Bachelor Thesis

February 1, 2018

Generating

Documentation to
Reflect Side Effecﬁ éJ
S

Sandro Wirth

Bachs, Switzerland (14-704-308)

supervised by
Prof. Dr. Harald C. Gall
Jurgen Cito & Gerald Schermann

1) University of S. €. aA IA
E:H ZurichUZH ‘s eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Bachelor Thesis

Generating

Documentation to
Reflect Sde Effects of
Methods

Sandro Wirth

1) University of S. €. aA IA
‘JEL’ ZurichUZH ‘s eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Bachelor Thesis
Author: Sandro Wirth, sandro.wirth@uzh.ch
Project period: = August 10, 2017 - February 1, 2018

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank all the people who were involved in this thesis and made it possible. First
and foremost, I have to thank my advisors Dr. Jiirgen Cito and Gerald Schermann for giving me
the opportunity to write this thesis and for their assistance and dedicated involvement through-
out the process. I would also like to thank Dr. Stefan Hanenberg for providing us with his exper-
tise and helping designing the case study. Huge thanks also to everyone that participated in the
study.

I also would like to use this opportunity to thank my team leader and collegues at work for their
understanding and for allowing me to work flexibly and take the time I needed to work on this
thesis.

Last but not least I want to thank my family and my girlfriend for supporting me everyday
throughout this process. I am eternally grateful.

Abstract

Studies have shown that reducing side effects in software projects has a variety of advantages. It
has a positive impact on testability, code comprehension, verifiability or performing refactorings.
Although there are existing studies about detecting purity and side effects there is no study about

This thesis presents an approach on automatically showing the purity and side effects of Java
methods during the workflow of reading and writing code to evaluate a positive influence on
code comprehension. It is based on the implementation of a prototype that uses purity informa-
tion from existing tools and transforms the information into readable Javadoc.

To measure the influence on code comprehension, this thesis presents an evaluation of the
implemented prototype by executing a quantitative empirical study with 14 participants. The
results show that having the information can improve code comprehension for certain cases but
also small details can lead to possible negative influences.

Zusammenfassung

Studien haben gezeigt, dass die Reduktion von Seiteneffekte in Software Projekten eine Vielzahl
an Vorteilen mit sich bringt. Es hat einen positiven Einfluss auf beispielsweise die Testbarkeit, das
Code-Verstdndnis, die Verifizierbarkeit oder das Durchfiihren von Refactorings.

Diese Arbeit prasentiert einen Ansatz, um automatisch das Vorhandensein beziehungsweise
das Nicht-Vorhandensein von Seiteneffekten in Java Methoden wiahrend dem Lesen und Schreiben
von Code anzuzeigen, mit dem Ziel zu priifen, ob diese Information einen positiven Einfluss auf
das Code Verstindnis hat. Dazu wurde ein Prototyp entwickelt, der die Informationen tiber
Seiteneffekten von existierenden Tools verwendet, verarbeitet und in lesbare Dokumentation
umwandelt in der Form von Javadoc.

Um den Einfluss auf das Code Verstiandnis zu messen, préasentiert diese Arbeit eine Evalu-
ation des Prototypes anhand einer quantitativen, empirischen Studie mit 14 Teilnehmern. Die
Resultate zeigen, dass das Vorhandensein dieser Information das Code Verstandnis in gewissen
Féllen erh6hen konnen, wobei kleine Details auch das Gegenteil bewirken konnen.

Contents

(I_Introduction| 1
[1.1 Problem Statement and Research Question| 1
... 2

2_ Related Workl 3
2.1 Side Effects and Purity Analysis|. o oo 3
22 Empirical Studies] 4

[3__Implementation| 5
BI _Overviewl.ottt 5
[3.2 Purity Analysis| 6

B21 Functionality] 7
.22 DataStructureand Exporl 10
3.3 Generating Documentation| 12
B.3.1 TImportJSON and Parsing of Source Files| 12
B32 Matching]. 12
3.33 Create Documentation| 14
d_Evaluation| 23
41 Methodsl 23
4.1.1 Task 1- Unintended I/Ooperation|. 23
412 Task2-Modifyinganargument] 24
4.1.3 Participants| o 24
4.1.4 Procedurel e e 24
4 esults] L 26
4.2.1 QuantitativeResults| 26
4.2.2 Observationsl v v e e e e e e e e e e 28
4.3 Threatsto Validity|. 28
43.1 Internal Validity|. o oo 28
432 External Validity| L oo o 29

5__Conclusions| 31
Bl Conclusions| e 31
0.2 Summary of Contributions|.o o 32

Futur Kl . e 32

viii Contents

|Appendix A Run instructions| 35
IA.l _Puranol L e 35
1A.2 SideEffectsDocumenter]. e 35

|Appendix B Used tools| 37

|Appendix C Content on the CD-ROM]| 39

Contents ix
List of Figures
[3.1 Approach overview showing the ditferent steps from analyzing the compiled source |
to generating the documentation| o oo oL 6
3.2 Stateless method with the corresponding output from Purano| 7
3.3 Stateful method with the corresponding output from Purano|. 7
3.4 Example of a method with all three types of dependencies| 8
3.5 Method that modifies the state of a passed argument with the corresponding out- |
putfromPurano|. L 9
3.6 Method that modifies the state of itsownobjectf 9
5.7 Method that modifies the state of a static variablel 9
3.8 Method that calls system routines|. 9
3.9 Method that has a static effect as well as two dynamic etfects coming from two |
[different overridden methods| o 000 10
3.10 Class diagram of the data structure that is used for exporting to JSON| 11
3.11 JSON result of a method where the side effect does not happen directly inside of it |
(L.e. an interprocedural sideeffect)) 0 L. 12
3.12 Difterence between Javadoc with and without HIML tags| 14
3.13 Documentation of a stateless method with pop-up inside the IDE| 15
3.14 Documentation of a stateful method with pop-up inside the IDE|. 15
315 Documentation of a method that modifies a staticfield] 16
3.16 Documentation and IDE pop-up of method that modifies the state of an argument| 17
3.17 Documentation of a method that calls system routines and how it looks inside an |
[IDE] 19
3.18 Example of the return dependency documentation|. 20
3.19 Method with both static and dynamic eftects from the same type. Same method as |
in Figure[3.9/but with documentation| 21
4.1 Explanation that the participants with access to the documentation received| 25
4.2 Boxplot of the results fromtask1f 0 .. 27
4.3 Boxplot of theresults fromtask 2| 27
List of Tables
[3.1 Side eftects detected by Purano| o 0oL 8
4.1 Participantsof thestudy| oo o o 24
4.2 Absolute measurements of all participants for both tasks in seconds|. 26
4.3 Comparison of the averages (in seconds) for both tasks with and without docu- |
mentation| 27
44 Descriptive statistics for bothtasks| o 000000 27
|[A.1 Optional CLI arguments for SideEffectsDocumenter|. 36
List of Listings
[L.T Tmpuremethod| 1

Contents

3.1 Deserializing the JSON[. o o o 12
3.2 Parsingofsourcefiles|. oo oo 13

Chapter 1

Introduction

Code comprehension is a crucial task for software developers. It describes the process of read-
ing and understanding of existing code which is particularly important when reusing existing
or unknown software components. Methods in object-oriented languages often update the ob-
jects that they access which is by definition a side effect. Other forms of side effects include the
modification of class variables (static and non-static), I/O operations (e.g. file or database access)
or raising exceptions. In general, side effects of methods are state changes that can be observed
by code that invokes the method [Rou04]. Consider the example shown in Listing .1 where the
methods modifies the state the given parameter. The presence of such effects can make it more
difficult to understand the data flow of a program and they also are potential sources for bugs.
Another term for methods that cause side effects is calling them impure. The opposite of this are
pure methods which is shown in Listing Such methods do not cause any observable side ef-
fect and always evaluate to the same result given the same argument values. Pure methods offer
useful advantages such as better understanding and analysis, verification in model checking or
better testability. Furthermore, pure methods are also easier to parallelise.

This thesis presents an approach on exposing information about the purity and potential side
effects of methods to developers during the task of code comprehension. It is based on the imple-
mentation of a prototype that uses information coming from a modified version of an existing tool
for purity and side effects analysis and creates documentation that is visible to a developer. More-
over, this thesis presents an empirical study that investigates the impact that such documentation
has on the process of code comprehension.

public void impure(Rectangle rectangle) { public int pure(int x) {
rectangle.height = 100; return X * Xx;
} }
Listing 1.1: Impure method Listing 1.2: Pure method

1.1 Problem Statement and Research Question

Names and documentation of methods usually focus on the intention on what these methods are
required to do and produce as a result but they lack the information about possible side effects
that can occur during the accomplishment of their task [YHHK15]. The absence of such infor-
mation makes it more difficult to reuse existing components as developers do not know about
possible side effects. Existing studies (see Chapter [2) have shown techniques to detect side ef-
fects and purity and these ideas have been implemented into different tools. These ideas have
mainly been used for optimizing compilers and not to make the information about side effects

2 Chapter 1. Introduction

and purity available for developers. This thesis aims to find a way of providing such information
to developers and moreover investigates the following research question:

(i) Does information about the purity and possible side effects of methods improve code com-
prehension?

Our approach is to use existing techniques and tools for the purity and side effect analysis and
generate a documentation based on these information that is available to developers during the
process of reading and writing code. A similar thought has been expressed by Rountev [Rou04]
where he states that the results of his work could be used to automatically add documentation to
the software components.

1.2 Structure

Chapter [2] discusses related work about side effects analysis and empirical studies in software
engineering. In Chapter[3jwe present our approach on showing information about the purity and
side effects directly in the source code. The chapter is divided into two parts where the first part
focuses the on actual purity analysis. The second part presents the implementation of our own
tool that is responsible for generating the actual documentation out of the results from the purity
analysis. Chapter[d]is dedicated to the empirical study we conducted to evaluate the impacts our
tool can have on code comprehension of developers. In Chapter |5 a conclusion is made based
on the results and the personal experience. To finish, we propose ideas for further research and
enhancement of the application.

Chapter 2

Related Work

2.1 Side Effects and Purity Analysis

Studies about techniques to detect side effects and purity in software have been around for many
years. One of the first methods was introduced by Banning [Ban79] where he presented a flow-
insensitive interprocedural alias analysis.

Based on the ideas of Banning, Cooper and Kennedy [CK88|| presented an improved method
that solves the problem Banning stated in linear time by employing a new data structure and
breaking down the problem into two subproblems. Further improvements of these ideas as well
as new algorithms were introduced by Choi et al. [CBC93||. Their work included a new algorithm
for flow-sensitive alias analysis which is more precise and efficient. They also extended the tradi-
tional flow-insensitive alias analysis to correctly compute side effects in the presence of pointers
as this could not be handled by then existing methods for side effects analysis.

One of the first studies about using side effects analysis to optimize Java bytecode was in-
troduced by Clausen [Cla97]. The tool presented in his work implements dead-code elimination
and loop-invariant removal. Based on this work Razafimahefa [Raz99|] presents an implementa-
tion of a loop-invariant removal by using the Soot Frameworkﬂ A different form of side-effects
analysis for Java has been introduced by Milanova et al. [MRRO02|]. Their approach is based on an
object-sensitive points-to analysis that is faster than a context-insensitive analysis and also has an
improved precision of side-effect analysis.

One of the most cited papers in recent years has been the work of Salcianu and Rinard [SR04]
[SRO5] where they introduce a new purity and side effects analysis for Java programs. Their anal-
ysis is built on top of a combined pointer and escape analysis, and is able to identify that methods
are pure even when they mutate the heap, provided they mutate only new objects. Addition-
ally the analysis can recognize read-only parameters which also has been introduced by Porat
et al. [PBKMOO]. The analysis is implemented in a tool called Purity Analysis Kitf| This
tool has been evaluated for the usage in this thesis as a potential source for information about
the purity and side effects of methods but was not considered to be practical for our research
as it has some limitations, e.g. it only supports full program analysis (requires a main method)
which limits its capabilities. Techniques for identifying side-effect-free methods in partial pro-
grams has been the subject of different studies. Rountev [Rou04] presented a different approach
than Salcianu and Rinard described. His approach is based on points-to relationships and calling
relationships computed by a fragment class analysis. Another extension to the approach of Sal-
cianu and Rinard is introduced by Madhavan et. al [MRV12]. They present an analysis that can
deal with callbacks and higher-order procedures modularly. An novel purity analysis based on

Thttps://github.com/Sable/soot
2http://jppa.sourceforge.net/PURITY-README . html

https://github.com/Sable/soot
http://jppa.sourceforge.net/PURITY-README.html

4 Chapter 2. Related Work

a flow-sensitive, interprocedural analysis is presented by Pearce [Peall]. His work includes the
implementation of a tool called J Pur that employs purity annotations which can be checked
modularly. Furthermore, JPure can automatically insert annotations into existing code by in-
ferring the purity. JPure has also been evaluated for the usage in our case but didn’t provide
enough information, was difficult to use and the source was not publicly available.

Yang et al. [YHHK15] presented an approach to automatically infer purity and side effects by
using a lexical state accessor analysis. They specifically focus on exposing effects information of
methods. In their work they introduce a slightly different definition of pure methods by dividing
them into stateless and stateful methods. Stateless refers to the traditional definition of pure meth-
ods where the return value only depends on the state of its arguments and the method does not
cause any observable side effects. The definition of stateful also includes methods whose return
value depends on the state of member fields as pure methods. They implemented their analysis
in a tool called Purano[zf] which targets Java bytecode and allows the analysis of partial programs.
Due the fact that Purano exposes both detailed information about pure methods as well as poten-
tial side effects of methods, and also is publicly available, it is chosen for performing the purity
and side effects analysis in our work. Section [3.2] gives a more in-depth description about the
functionalities of Purano as well as how it has been adapted for our case.

2.2 Empirical Studies

The design and execution of the empirical study presented in this thesis is heavily influenced
by the work of Stefan Hanenberg [FKL*12] [HH13|] [HKJW09]. Another related work includes
guidelines for empirical research in software engineering that are introduced by Kitchenham et
al. [KPP"02a]. They provide guidelines for experimental context and design, conduct of the ex-
periment and data collection as well as analysis, presentation and interpretation of results.

Dolado et al. [DHOHO3|] presented an empirical study on the impacts of side effects upon
program comprehension. Their study is based on comprehension of short code snippets that
include very simple side effects which is different from our approach where we investigate the
impacts on more complex form of side effects, such as interprocedural side effects. Their results
showed that already very simple side effects can have strong effects on comprehension.

3http://homepages.ecs.vuw.ac.nz/~djp/jpure/
4https://github.com/farseerfc/purano

http://homepages.ecs.vuw.ac.nz/~djp/jpure/
https://github.com/farseerfc/purano

Chapter 3

Implementation

This chapter focuses on the technical details of the implementation of the whole project. The
first section will give a general overview about how everything works together on a high-level
view. The second section is about Puranoﬂ the tool for detecting side effects and purity in Java
bytecode. It will explain why Purano was chosen, what changes have been made and why. The
third and last section describes how the information coming from Purano is used by a self-written
tool called SideEffectsDocumente rﬂ to generate Javadoc in existing source files.

3.1 Overview

The whole project of generating documentation to reflect side effects of methods can be divided
into two parts. The first part is based on a program called Purano and focuses on detecting the
purity and side effects of methods where the second part takes care of writing the actual docu-
mentation based on the results from the purity analysis. The purity analysis itself can be further
divided into three parts: (1) The actual purity analysis provided by Purano, (2) conversion of
the information into an easier understandable and better exportable data structure (3) export to
JSON. Section 3.2 will provide further detail about the decision to choose Purano for the analysis
and the data conversion.

The second tool called SideEffectsDocumenter uses the generated JSON and extends the
corresponding Java source files from the analysed project with human readable information about
the purity and possible side effects of methods in the form of Javadoc. The main steps are: (1) Im-
port of the JSON, (2) parse Java source files, (3) match the purity information to the corresponding
source and (4) extend the source file with the information. A more in depth explanation of the
tool is given in section

Thttps://github.com/sawirth/purano
2https://github.com/sawirth/SideEffectsDocumenter

https://github.com/sawirth/purano
https://github.com/sawirth/SideEffectsDocumenter

6 Chapter 3. Implementation

CLI Java
arguments Bytecode

N
Purity Data JSON
[Analysis conversion Export] Purano
J
JSON Java source

arguments files
Import Parse Match data to Create f

[JSON Java files source JavaDoc] SideEffects-Documenter

Java source files

with documentation

Figure 3.1: Approach overview showing the different steps from analyzing the compiled source
to generating the documentation

CLI

3.2 Purity Analysis

Chapter]already gave an overview about what tools exists to detect the purity and potential side
effects of methods. This section will cover some details about the evaluation of the suitable tool,
explanation on how it works, what additions in functionality have been made to it and how the
output looks like.

At the beginning of this thesis a lot of work went into the evaluation of these tools and testing
which is suitable. In order to be an applicable tool for our research the following requirements
need to be satisfied:

(i) Able to analyse both programs with or without a main method
(ii) Provide information about purity and side effects on method level

This turned out to be rather challenging because all of the found tools are research prototypes
with little to no information on how to use them or get them to run. Also not all tools mentioned
in the literature could be found online. Another problem faced was that some of the tools required
a main method to start their analysis which is a significant limitation to analyse a wide range of
different programs which we wanted to be possible especially that nowadays a lot of software
projects are using third-party libraries to perform all kind of operations. Usually these libraries
do not have a main method which would make them unable to be analysed. Limitations were
also given by some some tools that only focus on whether a method is pure or not and not what
side effects they have. One of the only programs that satisfies all needs is Purano hence it is
chosen for performing the purity analysis.

3.2 Purity Analysis 7

3.2.1 Functionality

Section [2| already gave an overview of the basic concepts that Yang et. al [YHHK15] introduced
and implemented in Purano. This section focuses more about the actual functionality the tool
offers, especially what forms of purity and side effects it detects and how the corresponding
output looks like.

Pure Methods

Traditionally a function is defined as pure if it always evaluates to the same result given the same
arguments and is not dependent on any hidden state that may change during the execution of
a program and does not cause any side effect. In object oriented languages (e.g. Java, C#) often
states are encapsulated within objects that are passed to methods where as in pure functional
languages (e.g. Haskell) states are passed through function arguments [YHHK15]. Based on
the traditional definition all methods in object oriented languages that depend on the state of
an object but do not modify it or cause any other side effect would be considered impure. Due
to the fact that the object oriented paradigm is defined by methods depending on the states of
object, Purano does not consider such methods as impure. It calls these methods Stateful (see
Figure3.2) where as methods without any dependency on the state of an object are called Stateless

(see Figure3.3).

public int stateless(int argl, int arg2) {
return argl + arg2;

}

Stateless

(@Depend(dependArguments= |"int argl". "int arg2"})

Figure 3.2: Stateless method with the corresponding output from Purano

private int field;

public int stateful(int argument) {
return argument + this.field;

Stateful
@Depend(dependThis=true. dependArguments= {"int
argument"}, dependFields= {"int test.Test.field"})

}

Figure 3.3: Stateful method with the corresponding output from Purano

Return Dependency

As seen in Figure 3.2]and Figure B.3|Purano provides information about the dependency of the
return value. It can show the following dependencies:

+ Argument
« Field of an object (both argument and this)
« Static field

An example is shown in Figure

8 Chapter 3. Implementation

@Depend(depend This=true,
dependArguments=
{"java.awt.Rectangle rect", "int
value"}, dependlields= {"int
test. Test.field", "int
java.awt.Rectangle.height"},

} dependStaticFields= {"int
test. Test.staticField"})

private int field;

private static int staticField;

public int showReturnDependency(Rectangle rect, int value) {
return rect.height + this.field + staticField + value;

Figure 3.4: Example of a method with all three types of dependencies

Detecting Side Effects

Purano can detect four different types of side effects:

Effect type Description Figure

ArgumentModifier = The method modifies the state of an 3.5
object passed as an argument

W
>

FieldModifier The method modifies the state of a
member variable

@
N

StaticFieldModifier The method modifies the state of
static variable

Native The method calls system routines

Table 3.1: Side effects detected by Purano

As seen in Figure [3.5|Purano also detects that the modification of the object is not directly hap-
pening inside the analysed method but in a method that is called inside of it. This is also called
an interprocedural side effect. The same information is also given for the other three types of side
effects. Section [3.3| will show how this information is being used for creating the appropriate
documentation.

Static and Dynamic Effects

Purano distinguishes between static and dynamic effects of a method. An effect is static if it is
caused by a static invocation of the method that causes the effect where as a dynamic effect is
inferred from a dynamic call of such methods, e.g. a call to an overridden method in a subclass.
For example a class A has a method A that changes the state of a passed argument and two
subclasses B and C, each overriding method A and having a different side effect. Now method A
has both a static effect and two dynamic effects. The default output of Purano does not show this
difference but it can be extracted from the underlying data structure by comparing the set of static
effects with the set of dynamic effects. Figure [3.9|shows an example of a method that both has
a static effect (eStatic) and two different dynamic effects (eNative and @Argument) coming
from the overridden methods in the subclasses.

3.2 Purity Analysis 9

public void argumentModifier(
Rectangle rect,
int height) {
privateArgumentModifier(rect, height); | ArcumentModifier

} (@Argument(name="rect", depend Arguments=
i"java.awt.Rectangle rect"}, from = "void
private void privateArgumentModifier(test. TestéprivateArgumentModifier
Rectangle rect, (java.awt.Rectangle, int)")

int height) {
rect.height = height;

Figure 3.5: Method that modifies the state of a passed argument with the corresponding output
from Purano

FieldModifier
@Field(type=int.class,
owner=test. Test.class,
name="fieldToModify",
dependArguments= {"int arg"})

private int fieldToModify;

public void fieldModifier(int arg) {
this.fieldToModify = arg;

}

Figure 3.6: Method that modifies the state of its own object

StaticModifier
(@Static(type=int.class,
owner=test. Test.class,
name="staticField",
dependArguments= {"int arg" |

public static int staticField;

public void staticFieldModifier(int arg) {
staticField = arg;

}

Figure 3.7: Method that modifies the state of a static variable

public void callSystemRoutine() {
systemRoutine();

Native

(@Native(from = "boolean java.util. Random#nextBoolean

0"

@Native(from = "void java.util. Random# ()")

} {@Native(from = "void test. TestZsystemRoutine ()")

Random r = new Randomy();
r.nextBoolean();

private native void systemRoutine();

Figure 3.8: Method that calls system routines

10 Chapter 3. Implementation

public abstract class StaticDynamic {

private static int staticfield; public class ArgumentModifierChild

extends StaticDynamic{
public int foo(Rectangle rect) { @Override

Random random = new Random();
staticfield = random.nextInt();
return rect.height = staticfield;

public int foo(Rectangle rectangle) {
rectangle.height = 100;
return rectangle.height;

}

ArgumentModifier, StaticModifier, Native }
@Depend(dependArguments= | "java.awt.Rectangle
rect"}, dependFields= {"int java.awt.Rectangle.height",
"int java.awt.Rectangle.height"}, dependStaticFields=
1"'int test.StaticDynamic.staticfield" })

@ Argument(name="rect", from = "int @Override

test. ArgumentModifierChild#foo (java.awt.Rectangle)") public int foo(Rectangle rectangle) {
(@Static(type=int.class, owner=test.StaticDynamic.class,
name="staticfield")

public class SystemRoutineCallChild
extends StaticDynamic {

Random random = new Randomy();

@Native(from = "int java.util. Random#nextInt ()") return random.nextInt();
@Native(from = "int test.SystemRoutineCallChild#foo }
(java.awt.Rectangle)") !

@Native(from = "void java.util. Random# ()")

(a) Output from Purano

Figure 3.9: Method that has a static effect as well as two dynamic effects coming from two different
overridden methods

3.2.2 Data Structure and Export

By default Purano outputs the results of the analysis as a HTML document as seen in the figures
and Given that a HTML document is not suitable for a further usage by importing and
parsing the information, Purano has been extended to support an export to JSON. Due to the un-
derlying data structure being deeply nested and containing information that is not needed for our
further usage another data structure is introduced that is very similar to the concepts of Purano
but is much less nested and reduced to the relevant information (see figure 3.10). The idea is to
combine all necessary information about one effect in one class and using primitive data types to
avoid traversing through a lot of different classes once the data is used for generating the doc-
umentation (see section B.3). Another important aspect when designing this data structure was
to make sure each MethodRepresentation can be clearly identified especially when multiple
methods with the same name are present in a project (e.g. when overloading methods inside a
class or using the same names for classes in different packages). Once the data structure has been
fully constructed it is exported to JSON by using google—gsorﬂ allowing it to be further used in
the process of generating the documentation.

Classes

The ClassRepresentation is the top most class that holds a set of MethodRepresentations
and is identified by its full name (package plus class name). It is mainly used for matching
(see Section [3.3.2) the data from Purano to the actual source. MethodRepresentation is the

3https://github.com/google/gson

https://github.com/google/gson

3.2 Purity Analysis 11

ClassRepresentation

+ fullName: String

+ methodSet: MethodRepresentation
1.1

0.*
MethodRepresentation FieldModifier
ArgumentModifier + name: String + name: String
+ argumentindex: int + purityType: String + type: String
+ hasDirectAccess: boolean + methodArguments: String + owner: String
1.1 1.1
+ isDynamicEffect: boolean 0. + fieldModifiers: FieldModifier o1t hasDirectAccess: boolean
+ owner: String + staticFieldModifiers: FieldModifier + dependsOnParameterFromindex: Integer
+ name: String + argumentModifiers: ArgumentModifier + fieldDependencies: FieldDependency
+ originOwner: String + returnDependency: ReturnDependency + staticFieldDependencies: FieldDependency
+ originOwner: String + nativeEffects: NativeEffect 1.1
1.1 1.1
0..*
0.* 0.1
. ReturnDependency FieldDependency
NativeEffect
) + staticFieldDependencies: FieldDependency + name: String
+ owner: String 1.1
+ fieldDependencies: FieldDependenc! + owner: Strin
+ name: String P s 4 0.* 9
indexOfDependentArguments: Integer desc: Strin
+ originOwner: String * P 9 9 + 9
.) + dependsOnThis: boolean + isThisField: boolean
+ originName: String
+ isDynamicEffect: boolean
+ isDynamicEffect: boolean Y

Figure 3.10: Class diagram of the data structure that is used for exporting to JSON

central class holding all information about the purity and side effects of a single method. It
holds a list of each of the different types of side effects (see Table as well as a list of argu-
ment names and the return dependency. Each of the classes that represent a side effect contain
both a field for the owner and the name of a method called inside the method (represented by
MethodRepresentation) that is responsible for the causing the side effect. If the side effects
happens directly in a method without calling other methods these fields are empty. Additionally
NativeEffect and ArgumentModifier contain fields to store information about the origin of
an effect which can be seen in Figure

The field modifier effects (both static and non-static) are represented by the class Field-
Modifier that holds information on what the change depends on. This can either be from a
method parameter, a field or a static field. Dependencies on fields (both static and non-static) are
stored in FieldDependencies which includes information about from which class it is, what
its name is and which data type it has. Furthermore, it has a boolean to indicate if the effect is a
dynamic effect (see Section [3.2.1). This information is also stored for ArgumentModifier and
NativeEffect. Information stored in ReturnDependency is very similar to the dependen-
cies of a FieldModifier, the only addition is that it holds a boolean whether the return value
depends on a field from the class of the method or not.

12 Chapter 3. Implementation

//The JSON is from this method

public void first(Rectangle rect) { "argumentModifiers": [
second(rect); {
} "argumentIndex": 0,
"hasDirectAccess": false,
private void second(Rectangle rect) { "isDynamicEffect": false,
third(rect); "owner": "test. ArgumentModifier",
} "name": "second",
"originOwner": "test. ArgumentModifier",
private void third(Rectangle rect) { "originName": "third"
rect.height = 100; }

}

Figure 3.11: JSON result of a method where the side effect does not happen directly inside of it
(i.e. an interprocedural side effect)

3.3 Generating Documentation

This section covers the details about the tool SideEffectsDocumenter which is responsible
for converting the information coming from Purano into readable Javadoc and mapping it to the
correct method to make it available to the person reading the source code of the analysed project.

3.3.1 Import JSON and Parsing of Source Files

The import of the JSON coming from Purano is done by using the same data structure as shown
in figure and google—gson.

public Set<ClassRepresentation> deserializePuranoResult(String purano]Json) {
Type collectionType = new TypeToken<HashSet<ClassRepresentation>>(){}
-getType();
return gson.fromJson(puranoJson, collectionType);

Listing 3.1: Deserializing the JSON

The parsing of the Java source files is done by using the library J avaParserﬂ that offers a wide
variety of functions to analyse and manipulate source files. Especially it offers an easy to use API
to add or change the Javadoc of a method (see[3.3.3). Listing [3.2|shows how the parsing of java
files works.

3.3.2 Matching

Once both the information from Purano and source files have been imported they have to be
matched together and stored in a new object. Each ClassRepresentation is matched with the
corresponding object from JavaParser and the same is done for all MethodRepresentations.
In both cases this is done by taking each object from JavaParser and then filtering all the objects
from Purano based on the name and package declaration to find the correct object.

4https://github.com/javaparser/javaparser

https://github.com/javaparser/javaparser

3.3 Generating Documentation 13

public Set<JavaParserResult> parseFilesFromPath(String rootPath) {
Set<Path> filePaths = getAllFilePaths(rootPath);

Set<JavaParserResult> javaParserResults = new HashSet<>();
filePaths.forEach(path —> {
CompilationUnit cu = null;
try {
cu = JavaParser.parse(path);
} catch (IOException e) {
e.printStackTrace();
}

if (cu !=null) {
javaParserResults.add(new JavaParserResult(path, cu));
}
b

return javaParserResults;

Listing 3.2: Parsing of source files

For matching the data of methods together also the number and data types of the arguments
is used to find the correct MethodRepresentation if filtering by name and package was not
sufficient. Algorithm [I)illustrates this approach.

Algorithm 1: Find matching MethodRepresentation from Purano

Data: parsed method from JavaParser, list of methods from Purano
Result: Matching method from Purano
list:= filterByName(list of methods);
if list has one element then
| return element;
end
list:= filterByNumberOf Arguments(list of methods);
if list has one element then
| return element;
end
list:= filterByDataTypesOf Arguments(list of methods);
if list has one element then
| return element;
end
return null;

14 Chapter 3. Implementation

3.3.3 Create Documentation

This section covers some of the ideas behind how the actual documentation is created as well as
some code examples showing the result. The goal was to create a documentation that provides
useful information to the developer and is easy to read in both the source itself as well as the
pop-up most modern IDEE] (e.g. Intelli] IDEAE[) offer to show the Javadoc when hovering over a
method with the mouse cursor.

Program options

SideEffectsDocumenter offers some options to tweak how the final documentation looks like.
One option tries to make Javadoc links out of method referencesﬂ Another options tackles the
problem that Javadoc that contains lists with line breaks and indentation may be easily read inside
the source file itself but not in the pop-up provided by the IDE. The solution for this are HTML
tags for line breaks (
) and lists (and <1i>) that are inserted into the documentation to
make it better readable inside the Javadoc pop-up (see Figure 3.12).

/%%
* This text is wrapped on multiple lines
* but does not appear like this in the pop—up ablic void example
. P | . ample () o
e This text is wrapped on multiple lines but does
* Here is a list:) o .)
. first not appear like this in the pop-up Here is a list: -
first - second
* — second
*/
public void example() {/*empty=/}
/%%
* This text is wrapped on multiple lines

* and does appear like this

 public vold exampleHTML()
* This text is wrapped on rmultiple lines
* Here is a list: and does appear like this
* _ _
+ first Here is a list:
x second @ first
* ® second
*/
public void exampleHTML() {/xempty=/}

Figure 3.12: Difference between Javadoc with and without HTML tags

A detailed description on how the options are being used and how to run the program can be
found in Appendix

SIntegrated Development Environment
fhttps://www.jetbrains.com/idea/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#CHDDIECH

https://www.jetbrains.com/idea/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#CHDDIECH

3.3 Generating Documentation 15

Pure methods

For stateless methods the only information besides the actual purity itself that can be shown is the
ReturnDependency which is described in Section An example of how the documentation
looks like as code and in the IDE pop-up is shown in Figure[3.13] In case the return value depends
on either a field or a static field the purity of that method is stateful and the ReturnDependency
cointains the name of the field. Figure shows an example of such a method.

/xx
* Purity: Stateless

’ . public int stateless{int argl,
* Return value depends on the following:

* SR A
* Argument: argl (int) Purity: Stateless

« Argument: arg2 (int) Return value depends on the following:
* & Argument: argl (int)

*/ & Argument: arg2 (int)

public int stateless(int argl, int arg?) {
return argl + arg2;

)

Figure 3.13: Documentation of a stateless method with pop-up inside the IDE

private int field;

/%%
* Purity: Stateful

* public int stateful {(int argument)
* Return value depends on the following;: Purity: Stateful
* Return value depends on the following:
* Argument: argument (int) ;
« Field: this.field (int) ® Argument: argument (int)
« & Field: this.field (int)
*/

public int stateful(int argument) {
return argument + this.field;

}

Figure 3.14: Documentation of a stateful method with pop-up inside the IDE

16 Chapter 3. Implementation

FieldModifier

If the method modifies an internal field of a class no additional information besides the purity type
(FieldModifier) is shown. The reason for this is that a method calling such a method doesn’t
need to know about what internal fields are changing because this is an implementation detail
which should be hidden in an object oriented software design. StaticModifier is different,
here the information which static field is changing is contained in the documentation. An example
is shown in Figure3.15|

public static int staticField;

VAT
* Purity: StaticModifier

*

* Modifies the following static fields: public void staticFieldModifier{int arg)

* Purity: StaticModifier

% Test.staticField (int) Modifies the following static fields:
* @ Test.staticField (int)

*

*/

public void staticFieldModifier(int arg) {
staticField = arg;
}

Figure 3.15: Documentation of a method that modifies a static field

ArgumentModifier

The documentation for ArgumentModifier includes the name of the argument that is being
changed as well as which method call inside the body of the method is responsible for it if the
effect does not directly happen inside the method itself. Figure[3.16|shows an example of method
where the effect does happen in another method (privateArgumentModifier ()) and that
information is visible in the documentation of argumentModifier ().

3.3 Generating Documentation 17

/%%
* Purity: ArgumentModifier

*
* Modifies the following arguments:
*
* rect (via Test.privateArgumentModifier)
*
*/
public void argumentModifier(Rectangle rect, int height) {
privateArgumentModifier(rect, height);

/x%
* Purity: ArgumentModifier

*
* Modifies the following arguments:
*
* rect
*
*/
private void privateArgumentModifier(Rectangle rect, int height) {
rect.height = height;

public void argumentModifier (BEectangle rect,
int height)

Purity: ArgumentModifier
Modifies the following arguments:

® rect (via privatebrgumentModifier (Rectangle, int)

private void privateArgumentModifier (Rectangle rect,
int height)

Purity: ArgurnentModifier
Modifies the following arguments:

@ rect

Figure 3.16: Documentation and IDE pop-up of method that modifies the state of an argument

18 Chapter 3. Implementation

Native Effects

For native effects it was important to distinguish between regular system calls and I/ O-operations
such as printing something to the console or reading from a file. To support this, SideEffects-
Documenter compares both the actual method of the effect as well as the origin method with a
blacklist. The blacklist is a text file that can contain packages, classes or single methods that do
I/O-operations. The path to the file is then passed to the program as CLI argument. A sample
blacklist could look like this:

Packages

java.io

java.nio
org.apache.commons.io
java.sqgl

Classes
test.utils.FileWriterUtils

Methods
test.NativeImpl.nativeCalculation
taskl.Test.IOCall

If an effect is caused by a method that is blacklisted the documentation contains a hint that the
method might cause I/O operations (see Figure3.17).

ReturnDependency

The documentation of the ReturnDependency includes information on which fields (static and
non-static) and arguments the return value depends on. Each of the values is written as an ele-
ment of a list to enable easy reading (see Figure|3.18).

Static and Dynamic Effects

Section already explained how Purano detects both static and dynamic effects. If a method
has both dynamic and static effects of the same type, the dynamic effects will be shown separately
from the static effects as seen in Figure[3.9} Does a method only have static effects of one type these
are not particulary marked as static effects.

3.3 Generating Documentation 19

/x%
* Purity: Native

*
x The method calls native code:
*
* {@link PrintWriter#write} (origin: {@link Writer#write} — Possible I/O)
% {@link PrintWriter#PrintWriter} (origin: {@link FileOutputStream#open} — Possible I/0O)
* {@link Random#nextBoolean} (origin: {@link Unsafe#fcompareAndSwapLong})
* {@link Random#Random()} (origin: {@link Unsafe#compareAndSwapLong})
 {@link Test#systemRoutine}
*
*/
public void callSystemRoutineAndIO() throws FileNotFoundException {
systemRoutine();

Random r = new Randomy();

r.nextBoolean();
PrintWriter pw = new PrintWriter("filename.txt");
pw.write("hello");

/x%

* Purity: Native

*/

private native void systemRoutine();

pubklic woid callSystemRoutineAndIO()
throws FileNotFoundException

Purity: Mative
The method calls native code:

@ PrintWriter.write (origin: java.ic.Writer.write - Possible I/0)

@ PrintWriter.PrintWriter (origin: java.ic.FilefutputStream. open - Possible I/0)
Bandom. nextBoolean (0rigin: sun.misc.Unsafe.compareindSwaplong)

Bandom.Bandom{) (origin: sun.misc.Unsafe.compareindSwaplong)

@ systemBoutine

Figure 3.17: Documentation of a method that calls system routines and how it looks inside an IDE

20

Chapter 3. Implementation

/%%
* Purity: Stateful

*
* Return value depends on the following:
*
* Argument: rect.height (int) </1i>
* Argument: value (int)
x Static Field: Test.staticField (int)
* Field: this.field (int)
x
*/
public int showReturnDependency
(Rectangle rect, int value) {
return rect.height
+ this.field
+ staticField
+ value;

public int showBeturnDependency (Bectangle rect,
int value)

Purity: Stateful
Return value depends on the following:

& Argument: rect.height (int)

@ Argument: value (int)

& Static Field: Test.staticField (int)
& Field: this.field (int)

Figure 3.18: Example of the return dependency documentation

3.3 Generating Documentation 21

public abstract class StaticDynamic {
private static int staticfield;

/%%

* Purity: ArgumentModifier, StaticModifier, Native

*

* Modifies the following arguments:

* Dynamic effects (i.e. from subclasses)

* rect (via ArgumentModifierChild.foo)

*

* Modifies the following static fields:

* StaticDynamic.staticfield (int)

*

* Return value depends on the following;:

* Argument: rect (Rectangle)

* Static Field: StaticDynamic.staticfield (int)

* Field of subclass: Rectangle.height (int)

*

« The method calls native code:

« Static effects

* Random.nextInt

* Random.Random()

* Dynamic effects (i.e. from subclasses)

* SystemRoutineCallChild.foo

*/

public int foo(Rectangle rect) {
Random random = new Random();
staticfield = random.nextInt();
return rect.height x staticfield;

}

Figure 3.19: Method with both static and dynamic effects from the same type. Same method as in
Figure[3.9 but with documentation

Chapter 4

Evaluation

We conducted an empirical study to measure if having prior knowledge about the purity and
possible side effects of methods can have a positive influence on code comprehension of develop-
ers. The participants are divided into two groups where one group has access to the information
coming from SideEffectsDocumenter (see Section[3.3) and the other group has no documen-
tation.

4.1 Methods

In order to make quantitative conclusions about the impact our tool has on code comprehension
of developers we designed two tasks that the participants had to solve in time. The tasks aimed
to reflect real world problems caused by methods having side effects that had to be found by
navigating through the code inside an IDE.

Both tasks have been built on top of a separate projec specifically designed for this study
that tries to hide these effects in nested class hierarchies so the participants are not able to find the
problem by just opening each class and look through each method. The project has then being
analysed by our tool to generate the documentation which one group had access to.

To avoid further distortion of the measurements the participants only had to found the root
of the problem and delete the associated lines of code and not perform any kind of refactoring
task. This also enables people with experience in another object oriented language than Java
to participate in the study. Also some of the participants began with the second task and later
performed the first task to limit influence of learning effects on the result. Moreover, the project
was designed to avoid code that might be difficult to understand due to unknown constructs (e.g.
lambda expressions, usage of design patterns or unknown libraries).

4.1.1 Task 1 - Unintended 1/O operation

The scenario in the first task is that different steps in a process are being executed in a task and
somehow this modifies the productive database. An access to the database means that an I/O
operation is happening. The location of this operation has to be found by the participants. Each
of the different steps in this process contains multiple method calls with various depths of call
hierarchies.

Ihttps://github.com/sawirth/SideEffectsDocumenter-Experiment

https://github.com/sawirth/SideEffectsDocumenter-Experiment

24 Chapter 4. Evaluation

4.1.2 Task 2 - Modifying an argument

The second task imitates a process of verifying a list of prices of products. At the end a check is
made that none of the prices has changed during this process which is not the case so the check
fails. This means during the process somehow the list of prices got modified which is a side effect
(ArgumentModifier). The participants had to found the location of this modification.

4.1.3 Participants

For our study we recruited 14 participants, nine of them are currently full-time developers and
five are computer science students. Each of the participants has work experience as a software
developer ranging from 1 up to 13 years with an average of a little over 5 years. Eight started
with task one and the other seven with task two. A detailed overview of each participant can be
seen in Figure[4.1]

Documentation Id Starting task Age Experience (yrs.) Role

1 26 4 Master Student
2 1 31 7 Software Engineer
3 37 13 Software Engineer
With 4 26 5 Master Student
5 27 5 Software Engineer
6 2 27 1 Junior Software Engineer
7 29 1 Junior Software Engineer
8 29 5 PhD Student
9 1 35 10 Software Engineer
10 28 4 Master Student
Without 11 24 2 Master Student
12 28 6 Software Engineer
13 2 28 5 Domain Architect
14 29 7 Software Engineer
Average 28.9 54

Table 4.1: Participants of the study

4.1.4 Procedure

Each of the 14 participant was first given an introduction about what side effects and pure meth-
ods are with examples. After that they received an explanation of the two tasks and what they
had to do. The group of participants that had access to the documentation also received an in-
troduction on what information the tool generates and how it looks inside the IDE by presenting
examples of each of the different purities (see Figure £.T). All of the participants also received

4.1 Methods 25

information about basic shortcuts for navigating through code inside the IDE. Besides the mea-
surement of time that the participants required for solving the tasks, everything is recorded by
using screen and webcam capturing as well as sound recording and tracking the events inside the
IDE by using a plugin called Activity Trackerﬁ

private int field;
private static int staticField;

/ #%

* Purity: Stateless

*/

public int stateless(int a, int b) {
return a + b;

}

/ #%
* Purity: Stateful

*
* Return value depends on the following:
*
* Argument: a (int)
*
*/
public int oo_stateless(int a) {
return a + this.field;

}

/ #%

* Purity: FieldModifier

*/

public void fieldModifier(int a) {
this.field = a;

}

/[x%
* Purity: StaticModifier

*
* Modifies the following static fields:
x
* {@link PurityExplanation#staticField}
*
*/
public void staticModifier(int a) {
staticField = a;

}

/%%
* Purity: ArgumentModifier

*
* Modifies the following arguments:
*
* rectangle </1i>
*
*/
public void argumentModifier(Rectangle
rectangle) {
rectangle.height = 100;
}

/%%

* Purity: Native

sk

* The method calls native code:

*

* {@link PurityExplanation#nativeMethod
0}

* {@link FileWriter#write(String)} (Possible
1/0)

*

*/

public void nativeCall() {

nativeMethod();

try {
FileWriter writer = new FileWriter("file.txt
)
writer.write("text in file");
} catch (IOException e) {
e.printStackTrace();
}

private native void nativeMethod();

Figure 4.1: Explanation that the participants with access to the documentation received

2https://github.com/dkandalov/activity-tracker

https://github.com/dkandalov/activity-tracker

26 Chapter 4. Evaluation

4.2 Results

In this section we present the evaluation results of both the quantitative measurements as well as
observations on how the participants interacted with the documentation based on the collected
video material.

4.2.1 Quantitative Results

Based on the measurements from the study shown in Table[4.2]the group with access to the docu-
mentation solved the tasks 22% faster. However there is a big difference between task 1 and task
2. On average there is only a 12% improvement in task 1 which is equal to not even a minute
based on an average solving time of 472 seconds. Differences are bigger for task 2 where the
group with documentation solved the task 44% faster which is measured in absolute time is 159
seconds based on the average solving time of 361 seconds.

Based on the computed descriptive statistics seen in Table [4.4]it is also interesting to see that
the fastest participants from each group needed almost the same time for solving task 1 (187s to
197s) where as for task 2 the differences are much more significant (113s to 228s). The table also
shows that the standard deviation for the group with documentation is lower than for the other
group for both tasks which means the results are less scattered.

These differences between the two tasks can also be seen in the boxplots in Figure [4.2| and
Figure Less scattered values result in a narrower inner box (= lower interquartile range).

Id Task1(s) Task2(s)

1 360 300
2 474 113
3 720 180
With documentation 4 528 294
5 480 240
6 187 416
7 341 268
8 562 507
9 295 459
10 197 228
Without documentation 11 960 538
12 234 660
13 497 426
14 780 420
Average 473 361

Table 4.2: Absolute measurements of all participants for both tasks in seconds

4.2 Results 27

Without With Difference
documentation documentation
Task 1 504 441 12%
Task 2 463 259 44%
Overall 966 700 28%

Table 4.3: Comparison of the averages (in seconds) for both tasks with and without documenta-
tion

Task Documentation min(s) max(s) mean(s) median(s) std. dew.

1 with 187 720 441 474 155.42
without 197 960 504 497 266.82

5 with 113 413 259 268 89.09
without 228 660 463 459 122.37

Table 4.4: Descriptive statistics for both tasks

Task 1

With documentation - =

Without documentation |- 1

| | | | |
200 400 600 800 1,000
Figure 4.2: Boxplot of the results from task 1

Task 2

With documentation |- .

Without documentation |- 1

| |
100 200 300 400 500 600 700

Figure 4.3: Boxplot of the results from task 2

28 Chapter 4. Evaluation

4.2.2 Observations

During the study we also collected video material to see how the participants interacted with the
documentation and how they tried to solve the tasks. Although all of the participant that were
in the group with the documentation received the same explanation on how the documentation
looks like some barely noticed it or were confused by it and jumped right into the code without
even looking at the documentation. They stated that they are not familiar with the usage of
Javadoc. Another source of irritation especially in the first task were the native effects. In the
experiment code both native effects with and without an info about possible I/O operations are
present. This confused some of the participants because they began to deeply investigate also the
methods without the info about possible I/O and therefore lost a lot of time.

Another noticeable observation was that some of the participants from both groups jumped
right into the first method call on the upper most level without even looking on what other
method calls are on the same level. This behaviour had in most cases a worse impact on the
outcome if they didn’t had the documentation because they were not able to exclude particular
methods calls from further investigation.

4.3 Threats to Validity

This section discusses several points which threaten the validity of the results from this study
which is necessary according to known guidelines for empirical research in software engineering
(see [KPPT02b] and [KAKB™06]).

4.3.1 Internal Validity

Experiment Design It is unclear to what extent a programming task can be considered as repre-
sentative which does not permit generalisation to an arbitrary set of programming tasks [HH13]J.
Both tasks and the experimental code were designed to favour the benefit of having our documen-
tation. There was no task that tries to measure if the documentation could also have a negative
influence on code comprehension.

To reduce the threat of learning effects the two task scenarios are different from each other and
do not rely on the exact same methods. Also not all the participants began with the same task first
to reduce the same effect. Nonetheless, it is possible that this aim was not completely achieved
by the design of the experiment.

Another slight problem is that each of the participants performed the experiment separately
which means that not all of them received the explanation in the exact same way although it was
the intention to do so.

Participants The selection of the participants is a possible threat as they are not chosen ran-
domly and might be biased. It is also often stated in the literature (see Hanenberg [Han10])) that
students are not a valid sample for developers and therefore can be a threat to validity. However,
only the minority of the participants were students and all of them have experience in professional
software engineering. The participants also had different levels of programming experience and
knowledge about Java and the used IDE as well as what side effects and pure methods are. The
definition and explanation of the tasks may also not be understood equally well by all the partic-
ipants.

Novelty Effects All participants completed the task on the same machine (which was a Toshiba
Laptop). Most certainly this required some time to get used to this setup especially for people that

4.3 Threats to Validity 29

are not familiar with developing on laptops. This is potential threat to validity as some people
can adapt quicker to new and unknown environments than others.

4.3.2 External Validity

Used Systems/Scenarios The solely for this study written project may be considered as a
threat because it does not reach the size and complexity of large systems used in the industry,
in terms of number of classes, lines of code or hierarchy.

Questions Furthermore, the representativeness of the questions is a potential threat because
the questions may not reflect real problems. Other kinds of tasks might matter more than the
ones we considered.

Participants The small number of 14 participants is another threat to validity that limits the
generalisation of our results.

Programming Language Due to the limitation of choosing Java as the programming language
for the evaluation the results may not be directly inferred to other languages.

Chapter 5

Conclusions

5.1 Conclusions

The work of this thesis shows an approach of exposing information about the purity and possible
side effects of methods to developers. Based on the results presented in Section 4.2|having such
information can help increase code comprehension. They also showed that there are situations
where the documentation is more useful and situations where it can cause irritation which has
a negative impact on code comprehension. For example, a lot of problems that are caused by
unexpected side effects (such as a modification of a parameter) can be located by using a variety
of functions that are included in modern IDEs rather then by conducting our documentation. This
also implies that the documentation might not be very useful during the task of locating an error
but rather be useful when writing new code that reuses unknown software modules.

However, the study also revealed that little details can decide whether the documentation can
help increasing code comprehension or creates confusion. One of the main irritations were caused
by the presence of native effects. Most of the participants did not quite understand what they are
and how the information could help them.

Furthermore, the study definitely showed that Javadoc might not the best suited way to show
information about purity and side effects. The majority of the participants were not familiar with
using Javadoc as a source of code comprehension. Javadoc is too inconspicuous to recognize that
a method causes potential side effects or that it is pure. Finally, the usage of Javadoc to document
purity is questionable particularly when it is combined with the usual content of Javadoc. This
would make the purity information even less recognizable.

The success of a tool that provides information about purity and side effects also strongly
depends on its precision in detecting these effects correctly. Once developers notice that the in-
formation might not be correct for several methods they lose confident in the tool and abandon
it. A major concern also is that the side effects a method could cause based on its documentation
might never arise because it depends on one or more conditions to be satisfied. This implies that
is better for such methods to not contain these information directly in their description or at least
not showing them in the same way as effects are shown that always occur.

In conclusion, this thesis presents an early work on how information about the purity and
potential side effects of methods can be included in the workflow of developers and how it can
affect code comprehension.

32 Chapter 5. Conclusions

5.2 Summary of Contributions

This section covers the main contributions of this thesis sorted from most to least important.

(i) Implementation of a prototype to automatically generate information about the purity and
potential side effects of methods based

(if) Empirical study to evaluate an increase in the productivity of developers if they have access
to information about purity and side effects of methods

(iii) Evaluation and modification of an existing tool for purity and side effects analysis for fur-
ther usage

5.3 Future Work

This section discusses possible ideas for further research and improvements of the prototype that
is introduced in this thesis. The ideas are based on our own experiences and opinions from par-
ticipants of the study.

The prototype we present in this thesis could be used for further studies about how develop-
ers can benefit from the documentation of purity and side effects. One idea is to investigate if
the information actually can help during the process of writing new code, e.g. when reusing soft-
ware modules. Another approach could be to investigate about potential negative influences the
documentation can have. Considering the following example: Methods that might cause trouble
due to side effects should probably be refactored to avoid problems in the future. Now if there
exists a documentation that shows that such methods have side effects, maybe developers tend
to avoid a refactoring because they know about the side effects and therefore might implement
workarounds so that the side effect does not cause any problems in their case.

Improvements to the prototype can be made in a variety of possible ways. Based on the fact
that Javadoc might not be the best way to provide information about the purity of methods a
simple way for improvement would be to introduce annotations similar to what Pearce [Peall]
has shown. A plugin could use this information and flag calls that potentially cause side effects.
Another way of improvement could be to integrate our tool into the build process so every time
the build process runs also a side effect analysis is performed and documentation is created.

Currently the SideEffectsDocumenter works only on the modified export coming from
Purano. This could be extended so that the tool supports other sources of information about
the purity and side effects of methods, i.e. coming from other analysing tools. An even further
improvement would be to compare different sources and create the documentation accordingly.
For instance if one source reports that a method has no side effects and other one detects side
effects, the documentation should consider this.

During the study we collected video and sound material as well as tracking data from inside
the IDE that could be used for further research. For example, this material can give insights
on how many different source files each of the participants opened until they solved the task.
Conducting the video and sound material in detail could also help find ideas to further improve
the prototype.

Appendices

Appendix A

Run instructions

A.1 Purano

To be able to run the modified version of Purano the following prerequisites must be met:
(i) Java Runtime Environment (JRE) 1.7 installed
(i) .jar of Purano
(iify Compiled version of the project to be analysed (either as .class files or as .jar)
The program can then be run with the following command:

java -cp [path to purano jar;path to project]
jp.ac.osakau.farseerfc.purano.reflect.ClassFinder
-p [name of packages to be analysed]

-0 [output path]

To analyse an entire project containing different packages you either have to enter the name of the
uppermost package (usually the top-level domain of a country) or enter multiple package names
separated by a whitespace. This produces the JSON that is used for the next step.

A.2 SideEffectsDocumenter

To be able to run SideEffectsDocumenter the following prerequisites must be met:
(i) JRE 1.7 installed
(i) .jar of SideEffectsDocumenter
(iii) Java source files from same project that has been analysed by Purano
(iv) JSON Output from Purano
(v) .txt file for the I/O blacklist

The I/0 blacklist is needed to mark specific methods as possible I/O methods such as methods
from java.io. The basic run instruction is the following:

36

Chapter A. Run instructions

java —jar [path to jar of SideEffectsDocumenter]
[root path of source files]
-p [path to JSON]
—-io [path to I/O blacklist]

The tools offers additional CLI arguments to further tweak the output:

Option

Description

CLI argument

Extended documentation

Output file path

Replace files

Create links

Create HTML lists

If enabled the documentation shows
all possible informations and not just
the purity (e.g. Stateless, Stateful etc.)

The modified version of the source file
will be saved here. Default is the loca-
tion the file already is

If enabled the tool will override exist-
ing source files

This will try to make Javadoc hyper-
links (@1ink{}) for methods

The Javadoc will be formatted with
 and <1i> elements which en-
ables better reading inside the Javadoc
pop-up of the IDE

-e

-o [path]

-r

Table A.1: Optional CLI arguments for SideEffectsDocumenter

Appendix B

Used tools

Programming tools and libraries

IntelliJ IDEA IDE for all programming tasks as well as the execution of the study
JavaParser Library that is used for parsing and modifying Java source files

Gson Library that is used for both the export and import of JSON files

Guice Dependency Injection framework used in SideEffectsDocumenter
Activity Tracker Plugin for Intelli] IDEA to track user activity inside the IDE
JCommander Framework for trivial parsing of command line parameters

JSAP Java Simple Argument Parser

Other tools

TeX Live TeX Distribution that is used to build this thesis

Atom Editor that is used to write this thesis

Draw.io Online diagram software

Zotero Used to manage bibliographic data and related research materials

ActivePresenter Used for screen, webcam and audio recording

Appendix C

Content on the CD-ROM

Abstract.txt Unformatted abstract of this thesis in English
Zusfsg.txt Translation of Abstract.txt to German
Bachelorarbeit.pdf Complete and final version of this thesis

purano.zip Source code of the modified version of Purano (also available on GitHub: |https:
//github.com/sawirth/purano)

SideEffectsDocumenter.zip Source code of SideEffectsDocumenter (also available on GitHub:
https://github.com/sawirth/SideEffectsDocumenter)

SideEffectsDocumenter-Experiment.zip Source code that is used in the empirical study (also
available on GitHub: |https://github.com/sawirth/SideEffectsDocumenter—-Experiment)

Toolchain Folder that contains all necessary files and executables to run both the purity analysis

as well as the generation of the documentation. Please refer to Appendix [A| for further
details.

https://github.com/sawirth/purano
https://github.com/sawirth/purano
https://github.com/sawirth/SideEffectsDocumenter
https://github.com/sawirth/SideEffectsDocumenter-Experiment

40

Chapter C. Content on the CD-ROM

[Ban79]

[CBC93]

[CK88]

[Cla97]

[DHOHO3]

[FKL+12]

[Han10]

[HH13]

[HKJW09]

Bibliography

John P. Banning. An Efficient Way to Find the Side Effects of Procedure Calls and
the Aliases of Variables. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL '79, pages 2941, New York, NY, USA,
1979. ACM.

Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient Flow-sensitive Interpro-
cedural Computation of Pointer-induced Aliases and Side Effects. In Proceedings of
the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL '93, pages 232-245, New York, NY, USA, 1993. ACM.

K. D. Cooper and K. Kennedy. Interprocedural Side-effect Analysis in Linear Time.
In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation, PLDI '88, pages 57-66, New York, NY, USA, 1988. ACM.

Lars R. Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency:
Practice and Experience, 9(11):1031-1045, November 1997.

J. J. Dolado, M. Harman, M. C. Otero, and L. Hu. An empirical investigation of the
influence of a type of side effects on program comprehension. IEEE Transactions on
Software Engineering, 29(7):665-670, July 2003.

J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg. Measuring program-
ming experience. In 2012 20th IEEE International Conference on Program Comprehension
(ICPC), pages 73-82, June 2012.

Stefan Hanenberg. An Experiment About Static and Dynamic Type Systems: Doubts
About the Positive Impact of Static Type Systems on Development Time. In Pro-
ceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA "10, pages 22-35, New York, NY, USA, 2010.
ACM.

Michael Hoppe and Stefan Hanenberg. Do Developers Benefit from Generic Types?:
An Empirical Comparison of Generic and Raw Types in Java. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA "13, pages 457—474, New York, NY, USA, 2013.
ACM.

Stefan Hanenberg, Sebastian Kleinschmager, and Manuel Josupeit-Walter. Does
Aspect-oriented Programming Increase the Development Speed for Crosscutting
Code? An Empirical Study. In Proceedings of the 2009 3rd International Symposium

42

BIBLIOGRAPHY

[KAKB+06]

[KPP+02a]

[KPP+02b]

[MRRO02]

[MRV12]

[PBKMO0]

[Peall]

[Raz99]

[Rou04]

[SR04]

[SRO5]

[YHHK15]

on Empirical Software Engineering and Measurement, ESEM ’09, pages 156-167, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

Barbara Kitchenham, Hiyam Al-Khilidar, Muhammad Ali Babar, Mike Berry, Karl
Cox, Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Liming Zhu.
Evaluating Guidelines for Empirical Software Engineering Studies. In Proceedings of
the 2006 ACM/IEEE International Symposium on Empirical Software Engineering, ISESE
'06, pages 38-47, New York, NY, USA, 2006. ACM.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8):721-734, August 2002.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8):721-734, August 2002.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized Object Sensi-
tivity for Points-to and Side-effect Analyses for Java. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ‘02, pages
1-11, New York, NY, USA, 2002. ACM.

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani. Modular Heap
Analysis for Higher-order Programs. In Proceedings of the 19th International Conference
on Static Analysis, SAS’12, pages 370-387, Berlin, Heidelberg, 2012. Springer-Verlag.

Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. Automatic De-
tection of Immutable Fields in Java. In Proceedings of the 2000 Conference of the Centre
for Advanced Studies on Collaborative Research, CASCON 00, pages 10—, Mississauga,
Ontario, Canada, 2000. IBM Press.

David J. Pearce. JPure: A Modular Purity System for Java. In Compiler Construc-
tion, Lecture Notes in Computer Science, pages 104-123. Springer, Berlin, Heidel-
berg, March 2011.

Chrislain Razafimahefa. A Study Of Side-Effect Analyses For Java. Technical report,
1999.

A. Rountev. Precise identification of side-effect-free methods in Java. In 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings., pages 82-91,
September 2004.

Alexandru Salcianu and Martin Rinard. A Combined Pointer and Purity Analysis
for Java Programs. May 2004.

Alexandru Salcianu and Martin Rinard. Purity and Side Effect Analysis for Java
Programs. In Verification, Model Checking, and Abstract Interpretation, Lecture Notes in
Computer Science, pages 199-215. Springer, Berlin, Heidelberg, January 2005.

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Revealing Pu-
rity and Side Effects on Functions for Reusing Java Libraries. In Software Reuse for
Dynamic Systems in the Cloud and Beyond, Lecture Notes in Computer Science, pages
314-329. Springer, Cham, January 2015.

	Introduction
	Problem Statement and Research Question
	Structure

	Related Work
	Side Effects and Purity Analysis
	Empirical Studies

	Implementation
	Overview
	Purity Analysis
	Functionality
	Data Structure and Export

	Generating Documentation
	Import JSON and Parsing of Source Files
	Matching
	Create Documentation

	Evaluation
	Methods
	Task 1 - Unintended I/O operation
	Task 2 - Modifying an argument
	Participants
	Procedure

	Results
	Quantitative Results
	Observations

	Threats to Validity
	Internal Validity
	External Validity

	Conclusions
	Conclusions
	Summary of Contributions
	Future Work

	Appendices
	Appendix Run instructions
	Purano
	SideEffectsDocumenter

	Appendix Used tools
	Appendix Content on the CD-ROM

