Development of a Dynamic Web Application

The Swiss Feed Database

Bachelor’s Thesis in Informatics
submitted by
Valentin Weiss
Student ID Number 15-707-870

Completed at the
Department of Informatics
of the University of Zurich

Prof. Dr. M. Bohlen

Supervisors: Georgios Garmpis & Prof. Dr. M. Béhlen
Submission Date: 11.06.2018

Acknowledgments

| hereby would like to thank Prof. Dr. Michael BShlen for his excellent guidance through the entire work
and development process. His inputs, explanations to complex problems and useful feedback helped
me tremendously in realizing my ideas and the specific requirements of the application.

| would also like to thank Georgios Garmpis for introducing me to this project and developing and dis-
cussing ideas on how to address the challenges of this application.

Another special thanks to Annelies Bracher for her useful feedback and input from the user’s perspec-
tive.

Abstract

This thesis explores data summarization techniques for the feed data of the Swiss Feed Database.
It proposes and evaluates solutions to reduce the client-side load by reducing the amount of tuples
passed to the client. Most of the work is shifted away from the client to the database layer following
the thin-client paradigm with the aim of creating a stable and scalable solution. The summarization
techniques were optimized to best suit the data visualization at hand. This includes techniques such
as providing only a partial view of the data, aggregating the data set or leveraging properties of the
spatial distribution of data points to abstract groups of data points into geometric shapes.

Zusammenfassung

Diese Arbeit untersucht Datenzusammenfassungstechniken fir die Futterdaten der Schweizer Futter-
mitteldatenbank. Es werden Lésungen zur Reduzierung der Client-seitigen Belastung vorgeschlagen
und bewertet indem die Anzahl Tupel, die der Client verarbeiten muss, reduziert wird. Dem Thin-
Client-Prinzip folgend, wird der grésste Teil der Arbeit vom Client auf die Datenbankebene verlagert
mit dem Ziel, eine stabile und skalierbare Lésung zu schaffen. Die Zusammenfassungstechniken wur-
den fiur die jeweilige Datenvisualisierung optimiert. Dazu gehdéren Techniken wie die Bereitstellung
einer Teilansicht der Daten, die Aggregation des Datensatzes oder die Nutzung der Eigenschaften der
raumlichen Verteilung von Datenpunkten um Gruppen von Datenpunkten zu geometrischen Formen
zu abstrahieren.

Contents

1 Introduction
1.1 Challenges

1.1.1 RequestingData.
1.2 Problem Definition e

2 Application Architecture

2.1 Overview .

2.2 Filtering & Query Building
2.21 TheFeedBase StarSchema
2.2.2 Building Filter Conditions

2.3 Authentication

3 Table Pagination
3.1 Server-Side Table Pagination
3.2 Server-Side Sorting
3.3 Derived Nutrients Calculation
3.4 Range Search

3.5 Evaluation

4 Map Visualization

41 Goal . ..

4.2 Cantonand Location View
421 CantonShapes
422 LocationMarkers

43 RadiusSearch
4.3.1 EventPropagation.

4.4 Sample Density and Nutrient Regression
441 ScalingtheHeatMap

5 Scatter Chart Optimization

51 Goal . ..

5.2 PostGIS Clusteringand Grouping o
5.2.1 Proximity Clustering
5.2.2 Convexvs.Concave Hull,
5.2.3 Query Implementation: Cluster and normalize the points and map back to actual

pointvalues

5.3 Clockwise Orderingof Points

5.4 Evaluation

6 Correlated Nutrients Chart

6.1 Query ..
6.2 Evaluation

7 Box Plot
7.1 Query ..
7.2 Evaluation

8 Nutrient Statistics
8.1 Indicative Measurements e e e e e

8.2 Query ..
8.3 Evaluation

9 Conclusion

A API Endpoints

Wwww

0N O B~BS

10
11
13
13

15
15
16
16
17
18
18
19
20

22
23
23
23
24

25
30
32

33
34
34

34
35
37

37
38
38
39

40

M

B Technical Manual
B.1 General Setup . . .
B.2 Setup for production

1 Introduction

The Swiss Feed Database (TDFB) is a web application where nutrient measurements of different feeds
are stored. The stored data can be filtered and visualized using different visualizations such as a table,
different types of charts and a map.

The underlying database is continuously updated with new measurements by Agroscope, the Swiss
Center for Agricultural Research.

1.1 Challenges

The database is updated regularly with new measurements resulting in ever-growing relations. The
current application executes one query for every request made by the client and returns the result set
to the client. The result set is then used to fill a table, a map and several charts with data. There are
certain queries which return well over 10’000 tuples and can not be handled by a browser anymore.
These queries cause a browser hang or even cause the browser to crash. This case is currently
handled by retrieving a random selection and put a limit on the amount of tuples that can be retrieved
from the database.

This approach comes with limitations. As the amount of tuples matching a given query grows, the
limited result set is not guaranteed to be representative for the whole result set. In fact it will become
more unlikely to be representative with an ever-growing amount of measurement data. Furthermore
there is no way to guarantee that a given limit (e.g., maximal 2000 tuples) on a result set will not cause a
client to hang or even crash. This work addresses this issue by reducing the amount of tuples retrieved
from the database using dedicated queries for each visualization with the aim of reducing the tuple
count passed to the client. Clients can be desktop or mobile devices with different specifications and
processing power. A desktop machine might be able to handle a given result set while a mobile device
might crash. Scalability is thus an issue which is not well addressed in the current implementation.

1.1.1 Requesting Data

In order to get a better understanding of performance in terms of time when requesting data, a few test
queries to retrieve nutrient measurements were run in a local development environment with a basic
web server setup to return result tuples in JSON format. The tuples were used by the client to render
an HTML table where each tuple represents a row.

tdb tserver tclient Ntuples
1.21s 1.64s 12.1s 5000
4.1s 2.39s no response | 10000
5.6s 12.23s no response | 20000
6.5s 58.48s no response | 30000
7.2s | noresponse | noresponse | 40000

Table 1: Database and server response times

The database time (t4) was measured using pgAdmin 3 while the server time (tserver) denotes the
time needed to return a response by the local web server. The client (browser) stops responding
between 5000 - 10’000 tuples. At around 30’000 - 40’000 tuples the load time of the server becomes
indefinitely long. An interesting observation comes from the comparison of database and server time.
The database has no problems fetching up to 40’000 tuples. The web server, however, shows a huge
performance drop from 20’000 to 30’000 returned tuples.

1.2 Problem Definition

In the current version the user selects filtering criteria and the results are fetched from the server in
one HTTP request/response round trip. The result set returned to the client is then used to render all
visualizations at the same time. The benefit of this approach is that the server is only queried once
per user-defined query search. The downside of this approach, however, shows when a query to the
server returns a huge number of tuples. In order to prevent the browser from crashing or becoming
unresponsive a limit needs to be applied. The full dataset matching a query is never considered if the

result is too large. At the time of this writing, the amount of measurements stored in the database are
about to surpass 2 Million tuples. The client receives an unsummarized representation of the data and
needs to do calculations in client-side JavaScript. This adds additional workload to the client who is
already busy parsing JSON objects.

The chosen approach for the new implementation is to have separate queries for each visualization
and summarize and aggregate the result as much as possible on the database level. The aim of
this approach is to create lightweight JSON responses which can be easily handled by a client. This
approach also allows to create summarized representations of the same underlying result set optimized
for a given visualization. The approach shifts a lot of work away from the client to the database which
is optimized for handling large amounts of data.

The goals for this version thus are:

1. Data Retrieval: Never retrieve more tuples than can be handled by the client (a few thousand at
most). If a query returns a larger result set, then either only a partial view of the entire result set
is provided to the client or further summarization must be done at the database level to reduce
the tuple count.

2. Aggregation: Aggregate and reduce the data without distorting the original underlying dataset
to create lightweight JSON responses from the server. The aggregated dataset must be repre-
sentative for the original.

3. Data Preparation: Ideally, the client should not be handling any data formatting with procedural
code. The client should optimally only have to deal with fetching and visualizing the data. The
data should come pre-formatted from the server for the visualization at hand. The application
design should thus adhere to the thin-client paradigm where the server-side has to do most of
the work.

2 Application Architecture

The application is built using JavaScript to implement both front- and back-end logic. On the client side
AngularJS v1.6.7 is used to dynamically manipulate and update the HTML. The server side implemen-
tation is using Node.js, a JavaScript runtime built on top of Chrome’s V8 JavaScript engine written in
C++[1].

2.1 Overview

The AngularJS framework works by binding “controllers” to HTML nodes in the DOM. Once a controller
is bound to a DOM element, all children elements can be manipulated dynamically by JavaScript
defined in the associated controller logic. A controller is essentially a class definition bound directly
to the DOM [2].

The TFDB front-end leverages this functionality by dividing the HTML DOM into several controllers.
Fetching and updating the view for different parts of the HTML is thus handled by different controller
classes. A short description of what each individual controller is responsible for is listed below:

¢ FilterController: Dynamically updates the filter parameters based on user input. Notifies all
other controllers when the user clicks the search button.

e TopQueriesController: When the user clicks on a saved query, the saved query parameters are
fetched from the database and passed to the FilterController.

e TableController: Renders and updates the table based on given filter parameters.

e ChartController: Handles the logic for all chart visualizations such as Scatter Chart, Box Plot
and Violin Plot.

e MapController: Fetches and parses GeoJSON returned by the server and draws the result to
Google Maps.

<html ng—app="feedbase">
<body>
<div ng—controller="FilterController">

<div ng—controller="TopQueries">

<!l—— List of Top Queries —>
</div>
<div ng—controller="ChartController">
<!l—— Chart markup ——>
</div>
<div ng—controller="MapController">
<!—— GoogleMaps markup ——>
</div>
<div ng—controller="TableController">
<!l—— Table markup ——->
</div>
</div>
</body>
</html>

Figure 1: AngulardS HTML controller Hierarchy Example.

In addition to that, a “FilterParams” object is used to store which feeds, nutrients years and geographical
criteria a user has selected. This object is stored on the client and is used to build dynamic filter
conditions on the server. More on this topic is described in section 2.2.2.

Client
FilterParams
L)
Services :
Controller
FilterController .
- msﬂékﬂes_u\ts
displayRésuls displayResulls s
P Selected Query
w ; Cw
TableController TopQueriesController ChartController MapController
x
Server i
API Endpoints
v

/apiftable/paginate P /oint
/api/map/points

fapiftable/nutrientStatistics fapifcharts/scatterPoints
fapi/excel/download /apifcharts/boxPlot /api/map/cantons
{apilcharts/violinPlot fapifmap/regression
% {apifcharts/hull fapi/map/density

v

e

Database

Figure 2: FeedBase Application Overview

The server-side API endpoints are used to serve any incoming HTTP requests made by the client. A
detailed description of the endpoints can be found in appendix A.

2.2 Filtering & Query Building

The core of the application’s functionality lies in allowing users to filter measurements based on feed
type, nutrient, time and geographical conditions. The aim of filtering is to find all relevant facts that
match the given set of conditions. A fact represents a measured quantity that can be associated with a
feed, a time, a nutrient, an origin, a sample or an analyses method.

2.2.1 The FeedBase Star Schema

Information about a fact is stored in a fact table. The fact table contains the actual measurement value
and multiple foreign keys pointing to tuples in relations that contain the associated information used in
filters.

d_time
(15’000 tuples)
time_key
t_day
d_origin Lyear
(3400 tuples) goment d_nutrient_analyses
origin_key (60 tuples)
te .
postal_code nutrient_analyses_key
city name_en
altitude_class name_de
canton name_fr
1 priority
1 measured on
measured with
N
fact_table_clean
(2°000°000 tuples)
measure_pkey
lims_number
quantity
id_feed_fkey
id_nutrient_fkey
id_origin_fkey
id_time_fkey
) represents measured from
d_nutrient d_feed
(380 tuples) (1400 tuples)
nutrient_key feed_key
abbreviation_en name_en
description_en source
unit_measure_en category
specie_id in_catalog

Figure 3: ER-Diagram of the relations involved in filtering with approximate tuple count

As depicted in figure 20, this results in a star schema with with one fact table and multiple dimension
tables. The user can apply filters to all dimensions when querying the database. Thus, five consecutive
joins on the fact table to all dimensions is required to get a base relation R on which a set of filter
conditions C' can be applied. This looks as follows:

R < fact_table ™q_feed fhey=feed_key d_feed
Nid_nutrient_fkey:nutrient_key d_nUtrient
>Xid_origin_fkey=origin_key d_OTZ'gZ.TL
>Xid_time_fkey=time_key d_tie
Midﬁanalysesifkey:nutrientianalysesikey d_nUtrient_analyseS

filtered < oc(R)

The filtered relation needs to be computed for every query and serves as a base to apply further
aggregations, partitions and joins with other relations as needed by the visualization at hand.

2.2.2 Building Filter Conditions

The filter conditions C mentioned in 2.2.1 are derived from the tree selection checkboxes in the filter
menu on the client. Each checkbox has an associated value (e.g., feed id, nutrient id, year, canton etc.)
which is directly used in the WHERE statement of the resulting SQL query strings.

On the client side, these filter conditions are represented in a JSON object holding information about
the user’s selected checkboxes. This object represents an abstract description of the filter conditions
C and is stored on the client-side. It is used to keep track of user input and is passed to the server on
every request. The server builds the final WHERE clause used in all queries by ANDing the selected
conditions. Using this implementation, the application can thus answer conjunctive queries where C'is
a set of conditions of the form C' = C; A Cs...C,.

{
language: ’‘de’,
loadlevel: 0,
params: {
agrideaFeeds: [1325],
altitudes: ['> 1000°],
cantons: [’Graubiinden’],
classFeeds: [],
dataType: 'td’,
fresh: false,
nutrients: [],
selectedNutrient: null,
selectedNutrients: [
180
144
158
163
160
159],
selectedAnalyses: [],
nutrientsDerived: [],
raw: false,
seasons: [],
unclassFeeds: [],
years: [2006],
tablePage: 0,
radius: 0,
mapZoom: 7,
mapNEBoundLat: 46.8448,
mapNEBoundLng: 9.8677,
mapSWBoundLat: 46.3731,
mapSWBoundLng: 9.1261,
location: null,
selectedLocationlLat: 46.8448,
selectedLocationLng: 9.8677

SELECT x*
FROM filteredRelation
Selected Feeds and Nutrients
WHERE (id_feed_fkey IN (1325))
AND (id_nutrient_fkey IN (180, 144, 158,
163, 160, 159))
Analyses Filter
AND id_nutrient_analyses_fkey IN (...)
— Geo Filter
AND d_origin.canton IN ('Graubiinden’)
Altitude Filter
AND d_origin.altitude_class IN (’>,1000")
Time Filter
AND ((d_time.moment = 1 OR d_time.moment = 2)
AND d_time.t_year IN (2006))
Map Bounds
AND (
d_origin. latitude <= 46.8448
d_origin.longitude <= 9.8677
d_origin. latitude >= 46.3731
d_origin.longitude >= 9.1261
)
point distance
AND
(ST_Distance (
ST_MakePoint(9.8677,
46.8448)::geography ,
ST_MakePoint(d_origin.longitude ,
d_origin.latitude)::geography
) < 20)

Figure 4: JSON Filter Object to SQL Mapping

This design works well for the specific use-case of building a dynamic WHERE clause based on user
input whose conditions are conjunctive across the dimension tables and disjunctive for a selection
within a dimension table. The JSON object can easily be extended with more key value pairs if new
filter conditions are implemented. However, this mapping only works for an instance of the filtered
relation and the user is restricted to using the filter conditions that have a mapping to an SQL Where
clause condition.

This functionality is provided by a ‘WhereStatement’ class that is implemented on the server-side. This
class simply parses all keys from the given JSON object and builds an SQL query string that can be
used in the WHERE clause of any query with the joined filtered relation in the FROM clause.

The available filter options a user can select are organized in tree structures to denote categories
and subcategories of feed types and nutrients in hierarchical order. The tree structures are stored in

the vr_classified_feeds_tree and vs_classified_feeds_tree relations for classified feeds and in the
vs_classi fied_nutrients relation for classified nutrients. These relations have a reflexive foreign key
attribute to describe the tree structure.

vs_classified_feeds_tree

feed_group_id | parent_feed_group_id feed_group_en
1 NULL Raw material
2 1 Cereal grains
3 1 Cereal co-products
4 3 Milling

Table 2: Reflexive relation tree structure for classified feeds

2.3 Authentication

Authentication is implemented using JSON web tokens (JWT). A JWT is a token containing an encoded
JSON object as payload. A decoded token’s json payload has the following contents:

{
exp: 1529053338,

iat: 1528448538,
userlevel: 2,
username: ’'someuser’

}

The exp key denotes date of expiry of the token. In this implementation the token expires after 7 days
requiring the user to login again. The iat key denotes the date of issuance of the token. The userlevel
and username key come from the users table where the user level is used for authorization. A user
level smaller than or equal to 3 are regular users which have different privileges. A user level above 3
are admin users. This information is stored as a cookie in the user’s browser and passed to the server
with every request. An encoded representation of the above payload as stored in the cookie looks as
follows:

eyJhbGciOiJSUzI1NilsInR5cCI6lkpXVCJ9 . eydleHAIOJE1MjkwNTMzMzgsImlhdCI6 . ..

Note that a JWT payload is not encrypted but only encoded meaning that the JSON contained in the
payload can be decoded by anyone. It should thus not contain sensible information. The tokens en-
coded payload representation however, is signed by a private/public RSA256 keypair stored on the
server. This signature is checked by the server on incoming cookies and ensures that third-parties
cannot login with a fake token payload as the signature would be invalid.

Authorization is implemented as a middleware function. A middleware function is a function that can be
executed before or after a request is processed. In this use case, it is executed before the request is
processed. The implementation provides a checkU ser Level(requiredLevel) middleware which veri-
fies the token and checks that the user level is at least the required level specified. This function can
be included in a route definition to make certain actions only available the certain users. Below is an
example from the route handling excel export of data.

router.post(’/download’,
// Check if user level >= 8, reject otherwise
local.checkUserLevel (8),
/] If user is authorized, execute this function
function(req, res, next) {
// actual download logic

}

If at some point in the future any of these authorization checks must be adjusted to another user level
it is a simple as adjusting the argument of the checkU ser Level(required Level) function.

3 Table Pagination

The approach in the current implementation was to pass a random selection of tuples from the filtered
base relation (from section 2.2.1) to the client and limit the result set size given a threshold value.
Queries whose result size were above the threshold value were thus limited and some tuples were not
considered. The pagination of the resulting table was then done on the client-side.

Client-side table pagination i.e., fetching all results and creating the paginated table on the client works
well for small result sets. However it is not a scalable approach and does not guarantee that the fetched
results are representative.

3.1 Server-Side Table Pagination

The chosen approach to address the limitations of client-side table pagination is to push the pagination
logic to the server. The client thus fetches only one table page at once. SQL provides LIMIT and
OFFSET keywords which allow to easily implement this logic.

In this use-case, however, the filtered relation represents individual nutrient values belonging to a
particular measurement. The LIMS numbers, representing individual feed measurements, are thus in
a vertical representation. In the final table visualization a LIMS number may only be listed once and
the individual nutrient measurements (avg_quantity attributes) need to be horizontalized.

lims_number | id | an_id | avg_quantity day

17-01763-001 | 144 7 899 2017-01-24
17-01763-001 | 163 2 201 2017-01-24
17-01763-001 | 158 2 101 2017-01-24
17-01510-002 | 158 2 67 2017-01-22
17-01510-002 | 163 2 82 2017-01-22
17-01510-002 | 144 7 933 2017-01-22

Table 3: Sample instance of filtered relation

LIMS-Nr Datum PLZ Kanton Futtermittel OSgkgTS RAgkgTS RA g/kg TS RP g/kg TS RPgkg TS
berechnet NIRS Thermogravimetrie Dumas 6.25 NIRS
(LECO 105°, 550°) (Verbrennung)

17-01763-001 2017-1-24 2747 Bern Hay 2.ff cut 899 101 101 201 201

17-01510-002 2017-1-22 6318 Zug Hay 1. cut 933 67 67 82 82

Figure 5: Final table representation with horizontalized average quantities

The relation instance shown in table 3 must thus be mapped to the table representation in figure 5. The
id attributes, representing a nutrient id, must thus be mapped to the correct column of the final table
representation. As one can see from the relation instance in table 3, simple LIMIT and and OFFSET
commands cannot be applied to this representation. Suppose a limit of 5 were applied. All quantities
for LIMS number “17-01763-001" are kept but some quantities belonging to LIMS number “17-01510-
002” are cut off.

The “last row” of the final table representation might thus be missing nutrient values. A simple approach
to address this problem might be to count the number of nutrients a user has selected and set the limit
accordingly. Suppose the user has selected n nutrients. If five rows should be displayed in the client, a
limit of 5 x n. could be applied. This approach, however, assumes that each LIMS number has an entry
in the fact table for every nutrient. This is obviously not the case and the risk to cut off measurements
remains.

A better approach is to “horizontalize” the filtered relation such that the lims_number attribute is
unique. A group by LIMS number must thus be achieved. The filtered relation has attribute values
which stay constant accross tuples with the same LIMS number (e.g., day) and has other attributes
with varying attribute values (eg. id, an_id, avg_quantity. In order not to loose the information of
the varying attributes they are aggregated into arrays before grouping by LIMS number. The query to
achieve this uses PostgreSQLs array_agg():

SELECT lims_number,

array_agg(id) AS ids,

array_agg(an_id) AS an_ids,

array_agg (avg_quantity) AS avg_quantities
day

FROM filtered
GROUP BY lims_number, day

Figure 6: Array aggregation of attributes varying accross LIMS numbers

This results in the following representation:

lims_number ids[] an_ids[] | avg_quantities[] day
17-01763-001 | [144,163,158] [7,2,2] [899,201,101] 2017-01-24
17-01510-002 | [158,163,144] [2,2,7] [67,82,933] 2017-01-22

Table 4: Sample instance of a “horizontalized” filtered relation

The representation from table 4 allows to apply limit and offsets without losing information. The map-
ping from quantities to nutrients is also straightforward and can be done using the array indices.

3.2 Server-Side Sorting

The table on the client should be sortable i.e., when a user clicks on a column header the table should
be sorted in ascending or descending order based on the selected column. With the horizontalized
relation shown in section 3.1 this is not an easy task. If the user wants to sort by LIMS number or day
or any other attribute staying constant accross tuples with the same LIMS number (see table 4) then
this can be easily done with a simple ORDER BY.

If the user decides to sort by a nutrient column, the sorting task becomes more complex. Consider the
relations shown in table 3 and table 4. The d attributes represent the nutrient. If the user wants to
sort by the nutrient with an id of 144 in descending order, the final representation of the horizontalized
relation should be the following:

lims_number ids|[] an_ids[] | avg_quantities|] day
17-01510-002 | [158,163,144] | [2,2,7] [67,82,933] 2017-01-22
17-01763-001 | [144,163,158] | [7,2,2] [899,201,101] 2017-01-24

Table 5: “Horizontalized” filtered relation ordered by nutrient id 144 in descending order.

The LIMS number “17-01510-002” should be the top entry because the quantity 933 is the maximum
value for nutrient id 144. The order of the array attributes does not matter and can be arbitrary. The
array aggregated representation is not suited for ordering because the ids[] and avg_quantities|]
attributes are not atomic.

An order by nutrient essentially means that an order for a subset of the relation shown in table 3 must
be established. In the final result relation, the lims_number attribute must be in the correct order given
an order by over the avg_quantity attributes of a specific ¢d - an_id combination. The ordering of the
lims_numbers for a subset can be expressed as follows:

10

WITH orderedByNutrient AS (
SELECT
ROW _NUVBER() OVER (ORDER BY AVG(quantity) DESC),
lims_number AS lims
FROM filtered
WHERE

AND id_feed_fkey = 2
AND id_nutrient_fkey = 163
AND id_nutrient_analyses_fkey = 2

Figure 7: CTE representing sub query to order by a given nutrient

This CTE assigns a row_number to all relevant LIMS numbers where row_number is the final order
for all LIMS numbers in the filtered relation. In a next step, a join with the filtered relation is required:

SELECT lims_number,

array_agg(id) AS ids,

array_agg(an_id) AS an_ids,

array_agg (avg_quantity) AS avg_quantities,

season,

canton,

postal_code,

day

FROM filtered

LEFT JOIN orderedByNutrient ON lims_number = orderedByNutrient.lims
GROUP BY lims_number, season, canton, postal_code, day, row_number
ORDER BY row_number

Figure 8: Left join with CTE ordered by nutrient value to create final ordering

A left join is used because not all LIMS numbers have measurements for all nutrient values and all
tuples matching a given filtered relation instance should be kept in the ordered representation.

3.3 Derived Nutrients Calculation

The table displaying reference data requires some nutrient values to be derived from other nutrient
values of the same feed based on a formula. These formulas are stored in the t_ formula_feed and
t_formula relation. In a first step, the formulas must thus be retrieved:

SELECT

id_feed AS feed_key,

nutrient_fkey AS nutrient_key,

regexp_replace (expanded_formula_eval, ’coalesce\(.[*+x*/()—]1{1,30}",'(’,’g’
AS expanded_formula_eval,

involved_nutrients_ids ,

correct

FROM

t formula_feed

JOIN t formula ON t formula_feed.id formula = t_formula.id
JOIN d_feed ON d_feed.feed_key = t _formula_feed.id_feed

Figure 9: Retrieving the formulas for derived nutrient calculation

11

This relation then contains the formula with placeholders whose values must be replaced by the nutrient
value of the given nutrient id.

feed_key | nutrient_key expanded_formula_eval involved_nutrients_ids | correct
756 120 $_nv[163]* $_nv[121] 163,121 t
756 122 $_nv[163] * $_nv[123] 163,123 t
756 176 $ nv[163] * $_nv[177] 163,177 t
756 1 (0.9559 * $ nv[159]) + 24.461 159 t

Table 6: Formulas with their involved nutrients.

The values of the non-derived nutrients are then fetched from the joined summary_data, d_nutrient
and d_ feed relation.

SELECT
nid ,
CASE WHEN raw_value > 1 THEN
rtrim (ROUND(raw_value ::numeric, 3)::text, ’0’)::numeric
ELSE
rtrim (ROUND(raw_value ::numeric, 5)::text, ’'0’)::numeric
END AS raw_value,
feedkey,
fname
FROM (
SELECT
d_nutrient.nutrient_key AS nid,
summary_data.raw_value AS raw_value,
d_feed.feed_key AS feedkey,
d_feed.name_de AS fname
FROM
summary_data,
d_nutrient,
d feed

Figure 10: Retrieving non-derived nutrients

The nutrient values must now be mapped to the formulas such that the derived values can be calcu-
lated. This is done by creating an equivalent representation of the relation containing the formulas and
of the relation containing actual nutrient values. A JSON object is built for each nutrient of the form:

{

"involved_nutrients ": [
{
"nutrient_id" : 159, "raw_value" : 120.894
}
], "formula" : "(0.9559 x $_nv[159]) + 24.461"

}
Figure 11: JSON object containing a derived nutrient

This JSON representation is used for both derived and non-derived nutrients. The involved nutrients
array has as many objects as there are placeholders in the formula. If the nutrient is not a derived
nutrient, the formula key will be set to NULL and the involved nutrients array will contain one element
(the value to be taken without any calculation). The SQL to build this JSON representation is depicted
below:

12

SELECT

SELECT
feed_key , feedkey
nutrient_key , nid ’

json_build_object(

“involved_nutrients’, json_agg(

json_build_object(
‘nutrient_id’,involved_id,
‘raw_value’, raw_value

)

json_build_object(

“involved_nutrients’, json_agg(

json_build_object(
‘nutrient_id’,nid,
‘raw_value’, raw_value

)

"formula’, NULL) as nutrient

)!
“formula’,
expanded_formula_eval)

Figure 12: Building an identical JSON representation for both actual and derived nutrients

In a last step the union of the two relations is built and grouped by individual feed. The JSON objects
representing the nutrients are folded into an array.

SELECT feed_key, fname, json_agg(
nutrient

) as nutrients

FROM (

SELECT x FROM formulasfolded

UNION ALL

SELECT « FROM rowsfolded

) as allNutrients

GROUP BY feed_key, fname

Figure 13: Uniting actual and derived nutrients

This leads to the following final representation:

feed_key fname nutrients
756 Hafer, Koérner (lat. Avena sativa) [{"involved_nutrients": ...}]
757 Hafer, Kdérner teilweise entspelzt (lat. Avena sativa) | [{"involved_nutrients": ...}]

Table 7: Final Representation for the reference data table

The nutrients attribute in table 7 now contains all derived and non-derived nutrients in an array of JSON
objects. If an object has a formula, the server evaluates the formula before passing the nutrients to the
client by replacing the placeholders from the representation seen in figure 11.

3.4 Range Search

The range search feature allows users to set a minimum and/or maximum value for each column in the
table. A range can be defined e.g., by typing “25-30” to only get values within the range 25 < value <
30. A minimum value without an upper bound can be set by e.g., typing “25” or “25-” which translates
to 25 < walue and a maximum value without a lower bound can be set by typing e.g., “-30” which
translates to value < 30.

3.5 Evaluation

The pagination feature simply requires to fold some of the filtered relation’s attributes into arrays. As
can be seen from the query plan, this does not cause any significant additional cost:

13

Limit (cost=49734.44..49758.69 rows=100 width=179)
—> GroupAggregate (cost=49734.44..49943.05 rows=860 width=179)
Group Key: rows.day,
rows.lims_number,
rows.season,
rows.canton,
rows. postal_code
—> Sort (cost=49734.44..49755.94 rows=8603 width=99)
Sort Key: rows.day DESC,
rows.lims_number,
rows.season,
rows.canton,
rows . postal_code
—> Subquery Scan on rows
(cost=48699.04..49172.20 rows=8603 width=99)
—> GroupAggregate
(cost=48699.04..49086.17 rows=8603 width=175)

Figure 14: Table Pagination Query Plan

The last group aggregate at the bottom shows the cost for joining the fact table with all dimension
tables. It almost makes up the total query cost.

Sorting by nutrient, on the other hand, requires the filtered relation to be accessed twice. Once for
fetching all tuples matching the filter conditions and once to query and enumerate a subset of the
filtered relation matching a given nutrient. It also makes another join necessary.

Limit (cost=76241.29..76243.42 rows=50 width=187)
CTE orderedbynutrient
—> WindowAgg (cost=26438.58..26439.90 rows=75 width=27)
—> GroupAggregate (cost=49801.40..50167.02 rows=8603 width=187)
Group Key: orderedbynutrient.row_number,
fact_table_clean.lims_number,

—> Sort (cost=49801.40..49822.90 rows=8603 width=107)
Sort Key: orderedbynutrient.row_number, (...)
—> Hash Left Join
(cost=48701.48..49239.16 rows=8603 width=107)

Figure 15: Table Ordering Query Plan

The query plan shows that building accessing filtered relation twice causes an increase in total query
cost whereas the hash left join used to build the final ordered relation does no add any significant
increase compared to the query plan without ordering.

Figure 16 shows the performance of table ordering and table pagination over an increasing amount of
tuples. The result size reflects the number of tuples in the given instance of the filtered relation before
array aggregation.

14

m
©
C
3
g 4 1
(0]
£
|_
2, |

| | | | |
0 50,000 1-.105 1.5-10° 2-10° 2.5-10°
Result Size

Figure 16: Performance of table ordering by nutrient (blue) and table pagination (red) with growing
result size

4 Map Visualization

The map is used to visualize facts with a geo-reference. The user can toggle between showing map
markers with the origin of a fact, a heatmap overlay denoting sample density and a heatmap showing
the regression of a nutrient value.

41 Goal

The current implementation of the map simply passes all tuples from the filtered relation (section
2.2.1) to Google Maps which then displays the latitude and longitude attribute as markers. This works
fine for a few tuples but, as one might imagine, is not scalable as the amount of tuples grow. A location
on the map might also reference many facts in a given query result. An example of this is shown in the
relation below:

lims_number id | an_id latitude longitude feedname
05-15557188233176 | 163 2 47.34872400 | 8.11131600 Hay 1. cut
05-15557190233177 | 163 2 47.34872400 | 8.11131600 Hay 1. cut
05-15659241290243 | 163 2 46.53933700 | 9.23666500 Hay 1. cut
05-15670379474353 | 163 2 46.52253000 | 6.82771900 Hay 1. cut
05-15670379475353 | 163 2 46.52253000 | 6.82771900 Hay 1. cut
05-15670382478357 | 163 2 46.60115000 | 6.23921000 Hay 1. cut

Table 8: Sample instance of filtered relation with geo-referenced tuples

This relation contains duplicate locations. There are cases in the FeedBase application where a loca-
tion can represent thousands of facts. It does not make sense to serialize all those duplicate locations
to JSON objects to send to the client. A significant amount of result tuples can be reduced by simply
only retrieving distinct locations. As a first optimization the goal is thus to only pass relations of the
following form to the map:

distinct Locations < Ijatitude, iongitude (filtered)

Figure 17: Projection to ensure no location is loaded twice on the map

Another goal in optimizing the location view is to optimize the case when many points are “close” to
each other relative to the current zoom level of the map. The map does not provide a good overview of

15

the geographical distribution of the data when looking at areas densely populated with map markers.

)
AL
Mulhouse
=
1

- R -

Raverisburg \
i Kernopten

m__DSt Anton
am Arlbe

- \scohgl

Intelfaken g -
2 Grindglwald

Parc Ela

o
Lauterbrunnen

St Mur\lz
Bormio

Figure 18: Map densely populated with map markers

The example visualization shown in figure 18 looks cluttered and does not provide a good overview of
where the tuples actually are. It is not easy to tell at this zoom level in canton or region most of the
markers are located.

4.2 Canton and Location View

In order to provide a good overview of the geo-referenced tuples at every zoom level of the map,
the chosen approach is to abstract away the individual location markers and group them together to
shapes. The canton geometries provide good and intuitive shapes to group markers at higher zoom
levels.

4.2.1 Canton Shapes

The commune (Gemeinden) shapes of entire Switzerland were already stored in the database such
that the canton shapes could be derived by creating the union of the commune shapes belonging to
the same canton. Since the union of 2D-shapes in PostGIS is an expensive operation (takes about 6
seconds if run over all communes in Switzerland), a new relation d_cantons was added to the database
storing the result of the union. The SQL used to achieve this is as follows:

CREATE TABLE d_cantons AS

— Derive the table from d_geometry and d_gemeinden
SELECT ST_Union(the_geom), kanton_nr
FROM d_geometry, d_gemeinden WHERE gemnr = gem_nr
AND kanton_nr IS NOT NULL
GROUP BY kanton_nr;
ALTER TABLE d_cantons ADD PRIMARY KEY (kanton_nr);

Figure 19: Building the d_cantons relation

The geometry attributes are 2-dimensional PostGIS polygon geometries describing the shape of each
canton. The resulting d_cantons relation looks as follows:

16

d_cantons

kanton_nr geom kanton_name
1 POLYGON((680285 229552,680258.84 229588 ... Zirich
2 MULTIPOLYGON(((572923 193948,573027 193973,573077 ... Luzern
3 MULTIPOLYGON(((671936.199999999 206195.600000001 ... Bern

Table 9: The d_cantons relation

The kanton_nr attribute is the primary key of the relation and was added to the d_origin relation as a
foreign key such that the canton shapes can quickly be retrieved given a set of origins.

_fact table clean d_origin

measure_pkey Torigin_key

ms_pumoer postal_code _d_cantons
. feed fie L city in canton Sl
1d_teed_tkey N altitude_class incanton » geom
id_nutrient_fkey

. L canton kanton_name
id_origin_fkey kanton_nr

id_time_fkey -

Figure 20: The d_cantons relation in the context of the fact table

The SQL implementation of the cantons query looks as follows:

/+ retrieve all relevant canton numbers x/
WITH origins AS (
SELECT
d_origin.kanton_nr AS kanton_nr,
FROM R
— conditions
GROUP BY d_origin.kanton_nr

)

/% retrieve the canton shapes with a join on kanton_nr x/
SELECT « FROM d_cantons NATURAL JOIN origins

Figure 21: Retrieving canton shapes based on matching origins

The canton geometries are then colored according to the number of tuples that lie within a canton
resulting in the final visualization. As the shapes are quite detailed, the description of each polygon
border is quite large. If a query has a result that matches all 26 cantons in Switzerland, the data
retrieved from the server has a size of about 5.75 MB. This, however, should not cause an issue since
the number of cantons is not expected to grow in the near future.

4.2.2 Location Markers

When the user zooms in on the map, the canton shapes are removed and the location markers are
shown to the user. The number of locations retrieved from the server is reduced to the locations that
are within visible map bounds. When the user shifts the map bounds by dragging the map view, the
map markers are recomputed.

The zoom level at which to switch from the cantons to the locations view is hard-coded meaning that
once the canton overlay is resolved into map markers, there can be arbitrarily many location tuples
needing to be fetched from the database. There is no logic for checking how many tuples would be
fetched and loaded into the map. It is thus still possible that a query returns too many markers. This
could happen when the user decides use the map in fullscreen mode. Depending on the screen size

17

Ya' Y Q Bimsl Y
EQnuch e Hergiswil Q
ilatus
L2
LA | P

hare

Entlebuch o

Burgdorf o
{6] olzmat
Fluhli
Bern Saﬁ
Belp s? tenfluh @ @ Bi K
7 ? Engeloerg
alpirpark n
trisch:
. Lung
Thun z o L~
f Meirn Ly dohils
§ terlal - Whger
Gad
\ m o
Drunengalm & rindelwal Sustenhorn
auterbrunn Schwarzhern a

Adelboden
Lenk im
Simmantal

Grindelwald

Figure 22: The canton shapes overlay (left) and the corresponding map markers when zooming in
(right)

the map bounds can become large such that the database still may fetch too many tuples at once for
the client.

Furthermore, the tuples representing the map markers are grouped by their latitude and longitude
attributes. The latitude and longitude tuples thus need to have exactly matching numerical values.
Even the smallest difference would cause to have multiple tuples appear at a seemingly same location.

4.3 Radius Search

The radius search feature allows the user to draw a circle shape around a map marker on the map to
filter for results contained within the radius of the circle on the map. This feature filters all active visual-
izations (map, table and chart) adding the following condition to the WHERE clause of the respective
queries:

ST_DWithin (
ST_MakePoint(longitude , latitude)::geography,
ST_MakePoint(7.889493000000016, 46.815685)::geography,
19018.93569706483

)
The second argument of ST_DWithin is the center point of the circle and the third argument is the

radius of the circle in meters. ST_DWithin returns true for points contained within the specified radius
and false otherwise.

4.3.1 Event Propagation

The Google Maps API allows to bind to a bounds_changed event which triggers every time the circle
radius is changed by the user. If this event is triggered, the MapController emits a radiusSearch event
to the FilterController which notifies all controllers to fetch data from the server with the new radius filter
condition applied.

18

Client

FilterParams

A
Services '

Controllers

v

FilterController e --------ommoemeooo oo radiusSearch---

A .
displayResults

displayResults displayResults

Selected Query
!

& ! " N

TableController TopQueriesController ChartCantroller MapController

Figure 23: Client-Side Radius Search Event Propagation

This design allows the map to communicate with all active visualizations notifying them that the search
radius changed. It provides a reactive response as the user drags the circle. Every time the user drags
the circle, queries for all active visualizations are executed. Depending on the active visualization
and the number of tuples contained in the specified radius, the response time to a radius search can
become slow. A stress test has been carried out with the scatter chart, the table and the map over the
entire hay dataset. The radius was set to 20 km for the first performance measurment incrementing
until the whole area of Switzerland was contained in the radius. The results of this test are shown in
figure 24.

100 =

80 |- R
m
©

S 60|)
(&)
(0]
22

) 40 |- =
E
'_

20 R

. v/
0 eoee— |
| | | | | |
0 0.5 1 1.5 2 2.5
Result Size -10°

Figure 24: Radius Search response times of Scatter Chart (blue), table (red) and map (green) over a
growing result size

The table and map response times stay relatively low over a growing result size. The scatter chart,
however, takes almost two minutes to respond to the request for a summarization of around 250’000
tuples. The client was able to draw the chart immediately without any noticeable difference between.kgk

4.4 Sample Density and Nutrient Regression

The sample density and nutrient regression visualizations on the map are both visualized using the
Google Maps heatmap feature. They only vary in their underlying query. The sample density query

19

simply computes a per location count for the given filtered result set whereas the nutrient regression
computes a per location quantity average for a given nutrient and analyses method.

SELECT SEFECT
i latitude ,
latitude , .
longitude longitude
o 112124 e dommn 45 avan
FROM filtered 9.9 y q y

FROM filtered

GROUP BY latitude , longitude GROUP BY latitude , longitude

Figure 25: Sample density query (left) and regression query (right)

The heat map is then populated using weighted data points where each point is assigned a weight.
The sample density overlay uses the count attribute as weight factor whereas the regression overlay
uses the quantity attribute normalized to range [0, 1].

var heatMapData = [
{location: new google.maps.LatLng(37.782, —122.447), weight: 0.5},
{location: new google.maps.LatLng(37.782, —122.443), weight: 2},
{location: new google.maps.LatLng(37.782, —122.441), weight: 3}

]

Figure 26: Example definition of an array of weighted locations for the heat map [3]

441 Scaling the Heat Map

The heat map scales each point’s radius according the current zoom level i.e., when zooming out a
points radius is increased. This is due to Google Maps handling each point’s radius relative to the map
viewport by default. This may be desirable in some scenarios but, in this use case, leads to an unclear
picture when zooming out from the map.

This issue can be solved by scaling the point radius according to the number of pixels within one
meter. In order to compute pixels per meter for a given zoom level a mapping from world coordinates,
referencing a point on the map uniquely, to pixel coordinates, referencing specific pixel on the map at
a specific zoom level, is needed [4].

f =t
| | £

| sy " iy B
i & S 2iltich i W
SEITOIEN ™, £, 6.ca)
Liechtens & _ Liechtens
Switzerland 1“"';"" ASwitzerland
] ‘-"'-l__- i] - :I
» ot ¢ il | VA
evaﬁ“f},\fr I ‘f\l: JJ;’ - O E\ $h2 Jf_; ®
F l_x' __'l__.- P o l"x
LS RAilam : i 1

Figure 27: Heat Map with point scaling relative to map viewport (left) vs. pixels-per-meter scaling
(right)

In order to calculate pixels per meter for the current zoom level, the center point of the map relative to
the current viewport and a point 10 kilometers to the right of the center is calculated. These points are
now available as latitude and longitude values.

In a next step, the center and offset point now need to be converted to pixel values. These pixel
values represent the world coordinates. This is done by using a Mercator projection as implemented in

20

Google Maps. This projection is used to map the world’s spherical surface to a cylinder such that it can
be displayed on a flat surface. The Mercator projection for a given latitude and longitude is defined as:

r=A —-,XO
_ 1), Lsin(@)
2 1 —sing

Figure 28: Mercator Projection Formula [5].

where) is the longitude and ¢ is the latitude. \q is the longitude of the central meridian i.e., zero [5].

850911287 798066 65.,0511267798066

85.0511287 798066

T o 9 160

NORTH ELA0RE
AMERICA

if—'i-so 180) :
I x=0 y=0 zoom=0
180 o 0 180

-85.0511287798066

-85 0511287798066 -65,0511267798065

Figure 29: Google Maps Tile System with zoom level 0 (left) and zoom level 1 (right) [4].

Google Maps internally uses a tile system to load parts of the map relevant at the current zoom level.
At zoom level 0 (fully zoomed out), the world coordinates are equal to the pixel coordinates. The origin
of x and y axis is in the upper left. The available pixel space per tile is 256x256 pixels. At zoom level 1,
the map consists of 4 256x256 pixel tiles resulting in a pixel space of 512x512 pixels [4].

For any given zoom level, each x and y pixel thus can be referenced with a value from 0 — 256200 Level
[4]. For a given world coordinate, it's corresponding pixel coordinate can be calculated with [4]:

pizelCoordinate = worldCoordinate x 2°°°mLevel

This property is used to compute the pixel coordinates for the center and offset point defined above.
The absolute difference between those points then returns the number of pixels in one kilometer which
can be used to derive the number of pixels in one meter. In the current heat map implementation each
point is given a radius of 10 km. To make the heat map appear constant, every time the users zooms
in or out on the map the radius is computed using new Radius = 10000 * ptxelsPer Meter. A pseudo-
code example of how radius calculation is implemented using the projection from figure 28 can be in
figure 30.

21

GMAPS_TILE_SIZE = 256
pixelsPerLonDegree = GMAPS_TILE_SIZE / 360
pixelsPerLonRadian = GMAPS_TILE_SIZE / (2 * PI)

Function fromLatLngToPoint(lating: LatLng) : Point

point = new Point(0,0)

origin = new Point(GMAPS_TILE_SIZE / 2,
GMAPS_TILE_SIZE / 2)

point.x = origin.x + latLng.Ing() * pixelsPerLonDegree

/I Truncating to 0.9999 effectively limits latitude to 89.189.

// This is about a third of a tile past the edge of the world tile.

const siny = bound(sin(degreesToRadians(latLng.lat())),
-0.9999, 0.9999)

point.y = origin.y + 0.5 * Math.log((1 + siny) / (1 - siny)) -
pixelsPerLonRadian
return point
end
Function getNewRadius(zoomlevel: int, mapViewPortCenter:
LatLng) : float
numTiIes - 2zoomlevel

/I Get Point 10km to the right of the map view port center
moved = computeOffset(center, 10000, 90)

initCoord = fromLatLngToPoint(center)
endCoord = fromLatLngToPoint(moved)

initPoint = new Point(
initCoord.x * numTiles,
initCoord.y * numTiles

)

endPoint = new Point(
endCoord.x * numTiles,
endCoord.y * numTiles

)

pixelsPerMeter = abs(initPoint.x - initPoint.y) / 10000.0
return floor(HEATMAP_POINT_RADIUS * pixelsPerMeter)
end

Figure 30: Pseudo-code for calculating pixel-per-meter ratio in Google Maps [6].

5 Scatter Chart Optimization

The Scatter Chart represents each fact as a point where the x-axis represents the time stamp when
the fact was measured and the y-axis displays the average value for the selected measurement. Some
queries return well over 30'000 points that render the client unresponsive. This section examines the
possibilities for reducing the amount of data points passed to the client whilst maintaining a represen-
tative picture of the point distribution.

22

5.1 Goal

The goal is to group data points where they are “close” to each other. “Close” refers to the picture one
gets in the final visualization of the points. If the points are in a range such that there are no visible gaps
between them and one could draw a polygon over them without distorting the original (unsummarized)
picture, then these points are candidates for summarization.

I ~DL okg DM

"R
RTA -

Figure 31: Sample Scatter Chart with several densely populated areas

The summarization approaches described in section 5.2 try to identify the points close enough, group
these points using a proximity-based clustering algorithm and then keep only those points needed to
describe the edges of the polygon.

5.2 PostGIS Clustering and Grouping

In order to achieve the visualization result described in 5.1 the overall approach used in the application
can be broken down to these steps:

1. Retrieve all relevant points
2. Group the points by creating proximity-based clusters

3. For each group of points a convex/concave hull is created keeping only the points on the edge of
a “densely populated” area.

PostGIS provides useful clustering and grouping functions out of the box that can be leveraged not
only for the manipulation of geographical data. In fact any kind of points (and other geometries as well)
having an extent in 2D/3D space can be manipulated with PostGIS.

5.2.1 Proximity Clustering

In order to group points that lie within a certain distance to each other PostGIS provides within dis-
tance clustering with the ST_ClusterWithin(geometry, distance) function. This function aggregates
geometries to groups separated by no more than a specified distance. This works out of the box with
geographical coordinates or if the x and y-axis of the chart have equal scales. In this use case however,
the x-axis is a time scale and the y-axis shows nutrient values. The function only allows to specify one
distance parameter which will apply to all dimensions. This issue can be addressed by normalizing the
points x- and y-values to the range [0,1] before clustering. This is done using the following formula for
each point’s x- and y-value:

x; — min(x)

v maz(x) — min(z)

yi —min(y)
maz(y) — min(y)

23

This solves the problem of setting a clustering distance threshold that works well for both dimensions
but the dimensionality of the x and y axes are lost. Section 5.2.3 shows how the normalized points are
mapped back to the actual point values.

5.2.2 Convex vs. Concave Hull

The convex/concave hull algorithms are useful to compute polygons characterizing the area over a
set of points. This is natively supported in PostGIS with the ST ConvexHull and ST _ConcaveHull
functions. The ST_ConvexHull function returns a convex shape given a set of point geometries
whereas the ST_Concave Hull may return non-convex as well as convex shapes.

A convex polygon is a subset S of the plane given that for any pair of points p, ¢ € S the line segment
pq is completely contained in S [7].

convex not convex

Figure 32: Convex and non-convex shapes given points p and ¢ [7]

As one might see immediately in figure 32 there are infinitely many possibilities to form convex shapes
given a set of points. The convex hull, on the other hand, identifies a unique shape for a given set of
points.

This is due to the fact that the convex hull computes a convex polygon over a given set of points
by connecting the outermost points. These can be connected to satisfy convexity. This is achieved
by computing the set of outermost points P’ given a set of points P = {p1, p2, ps3, ..., pn} Such that
P CP.

input = set of points:

P1y P2 P33 P4 PS5y P65 P75 P8 P9

output = representation of the convex hull:
P4, P5.P8:P2:P9

Figure 33: Computing a convex hull [7]

In some point distributions, a convex shape may work well to characterize the shape of the underlying
points. However, the convexity constraint can result in distorting the underlying distribution. A good
example to show when a convex hull will not work well is illustrated with the “C-Shape” distribution in
figure 34.

24

. .
......

.....

Figure 34: “C-shape” distribution approximated with Convex Hull (left) and Concave Hull (right) [8].

In a distribution as shown in figure 34, a better shape overlay can be achieved with a concave hull.
In the PostGIS implementation, concave hulls are computed by first calculating the convex hull and
then approximating a concave hull by trying to reduce the area of the convex shape to a specified
percentage. For example, if ST_Concave Hull(geometries, 0.90) is called, PostGIS will compute a
convex hull and then tries to reduce the area of the hull to 90% of the convex hull before exiting. This
parameter is called the “target percent” to which to reduce the convex hull shape.

Figure 35: ST ConcaveHull over a multiline with 100% target percent (left) and 99% target percent
(right) [9]

In this implementation, the “target percent” parameter was set to 90%. This reasoning behind this
choice is that lower percentages decrease the performance of the query significantly. Table 10 shows
the performance of the concave hull function over 37’000 nutrient point tuples with a varying target
percentage.

Target Percent Hull tap Npoints
100% (Convex Hull) | 2.3s | 37’000
95% 3.0s | 37°000
90% 3.2s | 37°000
80% 7.6s | 37°000
70% 21.1s | 37°000

Table 10: ST_ConcaveHull performance with decreasing target percent

5.2.3 Query Implementation: Cluster and normalize the points and map back to actual point
values

Distance clustering on two independent dimensions may distort the picture significantly while normal-
izing the dimension between [0,1] works well to create convincing clusters. However, if normalized
point values are used the information on the x- and y-axes of the chart are lost which renders the chart
useless for interpretation.

In order to address these issues another possible approach is to use the normalized point values to
create clusters, map the normalized points back to the actual points and, using this mapping, create
clusters with the actual point values.

First all relevant nutrient measurements are selected from the filtered relation:

25

WITH nutrients AS (
SELECT
lims_number,
id_nutrient_fkey AS id,
id_nutrient_analyses_fkey AS an_id,
AVG(quantity) AS avg_quantity,
MAX(COALESCE(t_day, to_date(t_year|| —01-01", ’'YYYY-MM-DD’))) AS day
FROM filtered
)

Figure 36: Retrieving relevant nutrient measurements for scatter chart

Now that all relevant nutrient quantities with their day of measurement are retrieved. The quantities
and dates are normalized to the range [0,1].

nutrientStats AS (
SELECT
id,
an_id,
avg_quantity ,
day,
(SELECT MIN(day) FROM nutrients) AS min_day,
(SELECT MAX(day) FROM nutrients) AS max_day,
(SELECT MIN(avg_quantity) FROM nutrients) AS max_quantity,
(SELECT MAX(avg_quantity) FROM nutrients) AS min_quantity
FROM nutrients
),

— normalize the avg_quantity and day dimensions
statsNormalized AS (
SELECT
id,
an_id,
avg_quantity ,
day,
(
EXTRACT (EPOCH FROM day — to_timestamp (0)) —
EXTRACT (EPOCH FROM min_day — to_timestamp (0)))
/
EXTRACT (EPOCH FROM max_day — to_timestamp(0)) —
EXTRACT (EPOCH FROM min_day — to_timestamp (0))
) AS day_normalized,
(avg_quantity — min_quantity) / (max_quantity — min_quantity)
AS quantity_normalized
FROM nutrientStats
),

Figure 37: Create a mapping between normalized and unnormalized time and nutrient value dimen-
sions

The statsNormalized relation now provides a mapping between the actual and the normalized date
and average quantity values.

26

statsNormalized

id | an_id | avg_quantity day day normalized quantity_normalized
163 2 114 "2013-10-28" | 0.731607629427793 | 0.634020618556701
163 2 106 "2013-10-28" | 0.731607629427793 | 0.675257731958763
163 2 85 "2013-10-28" | 0.731607629427793 | 0.783505154639175
163 2 90 "2013-10-28" | 0.731607629427793 | 0.757731958762887

Table 11: Sample instance of the statsNormalized relation

In the next step proximity clusters are created using the normalized values. The points within these
clusters are then reduced to the points needed to create a concave hull:

Create Proximity Clusters of these points and overlay them
— with a concave hull
clustered AS (
SELECT
id,
an_id,
ST_ConcaveHull(unnest(ST_ClusterWithin (ST_MakePoint(
day_normalized,
quantity_normalized
), 0.005)), 0.90, true) AS geometry
FROM statsNormalized
GROUP BY id, an_id

Figure 38: Cluster and apply concave hull to normalized point values

The hulls are now available as geometries but the dimensions of the x- and y-axes are lost:

clustered

id | an_id geometry
163 2 LINESTRING(0.7223 0.8814,0.72546 0.8814)
163 2 POLYGON((0.7347 0.8853,...))
163 2 LINESTRING(0.72455 0.8144,0.7309 0.8144)
163 2 POINT(0.7273 0.9587)

Table 12: Sample instance of the clustered relation

The clustered relation now contains geometries in normalized 2D-space. These geometries now need
to be mapped back to the unnormalized values. This is done by first enumerating the clusters and then
splitting the polygon and linestring geometries up to the points describing their contour:

27

— Enumerate the clusters
clusteredEnumerated AS (
SELECT ROW_NUMBER() OVER (ORDER BY geometry) AS geom_number,
id,
an_id,
geometry
FROM clustered
),
— Split the cluster geometries to points
geometryPoints AS (
SELECT
geom_number,
id,
an_id,
(ST_DumpPoints (geometry)).geom AS dp
FROM clusteredEnumerated

Figure 39: Enumerate clusters and retrieve points describing the geometry envelopes

The enumeration of the geometries now provides the information which point belongs to which geom-
etry.

geometryPoints

geom_number | id | an_id dp
5 163 2 POINT(0 0.568208608247423)
6 163 2 POINT(0 0.580285670103093)
6 163 2 POINT(0 0.586622525773196)
7 163 2 POINT(0 0.602443659793814)
7 163 2 POINT(0 0.615248453608247)
8 163 2 POINT(0 0.62071881443299)

Table 13: Sample instance of the geometryPoints relation

The last step towards retrieving the geometries with their actual values is to join the geometryPoints
relation with the statsNormalized relation on their nutrient id’s, chemical analyses id’s and their nor-
malized point values.

28

geometries AS (
SELECT id, an_id,
case: linestring
CASE WHEN COUNT(points) = 2 THEN
ST_MakeLine (points)
WHEN COUNT(points) > 2 THEN
— case: polygon
ST_MakePolygon (
ST_AddPoint(
ST_MakeLine(points), ST _GeometryN(ST_Collect(points), 1))
)
ELSE
case: point
ST_Collect(points)
END AS geometry
FROM (
SELECT geom_number,
points.id AS id,
points.an_id AS an_id,
ST_MakePoint(
EXTRACT (EPOCH FROM day — to_timestamp(0)) % 1000, avg_quantity)
AS points
FROM geometryPoints AS points, statsNormalized AS stats
WHERE points.id = stats.id
AND points.an_id = stats.an_id
AND ST_Equals(dp, ST_MakePoint(day_normalized, quantity_normalized))
) as geoms
GROUP BY id, an_id, geom_number

Figure 40: Building the final “unnormalized” geometries

Given the mapping from normalized to actual values in statsNormalized relation, points containing
the actual values can be derived and collected into their corresponding geometries. For polygons,
right-hand ordering of the points is applied such that the client-side code can simply follow the polygon
points and fill the area.

geometries
id | an_id geometry
163 2 MULTIPOINT (1466978400000 555)
163 2 LINESTRING(1466978400000 540,1467064800000 537)
163 2 POLYGON((1466978400000 529,...))

Table 14: Geometries with actual values

The geometries relation now contains the wanted geometries. The final formatting passed to the client
is built by creating an array of JSON objects with a group aggregate over the distinct nutrient and
analyses keys:

29

— final json formatting for the client
SELECT
id, an_id,
json_agg(geometry) AS geometries
FROM (
SELECT
id, an_id,
json_build_object(’geometry’, geometry, ’center’, center)
AS geometry
FROM (
SELECT
id, an_id,
ST_AsGeodson(geometry)::json AS geometry,
ST_AsGeodson(ST_Centroid (geometry))::json AS center
FROM geometries
) as withCenters
) as json
GROUP BY id, an_id

Figure 41: Final Scatter Plot JSON representation for the client

id | an_id geometries

132 2 [{"geometry" : {"type":"MultiPoint","coordinates":[[1451602800000,607]]}}]
145 11 [{"geometry" : {"type":"MultiPoint","coordinates":[[1451602800000,3]]}}]
165 37 [{"geometry" : {"type":"MultiPoint","coordinates":[[1451602800000,1.5]]}}]

Table 15: Geometry aggregation to JSON arrays

Table 15 represents the final representation for the client. Each tuple contains all geometries associ-
ated with a nutrient and analyses method.

5.3 Clockwise Ordering of Points

The client receives the point coordinates from the representation seen in table 15 without any ordering.
This can cause distortions in the final drawing process since the client connects all points from polygon-
type geometries in the order it receives the coordinates from the server before filling them with color.
The client thus has to take care of ordering the points before drawing them onto the chart canvas. This
is implemented by sorting the points in clockwise order around the center of the polygon.

I ~0F oo TS NIRS [N APON o/kg TS berechnet N #0F ok TS NIRS [N APON 0k TS b

ECEY T ENERY
5||||s~|e| Je &M“llmm de im

2017

Figure 42: The same Scatter Chart without clockwise point ordering (left) vs. clockwise ordered
polygons (right)

The center of the polygon is computed by finding the minimum and maximum x and y values of the
points describing the polygon envelope. The minimum and maximum values are retrieved by first
sorting the points from top to bottom along the y-axes and then taking the first and last element of the
sorted array, and then sorting the points from left to right along the x-axes and taking the first and last

30

element as well. This yields the minimum and maximum values of both dimensions. The center is then
retrieved as the average x and average y value as follows:

min(z) + max(zx)

avg(z) = '
_ mian(y) + maz(y)
avg(y) = "

center = (avg(x), avg(y))

In a next step, the angle for each point with respect to the center point is calculated. This calculation
is done by using the four-quadrant inverse tangent atan2(y, x) function over the distance from each
point to the center.

The order is established starting from the leftmost point on the x-axes. This point is already known
since the points array has been sorted from left to right. The angle between the first point and the
center is thus set as the start angle. This angle value is assigned to the left most point in the plane.
The left most point should be the first entry in the points array after clockwise ordering. It is thus
necessary that the numeric angle value assigned to this point is the smallest value if a sorting by angle
value to the center should be applied. In an iteration over all points their angle values are calculated
and assigned to the point. If an angle happens to be smaller than the start angle, its value is multiplied
by 27 to make it greater than the starting angle numeric value which effectively results in a complete
turn around the origin without changing its angle. For points whose angle is equal to greater than the
starting angle. The angle value is assigned to the point without further calculations. Once every point
has an angle value assigned with the start angle being the smallest value, the clockwise order can be
established by sorting the array of points by their angle values in ascending order.

A pseudo-code description of this algorithm is shown below:

Function orderCW(points: Point[]): Point[]

points = sort points array in descending y value order
/I Get the center point of the y-axes

cy = (points[0].y + points[points.size - 1].y) / 2

points = sort points array in ascending x order
/I Get the center point of the x-axes
cx = (points[0].x + points[points.size - 1].x) / 2

center = new Point(cx, cy)
startAngle = NULL
for point in points do
angle = atan2(point.y - center.y, point.x - center.x)
if startAngle == NULL then
| startAngle = angle
else if angle < startAngle then
| angle +=m x 2
// Add angle value to point
point.angle = angle
end
// Sorting points by angle results in clockwise ordering
points = sort points in ascending angle value order
return points
end

Figure 43: Clockwise sorting algorithm [10]

This algorithm works well with convex polygons if the center point is contained within the polygon. It
may fail to establish the correct sort order in some instances if the server returns non-convex polygons
where the center point is not contained within the polygon.

31

5.4 Evaluation

An implementation to reduce the amount of points needed in a scatter chart whilst still maintaining the
original picture has been explored. The approach described in 5.2.3 seems to be viable because it
allows to create proximity clusters in the normalized 2D-space without losing the original dimensions
of the scatter chart’s x- and y-axis.

GroupAggregate (cost=87757.25..87762.29 rows=1 width=40)
Group Key: geometrieswithcenters.id, geometrieswithcenters.an_id
CTE nutrients
—> GroupAggregate (cost=51526.43..51526.93 rows=11 width=99)

CTE nutrientstats
—> CTE Scan on nutrients nutrients_4
(cost=1.03..1.25 rows=11 width=44)

CTE statsnormalized
—> CTE Scan on nutrientstats (cost=0.00..0.71 rows=11 width=36)

CTE clustered
—> HashAggregate (cost=0.33..8.69 rows=1100 width=40)
Group Key: statsnormalized.id, statsnormalized.an_id
—> CTE Scan on statsnormalized
(cost=0.00..0.22 rows=11 width=24)
CTE clusteredenumerated
—> WindowAgg (cost=77.57..96.82 rows=1100 width=48)

CTE geometrypoints
—> CTE Scan on clusteredenumerated
(cost=0.00..5791.50
rows=1100000 width=48)

CTE geometries
—> GroupAggregate (cost=30331.18..30331.32 rows=1 width=48)
Group Key: points.id, points.an_id, points.geom_number
—> Sort (cost=30331.18..30331.18 rows=1 width=28)
Sort Key: points.id, points.an_id, points.geom_number
—> Hash Join (cost=0.39..30331.17 rows=1 width=28)
Hash Cond: ((points.id = stats.id)
AND (points.an_id = stats.an_id))
Join Filter: ((points.dp ~=
st_makepoint(stats.day_normalized,
stats.quantity_normalized))
AND _st_equals(points.dp,
st_makepoint(stats.day_normalized,
stats.quantity_normalized)))
—> CTE Scan on geometrypoints points
(cost=0.00..22000.00 rows=1100000 width=48)
—> Hash (cost=0.22..0.22 rows=11 width=36)
—> CTE Scan on statsnormalized stats
(cost=0.00..0.22 rows=11 width=36)
—> Sort (cost=0.03..0.04 rows=1 width=40)
Sort Key: geometries.id, geometries.an_id
—> CTE Scan on geometries
(cost=0.00..0.02 rows=1 width=40)

Figure 44: Scatter Chart Query Plan

32

So how much additional cost does this normalizing and back-mapping to unnormalized point values
cause? The query computes 7 common table expressions as intermediate steps towards retrieving the
final representation. A shortened version of the query plan can be found in figure 44.

The most costly part of the query is building the nutrients CTE. This relation is equivalent to the
filtered relation and needs to be computed for every query using the fact table. If no clustering were
applied to the chart, the nutrients CTE would suffice. The cost for building the nutrients CTE is
thus the cost for retrieving all nutrients without summarization. The cost for normalizing and clustering
the points is relatively small and negligible. However, the back-mapping of normalized points to un-
normalized points (in the geometrieswithcenters CTE adds a significant amount of cost to the query.
The join condition checking for equality between points remaining after concave hull reduction and the
normalized values from the statsNormalized CTE using “ST_Equals” is particularly expensive.

A performance evaluation of the query with increasing result size is shown in figure 45.

15 |
7y
2
S 10| 1
O
(0]
o
(0]
£
= 51 i
0 |

[| | | | | |
5,000 10,000 15,000 20,000 25,000 30,000
Result Size

Figure 45: Performance of clustering of normalized values with back-mapping to unnormalized values

6 Correlated Nutrients Chart

The correlated nutrients chart is another kind of scatter chart showing how closely measurement values
of two given nutrients correlate.

I < ADF ok TS NIRS y: RF ghkg TS NIRS

280

240

220

200 220 240 260 280 300 320 340 360 380 400 420

Figure 46: Sample correlation chart showing acid detergent fibre (ADF) on the x-axis and crude fibre
(RF) on the y-axis

33

6.1 Query

The query works by creating two “data series” where the first series represents the nutrient measure-
ments corresponding to the x-axis and the the second series the nutrient measurement corresponding
to the y-axis. The two series are then simply joined on their LIMS number attributes to retrieve each
points x and y values.

WITH series1 AS (
SELECT
lims_number,
id_nutrient_fkey AS id,
id_nutrient_analyses_fkey AS an_id,
AVG(quantity) AS avg_quantity ,
MAX(COALESCE(t_day, to_date(t_year]|| '—01—-01", 'YYYY-MM-DD'’))) AS day
FROM filtered1
WHERE id_nutrient_fkey = 1
AND id_nutrient_analyses_fkey = 2
),
series2 AS (
SELECT
lims_number,
id_nutrient_fkey AS id,
id_nutrient_analyses_fkey AS an_id,
AVG(quantity) AS avg_quantity ,
MAX(COALESCE(t_day, to_date(t_year]|| '—01-01", 'YYYY-MM-DD'’))) AS day
FROM filtered?2
WHERE id_nutrient_fkey = 2
AND id_nutrient_analyses_fkey = 2
)
— Get the points to display in the scatter chart
SELECT s1.avg_quantity AS x,
s2.avg_quantity AS y

FROM series1 s1 JOIN series2 s2 ON si.lims_number s2.lims_number;

— Compute the correlation coefficient
SELECT corr(s1.avg_quantity, s2.avg_quantity)
FROM series1 s1 JOIN series2 s2 ON s1.lims_number

s2.lims_number;

Figure 47: Correlated Nutrients Query

The above query is a simplified version of the actually implemented query with the purpose of only
showing the important parts of the query. Further filters that apply in the respective WHERE clauses
of the seriesl and series2 relations have been omitted.

Currently the trendline of the correlated nutrients chart is still missing since the chart library in use does
not provide an automated way to compute the line. Some way to derive the line using the correlation
coefficient is being looked into.

6.2 Evaluation

In the current configuration of the query, no aggregation is applied in order to reduce the client-side
load. However since this is just another form of scatter chart it is probably possible to apply the
technique used for the scatter chart in section 5.2.3. This has not been implemented in this version.

7 Box Plot

The box plot is a visualization showing groups of nutrient measurement values through their quartiles.
The client expects the min, ql, median, ¢3 and max values for each nutrient in order to display the

34

final boxplot where g1 and ¢3 denote the first quartile and the third quartile.

I ~OF o/kg DM NIRS |JEE Ash o/kg DM Thermogravimelry (LECO 105°, 550°) K g/kg DM ICP-OES [mineralisation)
450

350

Figure 48: Sample boxplot chart comparis acid detergent fibre (ADF), crude ash (Ash) and Potassium
(K)

7.1 Query

It is thus best to aggregate the measurements a relation of the form boxplot(min, g1, median, g3, mazx)
for each selected nutrient and return that to the client. To handle multiple boxplots in one query,
aggregations over the partition by nutrient and analyses method are needed.

WITH tableRowsOrderedEnumerated AS (
SELECT
— count row numbers and total number of records for each nutrient key
(ROW_NUMBER() OVER (
PARTITION BY id_nutrient_fkey ,
id_nutrient_analyses_fkey
ORDER BY AVG(quantity))) as row_number,
COUNT (%) OVER (
PARTITION BY id_nutrient_fkey ,
id_nutrient_analyses_fkey
) AS total,
lims_number,
id_nutrient_fkey AS id,
id_nutrient_analyses_fkey AS an_id,
AVG(quantity) AS avg_quantity
FROM filtered
GROUP BY lims_number, id_nutrient_fkey , id_nutrient_analyses_fkey
ORDER BY avg_quantity

)

Figure 49: Retrieving relevant nutrient values for Box Plot

In a first step two additional attributes row_number and total are computed. The row_number at-
tribute denotes the order of the avg_quantity attributes within a nutrient a analyses partition (e.g, a
row_number of 1 means that this is the minimum quantity for this nutrient and analyses method).

35

tableRowsOrderedEnumerated

row_number | total | lims_number | id | an_id | avg_quantity
1 20 330700-9 160 25 47.337616
1 538 16-4814 160 2 50.36726
2 20 327012-9 160 25 51.36204
2 538 16-4849 160 2 52.35602
3 538 16-1475 160 2 53.145336

Table 16: Nutrient and analyses method internal ordering with count of total samples

Using the representation shown in table 16 the min and max values can already be derived. However,
the quartiles ¢q1 and ¢3 and the median for each partition are still missing. The quartiles are computed
by setting the tuple’s attribute g1, median or ¢3 equal to avg_quantity if the row_number meets one
of the following conditions:

o [fodal]| =2 < row_number < |T24] =2+ 1 for gl
o |fodal| < row_number < |94l | 41 for the median

o [fofal] i |fofal - 9] < row_number < [t22] 4 |fefal| 41 for g3

These conditions are expressed in SQL as follows:

quartiles AS (
SELECT id, avg_quantity , row_number, an_id,
AVG(CASE WHEN row_number >= (FLOOR(total/2.0)/2.0)
AND row_number <= (FLOOR(total/2.0)/2.0) + 1
THEN avg_quantity/1.0 ELSE NULL END
) OVER (PARTITION BY avg_quantity) AS qi,
AVG(CASE WHEN row_number >= (total/2.0)
AND row_number <= (total/2.0) + 1
THEN avg_quantity/1.0 ELSE NULL END
) OVER (PARTITION BY avg_quantity) AS median,
AVG(CASE WHEN row_number >= (CEIL(total/2.0) + (FLOOR(total/2.0)/2.0))
AND row_number <= (CEIL(total/2.0) + (FLOOR(total/2.0)/2.0) + 1)
THEN avg_quantity/1.0 ELSE NULL END
) OVER (PARTITION BY avg_quantity) AS q3
FROM tableRowsOrderedEnumerated
)

Figure 50: Computing ¢1, g2 and median values

A NULL value is set for attributes not matching any of the conditions. A sample representation of the
quartiles relation is structured as follows

quartiles
id | avg_quantity | row_number | an_id ql median q3

160 57.12998 5 25 57.12998 NULL NULL
160 58.237206 6 25 58.237206 NULL NULL
160 62.47216 10 25 NULL 62.47216 NULL
160 62.485912 11 25 NULL 62.485912 NULL
160 87.02721 15 25 NULL NULL 87.02721
160 90.28186 16 25 NULL NULL 90.28186

Table 17: ¢q1, median and g3 value representation for an id - an_id combination

36

The final relation passed to the client is then computed with the following query:

SELECT

id,

an_id,
MIN(avg_quantity),
AVG(ql) AS qi,
AVG(median) AS median,
AVG(q3) AS g3,
MAX(avg_quantity) AS max
FROM quartiles

GROUP BY id, an_id;

Figure 51: Box Plot final aggregation

7.2 Evaluation

Each box plot can be represented by one tuple with 5 attributes (min, g1, median, ¢3, maz) which is
the minimal amount of information needed to draw a box plot. The final representation is thus optimally
aggregated for the client. All goals formulated in 1.2 are met with this implementation. The client can
easily handle loading many box plots at the same time.

The queries most costly part is building the filtered relation (i.e., executing all joins of the fact table with
the dimension tables which makes up almost all the cost of the query) which is used in the “tableRow-
sOrderedEnumerated” CTE. The logic to compute the min, ¢q1, median, ¢3 and max attributes comes
almost for free.

HashAggregate (cost=7006.69..7006.71 rows=1 width=48)
Group Key: quartiles.id, quartiles.an_id
CTE tablerowsorderedenumerated
—> WindowAgg (cost=7006.44..7006.49 rows=1 width=115)
—> WindowAgg (cost=7006.44..7006.47 rows=1 width=107)
—> Sort (cost=7006.44..7006.45 rows=1 width=99)
Sort Key: fact_table_clean.id_nutrient_fkey,
fact_table_clean.id_nutrient_analyses_fkey,
(avg(fact_table_clean.quantity))
—> Nested Loop (cost=3880.80..7006.38 rows=1
width=147)

CTE quartiles
—> WindowAgg (cost=0.03..0.17 rows=1 width=48)
—> Sort (cost=0.03..0.04 rows=1 width=32)
Sort Key: tablerowsorderedenumerated.avg_quantity
—> CTE Scan on tablerowsorderedenumerated
(cost=0.00..0.02 rows=1 width=32)
—> CTE Scan on quartiles (cost=0.00..0.02 rows=1 width=40)

Figure 52: Box Plot Query Plan

8 Nutrient Statistics

The nutrient statistics table provides a basic numerical overview (total count, average, minimum, max-
imum and standard deviation values) over the distribution of each nutrient and its associated analyses
method.

37

8.1 Indicative Measurements

Usually the nutrient values are aggregated over the partition by their nutrient and analyses method. In
case the query returns the same nutrient multiple times with varying analyses methods, an indicative
aggregation should be carried out aggregating only over the partition by nutrient id. This way the user
can see the distribution over all analyses methods.

Mutrients Count Average Min Max [}

ADF g/’kg DM NIRS 1267 293.618 216.000 403.000 28.042
ADL g/kg DM indicative 1209 36.643 18.000 59.000 8.101
ADL g/kg DM NIRS 514 35.364 18.000 59.000 7.4486
ADL g/kg DM NA 695 37.588 18.000 59.000 8.435

Figure 53: Sample nutrient statistics table with ADL g/kg DM indicative as well as the individual
analyses methods

8.2 Query

SELECT
id,
— set 0 as analyses id to make ordering easier
0 AS an_id,
count,
max,
min,
avg,
stddev,
MIN(nutrient_name) AS nutrient_name,
MIN(unit_measure) AS unit_measure,
MIN (an_name) AS an_name
FROM (
SELECT
DISTINCT id, an_id,
COUNT(x) OVER (PARTITION BY id),
ROUND(MAX(avg_quantity) OVER (PARTITION BY id)::numeric, 3) AS max,
ROUND(MIN(avg_quantity) OVER (PARTITION BY id)::numeric, 3) AS min,
ROUND(AVG(avg_quantity) OVER (PARTITION BY id)::numeric, 3) AS avg,
ROUND (
COALESCE (
STDDEV(avg_quantity) OVER (PARTITION BY id),
0)::numeric, 3)
AS stddev,
nutrient_name ,
unit_measure ,
“indicative’ AS an_name
FROM filtered
) AS indicative
GROUP BY id, count, max, min, avg, stddev
— Only get tuples that have more than one analyses method
HAVING COUNT(an_id) > 1

Figure 54: Nutrient Statistics Indicative Measurements Query

38

The final query is a union of two queries. The first one serves to retrieve indicative statistics and
thus partitions the aggregation only by nutrient id. The HAVING clause at the end ensures that only
indicative measurements are returned for nutrients actually having more than one associated analyses
method in the given filtered relation. These indicative statistics are then combined in a union with the
aggregated statistics partitioned by nutrient and analyses method:

UNION — union with indicative measurements
SELECT DISTINCT id, an_id,
COUNT (x) OVER (PARTITION BY id, an_id),
ROUND(MAX(avg_quantity) OVER (PARTITION BY id, an_id)::numeric, 3) AS max,
ROUND(MIN(avg_quantity) OVER (PARTITION BY id, an_id)::numeric, 3) AS min,
ROUND(AVG(avg_quantity) OVER (PARTITION BY id, an_id)::numeric, 3) AS avg,
ROUND (COALESCE (
STDDEV(avg_quantity) OVER (PARTITION BY id, an_id), 0)::numeric, 3)
AS stddev,
nutrient_name ,
unit_measure
an_name
FROM filtered
ORDER BY id, an_id

Figure 55: Union of indicative and non-indicative measurements

8.3 Evaluation

The query provides an optimally aggregated representation for the visualization at hand. Each result
tuple can directly be represented in the statistics table. The amount of tuples returned depends on the
cardinality of the selected grouping factors which have a multiplicative effect on the number of tuples
in the result relation. Most available grouping factors such as season, canton, feed and altitude in
meters are unlikely to grow quickly. The available temporal grouping factor “years” however is an ever
increasing factor with time passing by and will cause the nutrient statistics table to grow.

— Ejm J Append
(cost=2102.21..4144.31 rows=1421 width=240)
d_nutrient_analyses Hash

BE S s S NS . 19 N N
i Gl L |1 PR pay ol ve L) 4
filtered Sort WindowAgg HashAggregate HashAggregate Subquery Append HashAgc
= 5
g | v

Sort WindowAgg HashAggregate

Figure 56: Cost spike when building the union from indicative and non-indicative measurements

Aside from the cost for building the filtered relation, the union between indicative and non-indicative
measurements causes the query cost to double since the almost the same subquery (windowed aggre-
gations over slightly different partitions) is executed twice before uniting the two result sets. However,
this is negligible since the since the cost for building the filtered relation outweighs cost for aggregat-
ing nutrient statistics.

39

9 Conclusion

In this thesis, dedicated queries were implemented for each visualization of the Swiss Feed Database’s
web application with the aim of creating a stable and scalable solution for an ever-growing database.
The utilization of spatial data types and functions for the map and scatter chart visualizations using
PostGIS allowed to abstract away data points into shapes effectively reducing the amount of tuples the
client has to process whilst maintaining a representative picture of the underlying distribution.

The data table has been reimplemented using server-side pagination and sorting allowing to navigate
the table view over the entire dataset regardless the amount of tuples underlying the visualization.
The properties of the box plot and nutrient statistics visualizations allowed to create an optimally ag-
gregated representation for the client at the database layer.

Although, the queries now always consider the full dataset without any limits applied, the evaluations
have shown that, over a growing size of measurement data, the time needed for the database to
produce a response increases leading to longer wait times for the client. Furthermore the violin plot
and correlated nutrients visualization have not been optimized and receives unsummarized nutrient
measurement tuples. These and further improvements to the application are left open to future works.

40

A API Endpoints

e POST /api/table/paginate
Returns a json representation of rows and columns that are rendered in the table.
Request Parameters: FilterParams

Response:
{
cols: [
{
"id":160,
"an_id":29,
"abbreviation":"RL",
"unit":"g/kg TS",
"an_name":" aggregiert"
'
]
rows: [
{
"lims_number":" xxx —3",
"ids ":[...],
"an_ids":[...],
"avg_quantities ":[...],
"feedname":" Gerste ...",
"season":"Sommer" ,
"canton":null ,
"postal_code ": null
"day":"2017—-6—8",
"highlight": false
},
]
}

e POST /api/table/scatterPointQuery
Route to handle the case when a user clicks on a point in the scatter chart. Sets the highlight
attribute to true for rows that match to the clicked scatter point. Request Parameters: Filter-

Params
{
cols: [
{
"id":160,
"an_id":29,

"abbreviation":"RL",
"unit":"g/kg TS",

"an_name":" aggregiert"
1
]
rows: |
{
"lims_number":" xxx —3",
"ids ":[...],
"an_ids":[...],

"avg_quantities ":[...],
"feedname ":" Gerste "
"season":"Sommer",
"canton":null ,
"postal_code": null,
"day":"2017—-6-8",
"highlight":true

41

e POST /api/table/nutrientStatistics
Returns the min, max, avg and std. deviation values for a given set of nutrients
Request Parameters: FilterParams

Response:
[
{
"id":160,
"an_id":27,
"count":"3",

"max":"461.425",

"min":"454.112",

"avg":"458.576",

"stddev":"3.914",
"nutrient_name":"RL",
"unit_measure":"g/kg TS",
"an_name":"PSE (HCI Aufschluss,...)"

e POST /api/charts/hull
Returns all measurements of selected nutrients across a selection of feeds, a given set of month-
s/years and region. These measurement values are then passed to a scatter chart
Request Parameters: FilterParams
Response:

[

{
"id":284,
"an_id":54,
"geometries ":[{
"geometry ":{
"type":" LineString",
"coordinates ":[
[1345500000000, 356.77887],
[1345500000000, 355.97662]
]
1
"center":{
"type ":" Point",
"coordinates ":[1345500000000, 367.800245]

e POST /api/charts/boxPlot
Returns min, g1, avg, g3 and max values of selected nutrients across a selection of feeds, a
given set of months/years and region. These measurement values are then passed to a box plot.
Request Parameters: FilterParams
Response:

42

"id":284,
"an_id":54,
"min":311.53775,
"q1":336.283645,
"median":355.97662,
"g3":425.417495,
"max":487.64474

e POST /api/charts/violinPlot
Returns all measurements of selected nutrients across a selection of feeds, a given set of month-
s/years and region. These measurement values are then passed to a violin plot.
Request Parameters: FilterParams

Response:
[
{
"avg_quantities ":[
311.53775,

I,
"id":284,
"an_id":54

e POST /api/map/points
Returns point geometries in GeoJson format where tuples for the given filter conditions are found

Request Parameters: FilterParams
Response:

{

"type ":" FeatureCollection",
"features ":[
{
"type ":" Feature",
"geometry ":{
"type ":" Point",
"coordinates ":[
8.353567,
47.176361
]
1,
"properties ":{
"f1":14,
"f2":" Abtwil AG"

e POST /api/map/cantons
Returns canton geometries in Geodson format where tuples for the given filter conditions are
found
Request Parameters: FilterParams
Response:

{

43

"type ":" FeatureCollection",
"features ":[
{
"type ":" Feature",
"geometry ":{
"type ":" MultiPolygon",
"coordinates ":[
[
[

8.5540853479946,
47.5531892401658

1

]
s
"properties ":{
"f1":13,
"f2":"Vaud",
"quantity_normalized ":1

e POST /api/map/density
Returns the sample count per distinct location
Request Parameters: FilterParams
Response:

[

"latitude ":"47.17636100",
"longitude ":"8.35356700",

"count":42

},

{
"latitude ":"47.42287400",
"longitude":"8.51473300",
"count":93

e POST /api/map/regression
Returns the count per location and the average quantity of a selected nutrient measurement.

Request Parameters: FilterParams
Response:

[

"latitude ":"47.42287400",
"longitude":"8.51473300",
"count":1,
"quantity":57.913788,
"quantity_normalized ":1

"latitude":"47.58950000",
"longitude":"8.50068900",
"count":18,

44

"quantity":50.6160487222222,
"quantity_normalized":0.28556525607192784

o GET /api/queries/
Returns the top saved queries

e POST /api/queries/
Saves a new query to the database
Request Parameters: FilterParams

e GET /api/queries/:id
Returns the query parameters from a saved query
Response:

{
"dataType":"td",

"agrideaFeeds ":|

I,
"classFeeds ":[
"7a4n

]

nclassFeeds ":[

I
"nutrients ":[
"231",
"132",
o

"180",

"158",

"163",

"159"
1

"nutrientsDerived ":|

1.

o DELETE /api/queries/:id
Deletes the query with the given id

e POST /api/login
Login a user given a username and a password
Request Parameters:

{

"username": "test",
"password": "password123"

}

e POST /api/logout
Logs a user out

e POST /api/excel/download
Returns an excel sheet to the client with tuples matching the filter conditions.
Request Parameters: FilterParams

45

B Technical Manual

For both development and production environment, PostgreSQL version 9.6 with PostGIS version 2.3
or above is required. The install commands below are for a Debian based Linux distribution and may
vary across distros.

B.1

1.

B.2

General Setup

With a running Postgresql and PostGIS setup, NodedS version 8.11 or higher is required:

curl —sL https ://deb.nodesource.com/setup_8.x | sudo —E bash —
sudo apt—get install —y nodejs

Verify that NodedS has been installed:

node —v

It should e.g., say v8.11.2

In the project’s root directory, a public/private RSA256 keypair is required for authentication.
Create a keypair named jwtRS256 with the following command:

ssh—keygen —t rsa —b 2048 —f jwtRS256.key
Don’t add passphrase
openssl rsa —in jwtRS256.key —pubout —outform PEM —out jwtRS256.key.pub

In the project’s root directory, create a JSON file named params.json with the following contents:
{
" db n : {
"user": "your_db_user",
"password": "your_db_password",
"database": "tfdb",
"host": "localhost",
"port": 5432
} E)
"GMAPS_APILKEY": "your api key"
}

Set the parameters according to your setup

In the project’s root directory, install all npm dependencies

npm install

Run the application

npm start

If everything worked, the app should be running on localhost:3000

Setup for production

To keep the NodedS server always up and running and let it start automatically on server reboot, an
easy way is to run NodedS as a Systemd Unit.

1.

To create a new systemd unit navigate to /etc/systemd/system and create a new service file
named feedbase.service with the following contents:

46

[Service]

ExecStart=/usr/bin/node /path/to/feedbase—version3/bin/www
Restart=always

Only run feedbase if postgres is running
Requires=postgresql.service

StandardOutput=syslog

StandardError=syslog

Syslogldentifier=feedbase—version3

Adjust User and group to the user and group running the application
User=feedbase

Group=feedbase

Run Node in production mode

Environment=NODE_ENV=production

[Install]
WantedBy=multi—user.target
. The FeedBase service can now be started using the following command

sudo systemctl start feedbase.service

. Verify that the service has started

systemctl status feedbase.service

The output should be similar to the following:

feedbase.service
Loaded: loaded (/etc/systemd/system/feedbase.service; ...)
Active: active (running) since Mon 2018—06—04 22:00:13 UTC; 2 days ago

. Enable the service to keep the application always up and running

sudo systemctl enable feedbase.service

. The application is now running on http://localhost:3000. To make the application run through a
web server such as Apache or Nginx a proxy to port 80 or 443 (for https) is needed. Here the

steps for Nginx are described. It should be similar for Apache.
To configure Nginx, open the /etc/nginx/nginx.conf file.

. Make sure the following line is included in the http block (if not already there):

http {

Make sure this line is included
include /etc/nginx/conf.d/*.conf;

}
This line is needed such that configuration files in /etc/nginx/conf.d/ are read.

. Create a new file feedbase.conf in /etc/nginx/conf.d/feedbase.conf. Now the mapping between
port 3000 where the application is running and port 80 is created.

upstream feedbase_server {
server 127.0.0.1:3000;
keepalive 8;

}

server {
443 for https

47

listen 80;
Adjust to url
server_name vm—164.s3it.uzh.ch;

location / {
proxy_set_header X—Real-IP $remote_addr;
proxy_set_header Connection "upgrade";
proxy_set_header X—Forwarded—For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_set_header X-NginX—Proxy true;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_pass http ://feedbase_server;
proxy_hide_header X—Powered—By;
proxy_redirect off;

}

Serve static files with the following extensions from public folder
location ~x ~.+\.(jpg|jpeg]|gif|png|ico|css|zip|pdf|txt]|js|html|htm)$ {
Adjust path to your setup
root /path/to/feedbase—version3/public;

}
}

8. Check if the configuration is valid:

sudo nginx —t

9. If no errors occur, reload the nginx configuration

sudo systemctl reload nginx

The application should now be running through nginx.

References

[1] N. Foundation., “Node.js.” nodejs.org. [Online; accessed 08-June-2018].

[2] G. Inc., “Angular.js.” angularjs.org. [Online; accessed 08-June-2018].

[3] G. Inc., “Heatmap layer,” 2018. [Online; accessed 03-June-2018].

[4] G. Inc., “Map and tile coordinates,” 2018. [Online; accessed 03-June-2018].

[5] E. W. Weisstein, “Mercator projection.” From MathWorld—A Wolfram Web Resource. [Online;
accessed 07-June-2018].

[6] stlwebdev, “Google map heatmap radius in meters.” Codepen. [Online; accessed 08-June-2018].

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. C. Schwarzkopf, Computational Geometry,
pp. 1-17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

[8] M. Duckham, L. Kulik, M. Worboys, and A. Galton, “Efficient generation of simple polygons for
characterizing the shape of a set of points in the plane,” Pattern Recognition, vol. 41, no. 10,
pp. 3224 — 3236, 2008.

[9] T. P. D. Group, “Postgis st_concavehull,” 2018. [Online; accessed 15-March-2018].

[10] B. (https://stackoverflow.com/users/3877726/blindman67), “Sort points in counter clockwise order
in javascript.” Stackoverflow. [Online; accessed 07-June-2018].

48

	Introduction
	Challenges
	Requesting Data

	Problem Definition

	Application Architecture
	Overview
	Filtering & Query Building
	The FeedBase Star Schema
	Building Filter Conditions

	Authentication

	Table Pagination
	Server-Side Table Pagination
	Server-Side Sorting
	Derived Nutrients Calculation
	Range Search
	Evaluation

	Map Visualization
	Goal
	Canton and Location View
	Canton Shapes
	Location Markers

	Radius Search
	Event Propagation

	Sample Density and Nutrient Regression
	Scaling the Heat Map

	Scatter Chart Optimization
	Goal
	PostGIS Clustering and Grouping
	Proximity Clustering
	Convex vs. Concave Hull
	Query Implementation: Cluster and normalize the points and map back to actual point values

	Clockwise Ordering of Points
	Evaluation

	Correlated Nutrients Chart
	Query
	Evaluation

	Box Plot
	Query
	Evaluation

	Nutrient Statistics
	Indicative Measurements
	Query
	Evaluation

	Conclusion
	API Endpoints
	Technical Manual
	General Setup
	Setup for production

