
Design and Prototypical
Implementation of a Mobile Light

Client for the Bazo Blockchain

Marc-Alain Chételat
Zurich, Switzerland

Student ID: 10-915-718

Supervisor: Prof. Dr. Thomas Bocek, Bruno Rodrigues
Date of Submission: March 8, 2018

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Die Blockchain ist ein dezentrales Buchführungssystem, das keine vertrauenswürdige, zen-
trale Instanz erfordert. Transparente und unveränderbare Transaktionen können dabei
automatisch prozessiert werden. In dieser Arbeit wurde ein light client für das Bazo Zah-
lungsverkehrssystem [4] entworfen und anschliessend eine Prototyp-Version implementiert.
Der light client erlaubt es Benutzern - trotz beschränkter Speicher- und Netzwerkkapa-
zitäten - Daten der Blockchain in einer mobilen Umgebung zu nutzen und am Netzwerk
teilzuhaben. Ein Mechanismus, genannt multi-signature, erlaubt es Transaktionen innert
Sekunden zu verifizieren. Dies macht das System vielseitig einsetzbar, beispielsweise in
Läden oder Restaurants.

A blockchain is a trustless public ledger and allows the automatic process of transparent
and immutable transactions. This thesis contains the design and prototypical implemen-
tation of a light client for the Bazo payment system [4]. The light client allows users to
participate in the Bazo network in a mobile environment, where memory resources and
network bandwidth are limited. Further, the system allows to verify transactions within
seconds, using a mutli-signature mechanism. This makes the system usable for real-world
on-the-go payment use cases, e.g. in shops or restaurants.

i

ii

Acknowledgments

I want to express my sincerest gratitude to my supervisor Prof. Dr. Thomas Bocek for
his competent and enthusiastic support during this thesis. With his immense knowledge
and passion in the field of blockchains, he was able to help me during all times of research,
implementing and writing this thesis.

Further I would like to thank Bruno Rodrigues for sharing his academical expertise with
me and giving me positive feedback on my report.

Besides my supervisors, I would also like to thank Prof. Dr. Burkhard Stiller and the
members of the Communication Systems Research Group for giving me the opportunity
to work on such an interesting topic.

Last but not least I would like to thank my family and friends for their constant support
and encouragement during my whole studies.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background & Related Work 3

2.1 Blockchain Technology . 3

2.1.1 Transactions . 3

2.1.2 Chain of Blocks . 4

2.1.3 Full Client . 5

2.1.4 Light Client . 5

2.2 Bazo . 5

2.2.1 Accounts . 5

2.2.2 Transactions . 6

2.2.3 Blocks . 8

2.3 Bloom Filter . 10

3 Requirements 13

3.1 Mobile Environment . 14

3.2 Transaction Verification . 14

v

vi CONTENTS

4 Design 15

4.1 Block Header . 15

4.2 State Calculation . 16

4.3 Block Verification . 17

4.4 Scalability . 18

4.5 Multi-signature . 18

5 Implementation 21

5.1 Program Structure . 22

5.2 Downloading Block Headers . 23

5.3 Account Object . 23

5.4 Elaborating Relevant Blocks . 25

5.5 Block Verification . 25

5.5.1 Merkle Tree Build . 26

5.5.2 Merkle Tree Verification . 27

5.5.3 Leaf Verification . 28

5.6 State Calculation . 29

5.7 REST API . 31

5.7.1 GET /account/:address . 31

5.7.2 POST /createAccTx/:header/:fee/:issuer 31

5.7.3 POST /sendAccTx/:hash/:signature 32

5.7.4 POST /createFundsTx/:header/:amt/:fee/:txCnt/:from/:to 32

5.7.5 POST /sendFundsTx/:hash/:signature 33

5.7.6 POST /createConfigTx/:header/:id/:payload/:fee/:txCnt 33

5.7.7 POST /sendConfigTx/:hash/:signature 34

5.8 Multi-signature . 34

CONTENTS vii

6 Evaluation 37

6.1 Running light client on mobile devices . 37

6.2 Downloading Block Headers . 37

6.3 Sending FundsTx . 38

6.4 Verifying FundsTx . 38

7 Summary and Conclusions 39

7.1 Future Work . 39

Bibliography 41

Abbreviations 43

Glossary 45

List of Figures 45

List of Tables 47

A Installation Guidelines 51

A.1 Miner Application . 51

A.2 Light Client Application . 52

A.2.1 Sending an AccTx, FundsTx or ConfigTx 52

A.2.2 Request Account State . 52

A.2.3 Start REST API . 52

A.3 Multi-signature Application . 53

A.4 Utility Applications . 54

A.4.1 Keypairgen . 54

A.4.2 Signtx . 54

B Contents of the CD 55

viii CONTENTS

Chapter 1

Introduction

In 2008, a document called ”Bitcoin: A Peer-to-Peer Electronic Cash System”was released
under the name Satoshi Nakamoto. One year later, an open-source application was made
public [15]. An alternative currency to fiat money, called Bitcoin, was issued and backed
not by a central authority, but by automated consensus among networked users using the
open-source application. In a precise and technical definition, Bitcoin is digital cash that
is transacted via the Internet in a decentralized, trustless system using a public ledger
called the blockchain [21]. Since 2009, digital currencies and the blockchain technology
itself are on the rise. In February 2018, 1519 different cryptocurrencies were listed with a
total market capitalization of over 430 billion US dollars [9].

Since the financial industry is aware of this emerging technology, they are pushing to get
familiar with the blockchain technology and they are about to develop their own proof of
concepts. So does a Zurich-based financial service provider which is active in the field of
online payments. It developed a bonus program that incentivizes customers to use their
credit cards by issuing virtual points for every conducted purchase. In a next step, the vir-
tual points can be exchanged for Bazo coins by the finanical service provider’s customers.
Bazo is a blockchain-based cryptocurrency developed by the Communication Systems
Group of the University of Zurich [4]. The goal of this thesis is to design and implement a
light client solution for Bazo to enable customers manage accounts, send and receive Bazo
coins in a mobile environment. This thesis is a highly explorative collaboration between
the Communication Systems Group and the former described company.

1.1 Motivation

The blockchain technology provides Bazo’s public ledger, an ordered and timestamped
record of transactions stored in blocks giving the global state. All blocks chained in the
relevant order result in the blockchain. Since the network is organized in a decentral-
ized manner, each client of the Bazo network independently stores the blockchain only
validated by that client. Thus, to participate in this trustless network, a client must
download and validate initially all the blocks contained in the valid chain. Since the

1

2 CHAPTER 1. INTRODUCTION

client holds the entire chain in memory, it is able to evaluate the system’s state. For
example, for each available account, it can calculate the corresponding balance in Bazo
coins. A blockchain increases its size over time by nature. For example in January 2018,
the Ethereum blockchain reached approximately 300 GB in size [7]. Hence, the device
must meet minimum requirements regarding memory and network capacities in order to
manage the blockchain’s data. Requirements state-of-the-art mobile phones cannot meet.
But limiting this functionality only to clients using maschines with strong computational
and storage power, e.g. stationary computers, is nowadays not reasonable. Therefore the
concept of a light client must be ellaborated, designed and implemented for Bazo.

The goals of this thesis are to do research on how to reduce data in a blockchain and
integrate it into a light client application while keeping the data’s consistency. The system
must be evaluated and tested in an environment with real customers.

1.2 Description of Work

This thesis covers the development of a light client for the Bazo cryptocurrency. The
outline will be an ”adapter” for third party applications to the Bazo network validating
only particular data affecting the system’s state the client is interested in. For example
mobile wallets want to know one, two maybe three account addresses’ states and are
therefore only interested in a limited amount of transactions (and not all of them). Thus,
only the transactions relevant to the account’s state must be considered for validation.
This thesis ellaborates techniques to validate relevant transactions and to feed the network
with transactions in a fast and reliable way in a mobile environment.

1.3 Thesis Outline

The focus of this work is on running a prototype that will be tested and evaluated in the
financial service provider’s testing environment with real customers. In Chapter 2 the
blockchain technology as well as full and light clients will be introduced. The following
Section 2.1 will describe the Bazo protocol’s key properties on which the light client is
built-on. Further techniques used in the following Chapters will be elaborated. In Chapter
3 the financial service provider’s requirements and its implications for the prototype are
documented. Chapter 4, 5 and 6 outline the design, implementation and evaluation
respectively. Whereas Chapter 7 finally summarizes and concludes this thesis. Finally a
lookout about future work will be given.

Chapter 2

Background & Related Work

This Chapter introduces briefly the blockchain technology with a focus on full and light
clients respectively. The second Section describes the Bazo blockchain in order to under-
stand on what basis the light client is built-on.

2.1 Blockchain Technology

The blockchain technology is a decentralized system of chained transactional records.
A subset of network participants (also known as miners) enrich the chain by solving
difficult computational problems. Miners compete anonymously on the network to solve
the mathematical problem in the most efficient way. The successor adds the next block
to the chain and obtains a block reward (i.e. newly minted coins) as an incentive. The
transactions in the minted block are considered to be valid. All transactions ever validated
represent the public ledger, an immutable collection of transactions. If system-wide mining
power increases, so does the difficulty of the mathemmatical problems required to mine
new blocks (assuming proof-of-work mechanism) [17].

2.1.1 Transactions

Blockchain technology ensures to get rid of the double-spend problem [8] with the help
of cryptography. Each user is assigned a public and a private key. The public key is a
cryptographically generated address and can be shared among other users. The private
key is kept secret by the user (like a password). Every coin is associated with an address.
A transaction is simply a trade from one address to another and it is initiated if a user
(future owner) sends its address to the coin holder. The transaction is hashed and digitally
signed by the sender’s private key. Since the transaction contains the receiver’s public
key, only the user with the corresponding private key matching the public key is able to
spend the coins (Figure 2.1). An important feature is that public keys are never tied to
real-world identities. However, transactions are enabled without revealing the involved
parties’ identities and are still traceable. This is a major difference to transactions between
common financial institutions [17].

3

4 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.1: Blockchain-based transactions [15]

2.1.2 Chain of Blocks

The blockchain relies extensively on hashes and hash functions. A hash function is a
deterministic mathematical algorithm transforming an input into an output. It is char-
acterized by its extreme difficulty to revert. Thus, it is (almost) impossible to revert the
output in its original input. This is called the collision resistance [17].

In the blockchain, hash functions are used to hash block’s data. One or more transactions
are assigned to a block. Copies of transactions are hashed, and the hashes are then paired,
hashed, paired again and hashed again until a single hash results, the so-called merkle
root. This merkle root will be saved within the block together with the previous block’s
hash value and other arbitrary block data (e.g. timestamp, ...) (Figure 2.2). A block
saving the predecessor’s hash value chains the blocks together. This ensures a transaction
cannot be modified without modifying the block that records it and all proceeding blocks
[6].

Figure 2.2: Simplified blockchain [20]

2.2. BAZO 5

2.1.3 Full Client

Since the blockchain stands as a trustless proof mechanism of all transactions on the
network, users can trust the system of the public ledger stored worldwide on different
decentralized full clients (also denoted as nodes) maintained by ”miner-accountants”. Each
full client (i.e. every computer connected to the network using a client that performs the
task of validating transactions) has a local copy of the blockchain, which is downloaded
automatically when the full client joins the network [21].

2.1.4 Light Client

In 2016, digital services have been shifted twelve percent to mobile environments within
a year and the trend continues [13]. Therefore applications for blockchains must be work-
ing in mobile environments. Unfortunately, the participation of mobile clients was not
originally intended by the creators of the blockchain architecture. As mentioned earlier,
the Ethereum blockchain’s size would nowadays exceed a regular mobile phone’s memory
capacity, referring to only one problem. In order to make participation possible for tech-
nically less powerful clients, mechanisms must be developed to meet the devices technical
constraints. Therefore the light client protocol is introduced. Its purpose is to allow
users to obtain reliable, secure information on their accounts by verifying only all relevant
transactions. A light client cannot mine new blocks.

2.2 Bazo

Bazo is a blockchain-based cryptocurrency developed at the Communication Systems
Group at the University of Zurich together with the mentioned financial service provider.
The goal is to create a decentralized, simplified payment system for the financial service
provider’s bonus system. Bazo uses an account-based data model where transactions lead
to account state changes. All accounts of the Bazo blockchain united make up the public
ledger. All of this Section’s content refers to ”Bazo - A Cryptocurrency from Scratch”
[18].

2.2.1 Accounts

An account object has the following structure:

Address The address of the account is the public key of an elliptic curve key pair.

Balance The balance represents the amount of Bazo coins residing in the account.

Transaction Counter The transaction counter is used to prevent replay attacks. This
counter is incremented in the sender’s account for every transaction that involves
the transfer of coins.

6 CHAPTER 2. BACKGROUND & RELATED WORK

2.2.2 Transactions

Transactions are the basis for every state change. Bazo takes three different trans-
actions to manipulate the state. Transactions for account creation, transferring funds
and changing system parameters. All transaction types contain a fee and a signature.
The fee is payed by the creator of the transaction and incentivizes the miners to include
the transaction in the next block. The signature is for authentication and validation
purposes.

Users cannot join the Bazo network voluntarily, since it represents a private/invite-only
blockchain. Before a new user can transfer coins, a root user must create a new account.
Account creation transactions are referred to as AccTx for the rest of the thesis.

An account creation transaction has the following structure (Table 2.1):

Transaction Property Description

AccTx
Header Reserved for later use
Issuer The root’s public key (hash)
Address The newly created account’s public key
Fee The fee payed for the transaction
Signature The transaction’s signature

Table 2.1: Overview of the AccTx ’s structure

In order to transfer coins from one account to another, funds transaction (from now on
referred as FundsTx) are introduced. FundsTx are valid, if the transaction was signed by
the sender’s private key, the sender’s balance is equal or greater than the amount spent
and the sender’s transaction counter matches the state.

A fund transferring transaction has the following structure (Table 2.2):

Transaction Property Description

FundsTx
Header Reserved for later use
Amount The amount to be transfered
Transaction Counter The sender’s transaction counter
From The sender’s public key (hash)
To The receivers’s public key (hash)
Fee The fee payed for the transaction
Signature The transaction’s signature

Table 2.2: Overview of the FundsTx ’s structure

Using the system parameters transaction, the Bazo protocol’s system parameters can be
changed at runtime and hard forks can be avoided. A system parameters transaction is
only valid, if it was signed by a root account. System parameters transaction are denoted
as ConfigTx.

A system parameters transaction has the following structure (Table 2.3):

2.2. BAZO 7

Transaction Property Description

ConfigTx
Header Reserved for later use
Id The parameter to be changed
Payload New value for the chosen parameter
Transaction Counter The sender’s transaction counter
Fee The fee payed for the transaction
Signature The transaction’s signature

Table 2.3: Overview of the ConfigTx ’s structure

Table 2.4 describes all system parameters, which can be changed using a ConfigTx.

Id Property Description
1 Block size This parameter stands for the maximum block size (in bytes).

Received blocks that are larger than this parameter get re-
jected by the miners.

2 Difficulty interval For stability reasons the difficulty of the proof-of-work should
be relative to the hashrate of the Bazo system. This param-
eter indicates the amount of blocks that are to be validated
before a new target value is calculated.

3 Fee minimum To incentivize miners for their mining work, the minimum fee
that a transaction needs to pay can be set.

4 Block interval The block interval is a time parameter that describes how
much time (in seconds) shall pass between two blocks.

5 Block reward To further boost miner incentives, an additional block mining
reward can be set with this parameter.

Table 2.4: System parameters which can be changed using a ConfigTx.

8 CHAPTER 2. BACKGROUND & RELATED WORK

2.2.3 Blocks

Transactions themselves do not change the system’s state, but they are consolidated to
blocks. If a block is validated successfully, it is added to the chain and the system’s state is
updated. The main reason for having transactions consolidated within blocks are system
stability and consensus.

A block has the following structure (Table 2.5):

Property Description
Hash The block hash acts as a unique identifier of blocks

within the blockchain.
Previous Hash This value is equal to the identifier of the previous block

in the blockchain.
Nonce The nonce is set to a value such that the resulting hash

fulfills the proof-of-work requirements.
Timestamp Refers to the block creation time (seconds elapsed since

January 1, 1970 UTC).
Merkle Root The value of the merkle tree’s root node.
Beneficiary The address hash of the account that receives fee pay-

ments and the block reward.
Nr. AccTx/FundsTx/
ConfigTx

Corresponds to the number of transactions of each type
that are included in the block.

Hash Data AccTx/
FundsTx/ConfigTx

The hashes of all transactions included in this block in
sequential order.

Table 2.5: Overview of a block’s structure

A block’s size depends on how many transaction hashes are saved within the block’s body.
The header’s size is 149 bytes (Figure 2.3).

Figure 2.3: Block divided into header and body [18]

2.2. BAZO 9

In contrary to most blockchains, only the transaction’s hash values are saved in blocks.
The goal is to keep the block size as small as possible. A block is considered to be valid
and added to the chain if all of the following requirements are met:

• All included transactions must be structurally valid and their sequential execution
must lead to legal state changes.

• There must be no transaction duplicates within the block.

• There must be no transaction that was already validated in a previous block.

• The block must belong to the longest chain at the time of validation.

• The timestamp of the block must be within a predefined timerange of the validation
time.

• The block size must not be larger than the current block size parameter.

• The beneficiary account must exist in the state.

• The merkle root must be correctly calculated.

• The proof-of-work must satisfy the consensus properties.

10 CHAPTER 2. BACKGROUND & RELATED WORK

2.3 Bloom Filter

A bloom filter is a space-efficient, probabilistic data structure and tests if an element is
a member of a set or not. False positive matches are possible, false negatives are not
[1]. For example, a query returns ”element is possibly in the set” or ”element is for sure
not in the set”. Instead of a bloom filter, hash maps could be used for efficient lookups,
but bloom filters are additionally space-efficient. A bloom filter is a bit array of m bits,
where m denotes the array’s length. Another parameter is the number of hash functions
k. Each hash function sets the bits in the array. When inserting an element si into the
bloom filter, all the bits h1(si), h2(si), ..., hk(si) are set.

Figure 2.4: Bloom filter with m = 8 [20]

Example 1. Figure 2.4 indicates how an element si is hashed and the bits flipped in a
bit array with m = 8 bits. The hash functions flip the second and the sixth bits whereas
hash collisions are allowed (second bit). Querying the bloom filter for the existence of the
element si will hash it again. If the hashes correspond to the flipped bits in the array, the
result will be positive (”element is possibly in the set”) (Figure 2.4).

Since hash collisions are accepted, false positives might occur. The false positive-rate
depends on the array’s length m and the number of hash functions k. This leads to the
following trade-off: As the size of the bloom filter m increases, the occurrence of hash
collisions for multiple items that are inserted into the bloom filter drops and the false
positive-rate decreases [2]. In the extreme case no hash collisions at all occur and each
element of the set is mapped to a unique bit. But at the same time the bloom filter
increases in space.

The functions for choosing the bloom filter’s size m and the quantity of hash functions k
for achieving a certain false positive-rate p can be written as:

m = ceil(
n ∗ log(p)

log(1
2log(2)

)
) (2.1)

2.3. BLOOM FILTER 11

and
k = round(log(2) ∗m/n) (2.2)

with n representing the known number of elements in the set [19] (Example 2).

Example 2. Assumed n = 100 elements should be saved in the bloom filter with a false
positive-rate of p = 0.1, m and k will be calculated as shown in Equation 2.3 and Equation
2.4.

m = ceil(
100 ∗ log(0.1)

log(1
2log(2)

)
) = 480 (2.3)

according to Equation 2.1 and

k = round(log(2) ∗ 480/100) = 3 (2.4)

according to Equation 2.2. Saving 100 account addresses each having a size of 32 bytes
(see Subsection 2.2.1) requires 100 ∗ 32 = 32000 bytes of space, compared to 480

8
= 60

bytes needed for the bloom filter (taking a false positive-rate of 0.1 into account).

12 CHAPTER 2. BACKGROUND & RELATED WORK

Chapter 3

Requirements

The following use case was defined by the financial service provider: Customers must hold
a specific credit card issued by the financial service provider and participate in a bonus
program. The bonus program allows customers to collect bonus coins which then can be
transferred to Bazo coins.

Figure 3.1: Use cases for Bazo

As Figure 3.1 indicates for Bazo, root accounts must be able to create new user accounts.
Either they are regular or root users. By the time an account is created, the account’s
balance is zero. A root account has the permissions to initially fund another account
without having coins substracted from its balance. Root accounts are also able to adjust
system parameters.

Regular users initially convert bonus coins into Bazo coins. Therefore a functionality must
enable users to load Bazo coins into their wallet, issued by a root. If not needed anymore,
Bazo coins must be able to be converted back into fiat money and sent to a regular bank

13

14 CHAPTER 3. REQUIREMENTS

account. The system’s core functionality is sending and receiving Bazo coins to and from
other users respectively. Since the pilot project aims to test the system in the financial
provider’s cafeteria, users must be able to pay with Bazo on-the-go and the receiver of
funds must be able to verify the corresponding transaction within three seconds. Thus, the
wallet with its functionalities to show account details, send and receive Bazo coins must
be working on mobile devices. Taking the current version of Bazo [18] into consideration,
the following problems described in Sections 3.1 and 3.2 can be identified:

3.1 Mobile Environment

Every client needs to download the whole blockchain data in order to participate. Since
Bazo adds a new block to the chain constantly in a defined time interval, the blockchain
grows indefinitely, even if no transactions were included in the added block [18]. Thus, the
Bazo blockchain could reach several hundred gigabytes, such as the Ethereum blockchain
already did [7]. At this point, a mobile client hits its technical constraints offering be-
tween 32 and 256 GB of disk memory and usually 2 GB random-access memory. Further
national-wide network services limit downloading these amounts of data in a mobile en-
vironment, providing 20 to 30 Mbit/s in Switzerland [16].

3.2 Transaction Verification

The financial service provider requires a transaction to be verified within three seconds,
but blockchains are not designated to verify transactions immediatly. A transaction is
considered to be valid if the block it is saved in is successfully added to the chain and
minted by the network. For example the Bitcoin blockchain adds a new block every seven
to eight minutes in average, the Ethereum every 16 seconds [7]. Creating a block every
three seconds in order to meet the requirement is not an option, since this leads to chain
forks which must be resolved [18].

Thus the light client must fulfill the following requirements:

1. A mobile device must be able to calculate one or more accounts’ states and display
relevant account information such as the address and balance.

2. A mobile device must be able to send funds to the network in a reliable and secure
way.

3. A mobile device must be able to verify the funds received within three seconds.

Chapter 4

Design

Even if the Bazo protocol optimizes memory management by design, it does not make
sense to download the whole blockchain if the client is only interested in a subset of
transactions. For instance if a user wants to know its balance, it does not need to know
all transactions ever saved in the blockchain, but those which are relevant to the user’s
account. Obviously, account information could be obtained by requesting it from a full
client. Since the blockchain is a trustless system, this solution is not an option. Every
account creation was processed in an AccTx initially. FundsTx must follow after, process-
ing sending and receiving coins. This chapter outlines the ligth client’s design for Bazo
according to its requirements described in Chapter 3. First a refactored block structure is
introduced, altering the original Bazo block’s [18] header and body. Afterwards a solution
is presented to calculate an account’s state, taking transaction verification and scalability
into consideration. Finally a mechanism called multi-signature will be introduced to verify
FundsTx within the required time limit (three seconds).

4.1 Block Header

The block structure introduced in Subsection 2.2.3 is refactored and extended with the
following properties:

• A bloom filter and;

• the corresponding bloom filter’s size.

Figure 4.1 illustrates the block’s partition into a header and a body part. The block’s hash,
previous hash and NrConfigTx parameters are kept in the header. The newly introduced
bloom filter and its size are added. The header contains now all information needed to
evaluate if this block is relevant for an account’s state calculation or not. The header has
a minimum size of 67 bytes.

15

16 CHAPTER 4. DESIGN

Figure 4.1: Refactored block structure

4.2 State Calculation

The light client needs to keep track of the following transactions for all relevant accounts
am, where m ∈ N:

• The one AccTx the account am and its address were created.

• All FundsTx the account am has been involved in (From/To).

• All ConfigTx changing system parameters.

Since the system parameter block reward is relevant for an account’s state calculation (i.e.
its balance), the light client needs to keep track of all ConfigTx. To calculate an account’s
state, the block containing the initial AccTx and all blocks containing relevant FundsTx
as well as ConfigTx must be downloaded. The AccTx can be identified by the address
property. All relevant FundsTx contain the account’s address in the From/To fields (see
Subsection 2.2.2). One approach of requesting the relevant blocks from the network is
handing over the account’s address and letting the network send the relevant blocks. By
submitting the address to the network, privacy violations must be taken into consideration.
While sending the account address from a device with an allocated IP-address the user’s
real identity could be revealed and the networks anonymity feature would be compromised.
Therefore the better approach is to let the client search for relevant blocks and afterwards
request them from the network. As introduced, the download of all blocks should be
avoided. At this point, the light client only downloads all block headers - a selection of
parameters and no transaction data (Figure 4.1). In order to separate the relevant from
irrelevant blocks, all involved addresses - more specific their hashed values - are saved
in a space-efficient, probabilistic data structure called bloom filter (see Section 2.3). As
discussed in the beginning of this Section, an account is involved in the block and its
address is saved in the bloom filter if at least one of the following conditions is met:

• The block includes the AccTx the account was created.

4.3. BLOCK VERIFICATION 17

• The block includes a FundsTx, the address belongs either to the sender or to the
receiver account.

• The block’s beneficiary is the account.

Thus, a block is relevant for the light client if:

• The bloom filter’s test of a particular address is positive.

• The NrConfigTx is greater than zero.

Hence, the light client requests all relevant blocks containing all transaction data from
the network. The account’s state can be calculated with all information available. As
explained in Section 2.3, the trade-off for space-efficiency is the false positive-rate of
bloom filter testing. For Bazo, a false positive-rate of 10% is given. Thus, in 10% of
all cases, the light client requests an irrelevant block. This might be a disadvantage but
keeps privacy alive. Considering the case if the bloom filter only contains one address,
with a false positive-rate of zero, the network knows the requester’s address. With a false
positive-rate of 10%, the network cannot conclude the very same.

4.3 Block Verification

Bazo is a trustless system and the light client must not rely on received data sent by
the network. The light client cannot assume the block’s data to be valid. It needs to
check the block’s integrity and verify it by itself. Merkle trees provide efficient and secure
verification of large amounts of data [14]. The process of data verification is simplified
and scalable. Using merkle trees, the light client can easily check the block’s integrity
and the existence of a particular transaction in the block. Because all transactions in
the block are part of the merkle root hash calculation, no transaction can be added or
omitted after the merkle root has been calculated. Even the transaction order cannot
be changed afterwards. A particular transaction’s verification requires the merkle root,
obtained from the block header, and a list of intermediate transaction hashes from a full
client. The full client does not need to be trusted. The intermediate hashes cannot be
faked or the recalculation of the merkle root will fail [6]. Example 3 illustrates how the
light client verifies HK .

Example 3. To ensure the existence of HK , the light client must obtain HL, HIJ , HMNOP

and HABCDEFG in sequential order (Figure 4.2). The nodes HKL, HIJKL, HIJKLMNOP

and the merkle root HABCDEFGHIJKLMNOP are recalculated by the light client based on
the obtained intermediates. If the calculated merkle root matches the block header’s
merkle root, the transaction is in the block. The opposite case, however, is not true: If
the recalculated merkle root does not match, it does not proof the inexistence of HK .

18 CHAPTER 4. DESIGN

Figure 4.2: Merkle root verification of HK [3]

4.4 Scalability

Scalability is a key feature for Bazo. The Bazo blockchain was designed for scalability
and simplicity [18]. Thus, the light client must cope with scalability as well in order to
avoid being a bottleneck for applications. The light client must work for multiple accounts
with an arbitrary long blockchain. Forecasting the future key values such as chain length
and transaction throughput are difficult to make. The Ethereum blockchain’s properties
are taken as benchmark values, since Ethereum is at that time one of the most efficient
blockchains [7].

By extending the block header with a bloom filter, the header size becomes variable. Its
minimum size is 67 bytes, if no transactions are available and the bloom filter is empty.
If transactions are available, the block header size depends on how many accounts are
involved into all transactions. The following calculations ensures, that the light client
design is scalable:

In Bazo, a new block will be minted every minute in avergage [18]. In the early January
2018, Ethereum verifies 700 transactions per minute and the whole chain contains around
1 million blocks [7]. If Bazo verifies 700 transactions per minute at peak time, 1’400
addresses are stored in a block header at maximum (two for each transaction). Using
Equation 2.1, to calculate the bloom filter’s size, a block header results in almost 1 KB.
Downloading initially 1 million block headers, each of 1 KB in size results in 1 GB total.
With an average mobile data connection speed of 25 Mbps [16], it takes approximately
five minutes to download all block headers.

4.5 Multi-signature

As required by the financial service provider’s use case defined in Chapter 3, a user must
be able to verify a transaction within three seconds. As mentioned earlier, minting blocks
every three seconds is not an option. Therefore multi-signature is introduced. With multi-
signature all FundsTx must be signed twice in order to be valid: By the sender as yet
and by a third party additionally. The third party is a counterparty-server, designated
only for multi-signing FundsTx. It keeps track of an account’s open transactions and

4.5. MULTI-SIGNATURE 19

decides if an account is solvent for incoming spendings or not. If the account is solvent,
the multi-signature server signs the transaction and the network will be able to verify
it. Therefore, the existing Bazo FundsTx must be extended by a second signature. The
adapted protocol is illustrated in Figure 4.3.

Figure 4.3: Extended FundsTx -protocol by second signature (Sig2)

First, the sender creates a FundsTx and signs it with its private key. After sending it to the
light client, the FundsTx is sent to the multi-signature server with the sender’s balance.
The multi-signature server calculates whether the sender has enough funds considering
all open transactions. Open transactions are not yet saved in a block and verified by
the network. If there are enough funds, the multi-signature server signs the transaction
a second time and sends it back to the light client. The light client then sends the
transaction into the network and to the fund’s receiver. The receiver is able to verify
the second signature by itself and can assure, the sender has enough funds to spend the
amount, although the transaction has not yet been verified by the network. In order to
make sure the FundsTx reaches the network, the receiver can send the FundsTx a second
time (Figure 4.4).

20 CHAPTER 4. DESIGN

Figure 4.4: Integration of the multi-signature server

Chapter 5

Implementation

First, an overview about the light client’s program structure is given. The Section fol-
lowing describes how the light client connects to the network in order to fetch all block
headers. Then, the one and only new object the light client uses is described: The Account
object. Afterwards an overview how the relevant blocks are elaborated is given, followed
by Section 5.5 explaining how the light client can verify block and transaction data. Sec-
tion 5.6 describes how the light client calculates an account’s state. Since third-party
applications - e.g. a web client - must be able to connect to the light client, Section 5.7
introduces a REST API. The last Section 4.5 illustrates how the multi-signature mecha-
nism is implemented.

21

22 CHAPTER 5. IMPLEMENTATION

5.1 Program Structure

The light client is written - as the Bazo miner application (bazo-miner) - in Go which is
a programming language supporting networking and concurrent programming [12]. The
program is called bazo-client within the Bazo project [4]. Since in Go, import cycles
are not allowed, the program must meet a predefined structure, illustrated in Figure 5.1.
The program includes two packages; called client and REST. Further it includes packages
from the Bazo miner application. These are mainly protocols, utility functions and the
IP address for the connection to the Bazo network.

Figure 5.1: Bazo light client’s program structure

The light client can be started by calling main.go. Installation and startup guidelines are
described in Appendix A. Three different functionalities are provided, depending on the
user’s needs:

1. Start for sending an AccTx, FundsTx or ConfigTx to the network.

2. Start for requesting an account’s state.

3. Start the light client’s REST interface for handling incoming requests.

Sending transactions to the network and requesting an account’s state (functionalities 1
and 2) over the CLI are mainly for admin purposes only. These functionalities can be
accessed over the REST API too. Starting the latter is for serving third-party applications
using the light client for accessing the network. The functionalities 2 and 3 do state
calculation for a given account and therefore need to download all block headers from the
current chain.

5.2. DOWNLOADING BLOCK HEADERS 23

5.2 Downloading Block Headers

On startup - for functionalities 2 and 3 - the method InitState() is called. Figure 5.2
illustrates how all block headers are requested from the network. Since the light client
receives block headers reverse chained [18], the last block header will be saved first in
the light client’s memory. In order to calculate an account’s state, all transactions must
be processed time-ordered, starting with the oldest. The reason is that before FundsTx
can exist for a certain account, an AccTx must have created it. Thus, the block header’s
sequencial order must be inverted. All block header’s are finally stored in the light client’s
RAM. For instance, they are not persisted. This implies redownloading all block headers
again if the light client shuts down. After downloading all headers up-to-date, the light
client starts a goroutine [12], a leightweighted thread of execution. It will download every
ten seconds the headers of the new minted blocks recursively. The execution happens
concurrently with the calling one.

Figure 5.2: UML activity diagram representing how block headers are requested from the
network

5.3 Account Object

The light client maintains an account object for each request calculating an account’s
state. Afterwards, the object is discarded again. The account object’s structure is defined
in account.go in the client package and implies the following fields:

• Address as [64]byte

24 CHAPTER 5. IMPLEMENTATION

• Address as string

• Balance as uint64

• TxCnt as uint32

• IsCreated as bool

• IsRoot as bool

The address field must be represented as a string additionally, in order to be readable in
JSON, used as the REST’s resulting format (Section 5.7). Further information about the
balance, the account’s transaction counter [18] and two boolean values representing if the
account has been created and if it is a root account respectively are saved in the account
object.

5.4. ELABORATING RELEVANT BLOCKS 25

5.4 Elaborating Relevant Blocks

If an account’s state is calculated, the light client first checks all block headers for their
relevance. As in Section 4.2 described, a block is relevant if the bloom filter test for a
certain address is positive or if the block contains at least one ConfigTx. The process
is illustrated in Figure 5.3. The relevant blocks are requested from the network over a
TCP-connection. The blocks are not cached and the next time the same account’s state
is requested, all relevant blocks have to be elaborated and requested from the network
again.

Figure 5.3: UML activity diagram representing how block headers are tested for relevance

5.5 Block Verification

The light client only verifies blocks which are elaborated as relevant according to Section
5.4. As introduced in Section 4.3, a block’s merkle root is saved within the block and helps
to verify the block’s transactions and to assure the block’s integrity. The merkle root is
calculated out of all transaction’s hash values, which represent the leafs in a binary tree

26 CHAPTER 5. IMPLEMENTATION

(Figure 4.2). The following subsections describe how building a merkle tree is implemented
and how either the whole tree or only individual leafs can be verified.

5.5.1 Merkle Tree Build

In the miner applicaiton’s code, the newTree() method in merkletree.go accepts all trans-
action’s hash values as input arguments which are considered to be saved in the corre-
sponding block and returns finally the root and leaf nodes of the merkle tree. Intermediate
nodes are built in order to calculate the root’s hash value and denote all nodes between
the root and the leafs. If no transactions are saved in a block, the root’s hash value is
zero. A Node object has the following attributes:

• Parent as *Node

• Left as *Node

• Right as *Node

• leaf as bool

• dup as bool

• Hash as [32]byte

An overview of the possible relations between root, leaf and intermediate nodes’ attributes
is given in Table 5.1:

Node Parent Left Right leaf dup Hash
Root - Interm. Interm. false false [32]byte
Interm. Root/Interm. Interm./Leaf Interm./Leaf false false [32]byte
Leaf Interm. - - true true/false [32]byte

Table 5.1: Possible relations for root, leaf and intermediate nodes

In a first step, all leaf nodes are built. A leaf’s hash value equals the corresponding
transaction’s hash value. If the number of transactions is odd, the last leaf’s copy is
added in addition. Then all intermediate nodes are built recursively in buildIntermediate()
(Algorithm 1).

5.5. BLOCK VERIFICATION 27

Algorithm 1: Building the root and intermediary nodes

Data: Array of nodes to build intermediates from; nodes
Result: Array of intermediate nodes or root node; newNodes

1 l := len(nodes);
2 while l is not power of 2 do
3 l = l - 1;

4 for i := 0; i < l; i = i + 2 do
// Generate the new parent’s hash from bottom up.

5 parentHash = nodes[i].Hash + nodes[i+1].Hash;
6 parent = Node{Left: nodes[i], Right: nodes[i+1], Hash: parentHash};

// Add the new parent to the result.

7 newNodes = append(newNodes, parent);
8 nodes[i].Parent = parent;
9 nodes[i+1].Parent = parent;

// Abort recursive method if the root node is generated.

10 if l == 2 then
11 return newNodes;

// Add the remaining nodes not considered to the next level.

12 if l < len(nodes) then
13 for i := l; i < len(nodes); i++ do
14 newNodes = append(newNodes, nodes[i]);

// Recursive call

15 buildIntermediate(newNodes);

5.5.2 Merkle Tree Verification

For verifying a block’s merkle root, the whole tree must be available or rebuilt. The
method verifyNode() checks the tree recursively and recalculates the hash for the requested
node. Later, the hash values can be checked for equality. Algorithm 2 illustrates the
function:

Algorithm 2: Verifying a node’s hash value, if merkle tree is available

Data: node
Result: hash
// The bottom of the tree has been reached.

1 if node.Leaf then
2 return node.Hash;

// Recursive calls

3 leftHash := node.Left.verifyNode();
4 rightHash := node.Right.verifyNode();
5 return sha3.Sum256(append(leftHash, rightHash);

28 CHAPTER 5. IMPLEMENTATION

5.5.3 Leaf Verification

In the light client’s mobile environment, rebuilding the merkle tree as in Subsection 5.5.2
for verifying only a subset of transactions - the relevant once - is not efficient, considering
the fact that an arbitrary long number of transactions can be saved within a block.
Thus, a mechanism for verifying individual transactions as in Example 3 shown must
be implemented in an efficient way. The light client requests for a certain transaction
and its corresponding block all intermediary nodes which are necessary to recalculate the
merkle root from the network. The network node receiving the request must recalculate
the block’s merkle tree and filter the intermediates (Algorithm 3).

Algorithm 3: Filter intermediate nodes for leaf

Data: leaf
Result: intermediateNodes

1 currentNode = leaf;
2 currentParent = leaf.Parent;
3 for currentParent != nil do
4 left := currentParent.Left;
5 right := currentParent.Right;
6 if currentNode.Hash == left.Hash then
7 intermediateNodes = append(intermediateNodes, right.Hash, currentParent);
8 else if currentNode.Hash == right.Hash then
9 intermediateNodes = append(intermediateNodes, left.Hash, currentParent);

10 currentNode = currentParent currentParent = currentParent.Parent

When done, the intermediates are sent back to the light client. The light client uses them
to recalculate the merkle root. If the root’s hash value equals the one saved in the block,
the light client can be sure that...

• ...the transaction requested has been saved in the block.

• ...the transaction requested has not been altered after the block has been minted.

• ...no transaction has been removed or added after the block has been minted.

5.6. STATE CALCULATION 29

5.6 State Calculation

After having relevant transactions filtered and verified, the account’s state calculation can
be started and the function getState(*account) is called. A pointer to the account object
is given. The state changes are written directly on the object (Algorithm 4).

Algorithm 4: Light client: Account state calculation

Data: acc
1 for all relevant blocks do

// Collect the block reward.

2 if block.Beneficiary == acc then
3 acc.Balance += blockReward;

// Process AccTx

4 for all AccTx do
5 accTx := requestTx();
6 if accTx.PubKey == acc || block.Beneficiary == acc then
7 verify(accTx);
8 if accTx.pubKey == acc then
9 acc.IsCreated() = true;

10 if block.Beneficiary == acc then
11 acc.Balance += accTx.Fee;

// Process FundsTx

12 for all FundsTx do
13 fundsTx := requestTx();
14 if fundsTx.From == acc || fundsTx.To == acc || block.Beneficiary == acc

then
15 verify(fundsTx);
16 if fundsTx.From == acc then
17 if !acc.IsRoot() then
18 acc.Balance -= fundsTx.Amount;
19 acc.Balance -= fundsTx.Fee;

20 acc.TxCnt += 1;

21 if fundsTx.To == acc then
22 acc.Balance -= fundsTx.Amount;
23 if block.Beneficiary == acc then
24 acc.Balance += fundsTx.Fee;

// Process Config

25 for all ConfigTx do
26 configTx := requestTx();
27 if block.Beneficiary == acc then
28 verify(configTx);
29 acc.Balance += configTx.Fee;

// Configuration parameters must be updated client-side.

30 UpdateConfigParameters(configTx);

30 CHAPTER 5. IMPLEMENTATION

First, Algorithm 4 checks if the account belongs to the miner who minted the block. If this
is the case, the account collects the block reward in Bazo coins (line 3). Then all AccTx
of the corresponding block are processed. If the account’s address equals the AccTx ’s
pubKey property, the account can be considered as created. There is one exception: The
initial root account has no AccTx, since the initial root account’s address is hard coded
[18]. However, this does not concern new created root accounts. Since a root account
can fund some other account without having coins substracted, this is relevant for state
calculation (line 17). Afterwards, all FundsTx and ConfigTx are processed. For FundsTx,
the Amount is either added or subtracted respectively. For all types of transactions it is
required to first verify the transaction (lines 7, 15, 26) and to collect the transaction fee
if the account is the block’s beneficiary.

5.7. REST API 31

5.7 REST API

This Section describes the light client’s REST API and its endpoints. The API implements
HTTP GET and HTTP POST requests for account querying, transaction creation and
sending respectively. For requesting data HTTP GET methods are used. Since HTTP
POST requests are not cached and safer, methods submitting data are implemented using
HTTP POST methods [22]. The API is available on port 8001 by default but can be
changed in p2p.go. REST.go in the REST package initiates the interface and routes the
incoming requests to the corresponding endpoints.

5.7.1 GET /account/:address

This endpoint is called for requesting account information. The following parameters are
included in the request:

ADDRESS The account’s public address (public key).

The light client answers with a JSON formatted reply:

{

"code": 200,

"content": [

{

"name": "account",

"detail": {

"address": "f894ba7a24c1[...]",

"balance": 1136,

"txCnt": 1,

"isCreated": true,

"isRoot": true

}

}

]

}

The endpoint accepts the hashed address as well. In this case, the light client first requests
the account’s address from the network by the hash value.

5.7.2 POST /createAccTx/:header/:fee/:issuer

This endpoint is called for creating an AccTx. The following parameters are included in
the request:

HEADER The header for the transaction.

32 CHAPTER 5. IMPLEMENTATION

FEE The fee payed for the transaction.

ISSUER The root account issuing the transaction.

The light client answers with a JSON formatted reply:

{

"code": 200,

"message": "AccTx successfully created.",

"content": [

{

"name": "PubKey1",

"detail": "b8999ba5ce36[...]"

},

{

"name": "PubKey2",

"detail": "e8912b65384d[...]"

},

{

"name": "PrivKey",

"detail": "5d9dfe8d55b7[...]"

},

{

"name": "TxHash",

"detail": "39c6376b0b6d[...]"

}

]

}

5.7.3 POST /sendAccTx/:hash/:signature

This endpoint is called for sending an AccTx to the network. The following parameters
are included in the request:

HASH The transaction’s hash value.

SIGNATURE The transaction’s signature (Sig1).

The light client answers with a Code 200 if the transaction has been sent successfully.

5.7.4 POST /createFundsTx/:header/:amt/:fee/:txCnt/:from/:to

This endpoint is called for creating a FundsTx. The following parameters are included in
the request:

5.7. REST API 33

HEADER The header for the transaction.

AMT The amount payed from sender to receiver.

FEE The fee payed for the transaction.

TXCNT The sender’s transaction counter.

FROM The sender’s account address.

TO The receiver’s account address.

The light client answers with a JSON formatted reply:

{

"code": 200,

"message": "FundsTx successfully created.",

"content": [

{

"name": "TxHash",

"detail": "e96a86570482[...]"

}

]

}

5.7.5 POST /sendFundsTx/:hash/:signature

This endpoint is called for sending a FundsTx to the network. The following parameters
are included in the request:

HASH The transaction’s hash value.

SIGNATURE The transaction’s signature (Sig1).

The light client answers with a Code 200 if the transaction has been sent successfully.

5.7.6 POST /createConfigTx/:header/:id/:payload/:fee/:txCnt

This endpoint is called for creating a ConfigTx. The following parameters are included in
the request:

HEADER The header for the transaction.

ID The configuration parameter’s id.

PAYLOAD The new value to be set for the parameter.

34 CHAPTER 5. IMPLEMENTATION

FEE The fee payed for the transaction.

TXCNT The sender’s transaction counter.

The light client answers with a JSON formatted reply:

{

"code": 200,

"message": "ConfigTx successfully created.",

"content": [

{

"name": "TxHash",

"detail": "90a95f2aaee4[...]"

}

]

}

5.7.7 POST /sendConfigTx/:hash/:signature

This endpoint is called for sending a ConfigTx to the network. The following parameters
are included in the request:

HASH The transaction’s hash value.

SIGNATURE The transaction’s signature (Sig1).

The light client answers with a Code 200 if the transaction has been sent successfully.

5.8 Multi-signature

The multi-signature server is a small Go program called Bazo-multisig within the Bazo
project [4]. On startup, it listens on port 8002 by default for incoming FundsTx or
updates to sign (Sig2) as described in Section 4.5. The port can be changed in p2p.go
within the bazo-client program. It maintains open FundsTx within application memory.
These are transactions which have been signed by the program but are not yet verified
by the network. As soon as a FundsTx has been verified, the network sends an update to
the multi-signature server and the open transaction gets deleted. Figure 5.4 explains how
the multi-signature server decides if a transaction has to be signed or rejected.

5.8. MULTI-SIGNATURE 35

Figure 5.4: Multi-signature protocol activity

36 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

The light client’s requirements were defined in Chapter 3 as the following:

1. A mobile device must be able to calculate one or more accounts’ states and display
relevant account information such as the address and balance.

2. A mobile device must be able to send funds to the network in a reliable and secure
way.

3. A mobile device must be able to verify the funds received within three seconds.

6.1 Running light client on mobile devices

The bazo-client application does not run on mobile platforms like Android on iOS. Go
mobile provides support by either writing all-Go native mobile applications or writing
SDK applications by generating bindings and invoke them from Java or Objective-c [11].
Nevertheless, type restrictions must be considered given by the platforms. For instance,
the Android -platform supports only a subset of Go types (e.g. signed integer and floating
point types) [12]. Unfortunately, these requirements can not be met considering the
current Bazo version. Thus, running the light client on a mobile device is not yet possible.
For the financial service provider’s use case, a fallback solution has been planned and will
be activated.

The fallback solution plans to run the light client on a trusted server. Instead of running
the light client locally and serving the REST API over the local interface, the light client
runs on a server owned by the financial service provider.

6.2 Downloading Block Headers

As stated in Section 4.4: 1 million block headers, resulting in 1 GB of size, should be
downloaded within five minutes. This is with the current implementation not possible,

37

38 CHAPTER 6. EVALUATION

since TCP is used. Thus, each time before requesting a header, a new connection has to
be established and afterwards closed again. This generates overhead resulting in latency.
Table 6.1 shows downloading times for different amounts of block headers.

Number of block headers Duration [mm:ss]
5’000 03:40
10’000 07:21
20’000 14:42
30’000 22:01
40’000 29:24
50’000 36:24
100’000 73:24

Table 6.1: Downloading times for different amounts of block headers

When all headers are downloaded, the state can be calculated very efficiently without
any delay, since only relevant information has to be requested from the network and
Requirement 1 can be satisfied instantly.

6.3 Sending FundsTx

Since the light client does not have to maintain sent transactions, no problems occur due
to high work load and Requirement 2 is satisfied.

6.4 Verifying FundsTx

Implementing multi-signature mechanism allows to verify FundsTx even under three sec-
onds. Thus, Requirement 3 is satisfied. As stated, the current implementation allows only
multi-signed FundsTx. For the financial service provider’s use case this is feasable. But
this is subject to the following reservations:

• If the multi-signature server faults, no FundsTx can be processed anymore.

• Currently, only one multi-signature server can process FundsTx. Since the multi-
signature server is not a trustless component, only the entity controlling the multi-
signature server can reliably verify incoming FundsTx.

• The entity controlling the multi-signature server controls FundsTx processing. If a
user sends funds to an account which is not controlled by the entity controlling the
multi-signature server, this is a problem and could lead to malicious behaviour.

Chapter 7

Summary and Conclusions

Taking evaluations in Chapter 6 into consideration, Requirements 1-3 are satisfied par-
tially. One or more accounts’ states can be calculated while only downloading relevant
data and account information can be displayed as required while the user’s privacy can
be kept safe. Transactions can be sent reliably to the network. FundsTx can be verified
almost instantly due to multi-singature mechanism. But to cope with the trustless Bazo
network, running the light client on the device directly is indispensable. Therefore, Bazo
must be adapted in order to work also on mobile platforms. Further, the light client
should persist downloaded block headers. This allows the light client to only download
new block headers after being shut down. However, Section 7.1 describes future work
derived from the conclusion.

7.1 Future Work

• Light client running on mobile devices
It is important that the light client can be run locally on mobile devices while serving
applications. Therefore, Bazo must be adapted as soon as possible to meet the
corresponding requirements for mobile platforms evaluated in Chapter 6. Further
should the light client’s source code download and build be integrated into native
mobile applications seamlessly. Otherwise, users without the required know-how are
not capable of using the light client.

• Downloading block headers
In order to avoid network overhead when opening or closing connections respectively,
streaming sockets or UDP connections should be considered. Further should be
discussed, if timepointing when downloading block headers is an option. Since all
blocks before the one block where the account’s AccTx is stored in are irrelevant,
their download can be omitted. Thus, for each account the block must be known,
where its AccTx is stored in.

• Persisting block headers
Since blocks are immutable once they are stored in the blockchain, so are the block

39

40 CHAPTER 7. SUMMARY AND CONCLUSIONS

headers. Thus, the light client can persist already downloaded block headers in
permanent memory. On startup, only new block headers must be downloaded.

• Implement simple- and multi-signature accounts
If the user receiving funds wants to verify the transaction immediatly, the receiver’s
account must be a multi-signature account. Thus, all incoming FundsTx must
be multi-signed. The receiver must trust the multi-signature server that it pre-
verifies the transaction correctly. If a receiver does not need to verify a transaction
immediatly, the receiver only needs a single-signature account. Thus, the FundsTx
must only be signed once by the sender.

Bibliography

[1] B. Akyildiz. ”A Gentle Introduction to Bloom Filter.” In-
ternet: https://bugra.github.io/work/notes/2016-06-05/

a-gentle-introduction-to-bloom-filter/, Jun. 5,2016 [Jan. 10,2018].

[2] B. Akyildiz. ”Basic Math on How Bloom Filter Works.” In-
ternet: http://bugra.github.io/work/notes/2016-08-27/

basic-math-on-how-bloom-filter-works/, Aug. 27,2016 [Jan. 10,2018].

[3] A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-Currencies. Se-
bastopol CA: O’Reilly, 2014.

[4] ”Bazo-Blockchain project.” Internet: https://github.com/bazo-blockchain,
[March. 7,2018].

[5] ”Bitcoin.” Internet: https://bitcoin.org/en/, [Apr. 26,2017].

[6] ”Bitcoin Developer Guide.” Internet: https://bitcoin.org/en/developer-guide#
block-chain, [Nov. 15,2017].

[7] ”BitInfoCharts.” Internet: http://bitinfocharts.com/, Nov. 15,2017 [Nov.
15,2017].

[8] D. Chaum. Advances in Cryptology - Blind signatures for untraceable payments.
Boston MA: Springer, 1983, pp.199-203.

[9] ”Cryptocurrency Market Capitalizations.” Internet: https://coinmarketcap.com/,
Nov. 15,2017 [Feb. 26,2017].

[10] ”Ethereum.” Internet: https://ethereum.org/, [Apr. 26,2107].

[11] ”Go mobile.” Internet: https://github.com/golang/go/wiki/Mobile, [March.
6,2018].

[12] ”The Go programming language.” Internet: https://golang.org/, Feb. 16,2018
[Feb. 22,2018].

[13] A. Lella, A. Lipsman. ”2016 U.S. Cross-Platform Future in Focus.” Inter-
net: https://www.comscore.com/Insights/Presentations-and-Whitepapers/

2016/2016-US-Cross-Platform-Future-in-Focus, March 30,2016 [Nov. 15,2017].

41

42 BIBLIOGRAPHY

[14] R.C. Merkle. (1988). ”A Digital Signature Based on a Conventional Encryption Func-
tion.” Advances in Cryptology - CRYPTO ’87. [Online]. 293(1), pp. 369-378. Avail-
able: https://link.springer.com/content/pdf/10.1007%2F3-540-48184-2_32.
pdf [Jan. 10,2018].

[15] S. Nakamoto. ”Bitcoin: A Peer-to-Peer Electronic Cash System”. Internet: https:

//bitcoin.org/bitcoin.pdf, 2009 [Nov. 15,2017].

[16] OpenSignal. ”The State of LTE (June 2017).” Internet: https://opensignal.com/

reports/2017/06/state-of-lte, [Nov. 15,2017].

[17] M. Pilkington. (2015, Sept.). ”Blockchain Technology: Principles and Applica-
tions.” Research Handbook on Digital Transformations. [Online]. Available: https:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=2662660, [Nov. 15,2017].

[18] L. Sgier. ”Bazo - A Cryptocurrency from Scratch.” M.A. thesis, University of Zurich,
Zurich, 2017.

[19] D. Starobinski, A. Trachtenberg and S. Agarwal. (2003). ”Efficient PDA syn-
chronization.” IEEE Transactions on Mobile Computing. [Online]. 2(1), pp. 40-
51. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

1195150 [Jan. 10,2018].

[20] B. Stiller, D. Hausheer, T. Bocek. ”Distributed Hashtables
with TomP2P.” Internet: http://www.csg.uzh.ch/csg/dam/jcr:

c45b8d8e-9657-45c5-8f95-fe37f889bec7/M04-1up.pdf, March 14,2017 [Jan.
10,2018].

[21] M. Swan. Blockchain - Blueprint for a New Economy. Sebastopol CA: O’Reilly, 2015,
pp. viii-xi.

[22] ”w3schools.” Internet: https://www.w3schools.com/tags/ref_httpmethods.asp,
[March 5,2018].

Abbreviations

AccTx Account Creation Transaction
API Application Programming Interface
CLI Command-line Interface
ConfigTx System Parameters Transaction
FundsTx Fund Transferring Transaction
GB Gigabyte
JSON JavaScript Object Notation
KB Kilobyte
Kb Kilobit
MB Megabyte
Mb Megabit
Mbps Megabit per Second
RAM Random-access Memory
REST Representational State Transfer
TCP Transport Control Protocol
UDP User Datagram Protocol

43

44 ABBREVIATONS

Glossary

Blockchain Blockchain is a continuously growing list of records, called blocks, which are
linked and secured using cryptography.

Distributed Public Ledger Distributed Public Ledger is a consensus of replicated,
shared, and synchronized digital data which is publicly available.

Ethereum Ethereum is a decentralized platform for applications that run exactly as
programmed without any chance of fraud, censorship or third-party interference.

Full client A full client (also denoted as node) has a local copy of the blockchain. A full
client can mine new blocks.

Light client A light client only keeps relevant information of the blockchain. A light
client can not mine new blocks.

Public key encryption Public key encryption, in which a message is encrypted with a
recipient’s public key. The message cannot be decrypted by anyone who does not
possess the matching private key.

Transaction In Bazo, a transaction denotes an AccTx, FundsTx or ConfigTx and is
recorded in the distributed ledger. A transaction can change the network’s state.

45

46 GLOSSARY

List of Figures

2.1 Blockchain-based transactions [15] . 4

2.2 Simplified blockchain [20] . 4

2.3 Block divided into header and body [18] 8

2.4 Bloom filter with m = 8 [20] . 10

3.1 Use cases for Bazo . 13

4.1 Refactored block structure . 16

4.2 Merkle root verification of HK [3] . 18

4.3 Extended FundsTx -protocol by second signature (Sig2) 19

4.4 Integration of the multi-signature server 20

5.1 Bazo light client’s program structure . 22

5.2 UML activity diagram representing how block headers are requested from
the network . 23

5.3 UML activity diagram representing how block headers are tested for relevance 25

5.4 Multi-signature protocol activity . 35

47

48 LIST OF FIGURES

List of Tables

2.1 Overview of the AccTx ’s structure . 6

2.2 Overview of the FundsTx ’s structure . 6

2.3 Overview of the ConfigTx ’s structure . 7

2.4 System parameters which can be changed using a ConfigTx. 7

2.5 Overview of a block’s structure . 8

5.1 Possible relations for root, leaf and intermediate nodes 26

6.1 Downloading times for different amounts of block headers 38

49

50 LIST OF TABLES

Appendix A

Installation Guidelines

The source code for all applications is in the public available bazo-blockchain repository
on GitHub:

https://github.com/bazo-blockchain

Prerequisite
The programming language Go (developed and tested with version >= 1.9) must be
installed, the properties $GOROOT and $GOPATH must be set. For convenience, add
the $GOPATH to your PATH:.

A.1 Miner Application

If the miner application is started as BOOTSTRAP [18] for the first time, the initial root’s
public key must be set in the code in storage.p2p.go. For generating a keypair (public-
and private key), see Guidelines A.4.1.

Download the bazo-miner application.

go get github.com/bazo-blockchain/bazo-miner

Run the application.

bazo-miner <dbname> <ipport> <validator> <multisig>

If no database is available under the given name, a new one is created. If the miner is not
started as BOOTSTRAP, an empty database must be given. The ipport number must
be prefixed with ”:”. The validator is the keyfile’s name containing the validator’s public
key. The multisig is the keyfile’s name containing the multi-signature server’s public key.

51

52 APPENDIX A. INSTALLATION GUIDELINES

A.2 Light Client Application

As described in Section 5.1, the light client can be started for different purposes.

Download the bazo-client application.

go get github.com/bazo-blockchain/bazo-client

A.2.1 Sending an AccTx, FundsTx or ConfigTx

Run the application for sending AccTx.

bazo-client accTx <header> <fee> <root> <new>

The root is the keyfile’s name containing the root’s public- and private keys. The new is
the new users keyfile’s name. It must not exist.

Run the application for sending FundsTx.

bazo-client fundsTx <header> <amount> <fee> <txCnt> <from> <to> <multisig>

The from and to are the keyfiles’ names containing the sender’s or receiver’s public- and
private keys respectively. The multisig is the keyfile’s name containing the multi-signature
server’s public- and private keys.

Run the application for sending ConfigTx.

bazo-client configTx <header> <id> <payload> <fee> <txCnt> <root>

The root is the keyfile’s name containing the root’s public- and private keys.

A.2.2 Request Account State

Run the application for requesting an account’s state.

bazo-client <keyfile>

The keyfile is the keyfile’s name containing the account’s public key.

A.2.3 Start REST API

Run the application for starting the light client’s REST API.

bazo-client

No arguments must be given.

A.3. MULTI-SIGNATURE APPLICATION 53

A.3 Multi-signature Application

Download the bazo-multisig application.

go get github.com/bazo-blockchain/bazo-multisig

Run the application.

bazo-multisig <multisig>

The multisig is the keyfile’s name containing the multi-signature server’s public- and
private keys.

54 APPENDIX A. INSTALLATION GUIDELINES

A.4 Utility Applications

These Guidelines contain instructions for utitlity applications.

A.4.1 Keypairgen

The bazo-keypairgen application generates an ECDSA curve P-256 keypair as required for
Bazo [18].

Download the bazo-keypairgen application.

go get github.com/bazo-blockchain/bazo-keypairgen

Run the application.

bazo-rootgen <keyfile>

The application will output the public key’s hash value and a new file under the name
given in the current directory. The file contains the public- (first two lines) and the private
key (third line).

A.4.2 Signtx

The bazo-signtx application is for testing purposes only. It allows the sign a given trans-
action’s hash value with a private key.

Download the bazo-signtx application.

go get github.com/bazo-blockchain/bazo-signtx

Run the application.

bazo-signtx <txHash> <keyfile>

The application will output the signature.

Appendix B

Contents of the CD

The CD includes the following data:

• bazo-blockchain - The application’s source code.

• masterthesis.pdf - The final version of the report.

• midterm presentation.ppt - The midterm presentation.

• related work - Related work paper (pdf or full html).

• report - LATEX source files.

• report/images - Image source files for report.

55

