Switch

Router and Switch

Router and SwitchSDN Switch

Node

Node

Node

NodeNode

Node

Node

NodeNode

Node

Node

Node

AS 100

AS 200

AS 300

SDN Switch

SDN Switch

Controller

Controller

Controller

Controller

Controller

Controller

Aux Controller

Gateway

Aux Controller

Figure 5.1: The BloSS demonstration system

BloSS instances to communicate with each other on an uncongested channel. Figure 5.1
shows a simplified model of the system with an emphasis on the general network to carry
the attack traffic. The management network is depicted with the wireless signal symbols
as well as the pink connections between the three routers, the two auxiliary controllers
and the gateway.

The gateway as the fourth routers in the system interconnects the other three routers and
provides the access point for the WiFi connection which the management network relies
on. Apart from providing the maintenance network, the gateway allows the developer to
easily access all computers in the system.

The system is split up into three separate ASes: AS 100, AS 200 and AS 300 with each AS
consisting of four compute nodes used to initiate the attack traffic and two controllers,
which hosts the BloSS as well as the Ethereum and IPFS nodes. The controllers are
connected both to the wired general network as well as wirelessly to the management
network. In addition to the per-AS controllers, two auxiliary controllers host system-
wide a Ethereum Netstats[36] dashboard as well as an InfluxDB[15] installation together
with the Grafana dashboard[20]. These auxiliary services are solely for development and
demonstration purposes and are not vital to the overall BloSS.

The SDN part of the system is driven by three Zodiac FX SDN switches from Northbound

5.2. ETHEREUM BLOCKCHAIN 33

Networks [31] which are interconnected with each other and in turn to four compute nodes
and one controller in their respective AS, which are connected to a small router and a
switch. These additional routers and switches are necessary since the Zodiac FX switches
only provide four ports, which is not enough to connect all hosts of an AS. The SDN
controller responsible for the Zodiac FX switches is directly specified in the Zodiac FX
web interface. For the demonstration system, the three lower controllers in the setup have
the role of SDN controllers.

5.1.2 Single Board Computers

As briefly mentioned in Section 5.1.1, the single board computers in the demonstration
system are divided into compute nodes to launch DDoS attacks, controller nodes running
the BloSS and auxiliary controller nodes providing statistical services for development
and demonstration purposes.

The compute nodes as well as the controllers are ASUS Tinker Board single board com-
puters with a 1.8 GHz quad core ARM Cortex A17 CPU and 2 GB of RAM. The auxiliary
controllers are Pine64 Rock64 single board computers with 1.5 GHz quad core ARM Cor-
tex A53 CPUs and 4 GB of RAM. The Tinker Boards are equipped with slower microSD-
based storage, whereas the Rock64 boards feature eMMC storage which provides better
read and write performance, specifically geared toward the InfluxDB running on one of
the auxiliary controllers.

5.2 Ethereum Blockchain

Arguably the most important part of the BloSS is the Ethereum blockchain used as a
communication channel between ASes. The variant of Ethereum that was used for the
re-engineered BloSS is based on the Proof-of-Authority (PoA)[29] consensus mechanism.

Block
Block

Block
Block

Block
Authority-based
Consensus

Figure 5.2: The Proof-of-Authority consensus mechanism

Instead of relying on computationally complex cryptographic puzzle to form a consensus
as it is the case with the Proof-of-Work (PoW) mechanism, the PoA mechanism appoints

34 CHAPTER 5. IMPLEMENTATION

some of the Ethereum nodes as signers with the power to find consensus in the blockchain
and therefore to define which blocks are part of the chain and which are not. Figure 5.2
depicts a situation, where a fork in the chain lead to a consensus decision to go with the
lower fork as the prevalent chain.

The advantages of using a PoA-based blockchain are reduced computing power require-
ments in comparison to PoW and the ability to define an arbitrary block period. Adjusting
the block period freely allows faster development and debugging of the system since very
short periods of only a few seconds can defined. Designating specific Ethereum nodes
as the signers of the blockchain could be based on the size of the AS in the case of the
BloSS. Larger ASes are less likely to vanish from one day to the other and they have more
reputation to loose for abusing their blockchain signing rights.

The demonstration system uses a private PoA-based Ethereum blockchain [49] with a
block period of 5 seconds. This period has been chosen since each block consumes around
1024 bytes of storage space [49] which could quickly lead to a lot of wasted space if the
block period is set too low.

5.2.1 Signaling Attacks

Attack Report
target: 192.168.30.18

action: blacklist

addresses: [”192.168...

timestamp: 2018-07-31 ...

...

RelayContract

SystemContract

AS 100192.168.10.0/24

SystemContract

AS 200192.168.20.0/24

SystemContract

AS 300192.168.30.0/24

Figure 5.3: Ethereum contract setup with the relay and system contracts

We already saw in Section 4.4 that the attack report specifies the subnetwork of the
attackers. This is used to enable efficient signaling among a large number of ASes in
the Ethereum blockchain. A single relay contract keeps track of all the subnetworks
participating in the collaborative DDoS defense and maps each subnetwork to the system
contract managing that subnetwork. As soon as an attack report is posted to the relay
contract, it directly sends it to the correct system contract to allow the responsible BloSS
instance to act on it.

5.3. CONFIGURATION 35

This relaying of attack reports represents a significant change from the old system, where
only a single smart contract was responsible for all attack reports. With the new system,
it becomes possible to implement a simple access control scheme where only the owner of
a specific system contract is able to access the attack reports stored in that contract. Due
to the openness of the Ethereum blockchain, this simple scheme does of course not deter
determined third parties to access the attack reports stored in any contract by examining
the individual blocks and finding the point at which the report has been stored. Apart
from simple access control, this scheme does however also allow to reduce the number of
calls necessary for a specific BloSS instance to get the attack reports it is interested in,
e.g. the ones mentioning attackers from a subnetwork it is managing.

The number of subnetworks managed by a single system contract is not limited and
the system contract simply registers the subnetwork for which it wants to receive attack
reports with the relay contract.

System contracts also represent an important part of the encryption scheme since the
public keys required to encrypt symmetric keys for the encryption of attack reports and
to sign said attack reports are stored directly in a system contract. Since only the creator
of the system contract, i.e. the BloSS instance responsible for all the subnetworks which
the system contract was registered for, can change fields of the smart contract, only they
are able to change the public key. This means that building upon the secure ledger
inherent in the Ethereum blockchain allows us to build a highly decentralized but still
very secure signaling system.

5.3 Configuration

Configuration for all modules of the BloSS is supported through a simple INI file containing
multiple categories with settings ranging from logging levels over intervals and thresholds
for the Stalk and Pollen modules to network configuration data for Stalk.

Listing 5.1: Excerpt of the example INI configuration

[DEFAULT]

TIMESTAMP_FORMAT = %Y-%m-%d-%H:%M:%S

[BLOCKCHAIN]

HOST_ADDRESS = 127.0.0.1

PORT = 8545

RELAY_CONTRACT_ADDRESS = 0xDEADBEEFFEED

RELAY_SOURCE_FILENAME = relay.sol

SYSTEM_SOURCE_FILENAME = autonomous_system.sol

ACCOUNT_PASSPHRASE = password

ACCOUNT_UNLOCK_DURATION = 9999999

SYSTEM_CONTRACT_ADDRESS = 0xDEADBEEFFEED

[NETWORK]

SUBNETWORKS = ["192.168.1.0/24"]

ROUTER_IP = 192.168.1.1

36 CHAPTER 5. IMPLEMENTATION

ROUTER_MAC = 6C:3B:6B:51:1D:2D

OUT_PORTS = {"192.168.1.0/24":2,"192.168.2.0/24":3,"192.168.3.0/24":1}

ADDRESSES = {"123917682137029": {"192.168.1.2":"2C:4D:54:42:C5:E2",

"192.168.1.3":"2C:4D:54:42:C3:E9",

"192.168.1.4":"2C:4D:54:42:C6:52",

"192.168.1.5":"2C:4D:54:42:C8:4F"}}

Listing 5.1 shows an excerpt of the example configuration bundled with the BloSS for
new users. It is important to note that all configuration in the BloSS is entirely handled
through the config.ini file which enables quick deployment of code changes to multiple
ASes since the Python code of the BloSS is identical for each installation.

The config.ini file is read by a purpose-built configuration class implementing the stan-
dard Python ConfigParser but extending it to use an access scheme similar to 2D arrays,
e.g. config[’BLOCKCHAIN’][’RELAY_CONTRACT_ADDRESS’] to get the relay contract ad-
dress.

5.4 Stalk

Controller
SimpleRouter

Hosts

Host

Attackers

Host

Attackers

APIREST

FlowStatisticsManager

FlowStatistics

Flow Flow

Figure 5.4: Classes of the Stalk module

The stalk module consist of two main classes directly communicating with the underlying
networking infrastructure: The controller as well as the simple router. While the simple
router just enables the correct forwarding of packets between ASes through the SDN
switches, the controller analyzes flows from the same SDN switch and detects ongoing
attacks.

5.4. STALK 37

To communicate with the SDN networking infrastructure, the Ryu library [54] is used
which allows the development of SDN controllers directly in Python. Each SDN controller
is realized as a Ryu App that can later be instantiated through the Ryu Manager.

5.4.1 Simple Router

192.168.10.3

A
RP

 R
eq

ue
st

192.168.10.3

-> 192.168.20.9

ARP Request

192.168.10.3

-> 192.168.20.9

192.168.10.3

A
RP

 R
ep

ly

2C:4D:54:42:C5:E2

-> 192.168.10.3

ARP Reply

2C:4D:54:42:C5:E2

-> 192.168.10.3

1. The ARP request is forwarded to the SDN
 controller responsible for 192.168.20.0/24

2. The SDN controller sends an ARP Reply
 with the requested MAC address

Controller
Controller

A
RP

 R
eq

ue
st

192.168.10.3
-> 192.168.20.9

A
RP

 R
ep

ly

2C:4D:54:42:C5:E2

-> 192.168.10.3

Figure 5.5: Sending and receiving ARP requests and replies is handled by the SDN
switches

The simple router is necessary since the SDN infrastructure used in the demonstration
system does not contain any logic for simple packet forwarding. The default rule in the
Zodiac FX switches is to forward every packet to the SDN controller. In order to allow
efficient routing of packets between the ASes, the simple router part of Stalk forwards
Address Resolution Protocol (ARP) packets to the SDN controller managing a specific
AS and receives in turn ARP replies containing the requested Media Access Control
(MAC) address as illustrated in Figure 5.5. In order to be able to reply to these ARP
requests, the simple router running on the controller maintains a mapping in config.ini of
IP and corresponding MAC addresses for each host in the AS they are managing.

To generally allow forwarding of packets, the simple router sets up flows which specify how
to handle packets coming and going to a specific IP address. Each flow clearly specifies
an out-port to instruct the SDN switch on which port incoming packets should be sent
out based on their origin and destination address. The out-port mapping is dependent on
the physical cabling between the SDN switches as illustrated in Figure 5.1 and therefore
needs to be configured by hand in the config.ini (cf. the ”OUT PORTS” entry in Listing
5.1) for the simple router to rely on.

The basic structure of the simple router is based on sample code by Toshiki [55] and
extended with the ARP request handling and out-port assignment backed up by the pre-
defined networking information in the config.ini configuration file.

38 CHAPTER 5. IMPLEMENTATION

5.4.2 Controller

Controller
01001101011010

10111001001

1111011000

0
1
0
0
1
1
0

1
0
1
1
1

1
1
1
1
0
1

Host

Attackers

01001101011010

10111001001

1111011000

Host

Attackers

01001101011010

10111001001

1111011000

FlowStatisticsManager

FlowStatistics

Flow Flow

Flow Host

Attackers

1. Traffic flows are stored in the
 flow statistics manager

2. Each flow contains bytes
 sent/received for a source and
 destination host

3. When setting the TX/RX traffic
 per host, attackers are noted to
 later compile an attack report

Figure 5.6: The Stalk controller analyzes the traffic and finds attackers

Analyzing traffic to find potential attackers is the main task of the Stalk controller. As
illustrated in Figure 5.6, traffic flows received from the SDN switch are stored in the flow
statistics manager. From there, bytes transferred and received for each flow are written
to the corresponding source or destination host. The host objects are generated while
initializing the Stalk controller and are comprised of all hosts managed by the controller
as specified in config.ini.

Listing 5.2: Requesting flow statistics in Stalk controller

def _request_flow_statistics(self):
...
parser = datapath.ofproto_parser
request = parser.OFPFlowStatsRequest(datapath)
datapath.send_msg(request)

To receive detailed traffic flow information in the first place, the Stalk controller has to
send flow statistics requests continuously as shown in Listing 5.2, which will cause the SDN
switch to answer with the needed data. Access to SDN-specific functions works through
decorators in Ryu, which are bound to OpenFlow events such as EventOFPFlowStatsReply
to receive flow statistics replies from the SDN switch.

Whenever traffic volumes transferred or received are written to the corresponding source or
destination host, the volume of traffic is checked against a threshold. If the traffic exceeds
the threshold, the remote source of the traffic is noted as being a potential attacker.

5.4. STALK 39

As soon as the average traffic throughput volume for a host during a specified time window
exceeds a threshold, the attackers are once again updated with the current traffic volumes
and whether their throughput still exceeds the threshold and the resulting list of attackers
is then used to compile an attack report. This attack report is then sent through the
Python requests library directly to the BloSS REST API endpoint on the same machine.

The Stalk REST API serves as the connecting link between the BloSS module and Stalk
and only consists of a simple Python Flask app maintaining the /api/v1.0/mitigate” map-
ping to receive requests to block attackers from the BloSS module.

Listing 5.3: Blocking attackers based on an attack report

def block_attackers(self, attack_report):
...
ofproto = datapath.ofproto
if attack_report.action == "blackhole":

instructions = [
parser.OFPInstructionActions(

ofproto.OFPIT_CLEAR_ACTIONS ,
[]

)
]

else:
instructions = []

blocking_duration = (
self._config[’INTERVAL’]

[’MAX_BLOCKING_DURATION_SECONDS’]
)
mod = parser.OFPFlowMod(datapath=datapath,

command=ofproto.OFPFC_ADD ,
priority=999,
idle_timeout=blocking_duration ,
hard_timeout=blocking_duration ,
match=match,
instructions=instructions)

datapath.send_msg(mod)

This mitigation service of receiving attack reports and blocking the contained attacker
addresses is the second task of the Stalk controller. Blocking works on a per-flow basis
including a source address (the attacker) and destination address (the attack target).
Listing 5.3 shows the relevant Python code to block a single flow. This is accomplished
by creating a new flow with a very high priority of 999 which specifies to clear all other
actions specified for this flow. The old flow specifying the packet forwarding with the
corresponding out-port will therefore be overruled with this new flow definition. The
blocking flow is however not permanent and will only exist for a pre-defined time window
in order to allow the flow to normalize and avoid blocking benign traffic.

40 CHAPTER 5. IMPLEMENTATION

5.5 BloSS

Manager

APIREST

Figure 5.7: Classes of the BloSS module

The smallest module of the entire BloSS is the namesake module of the system: The
BloSS module. As described in Section 4.1, the BloSS module has been decoupled from
Stalk and Pollen to allow for a more network-agnostic system that would also facilitate a
VNF-based encapsulation of the core parts of the BloSS.

The BloSS module consists of two classes as illustrated in Figure 5.7. The BloSS REST
API receives attack reports from the Stalk module running on the same machine and
posts these attack reports to the blockchain with the help of the Pollen module. It also
maintains an API mapping to receive requests from the Stalk module to set a specific
attack report to ”blocked” on the blockchain to signal that the report has been addressed.

The manager on the other hand periodically retrieves attack reports from the blockchain
and sends the decrypted reports directly to the Stalk REST API to be blocked as discussed
in Section 5.4.2.

5.6 Pollen

All data-exchange apart from basic networking handled by Stalk is taken care of by the
Pollen module. Pollen therefore consists of a multitude of specialized classes as illustrated
in Figure 5.8. These classes handle Ethereum access (PollenBlockchain), IPFS storage
(PollenDatastore and PollenEncryption) and InfluxDB management (PollenDatabase).
An additional helper class to handle attack reports (AttackReporting) provides simple
parsing and processing capabilities to make sure attack reports are always formatted
correctly and did not yet expire.

The PollenDatabase class is only used in order to enable the centralized storage of traffic
information for visualization in Grafana [20]. It is important to note that PollenDatabase
is not an integral part of the Pollen module or the BloSS as a whole and only serves as a

5.6. POLLEN 41

PollenBlockchain
PollenDatabase

AttackReporting

AttackReport
AttackReport

PollenDatastore

PollenEncryption

Figure 5.8: Classes of the Pollen module

debugging and demonstration tool since it would otherwise be complicated to gather the
traffic information of multiple BloSS instances to figure out whether and were a problem
exists. The centralized aspect of the InfluxDB where traffic information is stored would
clearly defeat the goal of building a decentralized and scalable DDoS defense system which
is why it is important to clearly state the demonstration-focused nature of PollenDatabase.

5.6.1 PollenBlockchain

PollenBlockchain is capable of automatically creating the system contracts upon initial-
ization as illustrated in Figure 5.9. It first checks, whether a system contract address is
already defined in config.ini and if this is not the case, it uses the solidity compiler [22]
to create the solidity bytecode which is then deployed through PollenBlockchain. After
deploying a system contract, it needs to be registered with the relay contract to specify
which subnets the system contract is responsible for. This is accomplished with a direct
transaction from PollenBlockchain to the relay contract.

All Ethereum-related transactions go through the Web3 Python library [25] which is
connected to the RPC API of the geth Ethereum node running on the controller. Access
to the RPC API is limited to localhost connections by default, which is why the geth
Node needs to run on the same controller as the BloSS instance.

Apart from deploying the system contract, the PollenBlockchain class posts the public
key used to encrypt and sign attack reports to Ethereum. This is done as the last step
in the initialization and ensure, that the public key available on the blockchain always
represents the correct key set up in the BloSS instance.

After all initialization work is done, the PollenBlockchain class is a passive entity that
provides three main functions to other classes: Reporting and retrieving attack reports as
well as marking attack reports as blocked in the system contract. Only the BloSS module
uses the PollenBlockchain class, in order to maintain loose coupling between the modules.

42 CHAPTER 5. IMPLEMENTATION

PollenBlockchain

RelayContractSystemContract

1. Initialize PollenBlockchain by
 compiling and deploying the
 system contract if needed and
 post the public key to the relay
 contract

PollenBlockchain

PollenDatastore

IPFS
PollenEncryption

2. Retrieval or reporting of attack
 reports goes through PollenDatastore
 and PollenEncryption to manage
 reports off-chaint

Figure 5.9: Duties of the PollenBlockchain class

5.6.2 PollenDatastore and PollenEncryption

To facilitate off-chain storage of attack reports, the PollenDatastore class provides the
necessary ”store”and ”retrieve”methods to interface with IPFS. Since attack reports often
contain sensitive information that could incriminate the attackers but more importantly
the victims of large-scale DDoS attacks, the PollenEncryption class can be used.

The user can decide whether they want to use encryption or not by specifying it in the
config.ini configuration file. However, if they opt out of using encryption, they won’t be
able to participate in a cooperative defense alliance with other BloSS instances encrypting
their attack reports.

Encryption and decryption is built with the Python Cryptography library [8] and the
choices for cryptographic algorithms as well as key lengths and other cryptographic de-
tails are based on an article by Colin Percival [40]. PollenEncryption uses both asymmetric
cryptography through RSA with 2048 bit keys and symmetric cryptography through Fer-
net, which is essentially the Advanced Encryption Standard (AES) block cipher in Cipher
Block Chaining (CBC) mode using a 128 bit long key [8].

Asymmetric encryption is used for two tasks in PollenEncryption: To encrypt the sym-
metric key as well as to cryptographically sign the unencrypted attack report with the
private key of the sender. Signing the attack report with the private key allows the re-
ceiver to verify the authenticity of the attack report by using the public key available on
the blockchain for cryptographic verification.

5.6. POLLEN 43

Attack Report
target: 192.168.30.18

action: blacklist

addresses: [”192.168...

timestamp: 2018-05-25 ...

...

Fernet Encryption

RSA Encryption
with Public Key

Attack Report
target: 192.168.30.18

action: blacklist

addresses: [”192.168...

timestamp: 2018-05-25 ...

...

Signature

JSON { }

IPFS

RSA Signing
with Private Key

Figure 5.10: Encryption procedure for an attack report

Instead of directly encrypting the attack report through asymmetric encryption, the sym-
metric Fernet scheme is used. Asymmetric encryption is very useful since no secret key
exchange has to occur, however it is not well suited to encrypt large amounts of data since
the size of data to be encrypted cannot exceed the key size of 2048 bits[40].

The entire encryption procedure is depicted in Figure 5.10. After encrypting the attack
report and symmetric key as well as signing the attack report, all three components,
signature, encrypted symmetric key and encrypted attack report are stored in IPFS as
a JavaScript Object Notation (JSON) object for easier handling through the Stalk and
BloSS REST APIs.

44 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

The evaluation of the re-engineered BloSS should reflect how well the system is suited
to defend against high-volume DDoS attacks while keeping a small footprint per BloSS
instance in order to minimize the resource requirements for the AS operators. In order to
evaluate the system in these regards, two main aspects have been considered: The delay
from the beginning of an attack until the attack has been completely blocked as well as
the CPU usage of each BloSS instance throughout the entire mitigation.

6.1 Evaluation Setup

The BloSS has been evaluated on the demonstration system as described in Section 5.1
by utilizing the iperf network bandwidth measurement tool [53]. An instance of iperf
is installed on the last compute node of AS 300 with IP address 192.168.30.18 and is
listening for incoming iperf connections on UDP port 5000.

To start an attack, the following command is issued to all hosts from AS 100 and AS 200:

iperf -c 192.168.30.18 -u -b 20m -t 10 -i 1 -p 5000

The remaining three hosts from AS 300 (192.168.30.15, 192.168.30.16 and 192.168.30.17)
are idle throughout the attack since it is impossible to block traffic flowing from them to
the target host 192.168.30.18. This is due to how the demonstration system is set up as
described in Section 5.1.1. Only traffic between ASes goes through the SDN switches and
can therefore be affected by the SDN controller. Intra-AS traffic does however go through
the switch and router to which all compute nodes of an AS are connected. This is based
on the limited number of ethernet ports on the Zodiac FX switches as outlined in Section
5.1.1

45

46 CHAPTER 6. EVALUATION

6.2 Blocking Delay

To evaluate the delay from the start of an attack to the attack being completely blocked by
the cooperative defense, traffic statistics from InfluxDB were used. PollenDatabase, the
database component of the Pollen module posts traffic volume information every second
to the InfluxDB. To get the delay, only database entries with a bandwidth value of over
1 Mbit/s were considered since these correspond to the entries written during the attack.
Since traffic information is written every second, the select statement in Listing 6.1 just
counts the number of returned rows which correspond to the amount of time passed from
beginning to end of the attack.

Listing 6.1: Select statement to determine the delay in seconds until an attack was blocked

SELECT count (mbps)
FROM ”i n b o u n d t r a f f i c ”
WHERE ”datapath id ” = ’123917682137033 ’ AND mbps > 1

This does of course only work if only a single attack in terms of volume is present in the
database. To make sure this was the case, the database was routinely cleared before each
attack to eliminate old attack volumes.

Table 6.1 shows delays recorded for 4 different bandwidths and over 10 attacks for each
bandwidth. The bandwidth is set per compute node, which means at a bandwidth of
10 Mbit/s, a total attack volume of 80 Mbit/s is created and routed toward the target
compute node.

Table 6.1: Delay until attacks with different bandwidths are blocked
Bandwidth/Delay (s) Average
10 Mbit/s 34 34 28 20 28 27 26 37 23 19 27.6
20 Mbit/s 32 18 34 18 28 31 32 31 16 32 27.2
40 Mbit/s 34 25 39 24 31 35 25 29 31 24 29.7
100 Mbit/s 34 26 40 29 29 24 35 28 36 35 31.6

Complete evaluation data for each attack is available as part of the CD bundled with
this thesis. It shows detailed information about each attack including timestamps and
bandwidth per time step throughout the entire attack.

It is important to note that one of the biggest contributing factors to the delay is the
block period of 5 seconds as described in Section 5.2. After sending an attack report,
5 seconds pass until the attack report becomes available to all BloSS instances. Since
attack reports are based on subnetworks, a minimum of two reports need to be sent out
in order to cover the two attacking subnetworks 192.168.10.0/24 and 192.168.20.0/24. If
one of the attacking hosts is detected with a delay, another attack reports needs to be
filed which consumes another 5 seconds.

6.3. CPU LOAD 47

6.3 CPU Load

The additional processing resources required to run the BloSS are an important metric
to decide whether it is worth to tolerate the added strain on the CPU in the light of
being able to mitigate DDoS attacks that could otherwise not be handled due to their
distributed nature.

6.3.1 Collection

The evaluation in regards to CPU load consists of a full mitigation including all 8 attack
hosts and 1 target host with a total attack volume of 160 MBit/s. The experiments
are split into mitigations with encrypted attack reports and mitigations with encryption
turned off entirely. With this differentiation, the added confidentiality provided through
the encrypted attack reports can be contrasted with possibly increased CPU usages. To
obtain the CPU usages of individual BloSS instances, the Python code in Listing 6.2 was
used, which reads the CPU time of a process directly from /proc. CPU time consumed is
increasing throughout the lifetime of a process, so in order to determine the CPU usage
throughout a specific time slot, the delta of CPU time consumed at the beginning and
end of the time slot needs to be considered.

Listing 6.2: Python code to determine CPU time consumed by a process

def get_cputime(hz, pid):
stats = check_output([’cat’, ’/proc/’ + pid + ’/stat’])
stats_array = stats.split(’ ’)
return (float(stats_array[13])

+ float(stats_array[14]))/hz

After determining the CPU usage of the BloSS instance, the value is written to a CSV file
together with the timestamp. This is executed every second in order to be able to later
correlate the CPU usage with the amount of inbound traffic on the target host stored on
InfluxDB as outlined in Section 6.2.

6.3.2 CPU Usage Graphs

In order to account for variations such as delays in sending the attack traffic or other
processes on the system using up available processing resources, 5 experiments with en-
cryption turned on and 5 experiments without encryption have been carried out.

Figure 6.1 shows a graph detailing CPU usages for the controllers of all three ASes com-
bined with the attack volume. Since the ASUS Tinkerboard single board computers are
limited to 100 MBit/s throughput, the complete attack volume of 160 MBit/s is not vis-
ible on the graph. The choice for using a total volume of 160 MBit/s ensures that the
inbound link of the target compute node is completely saturated to create a realistic,
high-bandwidth DDoS attack scenario. A small peak in CPU usage for AS 300 right after

48 CHAPTER 6. EVALUATION

0

10

20

30

40

50

60

70

80

90

100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

At
ta

ck
 V

ol
um

e (
M

bi
t/s

)

CP
U

Us
ag

e
(%

)

Time (s)

160 Mbit/s Total Attack Volume, Encrypted Attack Reports

CPU Usage AS 100 CPU Usage AS 200 CPU Usage AS 300 Inbound Traffic AS 300

Figure 6.1: CPU usage evaluation with encryption turned on

the attack starts signifies the signaling of the attack to the blockchain. Shortly after,
small peaks for the CPU usage of AS 100 and AS 200 can be seen, which indicate that
the attack reports have been fetched from the blockchain, decrypted and acted upon.

0

10

20

30

40

50

60

70

80

90

100

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

At
ta

ck
 V

ol
um

e (
M

bi
t/s

)

CP
U

Us
ag

e
(%

)

Time (s)

160 Mbit/s Total Attack Volume, No Encryption Used

CPU Usage AS 100 CPU Usage AS 200 CPU Usage AS 300 Inbound Traffic AS 300

Figure 6.2: CPU usage evaluation without encryption

Figure 6.2 shows a run of the experiment with encryption turned off. This run is par-
ticularly interesting due to the two-stage signaling that was required to fully mitigate
the attack. After the first signaling, only a reduction to around half the initial attack
volume can be seen, however after a second round of signaling, the entire attack has been
mitigated. It is also interesting to note that the CPU usage peaks indicating signaling for
AS 300 are higher compared to Figure 6.1. This showcases the importance of multiple
runs of the same experiment, to make sure that these differences do not directly lead to

6.3. CPU LOAD 49

conclusions that might be based on wrong assumptions.

6.3.3 Statistical Metrics

In order to better understand the variations in CPU usages between the two scenarios
with and without encryption, minimum, maximum, average and median CPU usage across
all ASes and all runs per experiment have been compiled into two tables. Each entry
represents the average over 5 runs for the specific statistical indicator and AS. Table 6.2
shows statistics for the 5 runs with encryption turned on and Table 6.3 shows the other
5 runs with encryption turned off.

Table 6.2: CPU usage statistics across all 5 runs with encryption turned on
CPU Usage (%)/AS AS 100 AS 200 AS 300
Minimum CPU Usage 5.8% 8.2% 8.8%
Maximum CPU Usage 21.2% 27.8% 34.4%
Average CPU Usage 13.2% 17.2% 16.3%
Median CPU Usage 13.4% 16.9% 15%

Table 6.3: CPU usage statistics across all 5 runs with encryption turned off
CPU Usage (%)/AS AS 100 AS 200 AS 300
Minimum CPU Usage 4.8% 6.6% 8.4%
Maximum CPU Usage 18.2% 24.6% 34.6%
Average CPU Usage 10.5% 14.8% 15.8%
Median CPU Usage 10.3% 14.8% 14%

Detailed data collected throughout the experiments is included in the CD bundled with
this report. There, graphs for each experiment together with the raw data in spreadsheet
format consisting of CPU usage per AS and inbound attack volume for AS 300 are avail-
able. Furthermore, raw data for the statistics presented in Tables 6.2 and 6.3 are available
as spreadsheets listing all values on which the statistics are based.

50 CHAPTER 6. EVALUATION

Chapter 7

Discussion

This chapter starts with the study of the evaluation results gathered in Chapter 6 to allow
a differentiated view of the practicability and whether the re-engineered version of BloSS
provides added values beyond the existing proof of concept implementation developed by
Rodrigues et al. [46].

In a second part, the BloSS is contrasted with existing decentralized defense systems as
presented in Chapter 2. This should provide the reader with a concluding idea about
the unique characteristics that differentiate the BloSS from all other decentralized DDoS
mitigation systems and makes a case for using blockchains as highly reliable signaling
instruments.

7.1 Evaluation Results

The focus of the evaluation clearly lies on determining, whether the re-engineered BloSS
excels as a practicably usable multi-domain DDoS mitigation system. This is important,
since the core idea of the re-engineered BloSS is to provide a research platform on top of
which a full-fledged Mitigation-as-a-Service (MaaS) offering could be realized. To enable
this, the BloSS as the core framework needs to be sound in regards to providing the basic
mitigation capabilities while maintaining a small enough footprint to allow for additional
components and system to be built on top.

7.1.1 Blocking Delay Results

The most important observation from the evaluation data presented in Section 6.2 is the
small amount of variation in regards to different bandwidths.

This is an important aspect of the system and goes to show that the BloSS is capable
of mitigating attacks regardless of whether the attack volume accounts to more than 8
times the available throughput of the target system (in the case of the experiment with
100 MBit/s bandwidth per attacker) or only around 80% of the available throughput.

51

52 CHAPTER 7. DISCUSSION

In addition to that, the average mitigation time of around 29 seconds over all experiments
shows that the BloSS is a fast-acting mitigation solution capable of quickly diminishing
even high-bandwidth threats. This speed is mostly courtesy of the 5 second block period
as discussed in Section 5.2 as well as the fully automated nature of the demonstration
system which does not include negotiation between target and mitigator. However, this is
precisely why this short delay to block an attack is so important: As a research platform,
the BloSS will eventually be extended with a payment based incentive as well as a repu-
tation scheme to build a MaaS offering. If the underlying, barebones mitigation system
would however already be slow to mitigate simple attacks, this would not be a good base
to build a more complex system on top of.

7.1.2 CPU Usage Results

Apart from the ability of the BloSS to quickly mitigate attacks, it should not consume
too many resources while doing so. The 10 experiments in Section 6.3 suggest that the
highest degree of CPU usage occurs at the point in time when attacks are reported to the
blockchain or retrieved by the mitigators. This can be observed from the small spikes in
CPU usage in the two example graphs shown in Section 6.3.2.

This behavior is to be expected but the interesting aspect of the evaluation in Section 6.3
lies in the statistical metrics that show over 5 experiment runs each, that the difference
in CPU usage between the BloSS instances fully relying on encryption is only around
2% higher than the other half of the experiments with encryption turned off. This is a
clear indicator that encryption does not add considerable overhead to the BloSS and can
therefore safely be left turned on, especially considering that encryption provides a high
degree of confidentiality and allows to ensure the integrity of the attack reports through
the verification of cryptographic signatures.

By collecting CPU usage information for a short period before and after the attack occurs,
it can also be shown that the attack itself does not contribute to a considerable increase
in CPU usage, with the exceptions of the short bursts to post attack reports and retrieve
them from the blockchain. The baseline CPU usage of around 15% has to be attributed
toward the Python programming language, which is an interpreted language, therefore
creating a small overhead when running programs written in that language. Apart from
this, the BloSS requires to periodically analyze traffic information as well as request attack
reports from the blockchain, which both contribute toward the baseline CPU usage.

Since 15% of average CPU usage is not a negligible amount of processing resources con-
sumed, this value could be improved by reducing the frequency of the aforementioned
periodic tasks. This would however result in increased delays to mitigate ongoing attacks.
Since the delay is an important factor in enabling an efficient incentive scheme later on,
this trade-off does not seem reasonable and keeping the frequencies at the current high
rate is therefore advisable.

7.2. COMPETITION 53

7.2 Competition

The field of DDoS defense system contains an increasing number of competing approaches
to solve the multi-domain DDoS mitigation problem. The BloSS is best comparable with
the decentralized systems as presented in Section 2.2. These approaches mainly differ in
the communication mechanism they employ.

While the DOTS architecture pioneered by the IETF is built on top of a purpose-built
communication protocol specifically designed for the use in DDoS defense signaling [28],
other approaches such as DefCOM base their communication mechanisms on existing
overlay network technology to enable signaling in a peer to peer manner [37].

Compared to these two approaches, the BloSS is more akin to DefCOM than DOTS since
it also builds on an existing system in the form of the Ethereum blockchain instead of de-
veloping a new communication approach from scratch. Leveraging the highly distributed
nature and secure ledger aspects of blockchains allows the BloSS to securely and easily
scale to the demand of a modern distributed DDoS defense system. DefCOM on the other
hand relies on complex peer to peer message exchanges that are more prone to failure than
the consensus-based blockchain system utilized by the BloSS.

By building the demonstration implementation of the BloSS with SDN and NFV-capability
in mind, advantages of quick deployment inherent to competing systems like CoFence [44]
or Bohatei [9] are already part of the re-engineered BloSS. With the modular aspect of
the BloSS in mind, we are however not limited to SDN based networking infrastructures
or only being able to provide the BloSS as a NFV-based solution but can adapt Stalk,
the networking module of the BloSS to various infrastructures while still maintaining the
simple, yet efficient RESTful interface between the BloSS module and Stalk.

54 CHAPTER 7. DISCUSSION

Chapter 8

Final Considerations

In the course of this master thesis, the existing proof of concept implementation of a
blockchain-based DDoS defense system was re-engineered to exhibit a modular and more
secure structure. For this purpose, a demonstration implementation of the BloSS includes
an SDN-based networking module called ”Stalk”, a data-exchange focused module called
”Pollen” and a coordination module called ”BloSS”. In addition to the modularization
and general re-structuring of the entire BloSS architecture, off-chain data storage powered
by IPFS and secured through symmetric and asymmetric encryption schemes has been
implemented.

The entire high-level design as well as the technical implementation of the re-engineered
BloSS has been documented and all relevant aspects of the system have been discussed
to allow the reader to understand the development process as well as the inner workings
of the BloSS.

With the goal of building a research platform to enable the development of a true Mitigation-
as-a-Service (MaaS) offering, the BloSS was evaluated in regards to practicability as well
as performance aspects and discussed in the light of whether meets the requirements to
serve as the basis for future research conducted in the field of blockchain-based DDoS
mitigation systems.

As a research-focused contribution, four approaches to solve the key problem of pro-
viding an independently verifiable Proof-of-Mitigation are presented. These approaches
serve as reference points for future research in enabling an efficient, payment-based in-
centives scheme as a core part of the aforementioned MaaS offering. Together with the
re-engineered BloSS, these approaches aim to jump start a wave of innovative develop-
ments that could make the BloSS a leading strategy to efficiently counter high-bandwidth
DDoS attacks.

55

56 CHAPTER 8. FINAL CONSIDERATIONS

8.1 Future Work

The demonstration implementation as discussed in Chapter 5 only provides an SDN-based
implementation of Stalk. This is largely based on the SDN-focused demonstration system,
however developing an alternative implementation of Stalk that would work with tradi-
tional networking infrastructures would make the BloSS truly network-agnostic instead
of only providing the capability based on the modularization aspect of the networking
component.

Due to hardware limitations of the single board computers as well as the Zodiac FX SDN
switches used in the demonstration system (cf. Section 5.1), the maximum bandwidth of
the system was limited to 100 MBit/s. Upgrading the demonstration system with better
networking equipment could allow gigabit speeds and therefore allow attack simulations
with even higher volumes to make sure the BloSS is capable of coping with these more
realistic attacks.

Deployment and operation of the BloSS is still mostly a manual process, which limits
adoption of the system as a research base since the steep learning curve of getting to know
all subsystems involved in the BloSS and being able to run and maintaining them limits
the attractiveness of using the BloSS. This could be addressed by setting up an automatic
deployment system to allow one-click installation and instantiation of the BloSS.

Implementing a robust reputation and reward system as discussed by Andreas Gruhler
[12] could enable the BloSS to only rely on a Proof-of-Mitigation for the incentives scheme
until a base reputation has been established, for where on incentive payouts could directly
be linked to the reputation of a mitigator.

Bibliography

[1] Mohammed Achemlal, Said Gharout, and Chrystel Gaber. Trusted platform module
as an enabler for security in cloud computing. In Network and Information Systems
Security (SAR-SSI), 2011 Conference on, pages 1–6. IEEE, 2011.

[2] Juan Benet. IPFS-Content Addressed, Versioned, P2P File System. arXiv preprint
arXiv:1407.3561, 2014.

[3] Zdravko Bozakov and Panagiotis Papadimitriou. Autoslice: automated and scalable
slicing for software-defined networks. In Proceedings of the 2012 ACM conference on
CoNEXT student workshop, pages 3–4. ACM, 2012.

[4] Joao BD Cabrera, Lundy Lewis, Xinzhou Qin, Wenke Lee, Ravil K Prasanth,
B Ravichandran, and Raman K Mehra. Proactive detection of distributed denial
of service attacks using mib traffic variables-a feasibility study. In Integrated net-
work management proceedings, 2001 IEEE/IFIP international symposium on, pages
609–622. IEEE, 2001.

[5] Brian Caswell, James C. Foster, Ryan Russell, Jay Beale, and Jeffrey Posluns. Snort
2.0 Intrusion Detection. Syngress Publishing, 2003.

[6] Victor Costan and Srinivas Devadas. Intel SGX Explained. IACR Cryptology ePrint
Archive, 2016.

[7] PJ Criscuolo. Distributed denial of service, tribe flood network 2000, and stacheldraht
ciac-2319, department of energy computer incident advisory capability (ciac). Tech-
nical report, UCRL-ID-136939, Rev. 1., Lawrence Livermore National Laboratory,
2000.

[8] Cryptography Developers. Python cryptography library. https://cryptography.

io/en/latest/, 2017. [Online, accessed 2018-7-28].

[9] Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bohatei:
Flexible and elastic ddos defense. In USENIX Security Symposium, pages 817–832,
2015.

[10] Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica. Free-riding
and whitewashing in peer-to-peer systems. IEEE Journal on selected areas in com-
munications, 24(5):1010–1019, 2006.

57

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/

58 BIBLIOGRAPHY

[11] Thomer M Gil and Massimiliano Poletto. Multops: A data-structure for bandwidth
attack detection. In USENIX Security Symposium, pages 23–38, 2001.

[12] Andreas Gruhler. A Reputation and Reward Scheme for a Cooperative, Multi-domain
DDoS Defense. Master’s thesis, University of Zurich, Department of Informatics,
Communication Systems Group, Zurich, Switzerland, 2018.

[13] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical
accountability for distributed systems. ACM SIGOPS operating systems review,
41(6):175–188, 2007.

[14] John Hawkinson and Tony Bates. Guidelines for creation, selection, and registration
of an autonomous system (as). Technical report, 1996.

[15] InfluxData. InfluxDB - Scalable datastore for metrics, events, and real-time analytics.
https://github.com/influxdata/influxdb, July 2018. [Online, accessed 2018-7-
27].

[16] John Ioannidis and Steven M Bellovin. Implementing pushback: Router-based de-
fense against ddos attacks. In NDSS, volume 2, 2002.

[17] Michael Jakl. Representational state transfer, 2005.

[18] A John and T Sivakumar. Ddos: Survey of traceback methods. International Journal
of Recent Trends in Engineering, 1(2):241, 2009.

[19] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
The click modular router. ACM Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[20] Grafana Labs. Grafana - The Open Platform for Analytics and Monitoring. https:
//github.com/grafana/grafana, July 2018. [Online, accessed 2018-7-27].

[21] Protocol Labs. Ipfs stream security transport (libp2p-secio). https://github.com/
libp2p/go-libp2p-secio, 2018. [Online, accessed 2018-7-29].

[22] Stephan Mannhart. A custom debian stretch package for amd64 and armhf to install
the solidity compiler solc v0.4.24. https://github.com/savf/solc.deb, June 2018.
[Online, accessed 2018-7-28].

[23] Stephan Mannhart, Bruno Rodrigues, Eder Scheid, Salil S. Kanhere, and Burkhard
Stiller. Toward Mitigation-as-a-Service in Cooperative Network Defenses. forthcom-
ing.

[24] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[25] Piper Merriam and Jason Carver. Web3.py. https://web3py.readthedocs.io/en/
stable/, 2018. [Online, accessed 2018-7-28].

[26] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Attacking ddos at the source. In
Network Protocols, 2002. Proceedings. 10th IEEE International Conference on, pages
312–321. IEEE, 2002.

https://github.com/influxdata/influxdb
https://github.com/grafana/grafana
https://github.com/grafana/grafana
https://github.com/libp2p/go-libp2p-secio
https://github.com/libp2p/go-libp2p-secio
https://github.com/savf/solc.deb
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/

BIBLIOGRAPHY 59

[27] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, April 2004.

[28] Andrew Mortensen, Flemming Andreasen, Tirumaleswar Reddy, Christopher Gray,
Rich Compton, and Nik Teague. Distributed-Denial-of-Service Open Threat Sig-
naling (DOTS) Architecture. Internet-Draft draft-ietf-dots-architecture-06, Internet
Engineering Task Force, March 2018. Work in Progress.

[29] POA Network. Proof of authority: consensus model with
identity at stake. https : / / medium . com / poa-network /

proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256,
Nov 2017. [Online, accessed 2018-7-27].

[30] A10 Networks. 2017 ddos of things survival guide. 2017. [Online, accessed 2018-7-24].

[31] Northbound Networks. Zodiac fx user guide. https://zodiac-fx-germany.de/

ZodiacFX_UserGuide_0216.pdf, Feb 2016. [Online, accessed 2018-7-27].

[32] NFV White Paper. Network Functions Virtualisation: An Introduction, Benefits,
Enablers, Challenges & Call for Action. Issue 1. October 2012.

[33] Hung Nguyen, Bipeen Acharya, Radoslav Ivanov, Andreas Haeberlen, Linh TX Phan,
Oleg Sokolsky, Jesse Walker, James Weimer, William Hanson, and Insup Lee. Cloud-
based secure logger for medical devices. In Connected Health: Applications, Systems
and Engineering Technologies (CHASE), 2016 IEEE First International Conference
on, pages 89–94. IEEE, 2016.

[34] Kaname Nishizuka, Liang Xia, Jinwei Xia, Dacheng Zhang, Luyuan Fang, Christo-
pher Gray, and Rich Compton. Inter-organization cooperative DDoS protection
mechanism. Internet-Draft draft-nishizuka-dots-inter-domain-mechanism-02, Inter-
net Engineering Task Force, December 2016. Work in Progress.

[35] Nokia. Trusted nfv systems.

[36] Marian Oancea. Ethereum network stats official repository. https://github.com/

cubedro/eth-netstats, December 2016. [Online, accessed 2018-7-29].

[37] George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robinson. A framework
for a collaborative ddos defense. In Computer Security Applications Conference,
2006. ACSAC’06. 22nd Annual, pages 33–42. IEEE, 2006.

[38] OpenDaylight. OpenDaylight: A Linux Foundation Collaborative Project, 2013.

[39] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23-24):2435–2463, 1999.

[40] Colin Percival. Cryptographic right answers. http://www.daemonology.net/blog/
2009-06-11-cryptographic-right-answers.html, Jun 2009. [Online, accessed
2018-7-28].

https://medium.com/poa-network/proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256
https://medium.com/poa-network/proof-of-authority-consensus-model-with-identity-at-stake-d5bd15463256
https://zodiac-fx-germany.de/ZodiacFX_UserGuide_0216.pdf
https://zodiac-fx-germany.de/ZodiacFX_UserGuide_0216.pdf
https://github.com/cubedro/eth-netstats
https://github.com/cubedro/eth-netstats
http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
http://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html

60 BIBLIOGRAPHY

[41] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. vtpm: virtualizing the trusted
platform module. In Proc. 15th Conf. on USENIX Security Symposium, pages 305–
320, 2006.

[42] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. The design and implementation of open vswitch. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pages
117–130, Oakland, CA, 2015. USENIX Association.

[43] Gregor N. Purdy. Linux iptables - kurz & gut. O’Reilly, 08 2004.

[44] Bahman Rashidi and Carol Fung. CoFence: A Collaborative DDoS Defence Using
Network Function Virtualization. In 12th International Conference on Network and
Service Management (CNSM 16), October 2016.

[45] Sowmya Ravidas, Shankar Lal, Ian Oliver, and Leo Hippelainen. Incorporating trust
in nfv: Addressing the challenges. In Innovations in Clouds, Internet and Networks
(ICIN), 2017 20th Conference on, pages 87–91. IEEE, 2017.

[46] Bruno Rodrigues, Thomas Bocek, and Burkhard Stiller. Enabling a Cooperative,
Multi-domain DDoS Defense by a Blockchain Signaling System (BloSS). In Demon-
stration Track, pages 1–3, Singapore, Singapore, Oct 2017. IEEE.

[47] Anbang Ruan and Andrew Martin. Repcloud: Attesting to cloud service dependency.
IEEE Transactions on Services Computing, 10(5):675–688, 2017.

[48] Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, and Hervé Debar. Towards au-
tonomic ddos mitigation using software defined networking. In SENT 2015: NDSS
Workshop on Security of Emerging Networking Technologies. Internet society, 2015.

[49] Salanfe. Setup your own private proof-of-authority ethereum network with geth.
https://hackernoon.com/9a0a3750cda8, Feb 2018. [Online, accessed 2018-7-29].

[50] Bruce Schneier and John Kelsey. Cryptographic support for secure logs on untrusted
machines. In USENIX Security Symposium, volume 98, pages 53–62, 1998.

[51] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska. S-nfv: Securing
nfv states by using sgx. In Proceedings of the 2016 ACM International Workshop
on Security in Software Defined Networks & Network Function Virtualization, pages
45–48. ACM, 2016.

[52] Mininet Team. Mininet: An instant virtual network on your laptop (or other pc).
Google Scholar, 2012.

[53] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. iperf:
Tcp/udp bandwidth measurement tool. 01 2005.

[54] FUJITA Tomonori. Introduction to ryu sdn framework. Open Networking Summit,
2013.

https://hackernoon.com/9a0a3750cda8

BIBLIOGRAPHY 61

[55] Tsuboi Toshiki. Ryu Simple Forward. https : / / github . com / ttsubo /

simpleRouter/blob/master/ryu-app/blog/article_02/simpleForward.py, Jan-
uary 2014. [Online, accessed 2018-7-28].

[56] Gavin Wood. Devp2p wire protocol. https://github.com/ethereum/wiki/wiki/

libp2p-Whitepaper, 2014. [Online, accessed 2018-7-29].

[57] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
https://goo.gl/LG7adX, Jan 2016. [Online, accessed 2018-7-27].

[58] Saman T. Zargar, James Joshi, and David Tipper. A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Communica-
tions Surveys Tutorials, 15(4):pp. 2046–2069, Fourth 2013.

[59] Xuan Zhou, Rongpeng Li, Tao Chen, and Honggang Zhang. Network slicing as a
service: enabling enterprises’ own software-defined cellular networks. IEEE Commu-
nications Magazine, 54(7):146–153, 2016.

https://github.com/ttsubo/simpleRouter/blob/master/ryu-app/blog/article_02/simpleForward.py
https://github.com/ttsubo/simpleRouter/blob/master/ryu-app/blog/article_02/simpleForward.py
https://github.com/ethereum/wiki/wiki/libp2p-Whitepaper
https://github.com/ethereum/wiki/wiki/libp2p-Whitepaper
https://goo.gl/LG7adX

62 BIBLIOGRAPHY

Abbreviations

DDoS Distributed Denial of Service
MaaS Mitigation-as-a-Service
CAPEX CAPital EXpenditures
OPEX OPErating EXpenditures
BloSS Blockchain Signaling System
D-WARD DDoS netWork Attack Recognition and Defense
MULTOPS MUlti-Level Tree for Online Packet Statistics
MIB Management Information Base
NMS Network Management System
IDS Intrusion Detection System
IETF Internet Engineering Task Force
DOTS Distributed-Denial-of-Service Open Threat Signaling
NFV Network Function Virtualization
SDN Software-Defined Networking
SLA Service Level Agreement
VM Virtual Machine
TPM Trusted Platform Module
SGX (Intel) Software Guard Extension
OS Operating System
TSecO Trusted Security Orchestrator
VIM Virtual Infrastructure Manager
AMD Advanced Micro Devices
NSaaS Network-Slicing-as-a-Service
vSDN virtualized Software-Defined Networking
SaaS Software-as-a-Service
PaaS Platform-as-a-Service
IaaS Infrastructure-as-a-Service
IPFS Inter Planetary File System
PoA Proof-of-Authority
PoW Proof-of-Work
ARP Address Resolution Protocol
MAC Media Access Control
AES Advanced Encryption Standard
CBC Cipher Block Chaining
JSON JavaScript Object Notation

63

64 ABBREVIATONS

Glossary

BloSS The Blockchain Signaling System allows multi-domain DDoS defense by leveraging
the Ethereum blockchain as a signaling medium.

DDoS According to Mirkovic et al. [26], a distributed denial-of-service attack ”is com-
prised of packet streams from disparate sources. These streams converge on the
victim, consuming some key resources and rendering it unavailable to legitimate
clients” [26]

Mitigator The entity operating a mitigation system and therefore providing a mitigation
service to a third party.

Autonomous System According to the RFC 1930 definition, an autonomous system ”is
a connected group of one or more IP prefixes run by one or more network operators
which has a SINGLE and CLEARLY DEFINED routing policy.”[14]

65

66 GLOSSARY

List of Figures

2.1 DOTS server and client model with data and signal channel 10

2.2 Recursive signaling in DOTS . 11

2.3 Formation of the DefCOM overlay network 12

2.4 Alarm propagation in the DefCOM overlay network 13

3.1 Mitigation service based on VNFs available in a trusted marketplace 16

3.2 Mitigation service based on Trusted Platform Modules (TPM) and Intel
Software Guard Extension (SGX) . 18

3.3 A mitigation log is provided to the target AS 19

3.4 Virtual network slices are provided to run the mitigation service 21

4.1 Multi-domain DDoS defense through the BloSS 25

4.2 Metaphor for the naming scheme of the individual BloSS modules 26

4.3 Architecture of the Blockchain Signaling System (BloSS) 27

4.4 BloSS defense scenario including a target and mitigator AS 29

5.1 The BloSS demonstration system . 32

5.2 The Proof-of-Authority consensus mechanism 33

5.3 Ethereum contract setup with the relay and system contracts 34

5.4 Classes of the Stalk module . 36

5.5 Sending and receiving ARP requests and replies is handled by the SDN
switches . 37

5.6 The Stalk controller analyzes the traffic and finds attackers 38

5.7 Classes of the BloSS module . 40

67

68 LIST OF FIGURES

5.8 Classes of the Pollen module . 41

5.9 Duties of the PollenBlockchain class . 42

5.10 Encryption procedure for an attack report 43

6.1 CPU usage evaluation with encryption turned on 48

6.2 CPU usage evaluation without encryption 48

List of Tables

2.1 Overview of DDoS defense systems . 14

3.1 Qualitative comparison of approaches to provide a Proof-of-Mitigation . . . 23

6.1 Delay until attacks with different bandwidths are blocked 46

6.2 CPU usage statistics across all 5 runs with encryption turned on 49

6.3 CPU usage statistics across all 5 runs with encryption turned off 49

69

70 LIST OF TABLES

Appendix A

Toward Mitigation-as-a-Service in
Cooperative Network Defenses

71

Toward Mitigation-as-a-Service in Cooperative Network Defenses

Stephan Mannhart, Bruno Rodrigues, Eder Scheid, Salil S. Kanhere∗, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, Switzerland

E-mail: stephan.mannhart@uzh.ch, [rodrigues,scheid,stiller]@ifi.uzh.ch
∗Networked Systems and Security Group NetSyS, UNSW Sydney, NSW 2052 Australia

E-mail: salil.kanhere@unsw.edu.au

Abstract—Distributed Denial-of-Service (DDoS) attacks are
by design highly decentralized and therefore hard to defend
against. By utilizing a decentralized, multi-domain, cooperative
defense mechanism, it is possible to combine software and
hardware capabilities to effortlessly mitigate large scale attacks.
Cooperative defense systems face many challenges, such as
deployment complexity due to high coordination overhead,
reliance on trusted and stable channels for communication
and the need for effective incentives to bolster cooperation
among all involved parties. In particular, incentives are the key
to ensure successful deployment of a ”Mitigation-as-a-Service
(MaaS)” for cooperative defense systems. This paper discusses
the critical issue of providing a proof of the effectiveness of
a cooperative defense mitigation, considering four state-of-
the-art solutions toward an independently verifiable proof of
mitigation. A qualitative analysis of these approaches across
9 dimensions shows that none satisfy all requirements due to
the inherent trade-offs between practicability and security. As
a result, it is identified that the issue of authenticating the
underlying network flows remains unsolved.

I. INTRODUCTION

The growing threat of Distributed Denial-of-Service
(DDoS) attacks requires novel, fast-acting countermeasures.
Mitigating large-scale DDoS attacks at the attack-traffic
target is infeasible due to the overwhelming bandwidth
of these attacks. A mechanism that allows multiple Au-
tonomous Systems (AS) to mitigate the attack near its source
within the managed address space of each AS can be an
effective solution. For instance, it allows to combine the
detection/mitigation capabilities of the cooperative entities,
reduce the detection/mitigation overhead in a single entity,
and block malicious traffic near its source. Enterprises
targeted by DDoS attacks could subscribe to such a co-
operative defense service by paying a fee to be protected
from future threats. However, cooperative defense systems
face three main challenges as outlined in [12], which include
deployment complexity due to high coordination overhead,
reliance on a trusted and stable channel for communication
and the effective use of incentives to bolster cooperation
among involved parties.

Incentives are necessary to cover CAPital EXpenditures
(CAPEX) to set up communication infrastructures including
additional hardware and software acquisition costs, and
OPErating EXpenditures (OPEX) are incurred as soon as
a mitigation service is in use. A possible solution to cover

these expenditures is by passing them on to the service
customer. Service fees paid by the customer can then be
used as incentives among ASes involved in the cooperative
defense to motivate the collaborative behavior.

However, the use of complex incentive schemes would
lead to even higher complexity of operation, corresponding
to an increase in subscription fees to cover OPEX and
CAPEX. Incentive payout therefore needs to be based on
an automated mitigation mechanism that can be verified
independently to simplify and streamline the entire process.
Additional costs related to delays and negotiations between
ASes to verify whether the service was performed as agreed
could then be avoided.

Avoidable costs include additional delays and negotiations
between ASes after a mitigation has been conducted to verify
whether the service was performed as agreed. However,
since the effectiveness of a mitigation task needs to be manu-
ally verified by the target AS by examining logs and changes
in attack traffic, an independently verifiable and automated
mitigation proof is essential for the incentive scheme. Hence,
automatic checks of the effectiveness of a mitigation, and
subsequently, automatic payouts of incentives between ASes
could be performed.

This paper discusses possible approaches to provide such
an independently verifiable mitigation-proof and the chal-
lenges associated with each approach. We show that no
satisfiable solution can be provided since a trade-off exists
between practicability and security of each approach. In this
regard, most of the discussed approaches are not clearly
separable since they combine similar concepts and even a
possible combination of these approaches would lead to an
increase in complexity and lack of scalability. In addition to
that, all of the approaches fail to include the integrity of the
underlying network flows which leaves room for tampering
and falsification of the mitigation proof. The literature re-
search performed did not indicate other approaches which
might address differently the core challenges as shown with
the approaches presented in this paper.

This paper is organized as follows: Section II describes
the relevance of a mitigation proof in the context of a
cooperative defense. Section III presents approaches toward
an automated solution, and in Section IV these approaches
are compared. Section V concludes the work.

Malicious MitigatorMalicious MitigatorMalicious Mitigator(s) Target
2. Send false

mitigation proof

1. Request mitigation

3. Pay incentive

Figure 1. False-reporting of mitigation proof in a cooperative defense

II. MITIGATION IN A COOPERATIVE DEFENSE

The underlying process of a DDoS mitigation service
involves multiple ASes collaboratively countering the DDoS
attack. As soon as an attack is detected at an AS T
(Target), it contacts ASes participating in the alliance to
request mitigation. Then, an AS M (Mitigator), managing
the address range responsible for the attack has the choice
of accepting the mitigation request and providing the service
by filtering the attack traffic.

A proof-of-mitigation (cf., Figure 1) needs to exist to
convey service completion to AS T in a way that will
clearly confirm that a cooperative attack request has been
successfully mitigated. Thus, upon acknowledgment of this
proof, an incentive can directly be paid by AS T to AS M,
which completes the process.

The crucial element of this exchange is the ability of
an AS M to provide a proof-of-mitigation that satisfies the
aspects of reproducibility, tamper-evidence and timeliness.
If such a proof is not available right after completion of
the mitigation, the other party will withhold the incentive
payout and the overall service becomes unusable. Manual
verification of a mitigation proof is also not feasible, due to
the strict time constraints required to provide a fast-acting
mitigation service able to counteract large-scale DDoS at-
tacks. The timeliness aspect does therefore also include the
aspect of being able to automatically verify the proof during
the available time-window and excludes any user interaction
in order to be efficient.

If the mitigation proof is falsified, the process fails, and
the mitigation service cannot be provided, or the target AS
erroneously pays the incentive since it failed to realize the
falsification of the mitigation proof. Both scenarios would
lead to a breakdown of the mitigation service offering since
an inherent trust between both parties would be required
instead of being able to rely on a verifiable proof.

For a qualitative discussion of the individual approaches
presented in this paper, metrics are based on the scheme
proposed by Zargar et al. [12] and focus on the deployment
complexity as well as scalability while adding security
related metrics not present in [12].

These additional metrics can provide an important
overview of the presented approaches since providing a
successful proof of mitigation is largely dependent on the
security of the system generating the proof as well as the
proof itself.

1) Confidentiality: Describes how effective rules and
measures are to protect both the mitigation proof
as well as the mitigation system from unauthorized
access.

2) Integrity: Defines the level of trustworthiness of the
proof generated by the given approach in regards to
accuracy and tamper-resistance.

3) Availability: Relates to the availability of the mitiga-
tion proof to authorized parties.

4) Reproducibility: Describes the ability to reproduce
the proof through replay by a third party.

5) Tamper-Evidence: Discloses the effort necessary for
changing the proof of mitigation to reflect an alternate
reality.

6) Timeliness: Defines the ability to provide an automati-
cally verifiable proof within a pre-specified time-frame
while adhering to all security requirements.

7) Deployment Complexity: Defines the additional re-
sources required to deploy the approach.

8) Scalability: Relates to the adaptability of the approach
in regards to a large-scale DDoS defense scenario with
high-bandwidth attacks.

9) Service Model: Defines the cloud service model the
approach most closely relates to.

III. APPROACHES TOWARD MITIGATION PROOFS

This Section presents approaches toward MaaS providing
a short description overviewing their functioning and dis-
cussing their advantages and disadvantages.

A. Marketplace of Mitigation VNFs

Mitigator Target

Virtual Devices

1. Request mitigation

2. Provide access to a virtual network slice

3. Perform mitigation

4. Pay incentiveMitigatorMitigator(s)

Figure 2. Mitigation device based on VNF available in a trusted
marketplace

1) Description: Network Function Virtualization (NFV)
[4] can provide an efficient solution to the deployment
conundrum by allowing the mitigation system to be encap-
sulated as Virtualized Network Functions (VNF), which can
directly be deployed on commodity hardware running on-
site at the AS. Thus, to support a simple deployment of this
approach, a VNF ”marketplace” could be built as a platform
of VNFs for all ASes involved in the cooperative defense.
The mitigator AS would load the VNF directly from the
marketplace to provide the mitigation service. This ensures
that the VNF image used to conduct the mitigation is known

by all ASes and its integrity can be checked by comparing
a hashed checksum of the image to a stored value on the
marketplace. The marketplace also allows logging of access
to the VNFs by the individual AS. Local caching of VNFs
can be used to avoid increased load on the VNF marketplace.

2) Advantages: The high degree of isolation of this
approach is a clear advantage. VNFs contain the minimal
code necessary to conduct the mitigation and can therefore
directly contribute to a certain degree of trust by implicitly
ensuring that the correct code is executed. Running the
mitigation inside VNFs also eases the deployment for ASes
interested in offering such a service since they can run the
VNF without any additional setup on supported hardware.
Running VNFs only requires the necessary infrastructure for
data plane control and can even be accomplished without
directly using Software-Defined Networking (SDN) as out-
lined in [4].

3) Disadvantages: Encapsulating the mitigation service
inside VNFs does not guarantee that the AS mitigator will
not be able to tamper with the VNF itself. This means
that the act of deploying the mitigation service through
VNFs alone is not a reliable proof of mitigation and the AS
requesting the service still needs to trust that the mitigator
will only run untampered VNFs directly from the VNF
marketplace. Even if the VNF has not been tampered with,
network flows on which the mitigation will be conducted
could be manipulated before they reach the VNF which
could lead to a minimized or non-existent workload for the
mitigator while still receiving the incentive payout from the
AS requesting the service.

B. Trusted Computing

Mitigator Target

Trusted Devices

1. Request mitigation

2. Perform mitigation with trusted devices

3. Pay incentiveMitigatorMitigator(s)

Figure 3. Mitigation devices are based on Trusted Platform Modules
(TPM)

1) Description: A Trusted Platform Module (TPM) al-
lows the secure storage of verification hashes in the on-chip
Platform Configuration Registers (PCR) that can be used
to attest a secure boot chain from BIOS over Bootloader,
OS up to the Hypervisor [6]. Thus, code running inside the
VM can be partly isolated by using technologies such as
Intel Software Guard Extension (Intel SGX) which provides
a secure enclave to store application states as proposed by
Shih et al. [11].

To further extend the chain of trust up to the VNF
itself, approaches like ”vTPM” [7] aim to fill this gap with
a virtualized TPM instance. However, by virtualizing the
hardware-based trust, a trade-off arises where the end-system
gains a level of additional protection but is still not as secure
as it could be with full hardware-based trusted computing.
Another solution is remote attestation, where platform- as
well as VNF-states are compared with known good values
by a remote system. Traditionally, remote attestation was
limited to non-virtualized systems and would therefore not
directly apply to a VNF-based approach.

Ravidas et al. [9] propose a remote attestation server that
goes beyond the platform-only integrity check and allows for
full attestation of VNFs through image integrity checks. This
is accomplished by introducing an external Trusted Security
Orchestrator (TSecO) [9] which will receive VNF launch
requests from a modified Virtual Infrastructure Manager
(VIM). The decision to allow a launch request can then be
based on whether the checksum for the VNF is featured
in a whitelist published on the marketplace. These VNF
image integrity checksums can later directly be used to check
against known good values for remote attestation.

2) Advantages: The full chain of trust from hardware
to the VNF guarantees that only the code that is approved
by the cooperative defense can be run on the designated
system. This guarantee combined with the marketplace that
transparently provides the actual mitigation VNF creates a
cooperative defense in which mitigation requests are always
handled by known and trusted VNFs without the need of
trusting the operator responsible for the AS providing the
mitigation service.

3) Disadvantages: The biggest drawback of using a
trusted computing approach to guarantee the integrity of the
mitigation system are the strict hardware requirements. The
TPM is a feature available only as a standalone chip or
as a solution integrated into the motherboard but it does
not come pre-installed on all systems, which greatly limits
the potential of a DDoS mitigation system based on this
technology. The same is true for Intel SGX, which is directly
integrated into many Intel CPUs but not available for all Intel
CPUs and is unavailable on competing products like AMDs
CPUs.

Due to the nature of a trusted computing environment,
the operator of the mitigating AS also gives up full control
over their system. The policies enforced by the trusted
computing environment will no longer allow the operator
to run any VNF on the system equipped with a TPM since
only whitelisted VNFs will be allowed in order to fully
enforce the chain of trust. An additional problem similar
to the NFV approach without TPM is the lack of control
over the underlying networking infrastructure. The mitigator
could once again change the network flow to the system
running the mitigation VNF and lead it to believe that it
is seeing all the traffic while in reality, parts or all of the

attack traffic have been rerouted and no mitigation seems
to be required anymore. This would directly prompt AS T
to initiate the incentive payout since the mitigation seems
to have been concluded and all trusted computing related
checks were passed.

C. Secure logging

Mitigator Target

1. Request mitigation

2. Perform mitigation

3. Pay incentive

4. Send log
MitigatorMitigator(s)

Figure 4. Secure Logging

1) Description: The main challenge in providing an
independently verifiable mitigation proof is the reliance on
the underlying networking infrastructure. Mitigating a DDoS
attack by filtering traffic for example through blackholing
requires the mitigator to have access to the networking
infrastructure and to trust that the traffic represented by
the infrastructure is the actual traffic passing through the
mitigators AS. In the collaborative defense scenario, AS
M in the role of the mitigator has full control over their
underlying networking infrastructure which allows them to
generate a proof of mitigation from the available traffic data.

This proof could consist of a detailed network log showing
the effect of the mitigation as a reduction in the attack traffic
from the attack source to the DDoS target. To secure this
log, a scheme as presented in [10] could be used which
utilizes authentication keys for the entire log as well as
individual log entries together with a hash-chain to enable
discovery of tampering attempts. This kind of secure logs
have successfully been used to build various cloud-based
systems with a high degree of accountability, such as [5]
where secure logs from a medical device have been stored
while maintaining tamper evidence. To further secure this
log, the trusted computing approach discussed in Section
III-B can be leveraged by utilizing both TPM as well as
Intel SGX which has also been demonstrated by [5]. Intel
SGX has specifically been proposed as a good extension
for NFV integrity by [11] since it allows to protect specific
application states inside the secure enclave provided by Intel
SGX. In our case, storing the traffic logs inside that enclave
would add a layer of security on top of the cryptographic
methods proposed by Schneier et al. [10].

Since the log file has been created on an isolated system,
checking the integrity of the log through a third party
becomes an important aspect of its overall credibility. Hae-
berlen et al. [3] proposed a remote audit to ensure the
correct operation of a remote system. This works similar to
remote attestation as outlined in Section III-B1 but focuses
on deterministic log files instead of binaries running on

a system. By remotely replaying system executions and
comparing the resulting log files to the logs obtained from
the remote system, the correct behavior of the system under
test can be determined.

2) Advantages: Reducing the mitigation proof to the
log files minimizes the complexity of the overall proof.
Checking the correctness of the log suffices to establish the
success of the mitigation conducted by AS M. Together with
the trusted computing schemes discussed in Section III-B1,
secure logging requires no additional trust in the mitigation
AS and the remote audit helps to cover any trust issues
presented by the logging process itself.

3) Disadvantages: Protecting log files from tampering
requires that they be stored securely, for example in tamper-
proof hardware such as Intel SGX enclaves. This presents a
similar disadvantage as with the trusted computing approach
due to the requirement of specialized hardware. The secure
enclave itself also needs to be protected by a chain of
trust including all stages of the boot process right up to
the operating system. To enable this, a TPM needs to be
present in the system, which limits the hardware choice for
a mitigation system even further.

Also, capturing the mitigation of a high-volume DDoS
attack through network traffic results in large log files.
Transferring these log files for remote auditing or to be used
as the mitigation proof introduces additional delays in the
mitigation process due to their large size. Storing logs to
keep track of past mitigations also becomes a burden due to
the immense disk space requirements.

D. Network Slicing

Mitigator Target

1. Request mitigation

2. Provide access to a virtual network slice

3. Perform mitigation

4. Pay incentiveMitigatorMitigator(s)

Virtual Devices

Physical Devices

Figure 5. Virtual Slice

1) Description: Recent advances in network virtualiza-
tion technologies and Software-Defined Networks (SDN)
can be leveraged to realize network slicing as a service [13]
for mitigation purposes. By requesting mitigation services
from AS M, the target AS T gains access to a virtualized
network slice. Based on the IP addresses provided with
the mitigation request, the slice can be configured to only
provide access to observe the flows of the attacking IP
addresses.

Slice generation could be accomplished with ”AutoSlice”
proposed by Bozakov et al. [1] which creates on-demand
virtualized SDN networks (vSDN)[1]. These vSDNs can be
controlled by standard SDN controllers which would allow
AS T to directly perform the mitigation on the target system.

2) Advantages: This approach shifts the requirements of
the mitigation proof. There is no need for providing a direct
proof that the mitigation has been carried out, since AS T
has complete control over the whole process. The burden of
providing the proof is lifted from AS M and the payout of the
incentive from AS T can directly occur after the mitigation
has been performed.

Creation of slices can be directly coupled to the mitigation
request since the required information about relevant IP
addresses to observe and control is directly provided together
with the mitigation request.

3) Disadvantages: AS M has to give up full control of
their networking infrastructure by providing the network
slice as a service and AS T has to trust that the slice
represents the portion of infrastructure of interest.

The implementation would also have a strong hard-
ware as well as software requirement if realized with
the AutoSlice[1] architecture: The networking infrastructure
needs to be SDN-based and additional commodity servers
with Open vSwitch installations are required to circumvent
the constraint of limited flow-table sizes presented by most
OpenFlow hardware switches[1].

IV. DISCUSSION

Table I
QUALITATIVE COMPARISON OF APPROACHES TOWARD MAAS

NFV Trusted
Computing

Secure
Logging

Network
Slicing

Security
1. Confidentiality Low Medium Low Low
2. Integrity Low High High Low
3. Availability High Medium High Medium
4. Reproducibility High High Low High
5. Tamper-Evidence Low Medium Medium Low
6. Timeliness High High Low Medium
Practicability
7. Deployment
Complexity Low High High High

8. Scalability High Low Low Low
Scope
9. Service Model SaaS SaaS PaaS IaaS

Table I shows that no single approach satisfactorily ad-
dresses the trade-offs between security and practicability
and could, therefore, be used by itself for an independent
trustless mitigation service. NFV and Network Slicing have
similar characteristics with respect to security due to their
virtualized nature. While NFV virtualizes a single function
in the network, Network Slicing aims to deliver a portion of
the network infrastructure as a service. To accomplish this,
approaches like AutoSlice [1] help to automate the creation

of on-demand slices per mitigation request. However, the
infrastructure requirements such as the need for SDN based
networking for the automatic creation of vSDNs, increases
the associated deployment complexity, thus limiting the
applicability of this approach. An NFV-based approach on
the other hand, presents a lower deployment complexity. For
example, CoFence [8] can create VNFs upon demand to
filter attack traffic, however, security aspects of this approach
can be easily tampered with to obtain the incentive related
to the mitigation service.

The Trusted Computing and Secure Logging approaches
have high deployment complexity as strict hardware require-
ments need to be considered. Logging is by default provided
by any mitigation tool and therefore has no deployment
complexity, but secure logging requires a trusted platform
to ensure that the output of a mitigation action has not
been tampered with. These deployment complexities directly
translate to poor scalability since a large number of TPM as
well as Intel SGX [2] enabled systems would be required to
use a trusted computing approach at scale.

The service model metric differentiates individual ap-
proaches by correlating them with their respective cloud
service models. Table I presents this metric showing NFV
and Trusted Computing approaches follow a similar model
as Software-as-a-Service (SaaS) since these are individual
software packages that provide the proof. In contrast, secure
logging only provides logs identical to Platform-as-a-Service
(PaaS) cloud models where an interface to a service is
provided. The approach with the highest degree of access to
the mitigation system is the network slicing approach where,
similar to Infrastructure-as-a-Service (IaaS), a complete vir-
tualized networking infrastructure is provided.

At the outset, it may appear that combining some of
these approaches could lead to a comprehensive solution
that addresses all requirements. However, as noted in Section
III, there exists overlap between most of these approaches,
which leads to an increase in complexity and raises scala-
bility challenges. For instance, an NFV approach that is a
low complexity approach could be combined with a high-
scalability approach like Secure Logging. However, this
would lead to combined drawbacks in regards to practica-
bility which would make the resulting approach excel in
regards to security compared with the individual approaches
but would render it hard to deploy and scale.

The authors envision two main scenarios for future re-
search toward a practicable MaaS offering: The first sce-
nario entails finding a new approach of providing a mit-
igation proof that balances the security and practicability
requirements outlined in the discussion section well enough
to warrant a proof-of-concept implementation. The second
strategy would introduce the assumption of a minimal degree
of inherent trust among the ASes to eliminate the as of
yet insurmountable task of isolating the entire mitigation
infrastructure in order to prove successful mitigation. Both

strategies could quickly result in a technical demonstration
of a complete MaaS architecture to foster further research
in the field.

For the first scenario, additional research in the area of
trusted computing might turn out to be most fruitful to find
a suitable mitigation proof. An approach based on trusted
computing that would undoubtedly prove that the entire
infrastructure, including the underlying network flows of an
AS is tamper-evident, would change the mitigation proof
to be an inherent property of the system itself. This would
allow for the mitigation to be automatically conducted upon
receipt of the attack information while implicitly proving the
mitigation service has been carried out correctly due to the
trusted infrastructure it is running on.

Existing reputation algorithms can be incorporated into
the collaborative defense protocol to foster cooperation and
build a foundation of trust in the second scenario. Although
being a more viable approach by eliminating the need for
software/hardware mechanisms to verify the mitigation of an
attack, its sole use does not guarantee that a malicious AS
will not perform malicious actions to subvert the function-
ing of the reputation algorithm such as providing negative
feedback to ASes that correctly execute mitigation requests
or not providing feedback at all.

V. FINAL CONSIDERATIONS

Ensuring the effectiveness of a cooperative mitigation task
is an important step toward the feasibility of incentives to
stimulate the cooperative behavior and to cover operational
costs of mitigating attacks. In this regard, this paper presents
a detailed and conceptual discussion of four main approaches
that could be deployed toward a verifiable MaaS. The multi-
dimensional requirement analysis suggests that no single
approach by itself can fully implement a trustless multi-
domain cooperative defense scenario. Each approach has
disadvantages concerning security or practicability and none
of the approaches are able to tackle the problem of verifying
the authenticity of the network flows.

REFERENCES

[1] Z. Bozakov and P. Papadimitriou, “Autoslice: Automated
and Scalable Slicing for Software-Defined Networks,” in
Proceedings of the 2012 ACM conference on CoNEXT student
workshop. ACM, 2012, pp. 3–4.

[2] V. Costan and S. Devadas, “Intel SGX Explained.” IACR
Cryptology ePrint Archive, 2016.

[3] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerRe-
view: Practical Accountability for Distributed Systems,” ACM
SIGOPS operating systems review, vol. 41, no. 6, pp. 175–
188, 2007.

[4] NFV White Paper, “Network Functions Virtualisation: An In-
troduction, Benefits, Enablers, Challenges & Call for Action.
Issue 1,” Oct. 2012.

[5] H. Nguyen, B. Acharya, R. Ivanov, A. Haeberlen, L. T.
Phan, O. Sokolsky, J. Walker, J. Weimer, W. Hanson, and
I. Lee, “Cloud-based secure logger for medical devices,” in
Connected Health: Applications, Systems and Engineering
Technologies (CHASE), 2016 IEEE First International Con-
ference on. IEEE, 2016, pp. 89–94.

[6] Nokia, “Trusted NFV Systems,” Mar. 2018. [Online].
Available: https://onestore.nokia.com/asset/201400/Nokia
Trusted NFV Systems White Paper EN.pdf

[7] R. Perez, R. Sailer, L. van Doorn et al., “vTPM: Virtualizing
the Trusted Platform Module,” in Proc. 15th Conf. on USENIX
Security Symposium, 2006, pp. 305–320.

[8] B. Rashidi and C. Fung, “CoFence: A Collaborative DDoS
Defence Using Network Function Virtualization,” in 12th In-
ternational Conference on Network and Service Management
(CNSM 16), October 2016.

[9] S. Ravidas, S. Lal, I. Oliver, and L. Hippelainen, “Incorporat-
ing Trust in NFV: Addressing the Challenges,” in Innovations
in Clouds, Internet and Networks (ICIN), 2017 20th Confer-
ence on. IEEE, 2017, pp. 87–91.

[10] B. Schneier and J. Kelsey, “Cryptographic Support for Secure
Logs on Untrusted Machines,” in USENIX Security Sympo-
sium, vol. 98, 1998, pp. 53–62.

[11] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV:
Securing NFV states by using SGX,” in Proceedings of the
2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. ACM,
2016, pp. 45–48.

[12] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense
Mechanisms Against Distributed Denial of Service (DDoS)
Flooding Attacks,” IEEE Communications Surveys Tutorials,
vol. 15, no. 4, pp. pp. 2046–2069, Fourth 2013.

[13] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network Slicing as
a Service: Enabling Enterprises’ own Software-Defined Cel-
lular Networks,” IEEE Communications Magazine, vol. 54,
no. 7, pp. 146–153, 2016.

78 APPENDIX A. IEEE CYBERSCITECH 2018 WIP PAPER

Appendix B

Contents of the CD

The contents of the CD are structured as follows:

Abstract contains the abstract in English.

BloSS contains the complete BloSS source code.

Evaluation contains raw evaluation data for the evaluations outlined in Chapter 6 stored
as Microsoft Excel spreadsheets and graphs in PDF format. Evaluation/Helper
contains the cpu logger.py Python script which was used to gather the CPU usage
data used for the evaluations in Section 6.3.

Installation Guides contains detailed installation guides to set up a private IPFS net-
work, InfluxDB, Grafana, Ethereum Netstats as well as the solidity compiler on
ARM.

Intermediate Presentation.pdf contains the slides for the intermediate presentation.

Masterthesis.pdf contains the complete thesis report.

LaTeX contains the complete thesis report LATEX source files including all figures in
PDF format

Zusfsg contains the abstract in German.

79

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Thesis Outline

	Related Work
	Centralized DDoS Defense Mechanisms
	Source-Based Mechanisms
	DDoS netWork Attack Recognition and Defense (D-WARD)
	MUlti-Level Tree for Online Packet Statistics (MULTOPS)
	Destination-Based Mechanisms
	IP Traceback
	Analyzing Management Information Base (MIB)

	Decentralized DDoS Defense Mechanisms
	IETF DOTS
	CoFence
	Bohatei
	DefCOM

	Systems Overview

	Approaches Toward a Proof-of-Mitigation
	Marketplace of VNFs for Mitigation
	Trusted Computing
	Secure logging
	Network Slicing
	Discussion
	NFV vs. Network Slicing
	Trusted Computing vs. Secure Logging
	Combining Approaches
	Cloud Service Models

	Design
	Architecture
	Security Considerations
	Defense Scenario
	Attack Information

	Implementation
	Demonstration System
	Networking
	Single Board Computers

	Ethereum Blockchain
	Signaling Attacks

	Configuration
	Stalk
	Simple Router
	Controller

	BloSS
	Pollen
	PollenBlockchain
	PollenDatastore and PollenEncryption

	Evaluation
	Evaluation Setup
	Blocking Delay
	CPU Load
	Collection
	CPU Usage Graphs
	Statistical Metrics

	Discussion
	Evaluation Results
	Blocking Delay Results
	CPU Usage Results

	Competition

	Final Considerations
	Future Work

	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Toward Mitigation-as-a-Service in Cooperative Network Defenses
	Contents of the CD

