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Abstract

Integrated Development Environments are the standard tool used by programmers to develop
software. Nowadays, IDEs record every action developers execute during their coding work.
This thesis tried to make a step towards automated detection of task boundaries in order to allow
reasoning about an event stream. Our approach uses machine learning techniques in order to find
patterns which lead to task switches. For this purpose, we propose a layer above low-level events
which depicts the task’s state. Our evaluations suggest, that our approach is not completely
mellow yet, but provides a good foundation for further research.





Zusammenfassung

Integrierte Entwicklungsumgebungen sind das Standardwerkzeug, welches Entwickler benutzen,
um Software zu entwickeln. Entwicklungsumgebungen zeichnen heutzutage alle Aktionen auf,
die Entwickler während ihrer Programmierarbeit ausführen. Diese Thesis hat versucht, einen
Schritt in Richtung automatischer Erkennung von Aufgabengrenzen zu machen, um Schlussfol-
gerungen aus Entwickler Aktionen zu ermöglichen. Unser Ansatz benutzt maschinelles Lernen
um Muster, welche zu Aufgabenwechsel führen, zu erkennen. Dafür schlagen wir eine Ebene
oberhalb von primitiven Aktionen vor, welche den Zustand der Aufgabe veranschaulicht. Un-
sere Auswertungen haben ergeben, dass unser Ansatz noch nicht völlig ausgereift ist, jedoch eine
gute Basis für weitere Forschungsarbeit bildet.
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Chapter 1

Introduction

Research on human behaviour has been conducted for centuries. For researchers, it is often not
sufficient to know that people execute certain actions. They also want to understand why people
behave in a certain way. Developers are no exception to this. So far however, research has been
focused on analysing what developers do, but less so why.
Integrated Development Environments (IDEs) play a central part in the development of software
systems. Understanding, how developers use IDEs, has gained a lot of interest over the last
decade. Researchers have conducted countless studies based on interaction records generated
from IDEs. However, these studies often fail to inspect the log data within its bigger picture.
Developers conduct programming work based on their assigned development task. These tasks
are usually not recorded in IDE interaction logs. Knowing which task developers are working
on, allows for reasoning about the actions programmers execute. The goal of this thesis was to
provide an approach to automatically detect task switches in low-level interaction logs and thus
to gain context knowledge for developer interaction.

Development tasks usually require a lot of recurring actions such as building and test execution.
This characteristic can be exploited by finding recurring patterns in low-level interaction records.
For this purpose, an event data stream was converted into a higher-level form which portrays
the task’s state at any moment in time. A machine learning algorithm was then applied to find
patterns in the state’s attributes. These patterns lead to the identification of task switches.
Machine learning is able to model the relationship between a set of independent attributes and a
dependant value. Such a model can predict task switches and thus provide valuable information
for event logs.

The results obtained from our research suggest that solely based on interaction logs, it is not
possible to build a globally applicable model for task boundary detection. However, we were
able to prove that based on an event stream with contextual information, it is feasible to com-
pute models that predict task switches for individual developers. The findings from this research
provide following contribution to current task boundary detection research:

• A technique which makes low-level event logs suitable for supervised machine learning is
provided.

• Based on enriched event streams, a sophisticated sampling tactic, and carefully chosen fea-
tures, individual prediction models can be built.

• Due to the feasibility of automated task boundary prediction, it might be possible to gain
more knowledge about developer behaviour from low-level in-IDE interaction logs without
influencing the observed developers.





Chapter 2

Background

Automated task boundary detection in IDEs has not been the target of much research so far. How-
ever, we are convinced that extracting the task from interaction logs is necessary to understand
why developers complete a task in a certain way. On the other hand, there has been a lot of re-
search on task boundary detection for usual computer desktop work.
There is a lot of research from various computer science unrelated fields which provides invalu-
able insight on how to approach the problem of automated task boundary detection. This section
provides an overview of the current state of in-IDE interaction tracking and how this problem
was approached in other domains. It also lays out the foundation for our approach.

2.1 User Interaction Tracking
Tracking the behaviour of users has gained a lot of interest in the last twenty years. With the
introduction of data mining and machine learning techniques, analysis of customer behaviour
has risen significantly in importance and practicality [MFPSS96]. Researchers and application
developers have spent a lot of effort to analyse and understand the behaviour of users in web ap-
plications. Findings from such analysis can be used to improve the user experience and customer
satisfaction noticeably. Atterer et al. have conducted a case study on the benefits provided by user
interaction tracking [AWS06]. Usability tests usually involve a lot of effort. Participants have to
be found and often paid. Additionally, such tests often suffer from the well-known Hawthorne-
effect 1. Tracking the interactions remotely decreases these cost factors and additionally prevents
the influence of users [AWS06].
Interaction tracking however is not only suitable for usability tests. Coenen et al. have introduced
a framework for self-adaptive websites [CGS00]. They provide techniques, which allow web ap-
plications to dynamically alter their structure based on user interaction patterns.

Interaction Tracking in IDEs In the realm of software development, Integrated Development
Environments (IDEs) have become the de facto standard tool for developing medium and large
scale projects. IDEs bundle numerous applications which facilitate the software development
process. Kersten and Murphy have developed Mylar (nowadays Mylyn), an extension for the
Eclipse IDE which provides a task focused interface. Mylar was also one of the first tools that ac-
tively tracked developer interaction with IDEs [KM05]. Mylar uses the collected interaction data
to support developers in focusing on coding tasks rather than code discovery. The tool was also

1Subjects change their behaviour when they are observed [Haw]
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the foundation for further developer behaviour research. Murphy et al. have used data gath-
ered by Mylar Monitor to analyse how developers are using the Eclipse IDE. They have shown
that monitoring developers can prevent feature bloat by identifying rarely used IDE functional-
ity. Additionally, interaction data provides valuable knowledge for improvements of IDEs and
similar tools [MKF06].
Minelli et al. go even a step further. They have developed DFlow, a tool which tracks fine-grained
interactions of developers within the IDE [MMLB14]. Minelli intends to use the data collected by
DFlow to make progress towards self-adaptive IDEs [Min14].
Amann, Proksch and Nadi have developed FeedBaG, an interaction tracker for Microsoft’s Vi-
sual Studio IDE [APN16]. FeedBaG records fine-grained developer actions within the IDE. The
data collected by FeedBaG has been used for a large-scale study on how developers use Visual
Studio [APNM16].

2.2 Task Boundary Detection

The data collected by user interaction tracking can be used for a wide variety of statistical anal-
ysis. Researchers have gained a lot of interest not only in detecting user behaviour patterns but
even more so in understanding why users execute certain actions. Knowing the user’s context
and their reasons allows for a more sophisticated interpretation of logs. Therefore, it is crucial to
know when a task starts and when it ends. Detecting switches between tasks automatically and
remotely based on raw interaction logs facilitates this process perceptibly.
Franklin et al. have argued that understanding why users execute certain actions is fundamental
to provide an intelligent user interface. They also show that knowing the user’s task allows the
system to cooperate without the need for explicit commands by the user [FBH02].
Shen et al. have developed a tool that associates files, mails, contacts and more with specified user
tasks. Their implementation, TaskPredictor, consists of two systems that predict the user’s current
task. TaskPredictor.WDS analyses the focused window in order to identify the active task. TaskPre-
dictor.email analyses incoming mails in order to detect task switches. They apply three different
machine learning methods in order to assign a user task to the analysed point in time [SLDH06].
By treating task boundary detection as a supervised machine learning problem, they were able to
correctly detect task switches in most cases.
Similarly, Oliver et al. [SOSt06] have developed SWISH, a tool which groups related windows that
are active on the computer desktop. Based on the window title and the user’s behaviour patterns
when switching between tool windows, they were able to establish a method which can assign a
window to its associated task.
Devaurs et al. [DRL12] have established an ontology-based approach for bundling simple events
into abstract tasks in standard computer desktop work. They have proposed a bottom-up scheme
according to which tasks can be identified from simple events. Whenever a user executes an ac-
tion on his desktop, a low-level event is generated. Related events are subsequently aggregated
into event blocks which consist of events that concern the same resource. Multiple event blocks
are then combined in order to identify tasks.
Stumpf et al. [SBD+05] have used machine learning in order to automatically predict the task a
knowledge worker performs. They also describe the major challenges in predicting task switches.
Their research suggests that obtaining a high accuracy in predicting user tasks is impeded mainly
by two characteristics: Tasks are often intertwined and thus, task boundaries are not clearly de-
fined. Additionally, there are different ways to complete the same task.
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Task Boundary Detection in IDEs Researchers have been successful in detecting task bound-
aries with different approaches. Most of them involve analysis of either the focused windows or
the edited files. Since IDEs bundle multiple tools which are used in software development, they
are the main window used by developers. Therefore, focused windows can not be exploited as
much as in traditional task detection. Task boundary detection in IDEs consequently relies on the
analysis of interactions within the IDE and the edited source files.
Coman and Silitti were able to provide a technique which can reliably divide development ses-
sions into task related sections [CS08]. Their approach identifies the methods which are modified
frequently during a session. They describe these methods as the core of a subsection. Addi-
tionally, their algorithm groups methods, whose modifications are overlapping, together. Their
approach relies on the idea, that subsequent sections, that do not have the same core, indicate a
task switch between them [CS08].
Coman’s algorithm was intensively tested by Zou and Godfrey. Their case study suggests that
the previously proposed algorithm has an error rate of 76% [ZG12]. They identify the discrep-
ancy between their and Coleman’s results in its evaluation setup. Coleman tested his technique
in a laboratory environment which did not suffer from external disturbance. However, in in-
dustrial work, interruptions happen frequently. Coleman’s algorithm fails to acknowledge them
though. Therefore, Zou and Godfrey suggest that task boundary detection is in fact a two part
problem: Identifying sessions and linking related sessions together.
Kevic and Fritz have shown that task boundaries can be detected accurately by analysing the de-
veloper’s code modifications [KF17]. They used a regression model to distinct between unrelated
and loosely related methods. Identifying these unrelated functions in source code allowed them
to detect task changes with a reliability of over 80%. Their work concerned aiding developers
during change tasks by suggesting related code elements based on recent activities. For this ap-
plication, knowing when a task changes is crucial.
The two approaches explained above suggest that - similar to task boundary detection in web
applications and office work - task switches can be detected by analysing the modified artefacts,
i.e. source files and methods. However, these approaches require close tracking of the modified
artefacts. Therefore, these techniques are not applicable to IDE interaction logs.

2.3 Task Management in Software Development
The scope of software projects can seldom be dealt with by a single developer. One of the main
factors of project management concerns the break down of the work load. Modern development
processes thus rely on effective task management. Sophisticated division of work packages al-
lows a team of developers to work on the same project in parallel and thus decreases the time
required for software projects.

Task Definition Since the publication of the Agile Manifesto [BBVB+01], agile methodologies
have been taking over the way software projects are organised. Agile methods strive to allow for
quick delivery and quick change. These techniques most often rely on iterative development pro-
cesses [GH11]. Agile methods describe project requirements with so called "User Stories" [Coh05].
A User Story usually follows a well-defined template 2. The workload created by a story is split
up into tasks. A task should ideally be completable within a day at most [Coh05]. Additionally,
tasks are supposed to be independent from each other and only concern related work. However,
this is not always the case in practice.

2Example: As a <role>, I want to <desire>.
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One of the central aspects when managing tasks is called Definition of Done (DoD). It is strongly
advised that the DoD is clearly defined by the project team and understood by every member.
Consequently, there is no global DoD but lots of individual ones.
Davis has provided an exemplary DoD [Dav13]. His example definition includes recurring ac-
tions such as peer-reviews and unit tests. DoDs not only apply to tasks, they also describe neces-
sities for user stories and even complete projects.
A task is usually not directly completed when the DoD is met. The yearly developer survey con-
ducted by StackOverflow has discovered, that over 95% of professional developers use some sort
of version control system [Sta]. After producing new code and satisfying the project specific DoD,
developer usually check their code into a version control system, such as GIT.

The presented research on task management in software development suggests, that there are
numerous actions which are executed in every task. Project teams usually define the actions re-
quired before a task is completed in their project specific Definition of Done. These actions, e.g.
version control interactions, are detectable within low-level IDE interaction logs and thus can be
exploited for pattern discovery and predicting task switches.

2.4 FeedBaG Data
Proksch, Amann and Nadi have provided a general dataset for research on in-IDE activites [PAN18].
The data set contains low-level interaction data with added contextual information. This section
will expain their data model and how this concept can be used for task boundary detection.

2.4.1 Data Structure for in-IDE Interaction Records
Interaction data collected from IDEs usually only describe what actions were executed by de-
velopers. They do not provide the event’s context though. However, some actions require pa-
rameters or produce different outcomes based on the project’s state. This data provides a lot of
information about developer behaviour and is precious for interaction research.
Proksch has proposed enriched event streams. He suggests cultivating classic data streams with
contextual information [Pro17]. The two-tier event scheme consists of a context and a process
layer. The process layer denotes the invoked action, as well as its invocation time and duration.
The context layer stores event specific, contextual data.
By having the additional contextual layer, events can be analysed much more precisely. In fact,
detailed information about low-level events can totally alter their meaning. There is a fundamen-
tal difference between a successful project build and a failing one. Especially for detecting task
boundaries, certain results of an action can influence the probability of a task switch in totally
different way than other outcomes.
Proksch et al. have added a new concept to the context layer. Their so called Simplified Source
Trees (SSTs) provide a condensed snapshot of source code. For certain events, SSTs are able to
exactly depict what the code looked like at a certain point in time.

2.4.2 Events
FeedBaG collects a total of 19 different event types. Some of these events gather contextual data
related to their source. However, not all of these events are suitable for our evaluation purposes.
Therefore, this section evaluates which events can be used in order to gain knowledge about task
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finishing patterns of developers.

public interface IIDEEvent

{

string IDESessionUUID { get; set; }

string KaVEVersion { get; set; }

DateTimeOffset? TriggeredAt { get; set; }

EventTrigger TriggeredBy { get; set; }

DateTimeOffset? TerminatedAt { get; set; }

TimeSpan? Duration { get; set; }

IWindowName ActiveWindow { get; set; }

IDocumentName ActiveDocument { get; set; }

}

Listing 2.1: C# implementation of IIDEEvent

Every generated event implements the IIDEEvent interface, which exposes the methods de-
scribed in listing 2.1. Table 2.1 presents an overview of the events spawned by FeedBaG. A sophis-
ticated explanation why certain events are meaningful for task boundary detection is provided
below.

Table 2.1: FeedBaG events
Event name Description
ActivityEvent indicates activity within the IDE
BuildEvent Builds started from Visual Studio
CommandEvent triggered whenever an action is invoked, e.g. the press of a button
CompletionEvent provides information about IntelliSense code completion
DebuggerEvent provides information about debugger interaction
DocumentEvent triggered when a file is saved, open or closed
EditEvent provides information about edits of source code
FindEvent indicates whether a find query was successful or not
IDEStateEvent represents action which affect the IDE (e.g. startup, shutdown, win-

dow actions)
InfoEvent used for logging and debugging purposes
SolutionEvent triggered by solution creation, opening and more
SystemEvent indicates system actions, e.g. sleep mode activation
TestRunEvent provides information about testing related actions
VersionControlEvent version control actions (commit, clone, ...)
WindowEvent triggered by window focusing, close, open
NavigationEvent provides information about source code navigation
ErrorEvent stores information about errors thrown by FeedBaG

Deprecated Events
InstallEvent Installation of dependencies
UpdateEvent Update of dependencies
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Explanations

Some of these events contain valuable information for task boundary detection patterns. This
section will provide insight on which information these events provide and why the events are
relevant for our purposes.

TestRunEvent Based on the previously described ideal software development process, a task
is not finished before all tests are successful. Therefore, test runs might be able to provide
indications for both, positive and negative cases regarding task switches. The TestRunEvent
states for every test whether it was successful, ignored or failing.

BuildEvent Most software products require that the source code is converted into a deployable
artefact. This step is called building. When source code contains syntactical errors, builds
fail. A task should never be finished with a defect build. Therefore, the BuildEvent provides
valuable information.

VersionControlEvent Theoretically, the development part of a task finishes with the insertion of
the generated code into the version control system. Therefore, a commit might be a good
indicator for a nearing task switch. The VersionControlEvent captures interactions with GIT.
It registers numerous actions besides commits, e.g. branching and cloning.

CommandEvent CommandEvents are spawned whenever a command execution is requested,
e.g. by pressing a button. CommandEvents cover a wide variety of commands which can
be relevant. E.g. certain build events are unfortunately only caught by the CommandEvent,
but not the BuildEvent itself. Based on the CommandId, relevant events can be identified.

DocumentEvent It is reasonable to assume that some document manipulation happens at the
end of a task. At the bare minimum, the documents have to be saved. It might also be
recurring pattern that developers close task-related files after the task is completed.

While the remainder of the events might not explicitly provide information related to task
switching, they certainly hold some informational value for the evaluation. Therefore, these
events are not ignored but most likely aggregated in values such as number of events in a pe-
riod of time or similar.

2.5 Machine Learning
Section 2.2 provided insight on how present research detects task boundaries. The majority of
these approaches apply machine learning in order to detect task switches. We have also dis-
cussed an approach proposed by Shen which classifies task boundary detection as a supervised
machine learning problem [SLDH06]. This chapter introduces concepts and applications of ma-
chine learning and data mining, and thus provides a foundation for the following explanations of
the approach.

Research on self learning programs goes back into the last century. Samuel was able to show that
computers are able to outperform humans in a short period of learning time. He programmed
a computer to autonomously learn how to play the game of checkers [Sam59]. His efforts were
some of the first modern approaches to self-learning programs.
Machine learning consists of a collection of countless algorithms with numerous different ap-
proaches and goals. All these techniques automatically create a model that can describe the rela-
tionship between given sets of input and output variables. Such models are built by training an
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algorithm on a data set [BÖ14]. Subsequently, the model is validated against a data set which is
not part of the training set.
Machine learning consists of mainly two categories: Supervised learning requires labelled data, i.e.
contain independent and dependent attributes. The dependent attributes are called label. Unsu-
pervised learning on the other hand does not require a label. Algorithms which apply unsupervised
learning detect patterns in data autonomously [Gha04]. We will treat task boundary detection ex-
clusively as a supervised learning problem. Hence, we will introduce supervised algorithms in
the succeeding section.

Supervised Learning
The ultimate goal of task boundary detection is building a model which is applicable for pattern
discover in low-level event logs. Therefore, we have a concrete goal we want to achieve. For such
goal-oriented machine learning problems, supervised learning is frequently applied. Supervised
algorithms build a function that describes the relationship between a set of independent values
and a dependent value [MRT12]. The set of independent values is called feature vector, the depen-
dent value is called label. Based on a labelled training set, supervised algorithms build a model
which predicts the label corresponding to a feature vectors [MRT12].
There are mainly two types of values that can be predicted. Consequently, there are also two
types of supervised machine learning algorithms. classification methods predict discrete values,
regression algorithms calculate continuous ones.
Detecting task switches is a binary problem. A feature vector can either indicate a task switch
or not. Therefore, task boundary detection is a classic classification problem. We made use of
one of those classification algorithms. Logistic regression has been applied to many problems
and is proven in the field of machine learning as effective when applied correctly. The following
paragraph will explain the algorithm further.

Logistic Regression Logistic regression deals with modelling the relationship between a cate-
gorical variable and one or more input variables. The input variables can be either categorical or
continuous. Based on a feature vector, logistic regression calculates the probability for the label to
be of a possible outcome class. Logistic regression can therefore show, which outcome is the most
likely for the set of provided input values [PLI02]. Due to the result being a probability value for
an input class, logistic regression in fact is a method which calculates a continuous value, thus
satisfying the definition of a regression algorithm. However, implementations of logistic regres-
sion usually return the most probable class value for the label, therefore being a classification
algorithm.

2.5.1 Weka
There are many machine learning tools that support researchers in data analysis. These tools of-
ten times require only basic knowledge of machine learning and thus let users focus on their core
research. This section will introduce WEKA, one of the most popular machine learning programs.
The University of Waikato has developed a workbench for machine learning, called WEKA [HDW94].
Since then, WEKA has gained enormous popularity. Over the years, WEKA has been expanded
and optimized [HFH+09]. It comes with an easy-to-use user interface and is also available as a
library for Java [Mav]. WEKA is extremely suitable for bulk analysis since the model building
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and evaluation can be automated with minimal programming effort.
Additionally, WEKA provides hooks for all stages of data analysis. Data sets can be preprocessed
with filters. The machine learning algorithm can be easily altered. Besides logistic regression,
WEKA provides implementations of countless additional machine learning algorithms.
The flexibility and wide variety of machine learning algorithm implementations make WEKA
powerful and extremely useful for our research. Chapter 4 will describe how WEKA is used in
order to predict task switches and to evaluate the effectiveness of the built model.

2.6 Discovering Patterns in Application Logs
When software applications run in production, developers can not easily reproduce errors and
bugs. To help with the reproduction step, applications are usually enriched with logging func-
tionality. Logs provide insight on which actions were executed by users leading up to an unde-
sired behaviour. Such logs however, can not only be used for reproducing bugs. They can also be
analysed to understand how customers use the application. Especially web logs have been tar-
geted by researchers with the idea to provide a simple technique to understand how applications
are used. This insight allows developers to increase the usability of their applications.
Logs provide an immense amount of data. In order to analyse such masses, data mining tech-
niques are frequently applied. Cooley et al. have described a specialised data mining technique
which is tailored for analysing web logs [CMS97]. The so called web mining combines data min-
ing with a variety of other techniques, e.g. machine learning [RSR09, SCDT00].
Web mining is divided into three categories: Web content mining, web usage mining and web
structure mining [KB00]. Especially web usage mining has caught the interest of many researchers.
The process of web usage mining is divided into three steps:

1. Preprocessing of data

2. Pattern Discovery

3. Pattern Analysis

The application of these steps is not limited to the analysis of web logs. In fact, they can pro-
vide insight on any interaction record when applied correctly. The following paragraphs will
discuss what these steps consist of and how they are applicable to other problem domains.

2.6.1 Data Preprocessing
The preprocessing step is very important in order to prepare raw logs for web usage mining.
Preprocessing consists of four tasks: Data cleaning, integration, transformation, and reduction
[Datb]. These steps allow raw data streams to be evaluable by machine learning algorithms such
as logistic regression. This section will explain these steps in detail.

Data Cleaning Data sets often contain impurities. Entries can be missing, irrelevant or incon-
sistent. Data cleaning deals with multiple data quality problems. Data points can violate integrity
constraints, e.g. a negative value when only positive integers are allowed. Rahm and Do have
suggested following workflow to deal with such problems [RD00]:

1. Data analysis

2. Definition of transformation workflow and mapping rules
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3. Verification of the workflow

4. Transformation

5. Backflow of cleaned data

These steps allow data sets with quality problems to be improved and made ready for further
(pre)processing steps.

Data Integration When multiple data sources are used, the schemes seldom are completely
equal. However, in order to apply machine learning algorithms, the data has to be presented in
a uniform manner. Data integration relies on value mapping and manual addition of missing
values whenever possible in order to build a consistent data set [Data].

Data Transformation Data can be transformed in mainly three ways: Normalization, aggrega-
tion, and generalization.
Normalization is the process of converting values into a normalized form. This modification must
be consistent, i.e. a specific value is always transformed to the same value. Sola and Sevilla have
shown, that adequate data normalization can reduce estimation errors and improve overall per-
formance significantly [SS97].
Data aggregation summarizes multiple values into a single one [Whaa]. Therefore, feature vec-
tors decrease in size and meaningless variables are filtered out or combined into more meaningful
ones.
Data generalization provides a summarized view on data. Basically, the low level data points are
transferred into a higher, more abstract representation. This provides a quick overview of data
and its context [Whab].

Data Reduction Data can contain a lot of non-essential values. Data reduction deals with re-
moving this overhead. There are three ways this can be achieved: Reducing the number of at-
tributes, reducing the number of attribute values and reducing the number of tuples. The latter is
also called sampling.
Sampling is an important technique in order to deal with imbalanced data sets. Imbalanced data
emerges when one class of an attribute appears often and another one very rarely [HG09]. This
is especially disturbant when the imbalanced class represents the label. There has been extensive
research on rare event classification. When machine learning is applied to highly imbalanced set,
the precision and recall for the majority class are very high. However, the respective values for
the minority class are very low [HG09].
Buda has conducted intensive research on the imbalanced class problem and came to the conclu-
sion, that oversampling the minority class is the best method to gain meaningful results out of
strongly imbalanced data sets. He goes even further and states that oversampling should erase
the imbalance completely [BMM17]. There are various approaches to this principle. While some
techniques rely on weighing minority class data points more, other methods generate additional
data points for the minority class. These data points can either be copies of existing ones or newly
projected vectors.
On the other end of the spectrum, undersampling erases imbalance by removing elements of
the dominant class. A simple but effective implementation of this concept is randomized un-
dersampling. As the name suggests, the representatives for the majority class are chosen ran-
domly [KMM+07].
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Chapter 2.3 provided a definition for tasks in agile development. Task duration should roughly
correspond to the interval in which agile meetings are held. This means, that task switches hap-
pen rarely. In order to detect task boundaries, the data must be labelled with task switches.
Therefore, we have to deal with a highly imbalanced data set. The techniques discussed in the
previous section provide an approach to deal with this problem.

Feature transformation

The techniques introduced so far deal with quality problems in the data set. However, they are not
sufficient for providing log entries with the needed information for a machine learning approach
to pattern discovery. Chapter 2.5 introduced the concept of features. The label can be predicted
based on these attributes. For this purpose, an additional technique must be introduced: feature
transformation.
Choosing the right features for a problem domain is crucial in order to build successful models.
When feature vectors only contain irrelevant attributes, the results provided by machine learning
algorithms are equally useless. This concept is often referred to as garbage in, garbage out [CA18].
Classification algorithms map the relationship between a set of attributes and the label. Features
that do not have any relationship to the label at all are thus unnecessary overhead. They might
also distort the results. Feature transformation provides techniques to deal with these problems.
There are two types of feature transformation. Feature construction adds new features to a set of
existing features. These additional values are constructed by performing logical operations on
multiple, existing features within a vector. Basically, feature construction adds information about
relationships between features [LM98].
Feature extraction on the other hand replaces existing features with new ones by applying a func-
tional mapping to the values [LM98].
These two techniques can add valuable information to otherwise meaningless data. With feature
construction, it is possible to add contextual data to raw logs while feature extraction transforms
existing features into new, more promising attributes.

Preprocessing Summary

In this section, we provided an overview of the elements of preprocessing. Data cleaning, data
integration, data transformation, and data reduction alter raw log data in such a way, that it can be
evaluated with machine learning algorithms. Additionally, feature transformation changes and
extracts features from provided data. After preprocessing, the data set is in a state which allows
pattern discovery.

2.6.2 Pattern Discovery
Chapter 2.3 showed, that a task’s progress can be described by the status of a clearly specified
Definition of Done. This includes some recurring actions, e.g. test runs. It is therefore reason-
able to assume that there are discoverable patterns in IDE interaction logs which lead up to task
switches.
Application logs often only provide an incomplete and cluttered view on user behaviour. Web
applications are able to serve multiple user requests in parallel. This behaviour is also reflected
in logs. Entries are not bundled by request and are thus intertwined with entries from other re-
quests.
Gill has provided a scheme how machine learning can be applied in log analysis to detect pat-
terns [Gil]. In his approach, data is collected from various sources from which relevant informa-
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tion is extracted using a Bayesan algorithm. Machine learning subsequently classifies the result-
ing logs from the previous steps and creates a model which puts newly generated log entries into
corresponding categories.
Section 2.5 already introduced classification. Eventually, classifiers try to detect patterns in a set
feature vectors. Therefore, they suit this step perfectly.
Summarized, the pattern is built by applying a machine learning algorithm to the preprocessed
data sets. Logistic regression returns a set of weights according to which the probability for each
class value is calculated. With the extracted model, it is subsequently possible to predict the label
for feature vectors.

Summary
This chapter provided an overview of the current state of task detection within IDE interaction
logs. While there are many tools that track the actions developers execute in their IDE, there is
little research on putting the interaction in its higher context.
We have shown that task boundary detection has already been applied successfully to computer
desktop work. Most approaches focus on the active windows and the artefacts users modify.
Since IDEs are an all-in-one product, the former approach can not be applied to automated task
detection in software development. However, the actions executed within the IDE can provide
valuable metrics which indicate a task switch.
Most of the research conducted on task switch detection has made use of machine learning. There-
fore, we provided a quick overview of machine learning techniques. We established that classifi-
cation algorithms can be applied to preprocessed log data to detect patterns.
Additionally, FeedBaG and its data structure was introduced. By enriching low-level events gen-
erated from IDE interaction, FeedBaG provides contextual information which can be used for
pattern discovery.
Finally, we have introduced web usage mining. By following a three step process - preprocessing,
pattern discovery, pattern analysis - usage patterns can be discovered in web logs. We intend to
adapt this process in order to detect task switches in IDE interaction logs.





Chapter 3

Automated Task Boundary
Detection

Chapter 2 discussed how logs can be used to get insight on user behaviour. Task boundary detec-
tion in IDE interaction logs after all is a log analysis problem. This section provides an explanation
on how task boundaries can be detected from interaction logs.
Section 2.4 introduced the data set we are using in our approach. FeedBaG’s data is an enriched
event stream which consists of standard log events with added contextual information. Through-
out the description of our approach, we assume working with an enriched event stream. Sec-
tion 3.1 explains what additional characteristics a data set must provide in order to be usable for
task detection purposes with our approach.
Web mining is a technique explained in section 2.6 that is used in order to detect patterns in
application logs. It is possible to adapt this algorithm with some modifications to analyse IDE
interaction logs. The skeleton of the algorithm stays the same.
Section 3.2 introduces the preprocessing used in our approach. The raw data stream is trans-
formed into a data set which is suitable for logistic regression. We cover three major steps: Fea-
ture construction, sampling and data cleaning.
Section 3.3 explains how models can be built from the set of feature vectors produced by the pre-
processing step. Additionally, we shortly introduce the idea of pattern analysis, a way to draw
conclusions from the extracted models.
In section 3.4, drawbacks and limitations of our approach are discussed.
Figure 3.1 summarizes the steps that are needed in order to convert a data stream of low-level
actions into a model.

Figure 3.1: Steps for Automated Task Boundary Detection
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3.1 Data Set Requirements
While in theory any type of interaction log, generated by an IDE, is suitable for analysis, there are
certain aspects which simplify the process of data mining. This section provides an overview of
characteristics a data set ideally features in order to be suitable for detection of task boundaries.
However, analysis can also be conducted on unfitting data sets. For such cases, preprocessing
must fill the gaps.

Ideally, the log exclusively consists of programming related events. Next to interactions within
IDEs, developers use numerous auxiliary tools which are directly associated with software devel-
opment. Version control, for instance, has become an integral part of software development. To
draw a complete picture, interactions with such tools should be logged as well.
The dataset moreover should be ordered chronologically. Logs are usually sorted by the time
an event is triggered at. It makes sense to emphasize this characteristic nonetheless. After all,
our approach strives to predict task switches based on features constructed from raw event logs.
Therefore, the actions leading up to a task switch must be known. This is only achievable with a
chronologically ordered set.
Chapters 2.4.1 and 3.2.1 explain the importance of context information for machine learning. For
our approach the data set must comply with this enriched data scheme. Without contextual in-
formation, the data set can only provide an incomplete snapshot of the state. As established in
chapter 2.4.1, contextual information can completely change the meaning of a low-level interac-
tion event. Our approach exploits this additional information to draw an accurate picture of the
task’s state.
Furthermore, the data should be bundled by developer. Minelly et al. have shown that while there
are many similarities in IDE usage by developers, there are also many differences [MML15]. It
is consequently reasonable to assume that software development is a developer-specific process.
Therefore, it is crucial that each developer’s behaviour can be studied separately. Having individ-
ual data sets also provides additional hooks for analysis. With developer specific information, it
is possible to examine how developer behaviour differs and whether there are mutualities which
allow a global task boundary detection model.
The data set should also provide information about programming sessions. This allows to evalu-
ate whether developer behaviour stays consistent over multiple sessions. Ying and Robillard have
shown that developers are influenced in their behaviour by the task’s type [YR11]. Consequently,
it is possible that there are other influences which affect how developers complete their tasks.
Disruptions and additional knowledge could inherently change how the developer approaches
a task. Such interactions usually happen in between in-IDE sessions. Having a way to distinct
sessions in logs consequently is convenient for comparisons at a developer-individual level.

Label The most important characteristic the data set must provide is the presence of a task re-
lated label. In order to create a ground truth, there must be an event present which provides
insight on tasks. This might be problematic. Task management is an abstract concept and is usu-
ally not done within the IDE. Most data streams do not track interactions with task management
tools such as Trello or Jira. In such cases, the data stream has to be enriched with task meta data.
It is sufficient to know the points in time at which a task switch was conducted.

Summary
This section presented and motivated the requirements for an event stream. These properties are
needed for the data set to be evaluable using our approach. In summary, the data set should have
these characteristics:
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• Data concerns only in-IDE interactions and development related actions

• The data set is consistent

• The data set is ordered chronologically

• The evets provide contextual information

• The events are collected per developer

• The data set provides a task related entry

While contextual data can not be added in hindsight, the remaining characteristics can be
achieved by sophisticated preprocessing. Section 2.6.1 already introduced methods used in pre-
processing. Section 3.2 provides a more in-depth overview of the preprocessing techniques ap-
plied in our approach.

3.2 Data Preprocessing
As explained in the introduction of this chapter, the data stream has to be preprocessed before it
is suitable for pattern discovery. Data preprocessing has multiple responsibilities, all of which are
be explained in this section.
Our approach to data preprocessing consists of three steps. First, the low-level action data stream
is converted to a higher-level data stream that describes the task’s state. Section 3.2.1 explains
how this is achieved.
In a subsequent step, the data is sampled. We are using a time based method which is motivated
and explained in section 3.2.2.
Finally, the data has to be cleaned such that pattern discovery algorithms can be applied to it.
Section 3.2.3 explains how data quality problems are dealt with.

3.2.1 Feature Construction
As chapter 2 explained, raw event logs can not draw a complete picture depicting the task’s state.
They accurately describe what happens but do not provide a description of a higher abstraction.
Therefore, we propose a layer above the event stream which can be used in machine learning later
on. Based on the low-level events, the newly constructed state layer generalizes the event stream
to a stream of states.

State Our approach focuses on describing the task’s state. A state is a simple collection of fea-
tures which presumably indicate the progress made during the completion of a task. The state
is computed by sequentially analysing each event contained in the event stream. Features are
constructed by listening to certain events. For example, a feature that describes whether the last
build was successful analyses build events and updates its value for each of them. On the other
hand, there might be a feature that simply computes the active time. Such features consequently
have to take every event into consideration. Consequently, an internal state describing the task’s
progress must be kept. Figure 3.2 visualizes how low-level events are converted into a higher
abstraction.

By using such an abstraction approach, it is possible to predict task changes based on task
states rather than low-level events. This step produces a lifeline whose state can be examined at
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any active point in time.

Figure 3.2: Extracting the Task State from Events

The state can consist of an arbitrary number of features. It is important, that all values are
calculated for every active point in time. Activity is indicated by events. Consequently, the state
is computed whenever an event is fired. Since events are fired very frequently, the state can be
sampled in a periodic manner. Section 3.2.2 discusses this concept more precisely.
The next paragraph explains which attributes we decided to include in our state description.
However, these are only examples. The feature vectors ultimately can contain any extractable
attribute.

Features As explained in chapter 2.3, the Definition of Done usually relies on a project specific
declaration. Nonetheless, there are certain characteristics that are likely to be present before every
task switch. In our experiments, we will try to find relationships between task switches and the
answers to the following questions:

1. Was the last build successful?

2. Was the last test successful?

3. How much time has passed since the last task switch?

4. How active was the developer within a certain amount of time?

5. How many files have been closed and saved in a certain amount of time?

Features 1 and 2 are motivated by usual quality control. Committed code should never be de-
fect. Unit tests are a practical approach to guarantee correctness of program parts in a laboratory
environment. Building the module on the other hand ensures that there are no compile errors.
Ideally, developers conduct quick integration tests by running the application. Both, the last build
and the last test, thus must succeed before a task switch.
Realistically, the probability of a task switch increases steadily. The more time has passed since
the last task switch, the more likely is a nearing one. Feature 3 represents this idea.
Whether developers are rather active before task switches or not can be another indicator. Both of
these cases are possible. Ying and Robillard have classified programming tasks into three classes:
edit-first, edit-last and edit-throughout [YR11]. Edit-last tasks indicate a lot of activity in the



3.2 Data Preprocessing 19

period leading up to a task switch. Edit-first tasks on the other hand would show little in-IDE
activity before a task switch. Activity can be measured in two ways: Either, all actions executed
within a defined interval are counted or the ratio of active time during an interval is calculated.
After a task is completed, there is a need for clean up work. Within the IDE, a lot of files are
opened during the coding process. Tasks are more or less independent, therefore successive tasks
are unlikely to involve exactly the same files. Kevic and Fritz have shown that task boundaries
can be reliably identified by comparing edited methods.Task switches mostly happen between in-
tervals which do not share many related methods [KF17]. From that, it is possible to deduct that
the majority of files used in a task are not needed in the succeeding one. Therefore, task switches
might be preceded by an unusual amount of file closings. On the other hand, file savings presum-
ably do not happen immediately before task switches due to the need for testing and building
after source code modifications. This aspect is represented by the last feature.

3.2.2 Sampling

As a result of the rarity of task switches during software development, the data set is highly im-
balanced. Therefore, we must deal with a problem known as overshadowing which is explained
below.

Overshadowing Our approach suffers heavily from imbalance. On one hand, the probability
that an interval contains a task switch is generally very low. On the other hand, certain state
attributes change only infrequently. A flag which indicates whether the last test was successful
switches at most whenever a test is run. However, if the sampling interval is well-chosen, suc-
cessful tests become a strong indicator for task switches. Figure 3.3 visualizes this problem. With
a short interval, the time between the test and the task switch is sampled multiple times, thus
outweighing the positive case. In order to prevent this, the amount of negative samples must be
reduced by choosing an adequate sampling interval.

Figure 3.3: Overshadowing visualized

Chapter 2.6.1 hinted at sampling techniques. Undersampling is a very convenient yet practical
approach for dealing with this outweighing problem. Due to the chronological order of events,
the data stream can be considered to be a time line. Consequently, it is possible to periodically
extract the state and use it as feature vector. Figure 3.4 visualises this process.
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Figure 3.4: Interval-based Sampling

In general, undersampling techniques sample all instances of the minority class. The prob-
ability that a positive case appears exactly at the sampling instant in time is very low though.
Therefore, it has to be ensured, that these cases are not ejected from the data set. Practically
this can be achieved with two techniques: Positively labelled data points are always sampled.
However, this leads to a ground truth including negative cases which are within a short time of
a positive case and thus having similar values. This would water down the significance of the
positive cases however. The second approach simply puts the positive case event in place of the
succeeding sampled instance. This however may lead to overshadowing of positive cases when
they appear closely after a sampled instance.

3.2.3 Data Cleaning

For our experiments, the data cleaning step must ensure two main characteristics of the data set:
First and foremost, instances with invalid values have to be removed. Additionally, missing val-
ues have to be filled in.
Section 3.1 established, that our approach relies on a chronologically order data stream. Attributes
that describe the time elapsed since a certain event require only positive values. For floating point
ratio values, all instances must be between 0 and 1. Nominal values on the other hand must only
accept values which are declared in the class definition. Unfortunately, it is not possible to correct
invalid values. Therefore, data cleaning must remove all data points which violate at least one of
these rules.
Missing values are an additional problem. Similarly to invalid values, data gaps can only be dealt
with by removing affected instances. Values can only be inferred from other values when they
are dependent on other attributes. However, for such cases it must be evaluated whether this
dependent attribute can be removed from the feature vector.

Invalid or missing values are identified by iterating over the feature vectors once all data points
have been created.

Preprocessing Summary

This section provided an approach to data preprocessing. In three steps, the low level event
stream is processed into a higher level abstraction of the tasks state at any active point in time. By
keeping an internal state and evaluating each event chronologically, the state can continuously
be updated. In order to prevent overshadowing caused by data imbalance, the states are only
sampled periodically. In the final step, data points with invalid values are removed.
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3.3 Pattern Discovery with Machine Learning
Classification algorithms discover patterns in data sets. As explained in section 2.2, task bound-
ary detection can be treated as a supervised machine learning problem. Consequently, any clas-
sification algorithm, that takes labelled feature vectors as input, can be used for task boundary
detection.
The previous step, preprocessing, prepared the data in order to comply with the requirements
posed to data which is used in machine learning. The low-level event log was transformed into
a higher level depiction of the task’s state. Therefore, the foundation for pattern discovery with a
classification algorithm was built.
For our approach, logistic regression was chosen as preferred machine learning algorithm. Sec-
tion 2.5 introduced this technique. Logistic regression is often used in similar problems and can
decently deal with rare event data. While we will use exclusively logistic regression for further
evaluation purposes, our approach is also applicable with other supervised classification tech-
niques such as decision trees or support vector machines.
The actual machine learning process consists of two steps: First, the data set has to be divided into
multiple parts. The majority of these subsets are used in a training run. Based on this training
data, the machine learning algorithm subsequently produces a model which describes the rela-
tionship between the label and the features.
In the second step, the model is validated against the remainder of the subsets. Basically, the
model classifies each instance contained in the validation set. Each classification is then com-
pared to its actual label. The validation step collects all comparisons and evaluates how accurate
the model is.

Pattern Analysis
The final step concerns the understanding of the collected patterns from the previous step. Not
all patterns are applicable to every problem domain. For example, a live prediction of tasks must
not rely on future events. However, analysing an event stream statically does not rely on this time
constraint and therefore can also make use of characteristics appearing after a task was finished.
Pattern analysis is therefore important in order to find patterns which fit its purpose [IV06].
Logistic regression assigns a weight to each feature. The weights indicate how much an attribute
influences the probability of a certain label value. Due to this knowledge, the model can be anal-
ysed and tendencies can be identified. Supposedly, there are certain features which have a higher
impact on the label’s value than others. Pattern analysis provides a step for such examinations.

3.4 Limitations
The previously suggested approach comes with some limitations. This section provides a quick
overview of the drawbacks of the proposed methodology.

Task Completion Process Pattern discovery is only applicable if there are recurring sequences
of actions which lead to a task switch. This approach only works for developers that religiously
follow the same work flow over and over again. Changes in behaviour can most likely not be
compensated immediately. Predicting task switches solely based on the actions the developer
executes, might not lead to a result. Ying and Robillard were able to show that the type of task
influences the way developers behave when completing a task [YR11]. Their research focuses on
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the timing of the coding period during a task. The proposed approach would most likely struggle
with the edit-first task completion style1.

Task Definition The definition of a task is very loose and not clearly declared. The scrum al-
liance defines a task as "a unit of work generally between four and sixteen hours" [Sza07]. In
reality, developers report their task taking from 30 minutes up to multiple days [MBM+17]. Even-
tually, defining the contents of a task is up to each project team.
The discrepancy in task duration poses an additional threat to the results. For any time based
feature, the length of a task might influence the accuracy of the machine learning algorithm neg-
atively.

IDE Centricity The approach of evaluating IDE generated logs in order to predict task bound-
aries ignores the fact that a task is not only made up of coding. Perry et al. have shown that
the majority of time used for a task is not spent with programming but is from organisational
nature [PSV94]. Collecting data from within the IDE thus ignores certain aspects of a task. Some
activities, like code reviews, might interfere with the perceived time spent on a task and thus
makes it hard to reliably detect task switches. Time based features are consequently influenced
by coding unrelated activities. These activities are not account for in our approach.

Incomplete Task Switching There are cases in which a developer is not able to completely per-
form a task. This might be due to missing knowledge or dependencies which can not be resolved
straight away. For such cases, tasks are put aside and picked up later. Our approach can not
deal with such interruptions as the recurring steps, e.g. testing, are not necessarily successfully
conducted before the task is put on hold.

1When the majority of edit events are executed during the first half of the task, the style is denoted as edit-first [YR11].
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Implementation

We developed an implementation of the approach explained in chapter 3. This chapter explains
the important parts our stream analysing tool. Based on this tool, we conducted several experi-
ments, explained in chapter 5, that evaluate the effectiveness of our approach. Our implementa-
tion prepares the low-level event stream into a format which can be used for model building with
WEKA.

4.1 Architecture

The implementation consists of three modules: Section 4.1.1 shows how the EventParser deseri-
alises FeedBaG’s data stream. From there on, the objects are written into the EventQueue. Sec-
tion 4.1.2 describes and motivates the functionality of the EventQueue. Finally, section 4.1.3 ex-
plains how the EventQueue’s contents are preprocessed by the QueueProcessor.
The resulting three tier architecture allowed parallel deserialisation and stream processing of the
events. Figure 4.1 provides an overview of the architecture.

Figure 4.1: Architecture
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4.1.1 EventParser
The data provided by FeedBaG is stored in archives containing the events of a single developer.
The events are serialised in JSON format, whereas each file represents one event. The files are
ordered chronologically by the event’s date.
The EventParser detects all zip files in a given folder and parses the events contained in the
archives. Additionally, EventParser implements the Publisher interface which allows interested
objects to subscribe to parsed events. The subscribers must implement the EventParsedListener
interface. Whenever an event is parsed, all registered EventParsedListeners are notified with the
IIDEEvent.
This approach is an implementation of the well-known observer design pattern. Figure 4.2 mod-
els this structure.

Figure 4.2: Class Diagram of EventParser and Listeners

4.1.2 EventQueue
The EventQueue is a simple first-in-first-out (FIFO) queue1. The EventQueue implements the afore-
mentioned EventParsedListener and is subscribed to the EventParser. Therefore, whenever an event
is parsed, it is stored in the EventQueue.
By using a FIFO queue data structure, the order of the events is preserved.
The QueueProcessor heavily relies on this ordering of events to construct features correctly. The
EventQueue provides a simplistic interface which allows adding to and polling events from the
queue (see listing 4.1).

public interface EventQueue {

void add(IIDEEvent event);

IIDEEvent poll();

int size();

}

Listing 4.1: EventQueue interface

1The elements that are added first to a FIFO queue are also released first.
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4.1.3 QueueProcessor
The QueueProcessor implements the preprocessing steps described in chapter 3.2. The processor
exposes an interface which allows Aggregators to subscribe themselves. Aggregators construct fea-
tures which are subsequently written into an event’s feature vector.
The QueueProcessor periodically polls the EventQueue. Whenever an event is ready for preprocess-
ing, all aggregators are queried. They are provided with the event and return a key-value pair
which represents the attribute name and its value.
This implementation makes the QueueProcessor highly extensible. Features can be added and re-
moved during run-time.
Additionally, the QueueProcessor has to be instantiated with a SamplePicker. Section 3.2.2 has ex-
plained that the event stream is highly imbalanced in terms of task switches. Therefore, an ad-
equate sampling technique has to be implemented. The SamplePicker indicates for each event
whether it should be sampled or not.
One could argue that for efficiency reasons, the SamplePicker should be queried first, such that the
Aggregators are only queried if the event should be sampled. However, the Aggregators can keep
an internal state and thus rely on the processing of every event in a chronological manner. For
example, the EventCountAggregator counts every event that has been triggered since the starting
point. Therefore, every event has to be provided to it. Otherwise, the values are incorrect.
The QueueProcessor collects all sampled feature vectors. At this point, the ordering is not impor-
tant any more since supervised machine learning algorithms do not care about chronology. Sub-
sequently, the feature vectors are converted into the WEKA specific ARFF file format and thus
ready for the model building step. With that, the preprocessing of the event stream is concluded.
Figure 4.3 visualizes the responsibilities of the QueueProcessor.

Architecture Summary
We provided an implementation of the approach described in chapter 3. Our approach heavily re-
lies on an implementation of the publisher-subscriber pattern. The data stream is deserialised by
the EventParser. The parsed events are written into an intermediate storage unit, the EventQueue.
The EventProcessor queries the events from the queue and computes the state layer. Subsequently,
the feature vectors are written into a WEKA compliant format, ARFF.
The parsing and preprocessing steps can run in parallel. Furthermore, objects are only stored in
memory until they are processed. This guarantees a memory efficient stream processing.

4.2 Model Building and Evaluation with WEKA
The previous section showed how raw data logs are transformed into a WEKA compliant format.
Based on these proceedings, it is possible to detect patterns in the data set using machine learning
algorithms. Chapter 2 introduced WEKA and how it can be used in code. This section explains
the algorithm that analyses batches of ARFF files using the same technique for each of them.

The previous step produces an ARFF file for each developer. The Classification class builds a
model for every ARFF file in a given folder. WEKA allows the addition of multiple preprocessing
steps as well as the declaration of the machine learning algorithm. The Classification class is highly
modifiable. Preprocessing steps can be added at run-time, machine learning algorithms can be
chosen and configured on the fly. By using this kind of composition, the application provides
means for different evaluations and comparisons.
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Figure 4.3: Sequence Diagram of QueueProcessor

WEKA provides numerous features beyond applying machine learning algorithms. In summary,
the Classification tool takes care of these steps:

1. Data Cleaning - Remove invalid data

2. Applying additional sampling techniques

3. Model Building

4. Model Validation

5. Output of batch statistics

Machine Learning For our experiments, we used logistic regression. Chapter 2 has provided
explanations and motivations about logistic regression. The algorithm requires a data set as input
as well as some parameters. Logistic regression is capable of predicting the class of one attribute.
Therefore, the labelling class has to be specified. Additionally, WEKA provides means for cross
validation of a data set. For our approach, we applied a ten-folded cross validation of the data set.
This means that the data set is divided into ten parts, nine of which are used as training set. The
built model is validated against the remaining part. WEKA provides recall and precision values
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for the label’s possible values in a confusion matrix.

The gathered results are written into a simple CSV file. Therefore, the results are in a format
which can be used by many visualization programs. It is fairly simple to gain a quick overview
on the model’s effectiveness by presenting the results in an adequate diagram, e.g. in a box plot.

Summary
This chapter provided an implementation of the approach explained in the previous chapter. The
overall implementation consists of two components, preprocessing and evaluation.
EventParser, EventQueue and QueueProcessor transform the raw log data into feature vectors that
describe the task’s state at sampled points of time. The sampling is achieved by picking events in
intervals. The results are collected and written into a file format which can be used by WEKA.
The ARFF files produced by the preprocessing step are evaluated by the Classification class. Filters
and machine learning algorithms can easily be added and modified. Eventually, the results are
written into a CSV file for further data visualization.





Chapter 5

Evaluation

The previous two chapters provided an overview of both, our approach and our implementa-
tion. In order to evaluate how precisely the presented methodology can predict task changes,
we conducted several experiments. We focused on detecting task switches at developer level.
Nonetheless, we also conducted experiments on a larger and a more granular scale. This chapter
explains the three experiments we carried out. For this purpose, we aggregated the data in three
different ways: First, we examined whether a global model for this data set can be built. There-
after, we tried to build individual models. Finally, a session based model was analysed.

5.1 Data Set
FeedBaG has provided a data set containing interaction data from over 80 developers. In total, the
event stream consists of more than 11M low level events [PNAM17]. This equals to around 15K
hours of in-IDE interaction time. The majority of the contributing developers are professionals,
while some of them are students or hobby programmers.
Section 2.4 introduced the events FeedBaG produces. The data violates one of the requirements
posed to data sets in section 3.1. Unfortunately, FeedBaG does not track the user’s task. There-
fore, we decided to use commit events as task switches. Both, individual commits and tasks,
should only consist of related work [Ver]. While commits presumably happen more often than
task switches, their scope can be seen as subtask of a larger task. For these reasons, we considered
commits to be an adequate task switch representation. Consequently, data sets, that do not con-
tain any commits, must not be considered for evaluation. Due to this, the data set was reduced to
the interaction data of 44 developers.
Surprisingly, only 16 of the remaining 44 developers have recorded at least one test. Testing plays
a central role in our approach. The premise, that tasks must not be completed before all written
tests succeed, can only be evaluated when tests have been run. We theorize that the absence of
tests noticeably reduces the effectiveness of our approach. Therefore, the data set was reduced to
16 participants, still containing more than 4.5M events. For our second experiment, building de-
veloper individual models, we compared whether our assumption concerning the effectiveness
of data sets with and without tests is correct.

Chapter 2 established an idealized work flow. The described process weighs unit tests and project
builds heavily when analysing task boundaries. We assumed, that a task can not be finished as
long as builds and tests do not succeed. Figure 5.1 visualises the frequency of the involved events,
namely Commits, BuildEvents and TestEvents, across all considered data sets. It is identifiable,
that there are more test runs than commits. However, a closer look on the data shows quickly,
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Figure 5.1: Comparison of events

that there are actually less succeeding tests than commits. Consequently, not all developers test
successfully before they commit.

Intervals Throughout our experiments, the data was sampled using five different intervals:

1. 30 seconds

2. 1 minute

3. 2 minutes

4. 5 minutes

5. 10 minutes

This allowed us to examine the influence of the sampling interval on accuracy.

5.2 Feature Vector

Section 3.2.1 introduced feature construction. Additionally, it proposed numerous attributes
which are able to explain the state of a task. Based on that, the following feature vector was
built:
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Table 5.1: Features used for boundary detection
Name Type Values
ActiveTimeRatioInInterval continuous 0.0 - 1.0
EventsInInterval discrete positive integers
FilesClosedInInterval discrete positive integers
FilesSavedInInterval discrete positive integers
SecsSinceLastBuild discrete positive integers
SecsSinceLastCommit discrete positive integers
LastBuildWasSuccessful categorical ’t’, ’f’
LastTestWasSuccessful categorical ’t’, ’f’
BuildInInterval categorical ’t’, ’f’
SuccessfulTestInInterval categorical ’t’, ’f’

5.3 Global Model for Task Boundary Detection
A global model for task boundary detection would have many benefits. The model could be ap-
plied to live data without the need for an initial training. It could also serve as starting point
based on which the model could be personalized for every developer individually.

Idea For this experiment, the machine learning algorithm is trained on a fraction of the devel-
opers and subsequently verified against interaction logs of the remaining developers.

Expectations It would be surprising if such a model exists. Software development probably
is an individual process. While there are certainly a lot of similarities between developers, the
discrepancies in developer behaviour make a global model very unlikely.

Approach The preprocessing step ensures that the data is consistent. Additionally, the data
points are independent from each other. These characteristics permit to combine the data sets
into a single one.
The data sets of the majority of the developers were merged into a single file. Subsequently, the
classification tool built and validated a global model using logistic regression. The model was
then tested against the remainder of the data sets. This followed the standard machine learning
approach by dividing the data into a training and a test set.
For this experiment, the data of 13 randomly chosen developers was used as training data. The
remaining three data sets were used as validation set. We tested the accuracy of these models
using each of the five previously mentioned intervals. In total 15 evaluations were conducted,
one for each interval and validation data set combination.

Results Table 5.2 summarizes the precision and recall values for both task switches (Pos) and
non-task switches (Neg). During these tests, a total of 2 task switches were correctly detected, both
of which were from the same developer. For the data sets of the remaining two test developers, not
even a single task switch was correctly identified. Meanwhile, there were a lot of false negatives.
This clearly indicates that not only it is not possible to obtain a global model. It is also highly
unlikely that even one task switch can be predicted in any validation set. In fact, all sampling
intervals below five minutes were unable to predict a single task switch correctly.
The results from the experiment with combined data sets clearly support our assumption that a
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global model is not realistic. However, the results were even worse than expected and clearly
deny any hope for a globally applicable model.

Table 5.2: Results for Global Model with 13:3 Split
Dev precisionPos recallPos precisionNeg recallNeg

600s
1 0.727 0.083 0.616 0.979
2 0 0 0.899 1
3 0 0 0.972 1

300s
1 0.5 0.008 0.672 0.996
2 0 0 0.93 1
3 0 0 0.983 1

120s
1 0 0 0.8 1
2 0 0 0.959 1
3 0 0 0.995 1

60s
1 0 0 0.864 1
2 0 0 0.974 1
3 0 0 0.996 1

30s
1 0 0 0.911 1
2 0 0 0.982 1
3 0 0 0.998 1

5.4 Individual Model per Developer

Having individual models for each developer provides the most value. Such models could be
applied to live task boundary detection. Additionally, behaviour researchers often analyse each
developer individually and aggregate the findings to draw an overview. For such studies, these
models would provide valuable insights. However, personalized models are only feasible when
a ground truth can be built. This requires the manual annotation of task switches.
Due to these reasons, we heavily emphasized on experiments regarding personalized models.
First, we tried to build a model with the interval based sampling technique. Thereafter, we eval-
uated the influence of balancing out the data set. We were able to obtain each model and thus the
feature weights. Based on this, we tried to find tendencies regarding which features influence the
results more than others.
In an additional step, we compared the results gained from an example interval and the minimal
data set with the data set of developers who do not test.

Idea For every developer, we built the state layer for each of the aforementioned intervals. We
applied logistic regression with a ten-folded cross validation for each of them. Based on this, we
were able to evaluate how accurately the models can predict task switches within the data set.
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Expectations Detecting patterns in user specific behaviour appears likely. First of all, profes-
sional developers usually work for one employer. Software companies tend to enforce a clearly
defined work flow. The defined rules can guarantee minimal quality features such as unit cor-
rectness. Additionally, projects usually declare a Definition of Done. This requires developers to
execute certain steps for every task. Within these boundaries, developers can individually adjust
their behaviour. Presumably, they settle for a personal work flow. These characteristics appear
exploitable for task boundary detection.
Furthermore, it is expected that longer intervals provide better results. This is due to lower im-
balance of the data set when taking fewer samples.

Results
We conducted multiple experiments with different sampling intervals. The results are summa-
rized in table 5.3. All intervals showed an accuracy of at least 90%. This is not surprising, in fact
if every state is predicted to indicate a negative case (i.e. not a task switch), the accuracy would
be around 95%, depending on the frequency of task switches. In order to get a more meaningful
picture, we evaluated F1 scores for both positive and negative cases, i.e. task switches and non-
task-switches. The F1 score is the harmonic mean between precision and recall. Therefore, it can
depict a combined view of these values. The F1 score can reach from 0.0 to 1.0, with 1.0 being the
best possible value (indicating that both precision and recall are 1).
The F1 scores presented a large discrepancy between positive and negative cases. Especially the
values for positive cases, i.e. task switches, were very low. Figure 5.2 visualises this difference.
The median of F1 scores of positive cases was almost constantly at 0. This indicates, that for at
least half of the developers, not a single task switch was detected correctly. This observation is
clearly supported by the last column which states for how many data sets at least one task switch
was recognized. For example, using a five minute interval, at least one task switch was correctly
detected in 8 data sets. This is almost a textbook example for a simple problem logistic regres-
sion suffers from: data imbalance. In fact, the datasets showed ratios of positive to negative cases
ranging from 1:5 up to 1:3500. Imbalanced data sets generally provide bad results for the minority
class. This was clearly observable in our experiments.

Figure 5.2: Mean F1 Scores without oversampling
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Table 5.3: F1 scores for undersampled data set
interval mean F1 pos median F1 pos mean F1 neg median F1 neg F1 pos > 0 1

30s 0.05 0.00 0.99 0.99 3
60s 0.08 0.00 0.98 0.99 4

120s 0.10 0.00 0.97 0.98 7
300s 0.12 0.01 0.96 0.97 8
600s 0.16 0.01 0.94 0.96 8

Dealing with the Imbalance We already conducted steps in order to reduce the set’s imbal-
anced by using a periodic sampling. However, task switches only happen very rarely. The larger
the sampling interval was chosen, the smaller was the imbalance. However, it it impossible to
achieve a totally balanced out set with this technique. At this point, we experimented with var-
ious oversampling techniques. Luckily, WEKA provides natively some supervised filters. We
tried two simple algorithms for this experiment. ClassBalancer removes imbalance by weighing
the labels differently, such that both classes provide an equal total weight [Cla]. Resample on the
other hand randomly subsamples the data set and replaces samples of the majority class with
instances from the minority class [Res].
This adjustment improved the values of precision, recall and F1 value for task switches signif-
icantly in every data set. On the other hand, the respective value for negative cases decreased
slightly. Figures 5.3 and 5.4 compare exemplary results using two oversampling techniques and
a five minute undersampling interval. Resample was able to provide the most promising results.
ClassBalance had slightly worse values and more extreme outliers. Both of these techniques pro-
vided precision and recall means for both classes above 70% however. Compared with figure 5.2,
these results were better by orders of magnitudes. Surprisingly, the overall values were not cor-
relating with the interval length. This is most likely due to the fact that all of the data sets are
balanced out. Without oversampling on the other hand, the imbalance varies.

Figure 5.3: Mean F1 scores with Resample

1Indicates how many data sets contained at least one true positives
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Table 5.4: F1 scores for data set with Resample
interval mean F1 pos median F1 pos mean F1 neg median F1 neg F1 pos > 0

30s 0.90 0.87 0.87 0.88 16
60s 0.90 0.92 0.86 0.89 16

120s 0.91 0.90 0.85 0.86 16
300s 0.92 0.91 0.83 0.83 16
600s 0.86 0.86 0.82 0.85 16

Figure 5.4: Mean F1 scores with ClassBalancer

Table 5.5: F1 scores for data set with ClassBalance
interval mean F1 pos median F1 pos mean F1 neg median F1 neg F1 pos > 0

30s 0.83 0.81 0.83 0.85 16
60s 0.88 0.87 0.87 0.88 16

120s 0.88 0.88 0.86 0.88 16
300s 0.87 0.86 0.92 0.91 16
600s 0.86 0.86 0.92 0.93 16

Regression Threshold Logistic regression calculates the probability for a feature vector to ob-
tain a certain label value. By default, WEKA returns the label’s class value if its probability is
higher than 0.5. This threshold can be altered and thus the results can be changed.
With oversampling, we introduced a new problem by predicting too many task switches, i.e. in-
creasing the false positive rate. Increasing the threshold is a possible counter measure against the
high false positive rate. We compared several thresholds and their influence on the accuracy of
the model. Figure 5.5 visualizes the results gained from these tests.
Changing the threshold did not alter the results significantly. In fact, the ideal threshold is some-
where between 0.5 and 0.6. However, the accuracy did not change noticeably once the threshold
was above 0.4. From this we can conclude, that the model is in fact not over-confident. Higher
thresholds did not reduce the amount of false positives and thus increasing the needed confidence
for task switch detection did not improve the results.
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Figure 5.5: Threshold Influence on Accuracy

Feature Relevancy Section 5.2 explained which features we were using for our evaluation.
Not all of these features had the same impact on the result. By analysing the distribution of the
feature correlations, it was possible to examine which features were more heavily weighted and
which attributes only influenced the results slightly. Figure 5.6 presents a sample model calcu-
lated by WEKA. The numerical values are the weights attributed to each feature.
In order to understand the significance of the weights we have to take a closer look on the logistic
regression equation 5.1:

Figure 5.6: Sample model output
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log(
p

1− p
) = α+

n∑
i=1

(βi ∗Xi) (5.1)

β describes the weight of feature X, α is a constant. By solving the equation for p it is possible
to obtain the probability for a feature vector to be labelled with a the given class value. If p is
bigger than 0.5 it is likely for the label value to equal to the inspected class value.
The way WEKA presents this data is easily explained: A change of value X changes the log odds
by the provided value. When lastBuildWasSuccessful changes it’s value from f to t, the log odds
of the value t for the label changes by 15.7575. This indicates that lastBuildWasSuccessful has a
relatively high impact whereas a change for Within30sOfBuild has a minimal impact on the result.
We collected the data of all 16 developers in order to analyse whether there are certain values
which have a tendency to influence the outcome strongly. Figure 5.7 shows an excerpt of the
weight distribution for each value. Interval dependent features were aggregated into one class
each.
There was a slight tendency that lastTestWasSuccessful had a positive influence on the log odds. In
other words, when lastTestWasSuccessful was false, a task switch was less probable than when it
was true. Similarily, lastBuildWasSuccessful also had a slightly positive influence on the outcome
when it is true. On the other hand, ActiveTime had a negative influence. This means that task
switches are more likely to be preceded by intervals with lower activity rather than high activity
ones.
However, these values have to be treated carefully as there were heavy outliers. For example
FilesClosed, which indicates how many files have been closed in the interval leading up to a task
switch, basically only consisted of outliers. WithinBuild, which states whether a successful build
was executed close to the task switch, had an outlier with the value of roughly 32.5K. Even Ac-
tiveTime had weights going below -20K.
Additionally, all values had both positive and negative weights. It follows that there was not a
value, which must be present in order for a task switch to happen. We previously assumed that a
task can not be completed without succeeding tests. However, this claim is not supported by the
data gathered.

Figure 5.7: Distribution of feature weights
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Influence of Tests Initially, we removed all data sets, that did not include any tests, since we
assumed that testing is an integral part and a strong influence for task switches. We could par-
tially confirm this idea by showing, that successful tests tend to have positive influence on the
probability of an upcoming task switch. However, this had to be confirmed first.
For this purpose, interaction records which contained no tests were evaluated using the initial
methodology. I.e., the states were aggregated for the same intervals using no oversampling tech-
nique. Figure 5.8 compares the F1 score for detecting task switches from data sets with test and
without tests. Additionally, figure 5.9 shows the differences for the mean F1 score for negative
cases and mean accuracy between data sets with testing and those without.
As we assumed, the results gained from developers who test frequently are better than those from
developers who do not test. However, the differences are marginal. While having tests improved
the F1 score for task switches by 4%-9%, the differences for the mean F1 scores for negative cases
and for the accuracy are within 2% and 5% respectively.
It is not trivial to interpret these findings. While the previous section has shown, that successful
tests are indeed a good indicator for task switches, the results for data sets without tests were not
massively worse. However, this might be explicable by the fact, that apparently many developers
test their tools by running them, not by using unit tests. Therefore, successful builds contribute
heavily to the models.
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Figure 5.8: Mean F1 scores for positive cases without oversampling

Developer Model Summary
We conducted many tests regarding building a developer specific model. We obtained poor re-
sults for our basic approach with interval based undersampling. The outcome suggests, that
overshadowing is an extreme problem when detecting task switches. This claim was supported
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Figure 5.9: Mean F1 scores for negative cases and accuracy without oversampling

by the fact, that larger intervals provided better results.
In order to address this issue, we conducted experiments with oversampling. The results from
these tests were decent, the accuracy was around 90%. Whether the model built from this ap-
proach is applicable to live task switch detection is questionable, however. The false positive
frequency seems problematic.
We tried to improve the results further by using a different threshold and came to the conclusion,
that changing the minimum confidence needed in order to identify a task switch did not affect
the results.
In our last experiment, we tried to identify impactful features. There were some tendencies for
tests, file savings, and active time. However, they were not consistent.
Additionally, we examined the influence of test presence. Since many developers did not test at
all, we wanted to show the difference in accuracy. Absolutely, the differences were small while
relatively, having tests almost doubled the precision.

5.5 Task Boundaries within Sessions
Software development requires numerous activities besides coding. Requirements have to be
understood, tasks have to be clarified. Consequently, developers are not working in their IDEs all
the time. Meetings and similar activities fragment the workday into many coding sessions. For
each event, FeedBaG assigns the corresponding session ID. These sessions are limited by the IDE
opening and closing actions. In this evaluation, we tried to build a model based on the interaction
data of sessions. Compared to the previous two experiments, the data was even more granular.
We already established that additional knowledge might influence the developer behaviour. If the
results are significantly better than those of the developer focused experiment, we can conclude
that developers do not necessarily have an individual work style. Rather developers adapt their
style to the circumstances or they do not have any habits at all.
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Figure 5.10: Accuracy of Session-based Model Building

Approach The developer-based experiment showed the most promising results for an inter-
val of five minutes. For this experiment, we examined the qualitative differences between the
developer-based and the session-based approach for this interval. The basic process stayed the
same compared to the previous two approaches. During the preprocessing step however, there
was an additional stage. The data sets had to be split from developers to the more granular ses-
sions.

Results The results of the two previous experiments had a common denominator. While the
F1 score for negative cases was very high, the score for positive cases were extremely low. The
session based approach however provided different results. Figure 5.10 shows the distribution of
precision and recall for both positive and negative cases. Compared to figure 3.4, the distribution
was more centred. In other words recall and precision of positive cases were higher while the
respective values for negative cases were lower. There were even numerous cases where all task
switches were correctly recognized within a session.

In total we analysed 615 sessions from 9 developers. 113 of these sessions contained a task
switch. The mean accuracy over all sessions was around 68%. The mean F1 value was around
25%, thus way higher than the respective value of the developer based approach without over-
sampling. However, the amount of false positives was way increased perceptibly. Consequently,
the accuracy was almost 20% lower. We already explained that false positives are way worse than
false negatives. A session based model is therefore equally useless as compared to a global or
developer specific model.
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Nonetheless, we were able to draw some conclusions from these scores. Figure 5.11 shows the
distribution of the accuracy for individual sessions of an exemplary developer. The values are
spread out from 20% to 90%. While there are certain tendencies around 50% accuracy for this
developer, the spread of the accuracy values indicates that developers do not always behave the
same. Otherwise, the accuracy would be more concentrated. This claim was additionally sup-
ported by the findings of the previous experiment, which had impressively shown that developer
behaviour changes over time such that an accurate model was not achievable.

Figure 5.11: Accuracy obtained from Session Based Approach

In conclusion the session based approach provided the best F1 score for task switches of all
three tested approaches. However, the overall accuracy of the model suffers heavily. False posi-
tives occur more often compared to the developer-specific and global model. Therefore, a session
based approach is not applicable either.

Summary
We have analysed several methods and statistics regarding task boundary detection at developer
level. We have tested several features which supposedly influence the state of the task. The mod-
els gained from periodically extracting the feature vectors, have atrocious precision and recall
values for task switches. We tried to improve the results by balancing out the data set as it is sug-
gested in rare data research. The Resample technique has provided satisfying F1 scores for both
task switches and non-task switches. However, whether this approach is suitable for live task
boundary detection from event streams must be evaluated first.
Additionally, we examined whether certain features have bigger influence on the outcome of the
logistic regression model than others. While there are certain tendencies, there was no indicator
that a specific feature constantly has a positive or negative influence. The weights of the feature
show great discrepancy between developers. Therefore, it can be concluded that the way devel-
opers tackle tasks is highly individual.
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Discussion

Several experiments were conducted in order to evaluate our proposed approach to task bound-
ary detection in low-level interaction logs. We tested different granularities, reaching from a
global model down to a session-based one. While the focus was on detecting task switches for
data sets provided by developers, we have also conducted experiments regarding a global model
and sessions. For every approach, the same basic algorithm, which was introduced in chapter 3,
was used. The experiments mostly differed in the preprocessing step where the data was pre-
pared for logistic regression.

Global Model We conducted a small experiment which aimed to find proof for the possibility
of a global mode, i.e. a model which is applicable to the whole data set. The model was trained
based on the interaction records of 13 developers and tested against the data set of the three re-
maining developers. The experiments were conducted with five different sampling intervals: 30
seconds, one minute, two, five, and ten minutes. The model was only able to predict two task
switches out of several hundreds.
This strongly indicates, that it is not possible to build a global model. We can draw several con-
clusions from this. First and foremost, developers behave differently. While there certainly are
some tendencies, e.g. that testing is an integral part for some developers, we were not able to
find features which strongly indicate an upcoming task switch for the majority of the developers.
In fact, the results were so poor, that a global model, solely based on low-level interaction logs,
seems highly unlikely.
Compared to the other experiments, the global model provided the worst results. As we have
seen before and explain further below, developers seldom have a completely consistent work
flow. Even less so is it possible to detect common patterns in interaction logs of multiple develop-
ers. After all, software development seems to be approached by individual preferences. Multiple
studies have already shown that the type influences how developers complete their tasks. Addi-
tionally, based on low-level interaction records, it is not possible to examine what types of tasks or
even projects they work on. It is not unlikely that developers behave differently when they have
to develop a heavily GUI focused application compared to a functional library. The evaluated
developers are volunteers. Therefore, there is most likely a wide disparity between developers
in regards of knowledge and experience as well as field of work. We already established, that at
least one half of all data sets belongs to professional developers. Usually, they are part of a project
team, which ideally sets standards for their tasks. These standards actively influence what steps
a developer has to conduct in order to complete a task.
Most developers, who are providing their data to FeedBaG, do not work on the same projects and
thus have different DoDs. However, it would be very interesting to conduct experiments which
focus on project teams. It seems not unlikely that a global pattern could be discovered within a
project team.
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With the chosen approach however, it was not possible to obtain a global model. The results were
actually so far off from reliably predict task switches, that our low-level actions focused approach
does not provide a realistic methodology for this use case.

Developer-based model In our initial project definition, we explained that knowing the devel-
oper’s context of work can provide valuable information. Based on this data, reasoning about the
event stream can be enabled. Therefore, we heavily focused on finding a model for individual de-
velopers. FeedBaG provides data that is already split into several sets belonging to one developer
each. Due to this characteristic, discovering and testing interaction patterns in developer-specific
data was straight-forward.
Unfortunately, we obtained very poor results. We have undersampled negative cases, i.e. non-
task-switches, using a periodic sampling. We were able to show that the class imbalance in regard
to task switches is a big problem when analysing the stream data. Longer sampling intervals have
generally provided better results. The tests were conducted on all 16 data sets which were chosen
for this evaluation. We have analysed the F1 scores for both negative and positive cases. While
we were able to reliably detect negative cases with a F1 score of at least 0.96, the respective value
for positive cases remained below 0.2. In short, the data set suffers from a classic problem in rare
event data sets: class imbalance.
Naturally, machine learning on highly uneven class value distribution results in high precision
and recall for the majority class, while highly neglecting the minority value. This is due to over-
shadowing. In fact, an algorithm usually provides the best results for highly imbalanced sets by
just always returning the majority class as result for every feature vector.
This problem was addressed with a proven approach called oversampling. We used two different
algorithms for this purpose, namely Resample and ClassBalancer. Resample has provided the best
results. The mean of all F1 scores of both positive and negative cases was above 0.9 which is very
respectable. However, due to the increased precision and recall for task switches, the negative
cases suffered heavily. While an F1 score of 0.85 and precision and recall values of more than 0.9
sound respectable, it has to be put in place properly to understand the consequences of this reduc-
tion. A developer works around eight hours per day. If a five minute interval is used, this means
at most 96 separate intervals. With an accuracy of 85%, an interval would be wrongfully declared
as task switch roughly fourteen times per day or almost twice an hour. In reality, developers do
not switch the programming task nearly as often. This shows impressively how bad the influence
of oversampling for our use case actually is. A good system would provide false positives once
per day at most.
Additionally, we have examined the influence of each feature on the outcome of the model. Sur-
prisingly, there were only few tendencies recognisable. It seems like test success has the biggest
impact on the model. An unsuccessful test was also the only attribute which strongly indicates
that no task switch is upcoming. Other than that, the values were all over the place. The only
value, that was not dominated by statistical outliers, was the active time. The results presented
in figure 5.7 suggest that developers are rather less active within the IDE during the time leading
up to a task switch. This is not a big surprise. The time preceding a task switch usually is not
a programming dictated phase. As the previous findings indicate, the last actions before a task
is finished are not of programming nature. Tests and builds are run, the workspace is cleaned
up, administrative tasks are conducted. All these actions are reflected less than programming in
interaction logs.
Also, there was a small tendency for file savings. While there are a lot of outliers, they all were in
the negative spectrum. Concretely, this means that for each additional document save, the likeli-
hood of a task switch decreases within the interval. This directly relates to the findings concerning
the active time. When there is little programming conducted, there is also not much incentive for
saving files.
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While an additional oversampling of the minority class can greatly increase the F1 score of task
switches, it also introduces countless false positives. This impact is grave enough to reduce the
practicality of our approach below satisfying values. Additionally, we were able to show that
certain features have a tendency to indicate task switches. Unsuccessful tests heavily decrease
the probability of a task switch. Unsuccessful builds, high activity and a lot of file savings indi-
cate slightly that a task switch is not immediate. All other features, such as file closings, number
of events in the interval and the time since the last build were not able to consistently indicate
whether a task switch is nearing or not. It is therefore not possible to make a generally applicable
statement on how they influence the probability of task switches.

Session-based model We have seen great improvement when moving from the global model
to a developer specific one. We also theorized that there are many circumstances that influence
a developer’s behaviour such as knowledge and the type of task they are working on. Con-
sequently, we observed that moving from a developer level to a session level, the results were
improved. There were numerous sessions, in which all task switches were correctly recognized.
On the other hand, the mean accuracy was only 70%. This value is way lower than those from
the previous experiments. Besides the low accuracy, this approach lacks in practicality. Sessions
do not necessarily contain task switches. Additionally, they are often to short to actually build a
model based on the interaction data.

6.1 Threats to Validity
The results obtained by our approach are unexpectedly poor. However, we have used a proven
algorithm from a different but similar problem domain. This section will take a closer look on
the soundness of our approach and evaluation before discussing whether these results have any
consequences on real world applications.

Internal Validity
We provided extensive explanations how the problem was approached and how the approach
was evaluated. However, there might be some shortcomings in our approach and evaluation.
This section will provide an overview of possible problems with the evaluation process.

Commits as Task Switches In chapter 2.3 we defined the principle of a task in software de-
velopment. However, we did not have any concrete meta data considering task switches in Feed-
BaG’s interaction records. We assumed that commits happen at the end of tasks and thus can be
used as indicators for task switches.
It is not proven that this assessment is correct, though. While both, tasks and commits, should
concern a package of related work, this is not necessarily the case. While best practices suggest us-
ing a single commit per task, this is only a best practice and not a written law. Developers might,
based on their task’s scope, have multiple commits per task. This would strongly influence the
significance of the features used in the experiments. When strictly following test-driven develop-
ment, a possible scenario might require a commit after writing the tests. This would automatically
mean that there was neither a successful test nor a build before the commit. Therefore, the results
would be inherently different when comparing the point at which the tests were committed with
the actual task switch.
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Feature Choice Section 3.2.1 has shown how it is possible to extract features from raw interac-
tion logs. We have also provided reasons for the choice of features. However, software develop-
ment involves a lot of actions. Therefore, it is likely that there are features we have not taken into
consideration but influence the build model. Present research has mainly focused on the meth-
ods edited by the developer [KF17, CS08]. This information is not necessarily provided by low
level-level interaction logs. The enriched event stream provided by FeedBaG however contains
Simplified Syntax Trees (SSTs) which provide snapshots of source code. We have not exploited
these structures. It might also be possible to find correlations between the edited source files and
task switches. There is a simple idea behind this assumption. It is likely that the same files are
edited during a task. Once the task is switched, different files are targeted by the developer. This
is also an approach which is used for task boundary detection in computer related work. How-
ever, this isn’t trivially applicable to our approach as a feature can’t be extracted easily. A possible
way to take files into consideration with logistic regression is to calculate the files overlapping
two successive intervals.
The file related feature is only one example of many possible features we have not touched as part
of our work. In order to theorize additional features, the developer behaviour has to be studied
intensively. Nonetheless, the feature could have been badly chosen. By using better features, it
might also be possible to obtain better results.

Data Set Initially, we obtained a data set consisting of interaction logs from 82 developers. Un-
fortunately and surprisingly, almost one half of the data sets did not contain any commit related
events. This does not necessarily mean that these developers do not use any version control.
FeedBaG only records interactions with GIT while there are other version control systems used
such as SVN and Mercurial. Nonetheless, the size of the data set had to be decreased by large
margin.
Additionally, we decided to remove all data sets which did not contain test runs initially. To our
surprise, only 16 developers used both, GIT and tests. This ratio does not seem very realistic.
On the other hand, not all users of FeedBaG are professionals. It is not impossible for hobby de-
velopers as well as hobby projects to enjoy less strict project management. Removing interaction
logs which do not contain version control events was a necessity. However, excluding data sets
without test runs strongly influences the outcome.
This poses a big threat to the integrity. It might be possible that a different data set provides dif-
ferent results. Presumably interaction logs from professional developers, which use the tool in
their daily work, follow tighter bounds in order to complete tasks.

External Validity
Opposed to previous research in this field, we did not rely on a laboratory setting. Zou and
Godfrey’s evaluation of Coman’s algorithm is a great example for showing how results gained
in a isolated can differ heavily from those gained in a real-life setting [ZG12]. Our approach also
does not suffer from the well-known Hawthorne effect. Developers are not actively observed.
Additionally, the approach we provided is applicable to almost every data set as long as it is
chronologically ordered. It does not even necessarily rely on contextual information. However,
the meaningfulness of features is increased heavily by such information.
On the other hand, the data set has some unexpected characteristics. We did not expect that only
roughly 20% of all developers make use of both, GIT and testing. These were to interactions our
implementation relied heavily. One interpretation of this might be that developers mainly upload
data from their private projects and that they follow less strict guidelines. Or maybe the work flow
is not embedded as much into the definition of done as expected, therefore also professional work
would not provide recurring patterns. However, this is just speculation and we can not say for
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sure that the results are that bad for all data sets. In order to make more precise statements on
this issue, the approach must be cross validated against other data sets.

6.2 Future Work
While the results were worse than expected, we are convinced that our approach can be success-
ful. Our experiments were based on a finite set of features that were extracted based on the event
stream. Given more meaningful features, we are sure that our approach can provide a developer
specific model which can reliably predict task switches.
One of the biggest drawbacks of our approach was that we were not able to use commits in order
to predict task switches. Since FeedBaG does not have meta data concerning tasks, we intend to
enrich the data stream with task related meta information. Supposedly, being able to use commits
as feature vectors instead of as label would increase the accuracy of our approach noticeably.
One major difference to previous work on this subject was the focus on low-level events instead
of the modified code. Since our approach didn’t lead to convincing results, it should be evaluated
how these two approaches can be combined in a single one. FeedBaG already provides a hook
for these kind of operations in SSTs. This additional source code information should definitely be
exploited more.
On the other hand, the proposed algorithm might not be precise enough for task boundary de-
tection at all. Therefore, the context layer of FeedBaG’s data might be abusable for a different
approach. Research in the field of task detection often suggests observing the modified artefacts.
The problem of recognising tasks could be transformed into a graph problem which deals with
finding connected sets of source code files. The basic idea behind such an approach would be to
group the available source files into related sets. Once the focus shifts from related files to com-
pletely unrelated ones, a task switch might be indicated. This concept should be tested separately,
however.





Chapter 7

Summary

In this thesis, we conducted research on whether task switches can be detected in raw in-IDE
interaction logs. We adapted the pattern discovery algorithm used in web mining in order to pre-
dict task switches based on low-level interactions.
Based on the assumption that the completion of tasks consists of several, recurring steps which
can be observed in interaction records, we applied an interval based sampling to a data stream.
At each sampling step, the tasks state was extracted. We applied logistic regression to these sam-
pling points in order to build a model which predicts task switches.
This method was applied in three different ways. First, we found out that a global model for our
data set does not exist. The model built from 13 developers was not able to predict task switches
in the test data set consisting of data from 3 developers. We concluded from these results, that
task completion is highly dependant on the developer as well as the project they are working on.
Thereafter, we found out that a naive approach on a developer level can not reliably predict task
switches. Due to the infrequency of task switches, the data set was highly skewed in favour of
non-task switches. To deal with this issue, we applied two oversampling techniques which bal-
ance out the data set. Using these techniques, we were able to obtain accuracies from over 90%.
However, the frequency of false positives became too high for this approach to provide reliable
information for researchers.
In a further step, we wanted to analyse whether developers behave consistently within a session.
The results from this experiment showed, that a session based approach is neither practical nor
precis.

In conclusion, our approach for detecting task switches in low-level IDE interaction log was
not successful. We assume however, with better features, it is possible to predict task switches
based on our technique. Therefore, automated task boundary detection based on low-level IDE
interaction data seems feasible.
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